WO2013080744A1 - マトリクスコンバータ - Google Patents

マトリクスコンバータ Download PDF

Info

Publication number
WO2013080744A1
WO2013080744A1 PCT/JP2012/078480 JP2012078480W WO2013080744A1 WO 2013080744 A1 WO2013080744 A1 WO 2013080744A1 JP 2012078480 W JP2012078480 W JP 2012078480W WO 2013080744 A1 WO2013080744 A1 WO 2013080744A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
output
current
power conversion
unit
Prior art date
Application number
PCT/JP2012/078480
Other languages
English (en)
French (fr)
Inventor
田中 貴志
山本 栄治
伊東 淳一
広樹 高橋
Original Assignee
株式会社安川電機
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機, 国立大学法人長岡技術科学大学 filed Critical 株式会社安川電機
Priority to EP12854169.5A priority Critical patent/EP2787621A4/en
Priority to CN201280057232.XA priority patent/CN103999340A/zh
Priority to KR1020147014803A priority patent/KR20140084328A/ko
Publication of WO2013080744A1 publication Critical patent/WO2013080744A1/ja
Priority to US14/289,579 priority patent/US20140268970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the disclosed embodiment relates to a matrix converter.
  • matrix converters that directly convert AC power into AC power of any frequency and voltage are known as power converters, and such matrix converters are capable of power regeneration and input power factor control. It is attracting attention as a new power converter.
  • the matrix converter has a switching element such as a semiconductor switch, and performs power conversion by switching the switching element, so that harmonic noise caused by switching occurs. Therefore, in the conventional matrix converter, a filter is arranged on the input side (see, for example, Patent Document 1).
  • Non-Patent Document 1 When the filter is arranged on the input side in this way, distortion may occur in the input current due to resonance caused by the inductor and the capacitor constituting the filter. Therefore, the matrix converter described in Non-Patent Document 1 suppresses resonance. The damping control is performed simultaneously with the output current control.
  • One embodiment of the present invention has been made in view of the above, and provides a matrix converter that can suppress input current distortion due to resonance without reducing current responsiveness to a fundamental wave of output current. With the goal.
  • a matrix converter includes a power conversion unit having a plurality of bidirectional switches, a control unit that controls the power conversion unit, and a current detection unit that detects a current flowing on the output side of the power conversion unit With.
  • the control unit extracts a high frequency component included in the current detected by the current detection unit, adjusts an output current command based on the high frequency component, and adjusts the power conversion unit based on the adjusted output current command. Control.
  • FIG. 1 is a diagram illustrating a configuration of a matrix converter according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the power conversion cell.
  • FIG. 3 is a diagram illustrating a configuration of the control unit.
  • FIG. 4A is a diagram illustrating a configuration of a q-axis current controller.
  • FIG. 4B is a diagram illustrating a configuration of a d-axis current controller.
  • FIG. 5 is a diagram illustrating a configuration of a matrix converter according to the second embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a matrix converter according to the third embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a matrix converter according to the first embodiment.
  • the matrix converter 1 according to the first embodiment is provided between an AC power supply 2 and a load 3.
  • the matrix converter 1 converts the AC power input from the AC power source 2 into AC power having a predetermined voltage and frequency and outputs the AC power to the load 3.
  • the AC power source 2 for example, power equipment or an AC generator that transforms and supplies the voltage of the power system can be applied, and as the load 3, for example, an AC motor or the like can be applied.
  • the load 3 is an AC motor as an example, and the load 3 is sometimes referred to as an AC motor 3.
  • the matrix converter 1 can also perform power conversion from the load 3 to the AC power supply 2 in addition to power conversion from the AC power supply 2 to the load 3.
  • the matrix converter 1 is provided between an AC power supply 2 and a load 3, and includes a multiple transformer 10, a power conversion block 20, a current detection unit 30, and a control unit 50.
  • the multiple transformer 10 includes a primary winding 11 and a plurality of secondary windings 12, and the R phase, S phase, and T phase of the AC power supply 2 are connected to the primary winding 11.
  • power conversion cells 21a to 21i (corresponding to an example of a unit single-phase power converter) of a power conversion block 20 (corresponding to an example of a power converter) are connected to each of the plurality of secondary windings 12. In this manner, the multiple transformer 10 distributes the three-phase AC power input to the primary winding 11 to the plurality of secondary windings 12 for each phase on the load 3 side.
  • the secondary winding 12 outputs the r-phase, s-phase, and t-phase phases in which the voltages and phases of the R-phase, S-phase, and T-phase input to the primary winding 11 are adjusted.
  • the multiplex transformer 10 insulates the power conversion cells 21a to 21i (hereinafter may be collectively referred to as the power conversion cells 21), and sets the phase of the voltage input to each power conversion cell 21 by, for example, 20 degrees.
  • the phase shifter is configured to shift the phase, whereby the harmonics on the primary side of the multiple transformer 10 can be reduced.
  • the power conversion block 20 is formed by connecting the U phase, the V phase, and the W phase having a phase difference of 120 degrees with a Y connection.
  • the power conversion block 20 includes a plurality of power conversion cells 21 (corresponding to an example of a unit single-phase power conversion unit), and each of the U-phase, V-phase, and W-phase includes three power conversion cells 21. It is formed by connecting multiple stages in series.
  • each phase of the U phase, the V phase, and the W phase is configured by the three power conversion cells 21, but may be configured by two power conversion cells 21 or four or more power conversion cells. You may make it comprise with the cell 21.
  • the current detection unit 30 detects the output current. Specifically, the current detection unit 30 includes an instantaneous value Iu of current flowing between the power conversion block 20 and the U phase of the load 3 (hereinafter referred to as U phase current value Iu), the power conversion block 20, An instantaneous value Iw (hereinafter referred to as a W-phase current value Iw) of a current flowing between the W-phase is detected.
  • U phase current value Iu an instantaneous value Iw (hereinafter referred to as a W-phase current value Iw) of a current flowing between the W-phase is detected.
  • Iw an instantaneous value Iw of a current flowing between the W-phase is detected.
  • a current sensor that detects a current using a Hall element that is a magnetoelectric conversion element can be used.
  • the control unit 50 generates a control signal including the output voltage commands Vu * , Vv * , Vw * and outputs the control signal to each power conversion cell 21. Specifically, the control unit 50 outputs a control signal including the output voltage command Vu * to each power conversion cell 21 constituting the U phase and outputs it to each power conversion cell 21 constituting the V phase. A control signal including the voltage command Vv * is output, and a control signal including the output voltage command Vw * is output to each power conversion cell 21 configuring the W phase. Thereby, in each power conversion cell 21, the power conversion operation
  • FIG. 2 is a diagram illustrating a configuration of the power conversion cell 21.
  • the power conversion cell 21 includes a cell controller 22, a switching unit 23, and a capacitor block 25.
  • the cell controller 22 controls the switching unit 23 by a known matrix converter PWM control method based on a control signal output from the control unit 50. For example, the magnitude relationship of the voltages of the r-phase, s-phase, and t-phase is determined from the phase of the input voltage, and each bidirectional switch described later is based on the magnitude relationship, the voltage detection value of each phase, and the voltage command. This is a PWM control method for determining ON times of 24a to 24f. Note that the input voltage detector and the like are omitted.
  • the switching unit 23 is also called a single-phase matrix converter, and performs a power conversion operation between the secondary winding 12 of the multiple transformer 10 and the terminals Ta and Tb under the control of the cell controller 22.
  • the switching unit 23 includes bidirectional switches 24a to 24f (hereinafter may be collectively referred to as bidirectional switches 24).
  • a terminal Ta of the switching unit 23 is connected to one end of the bidirectional switches 24a to 24c, and a terminal Tb of the switching unit 23 is connected to one end of the bidirectional switches 24d to 24f.
