WO2013086768A1 - 一种超稳稀土y型分子筛及其制备方法 - Google Patents
一种超稳稀土y型分子筛及其制备方法 Download PDFInfo
- Publication number
- WO2013086768A1 WO2013086768A1 PCT/CN2012/000509 CN2012000509W WO2013086768A1 WO 2013086768 A1 WO2013086768 A1 WO 2013086768A1 CN 2012000509 W CN2012000509 W CN 2012000509W WO 2013086768 A1 WO2013086768 A1 WO 2013086768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- molecular sieve
- exchange
- ultra
- stable
- Prior art date
Links
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 265
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 247
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 239
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 166
- 238000002360 preparation method Methods 0.000 title claims abstract description 37
- -1 rare earth ions Chemical class 0.000 claims abstract description 80
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000006185 dispersion Substances 0.000 claims abstract description 48
- 230000008569 process Effects 0.000 claims abstract description 21
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 8
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001948 sodium oxide Inorganic materials 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 91
- 239000002002 slurry Substances 0.000 claims description 51
- 239000012065 filter cake Substances 0.000 claims description 48
- 239000007787 solid Substances 0.000 claims description 40
- 239000008367 deionised water Substances 0.000 claims description 36
- 229910021641 deionized water Inorganic materials 0.000 claims description 36
- 239000011734 sodium Substances 0.000 claims description 35
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 34
- 229910052708 sodium Inorganic materials 0.000 claims description 34
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 33
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 30
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 27
- 229910021536 Zeolite Inorganic materials 0.000 claims description 19
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 19
- 239000010457 zeolite Substances 0.000 claims description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- 239000002270 dispersing agent Substances 0.000 claims description 17
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 16
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 16
- 150000003863 ammonium salts Chemical class 0.000 claims description 14
- 238000005406 washing Methods 0.000 claims description 14
- 229910052684 Cerium Inorganic materials 0.000 claims description 13
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 12
- 238000001354 calcination Methods 0.000 claims description 11
- 235000006408 oxalic acid Nutrition 0.000 claims description 10
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 8
- 239000004202 carbamide Substances 0.000 claims description 8
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 8
- 229960004889 salicylic acid Drugs 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229920002401 polyacrylamide Polymers 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 6
- 235000011054 acetic acid Nutrition 0.000 claims description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 235000019253 formic acid Nutrition 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 229920002472 Starch Polymers 0.000 claims description 5
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 5
- 239000004327 boric acid Substances 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 235000019698 starch Nutrition 0.000 claims description 5
- 239000008107 starch Substances 0.000 claims description 5
- 239000011975 tartaric acid Substances 0.000 claims description 5
- 235000002906 tartaric acid Nutrition 0.000 claims description 5
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 4
- 239000001361 adipic acid Substances 0.000 claims description 4
- 235000011037 adipic acid Nutrition 0.000 claims description 4
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000005711 Benzoic acid Substances 0.000 claims description 3
- 235000010233 benzoic acid Nutrition 0.000 claims description 3
- 235000011167 hydrochloric acid Nutrition 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- YZQOWXDLAGPZOW-UHFFFAOYSA-N cerium sodium Chemical compound [Na].[Ce] YZQOWXDLAGPZOW-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 103
- 239000002245 particle Substances 0.000 abstract description 15
- 239000000295 fuel oil Substances 0.000 abstract description 11
- 239000003054 catalyst Substances 0.000 abstract description 10
- 229910052665 sodalite Inorganic materials 0.000 abstract description 10
- 238000004523 catalytic cracking Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 39
- 230000000052 comparative effect Effects 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- 238000003756 stirring Methods 0.000 description 22
- 229910002651 NO3 Inorganic materials 0.000 description 20
- 230000000694 effects Effects 0.000 description 18
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 14
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 14
- 235000011130 ammonium sulphate Nutrition 0.000 description 14
- NZFWOBIOVKFUTL-UHFFFAOYSA-N lanthanum sodium Chemical compound [Na][La] NZFWOBIOVKFUTL-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 10
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 8
- 238000005336 cracking Methods 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- KWVFUTDPKIKVQW-UHFFFAOYSA-N [Sr].[Na] Chemical compound [Sr].[Na] KWVFUTDPKIKVQW-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000002715 modification method Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 235000019270 ammonium chloride Nutrition 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000002242 deionisation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000403354 Microplus Species 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- PRORZGWHZXZQMV-UHFFFAOYSA-N azane;nitric acid Chemical compound N.O[N+]([O-])=O PRORZGWHZXZQMV-UHFFFAOYSA-N 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005048 flame photometry Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/085—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
- B01J29/088—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/30—Ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/026—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/20—Faujasite type, e.g. type X or Y
- C01B39/24—Type Y
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/40—Special temperature treatment, i.e. other than just for template removal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
- B01J35/67—Pore distribution monomodal
Definitions
- the invention relates to an ultra-stable rare earth cerium type molecular sieve and a preparation method thereof, and more particularly to an ultra-stable rare earth cerium molecular sieve and a preparation method thereof for improving cracking activity and particle dispersibility.
- Catalytic cracking unit is an important secondary processing method for crude oil. Its comprehensive product distribution determines the economic benefits of refinery. In recent years, with the increasing trend of heavy oil of raw material oil, FCC catalyst is required to have stronger heavy oil conversion capacity and high value product selection. Sex. As the main provider of cracking activity of heavy oil cracking catalysts, high cracking activity and high activity stability of ruthenium molecular sieves have always been the core technical issues in the field of catalysis.
- the NaY molecular sieve modification methods are roughly classified into three types: First, the NaY molecular sieve is first exchanged with a small amount of rare earth ions and ammonium ions, and after roasting, rare earth ions or ammonium ions or dealumination treatment are used to prepare REUSY molecular sieves (US3595611). US4218307, CN87104086.7); Secondly, the NaY molecular sieve is first made into USY molecular sieve, then REUSY (ZL200510114495.1, ZL200410029875.0) is prepared by exchanging rare earth; thirdly, a certain precipitating agent is introduced in the rare earth modification process of NaY molecular sieve.
- the Y-type molecular sieve modification method is described in the U.S. Patent No. 5,340,957 and U.S. Patent No. 4,584,287, which is based on the use of NaY molecular sieves as raw materials, exchange modification with rare earth and/or ring elements, and then hydrothermal treatment to obtain high Stability ultra-stable rare earth Y-type molecular sieve, this method does not explain the rare earth ion localization and grain dispersion.
- Chinese patent ZL97122039.5 describes a preparation method of ultra-stable Y zeolite, which comprises contacting a Y-type zeolite with an acid solution and a solution containing ammonium ions, and performing high-temperature steam treatment.
- the acid is used in an amount of 1.5 to 6 moles of hydrogen ion per mole of the framework aluminum, the acid solution concentration is 0.1 to 5 equivalents per liter, and the Y zeolite and the acid are used.
- the temperature at which the solution is contacted is 5 to 100 ° C, and I'Hj is 0.5 to 72 hours at the time of contact, and the weight ratio of the Y-type zeolite to the ammonium ion is 2 to 20.
- the modification method involved in the patent requires the addition of an ammonium ion-containing solution for the purpose of reducing the sodium oxide content in the molecular sieve or reducing the damage of the molecular gas structure by the acid gas during the calcination process, but the technique has the following technical defects: 1) Preparation The process adds a large amount of ammonium ions, and the ammonium ions finally enter the atmosphere or sewage, increasing the ammonia nitrogen pollution and pollution control costs; 2) The patented method cannot effectively solve the problem of molecular sieve particle agglomeration, and the particle agglomeration reduces the specific surface and pore volume of the molecular sieve.
- the patent also mentions that the Y-type zeolite can be used simultaneously with or after the contact with the ammonium ion-containing solution.
- the ion exchange method introduces rare earth ions. During the exchange process, the ammonium ions compete with the rare earth ions. The ammonium ions preferentially occupy the rare earth ion sites, increase the resistance of the rare earth ions to enter the molecular sieve cage, and reduce the rare earth ions. Utilization rate.
- Chinese patent ZL02103909.7 introduces a preparation method of rare earth-containing ultra-stable Y molecular sieve, which is prepared by subjecting NaY molecular sieve to one-time roasting, and is characterized in that NaY molecular sieve is placed in ammonium ion solution at 25 ⁇ Chemical dealuminization treatment at 100 ° C, oxalic acid and / or oxalate in the chemical dealumination complexing agent, treatment time 0.5 ⁇ 5 hours, then adding rare earth solution, stirring, to produce rare earth precipitate containing rare earth oxalate, by It is filtered, washed with water to form a filter cake, and then hydrothermally treated to obtain a molecular sieve product.
- the molecular sieve prepared by the method has certain anti-vanadium pollution ability, its activity stability and cracking activity are low, which cannot meet the development trend of heavy oil quality and poor quality.
- This is mainly related to the location of the rare earth ions in the molecular sieve modification process in the molecular sieve supercage and sodalite cages.
- the method clarifies that the rare earth ions exist in the molecular sieve system in two forms, that is, some rare earth ions enter the sodalite cage in the form of ions, and the other rare earth ions are rare earth oxides (the precursor is rare earth oxalate, which is converted into oxidation by subsequent calcination).
- the rare earth is dispersed on the surface of the molecular sieve, which reduces the stable supporting effect of the rare earth ions on the molecular sieve structure. At the same time, there is also a large amount of ammonia nitrogen pollution in the method, and the added oxalic acid and or oxalate are more harmful to the environment and human body. Big.
- Chinese Patent No. 200510114495.1 describes a method for increasing the rare earth content of ultra-stable Y-type zeolite by using an ultra-stable Y-type zeolite and an acid solution having a concentration of 0.01 to 2 N at a liquid-solid ratio of 4 to 20 at a ratio of 20 to 100.
- the mixture is thoroughly mixed under the temperature range of °C, washed and filtered for 10 to 300 minutes, and then rare earth ion exchange is carried out by adding a rare earth salt solution, followed by washing, filtering, and drying to obtain a rare earth super-stable Y-type zeolite.
- the invention uses a water vapor ultra-stable roasting Y-type molecular sieve as a raw material, and performs secondary exchange and secondary calcination chemical modification, and does not involve molecular sieve particle dispersibility research.
- Chinese patent CN200410029875.0 introduces a preparation method of rare earth ultra-stable Y-type zeolite, which is characterized in that firstly, NaY molecular sieve is ion-exchanged with inorganic ammonium salt solution, followed by water vapor ultra-stable treatment. Obtain the "one-baked-baked”product; add the "one-to-one-baked” product to a mixed solution of rare earth salt and citric acid or a mixed solution of cerium inorganic ammonium salt, rare earth salt and citric acid. The exchange reaction is carried out at a temperature.
- the molecular sieve slurry is filtered, washed with water, and finally calcined at 450 to 75 CTC for 0.5 to 4 hours in an air or 100% steam atmosphere.
- the rare earth modification is carried out by using the "one-to-one-baked" product as the raw material for the second exchange modification.
- the unit cell shrinks, and the aluminum inside the pore block blocks the pores, increasing the rare earth ions. Exchange resistance, making it difficult to accurately locate rare earth ions in sodalite cages.
- the ruthenium-type molecular sieve modification methods provided by the above patents do not specify the precise positioning of the rare earth ions, which results in the activity stability and structural stability of the ruthenium-type molecular sieve prepared by the prior art cannot be adapted to the heavy-weight and poor quality of the feedstock oil. The development trend.
- the object of the present invention is to provide a highly active and stable ultra-stable rare earth cerium type molecular sieve and a preparation method thereof, which provide the molecular sieve coke with low yield, heavy oil conversion and strong resistance to heavy metals, and the method has simple preparation process. High utilization rate of modified elements and low ammonia nitrogen pollution.
