WO2013084890A1 - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
WO2013084890A1
WO2013084890A1 PCT/JP2012/081388 JP2012081388W WO2013084890A1 WO 2013084890 A1 WO2013084890 A1 WO 2013084890A1 JP 2012081388 W JP2012081388 W JP 2012081388W WO 2013084890 A1 WO2013084890 A1 WO 2013084890A1
Authority
WO
WIPO (PCT)
Prior art keywords
regeneration
temperature
warning
abnormality
engine
Prior art date
Application number
PCT/JP2012/081388
Other languages
English (en)
French (fr)
Inventor
智宏 福田
篤嗣 太田
功 高川
足立 仁
康男 野間
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2013084890A1 publication Critical patent/WO2013084890A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention provides a filter that captures particulate matter contained in exhaust gas and an oxidation catalyst that generates highly active nitrogen dioxide from nitrogen oxides in the exhaust gas upstream of the filter from the combustion chamber.
  • the present invention relates to an engine provided in an exhaust path for discharging the exhaust gas.
  • PM particulate matter
  • Regeneration is performed by increasing the temperature of the exhaust gas.
  • unburned PM is burned.
  • the engine speed is increased or fuel is mixed into the exhaust gas.
  • the combustion reaction in the combustion chamber becomes active, so the temperature of the exhaust gas increases.
  • the mixed fuel burns and the temperature of the exhaust gas rises.
  • Post injection refers to fuel injection after the end of the combustion stroke. Although it is desirable that the entire amount of post-injected fuel be exhausted with the exhaust gas, some fuel remains in the combustion chamber. This fuel is dripped into the oil pan as the piston reciprocates to dilute the engine oil. As a result, the life of the engine oil may be shortened. On the other hand, part of the fuel discharged from the combustion chamber may remain in the exhaust gas without being burned, and the exhaust gas may turn into blue and white smoke.
  • Patent Document 1 discloses a technique that enables regeneration when the temperature of exhaust gas is as low as about 300 ° C. Specifically, an oxidation catalyst is disposed on the upstream side of the filter in order to change nitrogen oxide in the exhaust gas to highly active nitrogen dioxide. Since highly active nitrogen dioxide strongly oxidizes PM, the filter is regenerated in a low temperature environment of about 300 ° C. According to Patent Document 1, it is not necessary to increase the temperature of the exhaust gas to a high temperature of about 600 ° C. by using post injection for regeneration, and it is sufficient that the temperature of the exhaust gas exceeds about 300 ° C.
  • the temperature of the exhaust gas reaches about 300 ° C. in a normal use state, so that the filter can be regenerated without performing post injection. Further, since the temperature required for regeneration is about 300 ° C., even in a light work area, for example, by restricting the intake air to suppress the flow of outside air, the temperature of the exhaust gas is raised to the activation temperature of the oxidation catalyst. it can. For this reason, the filter can be regenerated.
  • Patent Document 2 also discloses a technique for regenerating a filter using an oxidation catalyst.
  • the engine disclosed in Patent Document 2 includes a temperature sensor (paragraph 0020) arranged at the outlet of the oxidation catalyst, and means (paragraph 0030) for detecting the active state of the oxidation catalyst based on the detected temperature. .
  • Patent Document 2 does not disclose a means for detecting a temperature abnormality or the like in the oxidation catalyst.
  • the present invention provides an engine that can detect that an abnormality may have occurred in the oxidation catalyst.
  • An engine includes a filter that captures particulate matter contained in exhaust gas, and an oxidation catalyst that generates highly active nitrogen dioxide from nitrogen oxides in the exhaust gas upstream of the filter.
  • An engine provided in an exhaust path for discharging the exhaust gas from a combustion chamber, the first fuel injection device for supplying fuel into the combustion chamber, and an opening degree of an intake path for supplying intake gas to the combustion chamber An intake valve to be determined, a rotational speed input device for designating a target rotational speed of the engine rotational speed, and in the exhaust path upstream of the filter to raise the temperature of the filter by combustion of the exhaust gas.
  • a second fuel injection device that supplies fuel to the outlet, an outlet temperature sensor that detects an outlet temperature that is a temperature of the exhaust gas at the outlet of the oxidation catalyst, and the inlet at the inlet of the oxidation catalyst
  • an inlet temperature sensor that detects an inlet temperature that is a gas temperature
  • a warning device that performs a warning to a driver
  • an estimation mechanism that estimates the amount of particulate matter deposited on the filter
  • auxiliary regeneration In the auxiliary regeneration control unit that controls the intake valve so as to reduce the excess air ratio without changing the target rotational speed, and in the reset regeneration, the excessive air ratio is reduced without changing the target rotational speed.
  • the reset regeneration control unit that controls the intake valve and activates the second fuel injection device, and in emergency regeneration, the target rotational speed is changed to a predetermined high rotational speed, and the excess air ratio is reduced.
  • An emergency regeneration control unit that controls the intake valve and operates the second fuel injection device, and the auxiliary regeneration is performed when the accumulation amount exceeds a predetermined first upper limit amount.
  • An auxiliary regeneration command unit to be executed by the control unit, and the reset regeneration control unit to execute the reset regeneration every predetermined continuous operation time in preference to the auxiliary regeneration, or the auxiliary regeneration execution time is predetermined.
  • a reset regeneration command unit that causes the reset regeneration control unit to execute the reset regeneration when the auxiliary regeneration time is exceeded and the accumulation amount is not lower than the first upper limit amount; and the emergency regeneration control unit
  • An emergency regeneration command input device for inputting an emergency regeneration command for executing the emergency regeneration, and the emergency regeneration needs to be performed when the accumulation amount exceeds a second upper limit amount larger than the first upper limit amount
  • An emergency regeneration warning command unit for causing the warning device to execute an emergency regeneration warning for informing the driver of the vehicle, and the outlet temperature sensor during a predetermined first abnormality monitoring time during the execution of the emergency regeneration.
  • a first signal that informs the driver of the occurrence of an abnormality in the regeneration of the filter when all signal values of the sensor and the inlet temperature sensor are within a normal range and the outlet temperature is lower than the activation temperature of the oxidation catalyst.
  • a first abnormality warning command section that causes the warning device to execute an abnormality occurrence warning.
  • the engine detects an exhaust temperature which is a temperature of the exhaust gas upstream of the exhaust turbine, and a supercharger having an exhaust turbine driven by the exhaust gas and a compressor which compresses the intake gas.
  • An exhaust gas temperature sensor wherein the inlet temperature is a temperature of the exhaust gas at a downstream side of the exhaust turbine and at an inlet of the oxidation catalyst, and a predetermined first abnormality occurs during execution of the emergency regeneration.
  • the first abnormality occurs when all signal values of the outlet temperature sensor, the inlet temperature sensor, and the exhaust temperature sensor are within a normal range and the outlet temperature is lower than the activation temperature during a monitoring time.
  • the warning command unit causes the warning device to execute an abnormality occurrence warning that informs the driver of the occurrence of an abnormality in the regeneration of the filter.
  • the engine further includes an EGR pipe that connects the exhaust path to the intake path, and an EGR valve that determines an opening degree of the EGR pipe, and the auxiliary regeneration, the reset regeneration, and the In the emergency regeneration, the EGR valve is closed.
  • the engine has a signal value of the outlet temperature sensor within a normal range for a predetermined second abnormality monitoring time during execution of the reset regeneration or the emergency regeneration, and the outlet temperature is the heat resistance of the filter.
  • a second abnormality warning command unit is provided that causes the warning device to execute a second abnormality occurrence warning that notifies the driver of the occurrence of an abnormally high temperature in the filter.
  • the engine notifies the driver of occurrence of an abnormally high temperature at the inlet temperature when the signal value of the inlet temperature sensor is within a normal range and the inlet temperature is higher than a predetermined allowable temperature.
  • a third abnormality warning command unit for causing the warning device to execute an abnormality occurrence warning is provided, and when the inlet temperature is equal to or higher than the allowable temperature, the outlet temperature is estimated to exceed the heat resistance temperature of the filter. .
  • the engine includes a differential pressure detection sensor that detects a differential pressure between an inlet and an outlet of the filter, and a signal value of the differential pressure sensor is within a normal range during a predetermined differential pressure monitoring time.
  • a fourth abnormality warning command unit that causes the warning device to execute a fourth abnormality occurrence warning that informs the driver of the occurrence of abnormality in the differential pressure when the differential pressure continuously exceeds a predetermined differential pressure. Yes.
  • the engine includes an atmospheric pressure sensor that detects atmospheric pressure, an exhaust pressure sensor that detects an exhaust pressure that is the pressure of the exhaust gas at the outlet of the combustion chamber, and the intake gas at the inlet of the combustion chamber.
  • An intake pressure sensor that detects an intake pressure that is the pressure of the engine, the engine is stopped during a predetermined pressure monitoring time, and the atmospheric pressure sensor, the exhaust pressure sensor, and the intake pressure sensor Are within a normal range, the first differential pressure between the intake pressure and the atmospheric pressure is greater than or equal to a predetermined first error differential pressure, and the second differential pressure between the exhaust pressure and the atmospheric pressure.
  • a fifth abnormality warning command section for causing the warning device to execute a fifth abnormality occurrence warning that informs the driver of the occurrence of abnormality in the atmospheric pressure sensor when the pressure difference is equal to or greater than a predetermined second error differential pressure.
  • the engine according to the present invention can notify the driver that the filter is not effectively regenerated in a situation where it is estimated that the filter will be regenerated reliably.
  • the abnormality of the oxidation catalyst is suspected as the cause of the abnormality. For this reason, the engine can inform the driver that an abnormality may have occurred in the oxidation catalyst.
  • FIG. 1 is a diagram showing a configuration of an engine.
  • FIG. 2 is a diagram showing a list of playback methods.
  • FIG. 3 is a diagram showing a self-reproducing area, a reproducible area, and a non-reproducible area.
  • FIG. 4 is a flowchart showing changes in the playback state.
  • FIG. 5 is a block diagram showing a configuration related to the playback method.
  • FIG. 6 is a diagram showing the relationship between the engine speed, the fuel injection amount, and the PM emission amount.
  • FIG. 7 is a diagram showing the relationship between the regeneration speed, the exhaust mass flow rate, and the outlet temperature.
  • FIG. 8 is a diagram showing the relationship between the differential pressure, the exhaust mass flow rate, and the PM deposition amount.
  • the engine 1 is preferably mounted on a work vehicle such as a backhoe or a tractor.
  • FIG. 1 is a diagram showing a configuration of the engine 1.
  • the engine 1 includes an intake pipe 2, an intake manifold 3, a cylinder block 4, an exhaust manifold 5, an exhaust pipe 6, a DPF unit 7, an EGR pipe 8, an intake valve 9, an EGR valve 10, a supercharger 11, a crankshaft 12, fuel An injection device 13, a rotation speed input device 14, a warning device 15, an emergency regeneration command input device 16, and an ECU 17 are provided.
  • Engine 1 has 4 cylinders. For this reason, the cylinder block 4 has four combustion chambers 18.
  • the intake pipe 2 and the intake manifold 3 constitute an intake path for supplying intake gas to each combustion chamber 18.
  • outside air is taken into the intake pipe 2 as intake gas.
  • the intake valve 9 determines the opening degree of the intake pipe 2 on the upstream side of the EGR pipe 8.
