WO2013089092A1 - 硬化性樹脂組成物、硬化性樹脂成形体、硬化樹脂成形体およびそれらの製造方法、並びに積層体 - Google Patents
硬化性樹脂組成物、硬化性樹脂成形体、硬化樹脂成形体およびそれらの製造方法、並びに積層体 Download PDFInfo
- Publication number
- WO2013089092A1 WO2013089092A1 PCT/JP2012/082052 JP2012082052W WO2013089092A1 WO 2013089092 A1 WO2013089092 A1 WO 2013089092A1 JP 2012082052 W JP2012082052 W JP 2012082052W WO 2013089092 A1 WO2013089092 A1 WO 2013089092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- curable resin
- curable
- meth
- resin composition
- monofunctional
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/007—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/062—Copolymers with monomers not covered by C08L33/06
- C08L33/066—Copolymers with monomers not covered by C08L33/06 containing -OH groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L45/00—Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
- C09D4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/30—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
- C08F220/301—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/1006—Esters of polyhydric alcohols or polyhydric phenols
- C08F222/102—Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
- C08F222/1025—Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08J2367/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2381/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
- C08J2381/06—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08J2467/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2469/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2481/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
- C08J2481/06—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L41/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Compositions of derivatives of such polymers
Definitions
- displays such as liquid crystal displays and electroluminescence (EL) displays have used transparent plastic films instead of glass plates as substrates having electrodes in order to achieve thinning, weight reduction, flexibility, and the like. It is being considered.
- the transparent plastic film used for these applications is usually required to have heat resistance and low birefringence.
- melt extrusion methods and solution casting methods are known as methods for producing heat-resistant optical films.
- the film obtained by the melt extrusion method has a problem that the in-plane retardation tends to be large.
- the film obtained by the solution casting method has a problem that in-plane retardation is reduced, but when the solvent dries, molecular chains are easily oriented in the thickness direction, and the retardation in the thickness direction is likely to increase. there were.
- Patent Document 1 discloses an amorphous thermoplastic resin and a bis (meth) acrylate curable with active energy rays as a glass substitute resin composition having good chemical resistance and heat resistance. The containing resin composition is described. Moreover, although the member obtained using this resin composition is described in the Example of patent document 1, its birefringence is not described.
- the present invention has been made in view of the above-described circumstances, and is useful as a cured resin molded body having heat resistance and excellent low birefringence, a method for producing the same, and a raw material for the cured resin molded body. It aims at providing the laminated body which has a layer which consists of a curable resin composition, a curable resin molding, and cured resin.
- the following curable resin compositions (1) to (6) are provided.
- the thermoplastic resin (A) is at least one selected from the group consisting of a polysulfone resin, a polyarylate resin, a polycarbonate resin, and an alicyclic hydrocarbon resin, according to (1). Curable resin composition.
- the monofunctional (meth) acrylic acid derivative comprises a (meth) acrylic acid derivative having a nitrogen atom, a (meth) acrylic acid derivative having an alicyclic structure, and a (meth) acrylic acid derivative having an ether structure.
- the content of the thermoplastic resin (A) and the monofunctional curable monomer (B) is a mass ratio of the thermoplastic resin (A) and the monofunctional curable monomer (B).
- the curable resin composition according to (1), wherein the plastic resin (A) is a monofunctional curable monomer (B) 30: 70 to 90:10.
- the following curable resin molded articles (7) and (8) are provided.
- the manufacturing method of the cured resin molding of following (10) is provided.
- the manufacturing method of the cured resin molding as described in (9) which has the following processes 1 and 2.
- a cured resin molded body having heat resistance and excellent low birefringence can be efficiently produced.
- the production method of the present invention is particularly suitable for continuously producing a cured resin molded body of a film-like product.
- the present invention is classified into 1) a curable resin composition, 2) a curable resin molded body, 3) a cured resin molded body, 4) a method for producing a cured resin molded body, and 5) a laminate. This will be described in detail.
- thermoplastic resin (A) having a glass transition temperature (Tg) of 140 ° C. or higher, and monofunctional curability. It contains the monomer (B).
- Tg glass transition temperature
- B monomer
- this thermoplastic resin may be abbreviated as “thermoplastic resin (A)”.
- Examples of the ring structure of the thermoplastic resin (A) include an aromatic ring structure and an alicyclic structure.
- the carbon number of the ring structure of the thermoplastic resin (A) is usually 5 to 30, preferably 6 to 20.
- the aromatic ring structure is not particularly limited, but is preferably a benzene ring, a biphenyl ring, a naphthalene ring, a terphenyl ring, or an anthracene ring, and a benzene ring, a biphenyl ring, or a naphthalene ring from the viewpoint of easy availability of raw materials. Is more preferable, and a benzene ring is particularly preferable.
- the alicyclic structure is not particularly limited, but a cycloalkane structure or a cycloalkene structure is preferable.
- the thermoplastic resin (A) used in the present invention is preferably an amorphous thermoplastic resin.
- a cured resin molded article having excellent transparency can be obtained.
- an amorphous thermoplastic resin is excellent in the solubility with respect to an organic solvent, a cured resin molding can be efficiently formed using a solution casting method as described later.
- An amorphous thermoplastic resin refers to a thermoplastic resin whose melting point is not observed in differential scanning calorimetry.
- the weight average molecular weight (Mw) of the thermoplastic resin (A) is usually 8,000 to 3,000,000, preferably 10,000 to 2,000,000, more preferably 100,000 to 2,000. , 000.
- the molecular weight distribution (Mw / Mn) is preferably in the range of 1.0 to 5.0, more preferably 2.0 to 4.5.
- the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) are values in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
- the polysulfone resin is a polymer having a sulfone group (—SO 2 —) in the main chain.
- the polysulfone resin is not particularly limited, and known ones can be used. Examples thereof include resins made of a polymer compound having a repeating unit represented by the following (a) to (h).
- polyethersulfone resin (resin composed of a polymer compound having a repeating unit (a) above), polysulfone resin (resin composed of a polymer compound having a repeating unit (b) above), polyphenylsulfone Examples thereof include resins (resins composed of a polymer compound having the repeating unit (e) above).
- the polysulfone resin used in the present invention may be a modified polysulfone resin. Among these, as the polysulfone resin, a polyethersulfone resin or a polysulfone resin is preferable.
- the polyarylate resin is a resin made of a polymer compound obtained by a reaction between an aromatic diol and an aromatic dicarboxylic acid or a chloride thereof.
- the polyarylate resin is not particularly limited, and known ones can be used.
- the reaction method is not particularly limited, and may be any of a melt polymerization method, a solution polymerization method, and an interfacial polymerization method.
- aromatic diol examples include bis (4-hydroxyphenyl) methane [bisphenol F], bis (3-methyl-4-hydroxyphenyl) methane, 1,1-bis (4′-hydroxyphenyl) ethane, 1, 1-bis (3′-methyl-4′-hydroxyphenyl) ethane, 2,2-bis (4′-hydroxyphenyl) propane [bisphenol A], 2,2-bis (3′-methyl-4′-hydroxy) Bis (hydroxyphenyl) alkanes such as phenyl) propane, 2,2-bis (4′-hydroxyphenyl) butane, 2,2-bis (4′-hydroxyphenyl) octane; 1,1-bis (4′- Hydroxyphenyl) cyclopentane, 1,1-bis (4′-hydroxyphenyl) cyclohexane [bisphenol Z], 1,1-bi Bis (hydroxyphenyl) cycloalkanes such as (4′-hydroxyphenyl) -3,3,5-trimethylcyclohexane; bis (4-hydroxyphenyl) cycl
- Hydroxyphenyl) sulfides bis Bis (hydroxyphenyl) sulfoxides such as 4-hydroxyphenyl) sulfoxide and bis (3-methyl-4-hydroxyphenyl) sulfoxide; bis (4-hydroxyphenyl) sulfone [bisphenol S], bis (3-methyl-4- Bis (hydroxyphenyl) sulfones such as hydroxyphenyl) sulfone; bis (9,9-bis (4′-hydroxyphenyl) fluorene, bis (9′-methyl-4′-hydroxyphenyl) fluorene, etc. Hydroxyphenyl) fluorenes; and the like.