- the ultra-stable rare earth cerium type molecular sieve provided by the invention is characterized in that the molecular sieve contains 1 ⁇ 20% by weight of rare earth oxide, sodium oxide is not more than 1.2% by weight, crystallinity is 51 ⁇ 69%, unit cell parameter is 2.449nm ⁇ 2.469nm, and the molecular sieve is
- the preparation process includes rare earth exchange and dispersion pre-exchange.
- the order of rare earth exchange and dispersion pre-exchange is not limited.
- the rare earth exchange and dispersion pre-exchange are carried out continuously without roasting process.
- the dispersion pre-exchange refers to adjusting the concentration of molecular sieve slurry.
- the exchange temperature is 0 ⁇ 10 (TC, exchange time is 0.1 ⁇ 1.5 hours; the dispersion pre-exchange process is dispersed
- the agent is selected from one or more of Tianjing powder, boric acid, urea, ethanol, polyacrylamide, acetic acid, oxalic acid, adipic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid, tartaric acid, benzoic acid, starch.
- two or more kinds are used; no ammonium salt is used in the rare earth exchange and dispersion pre-exchange.
- the invention also provides a more specific preparation method of the ultra-stable rare earth Y-type molecular sieve: using NaY molecular sieve (preferably silicon-aluminum ratio greater than 4.0, crystallinity greater than 70%) as raw material, after rare earth exchange, dispersion pre-exchange, molecular sieve slurry Filtration, water washing and first calcination, obtaining "one-and-one-baked” rare earth sodium lanthanum molecular sieve, wherein the order of rare earth exchange and dispersion pre-exchange is not limited; then "one-to-one baking" rare earth sodium Y molecular sieve is exchanged by ammonium salt The sodium reduction and the second calcination are carried out to obtain the finished REUSY molecular sieve (also referred to as ultra-stable rare earth Y-type molecular sieve) of the present invention.
- NaY molecular sieve preferably silicon-aluminum ratio greater than 4.0, crystallinity greater than 70%
- the molecular sieve slurry can be washed and filtered without washing or filtering.
- the rare earth is exchanged, the RE 2 Os/Y zeolite (mass) is preferably 0.005 to 0.25, preferably 0.01 to 0.20; and the exchange temperature is 0 to 100 ° C.
- the optimum is 60 to 95 ° C; the exchange pH is 2.5 to 6.0, the optimum is 3.5 to 5.5, the exchange time is 0.1 to 2 hours, and the optimum is 0.3 to 1.5 hours; when the dispersion is pre-exchanged, the amount of the dispersant is 0.2% by weight to 7% by weight, most preferably 0.2% by weight. /. ⁇ 5 weight. /.
- the exchange temperature is 0 to 100 ° C, preferably 60 to 95 ° C; the exchange time is 0.1 to 1.5 hours.
- the modified molecular sieve slurry is filtered and washed with water to obtain a filter cake, and the obtained filter cake is flash-dried to have a moisture content of 30% to 50%, and finally calcined, and the calcination conditions can be carried out using general conditions, for example, at 350 ° C to 70 ( TC, 0 ⁇ 100% water vapor roasting for 0.3 ⁇ 3.5 hours, preferably at 450 °C ⁇ 650 °C, 15 ⁇ 100% water vapour roasting for 0.5 ⁇ 2.5 hours, that is, "one-to-one baking" ultra-stable rare earth sodium Y molecular sieve
- the conditions of ammonium salt exchange and second calcination of "one-to-one baking" ultra-stable rare earth sodium Y molecular sieve can be carried out in a common general practice.
- the recommended method is: Adding "one-to-one baking" ultra-stable rare earth sodium Y molecular sieve Deionized water, the solid content is adjusted to 100 ⁇ 400g/L, the NH/Y zeolite (mass) is 0.02 ⁇ 0.40, preferably 0.02 ⁇ 0.30, the pH is 2.5 ⁇ 5.0, preferably 3.0 ⁇ 4.5, at 60° After reacting at C ⁇ 95 ° C for 0.3 to 1.5 hours, the molecular sieve slurry is filtered and washed with water, and the obtained filter cake is calcined at 450 ° C to 700 ° C, 0 to 100% water vapor for 0.3 to 3.5 hours, preferably 0.5 to 2.5.
- the highly active ultra-stable rare earth Y-type molecular sieve provided by the present invention is finally obtained.
- Rare earth exchange and dispersion pre-exchange The exchange process can be carried out by tank exchange, belt exchange and/or filter cake exchange; in the case of rare earth exchange, it can be carried out in the following manner, that is, the rare earth compound solution can be divided into several parts under the premise that the total amount of rare earth is constant , for tank exchange, belt exchange and / or filter cake exchange, that is, multiple exchanges.
- the dispersant in the dispersion pre-exchange process, can be divided into several parts under the premise of the total amount of dispersant , tank exchange, belt exchange and / or filter cake exchange; when the rare earth exchange and dispersion pre-exchange for multiple exchanges, the two types of exchange can be crossed.
- the preparation method of the "one-and-one-baked" ultra-stable rare earth sodium Y molecular sieve in the preparation process of the molecular sieve described in the present invention may be - NaY molecular sieve is first subjected to rare earth exchange, and after the reaction is finished, it is filtered and washed; then the filter cake is dispersed and dispersed. The agent is uniformly mixed to carry out a pre-exchange reaction, and finally the filter cake is flash-dried and then calcined.
- the preparation method of the "one-to-one baking" ultra-stable rare earth sodium Y molecular sieve in the preparation process of the molecular sieve described in the invention may also be: the NaY molecular sieve is first subjected to dispersion pre-exchange, and after the reaction is finished, the filter cake is filtered and washed to obtain a filter cake; The rare earth compound solution is thoroughly mixed and uniformly subjected to cake exchange. After the completion of the reaction, the cake is flash-dried and then calcined.
- the preparation method of the "one-and-one-baked" ultra-stable rare earth sodium Y molecular sieve in the preparation process of the molecular sieve described in the invention may also be: the NaY molecular sieve is first subjected to dispersion pre-exchange, and then the rare earth compound is added for tank exchange, and the reaction is completed. Filter, wash and roast.
- the preparation method of the "one-and-one-baked" ultra-stable rare earth sodium Y molecular sieve in the preparation process of the molecular sieve described in the invention may also be: the NaY molecular sieve is first subjected to rare earth exchange, and after the reaction is finished, the dispersant is added to carry out the dispersion pre-exchange reaction, and finally, Filter, wash and roast.
- the preparation method of the ultra-stable rare earth sodium Y molecular sieve in the preparation process of the molecular sieve described in the invention may also be: the NaY molecular sieve is first subjected to dispersion pre-exchange, and after the reaction is finished, the molecular sieve slurry is filtered on the belt filter, Rare earth strip exchange and filter cake washing, wherein the rare earth strip exchange conditions on the belt filter are: exchange temperature is 60 ° C ⁇ 95 ° C, exchange pH is 3.2 ⁇ 4.8, belt filter vacuum is 0.03 ⁇ 0.05; Finally, the filtered water-washed filter cake is roasted.
- the preparation method of the "one-to-one-baked" ultra-stable rare earth sodium Y molecular sieve in the preparation process of the molecular sieve described in the invention may also be: the NaY molecular sieve is first subjected to rare earth exchange, and after the reaction is finished, the molecular sieve slurry is filtered on the belt filter, and the belt is filtered.
- the dispersion pre-exchange and the filter cake are washed, wherein the belt-type dispersion pre-exchange condition is carried out on the belt filter: the addition amount is 0.2% by weight to 7% by weight, the exchange temperature is 0 to 100 ⁇ , and the exchange time is 0.1 to 1.5 hours.
- the belt filter has a vacuum of 0.03 ⁇ 0.05; finally, the filtered water-washed filter cake is baked.
- the preparation method of the "one-and-one-baked" ultra-stable rare earth sodium lanthanum molecular sieve described in the present invention may also be: after the end of the dispersion of the NaY molecular sieve, the rare earth exchange may be carried out in the following manner, that is, the total amount of the rare earth is not Under the premise, the rare earth compound solution can be divided into several parts for tank exchange, belt exchange and/or filter cake exchange.
- the preparation method of the "one-and-one-baked" ultra-stable rare earth sodium Y molecular sieve described in the present invention may also be:
- the NaY molecular sieve dispersion pre-exchange process can be carried out in the following manner, that is, under the premise that the total amount of the dispersant is constant, The dispersant is divided into several parts for tank exchange, belt exchange and/or filter cake exchange.
- the preparation method of the "one-to-one-baked" ultra-stable rare earth sodium Y molecular sieve according to the present invention may also be as follows: First, a dispersant is used to carry out a dispersion pre-exchange reaction with NaY molecular sieve, and then a rare earth exchange reaction is carried out, and then the reaction is completed. Another dispersant is subjected to secondary dispersion pre-exchange, and the molecular sieve may or may not be filtered between the two dispersion pre-exchanges.
- the rare earth compound of the present invention is rare earth chloride or rare earth nitrate or rare earth sulfate, preferably rare earth chloride or rare earth nitrate.
- the rare earth of the present invention may be a cerium-rich or cerium-rich rare earth, or may be pure cerium or pure cerium.
- Unit cell constant (a 0 ) X-ray diffraction method.
- RE 2 0 3 content colorimetric method.
- Particle size The instrument is a MICRO-PLUS laser particle size analyzer, full-scale full Mie theory, the test range is 0.05 ⁇ 550 ⁇
- NaY molecular sieve NaY-1 (silicon to aluminum ratio 4.8, crystallinity 92%), NaY-2 (silicon to aluminum ratio 4.1, crystallinity)
- Ultra-stable one-to-one baking molecular sieve sample Crystallinity 60%, sodium oxide 4.3m%, produced by Lanzhou Petrochemical Company's catalyst plant.
- Rare earth solution rare earth chloride (rare earth oxide 277.5 g / liter), rare earth nitrate (rare earth oxide 252 g / liter), all industrial products, from the catalyst plant of Lanzhou Petrochemical Company.
- Tianjing powder, boric acid, urea, ethanol, polyacrylamide, oxalic acid, adipic acid, acetic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid, tartaric acid, starch are all chemically pure; ammonium chloride, nitric acid Ammonium, ammonium sulfate, ammonium oxalate are industrial products.
- ACE heavy oil microreactor The reaction temperature is 530 ° C, the ratio of agent to oil is 5, and the feedstock oil is 30% decompression residue of Xinjiang oil blending.
- the exchange reaction was carried out for 0.3 hours, and the obtained filter cake was flash-dried to have a moisture content of 30% to 50%, and finally calcined at 70% of water vapor and 670 ° C for 1.0 hour to obtain "one-and-one-baked" rare earth sodium Y.
- a reaction kettle with a heating jacket add 500 grams (dry basis) of ultra-stable rare earth sodium lanthanum molecular sieve and a certain amount of deionized water to prepare a slurry with a solid content of 120g/L, and add 120g.
- the component is referred to as modified molecular sieve A-1.
- the system was adjusted to pH 3.6, heated to 90 ° C, exchanged for 1.2 hours, then filtered, washed, and the filter cake was calcined at 20% moisture and 60 (TC) for 0.5 hours to obtain the rare earth ultrastable Y molecular sieve activity of the present invention.
- the component is referred to as modified molecular sieve A-2.
- This comparative example illustrates the performance characteristics of REUSY prepared without the addition of polyacrylamide and salicylic acid during molecular sieve modification.