  • the exhaust manifold 5, the exhaust pipe 6, and the DPF unit 7 constitute an exhaust path for exhausting exhaust gas from each combustion chamber 18.
  • the DPF unit 7 includes a filter 19 and an oxidation catalyst 20.
  • the filter 19 captures PM contained in the exhaust gas.
  • the oxidation catalyst 20 generates highly active nitrogen dioxide from nitrogen oxides in the exhaust gas.
  • the oxidation catalyst 20 is disposed on the upstream side of the filter 19 in the exhaust path.
  • the EGR pipe 8 has an inlet 8 a that opens to the exhaust manifold 5 and an outlet 8 b that opens to the intake pipe 2, and connects the exhaust manifold 5 to the intake pipe 2.
  • the EGR pipe 8 includes a heat exchanger 21 through which engine coolant passes.
  • the heat exchanger 21 cools the exhaust gas that passes through the EGR pipe 8.
  • the EGR valve 10 determines the opening degree of the EGR pipe 8. When the EGR valve 10 is opened, the exhaust gas merges with the outside air that passes through the intake pipe 2. For this reason, the intake gas is composed of outside air and exhaust gas on the downstream side of the outlet 8b.
  • the supercharger 11 includes an exhaust turbine 11 a disposed in the exhaust pipe 6 and a compressor 11 b disposed in the intake pipe 2.
  • the exhaust turbine 11a is driven by the exhaust gas
  • the compressor 11b is driven by the exhaust turbine 11a.
  • the intake gas is compressed.
  • the fuel injection device 13 employs a common rail system and supplies fuel to each combustion chamber 18.
  • the fuel injection device 13 can perform regular injection for supplying fuel for the combustion stroke and post-injection for injecting fuel after the combustion stroke.
  • the fuel injection device 13 serves as both the first fuel injection device and the second fuel injection device.
  • the first fuel injection device supplies fuel into the combustion chamber 18.
  • the second fuel injection device supplies fuel into the exhaust path upstream of the filter 19 in order to raise the temperature of the filter 19 by exhaust gas combustion.
  • the rotation speed input device 14 is an operation device for designating a target rotation speed of the engine rotation speed.
  • the rotational speed input device 14 refers to an accelerator lever group that changes the operating state of the engine 1.
  • the warning device 15 executes various warnings to the driver.
  • the warning device 15 includes a large number of lamp groups that can display a plurality of different warnings.
  • the emergency regeneration command input device 16 is an operating device for inputting a command for executing emergency regeneration.
  • the emergency regeneration command input device 16 is a push button that can specify a command “present” state and a command “none” state. The contents of emergency reproduction will be described later.
  • ECU Engine Control Unit
  • the engine 1 includes an environmental temperature sensor 31, an intake air temperature sensor 32, an exhaust gas temperature sensor 33, an inlet temperature sensor 34, an outlet temperature sensor 35, and an EGR temperature sensor 36.
  • the environmental temperature sensor 31 detects the environmental temperature T1.
  • the environmental temperature T1 is the temperature of the intake gas flowing through the intake passage (2, 3) on the upstream side of the compressor 11b and the outlet 8b.
  • the environmental temperature T1 is substantially equal to the temperature of the outside air.
  • the intake air temperature sensor 32 detects the intake air temperature T2.
  • the intake air temperature T2 is the temperature of the intake gas flowing through the intake passage (2, 3) on the downstream side of the compressor 11b and the outlet 8b.
  • the exhaust temperature sensor 33 detects the exhaust temperature T3.
  • the exhaust temperature T3 is the temperature of the exhaust gas flowing through the exhaust passage (5, 6) on the upstream side of the exhaust turbine 11a.
  • the inlet temperature sensor 34 detects the inlet temperature T4.
  • the inlet temperature T4 is the temperature of the exhaust gas at the inlet of the oxidation catalyst 20.
  • the position where the inlet temperature T4 is detected is an arbitrary position in the exhaust path (5, 6) on the downstream side of the exhaust turbine 11a and the upstream side of the oxidation catalyst 20.
  • the outlet temperature sensor 35 detects the outlet temperature T5.
  • the outlet temperature T5 is the temperature of the exhaust gas at the outlet of the oxidation catalyst 20.
  • the position at which the outlet temperature T5 is detected is an arbitrary position in the exhaust path (5, 6) between the oxidation catalyst 20 and the filter 19.
  • the EGR temperature sensor 36 detects the EGR temperature T6.
  • the EGR temperature T6 is the temperature of the exhaust gas flowing through the EGR pipe 8 on the downstream side of the heat exchanger 21.
  • the engine 1 includes a differential pressure sensor 40, an atmospheric pressure sensor 41, an intake pressure sensor 42, and an exhaust pressure sensor 43.
  • the differential pressure sensor 40 can detect the pressure of the exhaust gas at the inlet and outlet of the filter 19. For this reason, the differential pressure sensor 40 can detect the differential pressure ⁇ P between the inlet and the outlet of the filter 19.
  • the atmospheric pressure sensor 41 detects the atmospheric pressure P1.
  • the position for detecting the atmospheric pressure P1 is provided outside the intake path (2, 3).
  • the intake pressure sensor 42 detects the intake pressure P2.
  • the intake pressure P2 is the pressure of the intake gas flowing through the intake path (2, 3) on the downstream side of the compressor 11b and the outlet 8b.
  • the exhaust pressure sensor 43 detects the exhaust pressure P3.
  • the exhaust pressure P3 is the pressure of the exhaust gas flowing through the exhaust path (5, 6) on the upstream side of the inlet 8a and the exhaust turbine 11a.
  • the engine 1 includes a rotation speed sensor 22.
  • the rotational speed sensor 22 detects the rotational speed of the crankshaft 12 (engine rotational speed).
  • the engine 1 includes an oxygen sensor 23.
  • the oxygen sensor 23 detects the oxygen concentration contained in the exhaust gas.
  • the position for detecting the oxygen concentration is an arbitrary position in the exhaust path (5, 6) on the upstream side of the oxidation catalyst 20.
  • the oxygen concentration is used to detect the excess air ratio.
  • FIG. 2 is a diagram showing a list of playback methods.
  • the engine 1 performs the regeneration of the filter 19 according to various regeneration methods.
  • This reproduction method includes self reproduction, auxiliary reproduction, reset reproduction, and emergency reproduction.
  • the self-regeneration mainly regenerates the filter 19 using nitrogen dioxide.
  • the oxidation catalyst 20 When the inlet temperature T4 exceeds the activation temperature of the oxidation catalyst 20, the oxidation catalyst 20 generates highly active nitrogen dioxide from nitrogen oxides in the exhaust gas.
  • the highly active nitrogen dioxide oxidizes PM deposited on the filter 19 and removes PM from the filter 19. That is, highly active nitrogen dioxide regenerates the filter 19.
  • Self-reproduction refers to reproduction that is automatically executed in this way.
  • the activation temperature is about 300 ° C.
  • no special control is performed. For this reason, in the self-regeneration, the EGR valve 10 is opened, the opening degree of the intake valve 9 is normal, and post injection is not used.
  • the filter 19 is mainly regenerated using nitrogen dioxide.
  • control is performed so as to increase the inlet temperature T4.
  • the ECU 17 controls the intake valve 9 so as not to change the target rotational speed and to reduce the excess air ratio ⁇ . This control reduces the amount of air that does not contribute to combustion, raises the exhaust temperature T3, and raises the inlet temperature T4 to the activation temperature.
  • the EGR valve 10 is closed to increase the exhaust temperature T3.
  • post injection is not used.
  • the filter 19 is regenerated using nitrogen dioxide and high-temperature exhaust gas.
  • control is performed so as to increase the inlet temperature T4 and the outlet temperature T5.
  • the ECU 17 controls the intake valve 9 so as to reduce the excess air ratio ⁇ without changing the target rotational speed, and causes the fuel injection device 13 to perform post injection.
  • the exhaust temperature T3 rises and the inlet temperature T4 rises to the activation temperature (300 ° C.), as in the auxiliary regeneration.
  • the combustion of the post-injected fuel further increases the inlet temperature T4 and the outlet temperature T5.
  • the outlet temperature T5 exceeds the combustion temperature of PM, the PM of the filter 19 burns due to the high temperature.
  • the filter 19 is regenerated by the action of nitrogen dioxide and the high-temperature exhaust gas. Therefore, the outlet temperature T5 is increased so that the outlet temperature T5 falls within a predetermined combustion temperature range (550 ° C. to 700 ° C.).
  • the combustion temperature of PM is about 550 ° C.
  • the heat-resistant temperature of the filter 19 is about 700 degreeC. Therefore, in this embodiment, the combustion temperature range is set to 550 ° C. to 700 ° C.
  • the EGR valve 10 is closed to increase the exhaust temperature T3.
  • FIG. 3 is a diagram showing a self-reproducing area, a reproducible area, and a non-reproducible area.
  • the self-reproducing area, the reproducible area, and the non-reproducible area are specified by the engine speed and the load (engine torque).
  • Self-regeneration occurs in the self-regeneration area.
  • the filter 19 can be regenerated by performing auxiliary regeneration or reset regeneration.
  • the exhaust temperature T3 is too low, so the inlet temperature T4 does not actually reach the activation temperature, and the filter 19 cannot be regenerated even if reset regeneration is performed.
  • the first boundary line L1 indicates the boundary between the self-reproducing area and the reproducible area.
  • the second boundary line L2 indicates the boundary between the reproducible area and the non-reproducible area.
  • the temperature of the exhaust gas is the same in each of the first boundary line L1 and the second boundary line L2.
  • the inlet temperature T4 at the second boundary line L2 is 300 ° C., which is the activation temperature.
  • emergency regeneration is provided. When the engine speed is greater than the lower limit speed R0, there is no non-reproducible region. For this reason, in emergency regeneration, control for increasing the engine speed to be lower than the lower limit speed R0 is executed.
  • the emergency regeneration regenerates the filter 19 using nitrogen dioxide and high-temperature exhaust gas.
  • control is executed so as to further increase the exhaust gas temperature T3.
  • the ECU 17 changes the target rotational speed to a predetermined high rotational speed, controls the intake valve 9 to reduce the excess air ratio ⁇ , and causes the fuel injection device 13 to perform post injection.
  • the predetermined high rotation speed is set to a rotation speed equal to or higher than the lower limit rotation speed R0 in FIG. That is, the high rotation speed is set so that the inlet temperature T4 surely exceeds the activation temperature.
  • the filter 19 is regenerated by the action of nitrogen dioxide and the high-temperature exhaust gas more effectively than the reset regeneration.
  • the EGR valve 10 is closed even in emergency regeneration.
  • the filter 19 is regenerated more effectively in the reset regeneration than in the emergency regeneration.
  • the target rotational speed designated by the driver exceeds the lower limit rotational speed R0 when performing normal work. In such a case, reset playback is more effective than emergency playback, and emergency playback is unnecessary.
  • the PM over-deposition warning corresponds to the case where various regeneration methods do not function effectively.
  • the PM over-deposition warning informs the driver that PM over-deposition has occurred in the filter 19.
  • FIG. 4 is a flowchart showing changes in the playback state.
  • the regeneration state is any of the self-regeneration execution state S1, the auxiliary regeneration execution state S2, the reset regeneration execution state S3, the emergency regeneration standby state S4, the emergency regeneration execution state S5, and the over-deposition warning S6. Select one of them.
  • the reproduction state indicates that any one reproduction method is applied to the filter 19.
  • the regeneration state is mainly determined by the temperature of the exhaust gas.
  • the playback state changes from one state to another when various conditions are satisfied. These conditions include the magnitude of the PM deposition amount and various measurement times. For this reason, the engine 1 includes means for detecting the PM accumulation amount and means for measuring various times. These means will be described later.
  • the regeneration state changes to the auxiliary regeneration execution state S2.
  • the condition C2 “execution time ⁇ 30 minutes” or the condition C3 “PM accumulation amount ⁇ 6 g / L” is satisfied in the auxiliary regeneration execution state S2, the regeneration state changes to the self-regeneration execution state S2.
  • the regeneration state changes to the reset regeneration execution state S3.
