WO2013086766A1 - 一种高轻收重油催化裂化催化剂及其制备方法 - Google Patents

一种高轻收重油催化裂化催化剂及其制备方法 Download PDF

Info

Publication number
WO2013086766A1
WO2013086766A1 PCT/CN2012/000507 CN2012000507W WO2013086766A1 WO 2013086766 A1 WO2013086766 A1 WO 2013086766A1 CN 2012000507 W CN2012000507 W CN 2012000507W WO 2013086766 A1 WO2013086766 A1 WO 2013086766A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange
rare earth
molecular sieve
magnesium
weight
Prior art date
Application number
PCT/CN2012/000507
Other languages
English (en)
French (fr)
Inventor
高雄厚
张海涛
段宏昌
李荻
李雪礼
谭争国
黄校亮
蔡进军
郑云锋
张晨曦
曹庚振
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to SG11201404087VA priority Critical patent/SG11201404087VA/en
Priority to CA2862131A priority patent/CA2862131C/en
Priority to US14/364,652 priority patent/US9889439B2/en
Priority to JP2014546273A priority patent/JP5996667B2/ja
Priority to AU2012351265A priority patent/AU2012351265B2/en
Publication of WO2013086766A1 publication Critical patent/WO2013086766A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles

Definitions

  • the invention relates to a high light weight oil catalytic cracking catalyst capable of high heavy oil conversion capacity and a preparation method thereof, and more particularly to a high-light recovery catalytic cracking catalyst suitable for blending residual oil and a preparation method thereof.
  • Catalytic cracking unit is an important secondary processing method for crude oil. Its comprehensive product distribution, especially the high value-added light oil yield determines the economic benefits of the refinery. In recent years, the FCC catalyst is required as the heavy oil product tends to become heavier. It has stronger heavy oil conversion capacity and higher light oil yield. As a key active component in determining the selectivity of heavy oil cracking catalysts, high-product selectivity and high activity stability of Y-type molecular sieves have been the core technical issues in the field of catalysis.
  • Patent CN1683474A describes a preparation method for improving the target product diesel yield cocatalyst, which is characterized by in-situ crystallization of 900 or more calcined kaolin into Y-type zeolite promoter, followed by exchange of magnesium, rare earth and/or ammonium salts. The catalyst is thus obtained to obtain a high diesel yield, and the method does not describe the stability.
  • Patent CN1217231A describes a preparation method for improving the target product diesel oil yield phosphorus-containing faujasite catalyst, which is characterized by containing or not containing rare earth, and Na 2 0 is less than 5 weight%.
  • the faujasite is uniformly mixed with the aqueous solution of the phosphorus-containing compound, allowed to stand for 0-8 hours, dried, and calcined to obtain a phosphorus-containing faujasite, and then a semi-synthesis process is used to prepare a catalyst for obtaining a high diesel yield, and the method is also Stability is explained.
  • the more consistent viewpoint is to make the rare earth ions locate the sodalite cage as much as possible in the rare earth modification process of the molecular sieve, thereby inhibiting the dealuminization of the molecular sieve skeleton during the water vapor aging process, and improving the structural stability and activity stability of the molecular sieve framework.
  • Patent ZL200410058089.3 introduces a preparation method of rare earth modified Y type molecular sieve, which is to adjust the pH value of the system to 8 ⁇ 11 by using lye after the end of the rare earth exchange reaction, and then carry out a conventional subsequent treatment process according to the method.
  • the prepared molecular sieve rare earth ions are all located in Xiaocang (sodium soda cage); the reaction performance of the molecular sieve in patent ZL200410058089.3 is introduced in ZL200410058090.6.
  • the catalyst reaction results in this patent indicate that the rare earth ions are located in the sodalite cage. Improve the structural stability and activity stability of the molecular sieve, which is manifested in the conversion of heavy oil from the catalyst The ability is significantly improved, but the catalyst selectivity of the catalyst is poor.
  • the Y-type molecular sieve modification method is described in the U.S. Patent No. 5,340,957 and U.S. Patent No. 4,584,287, which is based on the use of NaY molecular sieves as raw materials, exchange modification with rare earth and/or VDI elements, and then hydrothermal treatment to obtain high
  • the stability of the ultra-stable rare earth Y-type molecular sieve, 3 ⁇ 4 method does not explain the rare earth ion localization and grain dispersion.
  • Chinese patent ZL97122039.5 describes a preparation method of ultra-stable Y zeolite, which comprises contacting a Y-type zeolite with an acid solution and a solution containing ammonium ions, and performing high-temperature steam treatment.
  • the acid is used in an amount of 1.5 to 6 moles of hydrogen ion per mole of the framework aluminum, the acid solution concentration is 0.1 to 5 equivalents per liter, and the temperature at which the Y-type zeolite is contacted with the acid solution is 5 to 100 ° C, and the contact time is 0.5 to 72 hours.
  • the weight ratio of the Y-type zeolite to the ammonium ion is 2 to 20.
  • the modification method involved in the patent requires the addition of an ammonium ion-containing solution for the purpose of reducing the sodium oxide content in the molecular sieve or reducing the damage of the molecular gas structure by the acid gas during the calcination process, but the technique has the following technical defects: 1) Preparation The process adds a large amount of hinge ions, and the ammonium ions finally enter the atmosphere or sewage, increasing the ammonia nitrogen pollution and pollution control costs; 2) The patented method can not effectively solve the problem of molecular sieve particle agglomeration, and the particle agglomeration reduces the specific surface and pore volume of the molecular sieve.
  • the patent also mentions that the Y-type zeolite can be used simultaneously with or after the contact with the ammonium ion-containing solution.
  • the ion exchange method introduces rare earth ions. During the exchange process, the ammonium ions compete with the rare earth ions. The ammonium ions preferentially occupy the rare earth ion sites, increase the resistance of the rare earth ions to enter the molecular sieve cage, and reduce the rare earth ions. Utilization rate.
  • Chinese patent ZL02103909.7 describes a preparation method of rare earth-containing ultra-stable Y molecular sieve, which is prepared by subjecting NaY molecular sieve to one-time roasting once, and is characterized in that NaY molecular sieve is placed in ammonium ion solution at 25 ⁇ Chemical dealuminization treatment at 100 ° C, oxalic acid and / or oxalate in the chemical dealumination complexing agent, treatment time 0.5 ⁇ 5 hours, then adding rare earth solution, stirring, to produce rare earth precipitate containing rare earth oxalate, by It is filtered, washed with water to form a filter cake, and then hydrothermally treated to obtain a molecular sieve product.
  • the molecular sieve prepared by the method has certain anti-vanadium pollution ability, its activity stability and cracking activity are low, and the development trend of heavy oil quality and inferior quality of the raw material oil cannot be satisfied.
  • This is mainly related to the positional distribution of rare earth ions in the molecular sieve super cage and sodalite cage during molecular sieve modification.
  • the method clarifies that the rare earth ions exist in the molecular sieve system in two forms, that is, some rare earth ions enter the sodalite cage in the form of ions, and the other rare earth ions are rare earth oxides (the precursor is rare earth oxalate, which is converted into oxidation by subsequent calcination).
  • the rare earth is dispersed on the surface of the molecular sieve, which reduces the stable supporting effect of the rare earth ions on the molecular sieve structure. At the same time, there is a large amount of ammonia nitrogen pollution in the method, and the added oxalic acid and or oxalate are more harmful to the environment and human body. .
  • Chinese Patent No. 200510114495.1 describes a method for increasing the rare earth content of ultra-stable Y-type zeolite by using an ultra-stable Y-type zeolite and an acid solution having a concentration of 0.01 to 2 N at a liquid-solid ratio of 4 to 20 at a ratio of 20 to 100. °C temperature
  • the mixture is thoroughly mixed under the range of 10 to 300 minutes, washed, filtered, and then rare earth ion exchange is carried out by adding a rare earth salt solution, followed by washing, filtering, and drying to obtain a rare earth super-stable Y-type zeolite.
  • the invention uses a Y-type molecular sieve which has been supercooled by water vapor as a raw material, and undergoes secondary exchange and secondary calcination chemical modification, and does not involve the study of molecular sieve particle dispersibility.
  • Chinese patent CN200410029875.0 introduces a preparation method of rare earth ultra-stable Y-type zeolite, which is characterized in that firstly, NaY molecular sieve is ion-exchanged with an inorganic cerium salt solution, and then subjected to water vapor ultra-stable treatment to obtain "one-to-one baking".
  • the present invention adopts a rare earth ion precise positioning technology to prepare a ruthenium molecular sieve with high activity stability and structural stability, and is modified by magnesium element to regulate it. It has a suitable acidity to control the proportion of different reactions in the cracking process and increase the yield of light oil.
  • the object of the present invention is to provide a high-light heavy oil high-efficiency conversion catalytic cracking catalyst and a preparation method thereof, the catalyst is characterized by strong heavy oil conversion ability, high light oil yield and moderate coke selectivity.
  • the invention provides a high-light weight oil high-efficiency conversion catalytic cracking catalyst, which is characterized in that the catalyst composition contains 2 ⁇ 50% by weight of magnesium modified ultra-stable rare earth cerium type molecular sieve, 0.5 ⁇ 30% by weight of one or several other Molecular sieve, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high temperature resistant inorganic oxide and 0.01 to 12.5% by weight of oxidized rare earth, wherein the magnesium modified ultra-stable rare earth cerium type molecular sieve refers to magnesium modified ultra-stable rare earth cerium
  • the molecular sieve contains 0.2 ⁇ 5 wt% of magnesium oxide, 1 ⁇ 20 wt% of rare earth oxide, sodium oxide not more than 1.2 wt%, crystallinity 46 ⁇ 63%, unit cell parameter 2.454 nm ⁇ 2.471 nm; magnesium modified super
  • the preparation process of stable rare earth Y-type molecular sieve comprises dispersion pre-exchange, rare earth exchange and magnesium salt exchange modification, where
  • the powder is subjected to dispersion pre-exchange, the exchange temperature is 0-100 Torr, and the exchange time is 0.1-1.5 hours; the dispersion pre-exchange process is selected from the group consisting of phthalocyanine powder, boric acid, urea, ethanol, polyacrylamide, acetic acid, oxalic acid, One or more of diacid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid, tartaric acid, benzoic acid, starch; no rare earth salt used in rare earth exchange and dispersion pre-exchange.
  • the invention also provides a preparation method of a heavy oil catalytic cracking catalyst:
  • (1) Preparation of magnesium-modified ultra-stable rare earth Y-type molecular sieve The NaY molecular sieve (preferably having a silicon-aluminum ratio greater than 4.0 and a knot degree greater than 70%) is used as a raw material. After rare earth exchange and dispersion pre-exchange, the molecular sieve slurry is filtered. , washing with water and roasting for the first time, obtaining "one-and-one-baked" rare earth sodium Y molecular sieve, wherein the order of rare earth exchange and dispersion pre-exchange is not limited; then the "one-and-one-baked" rare earth sodium Y molecular sieve is exchanged by ammonium salt.
  • the magnesium salt exchange modification can be carried out either in the second calcination f3 ⁇ 4- or after the second calcination, or simultaneously before and after the second calcination;
  • the molecular sieve slurry can be washed without washing. , filtration, washing and filtration.
  • the RE 2 03/Y zeolite (mass) is preferably 0.005 to 0.25, preferably 0.01 to 0.20; the exchange temperature is 0 to 100 ° C, preferably 60 to 95 ° C; 2.5 ⁇ 6.0, preferably 3.5 ⁇ 5.5, the exchange time is 0.1 ⁇ 2 hours, preferably 0.3 ⁇ 1.5 hours; When dispersing pre-exchange, the dispersant is added in an amount of 0.2% by weight to 7% by weight, preferably 0.2% by weight. % ⁇ 5 ⁇ %; exchange temperature is 0 ⁇ 10 (TC, optimally 60 ⁇ 95 °C; exchange time is 0.1 ⁇ 1.5 hours.
  • the modified molecular sieve slurry is filtered, washed with water to obtain filter cake, and the obtained filter cake Flash drying to make the moisture content of 30% ⁇ 50%, and finally roasting, the calcination conditions can be used under common conditions, such as 35 (TC ⁇ 700 ° C, 0 ⁇ 100% water vapor roasting 0.3 ⁇ 3.5 hours, preferably at 450T : ⁇ 650 ° C, 15 ⁇ 100% water vapour roasting 0.5 ⁇ 2.5 hours, that is, "one Jiaoyi baking"'ultra-stable rare earth sodium Y molecular sieve.
  • the second exchange and the second calcination in the present invention are the ammonium salt exchange sodium reduction and ultra-stable processes which are familiar in the industry, and the present invention is not limited thereto.
  • the "one-and-one-baked" rare earth sodium Y molecular sieve may be firstly modified by ammonium salt exchange and sodium reduction, followed by or without filtering water washing, followed by magnesium salt exchange modification, second baking, or "one After the exchange of the rare earth sodium Y molecular sieve by the ammonium salt exchange sodium reduction and the second calcination, the "two cross two baking" ultra-stable rare earth Y type molecular sieve is used as the raw material and then the magnesium salt exchange modification is carried out, followed by or not.
  • Mg-REUSY molecular sieve also known as magnesium modified ultra-stable rare earth Y-type molecular sieve.
  • the magnesium salt exchange modification process may be a magnesium salt exchange modification method familiar in the industry, such as Yes: Add "--one baking" ultra-stable rare earth sodium cerium molecular sieve to deionized water, the solid content is adjusted to 100 ⁇ 400g/L, NH /Y zeolite (mass) is 0.02 ⁇ 0.40, preferably 0.02 ⁇ 0.30; Mg The 2+ /Y zeolite (mass) is 0.002 to 0.08, preferably 0.002 to 0.04; the pH is 2.5 to 5.0, preferably 3.0 to 4.5, and the reaction is carried out at 60 to 95 ° C for 0.3 to 1.5 hours.