  • the other end of the bidirectional switch 24a is connected to the other end of the bidirectional switch 24d, and further connected to the r-phase of the secondary winding 12.
  • the other end of the bidirectional switch 24b is connected to the other end of the bidirectional switch 24e, and further connected to the s phase of the secondary winding 12.
  • the other end of the bidirectional switch 24c is connected to the other end of the bidirectional switch 24f and further connected to the t phase of the secondary winding 12.
  • the bidirectional switches 24a to 24f can be composed of, for example, two elements in which switching elements in a single direction are connected in parallel in the reverse direction.
  • a switching element for example, a semiconductor switch such as an IGBT (Insulated Gate Bipolar Transistor) is used.
  • the energization direction is controlled by inputting a signal to the gate of the semiconductor switch to control on / off of each semiconductor switch. That is, a desired input / output current flows by adjusting the on / off timing of the bidirectional switch 24 by the cell controller 22.
  • the capacitor block 25 includes capacitors C5a to C5c.
  • Capacitors C5a to C5c have one end connected to each phase (r phase, s phase, t phase) of secondary winding 12, and the other end connected in common.
  • a filter is configured between the capacitor block 25 and the multiple transformer 10. Specifically, an input filter is constituted by the leakage inductance of the multiple transformer 10 and the capacitors C5a to C5c.
  • FIG. 3 is a diagram illustrating a configuration of the control unit 50.
  • the control unit 50 includes a three-phase / rotational coordinate converter 52, a q-axis current command output unit 53, a d-axis current command output unit 54, a q-axis current control unit 55, and a d-axis.
  • a current controller 56 and a rotational coordinate / 3-phase converter 58 are provided.
  • the three-phase / rotational coordinate converter 52 converts the three-phase output current flowing on the load 3 side into the dq component of the dq coordinate system based on the U-phase current value Iu and the W-phase current value Iw. Specifically, the three-phase / rotational coordinate converter 52 obtains the V-phase current value Iv from the U-phase current value Iu and the W-phase current value Iw, and uses these current values Iu, Iv, and Iw as well-known three-phase values. After converting into two phases by the two-phase conversion method, it is converted into two orthogonal dq components on the rotating coordinates according to the output phase ⁇ out.
  • a q-axis output current value Iqout that is a current value in the q-axis direction and a d-axis output current value Idout that is a current value in the d-axis direction are generated.
  • the output phase ⁇ out is calculated based on an integration of an output frequency command (not shown) to the AC motor 3, or a value obtained by detecting a rotor position of the AC motor 3 with a detector (not shown) or an estimated value. The one calculated based on the value is used. Since a known method can be used as a method for obtaining the output phase ⁇ out, detailed description thereof is omitted here.
  • the q-axis current command output unit 53 generates a q-axis output current command Iqout * and outputs it to the q-axis current controller 55.
  • the q-axis output current command Iqout * can be a target current value proportional to the torque command of the AC motor 3, for example.
  • the d-axis current command output unit 54 generates a d-axis output current command Idout * and outputs it to the d-axis current controller 56.
  • the d-axis output current command Idout * can be a target current value proportional to the excitation command or a zero current command depending on the type of the AC motor 3.
  • the q-axis current controller 55 is based on the q-axis output current command Iqout * output from the q-axis current command output unit 53 and the q-axis output current value Iqout output from the three-phase / rotational coordinate converter 52. , Q-axis output voltage command Vqout * is generated.
  • the d-axis current controller 56 also converts the d-axis output current command Idout * output from the d-axis current command output unit 54 and the d-axis output current value Idout output from the three-phase / rotational coordinate converter 52. Based on this, a d-axis output voltage command Vdout * is generated.
  • the d-axis output voltage command Vdout * and the q-axis output voltage command Vqout * thus obtained are input to the rotational coordinate / 3-phase converter 58.
  • the rotary coordinate / 3-phase converter 58 is based on the q-axis output voltage command Vqout * output from the q-axis voltage command corrector 57 and the d-axis output voltage command Vdout * output from the d-axis current controller 56.
  • the output voltage command Va * is obtained.
  • the rotary coordinate / 3-phase converter 58 obtains the output voltage command Va * and the output phase command ⁇ a * from the following equations (1) and (2), for example.
  • the following formulas (1) and (2) are merely examples, and can be changed as appropriate.
  • Output voltage command Va * (Vdout * 2 + Vqout * 2 ) 1/2
  • Output phase command ⁇ a * tan ⁇ 1 (Vqout * / Vdout * ) (2)
  • the rotational coordinate / 3-phase converter 58 adds the output phase ⁇ out to the output phase command ⁇ a * to calculate the output phase command ⁇ b. Then, the rotational coordinate / 3-phase converter 58 is based on the output voltage command Va * and the output phase command ⁇ b, that is, the three-phase AC voltage command, that is, the output voltage commands Vu * , Vv * , Obtain Vw * . Specifically, the rotational coordinate / 3-phase converter 58 can calculate the U-phase output voltage command Vu * , the V-phase output voltage command Vv * , and the W-phase output voltage from the following equations (3) to (5), for example. The command Vw * is obtained.
  • Vu * Va * ⁇ sin ( ⁇ b) (3)
  • Vv * Va * ⁇ sin ( ⁇ b ⁇ (2 ⁇ / 3))
  • Vw * Va * ⁇ sin ( ⁇ b + (2 ⁇ / 3)) (5)
  • FIGS. 4A and 4B are diagram illustrating a configuration of the q-axis current controller 55 according to the first embodiment
  • FIG. 4B is a diagram illustrating a configuration of the d-axis current controller 56 according to the first embodiment.
  • the q-axis current controller 55 includes a damping controller 61, an adder 64, a subtractor 65, and a PI controller 66.
  • the q-axis current controller 55 generates a q-axis output voltage command Vqout * subjected to damping control based on the q-axis output current command Iqout * and the q-axis output current value Iqout.
  • Damping control is performed by a damping controller 61.
  • the damping controller 61 includes a high pass filter 62 and a proportional calculator 63.
  • the high-pass filter 62 extracts a high-frequency component of the q-axis current caused by resonance by filtering the low-frequency component of the q-axis output current value Iqout input from the three-phase / rotational coordinate converter 52.
  • the q-axis output current value Iqout output from the three-phase / rotational coordinate converter 52 is generated by rotational coordinate conversion based on the output phase ⁇ out. Therefore, in the q-axis output current value Iqout, the fundamental wave component of the output current appears as a DC component, and the high-frequency component resulting from resonance appears as a ripple component superimposed on the DC component.
  • the high pass filter 62 extracts a high frequency component of the q-axis current by separating the ripple component from the q-axis output current value Iqout.
  • the proportional calculator 63 multiplies the high-frequency component of the q-axis current extracted by the high-pass filter 62 by a damping gain Kd (corresponding to an example of a predetermined coefficient), and outputs the multiplication result to the adder 64 as a damping control amount Iqdump.
  • a damping gain Kd (corresponding to an example of a predetermined coefficient)
  • Iqdump the damping control amount
  • the matrix converter 1 is a power conversion device that directly matches input and output instantaneous power and directly converts input power to output power
  • a damping controller that performs damping control on the output-side current as described above. 61 can be arranged.
  • the adder 64 adds the damping control amount Iqdump output from the proportional computing unit 63 to the q-axis output current command Iqout * output from the q-axis current command output unit 53, and the q-axis output current command Iqout *. * Is generated.
  • the subtractor 65 calculates a deviation between the q-axis output current command Iqout ** output from the adder 64 and the q-axis output current value Iqout, and outputs the calculation result to the PI controller 66.
  • the PI controller 66 performs PI control (proportional integral control) on the deviation between the q-axis output current command Iqout ** and the q-axis output current value Iqout to generate and output a q-axis output voltage command Vqout *. To do.
  • PI control proportional integral control