- the REUSY molecular sieve was prepared in the same manner as in Example 2 except that polyacrylamide and salicylic acid were not added, and the same as in Example 2, the obtained ultra-stable rare earth Y type molecular sieve was designated as DB-1.
- the diacid is then heated to 78 Torr for dispersion exchange, and the reaction is exchanged for 0.5 hour under stirring. After the reaction is completed, it is filtered and washed, and the obtained filter cake is flash-dried to have a moisture content of 30% to 50%, and finally at 80% moisture and After calcination at 560 ° C for 2 hours, "one-and-one-baked" rare earth sodium strontium was obtained.
- the obtained filter cake is flash-dried to have a moisture content of 30% to 50%, and finally calcined at 70% water vapor and 450 ° C for 2 hours to prepare "one-and-one-baked" rare earth sodium strontium.
- 500 g (dry basis) and deionized water of "one-and-one-baked" ultra-stable rare earth sodium Y molecular sieve were added to prepare a slurry having a solid content of 300 g/L, and 175 g of ammonium sulfate was added.
- the obtained filter cake was flash-dried to have a moisture content of 30% to 50%, and finally calcined at 50% water vapor and 520 ° C for 1.5 hours to obtain "one cross.”
- 500 g (dry basis) and deionized water of "one-and-one-baked" ultra-stable rare earth sodium lanthanum molecular sieve were added to prepare a slurry having a solid content of 250 g/L, and 150 g of barium sulfate was added.
- the "one-and-one-baked" ultra-stable rare earth sodium strontium was prepared.
- This comparative example illustrates the performance characteristics of REUSY prepared without the addition of hydrochloric acid and oxalic acid during molecular sieve modification.
- the REUSY molecular sieve was prepared in the same manner as in Example 8 except that hydrochloric acid and oxalic acid were not added. Others were the same as in Example 8, and the obtained ultra-stable rare earth Y type molecular sieve number was DB-2.
- the obtained filter cake is flash-dried to a moisture content of 30% to 50%, and finally calcined at 60% water vapor and 560 Torr for 2 hours to obtain "one-and-one-baked" rare earth sodium Y.
- 500 g (dry basis) and deionized water of ultra-stable rare earth sodium lanthanum molecular sieve were added to prepare a slurry with a solid content of 280 g/L, and 130 g of ammonium sulfate was added to adjust the pH of the system to 4.0.
- the temperature is raised to 90 ° C, exchanged for 0.5 hours, then filtered, washed, and the filter cake is calcined at 60% water vapor and 680 Torr for 1 hour to obtain the active component of the rare earth super stable Y molecular sieve of the present invention, which is recorded as a modified molecular sieve.
- A-10 The temperature is raised to 90 ° C, exchanged for 0.5 hours, then filtered, washed, and the filter cake is calcined at 60% water vapor and 680 Torr for 1 hour to obtain the active component of the rare earth super stable Y molecular sieve of the present invention, which is recorded as a modified molecular sieve. A-10.
- the belt exchange conditions were as follows: The rare earth nitrate solution was heated to 88 Torr, the exchange pH was 4.7, the rare earth nitrate was added to the RE 2 03/Y zeolite (mass) of 0.04, and the belt filter vacuum was 0.03; the resulting filter cake was then flash dried to make it The moisture content is 30% ⁇ 50%, and finally calcined at 80% water vapor and 530 °C for 1.5 hours to obtain "one-and-one-baked" ultra-stable rare earth sodium Y"-cross-baked" ultra-stable rare earth sodium Y.
- the rare earth nitrate is added in a RE 2 03/Y zeolite (mass) of 0.12, and the belt filter has a vacuum of 0.05; the resulting filter cake is then flash dried to a moisture content of 30% to 50%, and finally at 100% water vapor. It was calcined at 580 °C for 2 hours to obtain "one-and-one-baked" ultra-stable rare earth sodium strontium. In a reaction kettle with a heating jacket, 500 g (dry basis) and deionized water of "one-and-one-baked" ultra-stable rare earth sodium Y molecular sieve were added to prepare a slurry having a solid content of 150 g/L, and 160 g of ammonium sulfate was added.
- This comparative example illustrates the performance characteristics of REUSY prepared by adding only hydrochloric acid during molecular sieve modification.
- the REUSY molecular sieve was prepared in the same manner as in Example 14 except that hydrochloric acid was not added, and the same as in Example 14, the obtained ultra-stable rare earth Y type molecular sieve was designated as DB-3.
- the strip exchange conditions were as follows: 52 g of acetic acid and 146 g of citric acid were placed in a solution of 80 g/L, and the temperature was raised to 85 ° C, belt filter vacuum is 0.04; then the obtained filter cake is flash dried to a moisture content of 30% ⁇ 50%, and finally baked at 100% water vapor and 500 ° C for 1.5 hours, to obtain "one Hand over a baking "super stable rare earth sodium Y.
- 500 g (dry basis) of ultra-stable rare earth sodium lanthanum molecular sieve and deionized water were added to prepare a slurry having a solid content of 150 g/L, and 160 g of ammonium sulfate was added.
- This comparative example uses the molecular sieve preparation method described in Example 1 of CN200410058089.3, and other conditions are the same as those in Example 15.
- deionized water and 3000 g of NaY molecular sieve (dry basis) were sequentially added to prepare a slurry having a solid content of 150 g/L, and 450 g of ammonium sulfate was added thereto, and stirred at 9 CTC for 5 minutes, and then hydrochloric acid was used.
- the pH of the system was adjusted to 3.8, and stirring was continued for 1 hour and then filtered.
- the present comparative example uses the molecular sieve preparation method described in CN200510114495.1, and other conditions are the same as the examples.
- This comparative example uses the molecular sieve preparation method described in CN97122039.5, and other conditions are the same as in the fourth embodiment.
- deionized water and 3000 g (dry basis) of NaY-1 molecular sieve were added to prepare a slurry having a solid content of 90 g/L, and the mixture was heated to 80 ° C with stirring, and 59 g of hydrochloric acid was added thereto, and the temperature was adjusted.
- the ultra-stable rare earth Y-type molecular sieve provided by the invention is characterized in that the molecular sieve contains 1 ⁇ 20% by weight of rare earth oxide, sodium oxide is not more than 1.2% by weight, crystallinity is 51 ⁇ 69%, and unit cell parameters 2.449nm ⁇ 2.469nm, molecular sieve particle size D (v, 0.5) is not more than 3.0 ⁇ , D (v, 0.9) is not more than 20 ⁇ ;
- the molecular sieve sodium oxide prepared by the invention is not more than 1.2 m%, the rare earth oxide content is between 1 and 20 m%, the unit cell constant is between 2.449 and 2.469, and the relative crystallinity is 51%. Between 69%.
- the molecular sieve prepared by the invention has a particle size distribution smaller than that of the comparative molecular sieve, wherein the molecular sieve D (v, 0.5) has a particle diameter of not more than 3.0 ⁇ m, and the molecular sieve D (v, 0.9) has a particle diameter of not more than 20 ⁇ m.
- the molecular sieve preparation method provided by the patent can significantly improve the dispersion of the molecular sieve particles and reduce the degree of agglomeration of the particles.
- the molecular sieve is modified by ultra-stable ⁇ molecular sieve as the raw material. Due to the super-stable cell shrinkage, some aluminum fragments exist inside the pores, which increases the rare earth exchange resistance, resulting in the low utilization rate of the rare earth.
- the molecular sieve is prepared. Because the ammonium salt is mixed with the rare earth for exchange, the rare earth ion and the ammonium ion have a competitive reaction, which affects the quasi-determination of the rare earth ion, and the rare earth utilization rate is low.
- Table 3 shows the results of stability analysis of the ultra-stable rare earth Y-type molecular sieves obtained in Examples 1 to 16 and Comparative Examples 1 to 6.
- Relative crystallinity retention ratio Relative crystallinity (aged sample) / Relative crystallinity (fresh sample) ⁇ %
- the analytical data of Table 3 shows that compared with the comparative molecular sieve, the molecular sieve collapse temperature prepared according to the present invention is increased by 15 ° C or more, and the relative crystallinity retention rate is increased by 11.8 percentage points or more, indicating that the preparation method provided by the present invention can significantly improve the molecular sieve. Thermal stability and hydrothermal stability.
- the invention adopts NaY molecular sieve as raw material, in the process of primary exchange and primary roasting of NaY molecular sieve, no ammonium ion solution is added, thereby avoiding competition reaction with rare earth ions, reducing utilization ratio of rare earth ion exchange; and adopting distributed pre-exchange , reducing the particle exchange resistance, positioning the rare earth ions in the sodalite cage; adding a dispersant in the dispersion pre-exchange process, the molecular sieve effect provided by the invention can be achieved, but the addition of two or more dispersants can simultaneously reduce the rare earth liquid phase
- the exchange resistance with the ultra-stable process can maximize the performance of molecular sieve cracking.
- the method provided by the invention can effectively reduce the degree of agglomeration of the molecular sieve grains, increase the dispersibility of the molecular sieve, and completely exchange the rare earth ions into the molecular sieve supercage and the sodalite cage, and the rare earth ions in the subsequent water vapor roasting process All the cages enter the molecular sieve sodalite cage, which is reflected in the molecular sieve after the ammonium salt exchange, the rare earth content of the molecular sieve does not decrease, and there is no rare earth ions in the filtrate.
- the rare earth ions are all located in the sodalite cage to inhibit the dealuminization of the skeleton during the steam aging process, which improves the activity stability of the molecular sieve.
