WO2013084301A1 - ヒートポンプ式暖房給湯システム - Google Patents

ヒートポンプ式暖房給湯システム Download PDF

Info

Publication number
WO2013084301A1
WO2013084301A1 PCT/JP2011/078199 JP2011078199W WO2013084301A1 WO 2013084301 A1 WO2013084301 A1 WO 2013084301A1 JP 2011078199 W JP2011078199 W JP 2011078199W WO 2013084301 A1 WO2013084301 A1 WO 2013084301A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
heat
heating
heat medium
water
Prior art date
Application number
PCT/JP2011/078199
Other languages
English (en)
French (fr)
Inventor
章吾 玉木
齊藤 信
畝崎 史武
伸哲 上原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/078199 priority Critical patent/WO2013084301A1/ja
Priority to US14/361,331 priority patent/US9951962B2/en
Priority to CN201180075322.7A priority patent/CN103975204B/zh
Priority to JP2013547990A priority patent/JP5748002B2/ja
Priority to EP11877045.2A priority patent/EP2789933B1/en
Publication of WO2013084301A1 publication Critical patent/WO2013084301A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • F24D17/001Domestic hot-water supply systems using recuperation of waste heat with accumulation of heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat pump type hot water supply system that performs hot water supply and heating using a heat pump.
  • Patent Document 1 discloses a hot water storage tank for storing hot water generated by heating in a heat pump unit, a radiator for heating using hot water generated by heating in a heat pump unit, and a coil installed in the hot water storage tank.
  • a heat pump type hot water supply system provided with a heat exchanger for hot water supply made of a pipe is disclosed. In this system, when hot water is supplied, the supplied water is heated by a hot water supply heat exchanger in the hot water storage tank to generate hot water.
  • the hot water stored in the hot water storage tank is not directly discharged, but the hot water generated by heating the hot water in the hot water storage tank is discharged. For this reason, it is difficult to use the amount of heat stored in the hot water storage tank without waste. Also, hot water must be stored in a hot water storage tank. Moreover, the heat exchanger for hot water supply which consists of a coiled pipe has low heat transfer performance. For this reason, the conventional system described above has poor hot water supply efficiency. In addition, since a hot water supply heat exchanger is installed in the hot water storage tank, the replacement work is complicated when a malfunction or failure occurs, and there is a problem that the maintainability is poor.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat pump heating / hot water supply system capable of performing hot water storage operation with high operation efficiency.
  • a heat pump heating and hot water supply system includes a heat pump that heats a heat medium, one or a plurality of heat medium pumps that send the heat medium, and a heating heat exchanger that heats water by heat exchange between the heat medium and water.
  • a heating heat exchanger that heats the room with a heat medium
  • flow path switching means that switches the flow path so that the heat medium is selectively sent to either the heating heat exchanger or the heating heat exchanger
  • heat A heat pump connecting a medium pump, a heating heat exchanger, a heating heat exchanger, and a flow path switching unit, a hot water tank, one or more water pumps for sending water, and water taken from the hot water tank heated by heat A water pipe connected to the hot water tank, the water pump and the heating heat exchanger, a heat pump control device for controlling the heat pump, and a heat medium so that the water sent to the exchanger and passed through the heating heat exchanger returns to the hot water tank Control pump and water pump And a pump controller, volume flow of the heat medium heating medium pump sends the heating heat exchanger is one in which the water pump is equal to or greater than the volume flow of water sent to the heating heat exchanger.
  • the heat pump heating / hot water supply system includes a heat pump that heats the heat medium, one or more heat medium pumps that send the heat medium, and heating heat exchange that heats water by heat exchange between the heat medium and water.
  • a heating heat exchanger that heats the room with a heat medium, and a flow path switching means that switches the flow path so that the heat medium is selectively sent to either the heating heat exchanger or the heating heat exchanger.
  • Heat medium pump and water pump A pump control device that controls the temperature and heat of the heat medium flowing into the heat exchanger when the water is heated by heat exchange between the heat medium and water in the heat heat exchanger.
  • Heat medium pump and water pump so that the difference between the temperature of the heat medium flowing out from the exchanger is equal to or less than the difference between the temperature of water flowing out of the heating heat exchanger and the temperature of water flowing into the heating heat exchanger Is to drive.
  • hot water storage operation can be performed with high operation efficiency.
  • FIG. 1 is a system circuit diagram showing the flow of refrigerant, heat medium, and water in the heating operation mode of the heat pump heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the heat pump control device of the heat pump type heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the pump control device of the heat pump type heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 4 is a system circuit diagram showing the flow of refrigerant, heat medium, and water in the hot water storage operation mode of the heat pump heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 1 is a system circuit diagram showing the flow of refrigerant, heat medium, and water in the heating operation mode of the heat pump heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 5 shows the temperature difference between the inlet and outlet of the heating medium in the heating heat exchanger in the hot water storage operation mode of the heat pump heating and hot water supply system in Embodiment 1 of the present invention, and the temperature and heating of the heating medium flowing into the heating heat exchanger. It is a figure which shows the relationship with the temperature of the heat medium which flows out from a heat exchanger.
  • FIG. 6 is a schematic diagram showing the temperature distribution of the heat medium and water in the heating heat exchanger in the hot water storage operation mode of the heat pump heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram showing an enthalpy difference expansion effect by narrowing the expansion valve in the hot water storage operation mode of the heat pump type heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing a pump characteristic curve of the water pump in the hot water storage operation mode of the heat pump type heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing a pump characteristic curve of the heat medium pump in the hot water storage operation mode of the heat pump heating and hot water supply system according to Embodiment 1 of the present invention.
  • FIG. 10 is a system circuit diagram showing the flow of refrigerant, heat medium, and water during the heating operation mode of the heat pump heating and hot water supply system according to Embodiment 2 of the present invention.
  • FIG. 11 is a system circuit diagram showing the refrigerant, heat medium, and water flow in the hot water storage operation mode of the heat pump heating and hot water supply system according to Embodiment 3 of the present invention.
  • FIG. 1 is a system circuit diagram of a heat pump heating and hot water supply system 100 according to Embodiment 1 of the present invention.
  • a heat pump heating and hot water supply system 100 includes a heat pump unit 301 in which a refrigerant circuit 51 of a vapor compression refrigeration cycle (heat pump cycle) and a part of a heating circulation circuit 52 are mounted, A hot water storage tank unit 302 on which a part of the hot water storage circuit 53 is mounted and a heating unit 305a, 305b that is configured by a part of the heating circulation circuit 52 and heats the room are provided.
  • a heat pump heating and hot water supply system 100 includes a heat pump unit 301 in which a refrigerant circuit 51 of a vapor compression refrigeration cycle (heat pump cycle) and a part of a heating circulation circuit 52 are mounted, A hot water storage tank unit 302 on which a part of the hot water storage circuit 53 is mounted and a heating unit 305a, 305b that is configured by a part of the heating circulation circuit 52 and
  • the heat pump unit 301 and the hot water storage tank unit 302 are connected via a heat medium pipe 303 and a heat medium pipe 304.
  • the hot water tank unit 302 and the heating units 305a and 305b are connected via a heat medium pipe 306 and a heat medium pipe 307.
  • the hot water tank unit 302 is connected to a hot water supply pipe 308 connected to a hot water supply terminal (for example, a faucet such as a kitchen or a washroom) and a water supply pipe 309 for supplying water from a water source such as a water supply.
  • the refrigerant used in the refrigerant circuit 51 of the heat pump unit 301 is not particularly limited.
  • R410A, R32, HFO-1234yf, natural refrigerants such as hydrocarbons and carbon dioxide, and the like can be used.
  • the heat medium used for the heating circulation circuit 52 is not specifically limited, For example, liquids, such as water, ethylene glycol, propylene glycol, nibrine (Nibrine is a trademark), or a mixture thereof, can be used.
  • ethylene glycol, propylene glycol, nibrine, and the like can be used at any concentration.
  • This heat pump heating / hot water supply system 100 is installed, for example, in a general house or office building.
  • the heat pump heating / hot water supply system 100 can process the hot water supply command (hot water supply ON / OFF) or the heating command (heating ON / OFF) selected in the hot water storage tank unit 302.
  • the heat pump unit 301 is equipped with a refrigerant circuit 51 in which the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4 are annularly connected by refrigerant piping.
  • the compressor 1 sucks and compresses the refrigerant to bring it into a high temperature and high pressure state.
  • the compressor 1 is preferably of a type whose rotational speed is controlled by, for example, inverter control.
  • the condenser 2 heats the heat medium and cools the refrigerant by exchanging heat between the heat medium and the refrigerant.
  • the condenser 2 is composed of, for example, a plate heat exchanger.
  • the expansion valve 3 decompresses the refrigerant to a low temperature and low pressure state.
  • the opening degree of the expansion valve 3 is variable.
  • the evaporator 4 heats the refrigerant by absorbing heat from the outside air by exchanging heat between the outside air and the refrigerant.
  • the evaporator 4 is configured by, for example, a cross fin type fin-and-tube type air heat exchanger configured by heat transfer tubes and a large number of fins.
  • the evaporator 4 is provided with a blower 5. After the outside air is sucked in by the blower 5 and heat is exchanged in the evaporator 4, the air is discharged to the outside.
  • the blower 5 includes a fan such as a propeller fan and a motor that drives the fan, such as a DC fan motor.
  • the blower 5 is configured to change the flow rate of supplied air.
  • the heat pump unit 301 further includes a pressure sensor 201 that detects the pressure of the refrigerant discharged from the compressor 1, a temperature sensor 202 that detects the temperature of the refrigerant discharged from the compressor 1, and a refrigerant that flows out of the condenser 2.
  • a temperature sensor 203 for detecting the temperature of the refrigerant, a temperature sensor 204 for detecting the temperature of the refrigerant flowing into the evaporator 4, a temperature sensor 205 for detecting the outside air temperature (the temperature of the air flowing into the evaporator 4), and a condenser 2 is provided with a temperature sensor 206 that detects the temperature of the heat medium flowing into the heat exchanger 2 and a temperature sensor 207 that detects the temperature of the heat medium flowing out of the condenser 2.
  • the hot water storage tank unit 302 is equipped with a heat medium pump 6, a three-way valve 7, a heating heat exchanger 8, a water pump 9, a hot water storage tank 10, a mixing valve 11, and the like.
  • the heat medium pump 6 has a function of circulating the heat medium in the heating circulation circuit 52.
  • the heat medium pump 6 may be a variable speed type (for example, by inverter control) or a constant speed type.
  • the three-way valve 7 functions as a flow path switching unit that switches the flow direction of the heat medium. During the hot water storage operation, the three-way valve 7 is switched so that the heat medium flows to the heating heat exchanger 8.
  • the heating heat exchanger 8 heats water and cools the heat medium by exchanging heat between the heat medium and water.
  • the heating heat exchanger 8 is composed of, for example, a plate heat exchanger. In the present embodiment, the heat medium and water are configured to flow in opposite directions in the heating heat exchanger 8.
  • the water pump 9 has a function of circulating water in the hot water storage circuit 53.
  • the water pump 9 may be a variable speed type (for example, by inverter control) or a constant speed type.
  • the hot water storage tank 10 (hot water storage tank) has a function of storing boiling hot water and water before boiling.
  • the hot water storage tank 10 is a full-water type, stores hot water while forming temperature stratification, and stores high-temperature water in the upper part and low-temperature water in the lower part.
  • a water pipe 310 of the hot water storage circuit 53 is connected to the connection point 13 at the upper part of the hot water tank 10, and a water pipe 311 of the hot water storage circuit 53 is connected to the connection point 14 at the lower part of the hot water tank 10.
  • the water in the hot water storage tank 10 flows out from the connection point 14, is sent to the heating heat exchanger 8 through the water pipe 311 and heated, and then flows through the water pipe 310 to store the hot water. It returns to the tank 10 and flows into the hot water storage tank 10 from the connection point 13.
  • the hot water pipe 15 connects the upper part of the hot water tank 10 and the mixing valve 11.
  • the water supply pipe 309 is connected to the lower part of the hot water tank 10 and the mixing valve 11.
  • a hot water supply pipe 308 is further connected to the mixing valve 11.
  • hot water flows out from the upper part of the hot water storage tank 10 to the hot water discharge pipe 15 and is supplied to the mixing valve 11.
  • the same amount of low-temperature water as the hot water flowing out to the hot water discharge pipe 15 flows from the water supply pipe 309 into the lower part of the hot water storage tank 10.
  • the mixing valve 11 mixes the hot water from the hot water discharge pipe 15 and the low temperature water from the water supply pipe 309 and feeds the mixed water to the hot water supply pipe 308.
  • the mixing valve 11 can control the mixing ratio of hot water and low-temperature water, and generates hot water having a preset temperature.
  • the hot water storage tank unit 302 further includes a temperature sensor 208 that detects the temperature of the heat medium flowing into the heating heat exchanger 8, a temperature sensor 209 that detects the temperature of the heat medium flowing out of the heating heat exchanger 8, and a heating heat.
  • a temperature sensor 210 that detects the temperature of water flowing into the exchanger 8, a temperature sensor 211 that detects the temperature of water flowing out of the heating heat exchanger 8, and temperature sensors 212 and 213 that detect the water temperature in the hot water storage tank 10. , 214, 215 and a temperature sensor 216 for detecting the water temperature in the hot water supply pipe 308.
  • the heating units 305a and 305b include radiators 12a and 12b (panel heaters) as heating heat exchangers. By flowing a heat medium through the radiators 12a and 12b, the indoor air is heated by radiation.
  • the number of heating units is two, but the number of heating units may be one or three or more.
  • the heating heat exchanger is a radiator, but other types of heating heat exchangers such as a fan coil unit and a floor heating heater may be used, and a plurality of types of heating heat exchangers are mixed. It is good also as the form which did.
  • the heat pump unit 301 is provided with a heat pump control device 101 configured by, for example, a microcomputer.
  • the hot water storage tank unit 302 is provided with a pump control device 121 configured by, for example, a microcomputer.
  • FIG. 2 is a block diagram showing the configuration of the heat pump control apparatus 101.
  • the heat pump control apparatus 101 includes a measuring unit 102 that acquires pressure and temperature information based on outputs from the pressure sensor 201 and the temperature sensors 202, 203, 204, 205, 206, and 207, and an operating state (temperature) of the heat pump unit 301.
  • Communication means 103 for calculating the condensation temperature, the degree of supercooling, and the like based on the measurement information acquired by the measurement means 102, and the heat pump unit 301 based on the measurement information, the calculation result of the calculation means 104, and the like.
  • Control means 105 for controlling the operation state (the operation method of the compressor 1, the opening degree of the expansion valve 3, etc.).
  • the communication unit 103 is configured to communicate with a communication unit 125 (to be described later) through, for example, a telephone line, a LAN line, or wireless communication.
  • FIG. 3 is a block diagram showing the configuration of the pump control device 121.
  • the pump controller 121 includes a temperature sensor 208, 209, 210, 211, 212, 213, 214, 215, 216, a measuring unit 122 that acquires temperature information, and a heat medium that flows through the heating circuit 52.
  • Storage means 123 for storing the type of the operation mode, input means 124 for recognizing inputs such as the ON / OFF command of the operation mode from the user and input information from the installation company, and the operating state (temperature and temperature) of the hot water tank unit 302 Communication to transmit the operation state (temperature, pressure, etc.) of the heat pump unit 301 and the abnormal signal from the heat pump control apparatus 101.
  • the heating heat exchanger 8 is moved in and out.
  • the hot water storage tank unit 302 based on the measurement information, the calculation result of the calculation means 126, and the like.
  • a control means 127 for controlling (operating states of the heat medium pump 6 and the water pump 9 and switching of the three-way valve 7).
  • the heat pump control device 101 is installed in the heat pump unit 301 and the pump control device 121 is installed in the hot water tank unit 302.
  • the present invention is not limited to this configuration, and hot water storage
  • the heat pump control device 101 may be installed in the tank unit 302, or the pump control device 121 may be installed in the heat pump unit 301.
  • the heat pump control apparatus 101 and the pump control apparatus 121 may be integrated.
  • a control device (not shown) may be prepared in a place other than the heat pump unit 301 and the hot water tank unit 302, and the control device may assume a part or all of the functions of the heat pump control device 101 and the pump control device 121. good.
  • the heat pump heating / hot water supply system 100 is mounted on the heat pump unit 301, the hot water tank unit 302, and the heating units 305a, 305b according to the heating load required for the heating units 305a, 305b and the hot water supply request required for the hot water tank unit 302.
  • Each of the devices is controlled, and the heating operation mode or the hot water storage operation mode is executed.
  • Information on ON / OFF of the heating operation mode or the hot water storage operation mode is input to the input unit 124 of the pump control device 121 by the user or automatically based on the time or the like.
  • the input information is transmitted to the heat pump control apparatus 101 by the communication unit 125.
  • the driving operation in each operation mode will be described.
  • heating operation mode First, the heating operation mode will be described with reference to FIG. In addition, the arrow in FIG. 1 has shown the flow direction of the refrigerant
  • the three-way valve 7 is switched so as to connect the outlet of the condenser 2 and the heating units 305a and 305b.
  • the heat pump unit 301 and the hot water tank unit 302 are operated.
  • the refrigerant circuit 51 the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 2 and is cooled by the heat medium to become high-pressure liquid refrigerant.
  • the refrigerant flows out of the condenser 2, is decompressed by the expansion valve 3, and becomes a low-pressure two-phase refrigerant. Thereafter, the refrigerant flows into the evaporator 4 and absorbs heat from the outside air to become a low-pressure gas refrigerant. Thereafter, the refrigerant is sucked into the compressor 1 again.
  • the operating state of the compressor 1, the expansion valve 3, and the blower 5 is controlled by the control means 105 of the heat pump control device 101 according to the temperature and pressure measured by the measurement means 102.
  • the heat medium sent by the heat medium pump 6 flows out of the hot water storage tank unit 302 and flows into the heat pump unit 301 via the heat medium pipe 304.
  • the heat medium is heated by the refrigerant in the condenser 2 to be in a high temperature state.
  • This high-temperature heat medium flows out of the heat pump unit 301 and flows into the hot water storage tank unit 302 again via the heat medium pipe 303.
  • the heat medium then flows out of the hot water tank unit 302 via the three-way valve 7 and flows into the heating units 305a and 305b via the heat medium pipe 306.
  • the radiator 12a, 12b heats the room by heat exchange between the heat medium and the room air, and the heat medium becomes a low temperature.
  • the heat medium having a low temperature flows out from the heating units 305a and 305b, flows into the hot water storage tank unit 302 via the heat medium pipe 307, and flows into the heat medium pump 6 again.
  • the operation state of the heat medium pump 6 is controlled by the control means 127 of the pump control device 121 according to the measured temperature and pressure. In the heating operation mode, since the water in the hot water storage tank 10 is not heated, the water pump 9 is stopped and the water in the hot water storage circuit 53 is not flowing.