  • the q-axis current controller 55 calculates the damping control amount Iqdump based on the high frequency component included in the q-axis current, and adjusts the q-axis output current command Iqout * based on the damping control amount Iqdump. .
  • the q-axis current controller 55 generates and outputs a q-axis output voltage command Vqout * by performing PI control on the adjusted q-axis output current command Iqout ** . Since the low-pass filter is not connected in series with the PI control, the distortion due to the resonance of the input current from the AC power supply 2 is suppressed without degrading the current response to the fundamental wave of the output current. Can do.
  • the d-axis current controller 56 has the same configuration as the q-axis current controller 55. Specifically, as shown in FIG. 4B, the d-axis current controller 56 includes a damping controller 71, an adder 74, a subtractor 75, and a PI controller 76. Further, the damping controller 71 includes a high pass filter 72 and a proportional calculator 73. In the d-axis current controller 56, the high-pass filter 72 and the proportional calculator 73 of the damping controller 71 generate a damping control amount Iddump based on the d-axis output current value Idout, and the adder 74 generates a d-axis output current command Idout. The damping control amount Iddump is added to * . The PI controller 76 generates and outputs a d-axis output voltage command Vdout * by performing PI control on the adjusted d-axis output current command Idout ** .
  • the damping control amount is calculated based on the high frequency component included in the output current, and the output current command is adjusted based on the damping control amount. Therefore, output current control and damping control can be realized at the same time without lowering the current response to the fundamental wave of the output current.
  • the matrix converter 1 is a so-called serial multiple matrix converter, and the leakage inductance of the multiple transformer 10 is used as an input filter. For this reason, a damping resistor cannot be connected in parallel to the leakage inductance of the multiplex transformer 10, but it is possible to suppress distortion due to resonance of the input current from the AC power source 2 by performing damping control as described above. Become.
  • the matrix converter 1 performs damping control on the output side, gain adjustment of input / output control is not complicated, and damping control independent of the number of power conversion cells 21 can be performed.
  • FIG. 5 is a diagram illustrating a configuration of a matrix converter according to the second embodiment.
  • symbol is attached
  • the matrix converter 1A includes an input filter 80, a switching unit 81, a current detection unit 82, a control unit 84, and a PWM signal generation unit 85. Power conversion is performed between the power source 2 and the load 3.
  • the input filter 80 suppresses harmonic noise caused by switching by the switching unit 81.
  • the input filter 80 has inductors L6a to L6c provided between each phase (R phase, S phase, T phase) of the AC power source 2 and the switching unit 81, and one end connected to each phase of the AC power source 2. And capacitors C6a to C6c having the other ends connected in common.
  • the switching unit 81 is a power conversion unit having a plurality of bidirectional switches 26a to 26i that connect the AC power source 2 and the load 3, respectively.
  • the bidirectional switches 26a, 26d, and 26g connect the R phase of the AC power supply 2 and the phases (U phase, V phase, and W phase) of the load 3, respectively.
  • the bidirectional switches 26b, 26e, and 26h connect the S phase of the AC power supply 2 and the phases of the load 3, respectively.
  • Bidirectional switches 26c, 26f, and 26i connect the T phase of AC power supply 2 and the phases of load 3, respectively.
  • the bidirectional switches 26a to 26i have the same configuration as the bidirectional switch 24.
  • the current detector 82 has the same configuration as the current detector 30 and detects the U-phase current value Iu and the W-phase current value Iw.
  • Control unit 84 obtains output voltage commands Vu * , Vv * , Vw * for each phase of load 3 based on U-phase current value Iu and W-phase current value Iw, and outputs them to PWM signal generation unit 85.
  • the PWM signal generation unit 85 generates a PWM signal for controlling the bidirectional switches 26a to 26i based on the output voltage commands Vu * , Vv * , Vw * , and performs input / output control using the PWM signal.
  • Such a PWM control method is known, and for example, the above-described PWM control method is used.
  • the control unit 84 has a configuration similar to that of the control unit 50 (see FIG. 3), and simultaneously controls output current control and damping control to suppress input current distortion due to resonance. That is, the control unit 84 calculates the damping control amount based on the high frequency component included in the output current, and adjusts the output current command based on the damping control amount. Thereafter, the controller 84 performs PI control on the adjusted output current command, thereby generating and outputting an output voltage command.
  • the matrix converter 1A does not have a configuration in which a low pass filter is connected in series with the PI control, the input current distortion due to resonance is suppressed without degrading the current response to the fundamental wave of the output current. be able to.
  • the matrix converter 1A according to the second embodiment includes the bidirectional switches 26a to 26i that connect the U phase, the V phase, and the W phase of the load 3 to the respective phases on the AC power supply 2 side. . Also in the matrix converter 1A having such a configuration, distortion due to resonance of the input current from the AC power supply 2 can be suppressed, similarly to the matrix converter 1 according to the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a matrix converter according to the third embodiment.
  • symbol is attached
  • the matrix converter 1B according to the third embodiment is a parallel multiple matrix converter.
  • the matrix converter 1B includes a power conversion unit 90 having a plurality of switching units 81A and 81B (corresponding to an example of a unit power conversion unit).
  • input filters 80A and 80B are individually provided for the switching units 81A and 81B.
  • the input filters 80A and 80B have the same configuration as the input filter 80 according to the second embodiment.
  • a reactor is installed at the output of each power converter in order to suppress the circulating current due to the difference between the output voltages of the power converters connected in parallel.
  • the reactor is replaced by the reactors (inductors L6a to L6c) of the input filters 80A and 80B.
  • Each of the switching units 81A and 81B has the same configuration as the switching unit 81 according to the second embodiment, and is controlled by the PWM signal output from the PWM signal generation unit 85.
  • the PWM signals supplied from the PWM signal generation unit 85 to the switching units 81A and 81B can be the same signal, but are not limited thereto.
  • the currents flowing through the switching unit 81A and the load 3 and the currents flowing through the switching unit 81B and the load 3 are detected, and the PWM of the switching units 81A and 81B is individually controlled in consideration of the difference between these currents.
  • a signal can also be generated.
  • the U-phase current value Iu and the W-phase current value Iw in FIG. 6 the current flowing between the switching unit 81A and the load 3 and the current flowing between the switching unit 81B and the load 3 are The value added for each W phase may be used.
  • a low-pass filter is connected in series with the PI control. Therefore, distortion due to resonance of the input current from the AC power supply 2 can be suppressed without lowering the current response to the fundamental wave of the output current.
  • the input filters 80A and 80B are individually provided for the switching units 81A and 81B as described above, but the present invention is not limited to this configuration.
  • a common input filter may be provided for the switching units 81A and 81B, and a reactor may be separately provided on the output side of the switching units 81A and 81B to balance the output current.
  • the generation method of the d-axis output voltage command Vdout * and the q-axis output voltage command Vqout * is not limited to the generation method of the above-described embodiment.
  • the interference (induced) voltage calculated based on the q-axis output current command Iqout ** or the q-axis output current Iqout and the output frequency command may be obtained.
  • the q-axis output voltage command Vqout * may be obtained.
  • examples of the serial multiplex matrix converter and the parallel multiplex matrix converter are shown as the matrix converter having a plurality of switching units, but the present invention is not limited to this.
  • the control unit is configured in the same manner, so that input current distortion due to resonance can be suppressed without lowering the current response to the fundamental wave of the output current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)