- aromatic dicarboxylic acid or chloride thereof examples include, for example, phthalic acid, isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyl ether 4,4′-dicarboxylic acid, 4,4′- Examples thereof include diphenylsulfone dicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and chlorides thereof.
- the polycarbonate resin is a polymer having a carbonate group (—O—C ( ⁇ O) —O—) in the main chain.
- the polycarbonate resin is not particularly limited, and known resins can be used.
- an aromatic polycarbonate resin or an aliphatic polycarbonate resin can be used, and an aromatic polycarbonate resin is preferable because of excellent heat resistance, mechanical strength, transparency, and the like.
- Aromatic polycarbonate resins are prepared by reacting aromatic diols with carbonate precursors by interfacial polycondensation or melt transesterification, polymerizing carbonate prepolymers by solid phase transesterification, or opening cyclic carbonate compounds. It can be obtained by a method of polymerizing by a ring polymerization method.
- thermoplastic resin (A) can be used individually by 1 type or in combination of 2 or more types.
- the alicyclic hydrocarbon-based resin is a polymer having a cyclic hydrocarbon group in the main chain.
- the alicyclic hydrocarbon-based resin is not particularly limited, and known ones can be used.
- a cyclic olefin that is, a norbornene monomer homopolymer or copolymer
- Examples of the alicyclic hydrocarbon resins include monocyclic olefin polymers, norbornene polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
- thermoplastic resin (A) can be used individually by 1 type or in combination of 2 or more types.
- the monofunctional curable monomer (B) is a monomer having one polymerizable unsaturated bond, and can be involved in a polymerization reaction or a polymerization reaction and a crosslinking reaction.
- curing means a broad concept including “monomer polymerization reaction” or “monomer polymerization reaction and subsequent polymer crosslinking reaction”.
- the curable resin composition of this invention containing a monofunctional curable monomer (B).
- the monofunctional curable monomer (B) usually has negative birefringence, it is a cured resin excellent in low birefringence when combined with a thermoplastic resin (A) having positive birefringence.
- a molded body can be obtained, and in particular, not only the in-plane retardation but also the retardation in the thickness direction can be reduced.
- Examples of the organic group having 1 to 12 carbon atoms represented by R 2 and R 3 include alkyl groups such as methyl group, ethyl group and propyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; phenyl group and biphenyl And aromatic groups such as a naphthyl group. These groups may have a substituent at any position.
- R 2 and R 3 may be combined to form a ring, and the ring may have a nitrogen atom or an oxygen atom in the skeleton.
- Examples of the divalent organic group represented by R 4 include groups represented by —NH—, —NH— (CH 2 ) m —, and —O— (CH 2 ) m —.
- m is an integer of 1 to 10.
- preferred examples include dimethylacrylamide and N- (meth) acryloylmorpholine represented by the following formula.
- Examples of the (meth) acrylic acid derivative having an alicyclic structure include compounds represented by the following formula.
- R 1 represents the same meaning as described above, and R 5 is a group having an alicyclic structure.
- R 5 is a group having an alicyclic structure. Examples of the group having an alicyclic structure represented by R 5 include a cyclohexyl group, an isobornyl group, a 1-adamantyl group, a 2-adamantyl group, and a tricyclodecanyl group.
- (meth) acrylic acid derivative having an alicyclic structure examples include isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 1-adamantyl (meth) acrylate, 2-adamantyl (meth) acrylate and the like.
- Examples of the (meth) acrylic acid derivative having an ether structure include compounds represented by the following formula.
- R 1 represents the same meaning as described above, and R 6 represents an organic group having 1 to 12 carbon atoms.
- the organic group having 1 to 12 carbon atoms represented by R 6 include an alkyl group such as a methyl group, an ethyl group, and a propyl group; a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; a phenyl group, a biphenyl group, and a naphthyl group Aromatic groups such as groups; and the like.
- n represents an integer of 1 to 20.
- (meth) acrylic acid derivative having an ether structure examples include ethoxylated o-phenylphenol (meth) acrylate and phenoxypolyethylene glycol (meth) acrylate represented by the following formula.
- Examples of the (meth) acrylic acid derivative having an aromatic ring include benzyl (meth) acrylate.
- the content of the thermoplastic resin (A) and the monofunctional curable monomer (B) contained in the curable resin composition is the same as that of the thermoplastic resin (A) and the monofunctional curable monomer (B).
- the thermoplastic resin (A): monofunctional curable monomer (B) 30: 70 to 90:10, more preferably 35:65 to 80:20.
- the content of the monofunctional curable monomer (B) contained in the curable resin composition is a mass ratio of the thermoplastic resin (A) and the monofunctional curable monomer (B), and the thermoplastic resin.
- (A): Monofunctional curable monomer (B) When exceeding 30:70, the flexibility of the cured resin molded product may be lowered.
- the cured resin molding may not have low birefringence.
- polyfunctional (meth) acrylic acid derivatives examples include tricyclodecane dimethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and ethoxylated bisphenol A di (Meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol adipate di (meth) acrylate, Hydroxypivalic acid neopentyl glycol di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, di (acryloxyethyl) i Bifunctional (meth) acrylic acid derivatives such as cyanurate and
- tricyclodecane dimethanol di (meth) acrylate tricyclodecane dimethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, ethoxylated from the point of being easily mixed with the thermoplastic resin (A).
- a polyfunctional curable monomer can be used individually by 1 type or in combination of 2 or more types.
- the mass ratio of the monofunctional curable monomer (B) to the polyfunctional curable monomer (monofunctional curable monomer (B): polyfunctional curable monomer) is 10: 0. ⁇ 4: 6 is preferred. Further, 10: 0 to 5: 5 is more preferable, and 10: 0 to 6: 4 is further preferable in that a cured resin molded article excellent in low birefringence can be obtained.
- Photopolymerization initiators include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- [4- [4- (2-hydroxy-2 -Methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethyl Amino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholin (L) Phenyl] -1-butanone and other alkylphenone photopolymer
- the curable resin composition may contain other components as long as the objects and effects of the present invention are not impaired.
- other components include a plasticizer, an antioxidant, and an ultraviolet absorber.
- the thermoplastic resin (A), the monofunctional curable monomer (B), and other components as necessary are mixed, and dissolved or dispersed in an appropriate solvent as necessary. Can be prepared.
- the solvent used is not particularly limited as long as it can dissolve or disperse the thermoplastic resin (A) and the monofunctional curable monomer (B).
- aliphatic hydrocarbon solvents such as n-hexane and n-heptane
- alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane
- aromatic hydrocarbon solvents such as toluene and xylene
- methylene chloride, chloride Halogenated hydrocarbon solvents such as ethylene and dichloromethane
- alcohol solvents such as methanol, ethanol, propanol, butanol and propylene glycol monomethyl ether
- ketone solvents such as acetone, methyl ethyl ketone, 2-pentanone, isophorone and cyclohexanone
- ethyl acetate examples thereof include ester solvents such as butyl acetate; cellosolv solvents such as ethyl cellosolve; ether
- Curable resin molded product of the present invention is obtained by molding the curable resin composition of the present invention.
- the shape of the curable resin molded product of the present invention is not particularly limited, and examples thereof include a film shape, a sheet shape, a pellet shape, and a rectangular parallelepiped shape. Especially, it is preferable that it is a film form or a sheet form. In the case of a film or sheet, not only a long one but also a short flat plate is included.
- the film-like or sheet-like one of the curable resin molded body of the present invention may be referred to as a curable resin film.
- the curable resin film can be produced by a solution casting method using the curable resin composition.
- the curable resin composition (or a solution obtained by diluting the curable resin composition with an appropriate solvent) may be applied on the process sheet, and the solvent may be removed by drying.
- the solvent for diluting the curable resin composition those described above as the solvent for preparing the curable resin composition can be used.
- the method for coating the curable resin composition on the process sheet is not particularly limited, and spin coating method, spray coating method, bar coating method, knife coating method, roll coating method, blade coating method, die coating method, gravure coating method.
- a known coating method such as the above can be used.
- the drying method of the obtained coating film is not particularly limited, and a curable resin film can be obtained using a conventionally known drying method such as hot air drying, hot roll drying, and infrared irradiation.