  • Yes Add "--one baking" ultra-stable rare earth sodium cerium molecular sieve to deionized water, the solid content is adjusted to 100 ⁇ 400g/L, NH /Y zeolite (mass) is 0.02 ⁇ 0.40, preferably 0.02 ⁇ 0.30; Mg The 2+ /Y zeolite (mass) is 0.002
  • the molecular sieve slurry is filtered and washed with water, and the obtained filter cake is calcined at 450 ° C to 700 ° C, 0 to 100% water vapor for 0.3 to 3.5 hours, preferably 0.5 to 2.5 hours, to finally obtain the magnesium modified super provided by the present invention.
  • Stable rare earth Y molecular sieve is
  • the strontium salt exchange modification process may also be: adding "one-to-one baking" ultra-stable rare earth sodium cerium molecular sieve to deionized water, the solid content is adjusted to 100 ⁇ 400g/L, and the Mg 2+ /Y zeolite (mass) is 0.002 ⁇ 0.08, preferably 0.002 to 0.04; pH value of 2.5 to 5.0, preferably 3.0 to 4.5, after reacting at 60 ° C to 95 ° C for 0.3 to 1.5 hours, filtering or washing the molecular sieve slurry, or not Filtered and washed with water; then modified by ammonium salt to reduce sodium, the solid content is adjusted to 100 ⁇ 400g/L, NH 4 + /Y zeolite (mass) is 0.02 ⁇ 0.40, preferably 0.02-0.30; pH is 2.5 ⁇ 5.0 Preferably, it is 3.0 to 4.5, and after reacting at 60 ° C to 95 ° C for 0.3 to 1.5 hours, the molecular sieve slurry is filtered
  • the magnesium salt exchange modification process may also be: adding "one-to-one baking" ultra-stable rare earth sodium Y molecular sieve to deionized water, the solid content is adjusted to 100 ⁇ 400g/L, and the NH 4 +/Y zeolite (mass) is 0.02 ⁇ 0.40, preferably 0.02 ⁇ 0.30; pH 2.5 ⁇ 5.0, preferably 3.0 ⁇ 4.5, after reacting at 60 ° C ⁇ 95 ° C for 0.3 ⁇ 1.5 hours, filtering the molecular sieve slurry, washing with water, or not Filtered with water; then modified by magnesium, Mg 2+ Y zeolite (mass) is 0.002 ⁇ 0.08, preferably 0.002 ⁇ 0.04; pH is 2.5 ⁇ 5.0, preferably 3.0 ⁇ 4.5, at 60 °C ⁇ 95 After reacting at ° C for 0.3 to 1.5 hours, the molecular sieve slurry is filtered and washed with water, and the obtained filter cake is calcined at 450 ° C to 70 (TC, 0 to 100% water
  • the magnesium salt exchange modification process may also be: adding "one-to-one baking" ultra-stable rare earth sodium Y molecular sieve to deionized water, the solid content is adjusted to 100 ⁇ 400g/L, and the NH/Y zeolite (mass) is 0.02 ⁇ 0.40. Preferably, it is 0.02 to 0.30; the pH is 2.5 to 5.0, preferably 3.0 to 4.5, and after reacting at 60 to 95 ° C for 0.3 to 1.5 hours, the molecular sieve slurry is filtered and washed with water, and the obtained filter cake is 450.
  • the rare earth Y molecular sieve is added with deionized water, the solid content is adjusted to 100 ⁇ 400g/L, the Mg 2+ Y zeolite (mass) is 0.002 ⁇ 0.08, preferably 0.002 ⁇ 0.04; the pH is 2.5 ⁇ 5.0, preferably 3.0 ⁇ 4.5, after reacting at 60 ° C to 95 ° C for 0.3 to 1.5 hours, the molecular sieve slurry is filtered, washed with water, or washed without filtering, thereby obtaining the magnesium-modified ultra-stable rare earth cerium type molecular sieve provided by the present invention.
  • rare earth exchange and dispersion pre-exchange The exchange process can be carried out by tank exchange, belt exchange and/or filter cake exchange; in the case of rare earth exchange, it can be carried out in the following manner, that is, the rare earth compound solution can be divided into several parts under the constant total amount of rare earth , tank exchange, belt exchange and / or filter cake exchange, that is, multiple exchanges.
  • the dispersant in the process of dispersing the pre-exchange process, can be divided into several parts under the premise of the total amount of dispersant, for tank exchange, belt exchange and/or filter cake exchange; rare earth exchange and dispersion pre-pretreatment When switching to multiple exchanges, the two types of exchanges can be crossed.
  • the rare earth compound of the present invention is a rare earth chloride or a rare earth nitrate or a rare earth sulfate, preferably a rare earth chloride or a rare earth nitrate.
  • the rare earth of the present invention may be a cerium-rich or cerium-rich rare earth, or may be a pure cerium or a pure cerium rare earth.
  • the magnesium salt of the present invention may be magnesium chloride or magnesium nitrate or magnesium sulfate, preferably magnesium chloride or magnesium nitrate.
  • the dispersing agent in the dispersion pre-exchange process of the present invention is selected from the group consisting of phthalocyanine powder, boric acid, urea, ethanol, polyacrylamide, acetic acid, oxalic acid, adipic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid.
  • phthalocyanine powder boric acid, urea, ethanol, polyacrylamide, acetic acid, oxalic acid, adipic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid.
  • tartaric acid, benzoic acid, and starch preferably two or more.
  • the other molecular sieves in the catalyst composition of the present invention are one or more selected from the group consisting of Y-type zeolite and L-zeolite.
  • the clay according to the present invention is one or more selected from the group consisting of kaolin, halloysite, montmorillonite, sepiolite, perlite, etc.; said high temperature resistant inorganic oxide is one or more selected from the group consisting of A1 2 0 3, Si0 2, Si0 2 -Al 2 0 3, A1P0 4, its precursor comprising a silica-alumina gel, silica sol, alumina sol, silica-alumina composite sol, boehmite and pseudoboehmite.
  • the spraying conditions of the present invention are conventional operating conditions for preparing a cracking catalyst, and the present invention is not limited thereto; the post-treatment process is the same as the prior art, and includes catalyst calcination, water washing, drying, etc., wherein the roasting is preferably a spray microsphere.
  • the sample is calcined at 200 ° C ⁇ 700 ° C, preferably 300 ° C ⁇ 650 ° C, time 0. 05 ⁇ 4 hours, preferably 0. 1 ⁇ 3. 5 hours; water washing conditions are best: water / catalyst weight is 0 ⁇ 5. 3 ⁇ 0. 5 ⁇ 35, The washing temperature is 20 ° C ⁇ 10 (TC, time is 0. 1 ⁇ 0. 3 hours.
  • NaY molecular sieve NaY-1 (silicon to aluminum ratio 4.8, crystallinity 92%), NaY-2 (silicon to aluminum ratio 4.1, crystallinity)
  • Ultra-stable one-to-one baking molecular sieve sample Crystallinity 60%, sodium oxide 4.3m%, produced by Lanzhou Petrochemical Company Catalyst Factory.
  • Rare earth solution rare earth chloride (rare earth oxide 277.5 g / liter), rare earth nitrate (rare earth oxide 252 g / liter), All are industrial products, taken from the catalyst factory of Lanzhou Petrochemical Company.
  • ffl cyanine powder, boric acid, urea, ethanol, polyacrylamide, oxalic acid, adipic acid, acetic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid, tartaric acid, starch, magnesium chloride, magnesium nitrate are all chemically pure; Ammonium chloride, cerium nitrate, barium sulfate, ammonium oxalate are industrial products.
  • Pseudo-boehmite (36.2% reduction), kaolin (16.4% reduction), halloysite (21.4% reduction), montmorillonite (15.8% reduction), perlite (17.6% reduction) , solid; aluminum sol, containing alumina 23.0% by weight; silica sol, containing silica 4.5% by weight, are all industrial qualified products.
  • the system was adjusted to pH 3.6, heated to 90 ° C, exchanged for 1.2 hours, then filtered, washed, and the cake was calcined at 20% water vapor and 60 CTC for 0.5 hour to obtain a "two-baked-baked" rare earth super-stable.
  • the band exchange conditions were as follows: The rare earth solution was heated to 88 ° C, the exchange pH was 4.7, the rare earth nitrate was added in a RE 2 03/Y zeolite (mass) of 0.04, and the belt filter vacuum was 0.03; the resulting filter cake was then flash dried to make it The moisture content is 30% ⁇ 50%, and finally calcined at 80% water vapor and 53CTC for 1.5 hours to obtain "one-to-one baking" ultra-stable rare earth sodium Y"-crossing one baking" ultra-stable rare earth sodium strontium.
  • modified molecular sieve C-1 After drying at 15 CTC for 3 hours, it was calcined at 60% water vapor and 620 °C for 2 hours to obtain a "two-two-baked" rare earth super-stable enthalpy, which was designated as modified molecular sieve C-1.
  • modified molecular sieve C-1 In a reaction kettle heated with a water bath, 4.804 liters of water, 1125 g of halloysite, 825 g of pseudoboehmite, and 51.4 ml of hydrochloric acid were added and mixed uniformly, and stirred for 1 hour, and then 456 g of modified molecular sieve C-1 was sequentially added. 903 g of USY, uniformly mixed, and slowly added 1224 g of silica sol to form a gel.
  • Example 4 After spray molding, the obtained microspheres were calcined at 600 ° C for 0.3 hours. 2 kg of calcined microspheres were taken, 15 kg of deionized water was added, and the mixture was washed at 80 ° C for 30 minutes, and dried by filtration to obtain a cracking catalyst prepared by the present invention, which was designated as C.
  • Example 4
  • the rare earth nitrate is added in a RE 2 03/Y zeolite (mass) of 0.12, and the belt filter has a vacuum of 0.05; then the obtained filter cake is flash dried to a moisture content of 30% to 50%, and finally at 100% water vapor. It was calcined at 580 Torr for 2 hours to obtain "one-and-one-baked" ultra-stable rare earth sodium strontium. In a reaction kettle with a heating jacket, 500 g (dry basis) and deionized water of "one-and-one-baked" ultra-stable rare earth sodium Y molecular sieve were added to prepare a slurry having a solid content of 150 g/L, and 160 g of ammonium sulfate was added.
  • the method for preparing REUSY molecular sieve is similar to the method shown in Example 2 except that polyacrylamide and salicylic acid are not added, and the other ultra-stable rare earth Y type molecular sieve number is E-1, and the obtained catalyst number is E. Comparative example 2
  • the comparative example uses the molecular sieve preparation method described in CN200510114495.1 to examine the reaction performance of the molecular sieve, and the catalyst preparation process is the same as in the second embodiment.
  • This comparative example uses the molecular sieve preparation method described in CN97122039.5, and the catalyst preparation process is the same as in Example 3.
  • deionized water and 3000 g (dry basis) of NaY-1 molecular sieve were added to prepare a slurry having a solid content of 90 g/L, and the mixture was heated to 80 ° C with stirring, and 59 g of hydrochloric acid was added thereto, and the temperature was adjusted.
  • the comparative molecular sieve sample was designated as G-1.
  • the belt exchange conditions were as follows: Raise the rare earth nitrate solution to At 88 ° C, the exchange pH is 4.7, the rare earth nitrate is added in a RE 2 0 3 /Y zeolite (mass) of 0.04, and the belt filter has a vacuum of 0.03; then the obtained filter cake is flash dried to have a moisture content of 30% ⁇ 50%, finally calcined at 80% water vapor and 530 Torr for 1.5 hours, and obtained "one-and-one-baked" ultra-stable rare earth sodium Y"-cross-baked” ultra-stable rare earth sodium strontium.
  • the strip exchange conditions were as follows: The temperature was raised to 88 °C, the exchange pH was 4.7, the rare earth nitrate was added in a RE 2 ⁇ 3/Y zeolite (mass) of 0.04, and the belt filter vacuum was 0.03. The resulting filter cake was then flash dried to make it moisture. The content is 30% ⁇ 50%, and finally calcined at 80% water vapor and 53CTC for 1.5 hours to obtain "one-and-one-baked" ultra-stable rare earth sodium Y"-cross-baked” ultra-stable rare earth sodium Y.
  • the belt exchange conditions were as follows: The rare earth citrate solution was heated to 88 V, the exchange pH was 4.7, the rare earth nitrate was added in an amount of RE 2 03/Y zeolite (mass) of 0.04, and the belt filter vacuum was 0.03; the resulting filter cake was then flash dried. The moisture content is 30% ⁇ 50%, and finally calcined at 80% water vapor and 53CTC for 1.5 hours to obtain "one-to-one baking" ultra-stable rare earth sodium Y"-cross-baking" ultra-stable rare earth sodium strontium.
  • Micro-reaction activity The sample was pretreated at 80 (TC, 100% water vapor for 4 hours.
  • the reaction material was Dagang light diesel oil, reaction temperature was 460 ° C, reaction time was 70 seconds, catalyst loading was 5.0 g, ratio of solvent to oil 3.2, the total conversion rate as the micro-reaction activity.
  • ACE heavy microreactor The reaction temperature is 530 ° C, the ratio of solvent to oil is 5, and the raw material oil is 30% vacuum residue of Xinjiang oil blending.
  • the physicochemical properties of the ultra-stable rare earth Y type molecular sieve obtained in the examples and comparative examples of the present invention are shown in Table 1.
  • the analysis results show that: Compared with the comparative example, the new molecular sieve has the characteristics of good structural stability and small particle size.
  • the catalyst prepared by the method of the present invention has excellent heavy oil conversion ability and coke selectivity, and the total liquid yield and light oil yield are significantly higher than that of the comparative catalyst.
  • Table 4 shows the evaluation results of the catalyst B riser. Compared with the comparative catalyst G, the total liquid recovery of the catalyst of the present invention is increased by 1.03 percentage points, and the light oil yield is increased by 0.95 percentage points, and the gasoline property is equivalent.
  • One of the main active components of the novel heavy oil catalyst of the present invention is a high cracking active stability magnesium modified rare earth super stable Y type molecular sieve, and the molecular sieve is predispersed by using a dispersing agent to disperse the NaY molecular sieve in the rare earth modification preparation process.
  • the degree of agglomeration between the molecular sieve particles is reduced, the surface of the molecular sieve is more contacted with the rare earth ions, the resistance of the rare earth ions in the exchange process is reduced, the rare earth ions are more exchanged into the molecular sieve cage, and migrated in the subsequent steam roasting process.
  • the structural stability and activity stability of the molecular sieve are improved.
  • the rare earth ions are located in the molecular sieve sodalite cage.
  • the ultra-cage and surface have no rare earth ions, which reduces the acid strength and density at the position, reduces the biofocus rate of the active site, and better solves the heavy oil conversion capacity and coke of the catalyst. Selective contradiction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种高轻收重油催化裂化催化剂及制备方法,催化剂中含2〜50重量%的镁改性超稳稀土Y型分子筛,0.5〜30重量%的一种或几种其它分子筛、0.5〜70重量%的粘土、1.0〜65重量%的耐高温无机氧化物和0.01〜12.5%重量的氧化稀土。镁改性超稳稀土Y型分子筛是以NaY分子筛为原料,经过稀土交换、分散预交换、镁盐交换改性,铵盐交换降钠,"二交二焙"获得镁改性超稳稀土Y型分子筛的。本发明提供催化剂具有重油转化能力强、轻质油收率高的特点。