  • the hot water storage operation mode will be described with reference to FIG.
  • the arrow in FIG. 4 has shown the flow direction of the refrigerant
  • the three-way valve 7 is switched so as to connect the outlet of the condenser 2 and the inlet of the heating heat exchanger 8.
  • the heat pump unit 301 and the hot water tank unit 302 are operated.
  • the refrigerant circuit 51 the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 2 and is cooled by the heat medium to become high-pressure liquid refrigerant.
  • the refrigerant flows out of the condenser 2 and is decompressed by the expansion valve 3 to become a low-pressure two-phase refrigerant.
  • the refrigerant then flows into the evaporator 4 and absorbs heat from the outside air to become a low-pressure gas refrigerant. Thereafter, the refrigerant is sucked into the compressor 1 again.
  • the operating state of the compressor 1, the expansion valve 3, and the blower 5 is controlled by the control means 105 of the heat pump control device 101 according to the temperature and pressure measured by the measurement means 102.
  • the heat medium sent by the heat medium pump 6 flows out of the hot water storage tank unit 302 and flows into the heat pump unit 301 via the heat medium pipe 304.
  • the heat medium is heated by the refrigerant in the condenser 2 to be in a high temperature state.
  • This high-temperature heat medium flows out of the heat pump unit 301 and flows into the hot water storage tank unit 302 again via the heat medium pipe 303.
  • the heat medium flows into the heating heat exchanger 8 via the three-way valve 7, heats the water by exchanging heat with water, and the heat medium becomes a low temperature.
  • the heat medium whose temperature has been lowered then flows into the heat medium pump 6 again.
  • the hot water storage circuit 53 water flowing out from the connection point 14 of the hot water storage tank 10 is sent to the heating heat exchanger 8 through the water pipe 311 by the water pump 9. This water is heated by the heating medium in the heating heat exchanger 8 to become hot water. Hot water that has flowed out of the heating heat exchanger 8 flows into the hot water tank 10 from the connection point 13 through the water pipe 310 and is stored. As water continuously flows out from the connection point 14 of the hot water tank 10 and hot water flows into the connection point 13 continuously, the amount of hot water in the hot water tank 10 increases. In the hot water storage operation mode, indoor heating is not performed, and no heat medium flows through the heating units 305a and 305b.
  • connection point 13 is the upper part of the hot water tank 10. Since the density of water decreases as the temperature rises, the higher the temperature, the higher the temperature of the hot water storage tank 10 rises and stays.
  • the hot water heated by the heating heat exchanger 8 and returned to the hot water storage tank 10 stays in the upper part of the hot water storage tank 10 without being dissipated to the water in the lower part of the hot water storage tank 10. That is, hot water can be stored without raising the temperature of the entire hot water tank 10.
  • the temperature of the hot water returned to the hot water storage tank 10 is heated to a predetermined set temperature so as not to lower the temperature of the hot water in the upper part of the hot water storage tank 10.
  • the set temperature is set by a user input or automatically by the pump control device 121 or the like. That is, in the present embodiment, a heating operation is performed to raise the temperature of the water by one heating so that the temperature of the hot water flowing out from the heating heat exchanger 8 detected by the temperature sensor 211 becomes the set temperature.
  • a heating method is called overheating. In the single overheating, it is necessary to control the flow rate of the water flowing to the heating heat exchanger 8 by the water pump 9 so that the temperature of the hot water flowing out from the heating heat exchanger 8 becomes the set temperature.
  • the flow rate said here means a volume flow rate.
  • the heat pump unit 301 In the case of one-time overheating, since the water is converted into hot water by a single heat exchange, the temperature of the hot water flowing out from the heating heat exchanger 8 is always almost equal to the set temperature. Therefore, since the temperature of the heat medium flowing into the heating heat exchanger 8 is always high, the heat pump unit 301 always operates to raise the temperature of the heat medium to a high temperature. The higher the temperature of the heat medium flowing out of the condenser 2, the lower the operating efficiency of the heat pump unit 301. Therefore, in the heat pump heating and hot water supply system 100 of the first embodiment, by realizing the following operation state, it is possible to suppress a decrease in operation efficiency and operate the heat pump unit 301 with high operation efficiency. Yes.
  • the specific enthalpy difference of the refrigerant in the condenser 2 is increased by lowering the temperature of the heat medium flowing into the condenser 2 and lowering the expansion valve 3 to lower the high-pressure liquid refrigerant temperature. , Increase driving efficiency.
  • running state is demonstrated.
  • FIG. 5 shows the difference between the temperature of the heat medium flowing into the heating heat exchanger 8 and the temperature of the heat medium flowing out of the heating heat exchanger 8 (hereinafter referred to as “temperature difference between the inlet and outlet of the heat medium”). It is the figure which took the axis
  • the temperature difference between the inlet and outlet of the heat medium in the heating heat exchanger 8 increases.
  • the temperature of the medium is lowered.
  • the amount of increase in the temperature of the heat medium flowing into the heating heat exchanger 8 increases as the temperature difference between the inlet and outlet of the heating medium in the heating heat exchanger 8 increases, and the amount of heat medium flowing out of the heating heat exchanger 8 increases.
  • the amount of decrease in temperature decreases as the difference in the heat medium temperature of the heating heat exchanger 8 increases.
  • the temperature change of the heat medium in each of the operation states (A), (B), and (C) in FIG. 5 will be specifically described.
  • the operating state (A) the temperature difference between the inlet and outlet of the heat medium is small, and the temperature of the heat medium flowing out from the heating heat exchanger 8 is high.
  • the flow rate of the heat medium pump 6 is reduced from the operating state (A) to the operating state (B), the temperature of the heat medium flowing out from the heating heat exchanger 8 is lowered.
  • FIG. 6 is a diagram showing an outline of the temperature distribution of the heat medium and water in the heating heat exchanger 8.
  • (A), (B), and (C) in FIG. 6 correspond to the operating states (A), (B), and (C) in FIG.
  • the temperature difference between the inlet and outlet of the heat medium is small.
  • the difference between the temperature of water (hot water) flowing out from the heating heat exchanger 8 and the temperature of water flowing into the heating heat exchanger 8 (hereinafter referred to as “temperature difference between the inlet and outlet of water”)
  • the temperature difference between the inlet and outlet of the heat medium is smaller than
  • the temperature difference between the inlet and outlet of the heat medium in the heating heat exchanger 8 is equal to the temperature difference between the water inlet and outlet.
  • the temperature difference between the heat medium and water becomes equal at any position in the heating heat exchanger 8.
  • the operation efficiency of the heat pump unit 301 can be maximized when the operation state is (B).
  • the flow rate of the heat medium by the heat medium pump 6 is realized so as to be in the operation state (B), the temperature of the heat medium flowing out from the heating heat exchanger 8 is lowered, and the heat medium flowing into the condenser 2 is reduced. It is preferable to lower the temperature. If the temperature of the heat medium flowing into the condenser 2 can be lowered, the high-pressure liquid refrigerant temperature that is the temperature at the outlet of the condenser 2 of the refrigerant flowing through the refrigerant circuit 51 can be lowered by restricting the expansion valve 3. Become. Next, the operation for lowering the high-pressure liquid refrigerant temperature will be described.
  • a target value of the high-pressure liquid refrigerant temperature is set according to the temperature of the heat medium flowing into the condenser 2, and the high-pressure liquid refrigerant temperature becomes the target value.
  • the expansion valve 3 is controlled.
  • the temperature of the high-pressure liquid refrigerant is detected by the temperature sensor 203, and the temperature of the heat medium flowing into the condenser 2 is detected by the temperature sensor 206.
  • the expansion valve 3 is throttled, the high-pressure liquid refrigerant temperature is lowered.
  • FIG. 7 shows the effect obtained by lowering the high-pressure liquid refrigerant temperature.
  • the target value of the high-pressure liquid refrigerant temperature is set to a value 3 ° C. higher than the temperature of the heat medium flowing into the condenser 2.
  • the target value of the high-pressure liquid refrigerant temperature is also lowered, so that the expansion valve 3 is throttled, and the specific enthalpy difference of the refrigerant in the condenser 2 is increased.
  • the target value of the high-pressure liquid refrigerant temperature is too close to the temperature of the heat medium flowing into the condenser 2, the high pressure rises and the operating efficiency decreases. Therefore, it is preferable to set the target value of the high-pressure liquid refrigerant temperature to be higher by a predetermined value (for example, about 3 ° C.) than the temperature of the heat medium flowing into the condenser 2.
  • the high-pressure liquid refrigerant temperature can be lowered, and the heat pump unit 301 can be operated so as to maximize the operation efficiency.
  • the operation state (A) or the operation state (B) is preferable. . Therefore, it is necessary to appropriately select the water pump 9 and the heat medium pump 6 to configure the heat pump heating / hot water supply system 100. Next, selection of the water pump 9 and the heat medium pump 6 will be described.
  • the water flow rate is 3.23 liters / minute. That is, in the case of this example, the water pump 9 is selected in the hot water storage circuit 53 that can make the flow rate of the water flowing through the heating heat exchanger 8 about 3.23 liters / minute.
  • FIG. 8 is a diagram illustrating a pump characteristic curve of the water pump 9.
  • a pipe resistance curve shows the total resistance of the piping of the hot water storage circuit 53.
  • the intersection of the pipe resistance curve and the head curve is a point where the capacity of the water pump 9 and the total resistance of the pipe are balanced, and that point is the operating state of the water pump 9.
  • the rotation speed of the water pump 9 can be varied by inverter control. For example, when the rotation speed is changed by changing the operation frequency of the water pump 9 to 60 Hz, 50 Hz, and 40 Hz, the lift curve changes, and the intersection of the pipe resistance curve and the lift curve shifts to the low flow rate side.
  • the head curve is determined by the specifications of the water pump 9. That is, it can be determined according to the pump type and the pump capacity.
  • the pipe resistance curve is determined by the piping specifications of the hot water storage circuit 53 (for example, the outer diameter, the thickness, the length, the type and number of pipe joints, the number of sudden expansion portions and sudden reduction portions). Since the hot water storage circuit 53 is a part of the hot water storage tank unit 302, the piping specifications of the hot water storage circuit 53 are information that can be obtained in advance at the time of design.
  • the pump 9 can be selected.
  • Cph is the specific heat [kJ / kgK] of the heat medium
  • ⁇ h is the density of the heat medium [kg / m 3 ]
  • Vh is the flow rate of the heat medium [m 3 / sec]
  • Thi flows into the heating heat exchanger 8.
  • the temperature of the heating medium [° C.], Tho is the temperature of the heating medium flowing out of the heating heat exchanger 8 [° C.]
  • Cpw is the specific heat of water [kJ / kgK]
  • ⁇ w is the density of water [kg / m 3 ]
  • Vw is the flow rate [m 3 / sec] of water
  • Twi is the temperature [° C.] of the water flowing into the heating heat exchanger 8
  • Two is the temperature [° C.] of the water flowing out of the heating heat exchanger 8.
  • the heating amount Qw of water in the heating heat exchanger 8 is equal to the heat dissipation amount Qh of the heat medium
  • the temperature difference between the inlet and outlet of the heat medium (Thi-Tho) and the temperature difference between the water inlet and outlet (Two-Twi) are equal
  • the heat capacity flow rate Cph ⁇ ⁇ h ⁇ Vh of the heat medium and the heat capacity flow rate Cpw ⁇ ⁇ w ⁇ Vw of water are also equal.
  • the heat capacity flow rate of the heat medium becomes larger than the heat capacity flow rate of water. .
  • the heat medium pump 6 may be selected so that the heat capacity flow rate of the heat medium is equal to or higher than the heat capacity flow rate of water.
  • the flow rate of water by the water pump 9 is 3.23 liters / minute, and using the specific heat of water 4.18 kJ / kgK and the density of water 1000 kg / m 3 , the heat capacity flow rate of water is 0.23 kW / K. Therefore, the heat medium pump 6 capable of setting the heat capacity flow rate of the heat medium to 0.23 kW / K or more is selected.
  • the temperature of the heat medium flowing out of the heating heat exchanger 8 is 25 ° C. by testing or analysis at the time of design
  • the average temperature is 45 ° C.
  • the specific heat of this heat medium at 45 ° C. is 3.78 kJ / kgK
  • the density is 1031 kg / m 3 .
  • the flow rate of the heat medium may be set to 3.54 liter / min or more. . Therefore, the heat medium pump 6 capable of setting the flow rate of the heat medium to 3.54 l / min or more is selected.
  • Brine generally has a lower specific heat than water, and for the same volumetric flow, the heat capacity flow is lower for brine than for water. Therefore, whatever volume of brine is used as the heat medium, the volume flow rate of the heat medium that can be sent by the heat medium pump 6 to the heating heat exchanger 8 is reduced by the water pump 9 to the heating heat exchanger 8.
  • the heat medium pump 6 and the water pump 9 are selected so as to be equal to or higher than the volume flow rate of water that can be sent.
  • the heat medium pump 6 so that the volume flow rate of the heat medium that the heat medium pump 6 can send to the heating heat exchanger 8 is equal to or higher than the volume flow rate of water that the water pump 9 can send to the heating heat exchanger 8.
  • the heat pump unit 301 can be operated with high efficiency.
  • the heat medium pump 6 in order to make the heat capacity flow rate of the heat medium equal to or higher than the heat capacity flow rate of water, it is necessary to select the heat medium pump 6 so that the flow rate (volume flow rate) of the heat medium becomes equal to or higher than the flow rate (volume flow rate) of water.
  • the flow rate changes due to differences in piping configuration and piping resistance. Therefore, in consideration of the piping configuration and piping resistance, the heat medium pump 6 that can make the flow rate of the heat medium equal to or higher than the flow rate of water is selected.
  • FIG. 9 is a diagram showing a pump characteristic curve of the heat medium pump 6.
  • the heat medium pipes 303 and 304 are particularly long in the heating circulation circuit 52, and the pipe resistance is increased.
  • the flow rate of the heat medium is often smaller than the flow rate of water in the hot water storage circuit 53. Therefore, it is necessary to select the heat medium pump 6 in consideration of the piping resistance of the heating circuit 52.
  • the installation locations of the heat pump unit 301 and the hot water tank unit 302 are determined, the lengths of the heat medium pipes 303 and 304 are determined.
  • the diameter of the piping of the heating circuit 52 is determined.
  • the pipe length and the pipe diameter are determined in this way, the pipe resistance when a necessary heat medium flow rate is passed can be obtained. Since all of these can be grasped at the design stage, it is possible to determine a pump that can output the entire head corresponding to the pipe resistance when the required flow rate of the heat medium is passed. In this way, the volume flow rate of the heat medium that can be sent to the heating heat exchanger 8 by the heat medium pump 6 is equal to or higher than the volume flow rate of water that can be sent to the heating heat exchanger 8 by the water pump 9.
  • the heat medium pump 6 can be selected.
  • the heat medium pump 6 and the water pump 9 can be selected.
  • one heat medium pump 6 and one water pump 9 are arranged.
  • the number of pumps and their connection method are not limited to this.
  • the heat capacity flow rate of the heat medium is larger than the heat capacity flow rate of water in the hot water storage operation mode. You may make it become.
  • the flow velocity of the fluid flowing through the piping it is preferable to set the flow velocity of the fluid flowing through the piping to a value within a predetermined range. Specifically, when the fluid flow rate is low, for example, 0.5 m / second or less, pitting corrosion is caused. Moreover, when the flow velocity of the fluid is high, for example, at 1.2 m / sec or more, it causes erosion.
  • the flow rate of the heat medium in the heating circuit 52 is equal to or higher than the flow rate of water in the hot water storage circuit 53.
  • the heating circuit 52 for example, the inner diameter of the heat medium pipes 303 and 304 is preferably equal to or larger than the inner diameter of the water pipes 310 and 311 constituting the hot water storage circuit 53.
  • the operation state is the operation state (B) in FIG. 6 according to the temperature of water flowing into the heating heat exchanger 8 and the temperature of water flowing out of the heating heat exchanger 8. Or in any position between the driving state (B) and the driving state (A).
  • the heat medium pump 6 is a variable speed type, by controlling the rotation speed, the operating state (B) of FIG. 6 is realized in all situations, and the heat pump unit 301 is operated more efficiently. Is possible.
  • the refrigerant of the heat pump unit 301 has a high pressure. It is possible to reliably prevent an abnormal operation due to an excessive increase or an excessive increase in the discharge temperature. The operation method will be described below.
  • the temperature difference between the inlet and outlet of the heat medium and the temperature difference between the inlet and outlet of water are equal.
  • the temperature of the heat medium flowing into the heating heat exchanger 8, the temperature of the heat medium flowing out of the heating heat exchanger 8, the temperature of water flowing into the heating heat exchanger 8, and the temperature of water flowing out of the heating heat exchanger 8 Can be obtained, the control means of the pump control device 121 so that the temperature difference between the inlet and outlet of the heat medium in the heating heat exchanger 8 is equal to or less than the temperature difference between the water inlet and outlet.
  • the temperature of the heat medium flowing into the heating heat exchanger 8 can be acquired by the temperature sensor 208, and the temperature of the heat medium flowing out of the heating heat exchanger 8 can be acquired by the temperature sensor 209. 8 can be acquired by the temperature sensor 210, and the temperature of water flowing out of the heating heat exchanger 8 can be acquired by the temperature sensor 211.
  • the temperature detected by the temperature sensor (temperature sensor 215 in the illustrated configuration) installed at the lowermost portion among the temperature sensors installed in the hot water storage tank 10, It can be used as the temperature of water flowing into the heating heat exchanger 8.
  • the temperature detected by the temperature sensor 207 can be used as the temperature of the heat medium flowing into the heating heat exchanger 8 and is detected by the temperature sensor 206.
  • the temperature can be used as the temperature of the heat medium flowing out from the heating heat exchanger 8.
  • the detected values of the temperature sensors 206 and 207 are transmitted by the communication means 103 of the heat pump control apparatus 101 and received by the communication means 125 of the pump control apparatus 121.
  • the operation state (B) or the operation state (A) in FIG. It can also be realized.
  • the acquisition method of the volume flow volume of water and a heat medium is demonstrated.
  • the method for obtaining the flow rate of water is as follows. First, the pump characteristic curve of the water pump 9 shown in FIG. 8 is stored in the storage means 123 of the pump control device 121. Specifically, the head curve stores a data table of the flow rate of water and the total head for each rotational speed, and the pipe resistance curve stores a data table of water flow rate and the total head. Since the pipe resistance curve is determined by the piping configuration of the hot water storage circuit 53 and the head curve is determined by the water pump 9, it can be grasped in advance at the design stage. The flow rate of water is calculated from the pump characteristic curve of the water pump 9 and the rotational speed of the water pump 9.
  • the method for obtaining the flow rate of the heat medium is as follows.
  • the pump characteristic curve of the heat medium pump 6 shown in FIG. 9 is stored in the storage unit 123 of the pump control device 121.
  • the head curve stores a data table of the flow rate of the heat medium and the total head for each rotation speed
  • the pipe resistance curve stores a data table of the flow rate of the heat medium and the total head. Since the head curve is determined by the heat medium pump 6, it can be grasped in advance at the design stage.
  • the pipe resistance curve is determined by the piping configuration of the heating circulation circuit 52.