- the molecular sieve super cage and surface have no rare earth ions, which reduces the density and strength of the acid cloud pore acid center and improves the molecular sieve.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明提供一种超稳稀土Y型分子筛及其制备方法,该方法是以NaY分子筛为原料,进行稀土交换反应和分散预交换反应,最后进行超稳焙烧处理。该分子筛含氧化稀土1〜20重%,氧化钠不大于1.2重%,结晶度51〜69%,晶胞参数2.451nm〜2.469nm;与现有技术相比,该方法制备的分子筛稀土离子定位于方钠石笼,表现在反交换过程中没有稀土离子流失,同时该方法制备的分子筛粒径D(v,0.5)不大于3.0μm、D(v,0.9)不大于20μm。采用这种分子筛作为催化裂化催化剂活性组分,具有高的重油转化能力和高价值目的产品收率的特点。
Description
一种超稳稀土 Y型分子筛及其制备方法
技术领域
本发明涉及一种超稳稀土 Υ型分子筛及其制备方法,更具体地说是一种提高裂化活 性和颗粒分散性的超稳稀土 Υ分子筛及制备方法。 技术背景
催化裂化装置作为原油重要的二次加工手段, 其综合产品分布决定着炼厂的经济 效益, 近年随着原料油重质化趋势加剧, 要求 FCC催化剂具有更强的重油转化能力和 高价值产品选择性。 作为重油裂化催化剂裂化活性的主要提供者, 高裂化活性和高活性 稳定性的 Υ型分子筛一直是催化领域研究的核心技术课题。
围绕如何提高 Υ型分子筛的裂化活性和活性稳定性, 国内外相关研究机构进行了 大量的研究工作。工业上现行改性方法是大多采用稀土离子交换改性 Υ型分子筛, 并结 合焙烧条件的优化, 使稀土离子尽可能迁移至方钠石笼, 抑制分子筛骨架脱铝, 从而提 高分子筛的结构稳定性和活性稳定性。 目前 NaY分子筛改性方法大致分为三类: 一是 将 NaY分子筛先交换少量稀土离子和或铵根离子, 焙烧后进行稀土离子和或铵根离子 或是脱铝处理制成 REUSY分子筛 (US3595611、 US4218307、 CN87104086.7); 二 是先将 NaY 分子筛先制成 USY 分子筛, 然后在交换稀土制备 REUSY (ZL200510114495.1 , ZL200410029875.0);三是在 NaY分子筛稀土改性过程中引入 某种沉淀剂, 形成稀土沉淀物, 提高分子筛的抗重金属能力、 裂化活性和制备过程的稀 土利用率(ZL02103909.7、 ZL200410058089.3、 ZL02155600.8)。 以上专利所提供的 Y型分子筛改性方法都未对稀土离子精确定位作出详细说明,导致现有技术制备的 Y型 分子筛的活性稳定性和结构稳定性不能适应原料油重质化、 劣质化的发展趋势。
美国专利 (US5340957、 US4584287) 中介绍了 Y型分子筛改性方法, 该方法所 述是以 NaY分子筛为原料, 采用稀土和 /或環族元素进行交换改性, 之后再进行水热处 理,从而获得高稳定性超稳稀土 Y型分子筛, 该方法并未说明稀土离子定位和晶粒分散 状况。
中国专利 ZL97122039.5中介绍了一种超稳 Y沸石的制备方法,该方法包括将一种 Y型沸石, 与一种酸溶液和一种含铵离子的溶液接触, 并进行高温水蒸汽处理, 所述酸 的用量为每摩尔骨架铝 1.5〜6摩尔氢离子、酸溶液浓度 0.1〜5当量 /升, Y型沸石与酸
溶液接触的温度为 5〜100°C,接触时 I'Hj 0.5〜72小时, Y型沸石与铵离子的重量比为 2〜 20。该专利涉及的改性方法中需加入含铵离子溶液, 其目的是降低分子筛中的氧化钠含 量或是减少焙烧过程中酸性气体对分子筛结构的破坏, 但是该技术存在以下技术缺陷: 1 ) 制备过程加入大量的铵离子, 含铵离子最终进入大气或是污水中, 增加氨氮污染和 治污成本; 2 ) 该专利方法不能有效解决分子筛颗粒团聚问题, 颗粒团聚降低了分子筛 的比表面和孔体积, 增加了分子筛交换过程的孔道阻力, 使改性元素难以准确定位、 定 量于分子筛笼内; 3 )同时该专利还提及 Y型沸石与含铵离子溶液接触的同时或是之后, 还可以采用离子交换的方式引入稀土离子, 在该交换过程中, 铵离子与稀土离子存在竞 争反应,铵离子会优先占据稀土离子位置,增加了稀土离子交换进入分子筛笼内的阻力, 同时降低了稀土离子的利用率。
中国专利 ZL02103909.7中介绍了一种含稀土超稳 Y分子筛制备方法,该方法是将 NaY分子筛经一次交换一次焙烧后制得,其特征在于将 NaY分子筛置于铵离子溶液中, 于 25〜100°C进行化学脱铝处理, 化学脱铝络合剂中含有草酸和 /或草酸盐, 处理时间 0.5〜5小时, 然后加入稀土溶液, 搅拌, 使生成包含草酸稀土的稀土沉淀物, 经过滤、 水洗成为滤饼, 再进行水热处理, 制得分子筛产品。 该方法制备的分子筛虽具有一定的 抗钒污染能力, 但是其活性稳定性和裂化活性较低, 不能满足原料油重质化、 劣质化的 发展趋势。这主要是与分子筛改性过程中的稀土离子在分子筛超笼和方钠石笼的位置分 布有关。 该方法明确了稀土离子是以两种形态存在于分子筛体系中, 即部分稀土以离子 形态进入方钠石笼, 另一部分稀土离子是以氧化稀土(其前身物为草酸稀土, 后续焙烧 转化为氧化稀土)独立相分散于分子筛表面, 这降低了稀土离子对分子筛结构的稳定支 撑作用; 同时该方法中也存在大量的氨氮污染问题, 所加的草酸和或草酸盐的对环境和 人体毒害较大。
中国专利 200510114495.1中介绍了一种提高超稳 Y型沸石稀土含量的方法,该方 法是将超稳 Y型沸石和浓度为 0.01〜2N的酸溶液以液固比 4〜20的比例在 20〜100°C 的温度范围下充分混合, 处理 10〜300分钟后洗涤、过滤, 再加入稀土盐溶液进行稀土 离子交换, 交换后洗涤、 过滤、 干燥, 得到稀土超稳 Y型沸石。 该发明以经水汽超稳焙 烧的 Y型分子筛为原料,对其进行二次交换和二次焙烧化学修饰, 并未涉及分子筛颗粒 分散性研究。
中国专利 CN200410029875.0介绍了一种稀土超稳 Y型沸石的制备方法, 其特征 在于该方法首先将 NaY分子筛用无机铵盐溶液进行离子交换, 之后进行水汽超稳处理
获得 "一交 - 焙"产品; 将 "一交一焙"产品再加入一种 稀土盐和柠檬酸组成的混合 溶液或者一种 ώ无机铵盐、 稀土盐和柠檬酸组成的混合溶液, 在一定温度下进行交换反 应, 反应结束后将分子筛浆液过滤、 水洗, 最后在空气或 100%水蒸气气氛下于 450〜 75CTC焙烧 0.5〜 4小时。 该技术中稀土改性是以 "一交一焙"产品为原料进行第二次 交换改性, 于分子筛经过 "一交一焙"后晶胞收缩, 孔道内部碎片铝堵塞孔道, 增加 了稀土离子交换阻力, 使稀土离子难以准确定位于方钠石笼。
以上专利所提供的 Υ型分子筛改性方法都未对稀土离子精确定位做出详细说明,导 致现有技术制备的 Υ型分子筛的活性稳定性和结构稳定性不能适应原料油重质化、劣质 化的发展趋势。
发明内容
本发明的目的在于提供一种高活性稳定性超稳稀土 Υ型分子筛及其制备方法,该方 法提供的分子筛焦炭产率低、 重油转化和抗重金属能力强, 同时该方法具有制备工艺流 程简单、 改性元素利用率高和氨氮污染小的特点。
本发明提供的超稳稀土 Υ型分子筛其特征在于分子筛含氧化稀土 1〜20重%,氧化 钠不大于 1.2重%, 结晶度 51〜69%, 晶胞参数 2.449nm〜2.469nm, 该分子筛的制备 过程包含了稀土交换、 分散预交换, 其中稀土交换、 分散预交换的先后次序不限, 稀土 交换与分散预交换是连续进行, 之间没有焙烧过程; 分散预交换是指将分子筛浆液浓度 调为固含量为 80〜400g/L, 加入 0.2重量%〜7重量%的分散剂进行分散预交换, 交换 温度为 0〜10(TC,交换时间为 0.1〜1.5小时;分散预交换过程所述分散剂选自田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯酰胺、 乙酸、 草酸、 己二酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 苯甲酸、 淀粉中的一种或多种, 最好是两种或两种以上; 稀土交换、 分散预交换中没有使用铵盐。
本发明还提供了该超稳稀土 Y型分子筛更具体的制备方法: 以 NaY分子筛 (最好 硅铝比大于 4.0, 结晶度大于 70%) 为原料, 经过稀土交换、 分散预交换, 分子筛浆液 经过滤、 水洗和第一次焙烧, 获得"一交一焙"稀土钠丫分子筛, 其中稀土交换、 分散预 交换的先后次序不限;再将"一交一焙"稀土钠 Y分子筛经过铵盐交换降钠、第二次焙烧, 从而获得本发明所述成品 REUSY分子筛 (又称超稳稀土 Y型分子筛)。
本发明提供的超稳稀土 Y型分子筛的制备方法中, NaY分子筛稀土交换和分散预 交换之间, 分子筛浆液可以不经洗涤、 过滤, 也可以进行洗涤、 过滤。 稀土交换时, 其 RE2Os/Y沸石(质量)最好为 0.005〜0.25,最佳是 0.01〜0.20;交换温度为 0〜100°C,
最佳为 60〜95°C ; 交换 pH值为 2.5〜6.0, 最佳是 3.5〜5.5, 交换时间为 0.1〜2小时, 最佳为 0.3〜1.5小时; 分散预交换时, 分散剂加入量为 0.2重量%〜7重量%, 最佳为 0.2重量。 /。〜5重量。 /。; 交换温度为 0〜100°C, 最佳为 60〜95°C ; 交换时间为 0.1〜1.5 小时。 改性后的分子筛浆液经过滤、 水洗获得滤饼, 将所得滤饼闪蒸干燥使其水分含量 在 30%〜50%, 最后焙烧, 焙烧条件可使用通用条件, 如在 350°C〜70(TC、 0〜100% 水汽焙烧 0.3〜3.5小时,最好是在 450°C〜650°C、 15〜100%水汽焙烧 0.5〜2.5小时, 即得"一交一焙"超稳稀土钠 Y分子筛。 "一交一焙"超稳稀土钠 Y分子筛的铵盐交换和第 二次焙烧的条件可以采取通用的常规做法, 推荐的方法是: 将"一交一焙"超稳稀土钠 Y 分子筛加入去离子水,固含量调配为 100〜400g/L, NH /Y沸石(质量)为 0.02〜0.40, 最好为 0.02〜0.30, pH值为 2.5〜5.0, 最好为 3.0〜4.5, 在 60°C〜95°C下反应 0.3〜 1.5 小时后, 将分子筛浆液过滤、 水洗, 将所得滤饼在 450°C〜700°C、 0〜100%水汽 焙烧 0.3〜3.5小时, 最好是 0.5〜2.5小时, 最终获得本发明提供的高活性超稳稀土 Y 型分子筛。稀土交换和分散预交换的交换过程可以采用罐式交换、带式交换和 /或滤饼交 换; 在进行稀土交换时, 可以按以下方式进行, 即在稀土总量不变的前提下, 可以将稀 土化合物溶液分为若干份,进行罐式交换、带式交换和 /或滤饼交换,即多次交换。同样, 在分散预交换过程时, 可以在分散剂总量不变的前提下, 可以将分散剂分为若干份, 进 行罐式交换、带式交换和 /或滤饼交换; 稀土交换和分散预交换为多次交换时, 两类交换 可交叉进行。
本发明中所述的分子筛制备过程中 "一交一焙"超稳稀土钠 Y分子筛制备方法可以 是- NaY分子筛首先经过稀土交换, 反应结束后进行过滤、 洗漆; 之后将滤饼再与分 散剂混合均匀进行预交换反应, 最后将滤饼闪蒸干燥后进行焙烧。
本发明中所述的分子筛制备过程中 "一交一焙"超稳稀土钠 Y分子筛制备方法还可 以是: NaY分子筛首先经过分散预交换, 反应结束后过滤、 洗涤获得滤饼; 将滤饼与 稀土化合物溶液充分混合均匀进行滤饼交换, 反应结束后将滤饼闪蒸干燥后进行焙烧。
本发明中所述的分子筛制备过程中 "一交一焙"超稳稀土钠 Y分子筛制备方法还可 以是: NaY分子筛首先经过分散预交换, 之后再加入稀土化合物进行罐式交换, 反应 结束后进行过滤、 洗涤和焙烧。
本发明中所述的分子筛制备过程中 "一交一焙"超稳稀土钠 Y分子筛制备方法还可 以是: NaY分子筛首先经过稀土交换, 反应结束后再加入分散剂进行分散预交换反应, 最后进行过滤、 洗涤和焙烧。
本发明中所述的分子筛制备过程中 "一交一焙" 超稳稀土钠 Y分子筛制备方法还可 以是: NaY分子筛首先经过分散预交换, 反应结束后将分子筛浆液在带式滤机上进行 过滤、 稀土带式交换和滤饼水洗, 其中在带式滤机上进行稀土带式交换条件为: 交换温 度为 60°C〜95°C, 交换 pH值为 3.2〜4.8, 带式滤机真空度为 0.03〜0.05; 最后将过 滤水洗好的滤饼进行焙烧。
本发明中所述的分子筛制备过程中 "一交一焙"超稳稀土钠 Y分子筛制备方法还可 以是: NaY分子筛首先经过稀土交换, 反应结束后将分子筛浆液在带式滤机上进行过 滤、 带式分散预交换和滤饼水洗, 其中在带式滤机上进行带式分散预交换条件为: 加入 量为 0.2重量%〜7重量%, 交换温度为 0〜100Ό, 交换时间为 0.1〜1.5小时, 带式滤 机真空度为 0.03〜0.05; 最后将过滤水洗好的滤饼进行焙烧。
本发明中所述的"一交一焙"超稳稀土钠 Υ分子筛制备方法还可以是: NaY分子筛 分散预交换结束后, 在进行稀土交换时, 可以按以下方式进行, 即在稀土总量不变的前 提下, 可以将稀土化合物溶液分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换。