- the drying temperature of the coating film is usually 30 to 150 ° C., preferably 50 to 130 ° C., and the drying time is usually several tens of seconds to several tens of minutes.
- the curable resin composition of the present invention contains a thermoplastic resin (A) having a very high glass transition temperature (Tg), but is monofunctional curable monomer (B ), The solvent can be efficiently removed.
- the thickness of the curable resin film is not particularly limited, and is usually 1 to 300 ⁇ m, preferably 2 to 200 ⁇ m, more preferably 3 to 100 ⁇ m.
- the curable resin composition of the present invention contains a monofunctional curable monomer (B) as described above, and is plasticized. Therefore, when a curable resin film is produced using a solution casting method, the curable resin composition is dried. In the process, the solvent can be efficiently removed.
- the glass transition temperature (Tg) of the curable resin molded product (curable resin film) is usually ⁇ 40 to + 135 ° C., preferably ⁇ 40 to + 130 ° C.
- the cured resin molded body of the present invention is obtained by curing the curable resin molded body of the present invention.
- the shape of the cured resin molded body of the present invention is not particularly limited, and examples thereof include a film shape, a sheet shape, and a rectangular parallelepiped shape. Especially, it is preferable that it is a film form or a sheet form.
- the film-shaped or sheet-shaped one of the cured resin molded body of the present invention may be referred to as a cured resin film.
- the thickness of the cured resin molded body is not particularly limited and may be determined according to the purpose, but is usually 1 to 300 ⁇ m, preferably 2 to 200 ⁇ m, more preferably 3 to 100 ⁇ m.
- the cured resin molded body When the cured resin molded body is in the form of a film or a sheet, it may have a process sheet. The process sheet is peeled in a predetermined process. It is preferable that the cured resin film of the present invention has a process sheet because the handleability does not deteriorate even if the cured resin film is thin.
- the cured resin molded body of the present invention uses a thermoplastic resin (A) and is excellent in heat resistance.
- the cured resin molded article of the present invention has a glass transition temperature (Tg) of usually 140 ° C. or higher, preferably 150 ° C. or higher.
- the cured resin molded article of the present invention is obtained using a combination of a thermoplastic resin (A) and a monofunctional curable monomer (B), has heat resistance, and has a low resistance. It is a cured resin molded article excellent in birefringence.
- a film obtained by the solution casting method has a problem that molecular chains are oriented in the thickness direction in the solvent drying and removal step, and the retardation in the thickness direction tends to increase.
- the curable resin composition of the present invention a cured resin molded article excellent in low birefringence can be obtained, and the drying process can be shortened as described above, so that in-plane retardation is achieved. In addition, the retardation in the thickness direction can be further reduced.
- the cured resin molded body of the present invention is preferably colorless and transparent.
- the thermoplastic resin (A) has an aromatic ring
- the curing reaction may hardly occur, and depending on the irradiation conditions, the resin may be deteriorated or colored. Therefore, in order to solve these problems, it is preferable to attach an ultraviolet cut filter to the active energy ray irradiating apparatus and irradiate only light having a wavelength necessary for the curing reaction.
- a resin film such as a polyethylene terephthalate film that does not transmit light having a wavelength unnecessary for the curing reaction can be used.
- the cured resin molded article of the present invention is obtained using a combination of a thermoplastic resin (A) and a monofunctional curable monomer (B), and is excellent in low birefringence.
- the cured resin molded article of the present invention has a small in- plane retardation (R in ) and thickness direction retardation (R th ) represented by the following formula, and is excellent in low birefringence.
- n x is the most refractive index is larger refractive index in the direction in the plane of the cured resin molded product
- n y is in the plane of the cured resin molded product, in the direction perpendicular to the refractive index of n x Yes
- nz is the refractive index in the direction perpendicular to the surface of the cured resin molding.
- D indicates the thickness of the cured resin molded body.
- the in-plane retardation (R in ) is usually 20 nm or less, and preferably 15 nm or less.
- the in-plane retardation (R in ) is preferably as small as possible, and there is no particular lower limit, but it is usually 0.1 nm or more.
- the absolute value of the retardation (R th ) in the thickness direction is usually 500 nm or less, preferably 450 nm or less, more preferably 300 nm or less, and even more preferably 100 nm or less.
- the absolute value of the retardation (R th ) in the thickness direction is preferably as small as possible, and there is no particular lower limit, but it is usually 1 nm or more.
- the absolute value of the value obtained by dividing the thickness direction retardation by the film thickness is usually 10 ⁇ 10 ⁇ 3 or less, preferably 9 ⁇ 10 ⁇ 3 or less, preferably 5 ⁇ 10 ⁇ 3 or less is preferable, and 1 ⁇ 10 ⁇ 3 or less is more preferable.
- the absolute value of the birefringence index in the thickness direction is preferably as small as possible, and there is no particular lower limit, but it is usually 0.1 ⁇ 10 ⁇ 5 or more, preferably 1 ⁇ 10 ⁇ 5 or more.
- an active energy ray is irradiated through an ultraviolet cut filter, and it is required for hardening reaction. It is preferable to irradiate only light of a wavelength. Thereby, since the light of the wavelength of 320 nm or less unnecessary for hardening reaction does not permeate
- Method for producing cured resin molded body is not particularly limited, and a conventionally known method can be employed. For example, after extrusion molding of a curable resin composition, a method of molding by irradiating and curing active energy rays, etc., after molding a curable resin composition by a solution casting method, irradiating with active energy rays etc. And the like. The latter method is preferred from the viewpoint that the in-plane retardation can be reduced.
- irradiation may be performed a plurality of times. If the amount of light exceeds 10,000 mJ / cm 2 , the cured resin molded body may be colored, which is not preferable. On the other hand, if the amount of light is less than 50 mJ / cm 2 , curing does not proceed sufficiently, and an unreacted monofunctional curable monomer (B) may remain.
- a cured resin molded body can be obtained by using an electron beam as an active energy ray.
- an electron beam accelerator or the like can be used.
- the irradiation dose is usually in the range of 10 to 1000 krad.
- the irradiation time is usually 0.1 to 1000 seconds, preferably 1 to 500 seconds, and more preferably 10 to 100 seconds.
- a cured resin molded body (cured resin film) in the form of a film or a sheet
- it can be produced efficiently and can be protected when the resulting cured resin film is stored, transported or the like. From the point of being possible, it is preferable to manufacture using a process sheet.
- Step 1 Step of forming a curable resin layer comprising a curable resin composition containing a thermoplastic resin (A) and a monofunctional curable monomer (B) on a step sheet
- Step 2 Step 1 The step of curing the curable resin layer obtained in step 1 to form a cured resin layer
- the curable resin layer can be cured by using the method described above in the curable resin molded product of the present invention to form a cured resin layer.
- the curing method the method described above can be adopted as appropriate.
- a photopolymerization initiator is contained in the curable resin composition, it is preferable to cure the curable resin layer by irradiating active energy rays.
- the illuminance of the active energy ray to be irradiated is preferably 50 to 1000 mW / cm 2 .
- the amount of active energy rays to be irradiated is preferably 50 to 10,000 mJ / cm 2, more preferably 1000 to 10,000 mJ / cm 2 .
- the irradiation time is 0.1 to 1000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds. In order to satisfy the above-mentioned light quantity in consideration of the heat load of the ultraviolet irradiation process, it is preferable to irradiate a plurality of times.
- thermoplastic resin (A) In order to prevent the deterioration of the thermoplastic resin (A), it is preferable to irradiate the curable resin layer with an active energy ray through an ultraviolet cut filter and to irradiate only light having a wavelength necessary for the curing reaction. .
- resin films such as a polyethylene terephthalate film, can be utilized instead of this filter.
- the resin film When using a resin film, the resin film may be laminated on the curable resin layer before step 2.
- a cured resin film with a process sheet can be obtained.
- seat is normally peeled in a predetermined
- the manufacturing method which has the said process 1 and 2 forms a cured resin film using a process sheet, even if the cured resin film obtained by this method has a process sheet. It may be good or not.
- the laminate of the present invention is a laminate having at least one layer made of a cured resin obtained by curing the curable resin composition of the present invention.