  • the heating circuit 52 also includes heat medium pipes 303, 304, 306, and 307 that connect the heat pump unit 301, the hot water tank unit 302, and the heating units 305a and 305b, and these specifications are determined when installed on site. It is. Therefore, in addition to the piping specifications inside the heat pump unit 301 and the hot water tank unit 302 that are known in advance at the time of design, the length and outer diameter of the heat medium pipes 303, 304, 306, 307 installed by the installer at the time of installation on site Further, the wall thickness, the type and number of pipe joints, the number of the rapid expansion part and the rapid reduction part, and the like are input to the input means 124 of the pump control device 121. By doing so, the data table of the pipeline resistance curve can be obtained from these values. As described above, information on the head curve and the pipe resistance curve can be acquired. The flow rate of the heat medium is calculated from the pump characteristic curve of the heat medium pump 6 and the rotation speed of the heat medium pump 6.
  • the flow rate of water and the flow rate of the heat medium can be obtained.
  • the operation state can be set to the operation state (B) or a state close thereto, and the operation efficiency of the heat pump unit 301 can be maximized. It becomes. Moreover, it becomes possible to make an operation state into an operation state (A), and it can prevent reliably that the heat pump unit 301 becomes abnormal operation.
  • the heat capacity flow rate of the heat medium and the heat capacity flow rate of water are equal, and in order to realize the operation state (B) with higher accuracy,
  • the specific heat of water which is a fluid flowing through the hot water storage circuit 53, can be easily obtained as 4.18 kJ / kgK and the density of water is about 1000 kg / m 3 . Further, when water is used as the heat medium flowing through the heating circuit 52, the specific heat is easily obtained as 4.18 kJ / kgK and the density is about 1000 kg / m 3 .
  • the specific heat and density vary depending on the type, concentration, and temperature of the brine. Therefore, the type and concentration of the heat medium are input to the input unit 124 of the pump control device 121 and stored in the storage unit 123 when installed on site. Based on the input information and the temperature, the specific heat and density of the heat medium can be obtained.
  • the temperature of the heat medium is obtained by predicting the average temperature of the heat medium in the heating heat exchanger 8 at the system design stage.
  • the density and specific heat of the heat medium may be obtained according to the predicted average temperature.
  • the heating capacity of the heat pump unit 301, the specifications of the heating heat exchanger 8, the temperature of water flowing into the heating heat exchanger 8, and the temperature of water flowing out of the heating heat exchanger 8 are predicted. Therefore, the temperature of the heat medium flowing into the heating heat exchanger 8 and the temperature of the heat medium flowing out from the heating heat exchanger 8 can also be predicted. Therefore, the predicted average temperature of the heat medium in the heating heat exchanger 8 can be obtained.
  • the predicted average temperature is stored in the storage unit 123 of the pump control device 121.
  • the average temperature of the heat medium in the heating heat exchanger 8 is predicted using the temperature sensor information as follows, and the density and specific heat of the brine (heat medium) are obtained using the predicted average temperature. Also good. That is, regarding the heating heat exchanger 8, if there is an outlet temperature of the heat medium and an outlet temperature of water, the average of the two temperatures may be used. Furthermore, if the temperature sensor 209 is not present, the temperature of the temperature sensor 206 cannot be obtained from the heat pump unit 301, and the outlet temperature of the heat medium is unknown, the water outlet temperature is used as the predicted average temperature of the heat medium. Also good.
  • the temperature of the heat medium flowing into the heating heat exchanger 8 and the temperature of the heat medium flowing out of the heating heat exchanger 8 are known.
  • the average temperature can be predicted with high accuracy. That is, the temperature of the heat medium or water is detected by the detection means of the pump control device 121, the predicted average temperature of the heat medium is calculated by the calculation means 126 based on the information, and the calculated predicted average temperature of the heat medium is stored. Store in the means 123.
  • the specific heat and density data of the brine are stored in the storage unit 123 of the pump control device 121 as a data table of concentration and temperature for each type of brine.
  • the specific heat and density of a brine can be calculated
  • the heat medium is a naybrine having a concentration of 40% and the predicted average temperature is 45 ° C.
  • the specific heat is 3.78 kJ / kgK and the density is 1031 kg / m 3 .
  • the specific heat and density of water and the heat medium can be obtained, and the heat capacity flow rate can be obtained by multiplying them by the volume flow rate.
  • the operation state (B) can be realized with high accuracy.
  • the driving efficiency can be maximized.
  • the pump characteristic curve of the heat medium pump 6 was used when calculating the flow rate of the heat medium. Since the pipe resistance varies depending on the length of the heat medium pipes 303 and 304 installed at the site, information input by a local installer is required to use the pump characteristic curve. However, it may be desirable to facilitate local installation work. In that case, if the temperature difference between the inlet and outlet of the heating medium in the heating heat exchanger 8 and the heating capacity of the heat pump unit 301 are known, the volume flow rate of the heating medium can be set without using the pump characteristic curve of the heating medium pump 6. The operation of the heat medium pump 6 can be controlled. This method is preferably used when there is no temperature sensor 210 or 211 and a temperature difference between the inlet and outlet of water in the heating heat exchanger 8 cannot be obtained.
  • the hot water storage operation mode of the heat pump unit 301 is designed in advance so that the heating capacity of the heat pump unit 301, that is, the heating capacity of the condenser 2 to the heat medium is always equal to a predetermined heating capacity target. Accordingly, the compressor 1, the expansion valve 3, the blower 5 and the like of the heat pump unit 301 are operated. For example, if the heat pump unit 301 is 3HP, it is operated so that the heating capacity is 9 kW. There is also a heat pump unit 301 that is set in advance with a switch or the like before operation so as to have a predetermined heating capacity. In that case, even in the case of the 3HP heat pump unit 301, there are some in which the heating capacity is 8 kW or 7 kW.
  • the heat pump unit 301 has a heating capacity target determined in advance before operation. By using the heating capacity target and the temperature difference between the inlet and outlet of the heating medium in the heating heat exchanger 8, even if the operating characteristics of the heating medium pump 6 and the piping resistance characteristics of the heating circulation circuit 52 are unknown, The flow rate can be determined.
  • the heat pump control apparatus 101 transmits the heating capacity target of the heat pump unit 301 to the pump control apparatus 121 through the communication unit 103.
  • the pump control device 121 receives the heating capacity target through the communication means 125.
  • a predetermined heating capacity target may be stored in advance in the storage unit 123 of the pump control device 121.
  • the heating amount of the heat medium in the condenser 2 and the heat dissipation amount in the heating heat exchanger 8 are equal, so the exchange heat amount of the heating heat exchanger 8 is the heating capability of the heat pump unit 301, that is, the heating capability target. Is almost the same.
  • the heat exchange amount [kW] heat capacity flow rate [kW / K] ⁇ temperature difference between inlet and outlet [K], and the temperature difference between the inlet and outlet of the heat medium in the heating heat exchanger 8 is detected by the temperature sensor 208. It is obtained from the inlet temperature and the outlet temperature detected by the temperature sensor 209. As described above, the heat capacity flow rate of the heat medium is obtained.
  • the heat capacity flow rate is 0.23 kW / K.
  • the heat medium is a 40% concentration naybrine and its temperature is 45 ° C.
  • the specific heat is 3.78 kJ / kgK and the density is 1031 kg / m 3
  • the actual flow rate of the heat medium is 3 .54 liters / minute.
  • the actual heat medium is a nybrine having a concentration of 40%, but when the flow rate of the heat medium is calculated using the specific heat and density of water, the specific heat is 4.18 kJ / kgK and the density is 1000 kg / m 3 .
  • the flow rate of the heat medium is calculated to be 3.23 liters / minute.
  • the water flow rate can be obtained from the pump characteristic curve in the same manner as described above.
  • the flow rate of the heat medium and the flow rate of water are obtained, and the rotation speed of the heat medium pump 6 can be controlled by the control means 127 so that the flow rate of the heat medium becomes equal to or higher than the flow rate of water.
  • the flow rate of the heat medium is calculated to be smaller than actual.
  • the operation state can be set to the operation state (B) or a state close thereto, and the operation can be performed so that the operation efficiency of the heat pump unit 301 is maximized.
  • the operation state can be changed to the operation state (A), and the heat pump unit 301 can be reliably prevented from being abnormally operated.
  • the heat capacity flow rate of the heat medium and water may be acquired.
  • the heat capacity flow rate of the heat medium is obtained from the temperature difference between the inlet and outlet of the medium.
  • the heat capacity flow rate of water is calculated
  • the heat capacity flow rate of the heat medium and water can be acquired.
  • the rotation speed of the heat medium pump 6 is controlled by the control means 127 so that the heat capacity flow rate of the heat medium becomes equal to or higher than the heat capacity flow rate of water.
  • the operation state (B) can be realized with higher accuracy, and the operation efficiency of the heat pump unit 301 can be maximized.
  • the stability of the system may deteriorate and an unstable state such as hunting may occur.
  • the operation state becomes relatively stable by making the control interval of the heat medium pump 6 longer than the control interval of the water pump 9, for example, twice or three times or more.
  • the heat medium pump 6 is operated at.
  • the control means 127 of the pump control device 121 can perform control so that the number of fluctuations in the rotation speed of the heat medium pump 6 within a predetermined time is equal to or less than the number of fluctuations in the rotation speed of the water pump 9. desirable.
  • the control interval of the water pump 9 may be 15 seconds
  • the control interval of the heat medium pump 6 may be 120 seconds.
  • the operation state becomes relatively stable by making the control interval of the heat medium pump 6 longer than the control interval of the compressor 1, for example, twice or three times or more.
  • the heat medium pump 6 is operated at. By doing so, the system can be operated more stably.
  • the control interval of the compressor 1 may be 60 seconds and the control interval of the heat medium pump 6 may be 120 seconds.
  • the control interval in the heat medium pump 6 is lengthened, but also the amount of fluctuation of the rotation speed may be limited.
  • the heat medium pump 6 Regarding the amount of change in the rotation speed, a change of 5% or more with respect to that before the change may be prohibited. By doing so, since the rotational speed of the heat medium pump 6 changes little by little, unstable operation such as hunting can be suppressed, and the stability of the system is improved.
  • the heat transfer performance is improved by using the heating heat exchanger 8 installed outside the hot water tank 10. Further, the temperature of the heat medium flowing into the heat pump unit 301 is lowered by flowing the heat medium through the heating circulation circuit 52 and flowing water through the hot water storage circuit 53 so that the flow rate of the heat medium becomes equal to or higher than the flow rate of water. Can do. As a result, the heat pump unit 301 can be operated so as to maximize the operation efficiency, and the hot water storage operation can be performed with high operation efficiency.
  • the heating heat exchanger 8 since the heating heat exchanger 8 is installed outside the hot water storage tank 10, it can be easily replaced when a failure occurs in the heating heat exchanger 8, so that maintainability is also improved. Moreover, since not only the whole water in the hot water tank 10 can be made high temperature, but also a part of the water in the hot water tank 10 can be made high temperature, it is possible to generate hot water as much as necessary. In addition, the heat dissipation loss of the hot water tank 10 can be reduced.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIG. 10. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted.
  • FIG. 10 is a system circuit diagram of a heat pump heating / hot water supply system 200 according to Embodiment 2 of the present invention, and particularly shows a system circuit diagram in the heating operation mode.
  • the arrow in FIG. 10 shows the flow direction of the refrigerant. Based on FIG. 10, the refrigerant circuit structure of the heat pump type heating hot-water supply system 200 is demonstrated.
  • the second heat medium pump 16 is installed in parallel with the heat medium pump 6 in the heating circulation circuit 52.
  • the second heat medium pump 16 has a function of circulating the heat medium in the heating circuit 52, and may be a variable speed type (for example, by inverter control) or a constant speed type. .
  • the second heat medium pump 16 is operated in the heating operation mode and stopped in the hot water storage operation mode.
  • the heat medium pump 6 is selected so that the same operation as in the first embodiment can be realized in the hot water storage operation mode.
  • the heating heat exchanger 8 heats the water to the set temperature by one heat exchange, so the flow rate of the water pump 9 is generally small. Therefore, the heat medium pump 6 having a small flow rate is selected. For this reason, if the heating medium is circulated only by the heat medium pump 6 and the heating operation mode is carried out, the flow rate of the heat medium is small, so the temperature of the heat medium flowing into the condenser 2 becomes high, and the heat pump unit 301 Operation efficiency may deteriorate.
  • the second heat medium pump 16 is operated in addition to the heat medium pump 6 in the heating operation mode.
  • the operation efficiency of the heat pump unit 301 can be increased when the temperature of the heat medium flowing out from the heat pump unit 301 is as low as possible. Therefore, it is preferable to increase the flow rate of the heat medium so that the temperature difference between the inlet and outlet of the heat medium in the condenser 2 is suppressed to about 5 ° C., for example.
  • the heat medium is a nybrine having a concentration of 40%, and the heat medium inlet / outlet average temperature is 35 ° C., the specific heat of the heat medium is 3.74 kJ / kgK, The density of the heat medium becomes 1036 kg / m 3 , and the flow rate of the heat medium at which the temperature difference between the inlet and outlet of the heat medium in the condenser 2 becomes 5 ° C. is 27.87 liters / minute. If the heat medium pump 6 capable of securing a flow rate of 6.93 liters / minute has been selected, a second heat medium pump 16 that can secure a flow rate of 20.94 liters / minute may be selected. .
  • the second embodiment has a configuration in which the second heat medium pump 16 is simply added to the first embodiment, the operation state of the hot water storage operation mode similar to the first embodiment can be realized. is there. Therefore, in Embodiment 2, a highly efficient operation can be performed in both the heating operation mode and the hot water storage operation mode.
  • Embodiment 3 FIG. Next, a third embodiment of the present invention will be described with reference to FIG. 11. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted.
  • FIG. 11 is a system circuit diagram of a heat pump heating and hot water supply system 300 according to Embodiment 3 of the present invention, and particularly shows a system circuit diagram in a hot water storage operation mode.
  • the arrow in FIG. 11 shows the flow direction of the refrigerant. Based on FIG. 11, the refrigerant circuit structure of the heat pump type heating hot-water supply system 300 is demonstrated.
  • the connection point 17 serving as an inlet through which water heated by the heating heat exchanger 8 flows into the hot water tank 10 is the hot water tank 10. It is provided at the bottom.
  • the water pump 9 may be a constant speed type. Since it becomes such a structure, the heat pump type heating hot water supply system 300 which concerns on Embodiment 3 differs in the heating method of water from the heat pump type heating hot water supply system 100 which concerns on Embodiment 1.
  • FIG. 11 the connection point 17 serving as an inlet through which water heated by the heating heat exchanger 8 flows into the hot water tank 10 is the hot water tank 10. It is provided at the bottom.
  • the water pump 9 may be a constant speed type. Since it becomes such a structure, the heat pump type heating hot water supply system 300 which concerns on Embodiment 3 differs in the heating method of water from the heat pump type heating hot water supply system 100 which concerns on Embodiment 1.
  • the water heated by the heating heat exchanger 8 flows into the hot water tank 10 from the connection point 17 at the lower part of the hot water tank 10. Low temperature water exists in the lower part of the hot water tank 10. As the water heated by the heating heat exchanger 8 flows into the hot water storage tank 10, the water temperature of the entire hot water storage tank 10 rises. In Embodiment 3, even if water is heated to a high temperature by the heating heat exchanger 8, if the water temperature of the hot water storage tank 10 is low, the hot water storage tank 10 cannot store the high temperature water.
  • the hot water storage operation in the third embodiment is an operation for gradually raising the temperature of the entire hot water storage tank 10, and hot water is stored in the hot water storage tank 10 by performing heat exchange a plurality of times in the heating heat exchanger 8.
  • This heating method is called circulation heating.
  • the temperature of the water in the hot water storage tank 10 is raised by raising the temperature of the water by, for example, 5 ° C. in the heating heat exchanger 8. Therefore, the temperature of the water flowing into the heating heat exchanger 8 rises, for example, 25 ° C., 30 ° C., and so on, and the temperature of the water flowing out of the heating heat exchanger 8 is increased to 30 ° C., 35 ° C. ... and rise.
  • the circulation heating at the beginning of heating, the water temperature in the hot water storage tank 10 is low, the temperature of the heat medium flowing into the heating heat exchanger 8 and the temperature of the water flowing out from the heating heat exchanger 8 are also low.
  • the operation efficiency of the heat pump unit 301 is high.
  • the operation method of the water pump 9 is also different.
  • the refrigerant, heat medium, and water flow directions in the hot water storage operation mode in the third embodiment are the same as those in the first embodiment.
  • the control method of the water pump 9 is as follows. In order to keep the temperature of the heat medium flowing into the heating heat exchanger 8 low, the flow rate of water is increased to lower the temperature of the water flowing out of the heating heat exchanger 8. That is, for example, the water pump 9 is operated at a constant flow rate such that the temperature difference between the inlet and outlet of the water in the heating heat exchanger 8 is about 5 ° C.
  • the heating amount of the heating heat exchanger 8 is 9 kW
  • the specific heat of water is 4.18 kJ / kgK and the density of water is 1000 kg / m 3
  • the required flow rate of water is 25.84 liters / minute. Therefore, a pump that can secure a flow rate of 25.84 liters / minute is selected as the water pump 9.
  • the heat medium pump 6 in order to make the temperature difference between the inlet and outlet of the heat medium in the heating heat exchanger 8 equal to or less than the temperature difference between the water inlet and outlet, The flow rate of the medium must be secured. That is, when the flow rate of water supplied by the water pump 9 is 25.84 liters / minute, it is necessary to select a pump that can secure a flow rate of 25.84 liters / minute or more as the heat medium pump 6.
  • a target value for the high-pressure liquid refrigerant temperature is set, and control is performed by the expansion valve 3 so that the high-pressure liquid refrigerant temperature becomes the target value.
  • the target value of the high-pressure liquid refrigerant temperature can be set to a value 3 ° C. higher than the temperature of the heat medium flowing into the condenser 2, for example.
  • the heat medium pump 6 controls the temperature difference between the inlet and outlet of the heat medium in the heating heat exchanger 8 to be about 5 ° C.
  • the inlet and outlet of the heat medium of the condenser 2 The temperature difference is about 5 ° C. Therefore, since the temperature of the heat medium flowing into the condenser 2 is not so low, the expansion valve 3 may be controlled so that the degree of supercooling of the condenser 2 becomes a target value (for example, 2 ° C.).
  • the degree of supercooling of the condenser 2 is a value obtained by subtracting the temperature detected by the temperature sensor 203 from the saturation temperature of the pressure detected by the pressure sensor 201.
  • the heat pump heating and hot water supply system 300 it is possible to perform the heating operation and the hot water storage operation and to perform the hot water storage operation with high efficiency.
  • the heat transfer performance is improved by using the heating heat exchanger 8 installed outside the hot water tank 10. Since the temperature of the heat medium flowing into the heat pump unit 301 can be lowered, the heat pump unit 301 can be operated with high operation efficiency.
  • the heating heat exchanger 8 since the heating heat exchanger 8 is installed outside the hot water storage tank 10, it can be easily replaced when a failure occurs in the heating heat exchanger 8, so that maintainability is also improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

