WO2013094177A1 - プレス成形用金型設計方法、プレス成形用金型 - Google Patents
プレス成形用金型設計方法、プレス成形用金型 Download PDFInfo
- Publication number
- WO2013094177A1 WO2013094177A1 PCT/JP2012/008062 JP2012008062W WO2013094177A1 WO 2013094177 A1 WO2013094177 A1 WO 2013094177A1 JP 2012008062 W JP2012008062 W JP 2012008062W WO 2013094177 A1 WO2013094177 A1 WO 2013094177A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain
- metal plate
- press
- minimum
- forming
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/20—Making tools by operations not covered by a single other subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J13/00—Details of machines for forging, pressing, or hammering
- B21J13/02—Dies or mountings therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B12/00—Presses not provided for in groups B30B1/00 - B30B11/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/02—Dies; Inserts therefor; Mounting thereof; Moulds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
- G01N2203/0067—Fracture or rupture
Definitions
- the present invention relates to a press molding die design method capable of performing press molding into a desired shape without generating cracks in a metal plate, and a press molding die manufactured using the same.
- Press forming is a typical metal processing method in which a metal plate is sandwiched and pressed between a pair of molds, and a metal plate such as a steel plate is formed to follow the shape of the die to obtain a part having a desired shape. It is used in a wide range of manufacturing fields such as automobile parts, machine parts, building components, and home appliances. In recent years, the use of high-strength steel sheets is expanding especially in press forming of automobile parts. However, as the strength of a workpiece increases, press formability decreases.
- a forming limit diagram is a diagram in which various biaxial stresses are applied to the metal plate, and the strain at the stage when the metal plate is cracked or the strain immediately before is set as the limit value. Many attempts have been made to improve the accuracy of measurement and prediction of the forming limit, and the influence of various material properties has been verified (for example, see Non-Patent Document 1).
- a press forming simulation by a finite element method is performed by using this forming limit diagram, and a method for searching for forming conditions in which a metal plate does not crack is also performed (for example, see Patent Document 1).
- the inventors have carried out press forming of high-strength steel sheets under various forming conditions. As a result, there are many cases in which the results largely deviate from crack prediction results using press forming simulation, and the ductility as shown in FIG. It has been found that cracks that are different from the cracks dominated by are occurring. As a result of intensive studies, this crack has a strong correlation with the bendability of the metal plate, and as shown in FIG. It has been clarified that this occurs even when press forming is performed using a high-strength steel sheet having excellent elongation. In other words, when a crack with dominant bendability occurs, the conventional method for evaluating press formability and predicting cracking based on the ductility of the metal plate has excellent ductility.
- the present invention has been invented to solve the above-described problems, and predicts the mold shape necessary to prevent the occurrence of cracks that are governed by bendability during press molding, and cracks that are governed by bendability.
- the challenge is to design a mold that does not occur.
- the inventors have made various studies on the occurrence of cracks controlled by bendability. As a result, the conditions under which bendability-controlled cracks occur and the bendability R / t of the metal plate are obtained. And found a strong correlation.
- the bendability R / t is a mechanical property of the metal plate obtained by a bending test, and is the minimum bending radius (the minimum bending radius that can be bent without occurrence of cracking). The limit bending radius is expressed by dividing R) by the thickness t.
- the inventors conducted a 90-degree V-bending test on various metal plates, and determined the strain on the outer surface of the bend when cracks occurred on the surface of the metal plate as the critical surface strain ⁇ critical, and the metal plate during press forming It has been found that when the surface strain exceeds the critical surface strain ⁇ critical , cracks governed by bendability occur.
- the present invention has been completed based on this finding, and the gist thereof is as follows.
- the minimum curvature radius of the press-molding die is R 0
- the limit strain at which cracking occurs in the plane strain region of the press-molding metal plate is ⁇ f
- the thickness of the press-molding metal plate is t
- the minimum bend radius that can be bent without causing cracks on the surface of the metal sheet for press forming is defined as R
- the present invention when press forming a target metal plate, it is possible to prevent the occurrence of cracks controlled by bendability. This can greatly contribute to the reduction of the rate.