Description

一种高轻收重汕催化裂化催化剂及其制各方法 技术领域
本发明涉及一种高重油转化能力的高轻收重油催化裂化催化剂及其制备方法,更具体 地, 是一种适用于掺炼渣油高轻收催化裂化催化剂及其制备方法。
冃 -5? ^不
催化裂化装置作为原油重要的二次加工手段,其综合产品分布,尤其是高附加值轻质 油品收率决定着炼厂的经济效益, 近年随着原料油重质化趋势加剧, 要求 FCC催化剂具 有更强的重油转化能力和更高的轻质油收率。 作为决定重油裂化催化剂反应选择性的关键 活性组分, 高目的产品选择性和高活性稳定性的 Y型分子筛一直是催化领域研究的核心技 术课题。
为了追求高附加值轻质油收率, 提高目的产品选择性, 国内外一致采用镁、 磷等元素 对其改性, 调控其具有适宜的酸性, 从而控制裂化过程不同反应的比例, 减少轻质油的进 一步裂化, 提高轻质油收率。
专利 CN1683474A 中介绍了提高目的产品柴油收率助催化剂的制备方法, 该方法所 述是以 900以上焙烧高岭土原位晶化成 Y型沸石助催化剂, 之后采用镁、 稀土和 /或铵盐 进行交换改性, 从而获得高柴油收率的助催化剂, 该方法并未对稳定性进行说明。
专利 CN1217231A中介绍了提高目的产品柴油收率含磷八面沸石催化剂的制备方法, 该方法所述是以含或不含稀土、 Na20低于 5重 °/。的八面沸石与含磷化合物的水溶液混合 均匀, 静置 0-8小时, 干燥, 焙烧, 获得含磷八面沸石, 之后采用半合成工艺制备获得高 柴油收率的催化剂, 该方法也未对稳定性进行说明。
围绕如何提高 Y型分子筛的裂化活性和活性稳定性, 国内外相关研究机构进行了大 量的研究工作。 目前较为一致的观点是在分子筛稀土改性过程中使稀土离子尽可能更多的 定位方钠石笼, 从而抑制水汽老化过程中分子筛骨架脱铝, 提高分子筛骨架结构稳定性和 活性稳定性。专利 ZL200410058089.3介绍了一种稀土改性 Y型分子筛制备方法, 该方法 是在稀土交换反应结束后采用碱液将体系 pH值调至 8〜11, 之后再进行常规后续处理过 程,按照该方法制备的分子筛稀土离子全部定位于小笼(方钠石笼);在 ZL200410058090.6 中介绍了专利 ZL200410058089.3中分子筛的反应性能, 该专利中催化剂反应结果表明, 稀土离子定位于方钠石笼提高了分子筛结构稳定性和活性稳定性, 表现在催化剂重油转化 能力得到明显改善, 但是¾催化剂焦炭选择性较差。
美国专利 (US5340957、 US4584287 ) 中介绍了 Y型分子筛改性方法, 该方法所述 是以 NaY分子筛为原料, 采用稀土和 /或 VDI族元素进行交换改性, 之后再进行水热处理, 从而获得高稳定性超稳稀土 Y型分子筛, ¾方法并未说明稀土离子定位和晶粒分散状况。
中国专利 ZL97122039.5中介绍了一种超稳 Y沸石的制备方法, 该方法包括将一种 Y 型沸石, 与一种酸溶液和一种含铵离子的溶液接触, 并进行高温水蒸汽处理, 所述酸的用 量为每摩尔骨架铝 1.5〜6摩尔氢离子、 酸溶液浓度 0.1〜5当量 /升, Y型沸石与酸溶液接 触的温度为 5〜100°C, 接触时间 0.5〜72小时, Y型沸石与铵离子的重量比为 2〜20。 该 专利涉及的改性方法中需加入含铵离子溶液, 其目的是降低分子筛中的氧化钠含量或是减 少焙烧过程中酸性气体对分子筛结构的破坏, 但是该技术存在以下技术缺陷: 1 ) 制备过 程加入大量的铰离子, 含铵离子最终进入大气或是污水中, 增加氨氮污染和治污成本; 2) 该专利方法不能有效解决分子筛颗粒团聚问题, 颗粒团聚降低了分子筛的比表面和孔体 积, 增加了分子筛交换过程的孔道阻力, 使改性元素难以准确定位、 定量于分子筛笼内; 3) 同时该专利还提及 Y型沸石与含铵离子溶液接触的同时或是之后, 还可以采用离子交 换的方式引入稀土离子, 在该交换过程中, 铵离子与稀土离子存在竞争反应, 铵离子会优 先占据稀土离子位置, 增加了稀土离子交换进入分子筛笼内的阻力, 同时降低了稀土离子 的利用率。
中国专利 ZL02103909.7中介绍了一种含稀土超稳 Y分子筛制备方法, 该方法是将 NaY分子筛经一次交换一次焙烧后制得, 其特征在于将 NaY分子筛置于铵离子溶液中, 于 25〜100°C进行化学脱铝处理, 化学脱铝络合剂中含有草酸和 /或草酸盐, 处理时间 0.5〜5小时, 然后加入稀土溶液, 搅拌, 使生成包含草酸稀土的稀土沉淀物, 经过滤、 水 洗成为滤饼, 再进行水热处理, 制得分子筛产品。 该方法制备的分子筛虽具有一定的抗钒 污染能力, 但是其活性稳定性和裂化活性较低, 不能满足原料油重质化、 劣质化的发展趋 势。 这主要是与分子筛改性过程中的稀土离子在分子筛超笼和方钠石笼的位置分布有关。 该方法明确了稀土离子是以两种形态存在于分子筛体系中, 即部分稀土以离子形态进入方 钠石笼, 另一部分稀土离子是以氧化稀土 (其前身物为草酸稀土, 后续焙烧转化为氧化稀 土) 独立相分散于分子筛表面, 这降低了稀土离子对分子筛结构的稳定支撑作用; 同时该 方法中也存在大量的氨氮污染问题, 所加的草酸和或草酸盐对环境和人体毒害较大。
中国专利 200510114495.1中介绍了一种提高超稳 Y型沸石稀土含量的方法, 该方法 是将超稳 Y型沸石和浓度为 0.01〜2N的酸溶液以液固比 4〜20的比例在 20〜100°C的温 度范围下充分混合, 处理 10〜300分钟后洗^、 过滤, 再加入稀土盐溶液进行稀土离子交 换, 交换后洗涤、 过滤、 千燥, 得到稀土超稳 Y型沸石。 ¾发明以经水汽超稳焙烧的 Y型 分子筛为原料,对其进行二次交换和二次焙烧化学修饰,并未涉及分子筛颗粒分散性研究。
中国专利 CN200410029875.0介绍了一种稀土超稳 Y型沸石的制备方法, 其特征在 于该方法首先将 NaY 分子筛用无机钹盐溶液进行离子交换, 之后进行水汽超稳处理获得 "一交一焙"产品; 将 "一交一焙"产品再加入一种由稀土盐和柠檬酸组成的混合溶液或 者一种由无机铵盐、 稀土盐和柠檬酸组成的混合溶液, 在一定温度下进行交换反应, 反应 结束后将分子筛浆液过滤、 水洗, 最后在空气或 100%水蒸气气氛下于 450〜750°C焙烧 0.5〜 4 小时。 该技术中稀土改性是以 "一交一焙"产品为原料进行第二次交换改性, 由 于分子筛经过 "一交一焙"后晶胞收缩, 孔道内部碎片铝堵塞孔道, 增加了稀土离子交换 阻力, 使稀土离子难以准确定位于方钠石笼。
为了提高 Υ型分子筛活性稳定性的同时提高目的产品选择性,本发明采用稀土离子精 确定位技术制备了高活性稳定性和结构稳定性的 Υ型分子筛, 并采用镁元素对其改性, 调 控其具有适宜的酸性, 从而控制裂化过程不同反应的比例, 提高轻质油收率。
发明内容
本发明的目的在于提供一种高轻收重油高效转化催化裂化催化剂及其制备方法, 该催 化剂特点是重油转化能力强, 轻质油收率高, 焦炭选择性适中。
本发明提供一种高轻收重油高效转化催化裂化催化剂, 其特征在于催化剂组成中含有 2〜50重量%的镁改性超稳稀土 Υ型分子筛、 0.5〜30重量%的一种或几种其它分子筛、 0.5〜 70重量%的粘土、 1.0〜65重量%的耐高温无机氧化物和 0.01〜12.5%重量的氧化稀土, 其 中镁改性超稳稀土 Υ型分子筛是指镁改性超稳稀土 Υ型分子筛中含氧化镁 0.2〜5重%, 氧化稀土 1〜20重%, 氧化钠不大于 1 .2重%, 结晶度 46〜63%, 晶胞参数 2.454nm〜 2.471 nm; 镁改性超稳稀土 Y型分子筛的制备过程包含了分散预交换、 稀土交换和镁盐交 换改性, 其中镁盐交换改性在稀土交换和分散预交换之后进行; 稀土交换、 分散预交换的 先后次序不限, 稀土交换与分散预交换是连续进行, 之间没有焙烧过程; 分散预交换是指 将分子筛浆液浓度调为固含量为 80〜400g/L, 加入 0.2重量%〜7重量%的分散剂进行分 散预交换, 交换温度为 0〜100Ό, 交换时间为 0.1〜1.5小时; 分散预交换过程所述分散 剂选自田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯酰胺、 乙酸、 草酸、 已二酸、 甲酸、 盐酸、 硝 酸、 柠檬酸、 水杨酸、 酒石酸、 苯甲酸、 淀粉中的一种或多种; 稀土交换、 分散预交换中 没有使用钹盐。 本发明还提供了 -种 重油催化裂化催化剂的制备方法是:
(1)制备镁改性超稳稀土 Y型分子筛: 以 NaY分子筛(最好硅铝比大于 4.0, 结品度大 于 70%) 为原料, 经过稀土交换、 分散预交换后, 分子筛浆液再经过滤、 水洗和第 一次焙烧, 获得"一交一焙"稀土钠 Y分子筛, 其中稀土交换、 分散预交换的先后次 序不限; 再将"一交一焙"稀土钠 Y分子筛经过铵盐交换降钠、镁盐交换改性和第二 次焙烧, 从而获得本发明提供的超稳稀土 Y型分子筛,其中镁盐与铵盐的加入次序 不进行限定, 第二次焙烧是在铵盐交换降钠后进行的, 镁盐交换改性既可以在第二 次焙烧 f¾-进行, 也可在第二次焙烧后进行, 还可在第二次焙烧前后同时进行;
(2)重油催化剂制备: 将镁改性超稳稀土 Y型上述分子筛组分、粘土和耐高温无机氧化 物的前驱物进行混合均质, 进行喷雾成型、 焙烧和水洗, 获得催化剂成品。
该发明中所述的重油催化裂化催化剂制备过程的歩骤 (1 ) 中, 即获得镁改性超稳稀 土 Y型分子筛时, NaY分子筛稀土交换和分散预交换之间, 分子筛浆液可以不经洗涤、过 滤, 也可以进行洗涤、 过滤。稀土交换时, 其 RE203/Y沸石(质量)最好为 0.005〜0.25, 最佳为 0.01〜0.20; 交换温度为 0〜100°C, 最佳为 60〜95°C ; 交换 pH值为 2.5〜6.0, 最佳为 3.5〜5.5, 交换时间为 0.1〜2小时, 最佳为 0.3〜1.5小时; 分散预交换时, 分散 剂加入量为0.2重量%〜7重量%, 最佳为 0.2重量%〜5重量%; 交换温度为 0〜10(TC, 最佳为 60〜95°C ; 交换时间为 0.1〜1.5小时。 改性后的分子筛浆液经过滤、 水洗获得滤 饼, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后焙烧, 焙烧条件可使用通用条 件, 如在 35(TC〜700°C、 0〜100%水汽焙烧 0.3〜3.5小时, 最好是在 450T:〜 650°C、 15〜100%水汽焙烧 0.5〜2.5小时,即得"一交一焙' '超稳稀土钠 Y分子筛。 "一交一焙"超稳 稀土钠 Y分子筛再经过第二次交换和第二次焙烧即获得"二交二焙"超稳稀土 Y型分子筛。