  • the elapsed time indicates the time that has elapsed from the time when the reset playback was completed last time to the present time. This elapsed time measurement ends when reset playback is started, and the elapsed time count is changed to zero. When the reset playback is completed, the elapsed time measurement is newly started.
  • condition C7 valid time for reset regeneration ⁇ 25 minutes
  • condition C8 execution time for reset regeneration ⁇ 30 minutes
  • condition C9 PM accumulation amount ⁇ 6 g / L
  • the reproduction state changes to the self-regeneration execution state S1.
  • the execution time of reset reproduction indicates the time during which the reproduction state is maintained in the execution state of reset reproduction.
  • the effective time of reset regeneration indicates the time during which the outlet temperature T5 is in the combustion temperature range (550 ° C. to 700 ° C.) in the reset regeneration execution state.
  • the effective time for reset reproduction refers to the time during which reset reproduction is substantially executed.
  • the condition C10 “PM deposition amount ⁇ 10 g / L” is satisfied in the auxiliary regeneration execution state S2
  • the condition C11 “PM deposition amount ⁇ 10 g / L” is satisfied in the reset regeneration execution state S3, or the reset regeneration
  • the condition C12 “PM accumulation amount ⁇ 8 g / L and reset regeneration execution time ⁇ 10 minutes” is satisfied in the execution state S3, the regeneration state changes to the emergency regeneration standby state S4.
  • the regeneration state changes to the emergency regeneration execution state S5.
  • the emergency regeneration standby state S4 as will be described in detail later, a warning is issued to the driver to perform emergency regeneration.
  • the driver can input an emergency regeneration command to the ECU 17 using the emergency regeneration button 16.
  • the condition C16 “standby time ⁇ 1 hour” or the condition C17 “PM deposition amount ⁇ 12 g / L” is satisfied in the emergency regeneration standby state S4, or in the emergency regeneration execution state S5, the condition C18 “PM deposition amount ⁇ 8 g / L” is satisfied.
  • the regeneration state changes to PM over-deposition warning S6.
  • the PM over-deposition warning S6 issues a warning to the driver so that the maintenance of the filter 19 is performed.
  • FIG. 5 is a block diagram showing a configuration related to the playback method.
  • the engine 1 includes a first estimation mechanism 110 and a second estimation mechanism 120 that estimate the PM accumulation amount.
  • the first estimation mechanism 110 includes a rotation speed sensor 12, an oxygen sensor 23, a fuel injection amount setting unit 101, a flow rate estimation unit 102, an atmospheric pressure sensor 41, an intake pressure sensor 42, an exhaust pressure sensor 43, an environmental temperature sensor 31, an intake air temperature.
  • a sensor 32, an exhaust temperature sensor 33, an outlet temperature sensor 35, and an EGR temperature sensor 36 are provided.
  • the first estimation mechanism 110 estimates the PM accumulation amount in the filter 19 based on the difference between the PM discharge amount and the PM oxidation amount.
  • the PM emission amount indicates the total amount of PM discharged from the engine 1 in a unit time.
  • the PM oxidation amount indicates the total amount of PM oxidized in the filter 19 per unit time.
  • PM emissions are determined as follows.
  • FIG. 6 is a diagram showing the relationship between the engine speed N, the fuel injection amount Q (i), and the PM emission amount C.
  • a variable i indicates a number from 1 to 3.
  • the fuel injection amounts Q (1), Q (2), and Q (3) have different sizes.
  • the PM emission amount C as a basic amount is determined based on the engine speed N and the fuel injection amount Q (i) per cycle.
  • the PM emission amount as the estimated amount is further obtained by correcting the PM emission amount C as the basic amount by correction with the excess air ratio ⁇ .
  • the amount of PM oxidation is determined as follows.
  • the engine speed is detected by the speed sensor 12.
  • the fuel injection amount setting unit 101 sets the fuel injection amount to be injected from the fuel injection device 13. Therefore, the fuel injection amount per cycle is specified by the fuel injection amount setting unit 101.
  • the excess air ratio ⁇ is specified based on the oxygen concentration detected by the oxygen sensor 23.
  • FIG. 7 is a graph showing the relationship between the regeneration speed V, the exhaust mass flow rate FE, and the outlet temperature T5 (i).
  • a variable i indicates a number from 1 to 3.
  • the outlet temperatures T5 (1), T5 (2), and T5 (3) have different sizes.
  • the regeneration speed V indicates the speed at which PM is removed by oxidation.
  • the exhaust mass flow rate FE indicates the mass flow rate of the exhaust gas. Based on the regeneration speed V, the PM oxidation amount is specified. Therefore, the PM oxidation amount is estimated based on the exhaust mass flow rate FE and the outlet temperature T5 (i).
  • the exhaust mass flow rate FE used for specifying the PM oxidation amount is obtained as follows.
  • the flow rate estimation unit 102 estimates the intake mass flow rate FI, the EGR mass flow rate FR, and the exhaust mass flow rate FE.
  • the intake mass flow rate FI and the EGR mass flow rate FR indicate the mass flow rate of the intake gas and the mass flow rate of the EGR gas, respectively.
  • the EGR gas refers to the exhaust gas that merges with the intake gas via the EGR rod 8.
  • the mass flow rates FI, FR, and FE are expressed as a function of pressures P3 and P2, temperatures T2 and T6, and excess air ratio ⁇ .
  • Intake mass flow rate FI f (P3, P2, T2, ⁇ , T1, P1)
  • Intake mass flow FI f (P3, P2, T2, ⁇ )
  • EGR mass flow rate FR f (P3, P2, T6)
  • Exhaust mass flow rate FE Intake mass flow rate FI-EGR mass flow rate FR + fuel mass flow rate FF
  • the fuel mass flow rate FF is specified by the fuel injection amount setting unit 101.
  • the second estimation mechanism 120 has a configuration similar to that of the first estimation mechanism 110.
  • the second estimation mechanism 120 has a differential pressure sensor 40 instead of the rotation speed sensor 12 provided in the first estimation mechanism 110.
  • the second estimation mechanism 110 estimates the PM accumulation amount based on the differential pressure ⁇ P0 between the inlet and the outlet of the filter 19.
  • FIG. 8 is a diagram showing the relationship among the differential pressure ⁇ P0, the exhaust mass flow rate FE, and the PM deposition amount A (i).
  • a variable i indicates a number from 1 to 3.
  • the PM deposition amounts A (1), A (2), and A (3) have different sizes.
  • the PM accumulation amount A (i) as a basic amount is determined based on the differential pressure ⁇ P0 and the exhaust mass flow rate FE.
  • the estimated PM amount as the estimated amount is obtained by further correcting the estimated PM amount A (i) as the basic amount with the outlet temperature T5.
  • the ECU (control device) 17 includes an auxiliary regeneration control unit 131 that performs auxiliary regeneration, a reset regeneration control unit 132 that performs reset regeneration, and an emergency regeneration control unit 133 that performs emergency regeneration.
  • the ECU 17 includes an auxiliary regeneration command unit 141, a reset regeneration command unit 142, an emergency regeneration warning command unit 151, and an emergency regeneration command input device 16 as means for executing various regeneration methods.
  • the auxiliary regeneration command unit 141 causes the auxiliary regeneration control unit 131 to perform auxiliary regeneration when the PM accumulation amount exceeds a predetermined first upper limit amount (8 g / L).
  • This process corresponds to the case where the condition C1 in FIG. 4 is satisfied.
  • 8 g / L indicates the first upper limit amount of the PM deposition amount in the present embodiment.
  • 6 g / L in the conditions C3 and C9 indicates an allowable amount of PM deposition in the present embodiment.
  • the reset regeneration command unit 142 causes the reset regeneration control unit 132 to execute reset regeneration every predetermined continuous operation time (100 hours) in preference to auxiliary regeneration. This process corresponds to the case where the conditions C4 and C5 in FIG. 4 are satisfied. Further, the reset regeneration command unit 142 determines that the execution time of auxiliary regeneration exceeds a predetermined auxiliary regeneration time (10 minutes) and the PM accumulation amount has not decreased below the first upper limit amount (8 g / L). Then, the reset reproduction control unit 132 is caused to execute the reset reproduction. This process corresponds to the case where the condition C6 in FIG. 4 is satisfied. 10 minutes in the condition C6 indicates the auxiliary reproduction time in the present embodiment.
  • the emergency regeneration warning command unit 151 informs the driver that it is necessary to perform emergency regeneration when the PM accumulation amount exceeds the second upper limit amount (10 g / L) larger than the first upper limit amount (8 g / L).
  • the warning device 15 is caused to execute an emergency reproduction warning to be notified.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the emergency regeneration warning.
  • 10 g / L indicates the second upper limit amount of the PM deposition amount in the present embodiment.
  • the driver operates the emergency regeneration command input device 16 described above based on the emergency regeneration warning by the warning device 15.
  • the emergency regeneration control unit 133 executes emergency regeneration.
  • the ECU 17 includes an over-deposition warning command unit 152.
  • the over-deposition warning command unit 152 warns of an over-deposition warning that notifies PM over-deposition when the PM accumulation amount exceeds the third upper limit amount (12 g / L) that is larger than the second upper limit amount (10 g / L).
  • the apparatus 15 is made to execute. This process corresponds to the case where the condition C16 in FIG. 4 is satisfied.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the over-deposition warning.
  • 12 g / L indicates the third upper limit amount of the PM deposition amount in the present embodiment.
  • the over-deposition warning command unit 152 when the PM accumulation amount has not decreased below the first upper limit amount (8 g / L) within a predetermined emergency regeneration time (30 minutes) from the time when the emergency regeneration is started, the over-deposition warning command unit 152 Then, the warning device 15 is caused to execute an over-deposition warning. This process corresponds to the case where the condition C17 in FIG. 4 is satisfied. 30 minutes in the condition C17 indicates the emergency regeneration time in the present embodiment.
  • the over-deposition warning command unit 152 causes the warning device 15 to execute the over-deposition warning. This process corresponds to the case where the condition C15 in FIG. 4 is satisfied. Nine hours in the condition C15 indicates the standby time limit in the present embodiment.
  • the auxiliary regeneration command unit 141, the reset regeneration command unit 142, the emergency regeneration warning command unit 151, and the over-deposition warning command unit 152 are the PM accumulation amount estimated by the first estimation mechanism 110 and the second estimation mechanism as the PM accumulation amount. Either of the PM accumulation amounts estimated by 120 can be used, and the first determination and the second determination can be performed. In the first determination, each command unit 141, 142, 151, 152 is based on the PM accumulation amount obtained by the first estimation mechanism 110, the PM accumulation amount, the first predetermined amount, the second predetermined amount, or the first 3 Comparison with a predetermined amount is performed.
  • each command unit 141, 142, 151, 152 is based on the PM accumulation amount obtained by the second estimation mechanism 120, the PM accumulation amount, the first predetermined amount, the second predetermined amount, or the first 3 Comparison with a predetermined amount is performed.
  • the accuracy of the PM estimation amount the accuracy of the first estimation mechanism 110 is higher than the accuracy of the second estimation mechanism 120.
  • the first determination and the second determination are properly used.
  • the arrow corresponding to each condition is drawn with a solid line, a broken line, or a two-dot chain line.
  • a solid line indicates a case where both the first determination and the second determination are applied.
  • Solid arrows correspond to conditions C1, C6, C10, C11, C12, C15, and C16.
  • a broken line indicates a case where only the first determination is applied.
  • Dashed arrows correspond to conditions C2, C3, C4, C5, C9, C14, and C17.
  • a chain double-dashed line indicates a determination other than the first determination and the second determination.
  • the two-dot chain arrows correspond to conditions C7, C8, and C13.
  • the ECU 17 includes a maintenance warning command unit 153.
  • the maintenance warning command unit 153 monitors the differential pressure ⁇ P0 after the monitoring standby time (300 seconds) elapses and the monitoring execution time (900 seconds) elapses after the reset regeneration or emergency regeneration ends.
  • the maintenance warning command unit 153 determines whether or not the state where the engine speed exceeds the high speed and the differential pressure ⁇ P0 exceeds the predetermined pressure difference continues for a predetermined abnormal pressure time (100 seconds). Monitor.
  • the occurrence of the predetermined pressure difference indicates that the regeneration of the filter 19 is defective.
  • the maintenance warning command unit 153 causes the warning device 15 to execute a maintenance warning that notifies the maintenance of the filter 19 when the state continues for an abnormal pressure time or longer.
  • the monitoring standby time is 300 seconds
  • the monitoring execution time is 900 seconds
  • the predetermined pressure abnormality time is 100 seconds.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the maintenance warning.
  • the engine 1 can detect the ash accumulation amount based on the operation time or the like, and can execute a response based on the detection result.
  • the engine 1 includes an ash estimation mechanism 150 that detects an ash deposition amount and an ash excessive deposition warning command unit 154.
  • the ash over-deposition warning command unit 154 causes the warning device 15 to execute an ash over-deposition warning that notifies ash over-deposition when the ash accumulation amount exceeds a predetermined upper limit ash amount.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the ash content excessive deposition warning.
  • the ash state is selected from either the ash over-deposition monitoring state S11 or the ash over-deposition warning S12.
  • the ash content state is a state specified according to the accumulation amount of the ash content. While the first estimation mechanism 110 does not detect the ash content excessive accumulation, the ash content state is in the monitoring state S11. When the first estimation mechanism 110 detects ash excessive deposition, the ash state changes to an ash excessive deposition warning S12. In the ash excessive deposition warning S12, the ash excessive deposition warning command unit 154 causes the warning device 15 to execute the ash excessive deposition warning.
  • the engine 1 is provided with an abnormality detection means using a temperature sensor and a pressure sensor.
  • This abnormality detection means detects abnormality of the sensor itself or abnormality of the object detected by the sensor.
  • the ECU 17 includes a first abnormality warning command unit 161.
  • a first abnormality warning command unit 161 During execution of emergency regeneration, all signal values of the outlet temperature sensor 35, the inlet temperature sensor 34, and the exhaust temperature sensor T3 are within the normal range and the outlet temperature T5 during a predetermined first abnormality monitoring time (20 minutes). Is lower than the activation temperature, the first abnormality warning instruction unit 161 causes the warning device to execute a first abnormality occurrence warning.
  • the first abnormality occurrence warning is a warning that informs the driver of the occurrence of an abnormality in the regeneration of the filter 19.
  • the first abnormality monitoring time is 20 minutes.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the first abnormality occurrence warning.
  • the signal value being within the normal range indicates that no abnormality has occurred in the sensor itself.
  • the normal range is determined by the sensor standard and is, for example, 4 to 20 mV.
  • the ECU 17 includes a second abnormality warning command unit 162.
  • the signal value of the outlet temperature sensor 35 is within the normal range and the outlet temperature T5 is the heat resistant temperature (700 ° C.) of the filter 19 for a predetermined second abnormality monitoring time (1 minute).
  • the second abnormality warning instruction unit 162 causes the warning device 15 to execute a second abnormality occurrence warning.
  • the second abnormality occurrence warning is a warning that informs the driver of the occurrence of an abnormally high temperature in the filter 19.
  • the second abnormality monitoring time is 1 minute.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the second abnormality occurrence warning.
  • the ECU 17 includes a third abnormality warning command unit 163.
  • the third abnormality warning instruction unit 163 causes the warning device 15 to execute the third abnormality occurrence warning.
  • the third abnormality occurrence warning is a warning notifying the driver that the inlet temperature T4 is abnormally high. It is estimated that the outlet temperature T5 exceeds the heat resistance temperature (700 ° C.) of the filter 19 when the inlet temperature T4 is equal to or higher than the allowable temperature (650 ° C.).
  • the allowable temperature is set to 650 ° C., which is a temperature lower than the heat-resistant temperature (700 ° C.) of the filter 19 by a certain temperature range.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the third abnormality occurrence warning.
  • the ECU 17 includes a fourth abnormality warning command unit 164.
  • the fourth abnormality warning command unit 164 When the signal value of the differential pressure sensor 40 is within the normal range and the differential pressure ⁇ P0 continuously exceeds the predetermined differential pressure during the predetermined differential pressure monitoring time, the fourth abnormality warning command unit 164 The warning device 15 is caused to execute an abnormality occurrence warning.
  • the fourth abnormality occurrence warning is a warning that informs the driver of the occurrence of an abnormality in the differential pressure ⁇ P0.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the fourth abnormality occurrence warning.
  • the ECU 17 includes a fifth abnormality warning command unit 165.
  • a fifth abnormality warning command is issued.
  • the unit 165 causes the warning device to execute a fifth abnormality occurrence warning.
  • the fifth abnormality occurrence warning is a warning that informs the driver of the occurrence of abnormality in the atmospheric pressure sensor 41.
  • the warning device 15 issues a warning to the driver by turning on or blinking a lamp corresponding to the fifth abnormality occurrence warning.
  • the supercharger 11 and the EGR device are not essential components.
  • the EGR device includes an EGR pipe 8, an EGR valve 10, and a heat exchanger 21.
  • the engine 1 may not include the supercharger 11 and / or the EGR device.
  • the intake air temperature T2 is approximately equal to the environmental temperature T1
  • the exhaust gas temperature T3 is approximately equal to the inlet temperature T4.
  • the engine 1 may not include the environmental temperature sensor 31 and the exhaust temperature sensor 33.
  • the inlet temperature T4 is used instead of the exhaust temperature T3.
  • the first abnormality warning command unit 161 is changed as follows. When all the signal values of the outlet temperature sensor 35 and the inlet temperature sensor 34 are within the normal range and the outlet temperature T5 is lower than the activation temperature of the oxidation catalyst 20 during the first abnormality monitoring time during the emergency regeneration. In addition, the first abnormality warning instruction unit 161 causes the warning device 15 to execute the first abnormality occurrence warning.
  • the engine 1 according to the present embodiment has the following effects.
  • Engine 1 can perform auxiliary regeneration, and can perform emergency regeneration warning and PM over-deposition warning.
  • Auxiliary regeneration does not consume excess fuel, unlike regeneration with post-injection.
  • the emergency regeneration warning informs the driver of the necessity of emergency regeneration.
  • the PM over-deposition warning notifies the driver of the occurrence of over-deposition that may cause damage to the filter 19. Therefore, the engine 1 suppresses an increase in the amount of particulate matter while reducing the frequency of performing additional combustion (post injection) for increasing the temperature of exhaust gas and the frequency of changing the engine speed as much as possible. it can. In addition, the engine 1 can easily prevent the filter from being damaged due to excessive deposition.
  • the EGR valve 10 is closed during auxiliary regeneration, reset regeneration, and emergency regeneration. For this reason, the engine 1 can prevent the temperature of the exhaust gas from being lowered during the regeneration, and can efficiently perform the regeneration.
  • the engine 1 not only has a first estimation mechanism 110 that estimates the PM deposition amount based on the difference between the PM emission amount and the PM oxidation amount, but also a second estimation mechanism that estimates the PM deposition amount based on the differential pressure of the filter 19. 120 is further provided. That is, the PM accumulation amount is estimated by two methods. For this reason, the reliability in the detection of the accumulation amount of a particulate matter is improved.
  • the overdeposition warning command unit 152 causes the warning device 15 to execute the overdeposition warning. . For this reason, the engine 1 can inform the driver that the emergency regeneration may be defective.
  • the over-deposition warning command unit 152 causes the warning device 15 to execute the over-deposition warning. For this reason, the engine 1 can inform the driver that emergency regeneration may not be performed.
  • the engine 1 includes a maintenance warning command unit 153 that causes the warning device 15 to execute a maintenance warning.
  • the engine speed exceeds the high speed, and it is basically estimated that the accumulation of the filter 19 has been eliminated by reset regeneration or forced regeneration. In such a situation, when the state where the differential pressure ⁇ P0 exceeds the predetermined pressure difference continues for a predetermined abnormal pressure time or longer, a maintenance warning is output. For this reason, the engine 1 can notify the driver that the cause that the accumulated amount is not eliminated is not the failure of the reset regeneration or the forced regeneration but the loss of the filter 19.
  • the engine 1 includes an ash content estimation mechanism 150 and an ash content excessive deposition warning command unit 154. Therefore, the engine 1 can notify the driver that the filter 19 needs to be replaced or that the filter 19 needs to be cleaned.
  • the engine 1 includes a first abnormality warning command unit 161.
  • the exhaust temperature T3 is increased so that the inlet temperature T4 exceeds the activation temperature.
  • the oxidation catalyst 20 is activated, the exhaust gas is heated by the oxidation reaction, so that the outlet temperature T5 becomes higher than the inlet temperature T4.
  • the outlet temperature T5 does not become lower than the activation temperature.
  • a warning is issued if the outlet temperature T5 is lower than the activation temperature.
  • the engine 1 can inform the driver that the regeneration of the filter 19 is not effectively performed in a situation where it is estimated that the regeneration of the filter 19 is surely performed.
  • the abnormality of the oxidation catalyst 20 is suspected as the cause of the abnormality.
  • the engine 1 can inform the driver that there is a possibility that an abnormality has occurred in the oxidation catalyst 20.
  • the engine 1 includes a second abnormality warning command unit 162. If the outlet temperature T5 is higher than the heat resistant temperature, a warning is issued. For this reason, the engine 1 can notify the driver that an abnormally high temperature that may cause the filter 19 to break may have occurred. In particular, the cause of the abnormality is suspected to be an injection timing failure of the fuel injection device 13 or an abnormal activation state of the oxidation catalyst 20. For this reason, the engine 1 can inform the driver of the possibility that an injection timing failure of the fuel injection device 13 or an abnormal activation state of the oxidation catalyst 20 has occurred.
  • the engine 1 includes a third abnormality warning command unit 163. If the inlet temperature T4 is higher than the allowable temperature, a warning is issued. For this reason, the engine 1 can notify the driver that an abnormally high temperature may have occurred on the upstream side of the oxidation catalyst 20. In particular, when the inlet temperature T4 is higher than the allowable temperature, the outlet temperature T5 is likely to exceed the heat resistance temperature. For this reason, the engine 1 can inform the driver that the filter 19 may be damaged.
  • the engine 1 includes a fourth abnormality warning command unit 164. If the differential pressure ⁇ P0 is higher than the predetermined differential pressure difference, a warning is issued. For this reason, the engine 1 can notify the driver of the possibility that the filter 19 is clogged.
  • the engine 1 includes a fifth abnormality warning command unit 165.
  • the intake pressure P2, the exhaust pressure P3, and the atmospheric pressure P1 are all equal except for the influence of sensor errors.
  • a warning is issued when the first differential pressure is greater than or equal to the first error differential pressure and the second differential pressure is greater than or equal to the second error differential pressure. For this reason, the engine 1 can inform the driver that there is a possibility that an abnormality has occurred in the atmospheric pressure sensor 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 エンジン(1)は、緊急再生の実行中において所定の第1異常監視時間の間、出口温度センサ(35)、入口温度センサ(34)、及び排気温度センサ(33)の全ての信号値が正常範囲内にあり且つ出口温度(T5)が活性化温度よりも低い場合に、フィルタ(19)の再生における異常の発生を運転者に知らせる異常発生警告を警告装置(15)に実行させる第1異常警告指令部(161)を備えている。