 高い運転効率で貯湯運転を実施することのできるヒートポンプ式暖房給湯システムを提供する。 ヒートポンプ式暖房給湯システム100は、ヒートポンプユニット301により加熱された熱媒体と水との熱交換により水を加熱する加熱熱交換器8と、熱媒体により室内を暖房する暖房ユニット305a,305bと、熱媒体ポンプ6により熱媒体を加熱熱交換器8と暖房ユニット305a,305bとの何れか一方に選択的に送る加熱循環回路52と、水ポンプ9により貯湯槽10の水を加熱熱交換器8に送るとともに加熱熱交換器8を通過した水を貯湯槽10に戻す貯湯回路53とを備え、熱媒体ポンプ6が加熱熱交換器8に送る熱媒体の体積流量は、水ポンプ9が加熱熱交換器8に送る水の体積流量以上である。

Description

ヒートポンプ式暖房給湯システム
 本発明は、ヒートポンプを用いて給湯と暖房を実施するヒートポンプ式暖房給湯システムに関する。
 特許文献1には、ヒートポンプユニットでの加熱により生成された湯を貯める貯湯タンクと、ヒートポンプユニットでの加熱により生成された湯を用いて暖房を行うラジエータと、貯湯タンクの内部に設置されたコイル状パイプからなる給湯用熱交換器とを備えたヒートポンプ式暖房給湯システムが開示されている。このシステムでは、給湯をする場合は、貯湯タンク内の給湯用熱交換器により、給水された水を加熱して湯を生成する。
日本特開2010-38445号公報
 上述した従来のシステムでは、貯湯タンクに貯えた湯を直接に出湯するのではなく、貯湯タンク内の給湯用熱交換器で水を加熱して生成した湯を出湯する。このため、貯湯タンクに蓄えた熱量を無駄なく利用することが困難である。また、高温の湯を貯湯タンクに貯めなければならない。また、コイル状パイプからなる給湯用熱交換器は伝熱性能が低い。このようなことから、上述した従来のシステムは、給湯効率が悪い。また、貯湯タンク内に給湯用熱交換器を設置するため、不具合や故障が発生した場合に取替え作業が煩雑なため、メンテナンス性が悪いという問題もある。
 本発明は、上述のような課題を解決するためになされたもので、高い運転効率で貯湯運転を実施することのできるヒートポンプ式暖房給湯システムを提供することを目的とする。
 本発明に係るヒートポンプ式暖房給湯システムは、熱媒体を加熱するヒートポンプと、熱媒体を送る1又は複数の熱媒体ポンプと、熱媒体と水との熱交換により水を加熱する加熱熱交換器と、熱媒体により室内を暖房する暖房熱交換器と、熱媒体が加熱熱交換器と暖房熱交換器との何れか一方に選択的に送られるように流路を切り換える流路切換手段と、熱媒体ポンプ、加熱熱交換器、暖房熱交換器及び流路切換手段を接続する熱媒体配管と、貯湯槽と、水を送る1又は複数の水ポンプと、貯湯槽から取り出された水が加熱熱交換器に送られ、加熱熱交換器を通過した水が貯湯槽に戻るように、貯湯槽、水ポンプ及び加熱熱交換器を接続する水配管と、ヒートポンプを制御するヒートポンプ制御装置と、熱媒体ポンプ及び水ポンプを制御するポンプ制御装置とを備え、熱媒体ポンプが加熱熱交換器に送る熱媒体の体積流量は、水ポンプが加熱熱交換器に送る水の体積流量以上であるものである。
 また、本発明に係るヒートポンプ式暖房給湯システムは、熱媒体を加熱するヒートポンプと、熱媒体を送る1又は複数の熱媒体ポンプと、熱媒体と水との熱交換により水を加熱する加熱熱交換器と、熱媒体により室内を暖房する暖房熱交換器と、熱媒体が加熱熱交換器と暖房熱交換器との何れか一方に選択的に送られるように流路を切り換える流路切換手段と、熱媒体ポンプ、加熱熱交換器、暖房熱交換器及び流路切換手段を接続する熱媒体配管と、貯湯槽と、水を送る1又は複数の水ポンプと、貯湯槽から取り出された水が加熱熱交換器に送られ、加熱熱交換器を通過した水が貯湯槽に戻るように、貯湯槽、水ポンプ及び加熱熱交換器を接続する水配管と、ヒートポンプを制御するヒートポンプ制御装置と、熱媒体ポンプ及び水ポンプを制御するポンプ制御装置とを備え、ポンプ制御装置は、加熱熱交換器にて熱媒体と水との熱交換により水を加熱する場合に、加熱熱交換器に流入する熱媒体の温度と加熱熱交換器から流出する熱媒体の温度との差が、加熱熱交換器から流出する水の温度と加熱熱交換器に流入する水の温度との差以下となるように、熱媒体ポンプ及び水ポンプを運転するものである。
 本発明に係るヒートポンプ式暖房給湯システムによれば、高い運転効率で貯湯運転を実施可能となる。
図1は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムの暖房運転モード時の冷媒、熱媒体及び水の流れを示したシステム回路図である。 図2は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムのヒートポンプ制御装置の構成を示すブロック図である。 図3は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムのポンプ制御装置の構成を示すブロック図である。 図4は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムの貯湯運転モード時の冷媒、熱媒体及び水の流れを示したシステム回路図である。 図5は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムの貯湯運転モード時の加熱熱交換器における熱媒体の入口出口間温度差と、加熱熱交換器に流入する熱媒体の温度及び加熱熱交換器から流出する熱媒体の温度との関係を示す図である。 図6は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムの貯湯運転モード時の加熱熱交換器内の熱媒体及び水の温度分布を示した概略図である。 図7は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムの貯湯運転モード時の膨張弁を絞ることによるエンタルピー差拡大効果を示した概略図である。 図8は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムの貯湯運転モード時の水ポンプのポンプ特性曲線を示した図である。 図9は本発明の実施の形態1におけるヒートポンプ式暖房給湯システムの貯湯運転モード時の熱媒体ポンプのポンプ特性曲線を示した図である。 図10は本発明の実施の形態2におけるヒートポンプ式暖房給湯システムの暖房運転モード時の冷媒、熱媒体及び水の流れを示したシステム回路図である。 図11は本発明の実施の形態3におけるヒートポンプ式暖房給湯システムの貯湯運転モード時の冷媒、熱媒体及び水の流れを示したシステム回路図である。
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。
実施の形態1.
<機器構成>
 図1は、本発明の実施の形態1に係るヒートポンプ式暖房給湯システム100のシステム回路図である。図1に示すように、ヒートポンプ式暖房給湯システム100は、蒸気圧縮式冷凍サイクル(ヒートポンプサイクル)の冷媒回路51と加熱循環回路52の一部とを搭載したヒートポンプユニット301と、加熱循環回路52の一部と貯湯回路53とを搭載した貯湯槽ユニット302と、加熱循環回路52の一部により構成され、室内を暖房する暖房ユニット305a,305bとを備えている。ヒートポンプユニット301と貯湯槽ユニット302とは、熱媒体配管303及び熱媒体配管304を介して接続されている。貯湯槽ユニット302と暖房ユニット305a,305bとは、熱媒体配管306及び熱媒体配管307を介して接続されている。また、貯湯槽ユニット302は、給湯端末(例えば、台所や洗面所等の蛇口)に繋がる給湯管308と、水道等の水源から給水するための給水管309とに接続されている。
 ヒートポンプユニット301の冷媒回路51に用いられる冷媒は、特に限定されず、例えば、R410A、R32、HFO-1234yf、炭化水素や二酸化炭素のような自然冷媒、などを用いることができる。また、加熱循環回路52に用いられる熱媒体は、特に限定されず、例えば、水、エチレングリコール、プロピレングリコール、ナイブライン(ナイブラインは商標)、あるいはこれらの混合物、などの液体を用いることができる。また、エチレングリコール、プロピレングリコール、ナイブラインなどは、任意の濃度のものを用いることができる。
 このヒートポンプ式暖房給湯システム100は、例えば一般住宅やオフィスビル等に設置される。ヒートポンプ式暖房給湯システム100は、貯湯槽ユニット302にて選択された給湯指令(給湯ON/OFF)又は暖房指令(暖房ON/OFF)を処理することができる。
<ヒートポンプユニット301>
 ヒートポンプユニット301は、圧縮機1と、凝縮器2と、膨張弁3と、蒸発器4とを冷媒配管により環状に接続した冷媒回路51を搭載している。圧縮機1は、冷媒を吸入し圧縮して高温高圧の状態にする。圧縮機1は、例えばインバータ制御により、回転速度が制御されるタイプのものが好ましい。凝縮器2は、熱媒体と冷媒とを熱交換させることで、熱媒体を加熱し、冷媒を冷却する。凝縮器2は、例えばプレート式熱交換器により構成される。膨張弁3は、冷媒を減圧して低温低圧の状態にする。膨張弁3の開度は、可変である。蒸発器4は、外気と冷媒を熱交換させることで、外気から熱を吸収して冷媒を加熱する。蒸発器4は、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型空気熱交換器で構成される。蒸発器4には送風機5が設置されている。送風機5により、外気を吸入して、蒸発器4にて熱交換した後に、その空気を外部に排出する。送風機5は、プロペラファン等のファンと、このファンを駆動する、例えば、DCファンモータからなるモータとを備えている。送風機5は、供給する空気の流量を可変とするように構成される。
 ヒートポンプユニット301は、更に、圧縮機1から吐出される冷媒の圧力を検出する圧力センサ201と、圧縮機1から吐出される冷媒の温度を検出する温度センサ202と、凝縮器2から流出する冷媒の温度を検出する温度センサ203と、蒸発器4に流入する冷媒の温度を検出する温度センサ204と、外気温度(蒸発器4に流入する空気の温度)を検出する温度センサ205と、凝縮器2に流入する熱媒体の温度を検出する温度センサ206と、凝縮器2から流出する熱媒体の温度を検出する温度センサ207とを備えている。
<貯湯槽ユニット302>
 貯湯槽ユニット302には、熱媒体ポンプ6、三方弁7、加熱熱交換器8、水ポンプ9、貯湯槽10、及び混合弁11等が搭載されている。熱媒体ポンプ6は、加熱循環回路52にて熱媒体を循環させる機能を有している。熱媒体ポンプ6は、可変速式のもの(例えばインバータ制御によるもの)でもよいし、あるいは一定速式のものでもよい。三方弁7は、熱媒体の流れ方向を切り換える流路切換手段として機能するものである。貯湯運転時には、熱媒体が加熱熱交換器8に流れるように三方弁7が切り換えられる。暖房運転時には、熱媒体が暖房ユニット305a,305bに流れるように三方弁7が切り換えられる。加熱熱交換器8は、熱媒体と水とを熱交換させることで、水を加熱し、熱媒体を冷却する。加熱熱交換器8は、例えばプレート式熱交換器により構成される。本実施形態では、加熱熱交換器8内で熱媒体と水とが逆方向に流れるように構成されている。水ポンプ9は、貯湯回路53にて水を循環させる機能を有している。水ポンプ9は、可変速式のもの(例えばインバータ制御によるもの)でもよいし、あるいは一定速式のものでもよい。貯湯槽10(貯湯タンク)は、沸き上げられた湯及び沸き上げ前の水を貯留する機能を有している。貯湯槽10は、満水式であり、温度成層を形成しながら貯湯を行い、上部に高温水、下部に低温水が貯留される。貯湯槽10の上部の接続点13には貯湯回路53の水配管310が接続され、貯湯槽10の下部の接続点14には貯湯回路53の水配管311が接続されている。水ポンプ9を駆動することにより、貯湯槽10内の水が接続点14から流出し、水配管311を通って加熱熱交換器8に送られて加熱された後、水配管310を流れて貯湯槽10に戻り、接続点13から貯湯槽10内に流入する。
 出湯管15は、貯湯槽10の上部と混合弁11とを接続している。給水管309は、貯湯槽10の下部と、混合弁11とにそれぞれ接続されている。混合弁11には更に給湯管308が接続されている。使用者の給湯要求に応じて、貯湯槽10の上部から出湯管15へ湯が流出し、混合弁11に供給される。この際、出湯管15へ流出した湯と同量の低温水が給水管309から貯湯槽10の下部に流入する。混合弁11は、出湯管15からの湯と、給水管309からの低温水とを混合して、給湯管308へ送水する。混合弁11は、湯と低温水との混合比を制御可能になっており、予め設定された温度の湯を生成する。
 貯湯槽ユニット302は、更に、加熱熱交換器8に流入する熱媒体の温度を検出する温度センサ208と、加熱熱交換器8から流出する熱媒体の温度を検出する温度センサ209と、加熱熱交換器8に流入する水の温度を検出する温度センサ210と、加熱熱交換器8から流出する水の温度を検出する温度センサ211と、貯湯槽10内の水温を検出する温度センサ212,213,214,215と、給湯管308内の水温を検出する温度センサ216とを備えている。
<暖房ユニット305a,305b>
 暖房ユニット305a,305bは、暖房熱交換器としてのラジエータ12a,12b(パネルヒータ)を備えている。ラジエータ12a,12bに熱媒体を流すことによって、室内の空気を輻射により暖房する。
 本実施の形態では、暖房ユニットを2台にしているが、暖房ユニットを1台若しくは3台以上としても良い。また、本実施の形態では、暖房熱交換器をラジエータとしたが、例えばファンコイルユニットや床暖房ヒータ等の他種の暖房熱交換器を用いても良く、複数種類の暖房熱交換器が混在した形態としても良い。
<ヒートポンプ制御装置101及びポンプ制御装置121>
 ヒートポンプユニット301には、例えばマイクロコンピュータにより構成されたヒートポンプ制御装置101が設けられている。貯湯槽ユニット302には、例えばマイクロコンピュータにより構成されたポンプ制御装置121が設けられている。図2は、ヒートポンプ制御装置101の構成を示したブロック線図である。ヒートポンプ制御装置101は、圧力センサ201や温度センサ202,203,204,205,206,207などの出力に基づいて圧力や温度の情報を取得する計測手段102と、ヒートポンプユニット301の運転状態(温度、圧力など)や異常信号などをポンプ制御装置121に送信したり、また逆に貯湯槽ユニット302の運転状態(温度、機器動作など)や異常信号などをポンプ制御装置121から受信したりするための通信手段103と、計測手段102により取得された計測情報に基づいて凝縮温度や過冷却度などを演算する演算手段104と、上記計測情報や演算手段104の演算結果等に基づいてヒートポンプユニット301の運転状態(圧縮機1の運転方法や膨張弁3の開度など)を制御する制御手段105とを有している。なお、通信手段103は、例えば電話回線、LAN回線、無線通信などにより、後述する通信手段125と相互に通信を行うように構成されている。
 図3は、ポンプ制御装置121の構成を示したブロック線図である。ポンプ制御装置121には、温度センサ208,209,210,211,212,213,214,215,216の出力に基づいて温度の情報を取得する計測手段122と、加熱循環回路52を流れる熱媒体の種類などを記憶する記憶手段123と、使用者からの運転モードのON/OFF指令や据付け業者からのインプット情報などの入力を認識する入力手段124と、貯湯槽ユニット302の運転状態(温度や機器動作など)や異常信号などをヒートポンプ制御装置101に送信したり、また逆にヒートポンプユニット301の運転状態(温度、圧力など)や異常信号などをヒートポンプ制御装置101から受信したりするための通信手段125と、計測手段122により取得された計測情報に基づいて加熱熱交換器8に出入りする水の温度差及び加熱熱交換器8に出入りする熱媒体の温度差などを演算する演算手段126と、上記計測情報や演算手段126の演算結果等に基づいてに基づいて貯湯槽ユニット302の運転状態(熱媒体ポンプ6及び水ポンプ9の運転状態や三方弁7の切り換えなど)を制御する制御手段127とを有している。
 なお、実施の形態1では、ヒートポンプ制御装置101がヒートポンプユニット301に設置され、ポンプ制御装置121が貯湯槽ユニット302に設置された構成となっているが、このような構成に限定されず、貯湯槽ユニット302にヒートポンプ制御装置101が設置されたり、ヒートポンプユニット301にポンプ制御装置121が設置された構成としてもよい。また、ヒートポンプ制御装置101とポンプ制御装置121とが一体化されていてもよい。また、ヒートポンプユニット301及び貯湯槽ユニット302以外の場所に制御装置(図示せず)を用意し、その制御装置がヒートポンプ制御装置101及びポンプ制御装置121の一部又は全部の機能を引き受ける構成としても良い。
<運転モード>
 ヒートポンプ式暖房給湯システム100は、暖房ユニット305a,305bに要求される暖房負荷及び貯湯槽ユニット302に要求される給湯要求に応じて、ヒートポンプユニット301、貯湯槽ユニット302及び暖房ユニット305a,305bに搭載されている各機器の制御を行い、暖房運転モード若しくは貯湯運転モードを実行する。暖房運転モード若しくは貯湯運転モードのON/OFFの情報は、使用者により、若しくは時刻等に基づいて自動で、ポンプ制御装置121の入力手段124に入力される。その入力情報は、通信手段125によりヒートポンプ制御装置101に送信される。以下、各運転モードにおける運転動作について説明する。
[暖房運転モード]
 まず、暖房運転モードについて図1を用いて説明する。なお、図1中の矢印は冷媒及び熱媒体の流れ方向を示している。暖房運転モードでは、三方弁7は、凝縮器2の出口と暖房ユニット305a,305bとを接続するように切り換えられる。この状態にてヒートポンプユニット301及び貯湯槽ユニット302の運転を実施する。そうすると、冷媒回路51では圧縮機1から吐出された高温・高圧のガス冷媒は、凝縮器2に流入し、熱媒体により冷却されて高圧液冷媒になる。その後、冷媒は、凝縮器2から流出し、膨張弁3にて減圧され低圧の二相冷媒となる。その後、冷媒は、蒸発器4に流入し、外気から熱を吸収して低圧ガス冷媒となる。その後、冷媒は、再び圧縮機1に吸入される。圧縮機1、膨張弁3及び送風機5は、計測手段102により計測された温度や圧力に応じてヒートポンプ制御装置101の制御手段105により運転状態が制御されている。
 一方、加熱循環回路52では、熱媒体ポンプ6により送流された熱媒体が貯湯槽ユニット302より流出し、熱媒体配管304を経由してヒートポンプユニット301に流入する。熱媒体は、ヒートポンプユニット301に流入後、凝縮器2にて冷媒により加熱され、高温状態となる。この高温の熱媒体は、ヒートポンプユニット301より流出し、熱媒体配管303を経由して、再び貯湯槽ユニット302に流入する。熱媒体は、その後、三方弁7を経由して貯湯槽ユニット302から流出し、熱媒体配管306を経由して、暖房ユニット305a,305bに流入する。ラジエータ12a,12bにて熱媒体と室内空気とが熱交換することにより室内を暖房し、熱媒体は低温となる。低温となった熱媒体は、暖房ユニット305a,305bから流出し、熱媒体配管307を経由して貯湯槽ユニット302に流入し、再び熱媒体ポンプ6に流入する。熱媒体ポンプ6は、計測された温度や圧力に応じて、ポンプ制御装置121の制御手段127により運転状態が制御されている。なお、暖房運転モードでは、貯湯槽10の水を加熱しないため、水ポンプ9は停止しており、貯湯回路53の水は流れていない。
[貯湯運転モード]
 次に、貯湯運転モードについて図4を用いて説明する。なお、図4中の矢印は冷媒、熱媒体及び水の流れ方向を示している。貯湯運転モードでは、三方弁7は、凝縮器2の出口と加熱熱交換器8の入口とを接続するように切り換えられる。この状態にてヒートポンプユニット301及び貯湯槽ユニット302の運転を実施する。そうすると、冷媒回路51では圧縮機1から吐出された高温・高圧のガス冷媒は、凝縮器2に流入し、熱媒体により冷却されて高圧液冷媒になる。冷媒は、その後、凝縮器2から流出し、膨張弁3にて減圧され低圧の二相冷媒となる。冷媒は、その後、蒸発器4に流入し、外気から熱を吸収して低圧ガス冷媒となる。冷媒は、その後、再び圧縮機1に吸入される。圧縮機1、膨張弁3及び送風機5は、計測手段102により計測された温度や圧力に応じてヒートポンプ制御装置101の制御手段105により運転状態が制御されている。
 一方、加熱循環回路52では、熱媒体ポンプ6により送流された熱媒体は貯湯槽ユニット302より流出し、熱媒体配管304を経由してヒートポンプユニット301に流入する。熱媒体は、ヒートポンプユニット301に流入後、凝縮器2にて冷媒により加熱され、高温状態となる。この高温の熱媒体は、ヒートポンプユニット301より流出し、熱媒体配管303を経由して、再び貯湯槽ユニット302に流入する。熱媒体は、その後、三方弁7を経由して加熱熱交換器8に流入し、水と熱交換を行うことで水を加熱し、熱媒体は低温となる。この温度低下した熱媒体は、その後、再び熱媒体ポンプ6に流入する。
 一方、貯湯回路53では、貯湯槽10の接続点14より流出した水が水ポンプ9により水配管311を通って加熱熱交換器8へ送流される。この水は、加熱熱交換器8にて熱媒体により加熱されて、湯となる。加熱熱交換器8から流出した湯は、水配管310を通って、接続点13から貯湯槽10に流入し、貯えられる。貯湯槽10の接続点14より水が連続して流出し、湯が接続点13へ連続して流入することにより、貯湯槽10内の湯量は増加する。なお、貯湯運転モードでは、室内の暖房を実施しておらず、暖房ユニット305a,305bに熱媒体は流れていない。