- the laminate of the present invention may have other layers.
- the other layer is not particularly limited, and examples thereof include a hard coat layer, a refractive index adjusting layer, an easy adhesion layer, a light diffusion layer, an antiglare treatment layer, a gas blocking layer, a transparent conductive layer, and a process sheet.
- the hard coat layer is a layer provided for the purpose of improving scratch resistance.
- the hard coat layer is obtained, for example, by forming a cured film on the surface of the cured resin film using a curable resin.
- the curable resin include ultraviolet curable resins such as silicon resins, urethane resins, acrylic resins, and epoxy resins.
- the refractive index adjustment layer is a layer provided for controlling reflection.
- the refractive index adjusting layer can be formed using a high refractive material or a low refractive material so as to obtain desired performance.
- the easy adhesion layer is a layer provided in order to improve the adhesion of the surface.
- the easy adhesion layer can be formed by a conventionally known method.
- the light diffusion layer is a layer provided for diffusing light, and can increase the viewing angle of a liquid crystal display device or the like.
- the light diffusion layer can be formed by a conventionally known method.
- the antiglare treatment layer is a layer provided for the purpose of preventing visual interference of transmitted light due to reflection of external light from the surface of the cured resin film.
- the antiglare treatment layer can be formed by a conventionally known method using a coating agent containing a filler such as silica particles.
- the gas barrier layer is a layer having a characteristic of suppressing permeation of oxygen and water vapor.
- gas barrier layer examples include a layer made of an inorganic vapor-deposited film, a layer containing a gas barrier resin, and a layer obtained by implanting ions into a layer containing a polymer compound. These gas barrier layers can be formed by a known method.
- the transparent conductive layer is a transparent and conductive layer.
- the material for the transparent conductive layer include semiconductive metal oxides such as indium tin oxide (ITO) and zinc indium oxide (IZO).
- the transparent conductive layer can be formed by vapor deposition, sputtering, ion plating, thermal CVD, plasma CVD, or the like.
- seat is normally laminated
- a plastic film such as a polyethylene terephthalate film may be used as it is, or a sheet, a plastic film or the like coated with a release agent and provided with a release agent layer may be used.
- the thickness of the laminate of the present invention can be appropriately determined depending on the intended use of the electronic device, but from the viewpoint of handleability, the substantial thickness is preferably 1 to 300 ⁇ m, more preferably 2 to 200 ⁇ m. More preferably, it is 3 to 100 ⁇ m.
- the “substantial thickness” means the thickness in use. That is, the laminate of the present invention may have a process sheet or the like, but the thickness of a portion (process sheet or the like) removed during use is not included in the “substantial thickness”.
- the laminate of the present invention is suitably used as an electrode constituent material used for touch panels and the like, thin televisions, optical recording media, and optical sheet materials.
- a curable resin composition A is formed on a surface opposite to an easy adhesion layer of a polyethylene terephthalate (PET) film (Toyobo Co., Ltd., PET 50A-4100, thickness 50 ⁇ m) by a fountain die method, and the thickness after drying is
- PET polyethylene terephthalate
- the coating film obtained was applied to 50 ⁇ m, and the resulting coating film was heated at 50 ° C. for 2 minutes and then at 130 ° C. for 2 minutes and dried to obtain a curable resin film A which is a film-like curable resin molded product. Obtained.
- a PET film (Toyobo Co., Ltd., PET 50A-4100, thickness 50 ⁇ m) is laminated on the curable resin film A so as not to transmit light having a wavelength unnecessary for the curing reaction, and then the belt conveyor type ultraviolet irradiation Using a device (IGraphics, ECS-401GX), high-pressure mercury lamp (IGraphics, H04-L41), UV lamp height 150 mm, UV lamp output 3 kW (converted output 120 mW / cm), light beam Irradiation with ultraviolet rays was performed under the conditions that the illuminance at a wavelength of 365 nm was 271 mW / cm 2 and the light amount was 177 mJ / cm 2 (ultraviolet light meter: UV-351 manufactured by Oak Manufacturing Co., Ltd.).
- the ultraviolet light was irradiated twice under the conditions of an ultraviolet lamp height of 150 mm, an illuminance of a light wavelength of 365 nm of 271 mW / cm 2 and an amount of light of 600 mJ / cm 2 , and the total amount of ultraviolet light was 1377 mJ / cm as 2 performs curing reaction to obtain a cured resin film a.
- the sample from which the PET film was peeled was used as a sample (the same applies to Examples 2 to 9 and Comparative Example 1 below).
- Examples 2 to 9, Comparative Example 1 Curable resin compositions B to J were prepared in the same manner as in Example 1 except that the blending ratios shown in Table 1 were changed. Using the curable resin compositions B to J, cured resin films B to J, which are film-shaped curable resin molded bodies, were obtained in the same manner as in Example 1.
- Tricyclodecane dimethanol diacrylate Shin-Nakamura Chemical Co.
- ADCP Ethoxylated bisphenol A diacrylate Shin-Nakamura Chemical Co., Ltd.
- ABE-300 Polymerization initiator
- 1-hydroxycyclohexyl phenyl ketone Irgacure 184, manufactured by BASF
- the glass transition temperature (Tg) of the resins used in the examples and comparative examples was measured using a viscoelasticity measuring device (trade name: DMA Q800, manufactured by TA Instruments Inc.), with a frequency of 11 Hz and a temperature increase. It is the temperature at the maximum point of tan ⁇ (loss elastic modulus / storage elastic modulus) obtained by measuring viscoelasticity in the tensile mode in the range of 0 to 250 ° C. at 3 ° C./min.
- n x is the refractive index in a direction most large refractive index in a film plane
- n y is in the film plane is perpendicular refractive index of n x
- n z is the surface of the film Is the refractive index in the direction perpendicular to.
- R in and R th represent the in-plane retardation and the retardation in the thickness direction, respectively, and d represents the thickness of the film.
- a value obtained by dividing the thickness direction retardation (R th ) by the film thickness (d) was defined as the birefringence in the thickness direction.
- Table 1 shows the following.
- the cured resin films A to I obtained in Examples 1 to 9 all have small in-plane retardation, thickness direction retardation and birefringence, and are excellent in low birefringence.
- the cured resin film J obtained by using a polyfunctional monomer instead of the monofunctional curable monomer of Comparative Example 1 and the monofunctional curable monomer of Comparative Example 2 were not used.
- the resin film obtained by the melt extrusion method, the resin film obtained by the solution cast method without using the monofunctional curable monomer of Comparative Example 3, and the cured resin film A obtained in Examples 1 to 9 Both in-plane retardation and thickness direction retardation are large compared to ⁇ I, the birefringence is high, and the low birefringence is inferior.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
これらの用途に用いられる透明プラスチックフィルムは、通常、耐熱性を有し、低複屈折であることが求められる。
(1)主鎖に環構造を有し、ガラス転移温度(Tg)が140℃以上である熱可塑性樹脂(A)、及び単官能の硬化性単量体(B)を含有する硬化性樹脂組成物。
(2)熱可塑性樹脂(A)が、非晶性熱可塑性樹脂である(1)に記載の硬化性樹脂組成物。
(3)熱可塑性樹脂(A)が、ポリスルホン系樹脂、ポリアリレート系樹脂、ポリカーボネート系樹脂、及び脂環式炭化水素系樹脂からなる群から選択される少なくとも一種である、(1)に記載の硬化性樹脂組成物。
(4)単官能の硬化性単量体(B)が、単官能(メタ)アクリル酸誘導体である(1)に記載の硬化性樹脂組成物。
(5)単官能(メタ)アクリル酸誘導体が、窒素原子を有する(メタ)アクリル酸誘導体、脂環式構造を有する(メタ)アクリル酸誘導体、及びエーテル構造を有する(メタ)アクリル酸誘導体からなる群から選択される少なくとも一種である、(4)に記載の硬化性樹脂組成物。
(6)熱可塑性樹脂(A)と単官能の硬化性単量体(B)の含有量が、熱可塑性樹脂(A)と単官能の硬化性単量体(B)の質量比で、熱可塑性樹脂(A):単官能の硬化性単量体(B)=30:70~90:10である、(1)に記載の硬化性樹脂組成物。
(7)前記(1)~(6)のいずれかに記載の硬化性樹脂組成物を成形して得られる硬化性樹脂成形体。
(8)フィルム状物である(7)に記載の硬化性樹脂成形体。
(9)(7)又は(8)に記載の硬化性樹脂成形体を硬化させることで得られる硬化樹脂成形体。
本発明の第4によれば、下記(10)の硬化樹脂成形体の製造方法が提供される。
(10)以下の工程1及び2を有する(9)に記載の硬化樹脂成形体の製造方法。
工程1:工程シート上に、熱可塑性樹脂(A)、及び単官能の硬化性単量体(B)を含有する硬化性樹脂組成物からなる硬化性樹脂層を形成する工程
工程2:工程1で得られた硬化性樹脂層を硬化させて、硬化樹脂層を形成する工程
本発明の第5によれば、下記(11)の積層体が提供される。
(11)前記(1)~(6)のいずれかに記載の硬化性樹脂組成物を硬化して得られる硬化樹脂からなる層を少なくとも1層有する積層体。
特に、本発明の硬化樹脂成形体がフィルム状物の場合には、面内の位相差だけでなく、厚み方向の位相差も小さいものであるため、光学用や電子デバイス部材用の樹脂フィルムとして有用である。
本発明の硬化樹脂成形体(フィルム状物)は、積層体を構成する層として用いることができる。この積層体はタッチパネル等に用いられる電極構成材料や、薄型テレビ、光記録メディア、光学シート材料として好適に用いることができる。
本発明の硬化樹脂成形体の製造方法によれば、耐熱性を有し、かつ、低複屈折性に優れる硬化樹脂成形体を効率よく製造することができる。
本発明の製造方法は、特に、フィルム状物の硬化樹脂成形体を、連続的に製造する場合に好適である。
本発明の硬化性樹脂組成物は、主鎖に環構造を有し、ガラス転移温度(Tg)が140℃以上の熱可塑性樹脂(A)、及び単官能の硬化性単量体(B)を含有するものである。
なお、本明細書において、この熱可塑性樹脂を、「熱可塑性樹脂(A)」と略記することがある。
本発明に用いる熱可塑性樹脂(A)は、主鎖に環構造を有し、ガラス転移温度(Tg)が140℃以上の熱可塑性樹脂である。
主鎖に環構造を有する熱可塑性樹脂は、通常、正の固有の複屈折値を有する。また、後述するように、単官能の硬化性単量体(B)は、通常、負の固有の複屈折値を有するため、これらを適宜組み合わせることで、低複屈折性に優れる硬化樹脂成形体を得ることができる。
熱可塑性樹脂(A)が有する環構造の炭素数は、通常、5~30、好ましくは6~20である。
脂環式構造としては、特に限定はないが、シクロアルカン構造やシクロアルケン構造が好ましい。
本明細書において、ガラス転移温度(Tg)は、粘弾性測定により得られたtanδ(損失弾性率/貯蔵弾性率)の最大点の温度をいう。
これらの中でも、ポリスルホン系樹脂としては、ポリエーテルスルホン樹脂又はポリスルホン樹脂が好ましい。
これらの中でも、ポリアリレート系樹脂としては、2,2-ビス(4’-ヒドロキシフェニル)プロパンとイソフタル酸との反応により得られる高分子化合物からなる樹脂が好ましい。
ポリカーボネート系樹脂としては、特に限定されず、公知のものが使用できる。例えば、芳香族ポリカーボネート樹脂や脂肪族ポリカーボネート樹脂などが挙げられるが、耐熱性、機械的強度、透明性等に優れることから、芳香族ポリカーボネート樹脂が好ましい。
芳香族ポリカーボネート樹脂は、芳香族ジオールとカーボネート前駆体とを界面重縮合法や溶融エステル交換法で反応させる方法や、カーボネートプレポリマーを固相エステル交換法により重合させる方法や、環状カーボネート化合物の開環重合法により重合させる方法によって得ることができる。
カーボネート前駆体としては、カルボニルハライド、カーボネートエステルまたはハロホルメート等が挙げられ、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメート等が挙げられる。
熱可塑性樹脂(A)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
熱可塑性樹脂(A)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
単官能の硬化性単量体(B)は、重合性不飽和結合を1つ有する単量体であって、重合反応、又は、重合反応及び架橋反応に関与し得る単量体である。なお、本明細書において、「硬化」とは、この「単量体の重合反応」、又は、「単量体の重合反応及び引き続く重合体の架橋反応」を含めた広い概念を意味する。
また、単官能の硬化性単量体(B)は、通常、負の複屈折を有するため、正の複屈折を有する熱可塑性樹脂(A)と組み合わせることで、低複屈折性に優れる硬化樹脂成形体を得ることができ、特に、面内の位相差だけでなく、厚み方向の位相差をも小さくすることができる。
単官能の硬化性単量体(B)中の重合性不飽和結合は、硬化反応に関与し得る限り特に制限されないが、反応性に優れることから、(メタ)アクリロイル基として存在することが好ましい。ここで、「(メタ)アクリロイル基」とは、「アクリロイル基」と、「メタクリロイル基」の両者を意味する。
単官能の(メタ)アクリル酸誘導体としては、特に限定されず、公知の化合物を用いることができる。例えば、窒素原子を有する(メタ)アクリル酸誘導体、脂環式構造を有する(メタ)アクリル酸誘導体、エーテル構造を有する(メタ)アクリル酸誘導体、芳香環を有する(メタ)アクリル酸誘導体等が挙げられる。
R1で表される炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられ、メチル基が好ましい。
R2及びR3で表される炭素数1~12の有機基としては、メチル基、エチル基、プロピル基等のアルキル基;シクロペンチル基、シクロへキシル基等のシクロアルキル基;フェニル基、ビフェニル基、ナフチル基等の芳香族基;が挙げられる。これらの基は、任意の位置に置換基を有していてもよい。また、R2とR3が一緒になって環を形成してもよく、該環は、骨格中に窒素原子や酸素原子を有していてもよい。
R4で表される2価の有機基としては、-NH-、-NH-(CH2)m-、-O-(CH2)m-で表される基が挙げられる。ここで、mは、1~10の整数である。
R5で表される脂環式構造を有する基としては、シクロへキシル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデカニル基等が挙げられる。
単官能の硬化性単量体(B)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
硬化性樹脂組成物に含まれる単官能の硬化性単量体(B)の含有量が、熱可塑性樹脂(A)と単官能の硬化性単量体(B)の質量比で、熱可塑性樹脂(A):単官能の硬化性単量体(B)=30:70を超えるときは、硬化樹脂成形体の柔軟性が低下するおそれがある。一方、硬化性樹脂組成物に含まれる単官能の硬化性単量体(B)の含有量が、熱可塑性樹脂(A):単官能の硬化性単量体(B)=90:10未満のときは、硬化樹脂成形体が低複屈折性を得られないおそれがある。
多官能の硬化性単量体としては、多官能の(メタ)アクリル酸誘導体が挙げられる。
多官能の(メタ)アクリル酸誘導体としては、例えば、トリシクロデカンジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレートなどの2官能(メタ)アクリル酸誘導体;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレートなどの3官能(メタ)アクリル酸誘導体;ペンタエリスリトールテトラ(メタ)アクリレートなどの4官能(メタ)アクリル酸誘導体;プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレートなどの5官能(メタ)アクリル酸誘導体;ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレートなどの6官能(メタ)アクリル酸誘導体;などが挙げられる。