- the shape of the press molding die can be accurately predicted at the design stage, which can contribute to shortening the manufacturing period of the press molding die. Furthermore, there is an effect that it is possible to accurately predict whether or not the selection of the metal plate used when press-molding various parts such as automobile panel parts and structural / framework parts is appropriate.
- FIG. 1 is a diagram showing a cracking form of a metal plate in which ductility is dominant and a cracking form of a metal plate in which bendability is dominant.
- FIG. 2 is a diagram showing the shape of a test piece used when creating a forming limit diagram.
- FIG. 3 is a diagram for explaining a forming limit diagram.
- FIG. 4 is a diagram showing a forming limit diagram of the test material A and the test material B.
- FIG. FIG. 5 is a view showing the shape of a hat molding die.
- FIG. 6 is a diagram showing the shape of a test piece used for hat forming.
- FIG. 7 is a schematic view showing a test material formed into a hat shape until cracking occurs.
- a metal plate To create a forming limit diagram (FLD), first, a metal plate, A test piece having a width of 10 to 100 mm and various widths as shown in FIG. 2 is processed.
- the reason why various test pieces having different widths are prepared is to change the strain ratio (the ratio of the minimum main strain and the maximum main strain) over a wide range.
- the shape of the marking may be a circle pattern, a dot pattern, a grid pattern, a concentric circle pattern, or the like as long as the strain can be measured after molding.
- the marking method includes electrolytic etching, photoetching, transfer with ink (stamp printing), and any method may be used, but scribing is not preferable because it induces cracking.
- the above test piece is stretched and formed using a ball-shaped punch with a radius of curvature of 25 mm or more at the tip, and the molding is completed when the plate is cracked or constricted, or when the surface of the plate is cracked.
- the reason for limiting the minimum radius of curvature of the punch tip to 25 mm is that if it is less than 25 mm, the influence of bending deformation in the deformation region of the punch tip portion cannot be ignored.
- the maximum principal strain and the minimum principal strain are obtained by measuring the marking position or shape change of the portion where the punch tip contacts. By repeating this for test pieces of various widths, the maximum principal strain and the minimum principal strain can be obtained over a wide range. Then, the measurement results of the maximum principal strain and the minimum principal strain obtained as described above are displayed two-dimensionally to obtain a forming limit diagram as shown in FIG.
- a region where the minimum principal strain such as bending deformation is close to 0 is referred to as a plane strain region, and the limit strain is represented by ⁇ f in FIG.
- Equation (2) the strain increase due to bending deformation is added to the limit strain ⁇ f in the strain region.
- Equation (3) since ⁇ critical is the limit value of the strain in which the bending controlled by the bendability does not occur in the plane strain region, the condition for preventing the bending-influenced crack is expressed by Equation (3).
- the minimum bending radius (minimum curvature radius) R 0 of the mold necessary for preventing the cracking controlled by bendability is obtained from the following formula (4).
- (4) Therefore, by designing the mold so that the minimum bending radius (minimum curvature radius) is equal to or greater than the minimum bending radius (minimum curvature radius) R 0 shown in Equation (4), cracks whose bendability dominates during press forming are prevented. A mold that does not occur can be designed.
- the metal mold die which this embodiment makes object assumes that the minimum bending radius (minimum curvature radius) R0 is less than 25 mm. This is because, when a metal plate is press-molded using a mold having a minimum bending radius (minimum curvature radius) R 0 of 25 mm or more, the influence of bending deformation is reduced, and the ductility tends to be a dominant crack form. .
- the metal plate targeted by this embodiment is assumed to have a thickness t of 0.5 mm or more, a tensile strength of 980 MPa or more, and a limit bending radius R of 1 mm or more. This is because when the plate thickness t is smaller than 0.5 mm, even if bending deformation is applied to the metal plate, the strain generated on the outer surface of the bend is small, and cracks with dominant bendability are unlikely to occur.
- a material whose tensile strength is lower than 980 MPa is generally excellent in bendability
- a material whose bendability R / t is excellent such that the limit bending radius R is less than 1 mm is generally This is because cracks in which the bendability is dominant do not become a problem in the range of the minimum bending radius (minimum curvature radius) of the mold used in press molding.