<高効率を実現する貯湯運転方法>
 本実施形態では、接続点13が貯湯槽10の上部となっている。水は、高温になると密度が小さくなるので、高温の湯ほど貯湯槽10の上部に上昇し滞留する。加熱熱交換器8により加熱されて貯湯槽10に戻ってきた湯は、貯湯槽10の下部の水に放熱することなく、高温のまま貯湯槽10の上部に滞留する。つまり、貯湯槽10全体を昇温させなくても、高温の湯を貯留することができる。追加沸き上げをする場合は、貯湯槽10の上部の湯の温度を低下させないように、貯湯槽10に戻す湯の温度を所定の設定温度まで加熱する。設定温度は、使用者の入力により、若しくはポンプ制御装置121等により自動で、設定される。すなわち、本実施形態では、温度センサ211にて検出される、加熱熱交換器8から流出する湯の温度が設定温度となるように、一度の加熱にて水を昇温させる加熱動作を行う。このような加熱方式のことを一過加温という。一過加温では、加熱熱交換器8から流出する湯の温度が設定温度となるように、加熱熱交換器8に流れる水の流量を水ポンプ9により制御する必要がある。なお、ここで言う流量とは体積流量のことをいう。
 一過加温では、水を一度の熱交換にて高温の湯とするため、加熱熱交換器8から流出する湯の温度は、常に設定温度にほぼ等しくなる。そのため、加熱熱交換器8に流入する熱媒体の温度も常に高温となるので、ヒートポンプユニット301は、常に熱媒体を高温に昇温させる動作となる。凝縮器2から流出する熱媒体の温度が高くなるほど、ヒートポンプユニット301の運転効率は低くなる。そこで、実施の形態1のヒートポンプ式暖房給湯システム100では、以下のような運転状態を実現することによって、運転効率の低下を抑制し、高い運転効率にてヒートポンプユニット301を動作させることを可能としている。具体的には、凝縮器2に流入する熱媒体の温度を低くし、かつ、膨張弁3を絞って高圧液冷媒温度を低くすることによって、凝縮器2における冷媒の比エンタルピー差を拡大させて、運転効率を高める。以下、その運転状態の実施方法について説明する。
 まず、凝縮器2に流入する熱媒体の温度を低くする運転について説明する。凝縮器2に流入する熱媒体の温度が低い時は、加熱熱交換器8から流出する熱媒体の温度も低くなっている。図5は、加熱熱交換器8に流入する熱媒体の温度と加熱熱交換器8から流出する熱媒体の温度との差(以下「熱媒体の入口出口間温度差」と称する。)を横軸にとり、加熱熱交換器8に流入する熱媒体の温度及び加熱熱交換器8から流出する熱媒体の温度を縦軸にとった図である。熱媒体ポンプ6の回転速度を低くして、熱媒体の流量を少なくすると、加熱熱交換器8における熱媒体の入口出口間温度差は大きくなる。図5に示すように、加熱熱交換器8における熱媒体の入口出口間温度差が大きくなるほど、加熱熱交換器8に流入する熱媒体の温度は高くなり、加熱熱交換器8から流出する熱媒体の温度は低くなる。また、加熱熱交換器8に流入する熱媒体の温度の上昇量は、加熱熱交換器8における熱媒体の入口出口間温度差が大きくなるほど大きくなり、加熱熱交換器8から流出する熱媒体の温度の低下量は、加熱熱交換器8の熱媒体温度の差が大きくなるほど小さくなる。ここで、具体的に、図5中の各運転状態(A)、(B)及び(C)における熱媒体の温度変化を説明する。運転状態(A)の場合には、熱媒体の入口出口間温度差が小さく、加熱熱交換器8から流出する熱媒体の温度は高い状態である。運転状態(A)より熱媒体ポンプ6の流量を少なくして運転状態(B)にすると、加熱熱交換器8から流出する熱媒体の温度は低くなる。ところが、熱媒体ポンプ6の流量をさらに少なくして運転状態(C)にすると、加熱熱交換器8から流出する熱媒体の温度はさらに低くなるものの、加熱熱交換器8に流入する熱媒体の温度が過度に上昇する。加熱熱交換器8に流入する熱媒体の温度が高くなると、凝縮器2から流出する熱媒体の温度も高くなるので、ヒートポンプユニット301の運転効率が低くなる。また、凝縮器2から流出する熱媒体の温度が高くなると、圧縮機1の吐出部において冷媒圧力や冷媒温度の過度な上昇となる可能性があり、ヒートポンプユニット301において異常停止や熱媒体の加熱能力不足の原因となり得る。そのため、凝縮器2から流出する熱媒体の温度が高い状態は、望ましい運転状態ではない。このようなことから、熱媒体ポンプ6による熱媒体の流量は、運転状態(B)の場合が最適である。したがって、運転状態(C)のように凝縮器2から流出する熱媒体の温度が高くなるのを防ぐために、加熱熱交換器8における熱媒体の入口出口間温度差が運転状態(B)における温度差以下となるようにすることが望ましい。
 図5の運転状態(B)がどのような状態であるかを図6を用いて詳しく説明する。図6は、加熱熱交換器8内の熱媒体及び水の温度分布の概略を示す図である。図6中の(A)、(B)及び(C)は、図5の中の運転状態(A)、(B)及び(C)と対応している。図6に示すように、熱媒体の流量が多い運転状態(A)では、熱媒体の入口出口間温度差は小さい。この運転状態(A)では、加熱熱交換器8から流出する水(湯)の温度と加熱熱交換器8に流入する水の温度との差(以下、「水の入口出口間温度差」と称する)よりも、熱媒体の入口出口間温度差の方が小さい。ここで、熱媒体の流量を運転状態(A)より少なくして運転状態(B)にすると、加熱熱交換器8における熱媒体の入口出口間温度差と水の入口出口間温度差とが等しくなるとともに、加熱熱交換器8内の何れの位置においても熱媒体と水との温度差が等しくなる。加熱熱交換器8内の何れの位置においても熱媒体と水との温度差が一定である状態は、熱媒体において過度な高温状態での熱交換部分がないと言え、不可逆損失が最も少ない運転となっていることが分かる。そのため、運転状態(B)の時が、ヒートポンプユニット301の運転効率を最も高くすることができる。
 したがって、運転状態(B)となるように熱媒体ポンプ6による熱媒体の流量を実現し、加熱熱交換器8から流出する熱媒体の温度を低くして、凝縮器2に流入する熱媒体の温度を低くすることが好ましい。凝縮器2に流入する熱媒体の温度を低くできれば、膨張弁3を絞ることで、冷媒回路51を流れる冷媒の凝縮器2の出口での温度である高圧液冷媒温度も低くすることが可能となる。次に、高圧液冷媒温度を低くする運転について説明する。
 高圧液冷媒温度を低くする方法としては、ヒートポンプユニット301に関して、凝縮器2に流入する熱媒体の温度に応じて高圧液冷媒温度の目標値を設定し、高圧液冷媒温度がその目標値となるように膨張弁3を制御する。なお、高圧液冷媒温度は温度センサ203により検出され、凝縮器2に流入する熱媒体の温度は温度センサ206により検出される。膨張弁3を絞ることにより高圧液冷媒温度は低くなる。高圧液冷媒温度が低くなることによる効果を図7に示す。高圧液冷媒温度の目標値を、例えば、凝縮器2に流入する熱媒体の温度より3℃高い値とする。これにより、凝縮器2に流入する熱媒体の温度が低い場合は、高圧液冷媒温度の目標値も低くなるので、膨張弁3の絞られる動作となり、凝縮器2の冷媒の比エンタルピー差が拡大する。なお、高圧液冷媒温度の目標値を凝縮器2に流入する熱媒体の温度に近づけすぎると、高圧が上昇して運転効率が低くなる。そのため、高圧液冷媒温度の目標値を、凝縮器2に流入する熱媒体の温度よりも所定値(例えば3℃ほど)高く設定することが好ましい。
 以上のようにすることで、高圧液冷媒温度を低くすることが可能となり、運転効率が最大となるようにヒートポンプユニット301を運転することができる。ここで、一過加温にてこのような動作を実現するためには、図6の運転状態(B)となるように熱媒体の流量及び水の流量を調整する必要がある。また、ヒートポンプユニット301の信頼性を向上し、加熱熱交換器8に流入する熱媒体の温度の過度な上昇を回避する観点から、運転状態(A)若しくは運転状態(B)とするのが良い。そのため、水ポンプ9及び熱媒体ポンプ6を適切に選定して、ヒートポンプ式暖房給湯システム100を構成する必要がある。次に、水ポンプ9及び熱媒体ポンプ6の選定について説明する。
<水ポンプの選定>
 まず、水ポンプ9の選定について説明する。貯湯運転モードにて貯湯回路53を流れる水は、加熱熱交換器8において一度の熱交換にて設定温度まで加温される。その状態が実現される流量に制御可能な水ポンプ9が選定される。例として、ヒートポンプユニット301の加熱能力が9kWとすると、凝縮器2での冷媒と熱媒体との交換熱量は9kWであり、加熱熱交換器8での熱媒体と水との交換熱量も9kWとなる。例として、加熱熱交換器8に流入する水の温度が15℃、設定温度が55℃とすると、水の比熱が4.18kJ/kgK、水の密度が1000kg/mであるので、必要な水の流量は3.23リットル/分となる。つまり、この例の場合には、貯湯回路53において、加熱熱交換器8を流れる水の流量を3.23リットル/分程度にすることができる水ポンプ9を選定する。
 また、水ポンプ9を選定する際は、貯湯回路53の配管抵抗も考慮して選定をする。図8は、水ポンプ9のポンプ特性曲線を示す図である。貯湯回路53の配管の全抵抗を示したのが管路抵抗曲線である。管路抵抗曲線と揚程曲線との交点が水ポンプ9の能力と配管の全抵抗とがバランスした点となり、その点が水ポンプ9の運転状態となる。ここでは、水ポンプ9はインバータ制御により回転速度を可変することができるものとする。例えば、水ポンプ9の運転周波数を60Hz、50Hz、40Hzと変化させて回転速度を変化させると、揚程曲線が変化し、管路抵抗曲線と揚程曲線との交点が低流量側にシフトする。そのため、貯湯回路53を流れる水の流量は少なくなる。揚程曲線は、水ポンプ9の諸元により決まる。すなわち、ポンプ種類とポンプ容量とに応じて決定できる。管路抵抗曲線は、貯湯回路53の配管諸元(例えば、外径、肉厚、長さ、管継ぎ手の種類や数、急拡大部や急縮小部の数)により決まる。貯湯回路53は貯湯槽ユニット302の一部であるので、貯湯回路53の配管諸元は、設計時に予め求めることができる情報である。以上のように、ポンプ特性曲線と管路抵抗曲線とに基づいて、加熱熱交換器8を流れる水の流量を所望の値(前述した例では3.23リットル/分)にすることができる水ポンプ9を選定可能となる。
 次に、熱媒体ポンプ6の選定について説明する。図6の運転状態(B)では、加熱熱交換器8における熱媒体の入口出口間温度差と水の入口出口間温度差とが等しい状態である。この場合、加熱熱交換器8における熱媒体の放熱量Qh及び水の加熱量(受熱量)Qwには、それぞれ以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
 ここで、Cphは熱媒体の比熱[kJ/kgK]、ρhは熱媒体の密度[kg/m]、Vhは熱媒体の流量[m/秒]、Thiは加熱熱交換器8に流入する熱媒体の温度[℃]、Thoは加熱熱交換器8から流出する熱媒体の温度[℃]、Cpwは水の比熱[kJ/kgK]、ρwは水の密度[kg/m]、Vwは水の流量[m/秒]、Twiは加熱熱交換器8に流入する水の温度[℃]、Twoは加熱熱交換器8から流出する水の温度[℃]である。加熱熱交換器8における水の加熱量Qwと熱媒体の放熱量Qhは等しいので、熱媒体の入口出口間温度差(Thi-Tho)と、水の入口出口間温度差(Two-Twi)とが等しければ、熱媒体の熱容量流量Cph×ρh×Vhと、水の熱容量流量Cpw×ρw×Vwも等しくなる。また、図6の運転状態(A)のように熱媒体の入口出口間温度差が水の入口出口間温度差よりも小さい場合には、熱媒体の熱容量流量は水の熱容量流量よりも大きくなる。以上のことから、図5の運転状態(A)又は(B)を実現するためには、熱媒体の熱容量流量が水の熱容量流量以上となるように熱媒体ポンプ6を選定すればよい。前述した例の場合、水ポンプ9による水の流量は3.23リットル/分であり、水の比熱4.18kJ/kgKと、水の密度1000kg/mとを用いて、水の熱容量流量は0.23kW/Kとなる。したがって、熱媒体の熱容量流量を0.23kW/K以上とすることが可能な熱媒体ポンプ6を選定する。
 前述した例において、熱媒体として水を用いる場合には、Cph=Cpw、ρh=ρwとなるため、熱媒体の流量を3.23リットル/分以上とすることが可能な熱媒体ポンプ6を選定する。一方、凍結予防のため、ナイブライン、エチレングリコール、プロピレングリコールなどのブライン(不凍液)を熱媒体として用いる場合もある。その場合は以下のようにして選定する。例として、濃度40%のナイブラインを用いる場合について説明する。設計時に試験や解析等にて、加熱熱交換器8に流入する熱媒体の温度が65℃、加熱熱交換器8から流出する熱媒体の温度が25℃であると確認した場合、熱媒体の平均温度は45℃であり、この熱媒体の45℃における比熱は3.78kJ/kgK、密度は1031kg/mとなる。この比熱及び密度の値を用いて計算すると、熱媒体の熱容量流量を水の熱容量流量0.23kW/K以上とするためには、熱媒体の流量を3.54リットル/分以上にすればよい。したがって、熱媒体の流量を3.54リットル/分以上とすることが可能な熱媒体ポンプ6を選定する。ブラインは、一般に、水よりも比熱が小さく、同じ体積流量の場合、熱容量流量はブラインの方が水よりも小さくなる。したがって、どのようなブラインを熱媒体として用いた場合であっても、熱媒体ポンプ6が加熱熱交換器8に送ることのできる熱媒体の体積流量が、水ポンプ9が加熱熱交換器8に送ることのできる水の体積流量以上となるように、熱媒体ポンプ6及び水ポンプ9を選定することになる。熱媒体ポンプ6が加熱熱交換器8に送ることのできる熱媒体の体積流量が、水ポンプ9が加熱熱交換器8に送ることのできる水の体積流量以上となるように、熱媒体ポンプ6及び水ポンプ9を選定することにより、図6の運転状態(B)若しくはそれに近い運転状態、あるいは運転状態(B)と運転状態(A)との間の何れかの位置の運転状態を実現することができ、ヒートポンプユニット301を高効率に運転することが可能となる。
 ここで、熱媒体の熱容量流量を水の熱容量流量以上とするためには、熱媒体の流量(体積流量)が水の流量(体積流量)以上となるように熱媒体ポンプ6を選定する必要があるが、同じ諸元のポンプであっても、配管構成や配管抵抗の違いにより、流量は変わってくる。そのため、その配管構成や配管抵抗も考慮して、熱媒体の流量を水の流量以上とできる熱媒体ポンプ6を選定する。
 図9は、熱媒体ポンプ6のポンプ特性曲線を示す図である。同じ諸元のポンプを熱媒体ポンプ6及び水ポンプ9としてそれぞれ選定した場合、加熱循環回路52にて特に熱媒体配管303,304が長くなり、その配管抵抗が大きくなるため、加熱循環回路52の熱媒体の流量は、貯湯回路53の水の流量より小さくなることが多い。そのため、加熱循環回路52の配管抵抗を考慮して、熱媒体ポンプ6を選定する必要がある。ヒートポンプユニット301及び貯湯槽ユニット302の設置場所が決まると、熱媒体配管303,304の長さが決まる。加熱循環回路52に必要な熱媒体の流量が決まると、加熱循環回路52の配管の径が決まる。このようにして配管長さと配管径が決まるので、必要な熱媒体の流量を流した時の配管抵抗を求めることができる。これらはすべて設計段階にて把握可能なので、必要な熱媒体の流量を流した時の配管抵抗に対応する全揚程を出力できるポンプを決めることができる。このようにして、熱媒体ポンプ6が加熱熱交換器8に送ることのできる熱媒体の体積流量が、水ポンプ9が加熱熱交換器8に送ることのできる水の体積流量以上となるように、熱媒体ポンプ6を選定することができる。
 以上のようにして、熱媒体ポンプ6及び水ポンプ9を選定することができる。なお、実施の形態1では、熱媒体ポンプ6と水ポンプ9をそれぞれ1台ずつ配置する構成となっているが、ポンプの台数とそれらの接続方法に関してはこれに限定されるものではない。例えば、2台以上の熱媒体ポンプ6を並列に接続し、また2台以上の水ポンプ9を直列に接続した構成として、貯湯運転モードにおいて、熱媒体の熱容量流量が水の熱容量流量よりも大きくなるようにしても良い。
 また、配管の信頼性を向上するためには、配管を流れる流体の流速を所定の範囲内の値にしておくことが好ましい。具体的には、流体の流速が遅い場合、例えば0.5m/秒以下の場合には、孔食の原因となる。また、流体の流速が速い場合、例えば1.2m/秒以上の場合には、潰食の原因となる。実施の形態1では、加熱循環回路52の熱媒体の流量を貯湯回路53の水の流量以上とするので、加熱循環回路52の配管における熱媒体の流速を適正にするためには、加熱循環回路52を構成する配管の内径、例えば熱媒体配管303,304の内径を、貯湯回路53を構成する水配管310,311の内径以上とすることが好ましい。これにより、加熱循環回路52の配管の熱媒体の流速と、貯湯回路53の配管の水の流速との両方を適正な範囲内の値にすることができ、配管の信頼性が向上する。
<熱媒体ポンプ6の運転制御方法>
 熱媒体ポンプ6が一定速式の場合、加熱熱交換器8に流入する水の温度及び加熱熱交換器8から流出する水の温度に応じて、運転状態は、図6の運転状態(B)であったり、運転状態(B)と運転状態(A)との間の何れかの位置の状態になったりする。これ対し、熱媒体ポンプ6が可変速式の場合は、回転速度を制御することによって、あらゆる状況において、図6の運転状態(B)を実現し、ヒートポンプユニット301をより高効率に運転することが可能となる。また、運転状態(A)の状態のように、熱媒体の入口出口間温度差が水の入口出口間温度差より小さくなるように制御しておくことで、ヒートポンプユニット301の冷媒に、高圧の過度な上昇や吐出温度の過度な上昇が生じて、異常運転となることを確実に防止できる。以下ではその運転方法について説明する。
 運転状態(B)では、加熱熱交換器8において熱媒体の入口出口間温度差と水の入口出口間温度差とが等しい運転状態となっている。加熱熱交換器8に流入する熱媒体の温度、加熱熱交換器8から流出する熱媒体の温度、加熱熱交換器8に流入する水の温度、及び加熱熱交換器8から流出する水の温度を取得できれば、加熱熱交換器8における熱媒体の入口出口間温度差が水の入口出口間温度差と等しいか若しくは水の入口出口間温度差以下となるように、ポンプ制御装置121の制御手段127により熱媒体ポンプ6の回転速度を制御することにより、あらゆる状況にて、運転状態(B)若しくは運転状態(A)を実現できる。実施の形態1では、加熱熱交換器8に流入する熱媒体の温度は温度センサ208により取得でき、加熱熱交換器8から流出する熱媒体の温度は温度センサ209により取得でき、加熱熱交換器8に流入する水の温度は温度センサ210により取得でき、加熱熱交換器8から流出する水の温度は温度センサ211により取得できる。
 なお、温度センサ210を有しない場合には、貯湯槽10に設置されている温度センサのうち、最も下部に設置されている温度センサ(図示の構成では温度センサ215)により検出される温度を、加熱熱交換器8に流入する水の温度として用いることができる。また、温度センサ208及び温度センサ209を有しない場合には、温度センサ207により検出される温度を加熱熱交換器8に流入する熱媒体の温度として用いることができ、温度センサ206により検出される温度を加熱熱交換器8から流出する熱媒体の温度として用いることができる。その場合、温度センサ206,207の検出値は、ヒートポンプ制御装置101の通信手段103により送信され、ポンプ制御装置121の通信手段125により受信される。
 また、加熱熱交換器8における熱媒体の体積流量を水の体積流量と等しいか若しくは水の流量以上となるように制御することによって、図6の運転状態(B)若しくは運転状態(A)を実現することもできる。以下に、水及び熱媒体の体積流量の取得方法について説明する。
 水の流量を求める方法は以下の通りである。まず、図8に示す水ポンプ9のポンプ特性曲線をポンプ制御装置121の記憶手段123に記憶させる。具体的には、揚程曲線は回転速度ごとに水の流量と全揚程とのデータテーブルを記憶させ、管路抵抗曲線は水の流量と全揚程とのデータテーブルを記憶させる。管路抵抗曲線は貯湯回路53の配管構成により決まり、揚程曲線は水ポンプ9によって決まるため、予め設計段階にて把握可能である。水ポンプ9のポンプ特性曲線と水ポンプ9の回転速度とから水の流量を演算する。
 また、熱媒体の流量を求める方法は以下の通りである。まず、図9に示す熱媒体ポンプ6のポンプ特性曲線をポンプ制御装置121の記憶手段123に記憶させる。具体的には揚程曲線は回転速度ごとに熱媒体の流量と全揚程とのデータテーブルを記憶させ、管路抵抗曲線は熱媒体の流量と全揚程とのデータテーブルを記憶させる。揚程曲線は熱媒体ポンプ6によって決まるため、予め設計段階にて把握可能である。管路抵抗曲線は加熱循環回路52の配管構成により決まる。加熱循環回路52にはヒートポンプユニット301と貯湯槽ユニット302と暖房ユニット305a,305bとの間をつなぐ熱媒体配管303,304,306,307も含まれており、これらは現地での設置時に決まる仕様である。そのため、設計時に予め分かるヒートポンプユニット301及び貯湯槽ユニット302の内部の配管諸元に加えて、現地での設置時に据付け業者が設置した熱媒体配管303,304,306,307の長さ、外径、肉厚、管継ぎ手の種類や数、急拡大部や急縮小部の数、などをポンプ制御装置121の入力手段124に入力するようにする。そうすることで、それらの値から管路抵抗曲線のデータテーブルを求めることができる。以上により、揚程曲線及び管路抵抗曲線の情報を取得できる。熱媒体ポンプ6のポンプ特性曲線と熱媒体ポンプ6の回転速度から熱媒体の流量を演算する。