Abstract

 実施形態に係るマトリクスコンバータは、複数の双方向スイッチを有する電力変換部と、電力変換部を制御する制御部と、電力変換部の出力側に流れる電流を検出する電流検出部とを備える。制御部は、電流検出部によって検出された電流に含まれる高周波成分を抽出し、この高周波成分に基づいて出力電流指令を調整し、調整した出力電流指令に基づいて電力変換部を制御する。

Description

マトリクスコンバータ
 開示の実施形態は、マトリクスコンバータに関する。
 従来、電力変換装置として、交流電源の電力を任意の周波数・電圧の交流電力へ直接変換するマトリクスコンバータが知られており、かかるマトリクスコンバータは、電源回生や入力力率制御が可能であることから、新しい電力変換装置として注目されている。
 マトリクスコンバータは、半導体スイッチなどのスイッチング素子を有しており、かかるスイッチング素子をスイッチングすることによって電力変換を行うことから、スイッチングに起因する高調波ノイズが発生する。そのため、従来のマトリクスコンバータにおいては、入力側にフィルタが配置される(例えば、特許文献1参照)。
 このように入力側にフィルタを配置した場合、フィルタを構成するインダクタとキャパシタとによる共振によって入力電流にひずみが発生する場合があることから、非特許文献1に記載のマトリクスコンバータでは、共振を抑制するダンピング制御を出力電流制御と同時に行っている。
特開2002-354815号公報
春名順之介および伊東淳一、「発電機と電動機を接続したマトリックスコンバータにおける入出力制御の統合に関する一考察」、SPC-10-90、半導体電力変換研究会、社団法人電気学会、2010年
 しかしながら、非特許文献1に記載のマトリクスコンバータでは、出力電流の基本波に対する電流応答が制限される。
 実施形態の一態様は、上記に鑑みてなされたものであって、出力電流の基本波に対する電流応答性を低下させることなく、共振による入力電流ひずみを抑制することができるマトリクスコンバータを提供することを目的とする。
 実施形態の一態様に係るマトリクスコンバータは、複数の双方向スイッチを有する電力変換部と、前記電力変換部を制御する制御部と、前記電力変換部の出力側に流れる電流を検出する電流検出部とを備える。前記制御部は、前記電流検出部によって検出された電流に含まれる高周波成分を抽出し、当該高周波成分に基づいて出力電流指令を調整し、当該調整した出力電流指令に基づいて前記電力変換部を制御する。
 実施形態の一態様によれば、出力電流の基本波に対する電流応答性を低下させることなく、共振による入力電流ひずみを抑制することができるマトリクスコンバータを提供することができる。
図1は、第1の実施形態に係るマトリクスコンバータの構成を示す図である。 図2は、電力変換セルの構成を示す図である。 図3は、制御部の構成を示す図である。 図4Aは、q軸電流制御器の構成を示す図である。 図4Bは、d軸電流制御器の構成を示す図である。 図5は、第2の実施形態に係るマトリクスコンバータの構成を示す図である。 図6は、第3の実施形態に係るマトリクスコンバータの構成を示す図である。
 以下、添付図面を参照して、本願の開示するマトリクスコンバータのいくつかの実施形態を詳細に説明する。なお、以下に示す各実施形態によりこの発明が限定されるものではない。
(第1の実施形態)
 まず、第1の実施形態に係るマトリクスコンバータの構成について、図1を参照して説明する。図1は、第1の実施形態に係るマトリクスコンバータの構成を示す図である。図1に示すように、第1の実施形態に係るマトリクスコンバータ1は、交流電源2と負荷3との間に設けられる。
 マトリクスコンバータ1は、交流電源2から入力した交流電力を所定の電圧および周波数の交流電力へ変換して負荷3へ出力する。なお、交流電源2として、例えば、電力系統の電圧を変圧して供給する電源設備や交流発電機を適用することができ、負荷3として、例えば、交流電動機などを適用することができる。以下においては、一例として負荷3が交流電動機であるものとし、負荷3を交流電動機3と記載することがある。また、マトリクスコンバータ1は、交流電源2から負荷3への電力変換に加え、負荷3から交流電源2への電力変換を行うこともできる。
 図1に示すように、マトリクスコンバータ1は、交流電源2と負荷3との間に設けられ、多重変圧器10と、電力変換ブロック20と、電流検出部30と、制御部50とを備える。
 多重変圧器10は、一次巻線11と複数の二次巻線12を備えており、一次巻線11に交流電源2のR相、S相およびT相が接続される。一方、複数の二次巻線12のそれぞれに電力変換ブロック20(電力変換部の一例に相当)の電力変換セル21a~21i(単位単相電力変換部の一例に相当)が接続される。このように、多重変圧器10は、一次巻線11に入力される3相交流電力を負荷3側の各相ごとにそれぞれ複数の二次巻線12に分配する。二次巻線12からは、一次巻線11に入力されたR相、S相およびT相の各相の電圧および位相が調整されたr相、s相、t相の各相が出力される。多重変圧器10は、各電力変換セル21a~21i(以下、電力変換セル21と総称する場合がある)の絶縁を行うと共に、各電力変換セル21へ入力される電圧の位相を例えば20度ずつ移相するように構成されており、これにより、多重変圧器10の一次側の高調波低減を図ることができる。
 電力変換ブロック20は、位相差が120度となるU相、V相およびW相をY結線で接続して形成される。具体的には、電力変換ブロック20は、複数の電力変換セル21(単位単相電力変換部の一例に相当)を備え、U相、V相およびW相は、それぞれ3つの電力変換セル21が直列に複数段接続して形成される。なお、ここでは、U相、V相およびW相の各相を、3つの電力変換セル21で構成したが、2つの電力変換セル21で構成してもよく、また、4つ以上の電力変換セル21で構成するようにしてもよい。
 電流検出部30は、出力電流を検出する。具体的には、電流検出部30は、電力変換ブロック20と負荷3のU相との間に流れる電流の瞬時値Iu(以下、U相電流値Iuと記載する)と、電力変換ブロック20とW相との間に流れる電流の瞬時値Iw(以下、W相電流値Iwと記載する)を検出する。なお、電流検出部30として、例えば、磁電変換素子であるホール素子を利用して電流を検出する電流センサを用いることができる。
 制御部50は、出力電圧指令Vu*,Vv*,Vw*を含む制御信号を生成して各電力変換セル21へ出力する。具体的には、制御部50は、U相を構成する各電力変換セル21に対して出力電圧指令Vu*を含む制御信号を出力し、V相を構成する各電力変換セル21に対して出力電圧指令Vv*を含む制御信号を出力し、W相を構成する各電力変換セル21に対して出力電圧指令Vw*を含む制御信号を出力する。これにより、各電力変換セル21において、制御信号に基づいた電力変換動作が行われる。
 次に、電力変換セル21の構成について図2を参照して説明する。図2は、電力変換セル21の構成を示す図である。
 図2に示すように、電力変換セル21は、セルコントローラ22と、スイッチング部23と、コンデンサブロック25を備える。セルコントローラ22は、制御部50から出力される制御信号に基づいて公知のマトリクスコンバータのPWM制御方法によってスイッチング部23を制御する。例えば、入力電圧の位相から、r相、s相、t相の各相の電圧の大小関係を判定し、かかる大小関係、各相の電圧検出値および電圧指令に基づき、後述する各双方向スイッチ24a~24fのオン時間を決定するPWM制御方法である。なお、入力電圧の検出部などは省略している。
 スイッチング部23は、単相マトリクスコンバータとも呼ばれ、セルコントローラ22の制御によって多重変圧器10の二次巻線12と端子Ta,Tbとの間で電力変換動作を行う。スイッチング部23は、双方向スイッチ24a~24f(以下、双方向スイッチ24と総称する場合がある)を備える。双方向スイッチ24a~24cの一端にはスイッチング部23の端子Taが接続され、双方向スイッチ24d~24fの一端にはスイッチング部23の端子Tbが接続される。
 また、双方向スイッチ24aの他端は双方向スイッチ24dの他端に接続され、さらに二次巻線12のr相に接続される。同様に、双方向スイッチ24bの他端は双方向スイッチ24eの他端に接続され、さらに二次巻線12のs相に接続される。また、双方向スイッチ24cの他端は双方向スイッチ24fの他端に接続され、さらに二次巻線12のt相に接続される。
 双方向スイッチ24a~24fは、例えば、単一方向のスイッチング素子を逆方向に並列接続した2素子から構成することができる。スイッチング素子として、例えば、IGBT(Insulated Gate Bipolar Transistor)などの半導体スイッチが用いられる。そして、かかる半導体スイッチのゲートに信号を入力して各半導体スイッチのオン/オフを制御することで、通電方向が制御される。すなわち、セルコントローラ22によって双方向スイッチ24のオン/オフのタイミングを調整することによって、所望の入出力電流が流れる。