Description

エンジン
 本発明は、排気ガス中に含まれる粒子状物質を捕捉するフィルタと、前記フィルタの上流側で前記排気ガス中の窒素酸化物から高活性な二酸化窒素を生成する酸化触媒とを、燃焼室から前記排気ガスを排出する排気経路内に備える、エンジンに関する。
 排気ガス中に含まれる粒子状物質(以下、PM)を捕捉するフィルタを有するエンジンでは、運転時間が経過するに連れてPMがフィルタに堆積する。PMがフィルタに過剰に堆積すると、始動不良やエンストが発生する場合がある。また、過大に堆積したPMを酸化反応によって除去する場合、フィルタ温度が異常上昇し、それによりフィルタが破損する場合もある。このため、PMが過剰に堆積する前に、適時にPMをフィルタから除去する必要がある。酸化反応によってPMを除去することを、「再生」と呼ぶ。
 再生は、排気ガスの温度を高めることによって実行される。高温状態では、未燃焼物であるPMが燃焼する。排気ガスの温度を高めるために、エンジン回転数の増大又は排気ガス中への燃料の混入が実行される。エンジン回転数が増大するとき、燃焼室での燃焼反応が活発になっているので、排気ガスの温度が増大する。また、排気ガス中に燃料を混入させることによって混入された燃料が燃焼して排気ガスの温度が上昇する。
 排気ガス中に燃料を混入させるために、一般的にポスト噴射が実行されている。ポスト噴射は、燃焼行程終了後の燃料噴射を指している。ポスト噴射された燃料の全量が排気ガスと共に排出されることが望ましいが、一部の燃料は燃焼室内に留まる。この燃料は、ピストンの往復動に伴ってオイルパンに滴下し、エンジンオイルを希釈させる。この結果、エンジンオイルの寿命が縮まる場合がある。他方、燃焼室から排出された燃料の一部が未燃焼のまま排気ガスに残留し、排気ガスが青白煙となる場合もある。
 従って、極力、ポスト噴射を抑制しながらフィルタを再生することが望ましい。特許文献1は、排気ガスの温度が300℃程度の低温であるときに再生を可能とする技術を開示している。具体的には、排気ガス中の窒素酸化物を高活性な二酸化窒素に変化させるために、フィルタの上流側に酸化触媒が配置されている。高活性な二酸化窒素は、PMを強力に酸化するので、300℃程度の低温の環境下でフィルタが再生される。特許文献1によれば、再生のために、ポスト噴射を用いて排気ガスの温度を約600℃程度の高温に高める必要が無く、排気ガスの温度が300℃程度を越えていればよい。このため、作業負荷の掛かるエンジンでは、通常の使用状態で排気ガスの温度が300℃程度に達するためポスト噴射を行うことなくフィルタの再生が可能となる。また、再生に必要な温度が300℃程度であるため、作業負荷の軽い領域でも、例えば吸気を絞って外気流入を抑えることによって、排気ガスの温度を酸化触媒の活性温度まで排気ガスを昇温できる。このため、フィルタの再生が可能となる。
 特許文献2も、酸化触媒を用いてフィルタの再生を行う技術を開示している。特許文献2に開示されるエンジンは、酸化触媒の出口に配置される温度センサ(0020段落)と、その検出温度に基づいて酸化触媒の活性状態を検出する手段(0030段落)とを備えている。
特許3012249号公報 特開2004-293339号公報
 ところが、特許文献2は、酸化触媒における温度の異常等を検出する手段を開示していない。
 そこで、本発明は、酸化触媒に異常が発生した可能性があることを検出できる、エンジンを提供する。
 本発明に係るエンジンは、排気ガス中に含まれる粒子状物質を捕捉するフィルタと、前記フィルタの上流側で前記排気ガス中の窒素酸化物から高活性な二酸化窒素を生成する酸化触媒とを、燃焼室から前記排気ガスを排出する排気経路内に備える、エンジンであって、前記燃焼室内に燃料を供給する第1燃料噴射装置と、前記燃焼室に吸気ガスを供給する吸気経路の開度を決定する吸気弁と、エンジン回転数の目標回転数を指定するための回転数入力装置と、前記排気ガスの燃焼によって前記フィルタの温度を上昇させるために、前記フィルタの上流側で前記排気経路内に燃料を供給する第2燃料噴射装置と、前記酸化触媒の出口における前記排気ガスの温度である出口温度を検出する出口温度センサと、前記酸化触媒の入口における前記排気ガスの温度である入口温度を検出する入口温度センサと、運転者への警告を実行する警告装置と、前記フィルタにおける前記粒子状物質の堆積量を推定する推定機構と、補助再生において、前記目標回転数を変更せず、且つ空気過剰率を小さくするように前記吸気弁を制御する、補助再生制御部と、リセット再生において、前記目標回転数を変更せず、前記空気過剰率を小さくするように前記吸気弁を制御し、且つ前記第2燃料噴射装置を作動させる、リセット再生制御部と、緊急再生において、前記目標回転数を所定の高回転数に変更し、前記空気過剰率を小さくするように前記吸気弁を制御し、且つ前記第2燃料噴射装置を作動させる、緊急再生制御部と、前記堆積量が所定の第1上限量を超えたときに、前記補助再生を前記補助再生制御部に実行させる補助再生指令部と、前記補助再生よりも優先して、所定の連続運転時間毎に前記リセット再生を前記リセット再生制御部に実行させる、又は前記補助再生の実行時間が所定の補助再生時間を越えており且つ前記堆積量が前記第1上限量よりも低下していない場合に、前記リセット再生を前記リセット再生制御部に実行させるリセット再生指令部と、前記緊急再生制御部に前記緊急再生を実行させるための緊急再生指令を入力する緊急再生指令入力装置と、前記堆積量が前記第1上限量よりも大きな第2上限量を超えたときに、前記緊急再生を実行する必要性を運転者に知らせる緊急再生警告を前記警告装置に実行させる緊急再生警告指令部と、前記緊急再生の実行中において所定の第1異常監視時間の間、前記出口温度センサ及び前記入口温度センサの全ての信号値が正常範囲内にあり且つ前記出口温度が前記酸化触媒の活性化温度よりも低い場合に、前記フィルタの再生における異常の発生を運転者に知らせる第1異常発生警告を前記警告装置に実行させる第1異常警告指令部と、を備えている。
 好ましくは、前記エンジンは、排気ガスによって駆動される排気タービンと、吸気ガスを圧縮する圧縮機とを有する過給機と、前記排気タービンの上流側における前記排気ガスの温度である排気温度を検出する排気温度センサとを、更に備えており、前記入口温度は、前記排気タービンの下流側且つ前記酸化触媒の入口における前記排気ガスの温度であり、前記緊急再生の実行中において所定の第1異常監視時間の間、前記出口温度センサ、前記入口温度センサ、及び前記排気温度センサの全ての信号値が正常範囲内にあり且つ前記出口温度が前記活性化温度よりも低い場合に、前記第1異常警告指令部は、前記フィルタの再生における異常の発生を運転者に知らせる異常発生警告を前記警告装置に実行させる。
 好ましくは、前記エンジンは、前記排気経路を前記吸気経路に接続するEGR管と、前記EGR管の開度を決定するEGR弁とを、更に備えており、前記補助再生、前記リセット再生、及び前記緊急再生において、前記EGR弁は閉鎖されている。
 好ましくは、前記エンジンは、前記リセット再生又は前記緊急再生の実行中において所定の第2異常監視時間の間、前記出口温度センサの信号値が正常範囲内にあり且つ前記出口温度が前記フィルタの耐熱温度よりも高い場合に、前記フィルタにおける異常高温の発生を運転者に知らせる第2異常発生警告を前記警告装置に実行させる第2異常警告指令部を備えている。
 好ましくは、前記エンジンは、前記入口温度センサの信号値が正常範囲内にあり且つ前記入口温度が所定の許容温度よりも高い場合に、前記入口温度における異常高温の発生を運転者に知らせる第3異常発生警告を前記警告装置に実行させる第3異常警告指令部を備えており、前記入口温度が前記許容温度以上であるときに、前記出口温度が前記フィルタの耐熱温度を越えると推定されている。
 好ましくは、前記エンジンは、前記フィルタの入口と出口との間の差圧を検出する差圧検出センサと、所定の差圧監視時間の間、前記差圧センサの信号値が正常範囲内にあり且つ前記差圧が連続的に所定差圧を越えている場合、前記差圧における異常の発生を運転者に知らせる第4異常発生警告を前記警告装置に実行させる第4異常警告指令部を備えている。
 好ましくは、前記エンジンは、大気圧を検出する大気圧センサと、前記燃焼室の前記出口における前記排気ガスの圧力である排気圧力を検出する排気圧力センサと、前記燃焼室の入口における前記吸気ガスの圧力である吸気圧力を検出する吸気圧力センサと、を備えており、所定の圧力監視時間の間、前記エンジンが停止しており、前記大気圧センサ、前記排気圧力センサ、及び前記吸気圧力センサの信号値が全て正常範囲内にあり、前記吸気圧力と前記大気圧との第1差圧が所定の第1誤差差圧以上であり、且つ前記排気圧力と前記大気圧との第2差圧が所定の第2誤差差圧以上である場合に、前記大気圧センサにおける異常の発生を運転者に知らせる第5異常発生警告を前記警告装置に実行させる第5異常警告指令部を備えている。
 本発明に係るエンジンは、フィルタの再生が確実に行われると推定される状況で、実際にはフィルタの再生が効果的に行われていないことを、運転者に知らせることができる。特に、異常の原因として酸化触媒の異常が疑われる。このため、エンジンは、酸化触媒に異常が発生した可能性があることを、運転者に知らせることができる。
図1は、エンジンの構成を示す図である。 図2は、再生方式の一覧表を示す図である。 図3は、自己再生領域、再生可能領域、及び再生不可能領域を示す図である。 図4は、再生状態の変化を示すフロー図である。 図5は、再生方式に関連する構成を示すブロック図である。 図6は、エンジン回転数、燃料噴射量、及びPM排出量の関係を示す図である。 図7は、再生速度、排気質量流量、及び出口温度の関係を示す図である。 図8は、差圧、排気質量流量、及びPM堆積量の関係を示す図である。
(本実施形態に係るエンジンの構成)
 図面を参照して、本実施形態に係るエンジン1を説明する。エンジン1は、好ましくは、バックホー又はトラクターのような作業車両に搭載される。
 図1は、エンジン1の構成を示す図である。エンジン1は、吸気管2、吸気マニホールド3、シリンダブロック4、排気マニホールド5、排気管6、DPFユニット7、EGR管8、吸気弁9、EGR弁10、過給機11、クランク軸12、燃料噴射装置13、回転数入力装置14、警告装置15、緊急再生指令入力装置16、及びECU17を備えている。
 エンジン1は4つのシリンダーを有している。このため、シリンダブロック4は、4つの燃焼室18を有している。
 吸気管2及び吸気マニホールド3は、各燃焼室18に吸気ガスを供給する吸気経路を構成している。エンジン1の駆動に対応して、外気が、吸気ガスとして吸気管2内に吸入される。吸気弁9は、EGR管8の上流側において吸気管2の開度を決定する。
 排気マニホールド5、排気管6、及びDPFユニット7は、各燃焼室18から排気ガスを排出する排気経路を構成している。
 DPFユニット7は、フィルタ19及び酸化触媒20を備えている。フィルタ19は、排気ガス中に含まれるPMを捕捉する。酸化触媒20は、排気ガス中の窒素酸化物から高活性な二酸化窒素を生成する。酸化触媒20は、排気経路内でフィルタ19の上流側に配置されている。
 EGR管8は、排気マニホールド5に開口する入口8a及び吸気管2に開口する出口8bを有しており、排気マニホールド5を吸気管2に接続している。EGR管8は、エンジン冷却水が通過する熱交換器21を備えている。熱交換器21は、EGR管8を通過する排気ガスを冷却する。EGR弁10は、EGR管8の開度を決定する。EGR弁10が開放されている場合、吸気管2を通過する外気に排気ガスが合流する。このため、出口8bの下流側において、吸気ガスは、外気及び排気ガスからなっている。
 過給機11は、排気管6内に配置される排気タービン11aと、吸気管2内に配置される圧縮機11bとを備えている。排気ガスにより排気タービン11aが駆動され、圧縮機11bは排気タービン11aにより駆動され、この結果、吸気ガスが圧縮される。
 燃料噴射装置13は、コモンレール方式を採用しており、各燃焼室18に燃料を供給する。燃料噴射装置13は、本実施形態では、燃焼行程のための燃料を供給する正規の噴射と、燃焼行程後に燃料を噴射するポスト噴射とを実行できる。このため、燃料噴射装置13は、第1燃料噴射装置及び第2燃料噴射装置を兼用している。ここで、第1燃料噴射装置は、燃焼室18内に燃料を供給する。第2燃料噴射装置は、排気ガスの燃焼によってフィルタ19の温度を上昇させるためにフィルタ19の上流側で排気経路内に燃料を供給する。
 回転数入力装置14は、エンジン回転数の目標回転数を指定するための操作機器である。本実施形態では、回転数入力装置14は、エンジン1の運転状態を変更するアクセルレバー群を指している。
 警告装置15は、運転者への各種の警告を実行する。本実施形態では、警告装置15は、複数の異なる警告を表示できる多数のランプ群から構成されている。
 緊急再生指令入力装置16は、緊急再生を実行させる指令を入力するための操作機器である。本実施形態では、緊急再生指令入力装置16は、指令「有」の状態と、指令「無」の状態とを指定できる、押しボタンである。緊急再生の内容は、後述する。
 ECU(エンジンコントロールユニット)は、エンジン1の運転に関係する各種装置を制御する。
 図1において、エンジン1は、環境温度センサ31、吸気温度センサ32、排気温度センサ33、入口温度センサ34、出口温度センサ35、及びEGR温度センサ36を備えている。
 環境温度センサ31は、環境温度T1を検出する。環境温度T1は、圧縮機11b及び出口8bの上流側において吸気経路(2、3)を流れる吸気ガスの温度である。環境温度T1は、外気の温度に略等しい。
 吸気温度センサ32は、吸気温度T2を検出する。吸気温度T2は、圧縮機11b及び出口8bの下流側において吸気経路(2、3)を流れる吸気ガスの温度である。
 排気温度センサ33は、排気温度T3を検出する。排気温度T3は、排気タービン11aの上流側において排気経路(5、6)を流れる排気ガスの温度である。
 入口温度センサ34は、入口温度T4を検出する。入口温度T4は、酸化触媒20の入口における排気ガスの温度である。入口温度T4を検出する位置は、排気タービン11aの下流側且つ酸化触媒20の上流側における排気経路(5、6)内の任意の位置である。
 出口温度センサ35は、出口温度T5を検出する。出口温度T5は、酸化触媒20の出口における排気ガスの温度である。出口温度T5を検出する位置は、酸化触媒20とフィルタ19との間における排気経路(5、6)内の任意の位置である。
 EGR温度センサ36は、EGR温度T6を検出する。EGR温度T6は、熱交換器21の下流側においてEGR管8を流れる排気ガスの温度である。
 図1において、エンジン1は、差圧センサ40、大気圧センサ41、吸気圧力センサ42、及び排気圧力センサ43を備えている。
 差圧センサ40は、フィルタ19の入口及び出口における排気ガスの圧力を検出できる。このため、差圧センサ40は、フィルタ19の入口と出口との間の差圧ΔPを検出できる。
 大気圧センサ41は、大気圧P1を検出する。大気圧P1を検出する位置は、吸気経路(2、3)の外部に設けられている。
 吸気圧力センサ42は、吸気圧力P2を検出する。吸気圧力P2は、圧縮機11b及び出口8bの下流側において吸気経路(2、3)を流れる吸気ガスの圧力である。
 排気圧力センサ43は、排気圧力P3を検出する。排気圧力P3は、入口8a及び排気タービン11aの上流側において排気経路(5、6)を流れる排気ガスの圧力である。
 図1において、エンジン1は、回転数センサ22を備えている。回転数センサ22は、クランク軸12の回転数(エンジン回転数)を検出する。
 図1において、エンジン1は、酸素センサ23を備えている。酸素センサ23は、排気ガスに含まれる酸素濃度を検出する。酸素濃度を検出する位置は、酸化触媒20の上流側における排気経路(5、6)内の任意の位置である。酸素濃度は、空気過剰率の検出に用いられる。