 以上により、水の流量と熱媒体の流量を求めることができる。熱媒体の流量を水の流量以上とすることによって、運転状態を運転状態(B)又はそれに近い状態とすることが可能となり、ヒートポンプユニット301の運転効率が最大となるように運転することが可能となる。また、運転状態を運転状態(A)とすることが可能となり、ヒートポンプユニット301が異常運転となることを確実に防止できる。ここで、運転状態(B)では前述したように熱媒体の熱容量流量と水の熱容量流量とが等しくなっている状態であり、運転状態(B)をより高い精度で実現するためには、水及び熱媒体の熱容量流量の情報を取得して制御を行う必要がある。熱容量流量は、密度×比熱×体積流量であるため、体積流量の情報に加えて比熱及び密度の情報が必要となる。以下に、水及び熱媒体の比熱と密度を取得する方法について説明する。
 貯湯回路53を流れる流体である水の比熱は4.18kJ/kgK、水の密度は1000kg/m程度と容易に求まる。また、加熱循環回路52を流れる熱媒体として水を用いる場合には、比熱が4.18kJ/kgK、密度が1000kg/m程度と容易に求まる。これに対し、熱媒体としてブラインを用いる場合には、ブラインの種類、濃度、及び温度に応じて、その比熱と密度が変化する。そのため、熱媒体の種類とその濃度を現地での設置時にポンプ制御装置121の入力手段124に入力し、記憶手段123に記憶させる。入力された情報と、温度とに基づいて、熱媒体の比熱と密度を求めることができる。熱媒体の温度は、システム設計段階にて加熱熱交換器8での熱媒体の平均温度を予測しておくことにより求める。その予測平均温度に応じて熱媒体の密度と比熱を求めるようにすれば良い。設計段階にてヒートポンプユニット301の加熱能力、加熱熱交換器8の諸元、加熱熱交換器8に流入する水の温度、及び加熱熱交換器8から流出する水の温度は予測されている。そのため、加熱熱交換器8に流入する熱媒体の温度、及び加熱熱交換器8から流出する熱媒体の温度も予測できる。したがって、加熱熱交換器8における熱媒体の予測平均温度を求めることができる。予測平均温度はポンプ制御装置121の記憶手段123により記憶されている。
 また、以下のようにして、温度センサの情報を用いて加熱熱交換器8での熱媒体の平均温度を予測し、その予測平均温度を用いてブライン(熱媒体)の密度と比熱を求めても良い。つまり、加熱熱交換器8に関して、熱媒体の出口温度と水の出口温度とがある場合は2つの温度の平均としても良い。また、さらに、温度センサ209がなく、かつ、ヒートポンプユニット301から温度センサ206の温度を取得できずに、熱媒体の出口温度も不明であれば、水の出口温度を熱媒体の予測平均温度としても良い。温度センサ208若しくは温度センサ207と、温度センサ209との両方が設置されていれば、加熱熱交換器8に流入する熱媒体の温度と加熱熱交換器8から流出する熱媒体の温度とが既知となり、平均温度を高精度に予測することができる。つまり、ポンプ制御装置121の検出手段により熱媒体若しくは水の温度を検出し、その情報をもとに演算手段126により熱媒体の予測平均温度を演算し、演算した熱媒体の予測平均温度を記憶手段123に記憶する。なお、ブラインの比熱及び密度のデータは、ブラインの種類ごとに、濃度及び温度のデータテーブルとして、ポンプ制御装置121の記憶手段123に記憶されている。このようにすることでブライン(熱媒体)の比熱及び密度を求めることができる。例えば、熱媒体が濃度40%のナイブラインであり、予測平均温度が45℃の場合、比熱は3.78kJ/kgK、密度は1031kg/mとなる。
 以上により、水及び熱媒体の比熱及び密度を取得することが可能となり、それらを体積流量と乗算することで、熱容量流量を求めることができる。熱媒体の熱容量流量が水の熱容量流量と等しくなるように熱媒体ポンプ6の回転速度を制御手段127により制御することで、運転状態(B)を高精度に実現することができ、ヒートポンプユニット301の運転効率を最大にすることができる。
 さて、以上の説明において、熱媒体の流量を求める計算時に熱媒体ポンプ6のポンプ特性曲線を用いた。配管抵抗は現地で設置される熱媒体配管303,304の長さによって変わるため、ポンプ特性曲線を用いるには現地での据付け業者による情報入力が必要となる。しかしながら、現地での据付け作業を容易にしたい場合もあると考えられる。その場合は、加熱熱交換器8における熱媒体の入口出口間温度差と、ヒートポンプユニット301の加熱能力とが分かれば、熱媒体ポンプ6のポンプ特性曲線を用いずに、熱媒体の体積流量を求めることができ、熱媒体ポンプ6の運転を制御できる。この方法は、温度センサ210又は211がなく、加熱熱交換器8における水の入口出口間温度差が求められない場合に用いるとよい方法である。
 ヒートポンプユニット301の貯湯運転モードは、ヒートポンプユニット301の加熱能力、つまり凝縮器2の熱媒体への加熱能力が、常に所定の加熱能力目標と同等となるように予め設計されており、その設計に応じて、ヒートポンプユニット301の圧縮機1、膨張弁3、送風機5などが運転されている。例えば、3HPのヒートポンプユニット301であるならば、加熱能力が9kWになるように運転されている。また、所定の加熱能力になるように、運転前に予めスイッチ等で設定されるヒートポンプユニット301もある。その場合には、3HPのヒートポンプユニット301の場合でも、加熱能力が8kW若しくは7kWとなっているものもある。何れの場合も、ヒートポンプユニット301は運転前に予め加熱能力目標が決められる。加熱能力目標と、加熱熱交換器8における熱媒体の入口出口間温度差とを用いることで、熱媒体ポンプ6の運転特性や加熱循環回路52の配管抵抗特性が未知であっても熱媒体の流量を求めることができる。
 具体的には、ヒートポンプ制御装置101は、通信手段103により、ポンプ制御装置121にヒートポンプユニット301の加熱能力目標を送信する。ポンプ制御装置121は、通信手段125により加熱能力目標を受信する。あるいは、所定の加熱能力目標がポンプ制御装置121の記憶手段123に予め記憶されていてもよい。定常状態では熱媒体の凝縮器2での加熱量と加熱熱交換器8での放熱量とが等しくなるため、加熱熱交換器8の交換熱量は、ヒートポンプユニット301の加熱能力、つまり加熱能力目標とほぼ同じとなる。また、交換熱量[kW]=熱容量流量[kW/K]×入口出口間温度差[K]であり、加熱熱交換器8における熱媒体の入口出口間温度差は、温度センサ208で検出される入口温度と、温度センサ209で検出される出口温度とから求められる。以上により、熱媒体の熱容量流量が求まる。ここで、熱媒体がブラインである可能性があるが、水と同様の比熱及び密度を用いて、熱容量流量=比熱×密度×体積流量の関係から、熱媒体の体積流量を求める。ここで求めた体積流量は、熱媒体がブラインである場合は、実際よりも小さくなる。例えば、交換熱量が9kW、入口出口間温度差が40℃の場合、熱容量流量は0.23kW/Kとなる。この場合において、熱媒体が濃度40%のナイブラインで、その温度が45℃であった場合、比熱は3.78kJ/kgK、密度は1031kg/mとなるので、熱媒体の実際の流量は3.54リットル/分となる。これに対し、実際の熱媒体は濃度40%のナイブラインであるが、水の比熱及び密度を用いて熱媒体の流量を計算した場合、比熱は4.18kJ/kgK、密度は1000kg/mであるので、熱媒体の流量は3.23リットル/分と算出される。水の流量は、前述と同様にしてポンプ特性曲線より求めることができる。以上のようにして、熱媒体の流量と、水の流量とが求まり、熱媒体の流量が水の流量以上となるように熱媒体ポンプ6の回転速度を制御手段127により制御することができる。上述したように、熱媒体がブラインである場合に水の比熱及び密度を用いて計算すると、熱媒体の流量は実際よりも小さく計算される。したがって、水の比熱及び密度を用いて計算した熱媒体の流量が水の流量以上となるように制御すれば、実際の熱媒体の流量は水の流量以上となる。また、上記計算例からも分かるように、流量の演算結果の差は、例えば3.54リットル/分-3.23リットル/分=0.31リットル/分程度と小さいことから、水の比熱及び密度を用いて熱媒体の流量を計算した場合の誤差は小さいので、問題はない。以上のようにして、運転状態を運転状態(B)又はそれに近い状態とすることが可能となり、ヒートポンプユニット301の運転効率が最大となるように運転することが可能となる。また、運転状態を運転状態(A)とすることも可能となり、ヒートポンプユニット301が異常運転となることを確実に防止できる。
 ここで、運転状態(B)をより高精度に実現したいのであれば、熱媒体及び水の熱容量流量を取得すればよい。熱媒体の熱容量流量は前述と同様に求められる。つまり、交換熱量[kW]=熱容量流量[kW/K]×入口出口間温度差[K]の関係を用いて、ヒートポンプユニット301の加熱能力、つまり加熱能力目標と、加熱熱交換器8における熱媒体の入口出口間温度差とから熱媒体の熱容量流量が求まる。また、水の熱容量流量は以下のように求められる。つまり、水の流量は前述と同様にポンプ特性曲線より求め、また、水の比熱及び密度は既知である。以上により、熱媒体及び水の熱容量流量を取得できる。熱媒体の熱容量流量が水の熱容量流量以上となるように熱媒体ポンプ6の回転速度を制御手段127により制御する。そうすることで、運転状態(B)をより高精度に実現することができ、ヒートポンプユニット301の運転効率を最大にすることができる。
 ここで、熱媒体ポンプ6の回転速度と水ポンプ9の回転速度との両方がどちらも頻繁に変動すると、システムの安定性が悪化してハンチング等の不安定な状態となる可能性がある。その状態を抑制するために、熱媒体ポンプ6の制御間隔を水ポンプ9の制御間隔以上に長くする、例えば2倍若しくは3倍以上と長くすることにより、運転状態が比較的安定になった状態にて熱媒体ポンプ6を動作させるようにする。そうすることで、システムをより安定に動作させることができる。このような観点から、所定時間内における熱媒体ポンプ6の回転速度の変動回数が水ポンプ9の回転速度の変動回数以下となるように、ポンプ制御装置121の制御手段127にて制御することが望ましい。例えば、水ポンプ9の制御間隔を15秒とし、熱媒体ポンプ6の制御間隔を120秒とするようにしてもよい。
 また、熱媒体ポンプ6の回転速度と圧縮機1の運転周波数との両方がどちらも頻繁に変動すると、システムの安定性が悪化し、ハンチング等の不安定な状態となる可能性がある。その状態を抑制するために、熱媒体ポンプ6の制御間隔を圧縮機1の制御間隔以上に長くする、例えば2倍若しくは3倍以上と長くすることにより、運転状態が比較的安定になった状態にて熱媒体ポンプ6を動作させるようにする。そうすることで、システムをより安定に動作させることができる。このような観点から、所定時間内における熱媒体ポンプ6の回転速度の変動回数が圧縮機1の運転周波数の変動回数以下なるように、ポンプ制御装置121の制御手段127にて制御することが望ましい。例えば、圧縮機1の制御間隔を60秒とし、熱媒体ポンプ6の制御間隔を120秒とするようにしてもよい。
 また、システムの安定性を高くする方法としては、熱媒体ポンプ6において制御間隔を長くするだけでなく、一回の回転速度の変動量も制限するようにしても良い、例えば、熱媒体ポンプ6の回転速度の変更量について、変更前に対して5%以上の変更を禁止するようにしても良い。そうすることで、熱媒体ポンプ6の回転速度が少しずつ変化するようになるので、ハンチング等の不安定な運転を抑制でき、システムの安定性が向上する。
 以上説明したような実施の形態1のシステム構成とすることで、暖房運転と貯湯運転とを実施することが可能であり、かつ、効率の高い貯湯運転が実施できる。具体的には、貯湯槽10の外部に設置した加熱熱交換器8を用いたことにより、伝熱性能が向上する。また、熱媒体の流量が水の流量以上となるように、加熱循環回路52に熱媒体を流し、貯湯回路53に水を流すことにより、ヒートポンプユニット301に流入する熱媒体の温度を低くすることができる。これにより、運転効率が最大となるようにヒートポンプユニット301を運転することが可能となり、高い運転効率にて貯湯運転を実施することができる。また、貯湯槽10の外部に加熱熱交換器8を設置したため、加熱熱交換器8に不具合が発生した場合に取替えが容易にできるため、メンテナンス性も向上する。また、貯湯槽10内の全体の水を高温にするだけでなく、貯湯槽10内の一部分の水を高温にすることが可能であるので、必要な量だけ高温の湯を生成することが可能であり、かつ、貯湯槽10の放熱ロスも低減することができる。
実施の形態2.
 次に、図10を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分又は相当部分は同一符号を付し説明を省略する。
 図10は、本発明の実施の形態2に係るヒートポンプ式暖房給湯システム200のシステム回路図であり、特に暖房運転モード時のシステム回路図を示したものである。なお、図10中の矢印は、冷媒の流れ方向を示したものである。図10に基づいて、ヒートポンプ式暖房給湯システム200の冷媒回路構成について説明する。
 図10に示すように、実施の形態2に係るヒートポンプ式暖房給湯システム200では加熱循環回路52において熱媒体ポンプ6と並列に第2の熱媒体ポンプ16を設置している。第2の熱媒体ポンプ16は加熱循環回路52にて熱媒体を循環させる機能を有しており、可変速式のもの(例えばインバータ制御によるもの)でもよいし、あるいは一定速式のものでもよい。第2の熱媒体ポンプ16は、暖房運転モードでは運転され、貯湯運転モードでは停止させる。
 熱媒体ポンプ6は、貯湯運転モードにおいて実施の形態1と同様の運転を実現することができるように選定される。実施の形態1で説明したように、貯湯運転モードでは加熱熱交換器8において水を一回の熱交換にて設定温度まで加熱するため、水ポンプ9の流量は概ね少ない状態である。したがって、熱媒体ポンプ6も、流量の少ないものが選定される。このため、熱媒体ポンプ6のみで熱媒体を循環させて暖房運転モードを実施すると、熱媒体の流量が少ないため、凝縮器2に流入する熱媒体の温度が高くなってしまい、ヒートポンプユニット301の運転効率が悪くなる場合がある。
 実施の形態2では、暖房運転モード時において熱媒体ポンプ6に加えて第2の熱媒体ポンプ16を運転させる。これにより、暖房運転モードにおいても、ヒートポンプユニット301を効率よく動作させるのに十分な熱媒体の流量を確保することができる。暖房運転モードでは、ヒートポンプユニット301から流出する熱媒体の温度がなるべく低い方が、ヒートポンプユニット301の運転効率を高くすることができる。そのため、凝縮器2における熱媒体の入口出口間温度差が例えば5℃程度に抑えられるように、熱媒体の流量を多くすることが好ましい。凝縮器2の加熱能力が9kWであり、熱媒体が濃度40%のナイブラインであり、熱媒体の入口出口平均温度が35℃であるとすると、熱媒体の比熱は3.74kJ/kgK、熱媒体の密度は1036kg/mとなり、凝縮器2における熱媒体の入口出口間温度差が5℃となる熱媒体の流量は27.87リットル/分となる。6.93リットル/分の流量を確保可能な熱媒体ポンプ6を選定していたとすると、第2の熱媒体ポンプ16としては20.94リットル/分の流量を確保可能なものを選定すればよい。
 実施の形態2は、実施の形態1に対して第2の熱媒体ポンプ16を追加しただけの構成であるので、実施の形態1と同様の貯湯運転モードの運転状態を実現することが可能である。そのため、実施の形態2では、暖房運転モードと貯湯運転モードとのどちらにおいても、効率の高い運転を実施することができる。
実施の形態3.
 次に、図11を参照して、本発明の実施の形態3について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分又は相当部分は同一符号を付し説明を省略する。
 図11は、本発明の実施の形態3に係るヒートポンプ式暖房給湯システム300のシステム回路図であり、特に貯湯運転モード時のシステム回路図を示したものである。なお、図11中の矢印は冷媒の流れ方向を示したものである。図11に基づいて、ヒートポンプ式暖房給湯システム300の冷媒回路構成について説明する。
 図11に示すように、実施の形態3に係るヒートポンプ式暖房給湯システム300では、加熱熱交換器8より加熱された水が貯湯槽10に流入する流入口となる接続点17が貯湯槽10の下部に設けられている。また、水ポンプ9には、一定速式のものを用いてもよい。このような構成となっているため、実施の形態3に係るヒートポンプ式暖房給湯システム300は、実施の形態1に係るヒートポンプ式暖房給湯システム100とは水の加熱方法が異なる。
 具体的には、加熱熱交換器8にて加熱された水は、貯湯槽10の下部の接続点17より貯湯槽10内に流入する。貯湯槽10の下部には、低温の水が存在している。加熱熱交換器8にて加熱された水が貯湯槽10内に流入することで、貯湯槽10全体の水温が上昇する。実施の形態3では、加熱熱交換器8にて水を高温に加熱しても、貯湯槽10の水温が低ければ、貯湯槽10に高温の水を貯えられない。実施の形態3における貯湯運転は、貯湯槽10の全体を徐々に昇温させる運転動作となり、加熱熱交換器8にて複数回の熱交換がなされることにより貯湯槽10に湯が貯まる。この加熱方式を循環加温という。循環加温では、加熱熱交換器8にて水を例えば5℃昇温させ、貯湯槽10の水温を上昇させる。そのため、加熱熱交換器8に流入する水の温度は例えば25℃、30℃、・・・と上昇していき、それにつれて加熱熱交換器8から流出する水の温度も30℃、35℃、・・・と上昇していく。循環加温では、加熱開始初期は、貯湯槽10の水温が低く、加熱熱交換器8に流入する熱媒体の温度及び加熱熱交換器8から流出する水の温度も低いので、凝縮器2から流出する熱媒体の温度及び凝縮器2に流入する熱媒体の温度が低くなる。そのため、ヒートポンプユニット301の運転効率が高い状態となる。以上のように、実施の形態1とは水の加熱方式が異なるため、水ポンプ9の運転方法も異なる。
<貯湯運転モード>
 実施の形態3での貯湯運転モードにおける冷媒、熱媒体及び水の流れ方向は実施の形態1と同様である。水ポンプ9の制御方法は次の通りとなる。加熱熱交換器8に流入する熱媒体の温度を低く抑えるため、水の流量を多くして加熱熱交換器8から流出する水の温度を低くする。つまり、水ポンプ9は、例えば、加熱熱交換器8における水の入口出口間温度差が5℃程度となるような流量で、一定運転とする。加熱熱交換器8の加熱量が9kWの場合、水の比熱が4.18kJ/kgK、水の密度が1000kg/mとすると、必要となる水の流量は25.84リットル/分となる。したがって、水ポンプ9としては、25.84リットル/分の流量を確保できるポンプを選定する。
 熱媒体ポンプ6においても、実施の形態1と同様に、加熱熱交換器8における熱媒体の入口出口間温度差を水の入口出口間温度差以下とするためには、水の流量以上の熱媒体の流量を確保しなければならない。つまり、水ポンプ9の送水する水の流量が25.84リットル/分の場合、熱媒体ポンプ6としては、25.84リットル/分以上の流量を確保できるポンプを選定する必要がある。
 また、ヒートポンプユニット301の膨張弁3の制御においても、実施の形態1と同様に凝縮器2に流入する熱媒体の温度若しくは凝縮器2から流出する熱媒体の温度とのどちらか一方に応じて高圧液冷媒温度の目標値を設定し、高圧液冷媒温度が目標値となるように膨張弁3により制御する。高圧液冷媒温度の目標値は、例えば、凝縮器2に流入する熱媒体の温度より3℃高い値とすることができる。また、実施の形態3では、加熱熱交換器8における熱媒体の入口出口間温度差が5℃程度となるように熱媒体ポンプ6により制御されているため、凝縮器2の熱媒体の入口出口間温度差も5℃程度となる。そのため、凝縮器2に流入する熱媒体の温度がそれほど低くなっていないため、凝縮器2の過冷却度が目標値(例えば2℃)となるように膨張弁3を制御するようにしても良い。ここで、凝縮器2の過冷却度とは、圧力センサ201にて検出される圧力の飽和温度から、温度センサ203にて検出される温度を差し引いた値である。
 以上のようにすることで、実施の形態3のヒートポンプ式暖房給湯システム300においても、暖房運転と貯湯運転とを実施することが可能であり、かつ、効率の高い貯湯運転が実施できる。具体的には、貯湯槽10の外部に設置した加熱熱交換器8を用いたことにより、伝熱性能が向上する。ヒートポンプユニット301に流入する熱媒体の温度を低くすることができるので、ヒートポンプユニット301を高い運転効率にて運転することができる。また、貯湯槽10の外部に加熱熱交換器8を設置したため、加熱熱交換器8に不具合が発生した場合に取替えが容易にできるため、メンテナンス性も向上する。
1   圧縮機
2   凝縮器
3   膨張弁
4   蒸発器
5   送風機
6   熱媒体ポンプ
7   三方弁
8   加熱熱交換器
9   水ポンプ
10  貯湯槽
11  混合弁
12a,12b ラジエータ
13,14,17 接続点
15  出湯管
16  第2の熱媒体ポンプ
51  冷媒回路
52  加熱循環回路
53  貯湯回路
100,200,300 ヒートポンプ式暖房給湯システム
101 ヒートポンプ制御装置
102 計測手段
103 通信手段
104 演算手段
105 制御手段
121 ポンプ制御装置
122 計測手段
123 記憶手段
124 入力手段
125 通信手段
126 演算手段
127 制御手段
201 圧力センサ
202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 温度センサ
301 ヒートポンプユニット
302 貯湯槽ユニット
303,304,306,307 熱媒体配管
305a,305b 暖房ユニット
308 給湯管
309 給水管
310,311 水配管