 コンデンサブロック25は、コンデンサC5a~C5cを備える。コンデンサC5a~C5cは、それぞれの一端が二次巻線12の各相(r相、s相、t相)に接続され、他端が共通に接続される。かかるコンデンサブロック25と多重変圧器10との間でフィルタが構成される。具体的には、多重変圧器10の漏れインダクタンスとコンデンサC5a~C5cとによって入力フィルタが構成される。
 次に、制御部50の構成について図3を参照して説明する。図3は、制御部50の構成を示す図である。
 図3に示すように、制御部50は、3相/回転座標変換器52と、q軸電流指令出力器53と、d軸電流指令出力器54と、q軸電流制御器55と、d軸電流制御器56と、回転座標/3相変換器58とを備える。
 3相/回転座標変換器52は、U相電流値IuおよびW相電流値Iwに基づき、負荷3側に流れる3相の出力電流をd-q座標系のdq成分へ変換する。具体的には、3相/回転座標変換器52は、U相電流値IuおよびW相電流値IwからV相電流値Ivを求め、これらの電流値Iu,Iv,Iwを、公知の三相二相変換方法により二相に変換した後、出力位相θoutに応じて回転する座標上の直交した2軸のdq成分へ変換する。これにより、q軸方向の電流値であるq軸出力電流値Iqoutとd軸方向の電流値であるd軸出力電流値Idoutが生成される。なお、出力位相θoutは、交流電動機3への図示しない出力周波数指令を積分したものに基づき演算したものであったり、交流電動機3の回転子位置を図示しない検出器で検出した値や、推定した値に基づき演算したものが使用される。これら出力位相θoutを得る方法も公知の方法が使用できるためここでは詳細な説明は省略する。
 q軸電流指令出力器53は、q軸出力電流指令Iqout*を生成してq軸電流制御器55へ出力する。q軸出力電流指令Iqout*は、例えば交流電動機3のトルク指令に比例した目標電流値とすることができる。また、d軸電流指令出力器54は、d軸出力電流指令Idout*を生成してd軸電流制御器56へ出力する。d軸出力電流指令Idout*は、交流電動機3の種類により励磁指令に比例した目標電流値としたり、零電流指令としたりすることができる。
 q軸電流制御器55は、q軸電流指令出力器53から出力されるq軸出力電流指令Iqout*と、3相/回転座標変換器52から出力されるq軸出力電流値Iqoutとに基づいて、q軸出力電圧指令Vqout*を生成する。また、d軸電流制御器56は、d軸電流指令出力器54から出力されるd軸出力電流指令Idout*と、3相/回転座標変換器52から出力されるd軸出力電流値Idoutとに基づいて、d軸出力電圧指令Vdout*を生成する。
 このようにして求められたd軸出力電圧指令Vdout*およびq軸出力電圧指令Vqout*は回転座標/3相変換器58へ入力される。回転座標/3相変換器58は、q軸電圧指令補正器57から出力されたq軸出力電圧指令Vqout*と、d軸電流制御器56から出力されたd軸出力電圧指令Vdout*とに基づき、出力電圧指令Va*を求める。具体的には、回転座標/3相変換器58は、例えば、以下の式(1),(2)から出力電圧指令Va*と出力位相指令θa*を求める。なお、下記式(1),(2)は一例に過ぎず、適宜変更が可能である。
 出力電圧指令Va*=(Vdout*2+Vqout*21/2   ・・・(1)
 出力位相指令θa*=tan-1(Vqout*/Vdout*)  ・・・(2)
 回転座標/3相変換器58は、出力位相指令θa*に出力位相θoutを加算して、出力位相指令θbを演算する。そして、回転座標/3相変換器58は、出力電圧指令Va*と出力位相指令θbとに基づいて、3相交流電圧指令、すなわち、負荷3の各相に対する出力電圧指令Vu*,Vv*,Vw*を求める。具体的には、回転座標/3相変換器58は、例えば、以下の式(3)~(5)から、U相出力電圧指令Vu*、V相出力電圧指令Vv*、およびW相出力電圧指令Vw*を求める。かかる負荷3の各相に対する出力電圧指令Vu*,Vv*,Vw*は、回転座標/3相変換器58から電力変換ブロック20へ出力される。
 Vu*=Va*×sin(θb)          ・・・(3)
 Vv*=Va*×sin(θb-(2π/3)) ・・・(4)
 Vw*=Va*×sin(θb+(2π/3)) ・・・(5)
 次に、q軸電流制御器55およびd軸電流制御器56の構成を図4Aおよび図4Bを参照して説明する。図4Aは、第1の実施形態に係るq軸電流制御器55の構成を示す図であり、図4Bは、第1の実施形態に係るd軸電流制御器56の構成を示す図である。
 図4Aに示すように、q軸電流制御器55は、ダンピング制御器61と、加算器64と、減算器65と、PI制御器66とを備える。かかるq軸電流制御器55は、q軸出力電流指令Iqout*とq軸出力電流値Iqoutとに基づいて、ダンピング制御を施したq軸出力電圧指令Vqout*を生成する。
 ダンピング制御はダンピング制御器61によって行われる。ダンピング制御器61は、ハイパスフィルタ62と、比例演算器63とを備える。ハイパスフィルタ62は、3相/回転座標変換器52から入力されるq軸出力電流値Iqoutの低域成分をフィルタリングすることで、共振に起因するq軸電流の高周波成分を抽出する。
 3相/回転座標変換器52から出力されるq軸出力電流値Iqoutは、出力位相θoutに基づいて回転座標変換して生成される。そのため、q軸出力電流値Iqoutにおいて、出力電流の基本波成分は直流成分として現れ、共振に起因する高周波成分は直流成分に重畳されたリプル成分として現れる。ハイパスフィルタ62は、かかるリプル成分をq軸出力電流値Iqoutから分離することによって、q軸電流の高周波成分を抽出する。
 比例演算器63は、ハイパスフィルタ62によって抽出されたq軸電流の高周波成分にダンピングゲインKd(所定の係数の一例に相当)を乗算し、かかる乗算結果をダンピング制御量Iqdumpとして加算器64へ出力する。一般に、定電力負荷時に入力側のフィルタ等に共振現象が発生する場合、入力側の電圧変動分と電流変動分の間に等価負性抵抗が現れる。等価負性抵抗をRmとした場合、ダンピングゲインKdは、例えば、1/Rmよりも大きくする。これにより、ダンピング制御量Iqdumpを、制御的に等価負性抵抗を相殺する大きさとすることができ、共振が抑制される。入力側の電流に対してダンピング制御を行うことによって入力側の等価負性抵抗を相殺することもできる。しかし、マトリクスコンバータ1は入出力の瞬時電力を一致させて、入力電力を直接出力電力に変換する電力変換装置であるため、上述のように出力側の電流に対してダンピング制御を行うダンピング制御器61を配置することができる。
 加算器64は、q軸電流指令出力器53から出力されるq軸出力電流指令Iqout*に対して比例演算器63から出力されるダンピング制御量Iqdumpを加算して、q軸出力電流指令Iqout**を生成する。減算器65は、加算器64から出力されるq軸出力電流指令Iqout**とq軸出力電流値Iqoutとの偏差を算出し、かかる算出結果をPI制御器66へ出力する。PI制御器66は、q軸出力電流指令Iqout**とq軸出力電流値Iqoutとの偏差に対してPI制御(比例積分制御)を行って、q軸出力電圧指令Vqout*を生成して出力する。
 このように、q軸電流制御器55は、q軸電流に含まれる高周波成分に基づいてダンピング制御量Iqdumpを算出し、かかるダンピング制御量Iqdumpに基づいて、q軸出力電流指令Iqout*を調整する。そして、q軸電流制御器55は、調整後のq軸出力電流指令Iqout**をPI制御することによって、q軸出力電圧指令Vqout*を生成して出力する。PI制御に対して直列にローパスフィルタが接続されるような構成とならないため、出力電流の基本波に対する電流応答性を低下させることなく、交流電源2からの入力電流の共振によるひずみを抑制することができる。
 d軸電流制御器56は、q軸電流制御器55と同様の構成を有する。具体的には、図4Bに示すように、d軸電流制御器56は、ダンピング制御器71と、加算器74と、減算器75と、PI制御器76とを備える。さらに、ダンピング制御器71は、ハイパスフィルタ72および比例演算器73を備える。かかるd軸電流制御器56では、ダンピング制御器71のハイパスフィルタ72および比例演算器73がd軸出力電流値Idoutに基づいてダンピング制御量Iddumpを生成し、加算器74によってd軸出力電流指令Idout*にダンピング制御量Iddumpが加算される。PI制御器76は、調整後のd軸出力電流指令Idout**をPI制御することによって、d軸出力電圧指令Vdout*を生成して出力する。