単官能の硬化性単量体(B)と多官能の硬化性単量体の質量比(単官能の硬化性単量体(B):多官能の硬化性単量体)は、10:0~4:6が好ましい。
また、低複屈折性に優れる硬化樹脂成形体が得られるという点から、10:0~5:5がより好ましく、10:0~6:4がさらに好ましい。
本発明の硬化性樹脂組成物においては、所望により重合開始剤(C)を含有させることができる。重合開始剤(C)は、硬化反応を開始させるものであれば、特に制限なく用いることができ、例えば、熱重合開始剤や光重合開始剤が挙げられる。
有機過酸化物としては、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類;アセチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド類;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等のパーオキシケタール類;t-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド等のヒドロパーオキサイド類;t-ブチルパーオキシアセテート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート等のパーオキシエステル類;等が挙げられる。
アゾ系化合物としては、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリルなどが挙げられる。
硬化性樹脂組成物に含まれる、重合開始剤(C)の含有量は、硬化性樹脂組成物全体に対して、0.05~15質量%が好ましく、0.1~10質量%がより好ましく、0.3~5質量%がさらに好ましい。
また、重合開始剤(C)は、トリイソプロパノールアミンや、4,4’-ジエチルアミノベンゾフェノンなどの光重合開始助剤などと併用して用いてもよい。
硬化性樹脂組成物は、例えば、熱可塑性樹脂(A)、単官能の硬化性単量体(B)及び所望により他の成分を混合し、必要に応じて、適当な溶媒に溶解又は分散させることにより調製することができる。
本発明の硬化性樹脂成形体は、本発明の硬化性樹脂組成物を成形して得られるものである。本発明の硬化性樹脂成形体の形状としては、特に限定されず、フィルム状、シート状、ペレット状、直方体状等が挙げられる。なかでも、フィルム状又はシート状であることが好ましい。フィルム状又はシート状の場合、長尺のものに限らず、短尺の平板状のものも含まれる。
以下、本発明の硬化性樹脂成形体のうちフィルム状またはシート状のものを、硬化性樹脂フィルムということがある。
得られた塗膜の乾燥方法は特に制限されず、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を利用して、硬化性樹脂フィルムを得ることができる。
硬化性樹脂フィルムの厚みは、特に制限されず、通常、1~300μm、好ましくは2~200μm、より好ましくは、3~100μmである。
本発明の硬化樹脂成形体は、本発明の硬化性樹脂成形体を硬化させることで得られるものである。本発明の硬化樹脂成形体の形状としては、特に限定されず、フィルム状、シート状、直方体状等が挙げられる。中でも、フィルム状又はシート状であることが好ましい。
以下、本発明の硬化樹脂成形体のうちフィルム状またはシート状のものを、硬化樹脂フィルムということがある。
硬化樹脂成形体がフィルム状またはシート状である場合は、工程シートを有していてもよい。工程シートは、所定の工程において剥離されるものである。本発明の硬化樹脂フィルムが工程シートを有していると、硬化樹脂フィルムが薄くても取り扱い性が低下しないため、好ましい。
本発明の硬化樹脂成形体は、熱可塑性樹脂(A)と単官能の硬化性単量体(B)との組み合わせを利用して得られるものであり、低複屈折性に優れる。
特に、本発明の硬化樹脂成形体は、下記の式で表される面内の位相差(Rin)、及び厚み方向の位相差(Rth)が小さく、低複屈折性に優れる。
下記式において、nxは、硬化樹脂成形体の面内において最も屈折率が大きい方向の屈折率であり、nyは、硬化樹脂成形体の面内において、nxの直角方向の屈折率であり、nzは、硬化樹脂成形体の面に対する垂直方向の屈折率である。また、dは硬化樹脂成形体の厚みを示す。
厚み方向の位相差(Rth)は、その絶対値が、通常、500nm以下であり、450nm以下が好ましく、300nm以下がより好ましく、100nm以下がさらに好ましい。厚み方向の位相差(Rth)の絶対値は、小さいほど好ましく、その下限値は特にないが、通常、1nm以上である。
また、厚み方向の位相差をフィルム厚みで割った値(厚み方向の複屈折率)は、その絶対値が、通常、10×10-3以下であり、9×10-3以下が好ましく、5×10-3以下が好ましく、1×10-3以下がより好ましい。厚み方向の複屈折率の絶対値は、小さいほど好ましく、その下限値は特にないが、通常、0.1×10-5以上、好ましくは1×10-5以上である。
これにより、硬化反応に不要な320nm以下の波長の光がフィルターを透過しないため、熱可塑性樹脂(A)の劣化や、硬化樹脂成形体の着色の問題を解決することができる。
本発明の硬化樹脂成形体を製造する方法は特に制限されず、従来公知の方法を採用することができる。例えば、硬化性樹脂組成物を押出成形した後、活性エネルギー線等を照射して硬化することにより成形する方法、硬化性樹脂組成物を溶液キャスト法によって成形した後、活性エネルギー線等を照射して硬化することにより成形する方法等が挙げられるが、面内の位相差が低減されることができるという点から、後者の方法が好ましい。
光量が10,000mJ/cm2を超えると、硬化樹脂成形体が着色するおそれがあるため好ましくない。また、光量が50mJ/cm2未満であると、硬化が十分に進行せず、未反応の単官能の硬化性単量体(B)が残留する可能性がある。
工程1:工程シート上に、熱可塑性樹脂(A)、及び単官能の硬化性単量体(B)を含有する硬化性樹脂組成物からなる硬化性樹脂層を形成する工程
工程2:工程1で得られた硬化性樹脂層を硬化させて、硬化樹脂層を形成する工程
例えば、工程シート上に、熱可塑性樹脂(A)、及び単官能の硬化性単量体(B)を含有する硬化性樹脂組成物(又は硬化性樹脂組成物を適当な溶媒で希釈して得られる溶液)を塗工し、溶媒を乾燥除し、硬化性樹脂層を形成する。
硬化方法としては、先に説明した方法を適宜採用することができる。
例えば、硬化性樹脂組成物に光重合開始剤が含まれる場合は、活性エネルギー線を照射することで、硬化性樹脂層を硬化させることが好ましい。
照射する活性エネルギー線の照度は、50~1000mW/cm2であることが好ましい。照射する活性エネルギー線の光量は、50~10,000mJ/cm2が好ましく、1000~10,000mJ/cm2であることがより好ましい。照射時間は、0.1~1000秒、好ましくは1~500秒、更に好ましくは10~100秒である。紫外線照射工程の熱負荷を考慮して前述の光量を満たすために、複数回照射することが好ましい。
樹脂フィルムを利用する場合、工程2の前に、硬化性樹脂層上に樹脂フィルムを積層すればよい。
以上の方法により、工程シート付硬化樹脂フィルムを得ることができる。
なお、工程シートは、通常は、硬化樹脂フィルムの用途に応じて、所定の工程において剥離される。このように、前記工程1、2を有する製造方法は、工程シートを利用して硬化樹脂フィルムを形成するものであるが、この方法によって得られる硬化樹脂フィルムは、工程シートを有していてもよいし、有していなくてもよい。
本発明の積層体は、本発明の硬化性樹脂組成物を硬化して得られる硬化樹脂からなる層を少なくとも1層有する積層体である。
本発明の積層体は、他の層を有していてもよい。他の層としては、特に限定されず、例えば、ハードコート層、屈折率調整層、易接着層、光拡散層、防眩処理層、ガス遮断層、透明導電層、工程シート等が挙げられる。
屈折率調整層は、反射を制御するために設ける層である。屈折率調整層、所望の性能が得られるように、高屈折材料や低屈折材料を用いて形成することができる。
易接着層は、表面の接着性を向上させるために設ける層である。易接着層は、従来公知の方法により形成することができる。
防眩処理層は、硬化樹脂フィルム表面から外光が反射することによる透過光の視認妨害を防止すること等を目的に設けられる層である。防眩処理層は、シリカ粒子等のフィラー入りのコート剤を用いて、従来公知の方法により形成することができる。
ガス遮断層は、酸素や水蒸気の透過を抑制する特性を有する層である。ガス遮断層は、無機蒸着膜からなる層、ガス遮断性樹脂を含む層、高分子化合物を含む層にイオンを注入して得られる層等が挙げられる。これらのガス遮断層は、公知の方法により形成することができる。
工程シートは、通常、硬化樹脂フィルムの最外層に積層され、硬化樹脂フィルムを保存、運搬等する際に保護する役割を有し、所定の工程において剥離されるものである。工程シートとしては、ポリエチレンテレフタレートフィルムのようなプラスチックフィルムをそのまま用いてもよく、紙やプラスチックフィルム等に剥離剤を塗布し剥離剤層を設けたものを用いてもよい。
なお、「実質的な厚み」とは、使用状態における厚みをいう。すなわち、本発明の積層体は、工程シート等を有していてもよいが、使用時に除去される部分(工程シート等)の厚みは、「実質的な厚み」には含まれない。
ポリアリレート系樹脂(PAR)のペレット(ユニチカ社製、Uポリマー P-1001A、Tg=195℃)50質量部をジクロロメタンに溶解して、15質量%溶液を調製した。次いで、この溶液に、N-アクリロイルモルホリン(興人社製、ACMO)47質量部、1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製、Irgacure 184)3質量部を添加、混合して、硬化性樹脂組成物Aを得た。
次いで、硬化性樹脂フィルムA上に、硬化反応に不要な波長の光を透過させないために、PETフィルム(東洋紡積社製、PET50A-4100、厚み50μm)を積層し、次いで、ベルトコンベア式紫外線照射装置(アイグラフィクス社製、ECS-401GX)を使用し、高圧水銀ランプ(アイグラフィクス社製、H04-L41)にて、紫外線ランプ高さ150mm、紫外線ランプ出力3kw(換算出力120mW/cm)、光線波長365nmの照度が271mW/cm2、光量が177mJ/cm2(紫外線光量計:株式会社オーク製作所社製、UV-351)となる条件で紫外線照射を行った。さらに同紫外線照射装置を使用し、紫外線ランプ高さ150mm、光線波長365nmの照度が271mW/cm2、光量が600mJ/cm2の条件で2回紫外線照射を行ない、紫外線の総光量を1377mJ/cm2として、硬化反応を行い、硬化樹脂フィルムAを得た。なお、以下の測定においては、PETフィルムを剥がしたものをサンプルとして用いた(以下の実施例2~9、比較例1にて同じ。)。
第1表に記載の配合割合に変更したことを除き、実施例1と同様の方法により、硬化性樹脂組成物B~Jを調製した。硬化性樹脂組成物B~Jを用いて、実施例1と同様の方法により、フィルム状の硬化性樹脂成形体である硬化樹脂フィルムB~Jを得た。
〔熱可塑性樹脂〕
ポリアリレート系樹脂(PAR):ユニチカ社製、Uポリマー P-1001A、Tg=195℃
ポリエーテルスルホン系樹脂(PES):BASF社製、ULTRASON E 2010、Tg=225℃
ポリスルホン系樹脂(PSF):BASF社製、ULTRASON S 3010、Tg=180℃
脂環式炭化水素系樹脂(COC):ポリプラスチックス社製、TOPAS 6017)、Tg=180℃
ポリカーボネート系樹脂(PC):出光興産社製、タフロン LS1700、Tg=145℃
N-アクリロイルモルホリン:興人社製、ACMO
ジメチルアクリルアミド:興人社製、DMAA
フェノキシポリエチレングリコールアクリレート:大阪有機化学工業社製、V#192
ベンジルアクリレート:大阪有機化学工業社製、V#160
イソボルニルアクリレート:大阪有機化学工業社製、IBXA
シクロヘキシルアクリレート:大阪有機化学工業社製、V#155
1-アダマンチルアクリレート:出光興産社製、ADAMANTATE X-A-101
エトキシ化o-フェニルフェノールアクリレート:新中村化学工業社製、A-LEN-10
トリシクロデカンジメタノールジアクリレート:新中村化学工業社製、ADCP
エトキシ化ビスフェノールAジアクリレート:新中村化学工業社製、ABE-300
〔重合開始剤〕
1-ヒドロキシシクロヘキシルフェニルケトン:BASF社製、Irgacure 184
ポリアリレート系樹脂のペレット(ユニチカ社製、Uポリマー P-1001A、Tg=195℃)を用いて、溶融押出し法により、厚み50μmの樹脂フィルム1rを作製した。
ポリアリレート系樹脂のペレット(ユニチカ社製、Uポリマー P-1001A、Tg=195℃)をジクロロメタンに溶解して、15重量%溶液を調製した。
工程シートとして、ポリエチレンテレフタレート(PET)フィルム(東洋紡社製、PET50A-4100、厚み50μm)の易接着層と反対の面上に、上記溶液をファウンテンダイ方式で、乾燥後の厚みが50μmになるように塗布し、得られた塗膜を50℃で2分間、次いで130℃で2分間加熱することで乾燥して、樹脂フィルム2rを作製した。
実施例及び比較例で得られた樹脂フィルムをサンプルとして用い、位相差測定装置(王子計測機器社製「KOBRA-WR」)を用いて、23℃にて、光波長589nmにおいて、屈折率(nx、ny、nz)を測定した。ここで、nxは、フィルム面内において最も屈折率が大きい方向の屈折率であり、nyは、フィルム面内において、nxの直角方向の屈折率であり、nzは、フィルムの面に対する垂直方向の屈折率である。
次いで、以下の式により、フィルムの面内の位相差と、厚み方向の位相差を求めた。式中、RinとRthは、それぞれ、面内の位相差と厚み方向の位相差を示し、dはフィルムの厚みを示す。
また、厚み方向の位相差(Rth)をフィルム厚み(d)で割った値を、厚み方向の複屈折率とした。
実施例1~9で得られる硬化樹脂フィルムA~Iはいずれも、面内位相差、厚み方向位相差および複屈折率も小さく、低複屈折性に優れている。
一方、比較例1の、単官能の硬化性単量体の代わりに多官能単量体を用いて得られる硬化樹脂フィルムJ、比較例2の、単官能の硬化性単量体を使用せず、溶融押出し法によって得られる樹脂フィルム、比較例3の、単官能の硬化性単量体を使用せず、溶液キャスト法によって得られる樹脂フィルムは、実施例1~9で得られる硬化樹脂フィルムA~Iに比べて面内位相差と厚み方向の位相差が共に大きく、複屈折率が高く、低複屈折性に劣っている。
Claims (11)
- 主鎖に環構造を有し、ガラス転移温度(Tg)が140℃以上である熱可塑性樹脂(A)、及び単官能の硬化性単量体(B)を含有する硬化性樹脂組成物。
- 熱可塑性樹脂(A)が、非晶性熱可塑性樹脂である、請求項1に記載の硬化性樹脂組成物。
- 単官能の硬化性単量体(B)が、単官能(メタ)アクリル酸誘導体である、請求項1又は2に記載の硬化性樹脂組成物。
- 単官能(メタ)アクリル酸誘導体が、窒素原子を有する(メタ)アクリル酸誘導体、脂環式構造を有する(メタ)アクリル酸誘導体、及びエーテル構造を有する(メタ)アクリル酸誘導体からなる群から選択される少なくとも一種である、請求項3に記載の硬化性樹脂組成物。
- 熱可塑性樹脂(A)と単官能の硬化性単量体(B)の含有量が、熱可塑性樹脂(A)と単官能の硬化性単量体(B)の質量比で、熱可塑性樹脂(A):単官能の硬化性単量体(B)=3:7~9:1である、請求項1~4のいずれかに記載の硬化性樹脂組成物。
- 熱可塑性樹脂(A)が、ポリスルホン系樹脂、ポリアリレート系樹脂、ポリカーボネート系樹脂、及び脂環式炭化水素系樹脂からなる群から選択される少なくとも一種である、請求項1~5のいずれかに記載の硬化性樹脂組成物。
- 請求項1~6のいずれかに記載の硬化性樹脂組成物を成形して得られる硬化性樹脂成形体。
- フィルム状物である、請求項7に記載の硬化性樹脂成形体。
- 請求項7又は8に記載の硬化性樹脂成形体を硬化させることで得られる硬化樹脂成形体。
- 以下の工程1及び2を有する、請求項9に記載の硬化樹脂成形体の製造方法。
工程1:工程シート上に、熱可塑性樹脂(A)、及び単官能の硬化性単量体(B)を含有する硬化性樹脂組成物からなる硬化性樹脂層を形成する工程
工程2:工程1で得られた硬化性樹脂層を硬化させて、硬化樹脂層を形成する工程 - 請求項1~6のいずれかに記載の硬化性樹脂組成物を硬化して得られる硬化樹脂からなる層を少なくとも1層有する積層体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/365,943 US9102833B2 (en) | 2011-12-16 | 2012-12-11 | Curable resin composition, curable resin molded body, cured resin molded body, method for producing each of same, and laminate body |
JP2013549270A JP6082354B2 (ja) | 2011-12-16 | 2012-12-11 | 硬化性樹脂組成物、硬化性樹脂成形体、硬化樹脂成形体およびそれらの製造方法、並びに積層体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-276247 | 2011-12-16 | ||
JP2011276247 | 2011-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013089092A1 true WO2013089092A1 (ja) | 2013-06-20 |
Family
ID=48612539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082052 WO2013089092A1 (ja) | 2011-12-16 | 2012-12-11 | 硬化性樹脂組成物、硬化性樹脂成形体、硬化樹脂成形体およびそれらの製造方法、並びに積層体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9102833B2 (ja) |
JP (1) | JP6082354B2 (ja) |
TW (1) | TW201335203A (ja) |
WO (1) | WO2013089092A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018065953A (ja) * | 2016-10-20 | 2018-04-26 | 東京応化工業株式会社 | 接着剤組成物、及びその利用 |
JP2018070818A (ja) * | 2016-11-01 | 2018-05-10 | コニカミノルタ株式会社 | ポリアリレートフィルム、及び表示装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7629533B2 (en) | 2006-03-20 | 2009-12-08 | Temptronic Corporation | Temperature-controlled enclosures and temperature control system using the same |
US11850328B2 (en) * | 2016-11-14 | 2023-12-26 | Northwestern University | Body temperature-triggered, in situ forming biomaterials and devices |
EP3831873A1 (en) * | 2019-12-03 | 2021-06-09 | The Goodyear Tire & Rubber Company | Rubber composition and an article of manufacture comprising a rubber composition |
EP4112296A4 (en) * | 2020-03-27 | 2024-03-27 | Lintec Corporation | LAMINATE FOR TRANSPARENT CONDUCTIVE FILM, TRANSPARENT CONDUCTIVE FILM, AND METHOD FOR MANUFACTURING TRANSPARENT CONDUCTIVE FILM |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377246A (en) * | 1976-12-13 | 1978-07-08 | American Optical Corp | Composition providing colorless apperance with polycarbonate articles |
JPH0616720A (ja) * | 1992-07-01 | 1994-01-25 | Fujitsu Ltd | プラスチック光導波路用組成物およびプラスチック光導波路の製造方法 |
JP2000319483A (ja) * | 1999-05-12 | 2000-11-21 | Kanegafuchi Chem Ind Co Ltd | グラフト化ポリカーボネート樹脂とその製造方法 |
JP2001056631A (ja) * | 1999-08-20 | 2001-02-27 | Agency Of Ind Science & Technol | ホログラム記録材料組成物、ホログラム記録媒体およびその製造方法 |
JP2004238532A (ja) * | 2003-02-06 | 2004-08-26 | Sumitomo Bakelite Co Ltd | 透明複合体組成物 |
JP2007254620A (ja) * | 2006-03-24 | 2007-10-04 | Asahi Kasei Chemicals Corp | 熱可塑性樹脂組成物 |
JP2012008547A (ja) * | 2010-05-28 | 2012-01-12 | Sumitomo Chemical Co Ltd | 光学フィルム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3540115B2 (ja) | 1996-07-09 | 2004-07-07 | 三菱化学株式会社 | 樹脂組成物及びこれを活性エネルギー線により硬化させてなる部材 |
JP2000044614A (ja) * | 1998-07-31 | 2000-02-15 | Hitachi Chem Co Ltd | 非複屈折性光学用樹脂の製造法及びこの製造法により得られる樹脂を用いた光学用素子 |
JP2002293836A (ja) * | 2001-04-03 | 2002-10-09 | Hitachi Chem Co Ltd | 非複屈折性光学用樹脂の製造法及びこの樹脂を用いた光学用部品 |
JP2003128784A (ja) * | 2001-10-19 | 2003-05-08 | Hitachi Chem Co Ltd | 難燃性熱硬化性樹脂組成物、プリプレグ、絶縁フィルム、積層板、樹脂付き金属箔及び多層配線板とその製造方法 |
JP2004204208A (ja) * | 2002-11-01 | 2004-07-22 | Hitachi Chem Co Ltd | 非複屈折性光学用樹脂組成物及び本樹脂組成物を用いた光学用素子 |
JP5448510B2 (ja) * | 2008-03-18 | 2014-03-19 | 学校法人慶應義塾 | 光信号伝送システム及び方法 |
-
2012
- 2012-12-11 TW TW101146541A patent/TW201335203A/zh unknown
- 2012-12-11 JP JP2013549270A patent/JP6082354B2/ja active Active
- 2012-12-11 US US14/365,943 patent/US9102833B2/en active Active
- 2012-12-11 WO PCT/JP2012/082052 patent/WO2013089092A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377246A (en) * | 1976-12-13 | 1978-07-08 | American Optical Corp | Composition providing colorless apperance with polycarbonate articles |
JPH0616720A (ja) * | 1992-07-01 | 1994-01-25 | Fujitsu Ltd | プラスチック光導波路用組成物およびプラスチック光導波路の製造方法 |
JP2000319483A (ja) * | 1999-05-12 | 2000-11-21 | Kanegafuchi Chem Ind Co Ltd | グラフト化ポリカーボネート樹脂とその製造方法 |
JP2001056631A (ja) * | 1999-08-20 | 2001-02-27 | Agency Of Ind Science & Technol | ホログラム記録材料組成物、ホログラム記録媒体およびその製造方法 |
JP2004238532A (ja) * | 2003-02-06 | 2004-08-26 | Sumitomo Bakelite Co Ltd | 透明複合体組成物 |
JP2007254620A (ja) * | 2006-03-24 | 2007-10-04 | Asahi Kasei Chemicals Corp | 熱可塑性樹脂組成物 |
JP2012008547A (ja) * | 2010-05-28 | 2012-01-12 | Sumitomo Chemical Co Ltd | 光学フィルム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018065953A (ja) * | 2016-10-20 | 2018-04-26 | 東京応化工業株式会社 | 接着剤組成物、及びその利用 |
JP2018070818A (ja) * | 2016-11-01 | 2018-05-10 | コニカミノルタ株式会社 | ポリアリレートフィルム、及び表示装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013089092A1 (ja) | 2015-04-27 |
US9102833B2 (en) | 2015-08-11 |
US20140350187A1 (en) | 2014-11-27 |
JP6082354B2 (ja) | 2017-02-15 |
TW201335203A (zh) | 2013-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102168722B1 (ko) | 가스 배리어 필름 및 그 제조 방법, 가스 배리어 필름 적층체, 전자 디바이스용 부재, 그리고 전자 디바이스 | |
JP6082354B2 (ja) | 硬化性樹脂組成物、硬化性樹脂成形体、硬化樹脂成形体およびそれらの製造方法、並びに積層体 | |
JP6214399B2 (ja) | 硬化性樹脂組成物、硬化性樹脂成形体、硬化樹脂成形体及びそれらの製造方法、並びに積層体 | |
CN113226746B (zh) | 阻气性层叠体 | |
JP7222976B2 (ja) | ガスバリア性積層体 | |
EP4169711A1 (en) | Optical film, optical film manufacturing method, transparent conductive film, and gas barrier film | |
CN113226750B (zh) | 阻气性层叠体 | |
TW201137437A (en) | Protective laminated sheet for liquid crystal display | |
JP2015044302A (ja) | 透明積層フィルム及び透明基板 | |
WO2023054528A1 (ja) | 積層体 | |
WO2022203071A1 (ja) | 硬化性樹脂組成物及びそれを用いた硬化樹脂層 | |
WO2022203067A1 (ja) | 硬化性樹脂組成物及びそれを用いた硬化樹脂層 | |
WO2022203086A1 (ja) | 積層体 | |
WO2021193889A1 (ja) | 透明導電フィルム用積層体、透明導電フィルム、及び、透明導電フィルムの製造方法 | |
JP2023086574A (ja) | 硬化樹脂層 | |
JP2023114821A (ja) | 光学フィルム | |
CN116890497A (zh) | 层叠体、透明导电膜及透明导电膜的制造方法 | |
JP2023104378A (ja) | 構成体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12856738 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013549270 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14365943 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12856738 Country of ref document: EP Kind code of ref document: A1 |