Claims (11)

  1.  熱媒体を加熱するヒートポンプと、
     前記熱媒体を送る1又は複数の熱媒体ポンプと、
     前記熱媒体と水との熱交換により前記水を加熱する加熱熱交換器と、
     前記熱媒体により室内を暖房する暖房熱交換器と、
     前記熱媒体が前記加熱熱交換器と前記暖房熱交換器との何れか一方に選択的に送られるように流路を切り換える流路切換手段と、
     前記熱媒体ポンプ、前記加熱熱交換器、前記暖房熱交換器及び前記流路切換手段を接続する熱媒体配管と、
     貯湯槽と、
     前記水を送る1又は複数の水ポンプと、
     前記貯湯槽から取り出された前記水が前記加熱熱交換器に送られ、前記加熱熱交換器を通過した前記水が前記貯湯槽に戻るように、前記貯湯槽、前記水ポンプ及び前記加熱熱交換器を接続する水配管と、
     前記ヒートポンプを制御するヒートポンプ制御装置と、
     前記熱媒体ポンプ及び前記水ポンプを制御するポンプ制御装置とを備え、
     前記熱媒体ポンプが前記加熱熱交換器に送る前記熱媒体の体積流量は、前記水ポンプが前記加熱熱交換器に送る前記水の体積流量以上であるヒートポンプ式暖房給湯システム。
  2.  熱媒体を加熱するヒートポンプと、
     前記熱媒体を送る1又は複数の熱媒体ポンプと、
     前記熱媒体と水との熱交換により前記水を加熱する加熱熱交換器と、
     前記熱媒体により室内を暖房する暖房熱交換器と、
     前記熱媒体が前記加熱熱交換器と前記暖房熱交換器との何れか一方に選択的に送られるように流路を切り換える流路切換手段と、
     前記熱媒体ポンプ、前記加熱熱交換器、前記暖房熱交換器及び前記流路切換手段を接続する熱媒体配管と、
     貯湯槽と、
     前記水を送る1又は複数の水ポンプと、
     前記貯湯槽から取り出された前記水が前記加熱熱交換器に送られ、前記加熱熱交換器を通過した前記水が前記貯湯槽に戻るように、前記貯湯槽、前記水ポンプ及び前記加熱熱交換器を接続する水配管と、
     前記ヒートポンプを制御するヒートポンプ制御装置と、
     前記熱媒体ポンプ及び前記水ポンプを制御するポンプ制御装置とを備え、
     前記ポンプ制御装置は、前記加熱熱交換器にて前記熱媒体と前記水との熱交換により前記水を加熱する場合に、前記加熱熱交換器に流入する前記熱媒体の温度と前記加熱熱交換器から流出する前記熱媒体の温度との差が、前記加熱熱交換器から流出する前記水の温度と前記加熱熱交換器に流入する前記水の温度との差以下となるように、前記熱媒体ポンプ及び前記水ポンプを運転するヒートポンプ式暖房給湯システム。
  3.  前記熱媒体配管の内径は、前記水配管の内径以上である請求項1又は2記載のヒートポンプ式暖房給湯システム。
  4.  前記ヒートポンプは、圧縮機、凝縮器、膨張弁及び蒸発器を冷媒配管により接続した冷媒回路を有し、
     前記凝縮器から流出する冷媒の温度である高圧液冷媒温度を検出する手段と、
     前記凝縮器に流入する前記熱媒体の温度を検出する手段と、
     を更に備え、
     前記ヒートポンプ制御装置は、
     前記凝縮器に流入する前記熱媒体の温度に基づいて、前記高圧液冷媒温度の目標値を決定する手段と、
     前記高圧液冷媒温度が前記目標値となるように、前記膨張弁を制御する手段と、
     を有する請求項1乃至3の何れか1項記載のヒートポンプ式暖房給湯システム
  5.  前記加熱熱交換器から流出する前記水の温度を検出する手段を更に備え、
     前記ポンプ制御装置は、前記加熱熱交換器から流出する前記水の温度が、予め設定された温度となるように、前記水ポンプを制御する手段を有する請求項1乃至4の何れか1項記載のヒートポンプ式暖房給湯システム
  6.  前記加熱熱交換器に流入する前記熱媒体の温度を検出する手段と、
     前記加熱熱交換器から流出する前記熱媒体の温度を検出する手段と、
     前記加熱熱交換器に流入する前記水の温度を検出する手段と、
     前記加熱熱交換器から流出する前記水の温度を検出する手段と、
     を更に備え、
     前記ポンプ制御装置は、前記加熱熱交換器に流入する前記熱媒体の温度と前記加熱熱交換器から流出する前記熱媒体の温度との差が、前記加熱熱交換器から流出する前記水の温度と前記加熱熱交換器に流入する前記水の温度との差以下となるように、前記熱媒体ポンプの回転速度を制御する手段を有する請求項1乃至5の何れか1項記載のヒートポンプ式暖房給湯システム。
  7.  前記ポンプ制御装置は、
     前記水ポンプのポンプ特性曲線及び前記熱媒体ポンプのポンプ特性曲線を記憶する手段と、
     前記水ポンプの回転速度と前記水ポンプのポンプ特性曲線とに基づいて前記水の体積流量を演算する手段と、
     前記熱媒体ポンプの回転速度と前記熱媒体ポンプのポンプ特性曲線とに基づいて前記熱媒体の体積流量を演算する手段と、
     前記熱媒体の体積流量が前記水の体積流量以上となるように前記熱媒体ポンプの回転速度を制御する手段と、
     を有する請求項1乃至5の何れか1項記載のヒートポンプ式暖房給湯システム
  8.  前記加熱熱交換器に流入する前記熱媒体の温度を検出する手段と、
     前記加熱熱交換器から流出する前記熱媒体の温度を検出する手段と、
     を更に備え、
     前記ポンプ制御装置は、
     前記水ポンプのポンプ特性曲線を記憶する記憶手段と、
     前記加熱熱交換器に流入する前記熱媒体の温度と、前記加熱熱交換器から流出する前記熱媒体の温度と、前記ヒートポンプの加熱能力とに基づいて、前記熱媒体の体積流量を演算する手段と、
     前記水ポンプのポンプ特性曲線と前記水ポンプの回転速度とに基づいて、前記水の体積流量を演算する手段と、
     前記熱媒体の体積流量が前記水の体積流量以上となるように、前記熱媒体ポンプの回転速度を制御する手段と、
     を有する請求項1乃至5の何れか1項記載のヒートポンプ式暖房給湯システム
  9.  前記ポンプ制御装置は、所定時間内における前記熱媒体ポンプの回転速度の変動回数を前記水ポンプの回転速度の変動回数以下とする請求項1乃至8の何れか1項記載のヒートポンプ式暖房給湯システム。
  10.  前記ヒートポンプ制御装置及び前記ポンプ制御装置は、所定時間内における前記熱媒体ポンプの回転速度の変動回数を、前記ヒートポンプの圧縮機の運転周波数の変動回数以下とする請求項1乃至9の何れか1項記載のヒートポンプ式暖房給湯システム
  11.  前記熱媒体ポンプと並列に設けられた第2の熱媒体ポンプを更に備え、
     前記第2の熱媒体ポンプは、前記熱媒体を前記暖房熱交換器に送る場合には稼動し、前記熱媒体を前記加熱熱交換器に送る場合には停止する請求項1乃至10の何れか1項記載のヒートポンプ式暖房給湯システム。
PCT/JP2011/078199 2011-12-06 2011-12-06 ヒートポンプ式暖房給湯システム WO2013084301A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/078199 WO2013084301A1 (ja) 2011-12-06 2011-12-06 ヒートポンプ式暖房給湯システム
US14/361,331 US9951962B2 (en) 2011-12-06 2011-12-06 Heat pump heating and hot-water system
CN201180075322.7A CN103975204B (zh) 2011-12-06 2011-12-06 热泵式制热和热水供给系统
JP2013547990A JP5748002B2 (ja) 2011-12-06 2011-12-06 ヒートポンプ式暖房給湯システム
EP11877045.2A EP2789933B1 (en) 2011-12-06 2011-12-06 Heat pump type heating/hot-water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078199 WO2013084301A1 (ja) 2011-12-06 2011-12-06 ヒートポンプ式暖房給湯システム