 以上のように、第1の実施形態に係るマトリクスコンバータ1では、出力電流に含まれる高周波成分に基づいてダンピング制御量を算出し、かかるダンピング制御量に基づいて、出力電流指令を調整する。そのため、出力電流の基本波に対する電流応答性を低下させることなく、出力電流制御とダンピング制御とを同時に実現することができる。
 また、マトリクスコンバータ1は、所謂、直列多重マトリクスコンバータであり、入力フィルタとして、多重変圧器10の漏れインダクタンスが利用される。そのため、多重変圧器10の漏れインダクタンスには並列にダンピング抵抗を接続できないが、上述のように、ダンピング制御を行うことによって、交流電源2からの入力電流の共振によるひずみを抑制することが可能となる。
 また、マトリクスコンバータ1は、ダンピング制御を出力側で行うことから、入出力制御のゲイン調整が複雑にならず、また、電力変換セル21の数に依存しないダンピング制御を行うことができる。
(第2の実施形態)
 次に、第2の実施形態に係るマトリクスコンバータについて説明する。図5は、第2の実施形態に係るマトリクスコンバータの構成を示す図である。なお、上述した第1の実施形態の構成要素に対応する構成要素には同一の符号を付し、第1の実施形態と重複する説明については適宜、省略する。
 図5に示すように、第2の実施形態に係るマトリクスコンバータ1Aは、入力フィルタ80と、スイッチング部81と、電流検出部82と、制御部84と、PWM信号生成部85とを備え、交流電源2と負荷3との間で電力変換を行う。
 入力フィルタ80は、スイッチング部81によるスイッチングに起因する高調波ノイズを抑制する。かかる入力フィルタ80は、交流電源2の各相(R相、S相、T相)とスイッチング部81との間にそれぞれ設けられるインダクタL6a~L6cと、一端が交流電源2の各相と接続され、他端が共通に接続されるコンデンサC6a~C6cとを備える。
 スイッチング部81は、交流電源2と負荷3とをそれぞれ接続する複数の双方向スイッチ26a~26iを有する電力変換部である。具体的には、双方向スイッチ26a,26d,26gは、交流電源2のR相と負荷3の各相(U相、V相、W相)とをそれぞれ接続する。双方向スイッチ26b,26e,26hは、交流電源2のS相と負荷3の各相とをそれぞれ接続する。双方向スイッチ26c,26f,26iは、交流電源2のT相と負荷3の各相とをそれぞれ接続する。なお、双方向スイッチ26a~26iは、双方向スイッチ24と同様の構成である。
 電流検出部82は、電流検出部30と同様の構成を有し、U相電流値IuおよびW相電流値Iwを検出する。
 制御部84は、U相電流値IuおよびW相電流値Iwに基づいて、負荷3の各相に対する出力電圧指令Vu*,Vv*,Vw*を求め、PWM信号生成部85へ出力する。PWM信号生成部85は、出力電圧指令Vu*,Vv*,Vw*に基づいて双方向スイッチ26a~26iを制御するPWM信号を生成し、かかるPWM信号によって入出力制御を行う。なお、かかるPWM制御方法は公知であり、例えば上述したPWM制御方法が用いられる。
 制御部84は、制御部50と同様の構成(図3参照)を有しており、出力電流制御とダンピング制御とを同時に行って共振による入力電流ひずみを抑制する。すなわち、制御部84は、出力電流に含まれる高周波成分に基づいてダンピング制御量を算出し、かかるダンピング制御量に基づいて、出力電流指令を調整する。その後、制御部84は、調整後の出力電流指令をPI制御することによって、出力電圧指令を生成して出力する。
 したがって、マトリクスコンバータ1Aでは、PI制御に対して直列にローパスフィルタが接続されるような構成とならないため、出力電流の基本波に対する電流応答性を低下させることなく、共振による入力電流ひずみを抑制することができる。
 以上のように、第2の実施形態に係るマトリクスコンバータ1Aは、交流電源2側の各相に対してそれぞれ負荷3のU相、V相およびW相を接続する双方向スイッチ26a~26iを有する。かかる構成のマトリクスコンバータ1Aにおいても、第1の実施形態に係るマトリクスコンバータ1と同様に、交流電源2からの入力電流の共振によるひずみを抑制することができる。
(第3の実施形態)
 次に、第3の実施形態に係るマトリクスコンバータについて説明する。図6は、第3の実施形態に係るマトリクスコンバータの構成を示す図である。なお、上述した第1および第2の実施形態の構成要素に対応する構成要素には同一の符号を付し、第1および第2の実施形態と重複する説明については適宜、省略する。
 図6に示すように、第3の実施形態に係るマトリクスコンバータ1Bは、並列多重マトリクスコンバータである。かかるマトリクスコンバータ1Bは、複数のスイッチング部81A,81B(単位電力変換部の一例に相当)を有する電力変換部90を備える。電力変換部90の入力側には、各スイッチング部81A,81Bに対して個別に入力フィルタ80A,80Bが設けられている。入力フィルタ80A,80Bは、第2実施形態に係る入力フィルタ80と同様の構成である。並列多重方式の電力変換装置では、並列に接続された電力変換器の出力電圧間の差に起因する循環電流抑制のため、各電力変換器の出力にリアクトルを設置するが、本実施形態ではそのリアクトルを入力フィルタ80A,80Bのリアクトル(インダクタL6a~L6c)で代用する構成としている。各スイッチング部81A,81Bは、第2の実施形態に係るスイッチング部81と同様の構成であり、PWM信号生成部85から出力されるPWM信号によって制御される。
 PWM信号生成部85から各スイッチング部81A,81Bへ供給されるPWM信号は同一の信号とすることができるが、これに限定されるものではない。例えば、スイッチング部81Aと負荷3とに流れる電流と、スイッチング部81Bと負荷3とに流れる電流とをそれぞれ検出し、これらの電流の差分を考慮して、スイッチング部81A、81Bに対し個別にPWM信号を生成することもできる。これにより、スイッチング部81Aと負荷3との間に流れる電流とスイッチング部81Bと負荷3との間に流れる電流のバランスをとることができる。この場合、図6におけるU相電流値Iu、W相電流値Iwとしては、スイッチング部81Aと負荷3との間に流れる電流とスイッチング部81Bと負荷3との間に流れる電流とを、U相、W相毎に加算した値とすればよい。
 第3の実施形態に係るマトリクスコンバータ1Bでは、上述した第1および第2の実施形態に係るマトリクスコンバータ1,1Aと同様に、PI制御に対して直列にローパスフィルタが接続されるような構成とならないため、出力電流の基本波に対する電流応答性を低下させることなく、交流電源2からの入力電流の共振によるひずみを抑制することができる。
 第3の実施形態では、上述のようにスイッチング部81A、81Bに対してそれぞれ個別に入力フィルタ80A,80Bを設けたが、本発明はこの構成に限らない。スイッチング部81A、81Bに対して共通の一つの入力フィルタを設け、スイッチング部81A、81Bの出力側に個別にリアクトルを設けることで出力電流のバランスをとる構成としてもよい。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 例えば、d軸出力電圧指令Vdout*やq軸出力電圧指令Vqout*の生成方法は上述の実施形態の生成方法に限られない。例えば、d軸電流制御器56の出力に、q軸出力電流指令Iqout**又はq軸出力電流Iqoutと、出力周波数指令とに基づいて演算される干渉(誘起)電圧を加算することによって、d軸出力電圧指令Vdout*を求めてもよい。また、q軸電流制御器55の出力に、d軸出力電流指令値Idout**又はd軸出力電流Idoutと、出力周波数指令とに基づいて演算される干渉(誘起)電圧を加算することによって、q軸出力電圧指令Vqout*を求めてもよい。
 また、上述の実施形態では、スイッチング部を複数有するマトリクスコンバータとして、直列多重マトリクスコンバータや並列多重マトリクスコンバータの例を示したが、これに限定されるものではない。例えば、直並列多重マトリクスコンバータであっても同様に制御部を構成することで、出力電流の基本波に対する電流応答性を低下させることなく、共振による入力電流ひずみを抑制することができる。
 1,1A,1B マトリクスコンバータ
 10 多重変圧器
 20 電力変換ブロック
 21a~21i 電力変換セル
 23,81,81A,81B スイッチング部
 25 コンデンサブロック
 30,82 電流検出部
 50,84 制御部
 62,72 ハイパスフィルタ
 63,73 比例演算器
 64,74 加算器
 80,80A,80B 入力フィルタ
 85 PWM信号生成部