 図2から図4を参照して、フィルタ19の再生方式を説明する。
 図2は、再生方式の一覧表を示す図である。エンジン1は、フィルタ19の再生を、各種の再生方式にしたがって実行する。この再生方式は、自己再生、補助再生、リセット再生、及び緊急再生からなっている。
 自己再生は、主として、二酸化窒素を利用してフィルタ19を再生する。入口温度T4が酸化触媒20の活性化温度を超えた場合に、酸化触媒20によって、排気ガス中の窒素酸化物から高活性な二酸化窒素が生成される。高活性な二酸化窒素は、フィルタ19に堆積したPMを酸化し、フィルタ19からPMを除去する。つまり、高活性な二酸化窒素は、フィルタ19を再生する。自己再生は、このように自動的に実行される再生を指している。本実施形態では、活性化温度は、約300℃である。自己再生では、特別な制御は実行されない。このため、自己再生では、EGR弁10は開かれており、吸気弁9の開度は通常であり、ポスト噴射は使用されていない。
 補助再生も、主として、二酸化窒素を利用してフィルタ19を再生する。補助再生では、入口温度T4を高めるように制御が実行される。ECU17は、補助再生において、目標回転数を変更せず、且つ空気過剰率λを小さくするように吸気弁9を制御する。この制御は、燃焼に寄与しない空気量を減少させ、排気温度T3を上昇させて入口温度T4を活性化温度まで高める。また、補助再生では、排気温度T3を高めるために、EGR弁10は閉じられている。補助再生では、ポスト噴射は使用されていない。
 リセット再生は、二酸化窒素及び高温の排気ガスを利用してフィルタ19を再生する。リセット再生では、入口温度T4及び出口温度T5を高めるように制御が実行される。ECU17は、リセット再生において、目標回転数を変更せず、空気過剰率λを小さくするように吸気弁9を制御し、且つ燃料噴射装置13にポスト噴射を実行させる。まず、空気過剰率λが小さくなるため、補助再生と同様に、排気温度T3が上昇して入口温度T4が活性化温度(300℃)まで高められる。更に、ポスト噴射された燃料の燃焼によって入口温度T4及び出口温度T5が更に高められる。出口温度T5がPMの燃焼温度を越えると、その高温のためフィルタ19のPMが燃焼する。つまり、二酸化窒素の作用及び高温の排気ガスにより、フィルタ19が再生される。このため、出口温度T5が所定の燃焼温度範囲(550℃~700℃)に入るように、出口温度T5が高められる。本実施形態では、PMの燃焼温度は約550℃である。また、本実施形態では、フィルタ19の耐熱温度が700℃程度である。このため、本実施形態では、燃焼温度範囲は、550℃~700℃に設定されている。また、リセット再生では、排気温度T3を高めるために、EGR弁10は閉じられている。
 図3は、自己再生領域、再生可能領域、及び再生不可能領域を示す図である。図3において、自己再生領域、再生可能領域、及び再生不可能領域が、エンジン回転数及び負荷(エンジントルク)によって特定されている。自己再生領域では、自己再生が発生する。再生可能領域では、補助再生又はリセット再生の実行により、フィルタ19の再生が可能である。一方、再生不可能領域では、排気温度T3が低すぎるため入口温度T4が実際には活性化温度に到達せず、リセット再生が実行されてもフィルタ19の再生が不可能である。第1境界線L1は、自己再生領域と再生可能領域との境界を示している。第2境界線L2は、再生可能領域と再生不可能領域との境界を示している。排気ガスの温度は、第1境界線L1及び第2境界線L2のそれぞれにおいて同一である。本実施形態では、第2境界線L2における入口温度T4は、活性化温度である300℃である。再生不可能領域においてフィルタ19を再生させるために、緊急再生が設けられている。エンジン回転数が下限回転数R0より大きいとき、再生不可能領域は存在しない。このため、緊急再生では、エンジン回転数を下限回転数R0よりも増大させる制御が実行される。
 図2において、緊急再生は、二酸化窒素及び高温の排気ガスを利用してフィルタ19を再生する。緊急再生では、排気温度T3を更に高めるように制御が実行される。ECU17は、緊急再生において、目標回転数を所定の高回転数に変更し、空気過剰率λを小さくするように吸気弁9を制御し、且つ燃料噴射装置13にポスト噴射を実行させる。所定の高回転数は、図2の下限回転数R0以上の回転数に設定されている。つまり、入口温度T4が確実に活性化温度を超えるように、高回転数が設定されている。このため、緊急再生では、リセット再生よりも効果的に、二酸化窒素の作用及び高温の排気ガスにより、フィルタ19が再生される。当然ながら、緊急再生でも、EGR弁10は閉じられている。
 なお、目標回転数が高回転数以上の回転数に設定されている場合、リセット再生の方が緊急再生よりも効果的に、フィルタ19を再生する。例えば、バックホーのような作業車両では、通常の作業を行う際に、運転者によって指定される目標回転数が下限回転数R0を越えてしまう。このような場合、リセット再生の方が緊急再生よりも有効であり、緊急再生は不要である。
 図2において、PM過堆積警告は、各種の再生方式が有効に機能しない場合に相当する。PM過堆積警告は、フィルタ19にPMの過堆積が発生していることを、運転者に知らせる。
 図4は、再生状態の変化を示すフロー図である。図4において、再生状態は、自己再生の実行状態S1、補助再生の実行状態S2、リセット再生の実行状態S3、緊急再生の待機状態S4、緊急再生の実行状態S5、及び過堆積警告S6のいずれか1つを選択する。ここで、再生状態は、いずれか1つの再生方式がフィルタ19に適用される状態にあることを示している。再生状態は、主として、排気ガスの温度によって決定される。
 再生状態は、各種の条件が満たされることにより、ある状態から別の状態に変化する。これらの条件は、PM堆積量の大きさ及び各種の計測時間を含んでいる。このため、エンジン1は、PM堆積量を検出する手段及び各種の時間を計測する手段を備えている。これらの手段については後述する。
 自己再生の実行状態S1において条件C1「PM堆積量≧8g/L」が満たされる場合、再生状態は、補助再生の実行状態S2に変化する。補助再生の実行状態S2において条件C2「実行時間≧30分」又は条件C3「PM堆積量<6g/L」が満たされる場合、再生状態は、自己再生の実行状態S2に変化する。
 自己再生の実行状態S1において条件C4「経過時間≧100時間」が満たされる場合、補助再生の実行状態S2において条件C5「経過時間≧100時間」が満たされる場合、又は補助再生の実行状態S2において条件C6「PM堆積量8g/L、且つ補助再生の実行時間≧10分」が満たされる場合、再生状態は、リセット再生の実行状態S3に変化する。ここで、経過時間は、リセット再生が前回終了した時点から現時点までに経過した時間を指している。この経過時間の計測はリセット再生が開始されると終了し、経過時間の計数が0に変更される。また、リセット再生が終了すると、更に経過時間の計測が新たに開始される。
 リセット再生の実行状態S3において、条件C7「リセット再生の有効時間≧25分」、条件C8「リセット再生の実行時間≧30分」、又は条件C9「PM堆積量<6g/L」が満たされる場合、再生状態は、自己再生の実行状態S1に変化する。ここで、リセット再生の実行時間は、再生状態がリセット再生の実行状態に保たれている時間を指している。一方、リセット再生の有効時間は、リセット再生の実行状態において、出口温度T5が燃焼温度範囲(550℃~700℃)にある時間を指している。つまり、リセット再生の有効時間は、リセット再生が実質的に実行されている時間を指している。
 補助再生の実行状態S2において条件C10「PM堆積量≧10g/L」が満たされる場合、リセット再生の実行状態S3において条件C11「PM堆積量≧10g/L」が満たされる場合、又はリセット再生の実行状態S3において条件C12「PM堆積量≧8g/L、且つリセット再生の実行時間≧10分」が満たされる場合、再生状態は、緊急再生の待機状態S4に変化する。
 緊急再生の待機状態S4において条件C13「緊急再生指令:有」が満たされる場合、再生状態は、緊急再生の実行状態S5に変化する。緊急再生の待機状態S4では、詳しくは後述するが、緊急再生を実行するように運転者に警告が発せられる。この警告に応じて運転者は、緊急再生ボタン16を用いて緊急再生指令をECU17に入力できる。
 緊急再生の実行状態S5において、条件C14「有効時間≧25分、且つPM堆積量<8g/L」、又は条件C15「実行時間≧30分、且つPM堆積量<8g/L」が満たされる場合、再生状態は、自己再生の実行状態S1に変化する。
 緊急再生の待機状態S4において条件C16「待機時間≧1時間」又は条件C17「PM堆積量≧12g/L」が満たされる場合、又は緊急再生の実行状態S5において条件C18「PM堆積量≧8g/L、且つ緊急再生の実行時間≧30分」が満たされる場合、再生状態は、PM過堆積警告S6に変化する。PM過堆積警告S6では、詳しくは後述するが、フィルタ19のメンテナンスを実行するように運転者に警告が発せられる。
 図5を参照して、再生方式に関連する構成を説明する。図5は、再生方式に関連する構成を示すブロック図である。
 図5において、エンジン1は、PM堆積量を推定する第1推定機構110及び第2推定機構120を備えている。
 第1推定機構110は、回転数センサ12、酸素センサ23、燃料噴射量設定部101、流量推定部102、大気圧センサ41、吸気圧力センサ42、排気圧力センサ43、環境温度センサ31、吸気温度センサ32、排気温度センサ33、出口温度センサ35、及びEGR温度センサ36を備えている。
 第1推定機構110は、PM排出量とPM酸化量との差に基づいてフィルタ19におけるPM堆積量を推定する。PM排出量は、単位時間において、エンジン1から排出されたPMの総量を指している。PM酸化量は、単位時間において、フィルタ19において酸化されたPMの総量を指している。
 まず、PM排出量は、次のようにして求められる。
 図6は、エンジン回転数N、燃料噴射量Q(i)、及びPM排出量Cの関係を示す図である。図6において、変数iは、1~3までの数を示している。燃料噴射量Q(1)、Q(2)、Q(3)は、互いに異なる大きさを有している。図6に示されるように、エンジン回転数N、燃料噴射量Q(i)、及びPM排出量Cの間に、一定の関係が存在する。このため、基本量としてのPM排出量Cが、エンジン回転数N及び1サイクル当たり燃料噴射量Q(i)に基づいて定められる。推定量としてのPM排出量は、更に、基本量としてのPM排出量Cに空気過剰率λによる補正を加えることによって、求められる。
 次に、PM酸化量は、次のようにして求められる。
 図5において、エンジン回転数は、回転数センサ12によって検出される。燃料噴射量設定部101は、燃料噴射装置13から噴射させる燃料噴射量を設定する。このため、1サイクル当たり燃料噴射量は、燃料噴射量設定部101により特定される。空気過剰率λは、酸素センサ23によって検出される酸素濃度に基づいて、特定される。
 図7は、再生速度V、排気質量流量FE、及び出口温度T5(i)の関係を示す図である。図7において、変数iは、1~3までの数を示している。出口温度T5(1)、T5(2)、T5(3)は、互いに異なる大きさを有している。図7に示されるように、再生速度V、排気質量流量FE、及び出口温度T5(i)の間に、一定の関係が存在する。再生速度Vは、酸化によってPMが除去される速度を指している。排気質量流量FEは、排気ガスの質量流量を指している。再生速度Vに基づいて、PM酸化量が特定される。このため、PM酸化量は、排気質量流量FE及び出口温度T5(i)に基づいて推定される。
 PM酸化量を特定するために用いられる排気質量流量FEは、次のようにして求められる。
 図5において、流量推定部102は、吸気質量流量FI、EGR質量流量FR、及び排気質量流量FEを推定する。吸気質量流量FI、及びEGR質量流量FRは、それぞれ、吸気ガスの質量流量、及びEGRガスの質量流量を指している。EGRガスは、EGR菅8を介して吸気ガスに合流する排気ガスを指している。
 質量流量FI、FR、FEは、圧力P3、P2、温度T2、T6、及び空気過剰率λの関数として表現される。
  吸気質量流量FI=f(P3,P2,T2,λ,T1,P1)
 ただし、環境温度T1及び大気圧P1は補正のための要素であるので、実質的には次の通りである。
  吸気質量流量FI=f(P3,P2,T2,λ)
  EGR質量流量FR=f(P3,P2,T6)
  排気質量流量FE=吸気質量流量FI-EGR質量流量FR+燃料質量流量FF
 なお、燃料質量流量FFは、燃料噴射量設定部101により特定される。
 第2推定機構120は、第1推定機構110と類似の構成を有している。第2推定機構120は、第1推定機構110に設けられる回転数センサ12の代わりに、差圧センサ40を有している。
 第2推定機構110は、フィルタ19の入口と出口との間の差圧ΔP0に基づいてPM堆積量を推定する。
 図8は、差圧ΔP0、排気質量流量FE、及びPM堆積量A(i)の関係を示す図である。図8において、変数iは、1~3までの数を示している。PM堆積量A(1)、A(2)、A(3)は、互いに異なる大きさを有している。図8に示されるように、差圧ΔP0、排気質量流量FE、及びPM堆積量A(i)の間に、一定の関係が存在する。このため、基本量としてのPM堆積量A(i)が、差圧ΔP0、排気質量流量FEに基づいて定められる。推定量としてのPM推定量は、更に、基本量としてのPM推定量A(i)に出口温度T5による補正を加えることによって、求められる。
 図5において、ECU(制御装置)17は、補助再生を実行する補助再生制御部131、リセット再生を実行するリセット再生制御部132、及び緊急再生を実行する緊急再生制御部133を備えている。
 ECU17は、各種の再生方式を実行させるための手段として、補助再生指令部141リセット再生指令部142、緊急再生警告指令部151、及び緊急再生指令入力装置16を備えている。
 補助再生指令部141は、PM堆積量が所定の第1上限量(8g/L)を超えたときに、補助再生を補助再生制御部131に実行させる。この処理は、図4における条件C1が満たされた場合に相当する。ここで、8g/Lは、本実施形態におけるPM堆積量の第1上限量を指している。また、条件C3、C9における6g/Lは、本実施形態におけるPM堆積量の許容量を指している。
 リセット再生指令部142は、補助再生よりも優先して、所定の連続運転時間(100時間)毎にリセット再生をリセット再生制御部132に実行させる。この処理は、図4における条件C4、C5が満たされた場合に相当する。また、リセット再生指令部142は、補助再生の実行時間が所定の補助再生時間(10分)を越えており且つPM堆積量が第1上限量(8g/L)よりも低下していない場合に、リセット再生をリセット再生制御部132に実行させる。この処理は、図4における条件C6が満たされた場合に相当する。条件C6における10分は、本実施形態における補助再生時間を指している。
 緊急再生警告指令部151は、PM堆積量が第1上限量(8g/L)よりも大きな第2上限量(10g/L)を超えたときに、緊急再生を実行する必要性を運転者に知らせる緊急再生警告を警告装置15に実行させる。本実施形態では、警告装置15は、緊急再生警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。ここで、10g/Lは、本実施形態におけるPM堆積量の第2上限量を指している。
 運転者は、警告装置15による緊急再生警告に基づいて、上述の緊急再生指令入力装置16を操作する。緊急再生指令入力装置16により緊急再生指令「有」が入力されると、緊急再生制御部133は、緊急再生を実行する。