本发明中所述的"一交一焙"超稳稀土钠 Y分子筛制备方法还可以是: NaY分子筛 分散预交换过程可以按以下方式进行, 即在分散剂总量不变的前提下, 可以将分散剂分 为若干份, 进行罐式交换、 带式交换和 /或滤饼交换。
本发明所述的 "一交一焙"超稳稀土钠 Y分子筛制备方法还可以是: 先选用一种分 散剂与 NaY分子筛进行分散预交换反应, 之后再进行稀土交换反应, 反应结束后再加 入另外一种分散剂进行二次分散预交换,在两次分散预交换之间分子筛可以过滤也可以 不过滤。
本发明中反应过程顺序不同, 并不影响本发明的实施效果。
本发明所述的稀土化合物为氯化稀土或硝酸稀土或硫酸稀土,最好是氯化稀土或硝 酸稀土。
本发明所述的稀土可以是富镧或富铈稀土, 也可以是纯镧或纯铈。
具体实施方式
下面进一步用实施例进一步说明本发明, 但本发明并不仅限于这些例子。
(一) 实例中所用的分析测试方法。
1. 晶胞常数 (a0): X-光衍射法。
2. 结晶度 (C/Co): X-光衍射法。
3. 硅铝比: X-光衍射法。
4. Na2O含量: 火焰光度法。
5. RE203含量: 比色法。
6. 颗粒粒径: 使用仪器为 MICRO-PLUS型激光粒度仪, 全量程完全米氏理论, 测 试范围为 0.05〜550μηη
(二) 实例中所用原料规格
1. NaY分子筛: NaY-1 (硅铝比 4.8, 结晶度 92%), NaY-2 (硅铝比 4.1, 结晶度
83%), 兰州石化公司催化剂厂生产。
2. 超稳一交一焙分子筛样品: 结晶度 60%, 氧化钠 4.3m%, 兰州石化公司催化剂 厂生产。
3. 稀土溶液: 氯化稀土 (氧化稀土 277.5克 /升), 硝酸稀土 (氧化稀土 252克 / 升), 均为工业品, 采自兰州石化公司催化剂厂。
4. 田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯酰胺、 草酸、 已二酸、 乙酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 淀粉均为化学纯; 氯化铵、 硝酸铵、 硫酸铵、 草酸铵, 均为工业品。
(三) 反应评价
ACE重油微型反应器: 反应温度 530°C, 剂油比为 5, 原料油为新疆油掺炼 30%的减 压渣油。
实施例 1
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水,调配成固含量为 220g/L的浆液,加入 82g硼酸和 105克田菁粉,然后升温至 85°C, 在搅拌下交换反应 0.5小时, 之后过滤、 洗涤, 将所得滤饼放置反应釜中, 之后再加入 1.67升的氯化稀土, 调节体系 pH=4.0, 升温至 80°C, 交换反应 0.3小时, 将所得滤饼 闪蒸干燥使其水分含量在 30%〜50%, 最后在 70%水汽和 670°C下焙烧 1.0小时, 制 得"一交一焙"稀土钠 Y。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Υ分子 筛 500克 (干基) 和一定量的去离子水, 制成固含量为 120g/L的浆液, 加入 120g硫 酸铵, 调节体系 pH=4.2, 升温到 90°C, 交换 0.8小时, 然后过滤、 洗涤, 滤饼在 80% 水汽和 560Ό下焙烧 2.5小时, 制得本发明所述的稀土超稳 Y分子筛活性组分, 记做改 性分子筛 A-1。
实施例 2
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离
子水, 凋配成固含量为 360g/L的浆液, 加入 0.82升的硝酸稀土, 调节体系 pH=3.3, 升温至 80°C, 交换反应 1.5小时, 之后过滤、 洗涤, 将所得滤饼放置反应釜中, 再加入 202g聚丙烯酰胺和 30g的水杨酸, 然后升温至 78°C进行分散交换, 在搅拌下交换反应 0.5小时, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 30%水汽和 630Ό 下焙烧 1.8小时, 制得"一交一焙"稀土钠丫。在带有加热套的反应釜中, 加入"一交一焙" 超稳稀土钠丫分子筛 500克 (干基)和去离子水, 制成固含量为 370g/L的浆液, 加入 200g硫酸钹, 调节体系 pH=3.6, 升温到 90°C, 交换 1.2小时, 然后过滤、 洗漆, 滤饼 在 20%水汽和 60(TC下焙烧 0.5小时, 制得本发明所述的稀土超稳 Y分子筛活性组分, 记做改性分子筛 A-2。
对比例 1
本对比例说明在分子筛改性过程中不加入聚丙烯酰胺和水杨酸时所制备 REUSY的 性能特点。
按照实施例 2所示方法制备 REUSY分子筛, 仅是不加入聚丙烯酰胺和水杨酸, 其 他与实施例 2相同, 所得超稳稀土 Y型分子筛编号为 DB-1。
实施例 3
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和去离子水, 调 配成固含量为 100g/L的浆液, 然后加入 180g柠檬酸进行分散预交换, 升温至 85°C, 交换反应 0.5小时, 之后再加入 1.08升的氯化稀土, 调节体系 pH=4.5, 升温至 85'C, 交换反应 1小时, 之后过滤、 洗涤, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 40%水汽和 540°C下焙烧 1.5小时, 制得"一交一焙"超稳稀土钠丫。 在带有加热 套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分子筛 500克(干基)和去离子水, 制成 固含量为 145g/L的浆液, 加入 80g硫酸铵, 调节体系 pH=3.5, 升温到 90°C, 交换 1.2 小时, 然后过滤、 洗涤, 滤饼在 50%水汽和 650°C下焙烧 2小时, 制得本发明所述的稀 土超稳 Y分子筛活性组分, 记做改性分子筛 A-3。
实施例 4
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和去离子水, 调 配成固含量为 200g/L的浆液, 然后加入 32g盐酸, 升温至 85°C, 交换反应 0.5小时, 之后再加入 0.22升的氯化稀土, 调节体系 pH=4.8, 升温至 70°C, 交换反应 1小时, 之后再加入 48g尿素进行分散交换, 然后升温至 85°C, 在搅拌下交换反应 0.8小时, 之后过滤、 洗涤, 将所得滤饼放置反应釜中, 再加入 1.43升的氯化稀土, 然后升温至
78°C进行交换 0.5小时,最后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%,最后在 40%水汽和 54CTC下焙烧 1.5小时, 制得"一交一焙"稀土钠 Y。 在带有加热套的反应釜 中, 加入"一交一焙"超稳稀土钠丫分子筛 500克 (干基) 和去离子水, 制成固含量为 145g/L的桨液, 加入 80g硫酸铰, 调节体系 pH=3.5, 升温到 90°C, 交换 1.2小时, 然 后过滤、洗涤, 滤饼在 50%水汽和 650°C下焙烧 2小时, 制得本发明所述的稀土超稳 Y 分子筛活性组分, 记做改性分子筛 A-4。
实施例 5
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和去离子水, 调 配成固含量为 250g/L的浆液, 加入 132g尿素, 然后升温至 60°C, 在搅拌下交换反应 0.8小时, 之后再加入 0.76升的氯化稀土, 调节体系 pH=4.2, 升温至 85°C, 交换反应 1.5小时, 之后过滤、洗涤, 将所得滤饼放置反应釜中, 再加入 39巳二酸, 然后升温至 78Ό进行分散交换, 在搅拌下交换反应 0.5小时, 反应结束后过滤、 洗涤, 将所得滤饼 闪蒸干燥使其水分含量在 30%〜50%,最后在 80%水汽和 560°C下焙烧 2小时,制得"一 交一焙 "稀土钠丫。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分子筛 500 克 (干基) 和去离子水, 制成固含量为 180g/L的浆液, 加入 100g硫酸铵, 调节体系 pH=4.0, 升温到 90Ό, 交换 1小时, 然后过滤、 洗涤, 滤饼在 100%水汽和 620°C下 焙烧 2小时, 制得本发明所述的稀土超稳 Y分子筛活性组分, 记做改性分子筛 A-5。 实施例 6
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和去离子水, 调 配成固含量为 90g/L的浆液, 加入 59g盐酸, 然后升温至 90°C, 在搅拌下交换反应 1 小时, 之后再加入 0.54升的硝酸稀土, 调节体系 pH=3.7, 升温至 80°C, 交换反应 0.5 小时, 反应结束后再加入 67g乙醇, 在 76°C下反应 0.6小时, 之后过滤、 洗涤, 将所 得滤饼闪蒸干燥使其水分含量在 30%〜50%,最后在 70%水汽和 450°C下焙烧 2小时, 制得"一交一焙"稀土钠丫。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分 子筛 500克 (干基) 和去离子水, 制成固含量为 300g/L的浆液, 加入 175g硫酸铵, 调节体系 pH=4.3, 升温到 90Ό, 交换 0.6小时, 然后过滤、 洗涤, 滤饼在 70%水汽和 65CTC下焙烧 1.5小时, 制得本发明所述的稀土超稳 Υ分子筛活性组分, 记做改性分子 筛 Α-6。
实施例 7
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离
子水, 调配成固含量为 180g/L的浆液, 加入 1.46升的硝酸稀土, 调节体系 pH=3.5, 升温至 85T:, 交换反应 1.2小时, 之后再加入 108g乙醇, 然后升温至 90°C, 在搅拌 下交换反应 1小时,之后过滤、洗涤,将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 50%水汽和 520°C下焙烧 1.5小时, 制得"一交一焙"稀土钠 Y。 在带有加热套的 反应釜中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克 (干基)和去离子水, 制成固含 量为 250g/L的浆液,加入 150g硫酸钹,调节体系 pH=4.0,升温到 90°C,交换 1小时, 然后过滤、 洗涤, 滤饼在 100%水汽和 650°C下焙烧 2小时, 制得本发明所述的稀土超 稳丫分子筛活性组分, 记做改性分子筛 A-7。
实施例 8
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和去离子水, 调 配成固含量为 150g/L的浆液, 加入 43g盐酸,在 85°C下反应 1小时,之后再加入 1.68 升的氯化稀土, 调节体系 pH=3.7, 升温至 9(TC, 交换反应 1小时, 之后再将分子筛浆 液过滤,进行分散剂带式交换,带式交换条件为:将 35g草酸配置为 pH值 =3.4的溶液, 并升温至 85°C, 带式滤机真空度为 0.04; 之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 10%水汽和 51CTC下焙烧 2.0小时,制得"一交一焙"超稳稀土钠丫。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分子筛 500克(干基)和去离 子水,制成固含量为 145g/L的浆液,加入 80g硫酸铵,调节体系 pH=3.5,升温到 90°C, 交换 1.2小时, 然后过滤、 洗涤, 滤饼在 50%水汽和 65CTC下焙烧 2小时, 制得本发明 所述的稀土超稳 Y分子筛活性组分, 记做改性分子筛 A-8。
对比例 2
本对比例说明在分子筛改性过程中不加入盐酸和草酸时所制备 REUSY的性能特点。 按照实施例 8所示方法制备 REUSY分子筛, 仅是不加入盐酸和草酸, 其他与实施 例 8相同, 所得超稳稀土 Y型分子筛编号为 DB-2。
实施例 9
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水, 调配成固含量为 180g/L的浆液, 加入 167g酒石酸, 然后升温至 85°C, 在搅拌 下交换反应 0.5小时, 之后再加入 32g乙醇在 85°C反应 0.5小时, 之后过滤、 洗涤, 将所得滤饼放置反应釜, 之后再加入 1.31升的硝酸稀土, 调节体系 pH=3.8, 升温至 8CTC,交换反应 1小时,最后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%,在 100% 水汽和 48(TC下焙烧 1.5小时, 制得"一交一焙"稀土钠丫。 在带有加热套的反应釜中,
加入"一交一焙"超稳稀土钠 Y分子筛 500克(干基)和去离子水, 制成固含量为 220g/L 的浆液, 加入 80g硫酸铵, 调节体系 pH=4.5, 升温到 90°C, 交换 0.5小时, 然后过滤、 洗涤, 滤饼在 100%水汽和 58CTC下焙烧 1.8小时, 制得本发明所述的稀土超稳 Y分子 筛活性组分, i己做改性分子筛 A-9。
实施例 10
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水, 调配成固含量为 320g/L的浆液, 加入 30g硝酸, 然后升温至 85°C, 在搅拌下交 换反应 0.8小时, 之后再加入 0.95升的硝酸稀土, 调节体系 pH=3.3, 升温至 80°C, 交 换反应 1.8小时, 最后加入 62g淀粉在 8(TC下反应 0.5小时, 反应之后过滤、 洗涤, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 60%水汽和 560Ό下焙烧 2 小时, 制得"一交一焙"稀土钠 Y。在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克 (干基) 和去离子水, 制成固含量为 280g/L的浆液, 加入 130g硫酸 铵, 调节体系 pH=4.0, 升温到 90'C, 交换 0.5小时, 然后过滤、 洗涤, 滤饼在 60%水 汽和 680Γ下焙烧 1小时, 制得本发明所述的稀土超稳 Y分子筛活性组分, 记做改性分 子筛 A-10。
实施例 11
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水, 调配成固含量为 160g/L的浆液, 加入 1.40升的硝酸稀土, 调节体系 pH=3.7, 升温至 90°C, 交换反应 0.8小时, 之后再加入 48g柠檬酸, 然后升温至 85°C, 在搅拌 下交换反应 0.5小时, 之后过滤、 洗涤, 将所得滤饼加入 39g乙酸和 76克尿素, 然后 升温至 95°C,在搅拌下反应 0.5小时,将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 80%水汽和 580Ό下焙烧 2小时, 制得"一交一焙"稀土钠 Y。 在带有加热套的反 应釜中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克(干基)和去离子水, 制成固含量 为 150g/L的浆液, 加入 50g硫酸铵, 调节体系 pH=3.8, 升温到 90°C, 交换 1小时, 然后过滤、 洗涤, 滤饼在 100%水汽和 61CTC下焙烧 2小时, 制得本发明所述的稀土超 稳 Y分子筛活性组分, 记做改性分子筛 A-11。
实施例 12
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水, 调配成固含量为 180g/L的浆液, 加入 32g甲酸和 68g乙醇, 然后升温至 85°C, 在搅拌下交换反应 1.5小时, 之后再加入 0.82升的硝酸稀土, 调节体系 pH=3.3, 升温
至 90°C, 交换反应 1小时, 反应结束后加入 48g甲酸和 30g乙醇, 在 85°C下反应 0.8 小时,之后过滤、洗涤, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 10% 水汽和 56CTC下焙烧 1.5小时, 制得"一交一焙"稀土钠 Y。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克(干基)和去离子水, 制成固含量为 150g/L 的浆液, 加入 50g硫酸钹, 调节体系 PH=4.0, 升温到 90°C, 交换 1小时, 然后过滤、 洗涤, 滤饼在 60%水汽和 62CTC下焙烧 2小时, 制得本发明所述的稀土超稳 Y分子筛 活性组分, 记做改性分子筛 A-12。
实施例 13
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水,调配成固含量为 350g/L的浆液,加入 42g柠檬酸和 28g田菁粉,然后升温至 82°C, 在搅拌下交换反应 1.3小时,反应结束后加入 0.56升硝酸稀土,在 85°C下交换反应 0.8 小时, 之后将分子筛浆液过滤, 进行带式交换, 带式交换条件为: 将硝酸稀土溶液升温 至 88Ό , 交换 pH值为 4.7, 硝酸稀土加入量为 RE203/Y沸石 (质量) 为 0.04, 带式 滤机真空度为 0.03;之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%,最后在 80% 水汽和 530°C下焙烧 1.5小时, 制得"一交一焙"超稳稀土钠 Y"—交一焙"超稳稀土钠 Y。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克(干基)和去离 子水,制成固含量为 150g/L的浆液,加入 100g硫酸铵,调节体系 pH=4.0,升温到 90°C, 交换 1小时, 然后过滤、洗涤, 滤饼在 60%水汽和 62CTC下焙烧 2小时, 制得本发明所 述的稀土超稳 Y分子筛活性组分, 记做改性分子筛 A-13。
实施例 14
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水, 调配成固含量为 190g/L的浆液,加入 78g尿素和 46g盐酸调节体系 pH值 =6.5, 然后升温至 90°C,在搅拌下交换反应 0.6小时,之后将分子筛浆液过滤,进行带式交换, 带式交换条件为: 将硝酸稀土溶液升温至 88°C, 交换 pH值为 4.2, 硝酸稀土加入量为 RE203/Y沸石 (质量) 为 0.12, 带式滤机真空度为 0.05; 之后将所得滤饼闪蒸干燥使 其水分含量在 30%〜50%, 最后在 100%水汽和 580 °C下焙烧 2小时, 制得"一交一焙" 超稳稀土钠丫。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分子筛 500克 (干基)和去离子水,制成固含量为 150g/L的浆液,加入 160g硫酸铵,调节体系 pH=4.0, 升温到 90°C, 交换 1小时, 然后过滤、 洗涤, 滤饼在 60%水汽和 620°C下焙烧 2小时, 制得本发明所述的稀土超稳丫分子筛活性组分, 记做改性分子筛 A-14。
对比例 3
本对比例说明在分子筛改性过程中仅加入盐酸时所制备 REUSY的性能特点。 按照实施例 14所示方法制备 REUSY分子筛, 仅是不加入盐酸, 其他与实施例 14 相同, 所得超稳稀土 Y型分子筛编号为 DB-3。
实施例 15
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水,调配成固含量为 110g/L的浆液,加入 42g田菁粉和 28g水杨酸,然后升温至 89°C, 在搅拌下交换反应 1小时, 之后再加入 0.48升的硝酸稀土, 调节体系 pH=3.7, 升温至 83V , 交换反应 1小时, 之后将分子筛浆液过滤水洗, 将所得滤饼放入交换罐中进行打 浆,再加入 1.19升的硝酸稀土(RE2Os/Y沸石为 0.10),调节体系 pH=4.1,升温至 78Ό, 交换反应 0.7小时,之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%,最后在 100% 水汽和 63CTC下焙烧 2小时, 制得"一交一焙"超稳稀土钠 Υ。在带有加热套的反应釜中, 加入' '一交一焙"超稳稀土钠 Υ分子筛 500克(干基)和去离子水, 制成固含量为 150g/L 的浆液, 加入 160g硫酸铵, 调节体系 pH=4.0, 升温到 90°C, 交换 1小时, 然后过滤、 洗涤, 滤饼在 60%水汽和 620Ό下焙烧 2小时, 制得本发明所述的稀土超稳 Y分子筛 活性组分, 记做改性分子筛 A-15。
实施例 16
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛(干基)和一定量的去离 子水, 调配成固含量为 170g/L的浆液, 加入 0.18升的硝酸稀土, 调节体系 pH=4.1, 升温至 80°C, 交换反应 1.2小时, 之后再将分子筛浆液过滤, 进行分散剂带式交换, 带 式交换条件为: 将 52g乙酸和 146g柠檬酸配置 80g/L的溶液, 并升温至 85°C, 带式滤 机真空度为 0.04;之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%,最后在 100% 水汽和 500°C下焙烧 1.5小时, 制得"一交一焙"超稳稀土钠 Y。 在带有加热套的反应釜 中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克 (干基) 和去离子水, 制成固含量为 150g/L的浆液, 加入 160g硫酸铵, 调节体系 pH=4.0, 升温到 90°C, 交换 1小时, 然 后过滤、洗涤, 滤饼在 60%水汽和 620°C下焙烧 2小时, 制得本发明所述的稀土超稳 Y 分子筛活性组分, 记做改性分子筛 A-16。
对比例 4
本对比例使用 CN200410058089.3实施例 1所述的分子筛制备方法, 其它条件同 实施例 15
在带有加热套的反应釜中, 依次加入去离子水和 3000gNaY分子筛 (干基), 调配 成固含量为 150g/L的浆液, 在向其中加入 450g硫酸铵, 9CTC下搅拌 5分钟后用盐酸 调节体系 pH值 3.8, 继续搅拌 1小时后过滤。 滤饼加入 2kg去离子水, 再加入 1.67升 的硝酸稀土溶液, 90°C下搅拌 2小时, 加入 322g的偏铝酸钠, 258g氨水, 搅拌 10分 钟后进行过滤、 水洗, 气流干燥后进焙烧炉, 在重量空速 0.5时―1的水蒸气下 600Ό焙 烧 1.5小时, 冷却后即得 DB-3A, 再按分子筛: 氯化铵: 水 =1 : 0.1: 10的比例用 90Ό 的氯化铵洗涤 15分钟, 干燥得到分子筛成品, 编号为 DB4。
对比例 5
本对比例使用 CN200510114495.1 所述的分子筛制备方法, 其它条件同实施例
167
取 3000g (干基)由兰州石化公司催化剂厂水热法生产的超稳一交一焙分子筛样品, 加入到 3升 2N草酸水溶液中搅拌使其混合均匀, 升温至 90〜100°C反应 1小时后, 过 滤水洗,将所得滤饼至于 6升去离子水中,并加入 1.46升的硝酸稀土溶液,升温至 90〜 95Ό下反应 1小时, 然后过滤水洗, 滤饼于 120°C下烘干, 即得该对比例分子筛样品, 记为 DB-5。
对比例 6
本对比例使用 CN97122039.5所述的分子筛制备方法, 其它条件同实施例 4。 在带有加热套的反应釜中, 加入去离子水和 3000g (干基) NaY-1分子筛, 调配成 固含量为 90g/L的浆液, 搅拌升温至 80°C, 加入 59g的盐酸, 恒温 8小时, 加入 1.65 升的氯化稀土溶液和 1200g固体氯化铵, 搅拌 1 小时, 过滤水洗至无氯离子被检出, 所得湿滤饼(水分含量 47%)于 600°C下焙烧 2小时, 即得该对比例分子筛样品, 记为 DB-6。
工业实用性
将本发明实施例及对比例所得超稳稀土 Y型分子筛理化性质列于表 1。
表 1 分子筛理化性质
A-5 7.03 1.05 2.459 57 2.93 15.78
A-6 4.54 0.98 2.454 63 2.68 12.96
A-7 12.26 1.06 2.463 55 2.94 18.69
A-8 15.54 0.92 2.469 51 2.92 17.26
A-9 11.0 0.97 2.465 54 2.78 16.81
A-10 7.98 1.05 2.461 57 2.92 15.92
A-11 11.76 1.06 2.463 56 2.96 18.46
A-12 6.89 1.04 2.459 60 2.73 17.53
A-13 8.70 0.86 2.461 55 2.65 13.67
A-14 12.0 0.93 2.463 57 2.98 15.88
A-15 14.03 1.02 2.464 52 2.68 16.48
A-16 1.51 1.16 2.449 69 2.90 14.53
DB-1 6.78 1.1 2.464 52 4.23 33.58
DB-2 15.46 1.02 2.469 47 4.52 36.83
DB-3 12.04 1.68 24.68 48 4.76 40.05
DB-4 13.89 1.74 24.69 45 4.68 39.47
DB-5 8.27 1.60 24.67 54 4.83 37.42
DB-6 12.86 1.82 24.68 49 4.85 41.48 本发明提供的超稳稀土 Y型分子筛其特征在于分子筛含氧化稀土 1〜20重%,氧化 钠不大于 1.2重%,结晶度 51〜69%,晶胞参数 2.449nm〜2.469nm,分子筛粒径 D(v, 0.5)不大于 3.0μιη、 D(v, 0.9)不大于 20μπι;
从表中数据可知: 1 )本发明所制备的分子筛氧化钠不大于 1.2m%, 氧化稀土含量 在 1〜20m%之间, 晶胞常数在 2.449〜2.469之间,相对结晶度在 51%〜69%之间。 2) 与对比分子筛相比, 本发明所制备的分子筛粒径分布明显小于对比分子筛, 其中分子筛 D(v, 0.5)粒径不大于 3.0μηι, 分子筛 D(v, 0.9)粒径不大于 20μπι, 表明该专利所提供 的分子筛制备方法可显著提高分子筛颗粒的分散度, 降低颗粒的团聚度。 3) 以超稳 Υ 型分子筛为原料改性分子筛, 由于其超稳后晶胞收缩, 孔道内部存在部分碎片铝, 增加 了稀土交换阻力, 导致对比例 5稀土利用率低。 4) 按照对比例 6制备分子筛, 由于铵 盐与稀土混合进行交换, 稀土离子与铵根离子存在竞争反应, 影响了稀土离子的准确定 位, 表现在其稀土利用率低。
将实施例 1〜16和对比例 1〜6成品分子筛按照以下交换条件进行 3次铵盐交换, 考察分子筛稀土含量和滤液中稀土含量的变化, 确定稀土离子是否定位于方钠石笼。 分
析结果如表 2所示。
交换条件: 在带有加热套的反应釜中, 加入 100g分子筛和 0.6升的去离子水, 在 搅拌状态下加入 40g的铵盐, 然后升温至 85Γ交换 1小时, 然后过滤, 并用 0.4升的 化学水水洗, 收集滤液和滤饼, 分析稀土含量。
表 2 稀土含量分析
从表 2分析结果可知,与对比例相比,按照本发明提供的 Y型分子筛改性方法制备 的分子筛, 经过 3次铵盐反复交换, 滤液中基本没有稀土离子, 该结果表明稀土离子全 部定位于分子筛方钠石笼。
表 3是实施例 1〜16和对比例 1〜6所得的超稳稀土 Y型分子筛稳定性分析结果。
表 3 分子筛活性稳定性分析结果
分子筛 相对结晶度保留率 崩埸温度
% 。C
A-1 68.2 1019
A-2 72.1 1022
A-3 73.5 1035
A-4 69.6 1018
A-5 69.4 1018
A-6 69.6 1020
A-7 69.8 1019
A-8 70.2 1018
A-9 71.6 1021
A-10 70.3 1025
A-11 68.9 1018
A-12 71.2 1027
A-13 68.8 1017
A-14 70.2 1039
A-15 68.8 1019
A-16 70.6 1035
DB-1 51.2 998
DB-2 52.6 994
DB-3 56.4 1003
DB-4 55.2 992
DB-5 54.5 1002
DB-6 56.3 1000 备注: 相对结晶度保留率 =相对结晶度 (老化样品) /相对结晶度 (新鲜样品) χΐοο%
老化条件: 800°C、 100%水汽下老化 2小时
表 3 分析数据表明, 与对比分子筛相比, 按照本发明制备的分子筛崩塌温度提高 15°C以上, 相对结晶度保留率增加 11.8个百分点以上, 表明本发明所提供的制备方法 可显著改善分子筛的热稳定性和水热稳定性。
为考察本发明分子筛的重油转化能力和综合产品分布, 进行了如下实验: 按照常规 制备半合成催化剂的制备方法, 按照 35%的分子筛 (含本发明分子筛和对比分子筛)、 20%的氧化铝、 8%的铝溶胶粘结剂和 37%的高岭土的催化剂配方,制备了 FCC催化剂。 并进行了重油微反评价, 评价条件为: 原料油为新疆催料, 剂油比 4, 反应温度 530Ό。 评价结果如表 4所示。评价结果表明, 以本发明提供的 Υ型分子筛为活性组分制备的催
化剂, 具有优异的重油转化能力和产品选择性。
ACE重油微反评价结果
本发明是以 NaY分子筛为原料, 在 NaY分子筛一次交换和一次焙烧过程中, 不加 入铵离子溶液, 避免了其与稀土离子的发生竞争反应, 降低了稀土离子交换利用率; 同 时采用分散预交换, 降低颗粒交换阻力, 使稀土离子定位于方钠石笼; 在分散预交换过 程加入一种分散剂, 即可达到本发明提供分子筛效果, 但是两种以上分散剂的加入可同 时降低稀土液相和超稳过程的交换阻力, 可最大化发挥分子筛裂化性能。
按照本发明提供的方法可有效降低了分子筛晶粒的团聚度, 增加了分子筛的分散 性, 使稀土离子全部交换进入分子筛超笼和方钠石笼, 并在后续水汽焙烧过程中稀土离 子从超笼全部进入分子筛方钠石笼, 体现在分子筛经过铵盐交换后, 分子筛稀土含量不 降低, 同时滤液中没有稀土离子。稀土离子全部定位于方钠石笼抑制了水汽老化过程骨 架脱铝, 提高了分子筛的活性稳定性; 分子筛超笼和表面没有稀土离子, 减少了分子筛 孔道酸性中心的密度和强度, 提高了分子筛的焦炭选择性和活性中心二次利用率; 同时 该方法大大降低了分子筛生产过程的铵盐用量, 是一种清洁化分子筛改性技术。
Claims
权 利 要 求
一种超稳稀土 Y型分子筛, 其特征在于分子筛含氧化稀土 1〜20重%, 氧化钠不大 于 1.2重%, 结品度 51〜69%, 晶胞参数 2.449nm〜2.469nm, 该分子筛的制备过 程包含了稀土交换、 分散预交换, 其中稀土交换、 分散预交换的先后次序不限, 稀 土交换与分散预交换是连续进行, 之 fsj没有焙烧过程; 分散预交换是指将分子筛浆 液浓度调为固含量为 80〜400g/L, 加入 0.2重量%〜7重量%的分散剂进行分散预 交换, 交换温度为 0〜100°C, 交换时间为 0.1〜1.5小时; 分散预交换过程所述分 散剂选自田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯酰胺、 乙酸、 草酸、 己二酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 苯甲酸、 淀粉中的一种或多种; 稀土交换、 分散预交换中没有使用铵盐。
根据权利要求 1所述的超稳稀土 Y型分子筛, 其特征在于分散预交换过程所述分散 剂选自田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯酰胺、 乙酸、 草酸、 已二酸、 甲酸、 盐 酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 苯甲酸、 淀粉中两种或两种以上。
根据权利要求 7中所述的超稳稀土 Y型分子筛的制备方法,其特征在于分散预交换 时, 分散剂加入量为 0.2重量%〜5重量%; 交换温度为 60〜95°C。
一种权利要求 1所述的超稳稀土 Y型分子筛的制备方法, 其特征在于以 NaY分子 筛为原料, 经过稀土交换、 分散预交换, 分子筛浆液经过滤、 水洗和第一次焙烧, 获得"一交一焙"稀土钠 Y分子筛, 其中稀土交换、 分散预交换的先后次序不限; 再 将"一交一焙"稀土钠 Y分子筛经过铵盐交换降钠、 第二次焙烧, 从而获得超稳稀土 Y型分子筛。
根据权利要求 4中所述的超稳稀土 Y型分子筛的制备方法, 其特征在于 NaY分子 筛硅铝比大于 4.0, 结晶度大于 70%。
根据权利要求 4中所述的超稳稀土 Y型分子筛的制备方法,其特征在于稀土交换时, 其 RE203/Y沸石质量比为 0.005〜0.25;交换温度为 0〜100°C ;交换 pH值为 2.5〜 6.0, 交换时间为 0.1〜2小时。
根据权利要求 6中所述的超稳稀土 Y型分子筛的制备方法,其特征在于稀土交换时, 其 RE203/Y沸石质量比为 0.01〜0.20; 交换温度为 60〜95°C ; 交换 pH值为 3.5〜 5.5, 交换时间为 0.3〜1.5小时。
根据权利要求 4中所述的超稳稀土 Y型分子筛的制备方法,其特征在于第一次焙烧 条件为 350°C〜700°C、 0〜100%水汽焙烧 0.3〜3.5小时。
根据权利要求 4中所述的超稳稀土 Y型分子筛的制备方法, 其特征在于"一交一焙" 超稳稀土钠 Υ分子筛的钹盐交换和第二次焙烧的方法是:将"一交一焙" 超稳稀土钠 Υ分子筛加入去离子水, 固含量调配为 100〜400g/L, NH4+/Y沸石质量比为 0.02〜 0.40, pH值为 2.5〜5.0, 在 60°C〜95°C下反应 0.3〜1.5小时后, 将分子筛浆液过 滤、 水洗, 将所得滤饼在 450°C〜700°C、 0〜100%水汽焙烧 0.3〜3.5小时。
根据权利要求 9中所述的超稳稀土 Y型分子筛的制备方法, 其特征在于"一交一焙" 超稳稀土钠 Y分子筛的铵盐交换的条件为: NH4 +/Y沸石质量比为 0.02〜0.30, pH 值为 3.0~4.5; 第二次焙烧的条件为: 滤饼在 45(TC〜700°C、 0〜100%水汽焙烧 0.5-2.5小时。
根据权利要求 4中所述的超稳稀土 Y型分子筛的制备方法,其特征在于稀土交换和 分散预交换的交换过程采用罐式交换、 带式交换和 /或滤饼交换。
根据权利要求 4中所述的超稳稀土丫型分子筛的制备方法,其特征在于在进行稀土 交换时, 在稀土总量不变的前提下, 将稀土化合物溶液分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换。
根据权利要求 4中所述的超稳稀土 Y型分子筛的制备方法,其特征在于在分散预交 换过程时, 将分散剂分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换。
根据权利要求 4中所述的超稳稀土 Y型分子筛的制备方法,其特征在于稀土交换或 分散预交换为多次交换时, 两类交换交叉进行。
根据权利要求 4中所述的超稳稀土 Y型分子筛的制备方法, 其特征在于 NaY分子 筛稀土交换和分散预交换之间, 分子筛浆液可以不用洗涤、过滤, 也可以进行洗涤、 过滤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12857338.3A EP2792641B1 (en) | 2011-12-15 | 2012-04-13 | Ultra-stable rare earth y-type molecular sieve and preparation method therefor |
US14/365,489 US9789475B2 (en) | 2011-12-15 | 2012-04-13 | Ultra-stable rare earth Y-type molecular sieve and preparation method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110420931.3A CN103159228B (zh) | 2011-12-15 | 2011-12-15 | 一种超稳稀土y型分子筛及其制备方法 |
CN201110420931.3 | 2011-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013086768A1 true WO2013086768A1 (zh) | 2013-06-20 |
Family
ID=48582809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/000509 WO2013086768A1 (zh) | 2011-12-15 | 2012-04-13 | 一种超稳稀土y型分子筛及其制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9789475B2 (zh) |
EP (1) | EP2792641B1 (zh) |
CN (1) | CN103159228B (zh) |
WO (1) | WO2013086768A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104383959B (zh) * | 2014-10-31 | 2016-08-24 | 哈尔滨工业大学 | 一种具有催化氧化活性的含钛介孔y型分子筛的制备方法及其应用 |
CN104923282B (zh) * | 2015-06-25 | 2017-08-15 | 湖北赛因化工有限公司 | 一种高稀土含量原位晶化催化剂的超稳化处理方法 |
CN106927483B (zh) * | 2015-12-29 | 2019-09-03 | 中国石油天然气股份有限公司 | 一种改性y型分子筛的制备方法 |
JP7037573B2 (ja) | 2017-02-21 | 2022-03-16 | 中国石油化工股▲ふん▼有限公司 | 改質y型分子篩、その生成方法、およびそれを含む触媒 |
CN108455625B (zh) * | 2017-02-21 | 2020-10-27 | 中国石油化工股份有限公司 | 一种高稳定性的改性y型分子筛及其制备方法 |
US10888848B2 (en) | 2017-02-22 | 2021-01-12 | China Petroleum & Chemical Corporation | Catalytic cracking catalyst and preparation thereof |
CN108097288A (zh) * | 2017-12-09 | 2018-06-01 | 北京惠尔三吉绿色化学科技有限公司 | 一种制备稀土y型分子筛的方法 |
CN110862095B (zh) * | 2018-08-28 | 2023-08-15 | 中国石油化工股份有限公司 | 一种稀土y型分子筛的制备方法 |
CN112707410B (zh) * | 2019-10-24 | 2022-08-12 | 中国石油化工股份有限公司 | 一种usy型分子筛及其制备方法和应用 |
GB2614266A (en) * | 2021-12-22 | 2023-07-05 | Pq Silicas Uk Ltd | Zeolite particles |
CN117228684A (zh) * | 2022-06-07 | 2023-12-15 | 中国石油天然气股份有限公司 | 一种y型分子筛的铵离子交换方法及装置 |
CN119819353A (zh) * | 2025-03-18 | 2025-04-15 | 潍坊正轩稀土催化材料有限公司 | 一种高稳定性原位晶化催化剂及其制备方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3595611A (en) | 1969-02-03 | 1971-07-27 | Grace W R & Co | Cation and thermal stabilization of faujasite-type zeolites |
US4218307A (en) | 1975-04-24 | 1980-08-19 | W. R. Grace & Co. | Hydrocarbon cracking catalyst |
JPS59168089A (ja) * | 1983-03-16 | 1984-09-21 | Res Assoc Residual Oil Process<Rarop> | 重質油の流動接触分解法 |
US4584287A (en) | 1981-12-04 | 1986-04-22 | Union Oil Company Of California | Rare earth-containing Y zeolite compositions |
US5340957A (en) | 1991-06-20 | 1994-08-23 | Union Oil Company Of California | Hydrocracking process using a reactivated catalyst |
WO2001012546A1 (en) * | 1999-08-11 | 2001-02-22 | Akzo Nobel N.V. | Molecular sieves of faujasite structure |
CN101147875A (zh) * | 2006-09-20 | 2008-03-26 | 中国石油化工股份有限公司 | 一种催化裂化催化剂 |
CN101284243A (zh) * | 2007-04-12 | 2008-10-15 | 中国石油化工股份有限公司 | 一种催化裂化催化剂 |
CN101285001A (zh) * | 2007-04-12 | 2008-10-15 | 中国石油化工股份有限公司 | 一种催化裂化催化剂 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1005405B (zh) | 1987-06-09 | 1989-10-11 | 中国石化总公司石油化工科学研究院 | 低稀土含量超稳y型分子筛的制备 |
CN1072030C (zh) | 1997-11-11 | 2001-10-03 | 中国石油化工总公司 | 含磷八面沸石烃类裂化催化剂及其制备方法 |
CN1075466C (zh) | 1997-12-16 | 2001-11-28 | 中国石油化工总公司 | 一种超稳y沸石的制备方法 |
CN1157465C (zh) * | 1999-11-17 | 2004-07-14 | 中国石油化工集团公司 | 一种多产轻质油的催化裂化催化剂及其制备 |
CN1108356C (zh) | 2000-10-26 | 2003-05-14 | 中国石油化工股份有限公司 | 一种高活性高中油性加氢裂化催化剂及其制备方法 |
CN1202007C (zh) | 2002-02-07 | 2005-05-18 | 中国石油天然气股份有限公司 | 一种稀土超稳y分子筛的制备方法 |
CN1215905C (zh) * | 2002-12-13 | 2005-08-24 | 中国石油天然气股份有限公司 | 一种超稳稀土y分子筛活性组分及其制备方法 |
CN1307098C (zh) | 2004-03-31 | 2007-03-28 | 中国石油化工股份有限公司 | 一种稀土超稳y型沸石的制备方法 |
CN1683474A (zh) | 2004-04-14 | 2005-10-19 | 中国石油天然气股份有限公司 | 一种多产柴油的催化裂化助催化剂及其制备方法 |
CN100344374C (zh) | 2004-08-13 | 2007-10-24 | 中国石油化工股份有限公司 | 一种稀土y分子筛及其制备方法 |
CN100357399C (zh) * | 2005-03-31 | 2007-12-26 | 中国石油化工股份有限公司 | 一种裂化催化剂的制备方法 |
CN100497175C (zh) | 2005-10-31 | 2009-06-10 | 中国石油化工股份有限公司 | 一种提高超稳y型沸石稀土含量的方法 |
CN101190416B (zh) | 2006-12-01 | 2011-06-15 | 石大卓越科技股份有限公司 | 一种催化裂化催化剂及其制备方法 |
CN101210187B (zh) | 2006-12-27 | 2011-09-14 | 中国石油化工股份有限公司 | 一种重油裂化催化剂的制备方法 |
CN101537366B (zh) * | 2008-03-19 | 2011-08-03 | 中国石油天然气股份有限公司 | 一种可改善结焦性能的改性分子筛 |
TW201029929A (en) | 2008-12-18 | 2010-08-16 | Grace W R & Co | Novel ultra stable zeolite Y and method for manufacturing the same |
CN101767027B (zh) | 2008-12-31 | 2012-08-29 | 中国石油化工股份有限公司 | 一种含超稳分子筛的裂化催化剂的制备方法 |
CN102029177B (zh) | 2009-09-28 | 2012-07-18 | 中国石油化工股份有限公司 | 一种裂化催化剂及其制备方法 |
CN102133542A (zh) | 2010-01-27 | 2011-07-27 | 华东理工大学 | 一种复合型催化裂化催化剂及其制备方法 |
-
2011
- 2011-12-15 CN CN201110420931.3A patent/CN103159228B/zh active Active
-
2012
- 2012-04-13 EP EP12857338.3A patent/EP2792641B1/en active Active
- 2012-04-13 US US14/365,489 patent/US9789475B2/en active Active
- 2012-04-13 WO PCT/CN2012/000509 patent/WO2013086768A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3595611A (en) | 1969-02-03 | 1971-07-27 | Grace W R & Co | Cation and thermal stabilization of faujasite-type zeolites |
US4218307A (en) | 1975-04-24 | 1980-08-19 | W. R. Grace & Co. | Hydrocarbon cracking catalyst |
US4584287A (en) | 1981-12-04 | 1986-04-22 | Union Oil Company Of California | Rare earth-containing Y zeolite compositions |
JPS59168089A (ja) * | 1983-03-16 | 1984-09-21 | Res Assoc Residual Oil Process<Rarop> | 重質油の流動接触分解法 |
US5340957A (en) | 1991-06-20 | 1994-08-23 | Union Oil Company Of California | Hydrocracking process using a reactivated catalyst |
WO2001012546A1 (en) * | 1999-08-11 | 2001-02-22 | Akzo Nobel N.V. | Molecular sieves of faujasite structure |
CN101147875A (zh) * | 2006-09-20 | 2008-03-26 | 中国石油化工股份有限公司 | 一种催化裂化催化剂 |
CN101284243A (zh) * | 2007-04-12 | 2008-10-15 | 中国石油化工股份有限公司 | 一种催化裂化催化剂 |
CN101285001A (zh) * | 2007-04-12 | 2008-10-15 | 中国石油化工股份有限公司 | 一种催化裂化催化剂 |
Also Published As
Publication number | Publication date |
---|---|
EP2792641A4 (en) | 2015-08-19 |
CN103159228B (zh) | 2016-07-13 |
CN103159228A (zh) | 2013-06-19 |
EP2792641B1 (en) | 2018-11-14 |
EP2792641A1 (en) | 2014-10-22 |
US9789475B2 (en) | 2017-10-17 |
US20150151284A1 (en) | 2015-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013086768A1 (zh) | 一种超稳稀土y型分子筛及其制备方法 | |
WO2013086765A1 (zh) | 一种镁改性超稳稀土y型分子筛及其制备方法 | |
JP5996667B2 (ja) | 高軽質収率の重質油接触分解触媒およびその製造方法 | |
CN103157507B (zh) | 一种重油催化裂化催化剂及其制备方法 | |
CN104556120B (zh) | 一种金属改性y型分子筛的制备方法 | |
CN103508467B (zh) | 一种稀土y分子筛及其制备方法 | |
JP6054520B2 (ja) | リン含有超安定化希土類y型分子篩及び製造方法 | |
TWI554604B (zh) | Catalytic cracking catalyst comprising modified Y zeolite and preparation method thereof | |
CN103447063A (zh) | 重油高效转化催化裂化催化剂及其制备方法 | |
JP7437412B2 (ja) | 接触分解触媒およびその調製方法 | |
CN105366690B (zh) | 一种具有晶内多级孔的y型沸石及其制备方法与应用 | |
CN101722021A (zh) | 一种含稀土的y型分子筛的制备方法 | |
CN103657711B (zh) | 一种催化裂化催化剂及其制备方法 | |
CN104607255A (zh) | 低l酸高b酸催化裂化催化剂及其制备方法 | |
CN106140255B (zh) | 一种改性y型分子筛及其制备和应用 | |
WO2020035016A1 (zh) | 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用 | |
CN106145152B (zh) | 改性y沸石及其制备方法和应用 | |
CN116265107B (zh) | 一种多产柴油催化裂化催化剂的制备方法 | |
CN114433252B (zh) | 一种催化裂化催化剂及其制备方法 | |
CN103506148A (zh) | 一种降低焦炭产率并多产柴油的催化裂化催化剂 | |
CN114433216B (zh) | 催化裂解催化剂及其应用 | |
CN112744839B (zh) | Y型分子筛及其制备方法 | |
CN109704362B (zh) | 一种zsm-48分子筛及其制备方法和应用 | |
CN110833858A (zh) | 改性y型分子筛及其制备方法 | |
CN110833849A (zh) | 改性y型分子筛及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12857338 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012857338 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14365489 Country of ref document: US |