Claims (4)

  1.  複数の双方向スイッチを有する電力変換部と、
     前記電力変換部を制御する制御部と、
     前記電力変換部の出力側に流れる電流を検出する電流検出部と
    を備え、
     前記制御部は、
     前記電流検出部によって検出された電流に含まれる高周波成分を抽出し、当該高周波成分に基づいて出力電流指令を調整し、当該調整した出力電流指令に基づいて前記電力変換部を制御することを特徴とするマトリクスコンバータ。
  2.  前記制御部は、
     前記電流検出部によって検出された電流に含まれる高周波成分を抽出するハイパスフィルタと、
     前記ハイパスフィルタの出力に所定の係数を乗算する演算器と、
     前記演算器の出力と前記出力電流指令とを加算して、前記出力電流指令を調整する加算器と
    を備えることを特徴とする請求項1に記載のマトリクスコンバータ。
  3.  前記電力変換部は、出力の各相を構成する出力が直列に接続された複数の単位単相電力変換部を備えることを特徴とする請求項1又は2に記載のマトリクスコンバータ。
  4.  前記電力変換部は互いに並列に接続された複数の単位電力変換部を備えることを特徴とする請求項1又は2に記載のマトリクスコンバータ。
PCT/JP2012/078480 2011-11-30 2012-11-02 マトリクスコンバータ WO2013080744A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12854169.5A EP2787621A4 (en) 2011-11-30 2012-11-02 MATRICIAL CONVERTER
CN201280057232.XA CN103999340A (zh) 2011-11-30 2012-11-02 矩阵变换器
KR1020147014803A KR20140084328A (ko) 2011-11-30 2012-11-02 매트릭스 컨버터
US14/289,579 US20140268970A1 (en) 2011-11-30 2014-05-28 Matrix converter and method for controlling matrix converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011263037 2011-11-30
JP2011-263037 2011-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/289,579 Continuation US20140268970A1 (en) 2011-11-30 2014-05-28 Matrix converter and method for controlling matrix converter

Publications (1)

Publication Number Publication Date
WO2013080744A1 true WO2013080744A1 (ja) 2013-06-06

Family

ID=48535212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078480 WO2013080744A1 (ja) 2011-11-30 2012-11-02 マトリクスコンバータ

Country Status (7)