 図5において、ECU17は、過堆積警告指令部152を備えている。過堆積警告指令部152は、PM堆積量が第2上限量(10g/L)よりも大きな第3上限量(12g/L)を超えたときに、PMの過堆積を知らせる過堆積警告を警告装置15に実行させる。この処理は、図4における条件C16が満たされた場合に相当する。本実施形態では、警告装置15は、過堆積警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。ここで、12g/Lは、本実施形態におけるPM堆積量の第3上限量を指している。
 また、緊急再生が開始された時点から所定の緊急再生時間(30分)以内にPM堆積量が第1上限量(8g/L)よりも低下していない場合に、過堆積警告指令部152は、過堆積警告を警告装置15に実行させる。この処理は、図4における条件C17が満たされた場合に相当する。条件C17における30分は、本実施形態における緊急再生時間を指している。
 また、緊急再生警告が開始された時点から所定の限界時間(9時間)以内に緊急再生指令が入力されない場合に、過堆積警告指令部152は、過堆積警告を警告装置15に実行させる。この処理は、図4における条件C15が満たされた場合に相当する。条件C15における9時間は、本実施形態における待機の限界時間を指している。
 補助再生指令部141、リセット再生指令部142、緊急再生警告指令部151、及び過堆積警告指令部152は、PM堆積量として、第1推定機構110によって推定されるPM堆積量及び第2推定機構120によって推定されるPM堆積量のどちらも利用でき、第1判定及び第2判定を実行できる。第1判定では、各指令部141、142、151、152は、第1推定機構110によって得られたPM堆積量に基づいて、PM堆積量と、第1所定量、第2所定量、又は第3所定量との比較を行う。第2判定では、各指令部141、142、151、152は、第2推定機構120によって得られたPM堆積量に基づいて、PM堆積量と、第1所定量、第2所定量、又は第3所定量との比較を行う。ここで、PM推定量の精度を比較すると、第1推定機構110の精度の方が、第2推定機構120の精度よりも高い。本実施形態では、図4に示されるように、第1判定及び第2判定が使い分けられている。
 図4において、各条件に対応する矢印は、実線、破線、又は二点鎖線で描かれている。実線は、第1判定及び第2判定の双方が適用される場合を示している。実線の矢印は、条件C1、C6、C10、C11,C12、C15、C16に対応している。破線は、第1判定のみが適用される場合を示している。破線の矢印は、条件C2、C3、C4、C5,C9、C14、C17に対応している。二点鎖線は、第1判定及び第2判定以外の判定を示している。二点鎖線の矢印は、条件C7、C8、C13に対応している。
 図5において、ECU17は、メンテナンス警告指令部153を備えている。メンテナンス警告指令部153は、リセット再生又は緊急再生が終了した時点から監視待機時間(300秒)の経過後且つ監視実行時間(900秒)の経過前に、差圧ΔP0を監視する。ここで、メンテナンス警告指令部153は、エンジン回転数が高回転数を越えており且つ差圧ΔP0が所定圧力差を越えている状態が所定の圧力異常時間(100秒)以上継続する否かを監視する。ここで、所定圧力差の発生は、フィルタ19の再生が不良であることを示している。メンテナンス警告指令部153は、前記状態が圧力異常時間以上継続する場合に、フィルタ19のメンテナンスを知らせるメンテナンス警告を警告装置15に実行させる。本実施形態では、監視待機時間は300秒であり、監視実行時間は900秒であり、所定の圧力異常時間は100秒である。本実施形態では、警告装置15は、メンテナンス警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。
 図5において、エンジン1は、運転時間等によって灰分堆積量を検出し、その検出結果に基づく対応を実行できる。エンジン1は、灰分堆積量を検出する灰分推定機構150と、灰分過堆積警告指令部154とを備えている。
 灰分過堆積警告指令部154は、灰分堆積量が所定の上限灰分量を越えたときに、灰分の過堆積を知らせる灰分過堆積警告を警告装置15に実行させる。本実施形態では、警告装置15は、灰分過堆積警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。
 図4において、灰分状態は、灰分過堆積の監視状態S11及び灰分過堆積警告S12のいずれか一方を選択する。ここで、灰分状態は、灰分の堆積量に応じて特定される状態である。第1推定機構110が灰分過堆積を検出していない間、灰分状態は、監視状態S11にある。第1推定機構110が灰分過堆積を検出すると、灰分状態が灰分過堆積警告S12に変化する。灰分過堆積警告S12において、灰分過堆積警告指令部154は、灰分過堆積警告を警告装置15に実行させる。
 図5において、エンジン1は、温度センサ及び圧力センサによる異常の検知手段を備えている。この異常検知手段は、センサ自体の異常又はセンサによって検出される対象物の異常を検知する。
 ECU17は、第1異常警告指令部161を備えている。緊急再生の実行中において所定の第1異常監視時間(20分)の間、出口温度センサ35、入口温度センサ34、及び排気温度センサT3の全ての信号値が正常範囲内にあり且つ出口温度T5が活性化温度よりも低い場合に、第1異常警告指令部161は、第1異常発生警告を前記警告装置に実行させる。第1異常発生警告は、フィルタ19の再生における異常の発生を運転者に知らせる警告である。本実施形態では、第1異常監視時間は、20分である。本実施形態では、警告装置15は、第1異常発生警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。
 上述において、信号値が正常範囲内にあることは、センサ自体に異常が発生していないことを示している。正常範囲は、センサの規格によって定まっており、例えば、4~20mVである。
 ECU17は、第2異常警告指令部162を備えている。リセット再生又は緊急再生の実行中において所定の第2異常監視時間(1分)の間、出口温度センサ35の信号値が正常範囲内にあり且つ出口温度T5がフィルタ19の耐熱温度(700℃)よりも高い場合に、第2異常警告指令部162は、第2異常発生警告を警告装置15に実行させる。第2異常発生警告は、フィルタ19における異常高温の発生を運転者に知らせる警告である。本実施形態では、第2異常監視時間は、1分である。本実施形態では、警告装置15は、第2異常発生警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。
 ECU17は、第3異常警告指令部163を備えている。入口温度センサ34の信号値が正常範囲内にあり且つ入口温度T4が所定の許容温度よりも高い場合に、第3異常警告指令部163は、第3異常発生警告を警告装置15に実行させる。第3異常発生警告は、入口温度T4が異常高温であることを運転者に知らせる警告である。入口温度T4が許容温度(650℃)以上であるときに、出口温度T5がフィルタ19の耐熱温度(700℃)を越えると推定されている。本実施形態では、許容温度は、フィルタ19の耐熱温度(700℃)よりも一定の温度幅だけ低い温度である650℃に設定されている。本実施形態では、警告装置15は、第3異常発生警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。
 ECU17は、第4異常警告指令部164を備えている。所定の差圧監視時間の間、差圧センサ40の信号値が正常範囲内にあり且つ差圧ΔP0が連続的に所定差圧を越えている場合、第4異常警告指令部164は、第4異常発生警告を警告装置15に実行させる。第4異常発生警告は、差圧ΔP0における異常の発生を運転者に知らせる警告である。本実施形態では、警告装置15は、第4異常発生警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。
 ECU17は、第5異常警告指令部165を備えている。所定の圧力監視時間の間、エンジン1が停止しており、大気圧センサ41、排気圧力センサ43、及び吸気圧力センサ42の信号値が全て正常範囲内にあり、吸気圧力P2と大気圧P3との第1差圧が所定の第1誤差差圧以上であり、且つ排気圧力P3と大気圧P1との第2差圧が所定の第2誤差差圧以上である場合に、第5異常警告指令部165は、第5異常発生警告を前記警告装置に実行させる。第5異常発生警告は、大気圧センサ41における異常の発生を運転者に知らせる警告である。本実施形態では、警告装置15は、第5異常発生警告に対応するランプを点灯又は点滅させることによって、運転者に警告を実行する。
(変形例)
 本実施形態に係るエンジン1は、次の変形を採用できる。
 エンジン1において、過給機11及びEGR装置は、必須の構成要素ではない。ここで、EGR装置は、EGR管8、EGR弁10、及び熱交換器21からなっている。このため、エンジン1は、過給機11及び/又はEGR装置を備えていなくても良い。
 エンジン1が過給機11及び/又はEGR装置を備えていない場合、吸気温度T2は環境温度T1に概ね等しく、排気温度T3は入口温度T4に概ね等しい。この場合、エンジン1は、環境温度センサ31、排気温度センサ33を備えていなくても良い。また、上述の制御において、入口温度T4が排気温度T3の代わりに用いられる。
 入口温度T4が排気温度T3の代わりに用いられる場合、第1異常警告指令部161は、次のように変更される。緊急再生の実行中において第1異常監視時間の間、出口温度センサ35及び入口温度センサ34の全ての信号値が正常範囲内にあり且つ出口温度T5が酸化触媒20の活性化温度よりも低い場合に、第1異常警告指令部161は、第1異常発生警告を警告装置15に実行させる。
(本実施形態に係るエンジンの効果)
 本実施形態に係るエンジン1は、次の効果を有している。
 エンジン1は、補助再生を実行でき、緊急再生警告、及びPMの過堆積警告を実行できる。補助再生は、ポスト噴射を伴う再生とは異なり、過剰な燃料を消費しない。緊急再生警告は、運転者に緊急再生の必要性を知らせる。PMの過堆積警告は、フィルタ19の破損を招く虞のある過堆積の発生を、運転者に知らせる。このため、エンジン1は、排気ガスの温度を高めるための追加の燃焼(ポスト噴射)を実行する頻度やエンジン回転数を変更する頻度をできるだけ低減しながら、粒子状物質の堆積量の増大を抑制できる。また、エンジン1は、過堆積によるフィルタの破損を防止しやすい。
 補助再生、リセット再生、及び緊急再生において、EGR弁10は閉鎖されている。このため、エンジン1は、再生の実行時に排気ガスの温度が低下することを防止でき、効率的に再生を実行できる。
 エンジン1は、PM排出量とPM酸化量との差に基づいてPM堆積量を推定する第1推定機構110だけでなく、フィルタ19の差圧に基づいてPM堆積量を推定する第2推定機構120を、更に備えている。つまり、PM堆積量が、2つの方式により推定される。このため、粒子状物質の堆積量の検出における信頼性が高められている。
 緊急再生が開始された時点から所定の緊急再生時間以内にPM堆積量が第1上限量よりも低下していない場合に、過堆積警告指令部152は、過堆積警告を警告装置15に実行させる。このため、エンジン1は、緊急再生が不良であった可能性があることを、運転者に知らせることができる。
 緊急再生警告が開始された時点から所定の限界時間以内に緊急再生指令が入力されない場合に、過堆積警告指令部152は、過堆積警告を前記警告装置15に実行させる。このため、エンジン1は、緊急再生が実行されていない可能性があることを、運転者に知らせることができる。
 エンジン1は、メンテナンス警告を警告装置15に実行させるメンテナンス警告指令部153を備えている。エンジン回転数が高回転数を超えており、基本的には、リセット再生又は強制再生によりフィルタ19の堆積が解消されていると推定される。このような状況において、差圧ΔP0が所定圧力差を越えている状態が所定の圧力異常時間以上継続する場合に、メンテナンス警告が出力される。このため、エンジン1は、堆積量が解消されない原因がリセット再生や強制再生の不良ではなくフィルタ19の欠損である可能性があることを、運転者に知らせることができる。
 エンジン1は、灰分推定機構150と、灰分過堆積警告指令部154とを備えている。このため、エンジン1は、フィルタ19を交換する必要があること、又はフィルタ19を洗浄する必要があることを、運転者に知らせることができる。
 エンジン1は、第1異常警告指令部161を備えている。緊急再生では、入口温度T4が活性化温度を超えるように、排気温度T3が上昇させられる。酸化触媒20が活性化している場合、酸化反応により排気ガスが加熱されるので、出口温度T5は入口温度T4よりも高くなる。異常がない場合、出口温度T5は、活性化温度よりも低くなることはない。出口温度T5が活性化温度よりも低い場合、警告が発せられる。このため、エンジン1は、フィルタ19の再生が確実に行われると推定される状況で、実際にはフィルタ19の再生が効果的に行われていないことを、運転者に知らせることができる。特に、異常の原因として酸化触媒20の異常が疑われる。このため、エンジン1は、酸化触媒20に異常が発生した可能性があることを、運転者に知らせることができる。
 エンジン1は、第2異常警告指令部162を備えている。出口温度T5が耐熱温度よりも高い場合、警告が発せられる。このため、エンジン1は、フィルタ19の破損を招く異常高温が発生した可能性があることを、運転者に知らせることができる。特に、異常の原因として、燃料噴射装置13の噴射タイミング不良、又は酸化触媒20の異常な活性化状態の発生が疑われる。このため、エンジン1は、燃料噴射装置13の噴射タイミング不良、又は酸化触媒20の異常な活性化状態が発生した可能性を、運転者に知らせることができる。
 エンジン1は、第3異常警告指令部163を備えている。入口温度T4が許容温度よりも高い場合、警告が発せられる。このため、エンジン1は、酸化触媒20の上流側において異常高温が発生した可能性があることを、運転者に知らせることができる。特に、入口温度T4が許容温度よりも高い場合、出口温度T5が耐熱温度を超える可能性が高い。このため、エンジン1は、フィルタ19が破損する可能性があることを、運転者に知らせることができる。
 エンジン1は、第4異常警告指令部164を備えている。差圧ΔP0が所定差圧差よりも高い場合、警告が発せられる。このため、エンジン1は、フィルタ19に目詰まりが発生した可能性を、運転者に知らせることができる。
 エンジン1は、第5異常警告指令部165を備えている。エンジン1が停止しているとき、センサの誤差の影響を除くと、吸気圧力P2、排気圧力P3、及び大気圧P1は全て等しくなる。第1差圧が第1誤差差圧以上であり且つ第2差圧が第2誤差差圧以上である場合に、警告が発せられる。このため、エンジン1は、大気圧センサ41に異常が発生した可能性があることを、運転者に知らせることができる。
  1 エンジン
  2 吸気管(吸気経路の一部)
  3 吸気マニホールド(吸気経路の一部)
  8 EGR管
  9 吸気弁
 10 EGR弁
 13 燃料噴射装置(第1、第2燃料噴射装置)
 14 回転数入力装置
 15 警告装置
 16 緊急再生指令入力装置
 19 フィルタ
 20 酸化触媒
 40 差圧センサ
110 第1推定機構
120 第2推定機構
131 補助再生制御部
132 リセット再生制御部
133 緊急再生制御部
141 補助再生指令部
142 リセット再生指令部
150 灰分推定機構
151 緊急再生警告指令部
152 過堆積警告指令部
153 メンテナンス警告指令部
154 灰分過堆積警告指令部

Claims (7)

  1.  排気ガス中に含まれる粒子状物質を捕捉するフィルタと、前記フィルタの上流側で前記排気ガス中の窒素酸化物から高活性な二酸化窒素を生成する酸化触媒とを、燃焼室から前記排気ガスを排出する排気経路内に備える、エンジンであって、
     前記燃焼室内に燃料を供給する第1燃料噴射装置と、
     前記燃焼室に吸気ガスを供給する吸気経路の開度を決定する吸気弁と、
     エンジン回転数の目標回転数を指定するための回転数入力装置と、
     前記排気ガスの燃焼によって前記フィルタの温度を上昇させるために、前記フィルタの上流側で前記排気経路内に燃料を供給する第2燃料噴射装置と、
     前記酸化触媒の出口における前記排気ガスの温度である出口温度を検出する出口温度センサと、
     前記酸化触媒の入口における前記排気ガスの温度である入口温度を検出する入口温度センサと、
     運転者への警告を実行する警告装置と、
     前記フィルタにおける前記粒子状物質の堆積量を推定する推定機構と、
     補助再生において、前記目標回転数を変更せず、且つ空気過剰率を小さくするように前記吸気弁を制御する、補助再生制御部と、
     リセット再生において、前記目標回転数を変更せず、前記空気過剰率を小さくするように前記吸気弁を制御し、且つ前記第2燃料噴射装置を作動させる、リセット再生制御部と、
     緊急再生において、前記目標回転数を所定の高回転数に変更し、前記空気過剰率を小さくするように前記吸気弁を制御し、且つ前記第2燃料噴射装置を作動させる、緊急再生制御部と、
     前記堆積量が所定の第1上限量を超えたときに、前記補助再生を前記補助再生制御部に実行させる補助再生指令部と、
     前記補助再生よりも優先して、所定の連続運転時間毎に前記リセット再生を前記リセット再生制御部に実行させる、又は前記補助再生の実行時間が所定の補助再生時間を越えており且つ前記堆積量が前記第1上限量よりも低下していない場合に、前記リセット再生を前記リセット再生制御部に実行させるリセット再生指令部と、
     前記緊急再生制御部に前記緊急再生を実行させるための緊急再生指令を入力する緊急再生指令入力装置と、
     前記堆積量が前記第1上限量よりも大きな第2上限量を超えたときに、前記緊急再生を実行する必要性を運転者に知らせる緊急再生警告を前記警告装置に実行させる緊急再生警告指令部と、
     前記緊急再生の実行中において所定の第1異常監視時間の間、前記出口温度センサ及び前記入口温度センサの全ての信号値が正常範囲内にあり且つ前記出口温度が前記酸化触媒の活性化温度よりも低い場合に、前記フィルタの再生における異常の発生を運転者に知らせる第1異常発生警告を前記警告装置に実行させる第1異常警告指令部と、
     を備えているエンジン。
  2.  請求項1に記載のエンジンであって、
     排気ガスによって駆動される排気タービンと、吸気ガスを圧縮する圧縮機とを有する過給機と、
     前記排気タービンの上流側における前記排気ガスの温度である排気温度を検出する排気温度センサとを、更に備えており、
     前記入口温度は、前記排気タービンの下流側且つ前記酸化触媒の入口における前記排気ガスの温度であり、
     前記緊急再生の実行中において所定の第1異常監視時間の間、前記出口温度センサ、前記入口温度センサ、及び前記排気温度センサの全ての信号値が正常範囲内にあり且つ前記出口温度が前記活性化温度よりも低い場合に、前記第1異常警告指令部は、前記フィルタの再生における異常の発生を運転者に知らせる異常発生警告を前記警告装置に実行させる、エンジン。
  3.  請求項1又は請求項2に記載のエンジンであって、
     前記排気経路を前記吸気経路に接続するEGR管と、
     前記EGR管の開度を決定するEGR弁とを、更に備えており、
     前記補助再生、前記リセット再生、及び前記緊急再生において、前記EGR弁は閉鎖されている、エンジン。
  4.  請求項1から請求項3のいずれか1つに記載のエンジンであって、
     前記リセット再生又は前記緊急再生の実行中において所定の第2異常監視時間の間、前記出口温度センサの信号値が正常範囲内にあり且つ前記出口温度が前記フィルタの耐熱温度よりも高い場合に、前記フィルタにおける異常高温の発生を運転者に知らせる第2異常発生警告を前記警告装置に実行させる第2異常警告指令部を備えている、エンジン。
  5.  請求項1から請求項3のいずれか1つに記載のエンジンであって、
     前記入口温度センサの信号値が正常範囲内にあり且つ前記入口温度が所定の許容温度よりも高い場合に、前記入口温度における異常高温の発生を運転者に知らせる第3異常発生警告を前記警告装置に実行させる第3異常警告指令部を備えており、
     前記入口温度が前記許容温度以上であるときに、前記出口温度が前記フィルタの耐熱温度を越えると推定されている、エンジン。
  6.  請求項1から請求項3のいずれか1つに記載のエンジンであって、
     前記フィルタの入口と出口との間の差圧を検出する差圧検出センサと、
     所定の差圧監視時間の間、前記差圧センサの信号値が正常範囲内にあり且つ前記差圧が連続的に所定差圧を越えている場合、前記差圧における異常の発生を運転者に知らせる第4異常発生警告を前記警告装置に実行させる第4異常警告指令部を備えている、エンジン。
  7.  請求項1から請求項3のいずれか1つに記載のエンジンであって、
     大気圧を検出する大気圧センサと、
     前記燃焼室の前記出口における前記排気ガスの圧力である排気圧力を検出する排気圧力センサと、
     前記燃焼室の入口における前記吸気ガスの圧力である吸気圧力を検出する吸気圧力センサと、を備えており、
     所定の圧力監視時間の間、前記エンジンが停止しており、前記大気圧センサ、前記排気圧力センサ、及び前記吸気圧力センサの信号値が全て正常範囲内にあり、前記吸気圧力と前記大気圧との第1差圧が所定の第1誤差差圧以上であり、且つ前記排気圧力と前記大気圧との第2差圧が所定の第2誤差差圧以上である場合に、前記大気圧センサにおける異常の発生を運転者に知らせる第5異常発生警告を前記警告装置に実行させる第5異常警告指令部を備えている、エンジン。
PCT/JP2012/081388 2011-12-09 2012-12-04 エンジン WO2013084890A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270425 2011-12-09
JP2011270425A JP2013122182A (ja) 2011-12-09 2011-12-09 エンジン

Publications (1)

Publication Number Publication Date
WO2013084890A1 true WO2013084890A1 (ja) 2013-06-13

Family

ID=48574249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081388 WO2013084890A1 (ja) 2011-12-09 2012-12-04 エンジン

Country Status (2)

Country Link
JP (1) JP2013122182A (ja)
WO (1) WO2013084890A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228763B2 (ja) * 2013-07-03 2017-11-08 日野自動車株式会社 異常判定システム及び異常判定方法
JP6169427B2 (ja) 2013-07-10 2017-07-26 日野自動車株式会社 アフターターボキャタリストの異常検知方法
WO2015128970A1 (ja) * 2014-02-26 2015-09-03 株式会社小松製作所 排気ガス浄化装置の異常判定装置、および排気ガス浄化装置の異常判定方法
JP6158126B2 (ja) * 2014-03-20 2017-07-05 ヤンマー株式会社 ハイブリッド式駆動装置
JP6546541B2 (ja) 2016-01-29 2019-07-17 三菱重工エンジン&ターボチャージャ株式会社 排ガス処理装置の再生制御装置
US10871095B2 (en) 2016-06-30 2020-12-22 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Regeneration control device for exhaust gas treatment device
JP7346250B2 (ja) * 2019-11-07 2023-09-19 日野自動車株式会社 内燃機関システムの異常診断装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108194A (ja) * 2002-09-17 2004-04-08 Nissan Diesel Motor Co Ltd 排気浄化装置
JP2004143988A (ja) * 2002-10-23 2004-05-20 Hino Motors Ltd 排気浄化装置
JP2005226574A (ja) * 2004-02-13 2005-08-25 Toyota Motor Corp 排気浄化システムの異常判定装置
JP2006348778A (ja) * 2005-06-14 2006-12-28 Denso Corp 圧力センサの異常診断装置
JP4273911B2 (ja) * 2003-10-07 2009-06-03 三菱ふそうトラック・バス株式会社 車両の排気浄化装置
JP2009533597A (ja) * 2006-04-14 2009-09-17 ルノー・エス・アー・エス 汚染防止システムの再生をモニタする方法および装置
JP2011089454A (ja) * 2009-10-21 2011-05-06 Yanmar Co Ltd ディーゼルエンジン
JP2011179381A (ja) * 2010-02-26 2011-09-15 Iseki & Co Ltd 作業車両
WO2011138928A1 (ja) * 2010-05-07 2011-11-10 ヤンマー株式会社 排気ガス浄化システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108194A (ja) * 2002-09-17 2004-04-08 Nissan Diesel Motor Co Ltd 排気浄化装置
JP2004143988A (ja) * 2002-10-23 2004-05-20 Hino Motors Ltd 排気浄化装置
JP4273911B2 (ja) * 2003-10-07 2009-06-03 三菱ふそうトラック・バス株式会社 車両の排気浄化装置
JP2005226574A (ja) * 2004-02-13 2005-08-25 Toyota Motor Corp 排気浄化システムの異常判定装置
JP2006348778A (ja) * 2005-06-14 2006-12-28 Denso Corp 圧力センサの異常診断装置
JP2009533597A (ja) * 2006-04-14 2009-09-17 ルノー・エス・アー・エス 汚染防止システムの再生をモニタする方法および装置
JP2011089454A (ja) * 2009-10-21 2011-05-06 Yanmar Co Ltd ディーゼルエンジン
JP2011179381A (ja) * 2010-02-26 2011-09-15 Iseki & Co Ltd 作業車両
WO2011138928A1 (ja) * 2010-05-07 2011-11-10 ヤンマー株式会社 排気ガス浄化システム

Also Published As

Publication number Publication date
JP2013122182A (ja) 2013-06-20

Similar Documents

Publication Publication Date Title
WO2013084890A1 (ja) エンジン
US10641155B2 (en) Regeneration control device for exhaust gas treatment device
US8857158B2 (en) Aftertreatment system and control strategy for internal combustion engine
US8001774B2 (en) Control method of exhaust gas purification system and exhaust gas purification system
JP5997031B2 (ja) ディーゼルエンジンの微粒子捕集フィルタを再生するシステム及び方法
JP2015068233A (ja) Dpf再生制御装置
JP2008180190A (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2012127301A (ja) Dpfシステム
JP2010101200A (ja) 排ガス後処理装置及び排ガス後処理方法
JP2015527514A (ja) 異常に頻度が高いディーゼルパティキュレートフィルタ再生を検出する方法、エンジン、排気後処理システム、警告システム及び方法
JP2009257264A (ja) 排気浄化装置
WO2013084889A1 (ja) エンジン
WO2020045091A1 (ja) Dpf再生制御装置及びdpf再生制御方法
US9046026B2 (en) Particulate oxidation catalyst with dual pressure-drop sensors
JP5673065B2 (ja) Dpfシステム
JP4687663B2 (ja) 排気再循環装置の異常診断装置
JP5931328B2 (ja) エンジンの排ガス浄化装置および浄化方法
JP2007211788A (ja) 内燃機関の排ガス浄化装置
JP2020180559A (ja) 再生制御装置
JP5828578B2 (ja) 排気ガス浄化システム
JP3985098B2 (ja) エンジンの制御装置
JP4734340B2 (ja) 自動車用ディーゼルエンジンの粒子フィルタの再生過程の中止方法及び装置
JP2009287456A (ja) 排気絞り弁の故障診断装置
JP2008232073A (ja) 排気浄化装置
JP4779563B2 (ja) 内燃機関の触媒劣化診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855509

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855509

Country of ref document: EP

Kind code of ref document: A1