Publications (1)

Publication Number Publication Date
WO2013084301A1 true WO2013084301A1 (ja) 2013-06-13

Family

ID=48573706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078199 WO2013084301A1 (ja) 2011-12-06 2011-12-06 ヒートポンプ式暖房給湯システム

Country Status (5)

Country Link
US (1) US9951962B2 (ja)
EP (1) EP2789933B1 (ja)
JP (1) JP5748002B2 (ja)
CN (1) CN103975204B (ja)
WO (1) WO2013084301A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150040841A1 (en) * 2013-08-06 2015-02-12 Carrier Corporation System and method for improving a water heating cycle in a multi-purpose hvac system
JP2015224796A (ja) * 2014-05-26 2015-12-14 三菱電機株式会社 給湯装置
WO2016001980A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 暖房給湯システム
US20160010890A1 (en) * 2014-07-10 2016-01-14 Mitsubishi Electric Corporation Heat pump water heating system
WO2017026011A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 冷凍サイクル装置
JP2017096601A (ja) * 2015-11-27 2017-06-01 株式会社ノーリツ 貯湯式給湯装置
WO2018225193A1 (ja) * 2017-06-07 2018-12-13 三菱電機株式会社 給湯システム
JP2018197622A (ja) * 2017-05-24 2018-12-13 株式会社ノーリツ 温水暖房装置
WO2019016845A1 (ja) * 2017-07-18 2019-01-24 三菱電機株式会社 給湯装置
WO2019111379A1 (ja) * 2017-12-07 2019-06-13 三菱電機株式会社 給湯システム
WO2019124230A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 温水製造装置
KR20200100689A (ko) * 2017-12-18 2020-08-26 다이킨 고교 가부시키가이샤 온수 제조 장치
EP3730844A2 (en) 2019-04-25 2020-10-28 Panasonic Intellectual Property Management Co., Ltd. Heating and hot water supply system
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
JP7535458B2 (ja) 2021-01-13 2024-08-16 本田技研工業株式会社 車両用温調システム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ714420A (en) 2013-05-03 2018-11-30 Hill Phoenix Inc Systems and methods for pressure control in a co2 refrigeration system
JP5808454B1 (ja) * 2014-04-25 2015-11-10 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
JP6361021B2 (ja) * 2014-06-16 2018-07-25 パナソニックIpマネジメント株式会社 温水生成装置
EP3220061B1 (en) * 2014-11-10 2020-07-08 Mitsubishi Electric Corporation Fluid circulation system
SE539398C2 (sv) * 2014-11-10 2017-09-12 Energy Machines S A Värmeanläggning innefattande värmepump med växelvis anslutbara ackumulatortankar
GB2534608A (en) * 2015-01-29 2016-08-03 C-Tech Innovation Ltd Domestic hot water system
GB2534609A (en) * 2015-01-29 2016-08-03 C-Tech Innovation Ltd Hot water storage tank
CN104676902B (zh) * 2015-03-11 2017-06-30 广东美的暖通设备有限公司 热泵热水器及其控制方法
JP6415378B2 (ja) * 2015-04-17 2018-10-31 矢崎エナジーシステム株式会社 冷暖房システム
WO2017027857A1 (en) 2015-08-12 2017-02-16 Sarkis Sr Anthony Michael Hot water heating system and related methods
US20170045238A1 (en) * 2015-08-12 2017-02-16 General Electric Company Method for operating a heat pump water heater appliance
SE541234C2 (en) * 2015-11-20 2019-05-07 Sens Geoenergy Storage Ab Methods and systems for heat pumping
SE540934C2 (en) * 2015-11-20 2018-12-27 Sens Geoenergy Storage Ab Methods and systems for heat pumping
WO2017145238A1 (ja) * 2016-02-22 2017-08-31 三菱電機株式会社 貯湯式給湯システム
US11221150B2 (en) 2016-05-13 2022-01-11 Lochinvar, Llc System and method of controlling a mixing valve of a heating system
US10480826B2 (en) * 2016-05-13 2019-11-19 Lochinvar, Llc System and method of controlling a mixing valve of a heating system
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
JP2018004158A (ja) * 2016-07-01 2018-01-11 リンナイ株式会社 熱媒循環装置
AU2016422665B2 (en) * 2016-09-08 2019-09-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2018111881A1 (en) * 2016-12-15 2018-06-21 Stevens Lee Hiram Fluid loss notification and shutdown for closed loop fluid heat transfer system
GB2560359A (en) * 2017-03-09 2018-09-12 Systemlink Aquaeco Ltd A domestic hot water installation and a method of operating same
CN106839075A (zh) * 2017-04-06 2017-06-13 天津商业大学 小型风冷热泵机组蓄热装置
US11448441B2 (en) 2017-07-27 2022-09-20 Bergstrom, Inc. Refrigerant system for cooling electronics
US11420496B2 (en) * 2018-04-02 2022-08-23 Bergstrom, Inc. Integrated vehicular system for conditioning air and heating water
WO2019215639A2 (en) * 2018-05-08 2019-11-14 Wisesol Solar Water Heating System Solar water heating system
DE102018112362A1 (de) * 2018-05-23 2019-11-28 Grohe Ag Vorrichtung und Verfahren zur Reinigung einer Trinkwasseraufbereitungsanlage
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
JP7211512B2 (ja) * 2019-07-04 2023-01-24 三菱電機株式会社 給湯システム
CN110926023B (zh) * 2019-12-04 2021-01-15 珠海格力电器股份有限公司 一种供热系统及其控制方法
JP2022108684A (ja) * 2021-01-13 2022-07-26 本田技研工業株式会社 車両用温調システム
GB202101678D0 (en) * 2021-02-07 2021-03-24 Octopus Energy Ltd Methods and systems and apparatus to support reduced energy and water usage
CN116294374B (zh) * 2023-02-22 2023-12-19 麦克维尔空调制冷(苏州)有限公司 具有乙二醇流速监测功能的智能制冷系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227651B2 (ja) * 1998-11-18 2001-11-12 株式会社デンソー 給湯器
JP2006029668A (ja) * 2004-07-15 2006-02-02 Sanyo Electric Co Ltd ソーラー発電システム
JP2007263523A (ja) * 2006-03-29 2007-10-11 Nishihara Engineering Co Ltd 給湯システム
JP2009097770A (ja) * 2007-10-16 2009-05-07 Corona Corp ヒートポンプ式温水暖房装置の循環流量算出方法
JP2010038445A (ja) 2008-08-05 2010-02-18 Daikin Ind Ltd ヒートポンプ式暖房装置および暖房給湯装置
JP2010065852A (ja) * 2008-09-08 2010-03-25 Showa Mfg Co Ltd 給湯装置及び、その耐圧熱交換ユニット
JP2010201325A (ja) * 2009-03-03 2010-09-16 Seiko Epson Corp 純水供給システムの制御方法、純水供給システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255936A (en) * 1978-10-20 1981-03-17 Cochran Robert W Heat pump water heater
JPS5946465A (ja) * 1982-09-10 1984-03-15 三菱電機株式会社 空調給湯装置
US5081846A (en) * 1990-09-21 1992-01-21 Carrier Corporation Control of space heating and water heating using variable speed heat pump
JPH10232093A (ja) 1997-02-19 1998-09-02 Daikin Ind Ltd 蓄熱装置
KR100720165B1 (ko) * 1999-05-20 2007-05-18 사이엔스 가부시기가이샤 냉동 사이클로 된 가열장치
JP3664168B2 (ja) * 2003-04-10 2005-06-22 松下電器産業株式会社 ヒートポンプ式給湯装置
JP4114930B2 (ja) * 2004-01-22 2008-07-09 東芝機器株式会社 ヒートポンプ給湯暖房装置
JP2006010232A (ja) * 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP4599910B2 (ja) 2004-07-01 2010-12-15 ダイキン工業株式会社 給湯装置
JP4649897B2 (ja) * 2004-07-09 2011-03-16 ダイキン工業株式会社 熱搬送システム
JP4592616B2 (ja) * 2006-02-27 2010-12-01 三洋電機株式会社 冷凍サイクル装置
JP2008082664A (ja) 2006-09-28 2008-04-10 Daikin Ind Ltd 温水循環暖房システム
JP4539777B2 (ja) * 2008-02-01 2010-09-08 ダイキン工業株式会社 貯湯式給湯機および貯湯式暖房給湯機
KR101329509B1 (ko) * 2008-08-04 2013-11-13 엘지전자 주식회사 히트펌프 연동 온수 순환 시스템 및 제어 방법
US8657207B2 (en) * 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
JP5248437B2 (ja) 2009-07-23 2013-07-31 株式会社コロナ 貯湯式暖房装置
KR20110056061A (ko) * 2009-11-20 2011-05-26 엘지전자 주식회사 히트 펌프식 급탕장치
EP2339265B1 (en) * 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Refrigerating apparatus
EP2407735B1 (en) * 2010-04-30 2016-07-20 Daikin Industries, Ltd. Heat pump system
KR101190407B1 (ko) * 2010-05-20 2012-10-12 엘지전자 주식회사 히트펌프 연동 급탕장치
KR101175451B1 (ko) * 2010-05-28 2012-08-20 엘지전자 주식회사 히트펌프 연동 급탕장치
WO2012004985A1 (ja) * 2010-07-07 2012-01-12 パナソニック株式会社 貯湯式給湯システムとその運転方法
JP5121908B2 (ja) * 2010-09-21 2013-01-16 三菱電機株式会社 冷房給湯装置
CN104676902B (zh) * 2015-03-11 2017-06-30 广东美的暖通设备有限公司 热泵热水器及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227651B2 (ja) * 1998-11-18 2001-11-12 株式会社デンソー 給湯器
JP2006029668A (ja) * 2004-07-15 2006-02-02 Sanyo Electric Co Ltd ソーラー発電システム
JP2007263523A (ja) * 2006-03-29 2007-10-11 Nishihara Engineering Co Ltd 給湯システム
JP2009097770A (ja) * 2007-10-16 2009-05-07 Corona Corp ヒートポンプ式温水暖房装置の循環流量算出方法
JP2010038445A (ja) 2008-08-05 2010-02-18 Daikin Ind Ltd ヒートポンプ式暖房装置および暖房給湯装置
JP2010065852A (ja) * 2008-09-08 2010-03-25 Showa Mfg Co Ltd 給湯装置及び、その耐圧熱交換ユニット
JP2010201325A (ja) * 2009-03-03 2010-09-16 Seiko Epson Corp 純水供給システムの制御方法、純水供給システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789933A4

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150040841A1 (en) * 2013-08-06 2015-02-12 Carrier Corporation System and method for improving a water heating cycle in a multi-purpose hvac system
JP2015224796A (ja) * 2014-05-26 2015-12-14 三菱電機株式会社 給湯装置
CN105318540A (zh) * 2014-05-26 2016-02-10 三菱电机株式会社 热水供给装置
US9897343B2 (en) 2014-05-26 2018-02-20 Mitsubishi Electric Corporation Water heating apparatus
AU2014399713B2 (en) * 2014-06-30 2017-12-21 Mitsubishi Electric Corporation Heating and hot water supply system
WO2016001980A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 暖房給湯システム
US10697648B2 (en) 2014-06-30 2020-06-30 Mitsubishi Electric Corporation Heating and hot water supply system
EP3163176A4 (en) * 2014-06-30 2018-07-04 Mitsubishi Electric Corporation Heating and hot water supply system
CN106415136A (zh) * 2014-06-30 2017-02-15 三菱电机株式会社 制热热水供给系统
JPWO2016001980A1 (ja) * 2014-06-30 2017-04-27 三菱電機株式会社 給湯システム
CN105276808A (zh) * 2014-07-10 2016-01-27 三菱电机株式会社 热泵热水供应系统
US9897341B2 (en) * 2014-07-10 2018-02-20 Mitsubishi Electric Corporation Heat pump water heating system
JP2016017719A (ja) * 2014-07-10 2016-02-01 三菱電機株式会社 ヒートポンプ給湯システム
US20160010890A1 (en) * 2014-07-10 2016-01-14 Mitsubishi Electric Corporation Heat pump water heating system
WO2017026011A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 冷凍サイクル装置
JP2017096601A (ja) * 2015-11-27 2017-06-01 株式会社ノーリツ 貯湯式給湯装置
JP2018197622A (ja) * 2017-05-24 2018-12-13 株式会社ノーリツ 温水暖房装置
JPWO2018225193A1 (ja) * 2017-06-07 2019-12-26 三菱電機株式会社 給湯システム
WO2018225193A1 (ja) * 2017-06-07 2018-12-13 三菱電機株式会社 給湯システム
WO2019016845A1 (ja) * 2017-07-18 2019-01-24 三菱電機株式会社 給湯装置
JPWO2019016845A1 (ja) * 2017-07-18 2020-02-06 三菱電機株式会社 給湯装置
EP3722697A4 (en) * 2017-12-07 2020-12-16 Mitsubishi Electric Corporation HOT WATER SUPPLY SYSTEM
WO2019111379A1 (ja) * 2017-12-07 2019-06-13 三菱電機株式会社 給湯システム
JPWO2019111379A1 (ja) * 2017-12-07 2020-07-09 三菱電機株式会社 給湯システム
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
KR20200100689A (ko) * 2017-12-18 2020-08-26 다이킨 고교 가부시키가이샤 온수 제조 장치
JPWO2019124230A1 (ja) * 2017-12-18 2021-01-07 ダイキン工業株式会社 温水製造装置
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
WO2019124230A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 温水製造装置
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
JP7231834B2 (ja) 2017-12-18 2023-03-02 ダイキン工業株式会社 温水製造装置
KR102601018B1 (ko) * 2017-12-18 2023-11-10 다이킨 고교 가부시키가이샤 온수 제조 장치
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
EP3730844A2 (en) 2019-04-25 2020-10-28 Panasonic Intellectual Property Management Co., Ltd. Heating and hot water supply system
JP7535458B2 (ja) 2021-01-13 2024-08-16 本田技研工業株式会社 車両用温調システム

Also Published As

Publication number Publication date
EP2789933A4 (en) 2015-07-22
CN103975204B (zh) 2016-02-24
JPWO2013084301A1 (ja) 2015-04-27
JP5748002B2 (ja) 2015-07-15
EP2789933B1 (en) 2016-11-23
CN103975204A (zh) 2014-08-06
US20140291411A1 (en) 2014-10-02
US9951962B2 (en) 2018-04-24
EP2789933A1 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5748002B2 (ja) ヒートポンプ式暖房給湯システム
JP5228023B2 (ja) 冷凍サイクル装置
JP6297217B2 (ja) 温度調整用流体供給装置
US20150128628A1 (en) Air-conditioning apparatus
JP4807367B2 (ja) ヒートポンプ式給湯機
US9625187B2 (en) Combined air-conditioning and hot-water supply system
JP5400177B2 (ja) ヒートポンプシステム
EP2224188B1 (en) Water circulation system associated with refrigerant cycle
JPWO2011048679A1 (ja) 空気調和装置
JP5300806B2 (ja) ヒートポンプ装置
JP5681787B2 (ja) 2元冷凍サイクル装置
JP5264936B2 (ja) 空調給湯複合システム
JP2008121982A (ja) 冷凍サイクル装置
JP5605296B2 (ja) ハイブリッド式給湯装置
JP4407689B2 (ja) ヒートポンプ給湯機
JP2009264717A (ja) ヒートポンプ温水システム
EP3859216A1 (en) Heat pump and method thereof
JP5889347B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP6589946B2 (ja) 冷凍装置
JP5479625B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP2019168169A (ja) ヒートポンプ冷熱源機
JP2009264714A (ja) ヒートポンプ温水システム
JP2006078146A (ja) ヒートポンプ、床暖房装置および空気調和装置
JP4082331B2 (ja) ヒートポンプ式給湯装置及びヒートポンプ式給湯装置の運転条件設定方法
JPWO2019026276A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180075322.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547990

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14361331

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011877045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011877045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE