WO2013084760A1 - フッ素樹脂繊維を含んでなるフッ素樹脂系シートおよびその製造方法 - Google Patents

フッ素樹脂繊維を含んでなるフッ素樹脂系シートおよびその製造方法 Download PDF

Info

Publication number
WO2013084760A1
WO2013084760A1 PCT/JP2012/080674 JP2012080674W WO2013084760A1 WO 2013084760 A1 WO2013084760 A1 WO 2013084760A1 JP 2012080674 W JP2012080674 W JP 2012080674W WO 2013084760 A1 WO2013084760 A1 WO 2013084760A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
fiber
fibers
ptfe
sheet
Prior art date
Application number
PCT/JP2012/080674
Other languages
English (en)
French (fr)
Inventor
善宏 瀬戸口
学 本居
大 佐藤
和明 辻
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Priority to CN201280058769.8A priority Critical patent/CN103987886B/zh
Priority to JP2013548189A priority patent/JP5940092B2/ja
Publication of WO2013084760A1 publication Critical patent/WO2013084760A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • the present invention uses a fiber made of only polytetrafluoroethylene [PTFE] or a fiber containing PTFE and a fluororesin other than PTFE (both are collectively referred to as “fluororesin fiber”).
  • PTFE polytetrafluoroethylene
  • fluororesin fiber a fiber made of only polytetrafluoroethylene [PTFE] or a fiber containing PTFE and a fluororesin other than PTFE (both are collectively referred to as “fluororesin fiber”).
  • PTFE has excellent chemical resistance, heat resistance, electrical insulation, and has characteristics such as self-lubrication and non-adhesiveness, so it is widely used not only in the industrial field but also in the field of daily life. Has been.
  • these characteristics indicate the difficulty in processing PTFE. That is, PTFE is classified as a thermoplastic resin, but unlike general plastics such as polyethylene, vinyl chloride resin, etc., it does not exhibit fluidity even when heated to 327 ° C. or higher, which becomes an amorphous state. Screw extrusion, injection molding, rolling molding, etc. in a heated state cannot be applied.
  • the processing method of PTFE developed so far is similar to the method of powder metallurgy, for example, a method in which PTFE is press-molded near room temperature and heated to 327 ° C or higher; this (sintered body) ) Is further formed by mechanical cutting, heat coining, etc .; a liquid lubricant is mixed with PTFE powder, this is extruded with a ram type extruder, dried and sintered to produce pipes and tubes;
  • Examples of the method of covering the wire include a method of coating the base material by coating, dipping, etc. using an aqueous suspension of PTFE resin, followed by sintering.
  • Patent Document 1 discloses a method for producing nanofibers as shown in FIG. 1 by spinning from a PTFE-dispersed aqueous solution containing polyethylene oxide [PEO] by electrospinning and then removing PEO simultaneously with firing.
  • the fiber diameter, basis weight, and the like can be adjusted according to the solution conditions and spinning conditions, and the fibers can be oriented by using a special device.
  • the composite of the materials is easy, and nanofibers having a uniform fiber diameter with a high aspect ratio can be manufactured.
  • the minimum fiber diameter is about 500 nm.
  • Patent Document 2 discloses a nonwoven fabric in which ultrafine fibers having a fiber diameter of 0.001 to 1 ⁇ m formed by an electrospinning method and ultrafine fibers having a fiber diameter of 2 to 25 ⁇ m formed by a melt blow method are mixed, Polyvinylidene fluoride [PVDF] is cited as a fluorine-based resin constituting the ultrafine fiber formed by the electrostatic spinning method (paragraph [0019]).
  • PVDF Polyvinylidene fluoride
  • Patent Document 3 discloses an apparatus capable of preventing interference between adjacent nozzles and simultaneously depositing different polymer solutions in a multi-nozzle type electrodeposition method (electrospinning method). Has been. The polymer web produced by such an apparatus is not connected even if the fibers are entangled with each other.
  • Patent Document 4 a polymer substance is dissolved in a solvent in one rotating container in which a plurality of types of small holes having different diameters are formed on the outer peripheral portion or in a plurality of rotating containers that are concentrically integrated. Supplying the polymer solution, rotating the rotating container and charging the polymer solution flowing out of the small hole with electric charge, and stretching the polymer solution flowing out of the small hole by electrostatic explosion caused by centrifugal force and evaporation of the solvent And a process for producing nanofibers made of a polymer substance.
  • a polymer web formed by mixing or laminating a plurality of types of nanofibers having different physical properties can be produced, but there is no aspect in which fibers having different physical properties are connected.
  • an unsintered tetrafluoroethylene resin that is, PTFE
  • a liquid lubricant is formed by extrusion and / or rolling, and then stretched in at least one direction in an unsintered state.
  • a method for producing a porous structure (FIG. 2) that is heated to about 327 ° C. or higher in a state is disclosed.
  • Unsintered tetrafluoroethylene resin becomes a fine fibrous structure when subjected to a shearing force, such as when it is extruded from a die in the extrusion process, when it is rolled with a roll, or when it is vigorously stirred. Tend.
  • Resins containing liquid lubricants are more easily fiberized (page 2, right column, lines 9-13).
  • nodes of thick blocks also referred to as “nodules”
  • fibrils of thin fibers are mixed, the fiber diameter of the nodes is several ⁇ m to 1 ⁇ m, and the fiber diameter of the fibrils is about 100 nm. is there.
  • fiber orientation is possible by a stretching treatment and a heat treatment.
  • Patent Document 6 discloses a polytetrafluoroethylene porous body having a fine fibrous structure composed of fibers and nodules connected to each other by the fibers, and this PTFE porous body has a three-dimensional network shape. There are short portions of continuous fibers.
  • a liquid lubricant is mixed into a PTFE green powder, extruded, rolled, and formed into a desired shape.
  • the liquid lubricant may or may not be removed from the obtained molded body, and when it is stretched at least in a uniaxial direction, a PTFE porous material having a fine fibrous structure composed of fibers and knots connected to each other by the fibers The body is formed.
  • a fiber assembly is formed by an electrospinning method from a spinning solution containing polyvinylidene fluoride [PVDF], a polyvinylidene fluoride-hexafluoropropylene copolymer (paragraph [0016]), and the like.
  • PVDF polyvinylidene fluoride
  • paragraph [0016] polyvinylidene fluoride-hexafluoropropylene copolymer
  • Patent Document 8 discloses a method for producing a continuous filament composed of nanofibers preferably having a fiber diameter of 500 nm or less using an electrospinning method in a continuous process.
  • Specific polymers constituting such nanofibers are exemplified by poly ( ⁇ -caprolacton) polymer (Example 1), polyurethane resin (Example 2), and nylon 6-resin (Example 3). Has been.
  • a continuous filament composed of nanofibers having a fiber diameter of 500 nm or less is preferably produced by a continuous process from a polymer spinning solution containing nylon resin (Example 1) using an electrospinning method. A method is disclosed.
  • Patent Document 10 discloses that a wholly aromatic polyamide fiber is formed at the intersection of fibers by irradiating a wet fiber web composed of a fibril-containing wholly aromatic polyamide fiber and a polyester resin fiber with no infrared pressure.
  • a wet nonwoven fabric is disclosed which is fixed by a polyester resin solidified in a non-fiber state. Further, it is described that PTFE can be used in place of the wholly aromatic polyamide fiber (paragraph [0032]), but is not specifically shown in Examples or the like.
  • the sheet-like filter that combines the excellent properties of PTFE (water repellency, heat resistance, chemical resistance, sound permeability, etc.) with a high specific surface area. There is room for further improvement.
  • An object of the present invention is to provide a fluororesin-based sheet comprising PTFE fibers, in which filter performance and the like are remarkably improved as compared with conventional ones.
  • the inventors of the present invention after pressing the fluororesin fiber sheet made of PTFE fiber obtained by the method described in Patent Document 1 in a 360 ° C. electric furnace while generating stress in the press vertical direction The surface was observed with a scanning electron microscope [SEM] at room temperature and normal pressure after being taken out from the electric furnace.
  • SEM scanning electron microscope
  • the fluororesin fiber sheet (a0) subjected to heating / pressurizing treatment was used.
  • the thick fibers (main fibers) that were the original PTFE fibers that existed in the inside
  • thin fibers (subfibers) that were not found in the original fluororesin fiber sheet (a0) were heated and pressurized.
  • the fluororesin-based sheet of the present invention comprises a main fiber and a sub fiber having a fiber diameter smaller than the fiber diameter of the main fiber, and the sub fiber crosslinks within the same main fiber and / or between different main fibers.
  • a nodule is not formed at the cross-linking point, and the main fiber and the sub fiber are made of a fluororesin fiber containing polytetrafluoroethylene [PTFE].
  • the fiber diameter of the main fiber is 100 nm or more and 50 ⁇ m or less, and the fiber diameter of the sub fiber is preferably 10 nm or more and less than 1 ⁇ m from the viewpoint of strength, air permeability, filter performance, and the like.
  • the fluororesin fiber is composed only of PTFE in terms of characteristics (water repellency, heat resistance, chemical resistance, sound permeability, etc.) and performance (filter performance) of the obtained fluororesin sheet.
  • the fluororesin fiber is not only PTFE but also tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer [PFA], tetrafluoroethylene-hexafluoropropylene copolymer [FEP], tetrafluoroethylene-hexa.
  • the method for producing a fluororesin-based sheet of the present invention is characterized in that the subfibers are generated by generating stress in at least two directions in a heated state with respect to a fluororesin fiber sheet made of fluororesin fibers. To do.
  • the temperature under the above heating is usually 50 ° C. or more and 400 ° C. or less, preferably 180 ° C. or more and 400 ° C.
  • the above-mentioned stress is a compression stress and a shear stress of 0.05 kg / cm 2 or more and 10 kg / cm 2 or less, and the secondary fibers having a desired thickness are uniformly spread between the main fibers, and the main fibers Nodule is not generated at the cross-linking (joining) site between the selenium and the secondary fiber, and the above properties and performance are excellent.
  • the temperature under the above heating eg, in an electric furnace
  • the temperature under the above heating is completely melted to change the fiber shape.
  • conditions are preferred so as not lost, for example, usually 50 ° C. or higher 360 ° C. or less, preferably not more than 360 ° C. 0.99 ° C. or higher
  • the stress is at 0.01 kg / cm 2 or more 20 kg / cm 2 or less of compressive stress and shear stress It is preferable from the viewpoint of fiber shape stability.
  • the fluororesin-based sheet of the present invention contains PTFE alone (PTFE: 100% by weight) or at least PTFE as a fiber (PTFE content: usually 50% by weight or more and less than 100% by weight, preferably 80% by weight) (Below 100% by weight) Therefore, the PTFE exhibits various properties (water repellency, heat resistance, chemical resistance, sound permeability, etc.) that are potentially possessed, and at the same time, the secondary fiber is a nanofiber. The characteristic which it has can be exhibited. In particular, when the fiber diameter of the secondary fiber is around 100 nm, the filter performance is remarkably high.
  • the main fiber and the sub-fiber are integrated, so that mainly the strength derived from the main fiber and the nanofiber characteristics derived from the sub-fiber can be achieved, and the fibers are separated from each other. Since it is difficult to occur, the composite stability is high.
  • the fluororesin-based sheet of the present invention exhibits isotropic physical properties because subfibers are randomly generated between randomly arranged main fibers.
  • seat which shows an anisotropic physical property value can also be manufactured by using the sheet
  • the fiber diameter of the secondary fiber to be generated and the density of the secondary fiber are determined depending on the molten state of the resin constituting the fiber and the stress in two directions (that is, the sheet pressing direction and its perpendicular Direction). For example, the fiber diameter increases as the resin melt ratio increases, and the fiber density tends to increase as the stress increases.
  • FIG. 1 shows an image obtained by enlarging the surface of the PTFE mat disclosed in Patent Document 1 to 1,000 times by SEM. According to FIG. 1, it can be seen that only fibers having a fiber diameter of 500 nm or more are observed.
  • FIG. 2 shows an image obtained by enlarging the surface of the porous structure made of PTFE disclosed in Patent Document 5 to 1,000 times by SEM. According to FIG. 2, it can be seen that there are many nodules (nodes of thick chunks) and the direction of the nodules is constant.
  • FIG. 3 shows an image magnified 5,000 times by SEM of the surface of the fluororesin-based sheet produced in Example 2. According to FIG. 3, it can be seen that a fluororesin-based sheet (a composite of a main fiber and a sub fiber having a fiber diameter smaller than that of the main fiber) in which the sub fiber is generated is obtained.
  • the fluororesin-based sheet of the present invention is obtained through a specific process using fibers made only of PTFE (PTFE single fibers) or fibers containing PTFE and a fluororesin other than PTFE (fluororesin fibers).
  • a sheet preferably a sheet obtained by the production method of the present invention, for example, as shown in an image magnified 5,000 times that in Example 2 in FIG.
  • the sub-fibers have a fiber diameter smaller than the diameter, and the sub-fibers can also be expressed as “cross-link” (or “connect”) within the same main fiber and / or between different main fibers. This is a mode different from “entanglement”, and it can be said that a side chain is bridged over the main chain of the polymer.) However, a nodule is not formed at the cross-linking point.
  • fluororesin fibers fibers made only of PTFE, or fibers comprising PTFE and a fluororesin other than PTFE are collectively referred to as “fluororesin fibers”, and a sheet using this fluororesin fiber by a conventionally known method is used. What is molded into a shape is called a “fluororesin fiber sheet”, and what is obtained through a specific process using this fluororesin fiber sheet is called a “fluororesin-based sheet” (that is, the fluororesin-based sheet of the present invention). .
  • the fluororesin fiber sheet is also referred to as “fluororesin fiber sheet (a0)”, and is obtained through a specific process using this fluororesin fiber sheet (a0). This is also referred to as “fluororesin-based sheet (a1)”.
  • the fluororesin fiber sheet is a fiber composed of PTFE and a fluororesin other than PTFE
  • the fluororesin fiber sheet is also referred to as “fluororesin fiber sheet (b0)” and specified using this fluororesin fiber sheet (b0). What is obtained through this step is also referred to as “fluororesin-based sheet (b1)”.
  • the fiber diameter of each of the main fiber and the secondary fiber is usually the main fiber, considering the strength, particle trapping performance, stability, etc. It is preferably 100 nm or more and 50 ⁇ m or less, and the secondary fiber is preferably 10 nm or more and less than 1 ⁇ m, more preferably the main fiber is 500 nm or more and 1 ⁇ m or less, the secondary fiber is 30 nm or more and 300 nm or less, and further preferably the secondary fiber is 30 nm. It is 100 nm or less.
  • “fiber diameter” is all measured by a method of measuring using an image by SEM, and means an average value.
  • this average value is obtained by randomly selecting a region for SEM observation with respect to the fluororesin-based sheet to be measured, and subjecting this region to SEM observation (magnification: 10,000 times). It is a value calculated based on the measurement results of these fluororesin fibers selected from fluororesin fibers.
  • the fiber diameter of the secondary fiber is 300 nm or less, the air resistance is extremely reduced, the “slip flow effect” is exhibited, the specific surface area is extremely increased, and the supramolecular alignment effect is obtained. It is suitable when the fluororesin-based sheet of the present invention is used for applications such as filters.
  • an SEM observation region is selected for the fluororesin-based sheet to be measured, and this region is subjected to SEM observation (magnification 5,000 times). It is calculated by calculating
  • the above fibers include tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer [PFA] (for example, “Dyneon® PFA” (trade name) manufactured by Sumitomo 3M Limited) and “Fluon” manufactured by Asahi Glass Co., Ltd.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PTFE When the fiber is composed of PTFE and the “other fluororesin” other than PTFE, PTFE is preferably contained in an amount of 50% by weight or more (however, the total of PTFE and the other fluororesin is 100% by weight). %). When the PTFE is less than 50% by weight, in the production method described later, the other fluororesin may be eluted in a heated state and cannot be molded as a sheet.
  • the method for producing a fluororesin-based sheet of the present invention preferably includes the following steps (i) to (iv), and particularly includes the following step (iii).
  • a fluororesin fiber (that is, the main fiber) is produced by an electrospinning method; As step (ii), this fluororesin fiber is formed into a sheet (that is, fluororesin fiber sheets (a0) and (b0) are produced); As step (iii), in a heated state (eg in an electric furnace), the sheet is subjected to stress in at least two directions (preferably compressive stress and shear stress perpendicular to the compressive stress); and step (iv) ), The fluororesin-based sheets (a1) and (b1) in which the auxiliary fibers are generated are produced by releasing the pressure after cooling under this pressure.
  • a raw sheet made of main fibers and having no sub fibers is pressurized in a heating furnace (eg, an electric furnace), and stress is applied in at least two directions, so that the outer surface of each main fiber is applied.
  • the resulting partial resin eg, resin constituting the main fiber such as PTFE
  • the elastic restoring force of the main fiber contained in the sheet or the sheet As a result, the distance between the main fibers is widened, so that the natto yarns extend between the adjacent main fiber surfaces, so that the secondary fibers that connect the main fibers are generated and extended.
  • the produced subfibers are also solidified, and as a result, subfibers thinner than the main fibers are formed so as to bridge the main fibers.
  • auxiliary fibers thinner than the main fibers are further crosslinked so as to bridge between the main fibers and the auxiliary fibers and / or between the auxiliary fibers and the auxiliary fibers. Also good.
  • an external force (external force) that acts on the fluororesin sheet is referred to as a “load”, and when a load acts on the fluororesin sheet, an internal force that resists the load and keeps balance inside the sheet. “Stress”. The stress is equal to the load and the direction is opposite.
  • step (i) for example, the method described in Patent Document 1 (US Patent Publication No. 2010/0193999 A1) can be used.
  • the temperature in the electric furnace for ensuring the heating conditions is usually 50 ° C. or more and 400 ° C., preferably 180 ° C. or more and 400 ° C. or less in the fluororesin fiber sheet (a0) made of PTFE single fiber. More preferably, it is 270 ° C. or higher and 380 ° C. or lower, and further preferably 320 ° C. or higher and 380 ° C. or lower.
  • Compressive stress is usually 0.01 kg / cm 2 or more 10 kg / cm 2 or less, preferably 0.05 kg / cm 2 or more 1 kg / cm 2 or less, more preferably 0.05 kg / cm 2 or more 0.40 kg / cm 2 or less More preferably, it is 0.10 kg / cm 2 or more and 0.40 kg / cm 2 or less.
  • the secondary fibers of the desired thickness are uniformly spread between the main fibers, and no nodules are generated at the cross-linking (joining) sites between the main fibers and the secondary fibers. It is preferable because of its excellent characteristics and performance.
  • the temperature under the above heating is such that the thick fibers (main fibers) are on the surface. It is preferable that the fiber is melted only and completely melted to the inside thereof, and the fiber shape is not lost, for example, usually 50 ° C. or higher and 360 ° C. or lower, preferably 150 ° C. or higher and 360 ° C. or lower, and the compressive stress is 0.01 kg / cm 2 or more and 20 kg / cm 2 or less. It is preferable in terms of fiber shape stability that the temperature and stress are within the above ranges.
  • step (iii) in order to generate stress in at least two directions, for example, the fluororesin fiber sheet is sandwiched between a pair of stainless steel plates and weighted, and at least one of the stainless steel plates is shifted horizontally and the rotational speed is different.
  • seat between the rolls of a book, the aspect (iron system) to which a flat plate is moved horizontally while applying a weight, etc. are mentioned, this invention is not limited to these aspects.
  • the mechanism by which the secondary fiber is generated by the production method of the present invention can be estimated as follows.
  • Part 1 After the main fibers contact with each other in step (iii), when the main fibers are released from the load and separated from each other in step (iv), a resin (for example, PTFE) on the surface of some main fibers is natto yarn.
  • the sub-fibers are generated by pulling and pulling the yarn so that the fiber stretches.
  • the main fibers are preferably made into fine fibers by shearing force.
  • PTFE is known to form fibrils by shearing force (for example, paragraph [0016] of Japanese Patent Application Laid-Open No. 2004-154652, etc.), and a weak shearing force acts in the release process of pressurization. Although it is not such a molded article, it is considered that fibrils (subfibers) were formed.
  • the fluororesin-based sheet of the present invention is suitable for filter applications.
  • Specific examples of the filter include an air filter and a vent filter.
  • Example 1 A fluororesin fiber sheet made of PTFE fibers made by an existing electrospinning method and made of PTFE fibers with a length of 10 cm, a width of 10 cm, a thickness of 65.7 ⁇ m, a weight of 18.6 mg, and an average fiber diameter of 1 ⁇ m is sandwiched between a pair of stainless plates, and 6 kg by a mold.
  • the mold lower part and the lower stainless plate are held in a fixed state so that shear stress is generated in the direction perpendicular to the compressive stress with respect to the fluororesin fiber sheet.
  • Example 5 a fluororesin-based sheet was produced in the same manner as in Example 4 except that the temperature of the electric furnace was changed to 100 ° C., and the presence or absence of secondary fibers was confirmed. The results are shown in Table 1.
  • Example 6 In Example 4, a fluororesin-based sheet was produced in the same manner as in Example 4 except that the temperature of the electric furnace was changed to 150 ° C., and the presence or absence of secondary fibers was confirmed. The results are shown in Table 1.
  • Example 1 a fluororesin-based sheet was produced in the same manner as in Example 1 except that no load and shear stress were generated, and the presence or absence of secondary fibers was confirmed. The results are shown in Table 1.
  • Example 3 a fluororesin-based sheet was produced in the same manner as in Example 3 except that no shear stress was generated, and the presence or absence of secondary fibers was confirmed. The results are shown in Table 1.
  • Example 4 a fluororesin-based sheet was produced in the same manner as in Example 4 except that the temperature of the electric furnace was changed to 25 ° C., and the presence or absence of secondary fibers was confirmed. The results are shown in Table 1.
  • the thickness of the fluororesin-based sheet was measured with a LIMETASIC VL-50 (manufactured by Mitutoyo Corporation) which is a micrometer.
  • a dumbbell-shaped test piece having a center width of 5 mm was punched out using a micro dumbbell, and the width (using calipers) and thickness (using “LITEMATIC VL-50A” manufactured by Mitutoyo Corporation) were precisely weighed.
  • the test piece was attached to a tensile tester so that the length between the grips was 25 mm, and was pulled at a crosshead speed of 20 mm / min, and the maximum stress was obtained from the maximum load when the test piece was broken.
  • the bubble point pore diameter indicates the maximum pore diameter of the fluororesin-based sheet, and was calculated by a bubble point method (ASTM F316-86).
  • Galwick (15.9 dyn / cm) was used as the immersion liquid.
  • a fluororesin-based sheet that is well immersed in a liquid exhibits the same characteristics as a capillary filled with liquid, overcomes the surface tension of the liquid in the capillary, and measures the pressure that pushes the liquid out of the pore. It can be calculated.
  • the bubble point pore diameter d [m] is calculated from the following bubble point formula.
  • 4 ⁇ cos ⁇ / ⁇ P
  • represents the contact angle between the fluororesin-based sheet and the liquid
  • ⁇ [N / m] represents the surface tension of the liquid
  • ⁇ P represents the bubble point pressure.
  • Average flow diameter / average flow diameter pressure The average flow diameter was determined by the half dry method of ASTM E1294-89. For measurement, Galwick (15.9 dyn / cm) was used as the immersion liquid.
  • the half-dry method is a half-slope curve (Half Dry Curve) of the fluororesin-based sheet (Wet Curve) in a well-immersed liquid and a dry sample (Dry Curve). ) At the intersection (mean flow diameter pressure), and substitute this into the bubble point formula to find the average flow diameter.
  • the particle collection rate was measured in accordance with JIS B 9908 as the particle capture rate of the fluororesin-based sheet.
  • the fluororesin-based sheet having a size of 100 mm ⁇ 100 mm obtained in Example 3 and Comparative Examples 1 and 2 was used, and atmospheric dust (with a particle diameter of 0.15 ⁇ m to 10 ⁇ m was used as measurement dust).
  • the air flow rate was 14.8 cm / s.
  • Example 1 to 3 the temperature in the electric furnace was set to 360 ° C., but it was confirmed that secondary fibers were generated even at 300 ° C. In Examples 1 to 3, the temperature at which stress was applied in two directions was set at 360 ° C., but it was confirmed that secondary fibers were also generated when stress was applied after cooling to 180 ° C.
  • the fluororesin-based sheet of the present invention retains excellent water repellency, heat resistance, chemical resistance, sound permeability, etc. derived from PTFE, and has a remarkably large fiber specific surface area. Therefore, it is used for filters such as air filters. Is preferred.

Abstract

 本発明は、フィルタ性能等が格段に向上したフッ素樹脂系シートを提供することを目的としており、該フッ素樹脂系シートは、主繊維と主繊維の繊維径より小さい繊維径を有する副繊維とからなり、同じ主繊維内および/または異なる主繊維間を該副繊維が架橋しており、その架橋点に結節が形成されておらず、該主繊維および該副繊維が、ポリテトラフルオロエチレン〔PTFE〕を含むフッ素樹脂繊維からなることを特徴とする。

Description

フッ素樹脂繊維を含んでなるフッ素樹脂系シートおよびその製造方法
 本発明は、ポリテトラフルオロエチレン〔PTFE〕のみからなる繊維、または、PTFEとPTFE以外のフッ素樹脂とを含んでなる繊維(両者をまとめて「フッ素樹脂繊維」ともいう。)を用いて、特定の工程を経て得られたフッ素樹脂系シートおよびその製造方法に関する。
 PTFEは、優れた耐薬品性、耐熱性、電気絶縁性を備え、さらに自己潤滑性、非粘着性等の特性を有することから、工業的分野のみならず、日常生活の分野においても広範に使用されている。しかしながら反面これら特性は、PTFEの加工の困難さを示している。すなわち、PTFEは熱可塑性樹脂に分類されるものであるが、一般のプラスチック、例えばポリエチレン、塩化ビニル樹脂等と異なり、非結晶状態となる327℃以上に加熱されても流動性を示さず、従って加熱状態でのスクリュ押出、射出成形、圧延成形等が適用できない。また、PTFE溶液を調製して基材表面に塗布したり、基材の被覆を行おうとしたりしても適当な溶媒が存在せず、また、PTFE成形体を相手基材と接着しようとしても直接の接着を可能にする接着剤も未だ発見されていない。また、PTFE同士あるいはPTFEと他の樹脂等との加熱融着は可能ではあるが、強力な加圧を必要とし、他のプラスチックのように容易に接合することもできない。
 現在までに開発されたPTFEの加工法は粉末冶金の方法に類似し、例えば、PTFEを室温付近にて加圧成形したものを327℃以上に加熱して焼結する方法;これ(焼結体)をさらに機械切削や加熱コイニング等で成形する方法;PTFE粉末に液状潤滑剤を混和し、これをラム式押出機にて押出成形した後、乾燥、焼結を行ってパイプ・チューブの製造や電線被覆を行う方法;PTFE系樹脂の水性懸濁液を用いて塗布、浸漬等により基材を被覆した後、焼結する方法などが挙げられる。
 また、PTFEを極細繊維(「ナノファイバー」または「ナノ繊維」ともいう。)に加工する場合、特許文献1~4,7~10に記載されているような電界紡糸法(「エレクトロスピニング法」「エレクトロデポジション法」「静電紡糸法」もしくは「電気紡糸法」ともいう。)、あるいは、特許文献5,6に記載されているような延伸法を用いることができる。
 特許文献1には、ポリエチレンオキシド〔PEO〕を含有するPTFE分散水溶液から電界紡糸法により紡糸した後、焼成と同時にPEOを除去することによって、図1に示すようなナノ繊維を製造する方法が開示されている。特許文献1に記載の製造方法によると、溶液条件、紡糸条件により繊維径、目付け等を調整することができ、特殊装置を用いることで繊維を配向させることも可能である。また材料の複合化が容易であり、高アスペクト比の均一な繊維径を有するナノ繊維を製造することができる。ただし、最小の繊維径は500nm程度が限界である。
 特許文献2には、静電紡糸法により形成された繊維径0.001~1μmの超極細繊維と、メルトブロー法により形成された繊維径2~25μmの極細繊維とが混在する不織布が開示されており、静電紡糸法により形成された超極細繊維を構成するフッ素系樹脂としてポリフッ化ビニリデン〔PVDF〕が挙げられている(段落[0019])。
 特許文献3には、マルチノズル型のエレクトロデポジション法(エレクトロスピニング法)において、隣り合うノズル間の干渉を防止することができ、さらに異なる高分子溶液を同時にデポジションすることができる装置が開示されている。このような装置により製造される高分子ウェブは、繊維が互いに絡まることがあっても、繋がることはない。
 特許文献4には、外周部に径の異なる複数種類の小穴がそれぞれ複数形成された一つの回転容器または同心状に一体結合された複数の回転容器内に、高分子物質を溶媒に溶解させた高分子溶液を供給する工程と、回転容器を回転するとともに小穴から流出する高分子溶液に電荷を帯電させ、小穴から流出した高分子溶液を遠心力と溶媒の蒸発に伴う静電爆発にて延伸させて高分子物質からなるナノファイバーを生成する工程とを有する製造方法が開示されている。当該製造方法によると、物性の異なる複数種類のナノファイバーを混合または積層して堆積してなる高分子ウェブを製造することができるが、物性の異なる繊維どうしが繋がる態様は存在しない。
 特許文献5には、液状潤滑剤を含む未焼結の4弗化エチレン樹脂(すなわちPTFE)混和物を押出および/または圧延にて成形した後、未焼結状態にて少なくとも一方向に延伸した状態で約327℃以上に加熱する多孔性構造物(図2)の製造方法が開示されている。未焼結の4弗化エチレン樹脂は、押出工程でダイから押出される時やロールで圧延される時や烈しく攪拌を受けた時のように剪断力を受けると、微細な繊維状組織となる傾向がある。液状潤滑剤を含む樹脂はさらに容易に繊維状化する(第2頁右欄9~13行目)。図2に示すように、太い塊のノード(「結節」ともいう。)と細い繊維のフィブリルが混在しており、ノードの繊維径は数μm~1μmであり、フィブリルの繊維径は約100nmである。特許文献5に記載の製造方法によると、延伸処理および加熱処理により、繊維の配向は可能である。
 特許文献6には、繊維と該繊維によって互いに連結された結節とからなる微細繊維状組織を有するポリテトラフルオロエチレン多孔質体が開示されており、このPTFE多孔質体には網目状に三次元的に連続している繊維の短い部分が存在する。特許文献6には、PTFE多孔質体の製造方法として、先ずPTFE未焼結粉末に液状潤滑剤を混和し、押出し、圧延等により所望の形状に成形する。次に得られた成形体から液状潤滑剤を除去してもしなくてもよく、少なくとも一軸方向に延伸すると、繊維と該繊維によって互いに連結された結節とからなる微細繊維状組織を有するPTFE多孔質体が形成される。
 特許文献7には、ポリフッ化ビニリデン〔PVDF〕やポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(段落[0016])等を含有する紡糸溶液から静電紡糸法により繊維集合体を形成した後、この繊維集合体を一方向に延伸処理することによって、一方向に繊維が再配向した繊維シートを製造する方法が開示されている。
 特許文献8には、エレクトロスピニング方式を用いて、好ましくは繊維径が500nm以下のナノ繊維からなる連続状フィラメントを連続工程により製造する方法が開示されている。このようなナノ繊維を構成する具体的な高分子として、ポリ(ε-カプローラークトン)高分子(実施例1)、ポリウレタン樹脂(実施例2)、ナイロン6-樹脂(実施例3)が例示されている。
 特許文献9には、ナイロン樹脂を含有する高分子紡糸溶液(実施例1等)から電気紡糸方式を用いて、好ましくは繊維径が500nm以下のナノ繊維からなる連続状フィラメントを連続工程により製造する方法が開示されている。
 特許文献10には、フィブリルを有する全芳香族ポリアミド繊維とポリエステル樹脂繊維とからなる湿式繊維ウェブに対して非加圧下で赤外線を照射することによって、該全芳香族ポリアミド繊維が、その繊維交点に非繊維状態で凝固したポリエステル樹脂によって固定されている湿式不織布が開示されている。また、該全芳香族ポリアミド繊維の代わりにPTFEを用いることができる旨記載されている(段落[0032])が、実施例等において具体的に示されてはいない。
 フッ素樹脂繊維からなるフッ素樹脂繊維シートにおいて、いずれにしろ、PTFEの優れた特性(撥水性、耐熱性、耐薬品性、通音性等)と高い比表面積とを両立させたシート状フィルタについては、更なる改善の余地が認められる。
米国特開2010/0193999 A1号公報 特開2009-057655号公報 特開2009-024293号公報 特開2009-097112号公報 特公昭42-13560号公報 特開平4-353534号公報 特開2005-097753号公報 特表2007-518891号公報 特表2008-519175号公報 特開2005-159283号公報
 本発明は、従来のものと比較してフィルタ性能等が格段に向上した、PTFE繊維を含んでなるフッ素樹脂系シートを提供することを目的とする。
 本発明者らは、特許文献1に記載の方法で得られたPTFE繊維からなるフッ素樹脂繊維シートを、360℃の電気炉の中でプレスしつつ、該プレス垂直方向に応力を発生させた後、電気炉から取り出して常温・常圧下にてその表面を走査型電子顕微鏡〔SEM〕で観察したところ、例えば図3に示すように、加熱・加圧処理に供されたフッ素樹脂繊維シート(a0)中に存在していた元のPTFE繊維である太い繊維(主繊維)の他に、元のフッ素樹脂繊維シート(a0)中には見られなかった細い繊維(副繊維)が加熱・加圧処理後のフッ素樹脂系シート(a1)には新たに発生しており、しかも、加熱・加圧処理後のフッ素樹脂系シート(a1)では、太い繊維(主繊維)どうしを、新たに生じた細い繊維(副繊維)が結節(またはノード)の無い状態で架橋しており、一部細い繊維同士の、結節の無い状態での架橋も存在していることなどを見出し、本発明の完成に至った。
 すなわち、本発明のフッ素樹脂系シートは、主繊維と主繊維の繊維径より小さい繊維径を有する副繊維とからなり、同じ主繊維内および/または異なる主繊維間を該副繊維が架橋しており、その架橋点に結節が形成されておらず、該主繊維および該副繊維が、ポリテトラフルオロエチレン〔PTFE〕を含むフッ素樹脂繊維からなることを特徴とする。
 上記主繊維の繊維径は100nm以上50μm以下であり、上記副繊維の繊維径が10nm以上1μm未満であることが、強度、通気性、フィルタ性能等の点で好ましい。
 上記フッ素樹脂繊維は、PTFEのみからなることが、得られるフッ素樹脂系シートの特性(撥水性、耐熱性、耐薬品性、通音性等)、性能(フィルタ性能)などの点で好ましい。また、本発明では、上記フッ素樹脂繊維が、PTFE以外に、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体〔PFA〕,テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体〔FEP〕,テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体〔EPE〕,ポリ(クロロトリフルオロエチレン)〔PCTFE〕,テトラフルオロエチレン-エチレン共重合体〔ETFE〕,低融点エチレン-テトラフルオロエチレン共重合体,エチレン-クロロトリフルオエチレン共重合体〔ECTFE〕,ポリフッ化ビニリデン〔PVDF〕,フルオロエチレン-ビニルエーテル共重合体〔FEVE〕およびテトラフルオロエチレン-パーフルオロジオキソール共重合体〔TFEPD〕からなる群から選択される少なくとも一種のフッ素樹脂からなる群から選択される少なくとも一種のフッ素樹脂を含んでなり、PTFEと該フッ素樹脂との合計を100重量%とするとき、該フッ素樹脂が0重量%を超えて50重量%未満で含有されると、PTFEのみの場合に比して、耐熱性、耐久性等は多少低下するが、加工性、繊維径制御性等が向上する傾向がある。
 本発明のフッ素樹脂系シートの製造方法は、フッ素樹脂繊維からなるフッ素樹脂繊維シートに対し、加熱された状態で、少なくとも二方向の応力を発生させることによって上記副繊維を生成させることを特徴とする。
 特に、PTFE単独繊維よりなるフッ素樹脂繊維シート(a0)を用いた場合は、上記加熱下(例:電気炉の中)の温度が、通常50℃以上400℃以下、好ましくは180℃以上400℃以下であり、上記応力が0.05kg/cm2以上10kg/cm2以下の圧縮応力およびせん断応力であることが主繊維間に一様に所望の太さの副繊維が掛け渡され、しかも主繊維と副繊維との架橋(接合)部位に結節が発生せず、上記特性・性能に優れるため好ましい。
 一方、PTFEとそれ以外のフッ素樹脂を含む繊維よりなるフッ素樹脂繊維シート(b0)を用いた場合は、上記加熱下(例:電気炉の中)の温度は、完全に溶融して繊維形状を失わないような条件が好ましく、例えば、通常50℃以上360℃以下、好ましくは150℃以上360℃以下であり、上記応力が0.01kg/cm2以上20kg/cm2以下の圧縮応力およびせん断応力であることが繊維形状安定性などの点で好ましい。
 本発明のフッ素樹脂系シートは、繊維として、PTFE単独(PTFE:100重量%)、または、少なくともPTFEを含んでなる(PTFE含量:通常50重量%以上100重量%未満、好ましくは、80重量%以上100重量%未満)ため、PTFEが潜在的に有する種々の特性(撥水性、耐熱性、耐薬品性、通音性等)を発揮すると同時に、副繊維がナノファイバーであるため、ナノファイバーが有する特性も発揮できる。特に、副繊維の繊維径が100nm付近であるとフィルタ性能が顕著に高い。
 本発明のフッ素樹脂系シートは、主繊維と副繊維とが一体化となっているため、主に主繊維由来の強度と副繊維由来のナノファイバー特性とを両立できるとともに、繊維同士での分離が生じにくいため、複合安定性が高い。
 本発明のフッ素樹脂系シートは、ランダムに配列している主繊維間にランダムに副繊維が発生するため、等方的な物性値を示す。また、主繊維として配向制御されたシートを用いることで、異方的な物性値を示すシートを製造することもできる。このように、全方向において強度が一定なシートの製造を可能にするとともに、特定方向にのみ強度が優れたシートの製造も可能としている。
 本発明のフッ素樹脂系シートの製造方法によると、生成する副繊維の繊維径およびその生成密度は、繊維を構成する樹脂の溶融状態および二方向への応力(すなわち、シートのプレス方向とその垂直方向)によって制御することができる。例えば、樹脂溶融比率が高いほど繊維径は増加し、応力が大きいほど繊維密度が増加する傾向が見られる。
図1は、特許文献1に開示されたPTFEマット表面をSEMにより1,000倍に拡大した画像を示す。この図1によれば、繊維径が500nm以上の繊維しか観察されないことがわかる。 図2は、特許文献5に開示されたPTFEからなる多孔性構造物表面をSEMにより1,000倍に拡大した画像を示す。この図2によれば、結節(太い塊のノード)が多く存在しているとともに、結節の方向が一定であることがわかる。 図3は、実施例2で製造されたフッ素樹脂系シート表面のSEMによる5,000倍に拡大した画像を示す。この図3によれば、副繊維が生成されたフッ素樹脂系シート(主繊維と、主繊維の繊維径より小さい繊維径を有する副繊維との複合体)となっていることがわかる。
 以下、本発明のフッ素樹脂系シートおよび該フッ素樹脂系シートの製造方法を詳述する。
                    <フッ素樹脂系シート>
 本発明のフッ素樹脂系シートは、PTFEのみからなる繊維(PTFE単独繊維)、または、PTFEとPTFE以外のフッ素樹脂とを含んでなる繊維(フッ素樹脂繊維)を用いて、特定の工程を経て得られるシート(好ましくは本発明の製造方法により得られるシート)であって、例えば図3中、実施例2の5,000倍に拡大した画像に示すように、該繊維が、主繊維と主繊維の繊維径より小さい繊維径を有する副繊維とからなり、同じ主繊維内および/または異なる主繊維間を該副繊維が「架橋する」(あるいは「繋げる」とも表現でき、単純に「接触させる」や「絡める」とは異なる態様であって、高分子主鎖に側鎖が架渡したような状態とも言える。)が、その架橋点に結節が形成されていないことを特徴とする。
 本明細書において、PTFEのみからなる繊維、または、PTFEとPTFE以外のフッ素樹脂とを含んでなる繊維をまとめて「フッ素樹脂繊維」といい、従来公知の方法でこのフッ素樹脂繊維を用いてシート状に成形したものを「フッ素樹脂繊維シート」といい、このフッ素樹脂繊維シートを用いて特定の工程を経て得られるものを「フッ素樹脂系シート」(すなわち、本発明のフッ素樹脂系シート)という。特に、フッ素樹脂繊維がPTFEのみからなる繊維である場合、フッ素樹脂繊維シートを「フッ素樹脂繊維シート(a0)」ともいい、このフッ素樹脂繊維シート(a0)を用いて特定の工程を経て得られるものを「フッ素樹脂系シート(a1)」ともいう。一方、フッ素樹脂繊維がPTFEとPTFE以外のフッ素樹脂とからなる繊維である場合、フッ素樹脂繊維シートを「フッ素樹脂繊維シート(b0)」ともいい、このフッ素樹脂繊維シート(b0)を用いて特定の工程を経て得られるものを「フッ素樹脂系シート(b1)」ともいう。
 上記のように、主繊維より副繊維の方が細いという要件を満たしつつ、主繊維と副繊維それぞれの繊維径は、強度、粒子捕捉性能、安定性などの点を考慮すると、主繊維が通常100nm以上50μm以下であり、副繊維が10nm以上1μm未満であるのが好ましく、より好ましくは主繊維が500nm以上1μm以下であり、副繊維が30nm以上300nm以下であり、さらに好ましくは副繊維が30nm以上100nm以下である。なお、本明細書において「繊維径」はすべてSEMによる画像を用いて計測する方法により測定したものであり、平均値を意味する。より具体的に、この平均値は、測定対象となるフッ素樹脂系シートについて、無作為にSEM観察の領域を選択し、この領域をSEM観察(倍率:10,000倍)して無作為に10本のフッ素樹脂繊維を選択し、これらのフッ素樹脂繊維の測定結果に基づいて算出される値である。
 特に、副繊維の繊維径が300nm以下であると、空気抵抗が極めて小さくなる「スリップフロー効果」を発揮すること、比表面積が極めて大きくなること、そして、超分子配列効果が得られることから、フィルタ等の用途に本発明のフッ素樹脂系シートを用いる場合に好適である。
 上記副繊維の存在密度としては、強度、粒子捕捉性能などを考慮すると、シート表面における存在密度が、主繊維本数:副繊維本数=10:1~1:10程度であることが好ましい。存在密度の算出方法としては、測定対象となるフッ素樹脂系シートについて、SEM観察の領域を選び、この領域をSEM観察(倍率5,000倍)して、その繊維径の違いより、主繊維と副繊維の本数をそれぞれ求めることで算出される。
 上記繊維は、PTFE以外に、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体〔PFA〕(例えば、住友スリーエム(株)製の「Dyneon PFA」(商品名)や旭硝子(株)製の「Fluon(登録商標) PFA」(商品名)等),テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体〔FEP〕,テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体〔EPE〕,ポリ(クロロトリフルオロエチレン)〔PCTFE〕,テトラフルオロエチレン-エチレン共重合体〔ETFE〕,低融点エチレン-テトラフルオロエチレン共重合体,エチレン-クロロトリフルオエチレン共重合体〔ECTFE〕,ポリフッ化ビニリデン〔PVDF〕,フルオロエチレン-ビニルエーテル共重合体〔FEVE〕,テトラフルオロエチレン-パーフルオロジオキソール共重合体〔TFEPD〕などの「他のフッ素樹脂」を一種または二種以上含んでなっていてもよく、特に安定性、耐久性の点などを考慮すると、好ましくは上記繊維はPTFEのみ(PTFE含量:100重量%)を含んでなる。
 上記繊維が、PTFEと、PTFE以外の上記「他のフッ素樹脂」とからなる場合、PTFEは50重量%以上含有されることが好ましい(ただし、PTFEと上記他のフッ素樹脂との合計を100重量%とする)。PTFEが50重量%未満であると、後述する製造方法において、加熱状態で上記他のフッ素樹脂が溶出し、シートとして成形することができない虞がある。
            <フッ素樹脂系シートの製造方法>
 本発明のフッ素樹脂系シートの製造方法は、下記工程(i)~(iv)を含むことが好ましく、なかでも下記工程(iii)を含むことを特徴とする。
 工程(i)として、電界紡糸法によりフッ素樹脂繊維(すなわち上記主繊維)を作製し;
 工程(ii)として、このフッ素樹脂繊維をシート状に成形(すなわちフッ素樹脂繊維シート(a0),(b0)を製造)し;
 工程(iii)として、加熱された状態(例えば電気炉の中)で、このシートに少なくとも二方向の応力(好ましくは圧縮応力と、圧縮応力に垂直なせん断応力)を発生させ;および
 工程(iv)として、この加圧下で冷却した後に加圧を開放することによって、上記副繊維が生成されたフッ素樹脂系シート(a1),(b1)が製造される。
 本発明では、このように、主繊維からなり副繊維のない原反シートを加熱炉(例:電気炉)内で加圧し、少なくとも二方向へ応力を加えることにより、各主繊維の外表面で生じた一部樹脂(例:PTFE等の主繊維を構成する樹脂)の溶融と、隣接する主繊維外表面相互の熱融着とが起こり、シートあるいはシート中に含まれる主繊維の弾性復元力により、各主繊維間隔が広がり、隣接する主繊維表面相互間で納豆の糸が延びるように、主繊維相互間を繋ぐ副繊維が発生して伸び、その状態で温度低下に伴い主繊維表面や、生じた副繊維も固化し、その結果、主繊維相互間を架け渡すように、主繊維より細い副繊維が形成されるのであろうと推測される。
 また、形成された副繊維外表面と、隣接する主繊維外表面または別の副繊維外表面樹脂においても同様に、副繊維の形成が起こると推測される。すなわち本発明のフッ素樹脂系シート(a1),(b1)はさらに、主繊維-副繊維間および/または副繊維-副繊維間を架け渡すように、主繊維より細い副繊維が架橋していてもよい。
 本発明において、フッ素樹脂シートに作用させる外部からの力(外力)を「荷重」とし、フッ素樹脂シートに荷重が作用するとき、該シート内部にその荷重に抵抗してつり合いを保とうとする内力を「応力」とする。応力は荷重に等しく、向きは反対となる。
 工程(i)における電界紡糸法として、例えば特許文献1(米国特開2010/0193999 A1号公報)に記載の方法などを用いることができる。
 工程(ii)の、フッ素樹脂繊維をシート状に成形する方法としては、例えば特許文献1に記載の方法などを用いることができる。
 工程(iii)において、加熱条件を確保する電気炉の中の温度は、PTFE単独繊維からなるフッ素樹脂繊維シート(a0)では、通常50℃以上400℃、好ましくは180℃以上400℃以下であり、より好ましくは270℃以上380℃以下、さらに好ましくは320℃以上380℃以下である。圧縮応力は、通常0.01kg/cm2以上10kg/cm2以下であり、好ましくは0.05kg/cm2以上1kg/cm2以下であり、より好ましくは0.05kg/cm2以上0.40kg/cm2以下であり、さらに好ましくは0.10kg/cm2以上0.40kg/cm2以下である。温度と応力それぞれが上記範囲内であると、主繊維間に一様に所望の太さの副繊維が掛け渡され、しかも主繊維と副繊維との架橋(接合)部位に結節が発生せず、上記特性・性能に優れるため好ましい。
 一方、PTFEとそれ以外のフッ素樹脂を含む繊維よりなるフッ素樹脂繊維シート(b0)を用いた場合は、上記加熱下(例:電気炉の中)の温度は、太い繊維(主繊維)が表面のみ溶融し、その内部まで完全に溶融して繊維形状を失わないような条件が好ましく、例えば、通常50℃以上360℃以下であり、好ましくは150℃以上360℃以下であり、圧縮応力は0.01kg/cm2以上20kg/cm2以下である。温度と応力それぞれが上記範囲内であると、繊維形状安定性などの点で好ましい。
 工程(iii)において、少なくとも二方向の応力を発生させるには、例えば、フッ素樹脂繊維シートを一対のステンレス板の間に挟み加重しつつ、少なくとも一方のステンレス板を水平にずらす態様や回転速度が異なる二本のロールの間にフッ素樹脂シートを挟む態様、平板を加重をかけながら水平移動させる態様(アイロン方式)などが挙げられるが、本発明はこれらの態様に限定されない。
 本発明の製造方法により副繊維が生成されるメカニズムとして、次のように推測できる。
 [その1]工程(iii)において主繊維どうしが接した後、工程(iv)において加重から開放されて主繊維どうしが離れる際、一部の主繊維表面の樹脂(例えばPTFE)が納豆の糸が伸びるように糸を引いて引っ張られることで、副繊維が生成される。これは、主繊維間に橋渡しのように副繊維が存在しているケースが多い(副繊維が少ない場合に顕著)という事実から、PTFE繊維を含んでなるフッ素樹脂系シートを加熱することで、PTFE繊維表面が溶融・ゲル化し、この加圧の開放過程において、主繊維の弾性復元力により、主繊維どうしが付き離れする際に、主繊維表面のゲル状樹脂が互いの主繊維に引っ張られ、主繊維より細い繊維状の副繊維となることが考えられる。
 [その2]工程(iii)において主繊維どうしが接する際、主繊維が裂けるか、解れることで副繊維となる。これは、PTFE主繊維は、元々は球状粒子の集合からなるものであり、PTFEを含んでなるフッ素樹脂繊維シートでは、加熱することで、繊維の流動性が高まり、外からの力により細かい繊維に分離し易くなったと考えられる。
 [その3]工程(iii)において、好ましくは主繊維がせん断力により、極細に繊維化する。PTFEはせん断力によりフィブリルが形成されることが知られており(例えば、特開2004-154652号公報の段落[0016]等)、加圧の開放過程において微弱なせん断力が働き、従来公報のような成形体ではないが、フィブリル(副繊維)が形成されたと考えられる。
             <フッ素樹脂系シートの用途>
 本発明のフッ素樹脂系シートは、フィルタ用途に好適である。具体的なフィルタとしては、例えば、エアフィルタやベントフィルタなどが挙げられる。
 次に、本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 [実施例1]
 既存の電界紡糸法により作製した、縦10cm、横10cm、厚さ65.7μm、重量18.6mg、平均繊維径1μmのPTFE繊維からなるフッ素樹脂繊維シートを、一対のステンレス板の間に挟み、金型により6kgを加重することによって、該フッ素樹脂繊維シートに0.06kg/cm2の圧縮応力を発生させながら360℃の電気炉の中で1時間保持した。
 次に、該フッ素樹脂繊維シートに対して、圧縮応力の垂直方向にせん断応力が発生するように、金型下部および下側のステンレス板は固定した状態に保持しつつ、金槌を用い金型上部を上側のステンレス板とともに2mm移動させた。その後室温まで冷却し、金型とステンレス板を取り外し、本発明のフッ素樹脂系シートを得た。
 SEM(S-3400N((株)日立ハイテクノロジーズ製)によりフッ素樹脂系シートの表面を観察し(5,000倍)、副繊維の発生有無を確認した。この結果を表1に示す。
 [実施例2]
 実施例1において、加重を20kg(=0.20kg/cm2の圧縮応力)に変更した以外は実施例1と同様にしてフッ素樹脂系シートを製造し、副繊維の発生有無を確認した。この結果を表1に示す。
 [実施例3]
 実施例1において、加重を35kg(=0.35kg/cm2の圧縮応力)に変更した以外は実施例1と同様にしてフッ素樹脂系シートを製造し、副繊維の発生有無を確認した。この結果を表1に示す。
 [実施例4]
 実施例1において、加重を50kg(=0.5kg/cm2の圧縮応力)、電気炉の温度を50℃に変更した以外は実施例1と同様にしてフッ素樹脂系シートを製造し、副繊維の発生有無を確認した。この結果を表1に示す。
 [実施例5]
 実施例4において、電気炉の温度を100℃に変更した以外は実施例4と同様にしてフッ素樹脂系シートを製造し、副繊維の発生有無を確認した。この結果を表1に示す。
 [実施例6]
 実施例4において、電気炉の温度を150℃に変更した以外は実施例4と同様にしてフッ素樹脂系シートを製造し、副繊維の発生有無を確認した。この結果を表1に示す。
 [比較例1]
 実施例1において、加重およびせん断応力を発生させなかった以外は実施例1と同様にしてフッ素樹脂系シートを製造し、副繊維の発生有無を確認した。この結果を表1に示す。
 [比較例2]
 実施例3において、せん断応力を発生させなかった以外は実施例3と同様にしてフッ素樹脂系シートを製造し、副繊維の発生有無を確認した。この結果を表1に示す。
 [比較例3]
 実施例4において、電気炉の温度を25℃に変更した以外は実施例4と同様にしてフッ素樹脂系シートを製造し、副繊維の発生有無を確認した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例2,3および比較例1,2それぞれで得られたフッ素樹脂系シートについて、下記の物性を評価した。
 (厚さ)
 フッ素樹脂系シートの厚さを、マイクロメータであるLITEMATIC VL-50((株)ミツトヨ製)により測定した。
 (最大引張荷重/引張強度)
 フッ素樹脂系シートの強度に関して、(株)島津製作所製の「EZ-test」を用い引張試験を行った。測定方法は次の通りである。
 マイクロダンベルを用いて中心幅5mmのダンベル型試験片を打ち抜き、幅(ノギス使用)および厚さ((株)ミツトヨ製「LITEMATIC VL-50A」使用)を精秤した。
 この試験片を、つかみ間長を25mmとなるよう引張試験機にとりつけ20mm/minのクロスヘッド速度で引張り、試験片破断時の最大荷重から最大応力を求めた。
 (バブルポイント細孔径/バプルポイント圧力)
 バブルポイント細孔径とは、フッ素樹脂系シートの最大細孔径を示し、バブルポイント法(ASTM F316-86)により算出した。なお、測定にはGalwick(15.9dyn/cm)を浸漬液として使用した。
 液体によく浸されたフッ素樹脂系シートは、液体を満たした毛細管と同様の特性を示し、毛細管内の液体表面張力に打ち勝ち、液体をその細孔から押し出す圧力を測定する事によって細孔直径を算出できる。特に最初に検出される気泡の地点を「バブルポイント=最大細孔径」と呼ぶ。下記のバブルポイントの式からバブルポイント細孔径d[m]を算出する。
   d=4γcosθ/ΔP
(式中、θはフッ素樹脂系シートと液体との接触角を、γ[N/m]は液体の表面張力を、ΔPがバブルポイント圧力を表す。)
 (平均流量径/平均流量径圧力)
 平均流量径は、ASTM E1294-89のハーフドライ法により求めた。なお、測定にはGalwick(15.9dyn/cm)を浸漬液として使用した。
 ハーフドライ法は、液体によく浸された状態のフッ素樹脂系シートの通気曲線(Wet Curve)と、乾いた状態のサンプルの通気曲線(Dry Curve)の1/2の傾きの曲線(Half Dry Curve)が交わる点の圧力(平均流量径圧力)を求め、これをバブルポイントの式に代入し、平均流量径を求める。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (粒子捕捉率評価)
 フッ素樹脂系シートの粒子捕捉率として、JIS B 9908に準じて、粒子捕集率を測定した。この際、フィルタユニットの替わりに、実施例3および比較例1,2で得られた100mm×100mmの大きさのフッ素樹脂系シートを用い、測定用粉じんとして大気塵(0.15μm~10μm粒径の塵を含む)を用い、空気の流量を面速度14.8cm/sとした。
 この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表1から、実施例1~6で製造したフッ素樹脂系シートにおいて、主繊維間に100nm以下の副繊維(最小繊維径が40nm、平均80nm程度)の発生が見られた。そして、加重が大きくなるにつれ、また温度が高くなるにつれ、副繊維の数が多くなった。
 また、実施例1~3では電気炉内の温度を360℃としたが、300℃でも副繊維が発生することを確認した。また二方向への応力をかける際の温度として、実施例1~3は360℃環境下としたが、180℃へ冷却後に応力をかけた際も、副繊維が発生することを確認した。
 表2から、加重処理で厚みが薄くなる、すなわち、繊維がつぶされることによって、膜強度(引張り強度)が上昇するとともに、細孔径が縮小する傾向が見られた。
 表3から、本発明のフッ素樹脂系シートは、副繊維の発生により、特に従来捕捉が困難とされている0.333μm(=0.15~0.50μm)粒子径の粒子捕捉性能が向上することが確認された。
 本発明のフッ素樹脂系シートは、PTFE由来の優れた撥水性、耐熱性、耐薬品性、通音性等を保持しつつ、繊維の比表面積が顕著に大きいため、エアフィルタ等のフィルタに用いるのが好ましい。

Claims (6)

  1.  主繊維と主繊維の繊維径より小さい繊維径を有する副繊維とからなり、
     同じ主繊維内および/または異なる主繊維間を該副繊維が架橋しており、
     その架橋点に結節が形成されておらず、
     該主繊維および該副繊維が、ポリテトラフルオロエチレン〔PTFE〕を含むフッ素樹脂繊維からなることを特徴とするフッ素樹脂系シート。
  2.  上記主繊維の繊維径が100nm以上50μm以下であり、
     上記副繊維の繊維径が10nm以上1μm未満である請求項1に記載のフッ素樹脂系シート。
  3.  上記フッ素樹脂繊維が、PTFE以外に、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体〔PFA〕,テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体〔FEP〕,テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体〔EPE〕,ポリ(クロロトリフルオロエチレン)〔PCTFE〕,テトラフルオロエチレン-エチレン共重合体〔ETFE〕,低融点エチレン-テトラフルオロエチレン共重合体,エチレン-クロロトリフルオエチレン共重合体〔ECTFE〕,ポリフッ化ビニリデン〔PVDF〕,フルオロエチレン-ビニルエーテル共重合体〔FEVE〕,およびテトラフルオロエチレン-パーフルオロジオキソール共重合体〔TFEPD〕からなる群から選択される少なくとも一種のフッ素樹脂を含んでなり、
     PTFEと該フッ素樹脂との合計を100重量%とするとき、該フッ素樹脂が0重量%を超えて50重量%未満で含有される請求項1または2に記載のフッ素樹脂系シート。
  4.  上記フッ素樹脂繊維が、PTFEのみを含んでなる請求項1または2に記載のフッ素樹脂系シート。
  5.  請求項1に記載のフッ素樹脂系シートを製造する方法であって、
    ポリテトラフルオロエチレン〔PTFE〕を含むフッ素樹脂繊維からなるフッ素樹脂繊維シートに対し、加熱された状態で、少なくとも二方向の応力を発生させることによって上記副繊維を生成させることを特徴とする、フッ素樹脂系シートの製造方法。
  6.  上記フッ素樹脂繊維シートが、電界紡糸法により作製したフッ素樹脂繊維をシート状に成形したフッ素樹脂繊維シートであり、
     上記加熱の温度が、50℃以上400℃以下であり、
     上記応力が、0.01kg/cm2以上10kg/cm2以下の圧縮応力およびせん断応力である、請求項5に記載のフッ素樹脂系シートの製造方法。
PCT/JP2012/080674 2011-12-05 2012-11-28 フッ素樹脂繊維を含んでなるフッ素樹脂系シートおよびその製造方法 WO2013084760A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280058769.8A CN103987886B (zh) 2011-12-05 2012-11-28 包含氟树脂纤维的氟树脂类片及其制造方法
JP2013548189A JP5940092B2 (ja) 2011-12-05 2012-11-28 フッ素樹脂繊維を含んでなるフッ素樹脂系シートおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-266042 2011-12-05
JP2011266042 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013084760A1 true WO2013084760A1 (ja) 2013-06-13

Family

ID=48574132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080674 WO2013084760A1 (ja) 2011-12-05 2012-11-28 フッ素樹脂繊維を含んでなるフッ素樹脂系シートおよびその製造方法

Country Status (4)

Country Link
JP (1) JP5940092B2 (ja)
CN (1) CN103987886B (ja)
TW (1) TWI604100B (ja)
WO (1) WO2013084760A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021167A1 (ja) * 2012-07-31 2014-02-06 日本バルカー工業株式会社 親水化シートおよびその製造方法
WO2015083546A1 (ja) * 2013-12-03 2015-06-11 日本バルカー工業株式会社 電気化学素子用複合膜
JPWO2021039981A1 (ja) * 2019-08-30 2021-03-04
WO2021039980A1 (ja) * 2019-08-30 2021-03-04 株式会社ダイセル 繊維物品
CN114144548A (zh) * 2019-08-30 2022-03-04 株式会社大赛璐 纤维物品的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353534A (ja) * 1991-05-30 1992-12-08 Sumitomo Electric Ind Ltd ポリテトラフルオロエチレン多孔質体およびその製造方法
JP2001327816A (ja) * 2000-05-24 2001-11-27 Toray Ind Inc フィルター用濾材およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009100B2 (ja) * 2007-08-31 2012-08-22 日本バイリーン株式会社 極細繊維不織布及びその製造方法、並びにその製造装置
US20100304108A1 (en) * 2009-05-29 2010-12-02 Doshi Jayesh N Stretchable nonwoven fabric, method of manufacturing, and products made thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353534A (ja) * 1991-05-30 1992-12-08 Sumitomo Electric Ind Ltd ポリテトラフルオロエチレン多孔質体およびその製造方法
JP2001327816A (ja) * 2000-05-24 2001-11-27 Toray Ind Inc フィルター用濾材およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021167A1 (ja) * 2012-07-31 2014-02-06 日本バルカー工業株式会社 親水化シートおよびその製造方法
US9890498B2 (en) 2012-07-31 2018-02-13 Nippon Valqua Industries, Ltd. Hydrophilic sheet and process for producing the same
WO2015083546A1 (ja) * 2013-12-03 2015-06-11 日本バルカー工業株式会社 電気化学素子用複合膜
JPWO2021039981A1 (ja) * 2019-08-30 2021-03-04
WO2021039981A1 (ja) * 2019-08-30 2021-03-04 ダイキン工業株式会社 エアフィルタ濾材およびエアフィルタ製品
WO2021039980A1 (ja) * 2019-08-30 2021-03-04 株式会社ダイセル 繊維物品
CN114051544A (zh) * 2019-08-30 2022-02-15 株式会社大赛璐 纤维物品
CN114144548A (zh) * 2019-08-30 2022-03-04 株式会社大赛璐 纤维物品的制造方法

Also Published As

Publication number Publication date
CN103987886B (zh) 2016-04-27
TW201346099A (zh) 2013-11-16
JPWO2013084760A1 (ja) 2015-04-27
TWI604100B (zh) 2017-11-01
CN103987886A (zh) 2014-08-13
JP5940092B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
JP6138128B2 (ja) 親水化シートおよびその製造方法
JP5940092B2 (ja) フッ素樹脂繊維を含んでなるフッ素樹脂系シートおよびその製造方法
JP5525196B2 (ja) 延伸ptfe膜及び製造方法
JP6115596B2 (ja) エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP2015186772A (ja) エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP6372507B2 (ja) エアフィルタ用濾材、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP2015107482A (ja) エンボス加工されたエアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエンボス加工されたエアフィルタ用濾材の製造方法
JP2010132712A (ja) 多孔体及びフィルター
JP6673230B2 (ja) エアフィルタ濾材
KR102031506B1 (ko) 마크로 텍스쳐 표면을 갖는 비대칭 폴리테트라플루오로에틸렌 복합체 및 이의 제조 방법
JP7227507B2 (ja) エアフィルタ濾材、フィルタパック、エアフィルタユニット、およびこれらの製造方法
JP7256375B2 (ja) エアフィルタ濾材の製造方法
CN109316828B (zh) 一种耐高温滤布材料
TWI807595B (zh) 空氣過濾器濾材、空氣過濾器濾材之製造方法、口罩用濾材、及褶襉狀口罩用濾材
JP7401831B2 (ja) エアフィルタ濾材、エアフィルタパック、および、エアフィルタユニット
CN116200880A (zh) 一种高粘合力含氟熔喷布的制备方法
KR20200048795A (ko) 에어필터용 다층필름

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280058769.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854917

Country of ref document: EP

Kind code of ref document: A1