本发明中的第二次交换、 第二次焙烧是该行业内所熟悉的铵盐交换降钠和超稳化过 程,本发明对对此没有限制。可以是将"一交一焙"稀土钠 Y分子筛先经铵盐交换降钠改性, 之后进行或是不进行过滤水洗, 再进行镁盐交换改性、 第二次焙烧, 或是将 "一交一焙"稀 土钠 Y分子筛经过铵盐交换降钠和第二次焙烧之后, 以"二交二焙" 超稳稀土 Y型分子筛 为原料再进行镁盐交换改性, 之后进行或是不进行过滤水洗, 从而获得本发明提供获得分 子筛; 或是将镁盐分成两份, 分别以 "一交一焙"稀土钠 Y分子筛和"二交二焙"超稳稀土 Y 分子筛为原料进行镁盐交换改性, 最后获得 Mg-REUSY分子筛 (又称镁改性超稳稀土 Y 型分子筛)。
本发明中, 镁盐交换改性的工艺可以是该行业内所熟悉的镁盐交换改性方法, 如可以 是:将" - 交一焙" 超稳稀土钠丫分子筛加入去离子水,固含量调配为 100〜400g/L, NH /Y 沸石 (质量) 为 0.02〜0.40, 最好为 0.02〜0.30; Mg2+/Y沸石 (质量) 为 0.002〜0.08, 最好为 0.002〜0.04; pH值为 2.5〜5.0,最好为 3.0〜4.5,在 60°C〜95°C下反应 0.3〜1.5 小时后,将分子筛桨液过滤、水洗,将所得滤饼在 450°C〜700°C、 0〜100%水汽焙烧 0.3〜 3.5小时, 最好是 0.5〜2.5小时, 最终获得本发明提供的镁改性超稳稀土 Y型分子筛。
镔盐交换改性工艺还可以是: 将"一交一焙"超稳稀土钠丫分子筛加入去离子水, 固含 量调配为 100〜400g/L, Mg2+/Y沸石 (质量) 为 0.002〜0.08, 最好为 0.002〜0.04; pH 值为 2.5〜5.0, 最好为 3.0〜4.5, 在 60°C〜95°C下反应 0.3〜1.5小时后, 将分子筛浆液 过滤、水洗, 或是不经过过滤水洗; 再经铵盐交换降钠改性, 固含量调配为 100〜400g/L, NH4 +/Y沸石 (质量)为 0.02〜0.40,最好为 0.02-0.30; pH值为 2.5〜5.0,最好为 3.0〜 4.5, 在 60°C〜95°C下反应 0.3〜1.5 小时后, 将分子筛浆液过滤、 水洗, 将所得滤饼在 450°C〜700°C、 0〜100%水汽焙烧 0.3〜3.5小时, 最好是 0.5〜2.5小时, 从而获得本发 明提供的镁改性超稳稀土 Y型分子筛。
镁盐交换改性工艺还可以是: 将"一交一焙"超稳稀土钠 Y分子筛加入去离子水, 固含 量调配为 100〜400g/L, NH4+/Y沸石 (质量) 为 0.02〜0.40, 最好为 0.02〜0.30; pH值 为 2.5〜5.0, 最好为 3.0〜4.5, 在 60°C〜95°C下反应 0.3〜1.5小时后, 将分子筛浆液过 滤、 水洗, 或是不经过过滤水洗; 再经镁改性交换, Mg2+ Y沸石(质量)为 0.002〜0.08, 最好为 0.002〜0.04; pH值为 2.5〜5.0,最好为 3.0〜4.5,在 60°C〜95°C下反应 0.3〜1.5 小时后,将分子筛浆液过滤、水洗,将所得滤饼在 450°C〜70(TC、 0〜100%水汽焙烧 0.3〜 3.5小时, 最好是 0.5〜2.5小时, 从而获得本发明提供的镁改性超稳稀土丫型分子筛。
镁盐交换改性工艺还可以是: 将"一交一焙"超稳稀土钠 Y分子筛加入去离子水, 固含 量调配为 100〜400g/L, NH /Y沸石 (质量) 为 0.02〜0.40, 最好为 0.02〜0.30; pH值 为 2.5〜5.0, 最好为 3.0〜4.5, 在 60°C〜95°C下反应 0.3〜1.5小时后, 将分子筛浆液过 滤、水洗, 将所得滤饼在 450°C〜700°C、 0〜100%水汽焙烧 0.3〜3.5小时, 最好是 0.5〜 2.5小时, 从而获得 "两交两焙" 超稳稀土丫分子筛, 再将 "两交两焙"超稳稀土 Y分子 筛加入去离子水, 固含量调配为 100〜400g/L, Mg2+ Y沸石 (质量) 为 0.002〜0.08, 最 好为 0.002〜0.04; pH值为 2.5〜5.0, 最好为 3.0〜4.5, 在 60°C〜95°C下反应 0.3〜1.5 小时后, 将分子筛浆液过滤、 水洗, 或是不经过过滤水洗, 从而获得本发明提供的镁改性 超稳稀土丫型分子筛。
本发明中所述的超稳稀土 Y型分子筛 "一交一焙"过程中, 稀土交换和分散预交换的 交换过程可以采用罐式交换、 带式交换和 /或滤饼交换; 在进行稀土交换时, 可以按以下方 式进行, 即在稀土总量不变的 提下, 可以将稀土化合物溶液分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换, 即多次交换。 同样, 在分散预交换过程时, 可以在分散剂总量不 变的前提下, 可以将分散剂分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换; 稀土交 换和分散预交换为多次交换时, 两类交换可交叉进行。
本发明所述的稀土化合物为氯化稀土或硝酸稀土或硫酸稀土, 最好是氯化稀土或硝酸 稀土。
本发明所述的稀土可以是富镧或富铈稀土, 也可以是纯镧或纯铈稀土。
本发明所述的镁盐可以是氯化镁或硝酸镁或硫酸镁, 最好是氯化镁或硝酸镁。
本发明所述的分散预交换过程中所述分散剂选自田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯 酰胺、 乙酸、 草酸、 已二酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 苯甲酸、 淀 粉中的一种或多种, 最好是两种或两种以上。
本发明所述的催化剂组成中的其它分子筛为一种或一种以上选自 Y型沸石、 L沸石、
ZSM-5沸石、 β沸石、 磷酸铝沸石、 Ω沸石, 优选 Υ型沸石、 ZSM-5沸石、 β沸石, 或经过常 规物理或化学改性的上述沸石, 包括 HY、 USY、 REY、 REHY、 REUSY、 H-ZSM- 5、 Ηβ。
本发明所述的粘土为一种或一种以上选自高岭土、 埃洛石、 蒙脱土、 海泡石、 珍珠岩 等; 所说的耐高温无机氧化物为一种或一种以上选自 A1203、 Si02、 Si02-Al203、 A1P04, 其前驱物包括硅铝凝胶、 硅溶胶、 铝溶胶、 硅铝复合溶胶、 拟薄水铝石。
本发明所述的喷雾条件为常规的制备裂化催化剂的操作条件, 本发明不做任何限制; 后处理过程与现有技术相同, 包含催化剂焙烧、 水洗、 干燥等, 其中焙烧最好是喷雾微球 样品在 200°C~700°C下焙烧, 优选 300°C~650°C, 时间 0. 05~4小时, 优选 0. 1~3. 5小时; 水洗条件最好为: 水 /催化剂重量为 0. 5〜35, 水洗温度为 20°C〜10(TC, 时间为 0. 1〜0. 3 小时。
具体实施方式
实例中所用原料规格
1. NaY分子筛: NaY-1 (硅铝比 4.8, 结晶度 92%), NaY-2 (硅铝比 4.1, 结晶度
83%), 兰州石化公司催化剂厂生产。
2. 超稳一交一焙分子筛样品: 结晶度 60%, 氧化钠 4.3m%, 兰州石化公司催化剂厂 生产。
3. 稀土溶液: 氯化稀土(氧化稀土 277.5克 /升), 硝酸稀土(氧化稀土 252克 /升), 均为工业品, 采自兰州石化公司催化剂厂。
4. ffl菁粉、 硼酸、 尿素、 乙醇、 聚丙烯酰胺、 草酸、 已二酸、 乙酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 淀粉、 氯化镁、 硝酸镁均为化学纯; 氯化铵、 硝酸钹、 硫酸钹、 草酸铵, 均为工业品。
5. 拟薄水铝石 (灼减 36.2%)、 高岭土 (灼减 16.4% )、 埃洛石 (灼减 21.4%)、 蒙脱 土 (灼减 15.8% )、 珍珠岩 (灼减 17.6% ), 固体; 铝溶胶, 含氧化铝 23.0重%; 硅溶胶, 含氧化硅 24.5重%, 均为工业合格品。
6. RE丫、 REH丫、 US丫、 REUSY分子筛, 均为合格工业品, 兰州石化公司催化剂厂 生产; β沸石, 工业合格品, 抚顺石化公司生产; H-ZSM-5, 工业合格品, 上海复 旦大学生产。 实施例 1
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和去离子水, 调配 成固含量为 100g/L的浆液, 然后加入 180g柠檬酸进行分散预交换, 升温至 85°C, 交换 反应 0.5小时, 之后再加入 1.08升的氯化稀土, 调节体系 pH=4.5, 升温至 85°C, 交换反 应 1 小时, 之后过滤、 洗涤, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 40%水汽和 540Ό下焙烧 1.5小时,制得"一交一焙"超稳稀土钠 Y。在带有加热套的反应釜 中,加入"一交一焙"超稳稀土钠 Υ分子筛 500克(干基)和去离子水,制成固含量为 145g/L 的浆液, 加入 80g硫酸铵, 调节体系 pH=3.5, 升温到 90°C, 交换 1.2小时, 然后过滤、 洗涤,将滤饼打浆,制成固含量为 120g/L的浆液,加入 127g六水合氯化镁,升温到 90°C, 交换 0.8小时,然后过滤、洗涤,滤饼在 50%水汽和 650°C下焙烧 2小时,制得"二交二焙" 稀土超稳丫, 记做改性分子筛 A-1。
在带有水浴加热的反应釜中, 加入 4.326升水、 1038克高岭土、 971 克氧化铝以及 63.5毫升盐酸混合均匀,搅拌 1小时,然后依次加入 482克改性分子筛 A-1、63克 H- ZSM-5、 755克 REUSY, 混合均匀后缓慢加入 1500克铝溶胶进行成胶, 经过喷雾成型, 将所得微 球在 400Ό焙烧 0.5小时。取焙烧微球 2千克,加入 15千克去离子水在 60Ό洗涤 15分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 A。 实施例 2
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 360g/L的桨液, 加入 0.82升的硝酸稀土, 调节体系 pH=3.3, 升温 至 80°C, 交换反应 1.5小时, 之后过滤、 洗涤, 将所得滤饼放置反应釜中, 再加入 202g 聚丙烯酰胺和 30g的水杨酸,然后升温至 78°C进行分散交换,在搅拌下交换反应 0.5小时, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%,最后在 30%水汽和 630°C下焙烧 1.8小 时, 制得"一交一焙"稀土钠丫。在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分 子筛 500克(干基)和去离子水, 制成固含量为 370g/L的浆液, 加入 200g硫酸铵, 调节 体系 pH=3.6, 升温到 90°C, 交换 1.2小时, 然后过滤、 洗涤, 滤饼在 20%水汽和 60CTC 下焙烧 0.5小时, 制得"二交二焙"稀土超稳丫。 在带有加热套的反应釜中, 加入"二交二焙" 稀土超稳 Y分子筛 500克 (干基) 和一定量的去离子水, 制成固含量为 120g/L的浆液, 加入 42g六水合氯化镁, 升温到 90°C, 交换 0.8小时, 然后过滤、 洗涤、 喷雾干燥, 制得 本发明所述的镁改性稀土超稳 Y分子筛活性组分, 记做改性分子筛 B-1。
在带有水浴加热的反应釜中, 加入 4.603升水、 1031克高岭土、 976克拟薄水铝石以 及 90.8毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 352克改性分子筛 B-1、 129克 β 沸石、 806克 REHY, 混合均匀后缓慢加入 1304克铝溶胶进行成胶, 经过喷雾成型, 将 所得微球在 400°C焙烧 1.0小时。 取焙烧微球 2千克, 加入 20千克去离子水搅拌均匀, 在 35°C洗涤 40分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 B。 实施例 3
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 350g/L的浆液, 加入 42g柠檬酸和 28g田菁粉, 然后升温至 82°C, 在搅拌下交换反应 1.3小时, 反应结束后加入 0.56升硝酸稀土, 在 85Ό下交换反应 0.8 小时, 之后将分子筛浆液过滤, 进行带式交换, 带式交换条件为: 将硝酸稀土溶液升温至 88°C, 交换 pH值为 4.7, 硝酸稀土加入量为 RE203/Y沸石 (质量) 为 0.04, 带式滤机真 空度为 0.03; 之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 80%水汽和 53CTC下焙烧 1.5小时, 制得"一交一焙"超稳稀土钠 Y"—交一焙"超稳稀土钠丫。 在带有加 热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分子筛 500克 (干基) 和去离子水, 制成 固含量为 150g/L的浆液, 加入 100g硫酸铵, 调节体系 pH=4.0, 升温到 90°C, 交换 1小 时, 然后过滤、 洗涤, 将滤饼制成固含量为 120g/L的浆液, 加入 208g六水合硝酸镁, 升 温到 90Ό,交换 0.8小时,在 15CTC经过 3小时烘干后在 60%水汽和 620 °C下焙烧 2小时, 制得"二交二焙"稀土超稳丫, 记做改性分子筛 C-1。 在带有水浴加热的反应釜中, 加入 4.804升水、 1125克埃洛石、 825克拟薄水铝石 以及 51.4毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 456克改性分子筛 C-1和 903 克 USY,混合均匀后缓慢加入 1224克硅溶胶进行成胶,经过喷雾成型,将所得微球在 600 °C焙烧 0.3小时。 取焙烧微球 2千克, 加入 15千克去离子水, 在 80Ό洗涤 30分钟, 过 滤干燥即得本发明制备的裂化催化剂, 记做 C。 实施例 4
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 190g/L的浆液, 加入 78g尿素和 46g盐酸调节体系 pH值 =6.5, 然 后升温至 90°C, 在搅拌下交换反应 0.6小时, 之后将分子筛浆液过滤, 进行带式交换, 带 式交换条件为:将硝酸稀土溶液升温至 88°C,交换 pH值为 4.2,硝酸稀土加入量为 RE203/Y 沸石(质量)为 0.12, 带式滤机真空度为 0.05; 之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 100%水汽和 580Ό下焙烧 2小时, 制得"一交一焙"超稳稀土钠丫。在 带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分子筛 500克(干基)和去离子水, 制成固含量为 150g/L的浆液, 加入 160g硫酸铵, 调节体系 pH=4.0, 升温到 90°C, 交换 1小时, 然后过滤、 洗涤, 滤饼在 60%水汽和 620Ό下焙烧 2小时, 制得"二交二焙"稀土 超稳 Y。在带有加热套的反应釜中, 加入"二交二焙"稀土超稳 Υ分子筛 500克(干基)和 一定量的去离子水,制成固含量为 120g/L的浆液,加入 169g六水合氯化镁,升温到 90°C, 交换 0.8小时, 然后过滤、 洗涤、 喷雾干燥, 制得本发明所述的镁改性稀土超稳 Y分子筛 活性组分, 记做改性分子筛 D-1。
在带有水浴加热的反应釜中,加入 4.506升水、 1082克高岭土、 971克氧化铝以及 63.5 毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 1012克改性分子筛 D-l、 63克 ZSM-5沸 石、 306克 REUSY, 混合均匀后缓慢加入 1500克铝溶胶进行成胶, 经过喷雾成型, 将所 得微球在 400°C焙烧 0.5小时。 取焙烧微球 2千克, 加入 10千克去离子水, 在 40°C洗涤 20分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 D。 对比例 1
制备 REUSY分子筛的方法与实施例 2所示方法相似, 仅是不加入聚丙烯酰胺和水杨 酸, 其他与实施例 2相同, 所得超稳稀土 Y型分子筛编号为 E-1, 所得催化剂编号为 E。 对比例 2
本对比例使用 CN200510114495.1所述的分子筛制备方法, 考察该分子筛反应性能, 催化剂制备工艺同实施例 2。
取 3000g (干基) ώ兰州石化公司催化剂厂水热法生产的超稳一交一焙分子筛样品 ( Na20含量 1.4重量%、 RE2O3含量 8.6重量%、 品胞 2.468nm, 相对结晶度 62%), 加 入到 3升 2N草酸水溶液中搅拌使其混合均匀, 升温至 90〜100°C反应 1小时后, 过滤水 洗, 将所得滤饼至于 6升去离子水中, 并加入 1.46升的硝酸稀土溶液, 升温至 90〜95°C 下反应 1小时,然后过滤水洗,滤饼于 12CTC下烘干,即得该对比例分子筛样品,记为 F-1。
在带有水浴加热的反应釜中, 加入 4.620升水、 1024克高岭土、 971克拟薄水铝石以 及 90.8毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 338克改性分子筛 F-1、 129克 β 沸石、 806克 REHY, 混合均匀后缓慢加入 1304克铝溶胶进行成胶, 经过喷雾成型, 将 所得微球在 400°C焙烧 1.0小时。 取焙烧微球 2千克, 加入 20千克去离子水搅拌均匀, 在 35°C洗涤 40分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 F。 对比例 3
本对比例使用 CN97122039.5所述的分子筛制备方法, 催化剂制备工艺同实施例 3。 在带有加热套的反应釜中, 加入去离子水和 3000g (干基) NaY-1分子筛, 调配成固 含量为 90g/L的浆液, 搅拌升温至 80°C, 加入 59g的盐酸, 恒温 8小时, 加入 1.65升的 氯化稀土溶液和 1200g固体氯化铵, 搅拌 1小时, 过滤水洗至无氯离子被检出, 所得湿滤 饼 (水分含量 47%) 于 60CTC下焙烧 2小时, 即得该对比例分子筛样品, 记为 G-1。
在带有水浴加热的反应釜中, 加入 4.854升水、 1125克埃洛石、 825克拟薄水铝石 以及 51.4毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 406克改性分子筛 G-1和 903 克 US丫,混合均匀后缓慢加入 1224克硅溶胶进行成胶,经过喷雾成型,将所得微球在 600 °C焙烧 0.3小吋。 取焙烧微球 2千克, 加入 15千克去离子水, 在 80°C洗涤 30分钟, 过 滤干燥即得本发明制备的裂化催化剂, 记做 G。
实施例 5
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 350g/L的浆液, 加入 42g柠檬酸和 28g田菁粉, 然后升温至 82°C, 在搅拌下交换反应 1.3小时, 反应结束后加入 0.56升硝酸稀土, 在 85°C下交换反应 0.8 小时, 之后将分子筛浆液过滤, 进行带式交换, 带式交换条件为: 将硝酸稀土溶液升温至 88°C, 交换 pH值为 4.7, 硝酸稀土加入量为 RE203/Y沸石 (质量) 为 0.04, 带式滤机真 空度为 0.03; 之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 80%水汽和 530Ό下焙烧 1.5小时, 制得"一交一焙"超稳稀土钠 Y"—交一焙"超稳稀土钠丫。 在带有加 热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分子筛 500克 (干基) 和去离子水, 制成 固含量为 120g/L的浆液, 加入 208g六水合硝酸镁, 升温到 90°C, 交换 0.8小时, 然后 过滤、 洗涤, 将滤饼制成固含量为 150g/L的浆液, 加入 100g硫酸铵, 调节体系 pH=4.0, 升温到 90Ό, 交换 1小时, 在 150°C经过 3小时烘干后在 60%水汽和 62CTC下焙烧 2小 时, 制得"二交二焙"稀土超稳丫, 记做改性分子筛 H-1。
在带有水浴加热的反应釜中,加入 4.506升水、 1082克高岭土、 971克氧化铝以及 63.5 毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 1012克改性分子筛 D-l、 63克 ZSM-5沸 石、 306克 REUSY, 混合均勾后缓慢加入 1500克铝溶胶进行成胶, 经过喷雾成型, 将所 得微球在 40(TC焙烧 0.5小时。 取焙烧微球 2千克, 加入 10千克去离子水, 在 40°C洗涤 20分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 H。
实施例 6
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 350g/L的浆液, 加入 42g柠檬酸和 28g田菁粉, 然后升温至 82Γ, 在搅拌下交换反应 1.3小时, 反应结束后加入 0.56升硝酸稀土, 在 85Ό下交换反应 0.8 小时, 之后将分子筛浆液过滤, 进行带式交换, 带式交换条件为: 将硝酸稀土溶液升温至 88 °C , 交换 pH值为 4.7, 硝酸稀土加入量为 RE2〇3/Y沸石 (质量) 为 0.04, 带式滤机真 空度为 0.03; 之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 80%水汽和 53CTC下焙烧 1.5小时, 制得"一交一焙"超稳稀土钠 Y"—交一焙"超稳稀土钠 Y。 在带有加 热套的反应釜中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克 (干基) 和去离子水, 制成 固含量为 150g/L的浆液, 加入 100g硫酸铵和 208g六水合硝酸镁, 调节体系 pH=4.0, 升温到 90°C, 交换 1小时, 然后过滤、 洗涤, 在 150°C经过 3小时烘干后在 60%水汽和 62CTC下焙烧 2小时, 制得"二交二焙"稀土超稳 Y, 记做改性分子筛 1-1。
在带有水浴加热的反应釜中,加入 4.506升水、 1082克高岭土、 971克氧化铝以及 63.5 毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 1012克改性分子筛 D-l、 63克 ZSM-5沸 石、 306克 REUSY, 混合均勾后缓慢加入 1500克铝溶胶进行成胶, 经过喷雾成型, 将所 得微球在 400Ό焙烧 0.5小时。 取焙烧微球 2千克, 加入 10千克去离子水, 在 40°C洗涤 20分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 I。 实施例 7
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 350g/L的浆液, 加入 42g柠檬酸和 28g ffl菁粉, 然后升温至 82°C, 在搅拌下交换反应 1.3小时, 反应结束后加入 0.56升硝酸稀土, 在 85°C下交换反应 0.8 小时, 之后将分子筛浆液过滤, 进行带式交换, 带式交换条件为: 将艄酸稀土溶液升温至 88V , 交换 pH值为 4.7, 硝酸稀土加入量为 RE203/Y沸石 (质量) 为 0.04, 带式滤机真 空度为 0.03; 之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 80%水汽和 53CTC下焙烧 1.5小时, 制得"一交一焙"超稳稀土钠 Y"—交一焙"超稳稀土钠丫。 在带有加 热套的反应釜中, 加入"一交一焙"超稳稀土钠 Y分子筛 500克 (干基) 和去离子水, 制成 固含量为 150g/L的浆液, 加入 100g硫酸铵和 68g六水合硝酸镁, 调节体系 pH=4.0, 升 温到 90Ό,交换 1小时,然后过滤、洗涤,在 15CTC经过 3小时烘干后在 60%水汽和 62CTC 下焙烧 2小时, 制得"二交二焙"稀土超稳丫, 将"二交二焙" 稀土超稳 Y分子筛 500克(干 基)和一定量的去离子水, 制成固含量为 120g/L的浆液, 加入 140g六水合硝酸镁, 升温 到 9(TC, 交换 0.8小时, 然后过滤、 洗涤、 喷雾干燥, 制得本发明所述的镁改性稀土超稳 Y分子筛活性组分, 记做改性分子筛 J-1。
在带有水浴加热的反应釜中,加入 4.506升水、 1082克高岭土、 971克氧化铝以及 63.5 毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 1012克改性分子筛 D-l、 63克 ZSM-5沸 石、 306克 REUSY, 混合均匀后缓慢加入 1500克铝溶胶进行成胶, 经过喷雾成型, 将所 得微球在 400°C焙烧 0.5小时。 取焙烧微球 2千克, 加入 10千克去离子水, 在 40'C洗涤 20分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 J。
工业实用性
实例中所用的分析及评价方法。
1. 晶胞常数 (30): X-光衍射法。
2. 结晶度 (C/Co): X-光衍射法。
3. 硅铝比: X-光衍射法。
4. Na2O含量: 火焰光度法。
5. RE2O3含量: 比色法。
6. 微反活性: 样品预先在 80(TC、 100%水蒸气条件下处理 4小时。 反应原料为大港 轻柴油, 反应温度 460°C, 反应时间 70秒, 催化剂装量 5.0克, 剂油比 3.2, 以 总转化率作为微反活性。 7.ACE重汕微型反应器: 反应温度 530°C, 剂油比为 5, 原料油为新疆油掺炼 30%的 减压渣油。
将本发明实施例及对比例所得超稳稀土 Y型分子筛理化性质列于表 1。分析结果表明: 与对比例相比, 新型分子筛具有结构稳定性好、 颗粒粒度小的特点。
表 1 分子筛理化性质分析
项 分了 -笳 化稀十 化钠 化镁 晶胞 '数相对结晶 相对结晶 mM & 粒径分布 μπι m% m% m% nm 度 度保留率 'C D(v, 0.5) D(v, 0.9)
% %
A-1 10.05 0.91 2.31 2.467 54 72.1 1022 2.84 13.90
B-1 6.92 0.92 0.92 2.465 55 69.1 1020 2.73 13.69 实 C-1 8.70 0.82 3.41 2.466 54 71.3 1022 2.68 13.63 施 D-1 11.93 0.90 3.78 2.469 51 72.3 1026 2.92 15.84 例 H-1 8.69 0.80 2.65 2.464 55 71.7 1019 2.66 13.52
1-1 8.78 0.85 3.02 2.465 54 71.0 1020 2.69 13.71
J-1 8.72 0.78 3.47 2.466 53 71.5 1026 2.66 13.43 对 E-1 6.70 1.42 1.02 2.468 52 52.1 4.13 34.32 比 F-1 8.27 1.60 0 24.67 54 54.5
Figure imgf000015_0001
4.83 37.42 例 G-1 12.86 1.82 0 24.68 49 56.3 o
o 4.85 41.48 O C 实施例 1〜5和对比例制备的催化剂反应性能评价结果列于表 2中。
表 2 ACE重油微反评价结果
催化剂编号 A B C D J E H G 分子筛 A-1 B-1 C-1 D-1 J-1 E-1 F-1 G-1 干气 2.85 2.73 2.72 2.88 2.71 2.86 2.90 2.84 液化气 23.06 23.24 23.3 23.06 23.22 22.99 23.59 23.22 物料 汽油 53.73 53.38 53.43 53.65 53.40 53.26 52.84 53.22 平衡 柴油 9.89 10.12 10.21 9.93 10.37 10.01 9.69 9.99 m% 重油 3.52 3.64 3.76 3.55 3.81 3.96 3.94 4.11 焦炭 6.95 6.89 6.58 6.93 6.49 6.92 7.05 6.61 总计 100 100 100 100 100 100 100 100 转化率, m% 86.59 86.24 86.03 86.52 85.82 86.03 86.38 85.90 总液收, m% 86.68 86.74 86.94 86.64 86.99 86.26 86.11 86.44 轻收, m% 63.62 63.50 63.64 63.58 63.77 63.27 62.52 63.21
从 ACE重油微反评价结果可知, 与对比催化剂相比, 采用本发明方法制备的催化剂 具有优异的重油转化能力和焦炭选择性, 总液收和轻质油收率明显高于对比催化剂。 表 4 是催化剂 B提升管评价结果, 与对比催化剂 G相比, 本发明催化剂总液收提高 1.03个百 分点, 轻质油收率增加 0.95个百分点, 汽油性质相当。
表 4 催化剂提升管评价结果
Figure imgf000016_0001
本发明所述的新型重油催化剂的主活性组分之一是高裂化活性稳定性镁改性稀土超 稳 Y型分子筛, 该分子筛在稀土改性制备过程中采用分散剂将 NaY分子筛进行预分散, 降 低了分子筛颗粒间的团聚度, 使分子筛表面更多的与稀土离子接触, 降低了稀土离子在交 换过程的阻力, 使稀土离子更多的交换进入分子筛笼内, 并在后续水汽焙烧过程中迁移至 方钠石笼, 提高了分子筛的结构稳定性和活性稳定性。 采用镁元素对其改性, 调控其具有 适宜的酸性, 从而控制裂化过程不同反应的比例, 提高轻质油收率。 稀土离子定位于分子 筛方钠石笼, 超笼和表面没有稀土离子, 降低了该位置的酸性强度和密度, 减少了该活性 位的生焦机率, 较好地解决了催化剂的重油转化能力和焦炭选择性的矛盾。

Claims

权利要求
1. 一种重油催化裂化催化剂, 其特征在于催化剂组成中含冇 2〜50重量%的镁改性超 稳稀土 Y型分子筛、 0.5〜30重量。 /。的一种或儿种其它分子筛、 0.5〜70重量。 /。的粘 土、 1.0〜65重量%的耐高温无机氧化物和 0.01〜12.5%重量的氧化稀土, 其中镁改 性超稳稀土 Y型分子筛是指镁改性超稳稀土 Y型分子筛中含氧化镁 0.2〜5重%, 氧化稀土 1〜20 重%, 氧化钠不大于 1.2 重%, 结晶度 46〜63%, 晶胞参数 2.454nrr!〜 2.471 nm, 镁改性超稳稀土丫型分子筛的制备过程包含了稀土交换、 分 散预交换和镁盐交换改性, 其中镁盐交换改性在稀土交换和分散预交换之后进行; 稀土交换、 分散预交换的先后次序不限, 稀土交换与分散预交换是连续进行, 之间 没有焙烧过程; 分散预交换是指将分子筛浆液浓度调为固含量为 80〜400g/L, 加 入 0.2重量%〜7重量%的分散剂进行分散预交换, 交换温度为 0〜100Ό, 交换时 间为 0.1〜1.5小时; 分散预交换过程所述分散剂选自田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯酰胺、 乙酸、 草酸、 己二酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 苯甲酸、 淀粉中的一种或多种; 稀土交换、 分散预交换中没有使用铵盐。
2. 根据权利要求 1所述的催化剂,其特征在于其它分子筛选自 Υ型沸石、 L沸石、 ZSM - 5 沸石、 β沸石、 磷酸铝沸石、 Ω沸石, 或经过改性的上述沸石中的一种或多种。
3. 根据权利要求 1所述的催化剂, 其特征在于其它分子筛为 Υ型沸石、 ZSM-5沸石、 HY、 USY、 REY、 REHY、 REUSY、 H-ZSM-5、 β沸石中的一种或多种。
4. 根据权利要求 1所述的催化剂, 其特征在于粘土选自高岭土、 埃洛石、 蒙脱土、 海 泡石、 珍珠岩中的一种或多种。
5. 根据权利要求 1所述的催化剂, 其特征在于耐高温无机氧化物选自 A1203、 Si02、 Si02-Al203、 A1P04中的一种或多种。
6. 一种权利要求 1所述催化剂的制备方法, 其特征在于催化剂的制备过程包括:
( 1 ) 制备镁改性超稳稀土 Y型分子筛: 以 NaY分子筛为原料, 经过稀土交换、 分散预交换后, 分子筛浆液再经过滤、 水洗和第一次焙烧, 获得"一交一焙" 稀土钠 Y分子筛, 其中稀土交换、 分散预交换的先后次序不限; 再将"一交 一焙"稀土钠 Y分子筛经过铵盐交换降钠、 镁盐交换改性和第二次焙烧, 从 而获得镁改性超稳稀土 Y 型分子筛, 其中镁盐与铵盐的加入次序不进行限 定, 第二次焙烧是在铵盐交换降钠后进行的, 镁盐交换改性既可以在第二次 焙烧前进行, 也可在第二次焙烧后进行, 还可在第二次焙烧前后同时进行; ( 2 ) ¾油催化剂制备:将上述镁改性超稳稀上 Y型分亍筛、粘: h和耐高温无机氧 化物的 驱物进行混合均质,进行喷雾成型、焙烧和水洗,获得催化剂成品。
7. 根据权利要求 6所述的催化剂的制备方法, 其特征在于稀土交换时, 其 RE203/Y 沸石质量比为 0.005〜0.25; 交换温度为 0〜100°C ; 交换 pH值为 2.5〜6.0, 交换 时间为 0.1〜2小时。
8. 根据权利要求 6所述的催化剂的制备方法, 其特征在于镁盐交换改性时,镁加入量 为 0.2重量。 /。〜8重量%; 交换温度为 0〜100°C ; 交换时间为 0.3〜1 .5小时。
9. 根据权利要求 6所述的催化剂的制备方法, 其特征在于稀土交换时, 其 RE2〇3/Y 沸石质量比为 0.01〜0.20; 交换温度为 60〜95°C ; 交换 pH值为 3.5〜5.5, 交换 时间为 0.3〜1.5小时; 分散预交换时, 分散剂加入量为 0.2重量%〜5重量%; 交 换温度为 60〜95°C ;交换时间为 0.1〜1.5小时;镁盐交换改性时,镁加入量为 0.2 重量%〜8重量%; 交换温度为 60〜95°C ; 交换时间为 0.3〜1.5小时。
10. 根据权利要求 6 所述的催化剂的制备方法, 其特征在于稀土交换和分散预交换之 间, 分子筛浆液可以不经洗涤、 过滤, 也可以进行洗涤、 过滤。
11. 根据权利要求 6所述的催化剂的制备方法,其特征在于稀土交换或分散预交换的交 换过程采用罐式交换、 带式交换和 /或滤饼交换。
12. 根据权利要求 6所述的催化剂的制备方法,其特征在于在进行稀土交换时,将稀土 化合物溶液分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换, 即多次交换。
13. 根据权利要求 6所述的催化剂的制备方法, 其特征在于在分散预交换过程时,将分 散剂分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换, 即多次交换。
14. 根据权利要求 6所述的催化剂的制备方法,其特征在于稀土交换和分散预交换为多 次交换吋, 两类交换交叉进行。
15. 根据权利要求 6所述的催化剂的制备方法,其特征在于分子筛第一次焙烧的焙烧条 件为 350°C〜700°C、 0〜100%水汽焙烧 0.3〜3.5小时。
16. 根据权利要求 6所述的催化剂的制备方法,其特征在于耐高温无机氧化物的前驱物 选自硅铝凝胶、 硅溶胶、 铝溶胶、 硅铝复合溶胶、 拟薄水铝石。
17. 根据权利要求 13所述的催化剂制备方法, 其特征在于稀土化合物为氯化稀土或硝 酸稀土或硫酸稀土。
18. 根据权利要求 17所述的催化剂制备方法, 其特征在于稀土为富镧稀土、富铈稀土、 纯镧稀土或纯铈稀土。
19. 根 ¾权利 ¾求 6 所述的催化剂制^方法, K特征在铰盐为氯化镁或硝酸镁或硫酸 镁。
20. 根据权利要求 6所述的催化剂的制备方法, 其特征在于歩骤 (2 ) 中焙烧条件是将 喷雾微球在 200°C~700°C下焙烧, 时间为 0. 05-4小时。
21. 根据权利要求 20所述的催化剂的制备方法, 其特征在于歩骤(2)中焙烧条件是将 喷雾微球在 300°C~650°C下焙烧, 时间为 0. 1-3. 5小时。
22. 根据权利要求 6所述的催化剂的制备方法, 其特征在于歩骤 (2 ) 中水洗条件为: 水 /催化剂重量为 0. 5〜35, 水洗温度为 20X〜 100°C, 时间为 0. 1〜0. 3小时。
PCT/CN2012/000507 2011-12-15 2012-04-13 一种高轻收重油催化裂化催化剂及其制备方法 WO2013086766A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201404087VA SG11201404087VA (en) 2011-12-15 2012-04-13 High light received heavy oil catalytic cracking catalyst and preparation method therefor
CA2862131A CA2862131C (en) 2011-12-15 2012-04-13 High light received heavy oil catalytic cracking catalyst and preparation method therefor
US14/364,652 US9889439B2 (en) 2011-12-15 2012-04-13 High light received heavy oil catalytic cracking catalyst and preparation method therefor
JP2014546273A JP5996667B2 (ja) 2011-12-15 2012-04-13 高軽質収率の重質油接触分解触媒およびその製造方法
AU2012351265A AU2012351265B2 (en) 2011-12-15 2012-04-13 High light received heavy oil catalytic cracking catalyst and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110419856.9A CN103157506B (zh) 2011-12-15 2011-12-15 一种高轻收重油催化裂化催化剂及其制备方法
CN201110419856.9 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013086766A1 true WO2013086766A1 (zh) 2013-06-20

Family

ID=48581341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000507 WO2013086766A1 (zh) 2011-12-15 2012-04-13 一种高轻收重油催化裂化催化剂及其制备方法

Country Status (7)

Country Link
US (1) US9889439B2 (zh)
JP (1) JP5996667B2 (zh)
CN (1) CN103157506B (zh)
AU (1) AU2012351265B2 (zh)
CA (1) CA2862131C (zh)
SG (1) SG11201404087VA (zh)
WO (1) WO2013086766A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888840A (zh) * 2015-01-14 2015-09-09 任丘市华北石油科林环保有限公司 一种高骨架硅铝比原位晶化fcc重油转化助剂的制备方法
US9889439B2 (en) 2011-12-15 2018-02-13 Petrochina Company Limited High light received heavy oil catalytic cracking catalyst and preparation method therefor
CN110193375A (zh) * 2018-02-26 2019-09-03 中国石油天然气股份有限公司 一种镁盐沉淀改性y型分子筛的制备方法
CN110652998A (zh) * 2018-06-29 2020-01-07 中国石油化工股份有限公司 一种多产异构烃的高稳定性改性y型分子筛及其制备方法
CN111744528A (zh) * 2019-03-27 2020-10-09 中国石油化工股份有限公司 一种多金属修饰的复合材料的制备方法
CN112717985A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种滤渣及其制备方法以及一种催化裂化催化剂及其制备方法
CN114132977A (zh) * 2021-11-30 2022-03-04 华中科技大学 一种天然水体净化剂及其制备方法和应用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394365B (zh) * 2013-07-16 2015-08-05 常州大学 一种用于苯酚对位烷基化过程催化剂的制备方法
CN104923282B (zh) * 2015-06-25 2017-08-15 湖北赛因化工有限公司 一种高稀土含量原位晶化催化剂的超稳化处理方法
RU2770421C2 (ru) 2017-02-21 2022-04-18 Чайна Петролеум Энд Кемикал Корпорейшен Модифицированное магнием молекулярное сито типа y, его получение и содержащий его катализатор
CN109304212B (zh) * 2017-07-28 2021-09-28 中国石油天然气股份有限公司 一种催化裂化催化剂及其制备方法
CN109304209B (zh) * 2017-07-28 2021-07-30 中国石油天然气股份有限公司 一种多产汽油催化裂化催化剂及其制备方法
CN109304206B (zh) * 2017-07-28 2021-08-31 中国石油天然气股份有限公司 一种裂化焦化蜡油多产汽油的催化裂化催化剂制备方法
CN109304210B (zh) * 2017-07-28 2022-02-01 中国石油天然气股份有限公司 一种裂化焦化蜡油多产柴油的催化裂化催化剂制备方法
CN109304205B (zh) * 2017-07-28 2021-11-02 中国石油天然气股份有限公司 一种提高焦炭选择性的催化裂化催化剂及其制备方法
CN108097288A (zh) * 2017-12-09 2018-06-01 北京惠尔三吉绿色化学科技有限公司 一种制备稀土y型分子筛的方法
JP7371033B2 (ja) * 2018-06-29 2023-10-30 中国石油化工股▲ふん▼有限公司 改質y型分子篩、それを含む接触分解触媒、その製造及びその適用
CN111686790A (zh) * 2019-03-12 2020-09-22 中国石油天然气股份有限公司 一种低液化气产率催化裂化汽油辛烷值助剂及其制备方法
CN111744536A (zh) * 2019-03-27 2020-10-09 中国石油化工股份有限公司 一种含稀土和镁的催化材料及其制备方法
CN112108173B (zh) * 2019-06-21 2023-06-30 中国石油天然气股份有限公司 一种降低柴油收率的催化剂制备方法
CN112808297B (zh) * 2019-11-18 2023-07-14 中国石油化工股份有限公司 固体酸烷基化催化剂及其制备方法
CN112808298B (zh) * 2019-11-18 2023-07-11 中国石油化工股份有限公司 含多级孔y型分子筛的催化剂及其制备方法
CN111686786B (zh) * 2020-06-05 2023-05-16 中国石油天然气集团有限公司 酸性和孔结构可调控的杂原子改性y型沸石及其制备方法
CN115055203A (zh) * 2022-07-20 2022-09-16 成都蓉澄石化科技有限公司 一种重油催化裂化催化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101190416A (zh) * 2006-12-01 2008-06-04 石大卓越科技股份有限公司 一种催化裂化催化剂及其制备方法
CN102029177A (zh) * 2009-09-28 2011-04-27 中国石油化工股份有限公司 一种裂化催化剂及其制备方法
CN102133542A (zh) * 2010-01-27 2011-07-27 华东理工大学 一种复合型催化裂化催化剂及其制备方法
CN101210187B (zh) * 2006-12-27 2011-09-14 中国石油化工股份有限公司 一种重油裂化催化剂的制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584287A (en) 1981-12-04 1986-04-22 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US5006497A (en) 1988-12-30 1991-04-09 Mobil Oil Corporation Multi component catalyst and a process for catalytic cracking of heavy hydrocarbon feed to lighter products
US5206194A (en) 1991-06-20 1993-04-27 Union Oil Company Of America Process for reactivating a deactivated crystalline molecular sieve group VIII metal catalyst
JP3949778B2 (ja) 1996-07-01 2007-07-25 出光興産株式会社 接触分解触媒
CN1072030C (zh) 1997-11-11 2001-10-03 中国石油化工总公司 含磷八面沸石烃类裂化催化剂及其制备方法
CN1075466C (zh) 1997-12-16 2001-11-28 中国石油化工总公司 一种超稳y沸石的制备方法
CN1112247C (zh) 1999-11-17 2003-06-25 中国石化集团齐鲁石油化工公司 含小晶粒y型分子筛的催化剂的制备
CN1202007C (zh) 2002-02-07 2005-05-18 中国石油天然气股份有限公司 一种稀土超稳y分子筛的制备方法
CN1230496C (zh) 2002-10-28 2005-12-07 中国石油化工股份有限公司 一种含稀土y型沸石的石油烃裂化催化剂及其制备方法
US7125821B2 (en) * 2003-09-05 2006-10-24 Exxonmobil Chemical Patents Inc. Low metal content catalyst compositions and processes for making and using same
CN1307098C (zh) 2004-03-31 2007-03-28 中国石油化工股份有限公司 一种稀土超稳y型沸石的制备方法
CN1683474A (zh) 2004-04-14 2005-10-19 中国石油天然气股份有限公司 一种多产柴油的催化裂化助催化剂及其制备方法
EP1609840A1 (en) * 2004-06-25 2005-12-28 Indian Oil Corporation Limited Process for conversion of hydrocarbons to saturated lpg and high octane gasoline
CN1322928C (zh) 2004-08-13 2007-06-27 中国石油化工股份有限公司 一种降低催化裂化汽油烯烃含量的裂化催化剂
CN100344374C (zh) * 2004-08-13 2007-10-24 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法
CN100357399C (zh) 2005-03-31 2007-12-26 中国石油化工股份有限公司 一种裂化催化剂的制备方法
CN100497175C (zh) 2005-10-31 2009-06-10 中国石油化工股份有限公司 一种提高超稳y型沸石稀土含量的方法
CN101088613B (zh) * 2006-06-14 2010-08-25 中国石油化工股份有限公司 一种rey分子筛的制备方法
CN101284243B (zh) * 2007-04-12 2011-04-20 中国石油化工股份有限公司 一种催化裂化催化剂
CN101676027B (zh) * 2008-09-19 2012-10-10 中国石油化工股份有限公司 一种石油烃裂化催化剂
CN102125870B (zh) 2010-12-15 2013-01-16 卓润生 一种重质油催化裂化催化剂的制备方法
CN103157506B (zh) 2011-12-15 2015-09-23 中国石油天然气股份有限公司 一种高轻收重油催化裂化催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101190416A (zh) * 2006-12-01 2008-06-04 石大卓越科技股份有限公司 一种催化裂化催化剂及其制备方法
CN101210187B (zh) * 2006-12-27 2011-09-14 中国石油化工股份有限公司 一种重油裂化催化剂的制备方法
CN102029177A (zh) * 2009-09-28 2011-04-27 中国石油化工股份有限公司 一种裂化催化剂及其制备方法
CN102133542A (zh) * 2010-01-27 2011-07-27 华东理工大学 一种复合型催化裂化催化剂及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9889439B2 (en) 2011-12-15 2018-02-13 Petrochina Company Limited High light received heavy oil catalytic cracking catalyst and preparation method therefor
CN104888840A (zh) * 2015-01-14 2015-09-09 任丘市华北石油科林环保有限公司 一种高骨架硅铝比原位晶化fcc重油转化助剂的制备方法
CN110193375A (zh) * 2018-02-26 2019-09-03 中国石油天然气股份有限公司 一种镁盐沉淀改性y型分子筛的制备方法
CN110652998A (zh) * 2018-06-29 2020-01-07 中国石油化工股份有限公司 一种多产异构烃的高稳定性改性y型分子筛及其制备方法
CN110652998B (zh) * 2018-06-29 2021-01-08 中国石油化工股份有限公司 一种多产异构烃的高稳定性改性y型分子筛及其制备方法
CN111744528A (zh) * 2019-03-27 2020-10-09 中国石油化工股份有限公司 一种多金属修饰的复合材料的制备方法
CN111744528B (zh) * 2019-03-27 2023-04-07 中国石油化工股份有限公司 一种多金属修饰的复合材料的制备方法
CN112717985A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种滤渣及其制备方法以及一种催化裂化催化剂及其制备方法
CN112717985B (zh) * 2019-10-28 2023-04-07 中国石油化工股份有限公司 一种滤渣及其制备方法以及一种催化裂化催化剂及其制备方法
CN114132977A (zh) * 2021-11-30 2022-03-04 华中科技大学 一种天然水体净化剂及其制备方法和应用

Also Published As

Publication number Publication date
CA2862131C (en) 2018-03-13
CN103157506A (zh) 2013-06-19
JP5996667B2 (ja) 2016-09-21
AU2012351265B2 (en) 2016-03-31
SG11201404087VA (en) 2014-10-30
CA2862131A1 (en) 2013-06-20
US20150011378A1 (en) 2015-01-08
CN103157506B (zh) 2015-09-23
US9889439B2 (en) 2018-02-13
JP2015502252A (ja) 2015-01-22
AU2012351265A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2013086766A1 (zh) 一种高轻收重油催化裂化催化剂及其制备方法
JP5921771B2 (ja) 重油高効率転化接触分解触媒およびその製造方法
WO2013086767A1 (zh) 一种重油催化裂化催化剂及其制备方法
US9840422B2 (en) Magnesium modified ultra-stable rare earth Y-type molecular sieve and preparation method therefor
JP6232058B2 (ja) 修飾されたy型ゼオライトを含有する接触分解の触媒およびその調製方法
WO2013177727A1 (zh) 一种含磷的超稳稀土y型分子筛及制备方法
WO2013086768A1 (zh) 一种超稳稀土y型分子筛及其制备方法
JP2022527909A (ja) 接触分解触媒およびその調製方法
CN110833850B (zh) 催化裂化催化剂及其制备方法和应用
TWI816857B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
TWI812773B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN110833854B (zh) 催化裂化催化剂及其制备方法和应用
WO2020035014A1 (zh) 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用
TW202237268A (zh) 一種催化裂解催化劑、其製備方法和製備系統
JP2023037954A (ja) 流動接触分解触媒および流動接触分解触媒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2862131

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012351265

Country of ref document: AU

Date of ref document: 20120413

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14364652

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12857997

Country of ref document: EP

Kind code of ref document: A1