- test materials A and B shown in Table 1 having substantially the same ductility (total elongation) and different bendability are shaped as shown in FIG. 2, and the width of the narrowest part is 10 to 100 mm.
- Several types of test pieces were prepared, and a dot pattern was marked on the surface of the test piece by electrolytic etching with a distance between the gauge points of 1.0 mm.
- the test piece was stretched and formed using a ball head punch having a minimum curvature radius of 25 mm at the tip. In the overhang forming using the ball head punch, the forming was performed until a through crack occurred in the steel plate.
- the change in the dot interval in the vicinity of the punch tip was measured, the maximum principal strain and the minimum principal strain were obtained, and a forming limit diagram was created.
- FIG. 4 (a) A forming limit diagram of the specimen A prepared by the above method is shown in FIG. 4 (a), and a forming limit chart of the specimen B is shown in FIG. 4 (b).
- Table 2 shows the limit strain ⁇ f in the plane strain region obtained from the forming limit diagram of each specimen.
- the minimum bending radius (minimum curvature radius) R 0 required for the mold is predicted from the equation (4) using the limit strain ⁇ f , the bendability R / t of the metal plate, and the thickness t, each test As shown in Table 3, the minimum bending radius (minimum curvature radius) R 0 of a mold that can be press-molded without occurrence of cracks in which the bendability is dominant in the materials A and B can be predicted.
- the metal mold shown in FIG. 5 for forming a flat workpiece into a hat shape is used, and the prediction result of the minimum bending radius (minimum curvature radius) R 0 necessary for the above metal mold is verified.
- the sample material is processed into a rectangular shape shown in FIG. 6 and then molded with various punch shoulder radii R0 .
- a general rust-preventive oil was used for lubrication, the wrinkle holding load was 15 tons, the molding height was 50 mm, and it was confirmed whether or not a crack with dominant bendability occurred in the test material.
- the experimental results are shown in Table 4 as x when a crack with dominant bendability occurs, and ⁇ when the mold can be formed without generating a crack with dominant bendability.
- FIG. 7 shows a schematic diagram of the vicinity of the punch shoulder portion of the test material that was molded until the bending with dominant bendability occurred.
- Each sample material has cracks from the surface, and cracks in which the bendability is dominant. From this result, it can be seen that by determining the minimum bending radius (minimum curvature radius) R0 of the mold using the invented prediction formula (4), it is possible to design a mold that prevents cracking in which bending properties are dominant.
- the present invention is not limited to the contents described above.
- a steel plate having a tensile strength of 980 MPa or higher (a steel plate of 1180 MPa class) is shown.
- it is preferable to apply to press forming of such a high-strength steel plate it can also be applied to metal plates other than steel plates.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
Description
近年では、特に自動車部品のプレス成形において、高強度鋼板の利用が拡大しているが、被加工材の強度が増加するほどプレス成形性が低下する事が問題視されている。その対策として、金属組織を硬質な相と軟質な相の2相で構成させた鋼板(Dual Phase鋼板)や、残留オーステナイトを活用した鋼板(TRIP:Transformation Induced Plasticity
)などのように強度と伸びの両立を図り、金属板自体の機械的特性を向上させる方法がある。これはプレス成形性が金属板の伸びと相関があるためである。
また、この成形限界線図を用いることで有限要素法によるプレス成形シミュレーションを行い、金属板に割れが生じない成形条件を探る方法も行われている(例えば、特許文献1参照)。
本発明は、上記の問題点を解決すべく発明したものであり、プレス成形途中で曲げ性が支配する割れの発生を防ぐために必要となる金型形状を予測し、曲げ性が支配する割れが発生しない金型を設計することを課題としている。
R0/t≧(2R/t+(2R/t+1)εf)/2(1-(1+2R/t)εf)
すなわち、曲げ性が支配する割れの発生を防止するために金型に必要となる最小の曲率半径R0を上記の式から予測し、曲率半径R0以上の曲率半径を有する金型を設計する。
(1) プレス成形用金型の最小曲率半径をR0、プレス成形用金属板の平面ひずみ領域にて割れが発生する限界ひずみをεf、前記プレス成形用金属板の板厚をt、前記プレス成形用金属板の表面に割れが発生することなく曲げられる最小の曲げ半径をRと定義し、
前記プレス成形用金型の最小曲率半径R0を、下記式を満たす範囲に設定するプレス成形用金型設計方法。
R0/t≧(2R/t+(2R/t+1)εf)/2(1-(1+2R/t)εf)
(2) 前記限界ひずみεfを、前記プレス成形用金属板の成形限界線図から求める上記(1)に記載のプレス成形用金型設計方法。
(3)上記(1)又は(2)に記載のプレス成形用金型設計方法を用いて作製したプレス成形用金型。
また、プレス成形用金型の形状を設計段階で精度良く予測できるようになり、プレス成形用金型の製造期間の短縮に貢献できる。
さらに、自動車のパネル部品、構造・骨格部品等の各種部品をプレス成形する際に用いる金属板の選定が適切であるか精度良く予測できるという効果もある。
(成形限界線図の作成方法)
成形限界線図(FLD:Forming Limit Diagram)を作成するには、まず、金属板を、
図2に示すような幅が10~100mmで種々の幅を有する試験片に加工する。ここで、幅を変えた試験片を種々準備する理由は、ひずみ比(最小主ひずみと最大主ひずみの比)を広範囲に変化させるためである。
なお、金属板の延性を判定基準とした従来の割れの予測手法では、成形限界線図の成形限界線を挟んで割れ発生領域と、割れなし領域の何れ側に存在するかを確認し、割れ発生領域に存在する場合に、割れが発生すると予測していた。
金属板に必要とされる曲げ性を予測した実施例について説明する。
対象とする金属板の90度V曲げ試験における限界曲げ半径をR、金属板の板厚をtとすると、純曲げ理論に基づき、曲げ外側の限界表面ひずみεcriticalは式(1)で表される。
εcritical=t/(t+2R) ………(1)
εR0=εf+t/(t+2R0) ………(2)
ここで、εcriticalは、平面ひずみ領域において、曲げ性が支配する割れが発生しないひずみの限界値であるため、曲げ影響割れが発生しないための条件は式(3)となる。
εcritical≧εR0 ………(3)
式(1)~(3)より、曲げ性が支配する割れを防止するために必要な金型の最小曲げ半径(最小曲率半径)R0は、下記の式(4)から求められる。
R0/t≧(2R/t+(2R/t+1)εf)/2(1-(1+2R/t)εf)
………(4)
したがって、金型の最小曲げ半径(最小曲率半径)を式(4)に示す最小曲げ半径(最小曲率半径)R0以上となるように設計することで、プレス成形時に曲げ性が支配する割れが発生しない金型を設計できる。
先ず、延性(全伸び)がほぼ等しく、曲げ性が異なる表1に示す2種類の供試材A、Bを、図2に示すような形状で、最狭部の幅が10~100mmである試験片を数種類作製し、この試験片表面に、電解エッチングでドットパターンを標点間距離1.0mmでマーキングした。次いで、上記試験片を、先端の最小曲率半径が25mmの球頭パンチを用いて張出し成形した。なお、球頭パンチを用いた張出し成形では、鋼板に貫通割れが発生するまで成形を行った。次いで、張出し成形後の試験片について、パンチ先端近傍のドット間隔の変化を測定し、最大主ひずみ及び最小主ひずみを求め、成形限界線図を作成した。
平板状の被加工材をハット型形状に成形する図5に示した金型を使用し、上記の金型に必要な最小曲げ半径(最小曲率半径)R0の予測結果の検証を行う。供試材は図6に示す矩形状に加工したのち、種々のパンチ肩半径R0で供試材を成形する。潤滑には一般的な防錆油を使用し、しわ押さえ荷重は15トン、成形高さは50mmとし、供試材に曲げ性が支配的な割れが発生するのかを確認した。
実験結果を曲げ性が支配的な割れが発生した場合を×、曲げ性が支配的な割れが発生せずに成形できた場合を○として表4に示す。供試材Aでは金型の最小曲げ半径(最小曲率半径)R0が3mm以下、供試材Bでは金型の最小曲げ半径(最小曲率半径)R0が19mm以下の場合には、成形途中で割れが発生した。
Claims (3)
- プレス成形用金型の最小曲率半径をR0、プレス成形用金属板の平面ひずみ領域にて割れが発生する限界ひずみをεf、前記プレス成形用金属板の板厚をt、前記プレス成形用金属板の表面に割れが発生することなく曲げられる最小の曲げ半径をRと定義し、
前記プレス成形用金型の最小曲率半径R0を、下記式を満たす範囲に設定するプレス成形用金型設計方法。
R0/t≧(2R/t+(2R/t+1)εf)/2(1-(1+2R/t)εf) - 前記限界ひずみεfを、前記プレス成形用金属板の成形限界線図から求める請求項1に記載のプレス成形用金型設計方法。
- 請求項1又は2に記載のプレス成形用金型設計方法を用いて作製したプレス成形用金型。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147016469A KR101539559B1 (ko) | 2011-12-21 | 2012-12-18 | 프레스 성형용 금형 설계 방법, 프레스 성형용 금형 |
EP12858879.5A EP2796220B1 (en) | 2011-12-21 | 2012-12-18 | Method for designing die for press forming |
CN201280063625.1A CN104010745B (zh) | 2011-12-21 | 2012-12-18 | 冲压成形用模具设计方法、冲压成形用模具 |
US14/368,062 US9333549B2 (en) | 2011-12-21 | 2012-12-18 | Press-forming mold designing method and press-forming mold |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-280464 | 2011-12-21 | ||
JP2011280464A JP5375941B2 (ja) | 2011-12-21 | 2011-12-21 | プレス成形用金型設計方法、プレス成形用金型 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013094177A1 true WO2013094177A1 (ja) | 2013-06-27 |
Family
ID=48668095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/008062 WO2013094177A1 (ja) | 2011-12-21 | 2012-12-18 | プレス成形用金型設計方法、プレス成形用金型 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9333549B2 (ja) |
EP (1) | EP2796220B1 (ja) |
JP (1) | JP5375941B2 (ja) |
KR (1) | KR101539559B1 (ja) |
CN (1) | CN104010745B (ja) |
TW (1) | TWI501853B (ja) |
WO (1) | WO2013094177A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110234445B (zh) * | 2017-01-31 | 2021-06-15 | 日轻金Act株式会社 | 模具和使用该模具的加工方法 |
US10907957B2 (en) * | 2017-05-16 | 2021-02-02 | Oakland University | Method of measuring localized strains in sheet metal stampings |
KR102334109B1 (ko) * | 2017-08-23 | 2021-12-01 | 제이에프이 스틸 가부시키가이샤 | 금속판의 전단 가공면에서의 변형 한계의 평가 방법, 균열 예측 방법 및 프레스 금형의 설계 방법 |
EP3689491A4 (en) * | 2017-09-26 | 2020-11-25 | JFE Steel Corporation | DEFORMATION LIMIT EVALUATION PROCESS, CRACK PREDICTION PROCESS, AND PRESS MATRIX DESIGN PROCESS |
CN108246845B (zh) * | 2018-01-15 | 2020-04-10 | 浙江申吉钛业股份有限公司 | 钛合金板材等温弯曲工艺优化方法 |
KR102157735B1 (ko) * | 2018-12-03 | 2020-09-21 | (주)나재 | 핫 스탬핑 공법 |
US12017265B2 (en) | 2019-02-26 | 2024-06-25 | Jfe Steel Corporation | Method for evaluating bending crack, system for evaluating bending crack, and method for manufacturing press-formed component |
CN111069338A (zh) * | 2019-12-27 | 2020-04-28 | 上海交通大学 | 一种凸起特征辊冲成形极限评估模具及其测量方法 |
CN111069339B (zh) * | 2019-12-27 | 2021-05-04 | 上海交通大学 | 一种台阶特征辊冲成形极限评估模具及其测量方法 |
CN113552003B (zh) * | 2021-06-17 | 2023-12-12 | 首钢集团有限公司 | 一种高强钢板冲压零件边部成形极限预测方法 |
JP7218783B1 (ja) | 2021-09-10 | 2023-02-07 | Jfeスチール株式会社 | プレス成形割れ判定方法、プレス成形割れ判定装置及びプレス成形割れ判定プログラム、並びにプレス成形割れ抑制方法 |
US12036598B2 (en) * | 2022-04-04 | 2024-07-16 | Ford Global Technologies, Llc | Method and system for lubricating and forming a metal component from sheet metal |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001079617A (ja) * | 1999-09-14 | 2001-03-27 | Kobe Steel Ltd | プレス成形品およびその設計方法並びにプレス成形用材料 |
JP2007152407A (ja) | 2005-12-07 | 2007-06-21 | Fusahito Yoshida | プレス成形における成形割れ予測方法および予測装置 |
JP2009255126A (ja) * | 2008-04-16 | 2009-11-05 | Jfe Steel Corp | フェライト系ステンレス鋼製部品の設計方法 |
JP2010069533A (ja) * | 2008-08-20 | 2010-04-02 | Nippon Steel Corp | 歪勾配を考慮した伸びフランジ割れの推定方法およびプレス成形シミュレーションの伸びフランジ割れ判定システム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH049638A (ja) * | 1990-04-26 | 1992-01-14 | Toyota Motor Corp | 成形余裕度の判定方法 |
US5390127A (en) * | 1992-12-21 | 1995-02-14 | Ford Motor Company | Method and apparatus for predicting post-buckling deformation of sheet metal |
US5572896A (en) * | 1994-02-25 | 1996-11-12 | Aluminum Company Of America | Strain path control in forming processes |
US6915244B2 (en) * | 2000-01-31 | 2005-07-05 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for predicting an amount of dimensional accuracy defect at the time of press-forming metal sheet |
JP3945311B2 (ja) * | 2002-05-24 | 2007-07-18 | 日産自動車株式会社 | プレス成形品寸法精度評価方法およびその装置 |
RU2402010C2 (ru) * | 2006-02-01 | 2010-10-20 | Ниппон Стил Корпорейшн | Способ прогнозирования разрушения |
KR100805618B1 (ko) * | 2006-12-28 | 2008-02-20 | 주식회사 포스코 | 400계 스테인리스강의 성형한계도 예측 방법 |
JP4814831B2 (ja) * | 2007-04-25 | 2011-11-16 | 新日本製鐵株式会社 | 金属板の薄板プレス成形における伸びフランジ性評価試験方法 |
WO2008140122A1 (ja) * | 2007-05-09 | 2008-11-20 | Nippon Steel Corporation | 薄板のプレス成形装置及びプレス成形方法 |
JP4814851B2 (ja) * | 2007-09-07 | 2011-11-16 | 新日本製鐵株式会社 | 薄板プレス成形シミュレーションにおける伸びフランジ割れの推定方法 |
CN101402119B (zh) * | 2008-10-23 | 2010-11-17 | 浙江科技学院 | 无法兰边凹模的深拉深模具 |
JP5294082B2 (ja) * | 2009-08-24 | 2013-09-18 | 新日鐵住金株式会社 | 曲げ限界ひずみ測定法、曲げ割れ判定方法、及び曲げ割れ判定プログラム |
CN201548450U (zh) * | 2009-10-20 | 2010-08-11 | 武汉钢铁(集团)公司 | 成形极限曲线检测用新型压边模具 |
JP5434622B2 (ja) * | 2010-01-20 | 2014-03-05 | 新日鐵住金株式会社 | 薄板のプレス成形シミュレーションにおける破断判定方法および破断判定装置 |
CN201780237U (zh) * | 2010-07-21 | 2011-03-30 | 宝山钢铁股份有限公司 | 一种板材成形极限的测试模具 |
CN102156080B (zh) * | 2011-04-02 | 2012-11-07 | 山东建筑大学 | 建立超高强硼钢板高温成形极限图的试验装置及试验方法 |
-
2011
- 2011-12-21 JP JP2011280464A patent/JP5375941B2/ja active Active
-
2012
- 2012-12-18 US US14/368,062 patent/US9333549B2/en not_active Expired - Fee Related
- 2012-12-18 KR KR1020147016469A patent/KR101539559B1/ko active IP Right Grant
- 2012-12-18 CN CN201280063625.1A patent/CN104010745B/zh not_active Expired - Fee Related
- 2012-12-18 WO PCT/JP2012/008062 patent/WO2013094177A1/ja active Application Filing
- 2012-12-18 EP EP12858879.5A patent/EP2796220B1/en not_active Not-in-force
- 2012-12-20 TW TW101148788A patent/TWI501853B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001079617A (ja) * | 1999-09-14 | 2001-03-27 | Kobe Steel Ltd | プレス成形品およびその設計方法並びにプレス成形用材料 |
JP2007152407A (ja) | 2005-12-07 | 2007-06-21 | Fusahito Yoshida | プレス成形における成形割れ予測方法および予測装置 |
JP2009255126A (ja) * | 2008-04-16 | 2009-11-05 | Jfe Steel Corp | フェライト系ステンレス鋼製部品の設計方法 |
JP2010069533A (ja) * | 2008-08-20 | 2010-04-02 | Nippon Steel Corp | 歪勾配を考慮した伸びフランジ割れの推定方法およびプレス成形シミュレーションの伸びフランジ割れ判定システム |
Non-Patent Citations (2)
Title |
---|
LIWEI GU ET AL.: "Tetsu-to-Hagane", vol. 88, 2002, THE IRON AND STEEL INSTITUTE OF JAPAN, article "Prediction of Forming Limit Diagram (FLD) and Effect of Work Hardening Property on FLD of Sheet Metals", pages: 88 - 94 |
See also references of EP2796220A4 |
Also Published As
Publication number | Publication date |
---|---|
TWI501853B (zh) | 2015-10-01 |
EP2796220B1 (en) | 2016-06-08 |
US9333549B2 (en) | 2016-05-10 |
JP5375941B2 (ja) | 2013-12-25 |
CN104010745B (zh) | 2016-03-16 |
KR101539559B1 (ko) | 2015-07-27 |
CN104010745A (zh) | 2014-08-27 |
TW201331015A (zh) | 2013-08-01 |
KR20140105761A (ko) | 2014-09-02 |
US20150231682A1 (en) | 2015-08-20 |
JP2013128956A (ja) | 2013-07-04 |
EP2796220A4 (en) | 2015-05-27 |
EP2796220A1 (en) | 2014-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5375941B2 (ja) | プレス成形用金型設計方法、プレス成形用金型 | |
Eller et al. | Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties | |
JP5630311B2 (ja) | プレス成形における割れ予測方法およびプレス部品の製造方法 | |
CN110997172B (zh) | 金属板的剪切加工面上的变形极限的评价方法、裂纹预测方法以及压制模具的设计方法 | |
WO2013157063A1 (ja) | プレス成形における成形限界線図の作成方法、割れ予測方法およびプレス部品の製造方法 | |
JP5630312B2 (ja) | プレス成形における成形限界線図の作成方法、割れ予測方法およびプレス部品の製造方法 | |
KR102271009B1 (ko) | 금속판의 전단 가공면에서의 변형 한계의 평가 방법, 깨짐 예측 방법 및 프레스 금형의 설계 방법 | |
JP6103047B2 (ja) | 表層細粒化熱間剪断加工方法および表層細粒化熱間剪断加工部品 | |
JP2020134348A (ja) | 応力−ひずみ関係推定方法 | |
JP5375942B2 (ja) | プレス成形用金属板 | |
JP5983585B2 (ja) | プレス成形方法 | |
JP6350498B2 (ja) | プレスしわ発生判定方法 | |
JP2021028601A (ja) | せん断応力−せん断ひずみ曲線の作製方法、およびそのせん断応力−せん断ひずみ曲線を変換して、高ひずみ領域の応力−ひずみ曲線を作製する方法 | |
JP2009051001A (ja) | シャー角付き打ち抜きせん断装置 | |
WO2013157062A1 (ja) | プレス成形における割れ予測方法およびプレス部品の製造方法 | |
JP7249730B2 (ja) | 鋼板、管状成形品、およびプレス成形品 | |
WO2021010352A1 (ja) | ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材 | |
JP2014226688A (ja) | 薄板の割れ評価方法 | |
Benchmark-1 Committee | Benchmark 1-Nonlinear strain path forming limit of a reverse draw: Part A: Benchmark description | |
JP2016083683A (ja) | プレス成形方法及びプレス成形用金型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280063625.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12858879 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147016469 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14368062 Country of ref document: US Ref document number: 2012858879 Country of ref document: EP |