Country Link
US (1) US20140268970A1 (ja)
EP (1) EP2787621A4 (ja)
JP (1) JPWO2013080744A1 (ja)
KR (1) KR20140084328A (ja)
CN (1) CN103999340A (ja)
TW (1) TWI497896B (ja)
WO (1) WO2013080744A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012729A (ja) * 2013-06-28 2015-01-19 株式会社安川電機 マトリクスコンバータ
CN104953853A (zh) * 2014-03-26 2015-09-30 株式会社安川电机 电力转换装置及其控制装置和控制方法
CN104953852A (zh) * 2014-03-26 2015-09-30 株式会社安川电机 电力转换装置、其控制装置及控制方法
EP2930838A2 (en) 2014-04-09 2015-10-14 Kabushiki Kaisha Yaskawa Denki Power converting apparatus, control device of power converting apparatus, and control method of power converting apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953251B1 (en) * 2013-01-30 2017-11-08 Fuji Electric Co., Ltd. Power conversion device
WO2014174667A1 (ja) 2013-04-26 2014-10-30 富士電機株式会社 共振抑制装置
JP6237400B2 (ja) * 2014-03-27 2017-11-29 株式会社安川電機 発電装置、制御装置、制御方法、発電システム、電力変換装置及びシステム
JP2016019297A (ja) * 2014-07-04 2016-02-01 株式会社安川電機 直列多重マトリクスコンバータ、発電システムおよび力率制御方法
JP2016046958A (ja) * 2014-08-25 2016-04-04 株式会社安川電機 マトリクスコンバータ、マトリクスコンバータの制御装置およびマトリクスコンバータの制御方法
WO2016051500A1 (ja) * 2014-09-30 2016-04-07 株式会社安川電機 電力変換装置、発電システムおよび電流制御方法
CN104638939B (zh) * 2015-01-29 2017-04-05 南京航空航天大学 一种抑制矩阵变换器输入侧振荡的控制方法
WO2017140357A1 (en) * 2016-02-17 2017-08-24 Abb Schweiz Ag A multilevel converter
TWI626455B (zh) * 2016-04-19 2018-06-11 義守大學 頻率電壓轉換裝置
US10333444B2 (en) * 2017-08-31 2019-06-25 Eaton Intelligent Power Limited System and method for stability control in adjustable speed drive with DC link thin film capacitor
US10587214B1 (en) * 2019-03-22 2020-03-10 Hamilton Sundstrand Corporation Matrix converter operation in current control mode with regulation of output voltage vector
JP7127672B2 (ja) 2020-08-31 2022-08-30 株式会社安川電機 電力変換装置及び電力変換方法
JP7127671B2 (ja) * 2020-08-31 2022-08-30 株式会社安川電機 電力変換装置及び電力変換方法
TWI802370B (zh) * 2022-04-13 2023-05-11 東元電機股份有限公司 矩陣轉換器之相位切換控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354815A (ja) 2001-05-29 2002-12-06 Yaskawa Electric Corp Pwmサイクロコンバータの入力電流制御方法とpwmサイクロコンバータ装置
WO2006035752A1 (ja) * 2004-09-29 2006-04-06 Kabushiki Kaisha Yaskawa Denki 並列多重マトリクスコンバータ装置
JP2007318847A (ja) * 2006-05-24 2007-12-06 Meidensha Corp 高圧交流直接電力変換装置
JP2008043154A (ja) * 2006-08-10 2008-02-21 Fuji Electric Fa Components & Systems Co Ltd 交流交流直接変換器の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244992A (ja) * 2002-02-21 2003-08-29 Nissan Motor Co Ltd 回転電機の電流制御方法
JP4063166B2 (ja) * 2002-07-31 2008-03-19 日産自動車株式会社 電動機の制御装置
WO2008108147A1 (ja) * 2007-03-07 2008-09-12 Kabushiki Kaisha Yaskawa Denki 電力変換装置
JP4957304B2 (ja) * 2007-03-14 2012-06-20 株式会社明電舎 交流−交流直接変換装置の空間ベクトル変調方法
JP5387859B2 (ja) * 2008-05-30 2014-01-15 株式会社安川電機 マトリクスコンバータの制御装置及びその出力電圧発生方法
CN201323550Y (zh) * 2008-12-16 2009-10-07 华南理工大学 基于矩阵式变换器的无刷双馈风力发电机控制系统
JP2011200105A (ja) * 2010-02-26 2011-10-06 Denso Corp 回転機の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354815A (ja) 2001-05-29 2002-12-06 Yaskawa Electric Corp Pwmサイクロコンバータの入力電流制御方法とpwmサイクロコンバータ装置
WO2006035752A1 (ja) * 2004-09-29 2006-04-06 Kabushiki Kaisha Yaskawa Denki 並列多重マトリクスコンバータ装置
JP2007318847A (ja) * 2006-05-24 2007-12-06 Meidensha Corp 高圧交流直接電力変換装置
JP2008043154A (ja) * 2006-08-10 2008-02-21 Fuji Electric Fa Components & Systems Co Ltd 交流交流直接変換器の制御装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNNOSUKE HARUNA; JUNICHI ITO: "SPC-10-90, Technical Meeting on Semiconductor Power Converter", 2010, THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, article "A Consideration about Combination of Input / Output Control for a Matrix Converter using Generator and Motor"
See also references of EP2787621A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012729A (ja) * 2013-06-28 2015-01-19 株式会社安川電機 マトリクスコンバータ
US9219424B2 (en) 2013-06-28 2015-12-22 Kabushiki Kaisha Yaskawa Denki Matrix converter
CN104953853A (zh) * 2014-03-26 2015-09-30 株式会社安川电机 电力转换装置及其控制装置和控制方法
CN104953852A (zh) * 2014-03-26 2015-09-30 株式会社安川电机 电力转换装置、其控制装置及控制方法
EP2924859A1 (en) 2014-03-26 2015-09-30 Kabushiki Kaisha Yaskawa Denki Power converting apparatus, control device of power converting apparatus, and control method of power converting apparatus
EP2924858A1 (en) 2014-03-26 2015-09-30 Kabushiki Kaisha Yaskawa Denki Matrix converter with active damping for LC grid filter
US9407135B2 (en) 2014-03-26 2016-08-02 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus, control device for power conversion apparatus, and method for controlling power conversion apparatus
EP2930838A2 (en) 2014-04-09 2015-10-14 Kabushiki Kaisha Yaskawa Denki Power converting apparatus, control device of power converting apparatus, and control method of power converting apparatus

Also Published As

Publication number Publication date
TWI497896B (zh) 2015-08-21
EP2787621A4 (en) 2015-09-09
US20140268970A1 (en) 2014-09-18
EP2787621A1 (en) 2014-10-08
JPWO2013080744A1 (ja) 2015-04-27
CN103999340A (zh) 2014-08-20
TW201342786A (zh) 2013-10-16
KR20140084328A (ko) 2014-07-04

Similar Documents

Publication Publication Date Title
WO2013080744A1 (ja) マトリクスコンバータ
Choi et al. Dynamic performance improvement of AC/DC converter using model predictive direct power control with finite control set
JP5542609B2 (ja) 無効電力補償装置
JP2004297999A (ja) 電力変換装置および電源装置
JP6864116B2 (ja) 電力変換システム
JP2012170277A (ja) 電力変換装置および電動パワーステアリングの制御装置
JP6276367B2 (ja) マルチレベルインバータの三相平衡電圧制御方法
JP2019187149A (ja) 電力変換装置及び電力変換方法
JP4783174B2 (ja) 電力変換装置
JP5351390B2 (ja) 電力変換装置
WO2016114330A1 (ja) 5レベル電力変換器および制御方法
JP7322566B2 (ja) モジュラー・マルチレベル・カスケード変換器
WO2017159117A1 (ja) 電力変換装置
JP5787053B2 (ja) 3相v結線コンバータの制御装置
JP2009153297A (ja) 自励式変換器の制御装置
JP4401724B2 (ja) 電力変換装置
JP2010220332A (ja) 電力変換装置
JP5527054B2 (ja) コンバータの制御装置
JP6342233B2 (ja) 電力変換装置
JP7040077B2 (ja) 電力変換装置
JP6502870B2 (ja) 電力変換装置
JP6691035B2 (ja) 2巻線モータを制御する制御装置
Mirazimi et al. Hysteresis control of a three-phase to two-phase matrix converter
JP6018792B2 (ja) 電力変換装置の制御方法
JP4619692B2 (ja) 電力変換装置および超電導電力貯蔵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547076

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147014803

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE