JP4783174B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP4783174B2
JP4783174B2 JP2006038738A JP2006038738A JP4783174B2 JP 4783174 B2 JP4783174 B2 JP 4783174B2 JP 2006038738 A JP2006038738 A JP 2006038738A JP 2006038738 A JP2006038738 A JP 2006038738A JP 4783174 B2 JP4783174 B2 JP 4783174B2
Authority
JP
Japan
Prior art keywords
phase
current
current command
power converter
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006038738A
Other languages
English (en)
Other versions
JP2007221902A (ja
Inventor
政弘 木全
真志 冨永
正明 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2006038738A priority Critical patent/JP4783174B2/ja
Publication of JP2007221902A publication Critical patent/JP2007221902A/ja
Application granted granted Critical
Publication of JP4783174B2 publication Critical patent/JP4783174B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Description

この発明は、交流電源の交流を整流回路で直流に変換し、さらにインバータ回路で交流に変換する電力変換装置に関し、特に、ハーフブリッジ型の電力変換器を採用し、直流回路が2直列の平滑コンデンサで構成される電力変換装置に関するものである。
整流回路やインバータ回路においてはフルブリッジ型の電力変換器が一般的であり、電源あるいは負荷の3相は全てIGBT等の半導体スイッチ素子に接続されている。これらの半導体スイッチ素子は高速でオン・オフ動作を行い、特定の電源電位に固定されることは無い。従って、回路内部の電位は大地電位に対して常に高周波で変化しており、コモンモードノイズの原因と成っている。回路内部の電位が高周波で変化する事を抑制する場合、ハーフブリッジ型の電力変換器の採用が有効である。ハーフブリッジ型の電力変換器は、直流回路が2直列の平滑コンデンサから成り、その平滑コンデンサの接続点に交流の1相が接続されている。直流の中性点電位が3相交流の内の1相の電位に固定されているため、回路内部の電位が大地に対して高周波で変化することは無く、コモンモードノイズの低減に効果がある。
しかし、整流回路やインバータ回路においてハーフブリッジ型の電力変換器を使用して、電源あるいは負荷の1相を直流中性点に接続する場合、直流中性点に接続した相の電流がハーフブリッジの正負平滑コンデンサに流れるため、正負平滑コンデンサの電圧アンバランスを生じるものである。このような正負平滑コンデンサの電圧アンバランスを解消する様に構成された従来の電力変換装置を以下に示す。
電力変換装置は、3相交流電源接続部と、正側平滑コンデンサと、負側平滑コンデンサと、スイッチ素子とダイオードとリアクトルとからなる第一相変換回路及びスイッチ素子とダイオードとリアクトルとからなる第三相変換回路と、中性相と第二相を接続した共通相と、正相と負相の間に接続した2直列スイッチ素子とダイオードと該スイッチ素子の中点と共通相の間に接続したリアクトルとからなる共通相変換回路とを備える。そして、正負平滑コンデンサの電圧アンバランスの原因となる直流中性点電流、あるいは正負平滑コンデンサの電圧差を検出して、共通相変換回路であるチョッパ回路で補償する。具体的には、正側平滑コンデンサおよび負側平滑コンデンサの電圧を電圧検出器でそれぞれ検出し、減算器で差を求め制御補償器を介して比較器へ入力する。比較器では、制御補償器の出力と3角波発生器の出力を比較してPWM信号を出力する。このPWM信号を入力とするIGBT駆動回路で主回路に設けた上記チョッパ回路のIGBTを交互にオン・オフする。これにより、正負平滑コンデンサの電圧に差があると、それを解消する方向に回路が動作する(例えば、特許文献1参照)。
特開平9−224376号公報
このような電力変換装置では、正負平滑コンデンサの電圧アンバランスの原因となる直流中性点電流あるいは正負平滑コンデンサの電圧差を検出しているため、検出による遅れのために制御ゲインが制限されて、高速で安定なチョッパ制御系を構成し難いという問題点があった。また、検出値にはPWM制御によるリプル成分が重畳されるため、検出値に対するリプル成分の影響を抑制するため検出値に対してフィルタを設ける場合があるが、その場合は、さらに制御ゲインが制限されるという問題点があった。
この発明は、上記のような問題点を解決するためになされたものであり、直流回路が2直列の平滑コンデンサから成り、その平滑コンデンサの接続点に交流の1相が接続されたハーフブリッジ型の電力変換器を用いた電力変換装置において、2直列の平滑コンデンサの電圧アンバランスを解消するために設けたチョッパ回路を、高速で安定な制御系を構成して制御することを目的とする。
この発明による電力変換装置は、交流電源からの交流を正相、中性相および負相を有する3線直流に変換する第1の電力変換器と、3相交流を出力する第2の電力変換器と、第3の電力変換器と、第1〜第3の電流制御器とを備える。上記第1の電力変換器は、3線直流における正相と負相との間に接続された第1のハーフブリッジ型変換回路、該3線直流の正相と中性相との間に接続された正側平滑コンデンサ、および該正側平滑コンデンサに直列接続されて上記3線直流の中性相と負相との間に接続された負側平滑コンデンサを有し、交流電源からの交流を上記3線直流に変換する。上記第2の電力変換器は、上記3線直流の正相および負相との間に接続された2個の第2のハーフブリッジ型変換回路を有して、該2個の第2のハーフブリッジ型変換回路の2直列スイッチ素子の接続点をそれぞれ第1相、第2相の出力、上記3線直流の中性相を第3相の出力として、上記3線直流を3相交流に変換する。第3の電力変換器は、上記3線直流の正相と負相との間に接続した2直列スイッチ素子、該各スイッチ素子にそれぞれ逆並列接続されたダイオード、および上記2直列スイッチ素子の接続点と上記正側、負側平滑コンデンサの接続点との間に接続されたリアクトルを有する。上記第1の電流制御器は、上記交流電源から上記第1の電力変換器に入力される電流を検出する第1の電流検出手段を有して、該検出電流が第1の電流指令に追従するように上記第1のハーフブリッジ型変換回路への制御信号を生成する。上記第2の電流制御器は、上記第2の電力変換器から出力される電流を検出する第2の電流検出手段を有して、該検出電流が第2の電流指令に追従するように上記各第2のハーフブリッジ型変換回路への制御信号を生成する。上記第3の電流制御器は、上記第3の電力変換器の上記リアクトルに流れる電流を検出する第3の電流検出手段を有して、該検出電流が第3の電流指令に追従するように上記2直列スイッチ素子への制御信号を生成する。そして、上記第1の電流指令と上記第2の電流指令とに基づいて上記第3の電流指令を生成するものである。
この発明による電力変換装置は、第1〜第3の電力変換器をそれぞれ電流制御器を備えて制御し、直列接続された正負平滑コンデンサの電圧アンバランスを解消するための第3の電力変換器の電流指令を、第1、第2の電力変換器の電流指令に基づいて生成するため、正負平滑コンデンサの電圧アンバランスの原因となる直流中性点電流あるいは正負平滑コンデンサの電圧差を検出する必要が無く、検出やフィルタによる遅れを排除できるため、第3の電力変換器を高速で安定な制御系を構成して制御する事ができる。
実施の形態1.
以下、この発明の実施の形態1による電力変換装置を図について説明する。
図1はこの実施の形態1による電力変換装置を交流電動機の制御装置について示した回路図である。
図に示すように、主回路は、3相交流電源1の交流を直流に変換する第1の電力変換器としての整流回路Aと、その直流を交流に変換して3相交流電動機22に印加する第2の電力変換器としてのインバータ回路Bと、正負の平滑コンデンサ12、13の電圧アンバランスを解消する第3の電力変換器としてのチョッパ回路Cから成る。3相交流電源1は、リアクトル2、3を介して整流回路Aに接続されている。
整流回路Aは、直列接続されたIGBT4、5および各IGBT4、5に逆並列接続されたダイオード6、7で構成されるハーフブリッジ型変換回路(第1のハーフブリッジ型変換回路)から成る相と、直列接続されたIGBT8、9および各IGBT8、9に逆並列接続されたダイオード10、11で構成されるハーフブリッジ型変換回路(第1のハーフブリッジ型変換回路)から成る相と、直列接続された正側平滑コンデンサ12および負側平滑コンデンサ13とから成る。2直列スイッチング素子となるIGBT4、5およびIGBT8、9は、3線直流の正相、負相となる正側平滑コンデンサ12の正極端子、負側平滑コンデンサ13の負極端子の間に接続されている。そして、3相交流電源1の1相がリアクトル2を介してIGBT4、5の接続点に接続され、他の1相がリアクトル3を介してIGBT8、9の接続点に接続され、残りの1相が正負平滑コンデンサ12、13の接続点に接続されている。
なお、正負平滑コンデンサ12、13は、整流回路Aおよびインバータ回路Bが共用して用いる直流回路であり、便宜上、図ではいずれにも含まれない図示となっている。
インバータ回路Bは、直列接続されたIGBT14、15および各IGBT14、15に逆並列接続されたダイオード16、17で構成されるハーフブリッジ型変換回路(第2のハーフブリッジ型変換回路)から成る相と、直列接続されたIGBT18、19および各IGBT18、19に逆並列接続されたダイオード20、21で構成されるハーフブリッジ型変換回路(第2のハーフブリッジ型変換回路)から成る相と、直列接続された正負平滑コンデンサ12、13とから成る。2直列スイッチ素子となるIGBT14、15およびIGBT18、19は、直列接続された正負平滑コンデンサ12、13の正負端子間に接続されている。そして、IGBT14、15の接続点と、IGBT18、19の接続点と、正負平滑コンデンサ12、13の接続点とが、3相交流電動機22に接続されている。
また、直列接続されたIGBT23、24と、各IGBT23、24に逆並列接続されたダイオード25、26と、リアクトル27とによりチョッパ回路Cが構成されている。2直列スイッチ素子となるIGBT23、24は、直列接続された正負平滑コンデンサ12、13の正負端子間に接続されている。IGBT23、24の接続点と正負平滑コンデンサ12、13の接続点は、リアクトル27を介して接続されている。
以上のように構成される主回路は、制御回路により、整流回路A、インバータ回路Bおよびチョッパ回路Cが備えるIGBT4、5、8、9、14、15、18、19、23、24のオン・オフを制御して、3相交流電源1および3相交流電動機22およびリアクトル27に流れる電流をフィードバック制御する。
ここで、3相交流電動機22の3相をU相、V相、W相として、それぞれの相電流をiu、iv、iwとする。また、3相交流電源1の3相をR相、S相、T相として、それぞれの相電流をir、is、itとする。この内、V相とS相が正負平滑コンデンサ12、13の接続点に接続されている。なお、3相交流電源1の各相電流は整流回路Aの入力電流であり、3相交流電動機22の各相電流はインバータ回路Bの出力電流である。
主回路を制御する制御回路の詳細を以下に示す。
3相交流電源1の正負平滑コンデンサ12、13に接続されていないR相、T相の各電流は、第1の電流検出手段としての電流検出器35、36により検出される。電流検出器35で検出されたR相電流値ir_fbは、与えられたR相電流指令値(第1の電流指令)ir_refと減算器37で減算され、誤差電流が電流制御器(第1の電流制御器)38に入力される。電流制御器38は、入力である誤差電流が零となるように電圧指令(PWM信号)を生成して出力する。このPWM信号を入力とするIGBT駆動回路39で、IGBT4、5をオン・オフ制御する。これにより、電流検出器35で検出されたR相電流値ir_fbとR相電流指令値ir_refに差があると、それを減少させる方向に回路がフィードバック動作する。
また、電流検出器36で検出されたT相電流値it_fb、T相電流指令値(第1の電流指令)it_ref、減算器40、電流制御器41(第1の電流制御器)、IGBT駆動回路42に関しても、上述したR相の場合と同様で、電流検出器33で検出されたT相電流値it_fbとT相電流指令値it_refに差があると、それを減少させる方向に回路がフィードバック動作する。
3相交流電動機22の平滑コンデンサ12、13に接続されていないU相、W相の各電流は、第2の電流検出手段としての電流検出器43、44により検出される。電流検出器43で検出されたU相電流値iu_fb、U相電流指令値(第2の電流指令)iu_ref、減算器45、電流制御器(第2の電流制御器)46、IGBT駆動回路47、および、電流検出器44で検出されたW相電流値iw_fb、W相電流指令値(第2の電流指令)iw_ref、減算器48、電流制御器(第2の電流制御器)49、IGBT駆動回路50に関しても、上述した3相交流電源1のR相の場合と同様であるため説明を省略する。このように、電流検出器43、44で検出されたU相電流値iu_fb、W相電流値iw_fbとU相電流指令値iu_ref、W相電流指令値iw_refとに差があると、各相で差を減少させる方向に回路がフィードバック動作する。
また、チョッパ回路Cのリアクトル27の電流は第3の電流検出手段としての電流検出器51で検出される。電流検出器51で検出されたリアクトル27を流れるチョッパ電流値ich_fbは、減算器55で第3の電流指令としてのチョッパ電流指令値ich_refと減算され、誤差電流が電流制御器(第3の電流制御器)56に入力される。電流制御器56は、入力である誤差電流が零となるように電圧指令(PWM信号)を生成して出力する。このPWM信号を入力とするIGBT駆動回路57で、IGBT23、24をオン・オフ制御する。これにより、電流検出器51で検出されたチョッパ電流値ich_fbとチョッパ電流指令値ich_refに差があると、それを減少させる方向に回路がフィードバック動作する。
ここで、チョッパ回路Cのリアクトル27に流すためのチョッパ電流指令値ich_refは、以下に示すように、整流回路Aの電流指令値ir_ref、it_refとインバータ回路Bの電流指令値iu_ref、iw_refとの合成によって生成される。まず、加算器52で整流回路Aの電流指令値ir_ref、it_refが加算され、加算器53でインバータ回路Bの電流指令値iu_ref、iw_refが加算される。加算器52、53の出力は減算器54で減算されてチョッパ電流指令値ich_refが生成される。
電流制御器38、41、46、49、56に関しては、フィードバック制御に使用される一般的な要素であり図2に2種の構成例を示す。
図2(a)は、PI制御器を用いた電流制御器38であり、増幅器38aと積分器38bはPI制御器の構成要素である。減算器37の出力である誤差電流はゲインKpの増幅器38aとゲインKiの積分器38bとに入力され、各出力は加算器38cにより加算されて電圧指令を生成した後に、3角波38dと比較器38eで比較し、PWM信号を生成している。
図2(b)は、ヒステリシスコンパレータ38fを用いたものであり、誤差電流からヒステリシスコンパレータ38fによりPWM信号を生成している。
なお、これらと同等の機能を有する別の方法で電流制御器を構成しても良い。
次に、図1に示した交流電動機の制御装置の動作について、図3に基づいて以下に説明する。
図3(a)、図3(b)は、図1で示したインバータ回路Bと3相交流電動機22とを抜き出した部分回路図である。図に示すように、正負平滑コンデンサ12、13の接続点は3相交流電動機22の1相に直接接続され、正負平滑コンデンサ12、13の接続点には3相交流電動機22の相電流ivが流れ込む。一般的なインバータ回路Bの場合、3相交流電動機22の相電流は正弦波電流となり、電流極性はその半周期毎に正負が反転する。例えば負の半周期における動作を考える場合、3相交流電動機22の相電流ivは、図3(a)のように正側平滑コンデンサ12を放電するか、図3(b)のように負側平滑コンデンサ13を充電するか、もしくは両者の合成となる。いずれの場合においても、正側平滑コンデンサ12の電圧の方が負側平滑コンデンサ13の電圧よりも低くなる方向に作用する。従って、3相交流電動機22の相電流が大きくなるほど、また、周波数が低くなるほど、正負平滑コンデンサ12、13の電圧アンバランスは大きくなる。
なお、電流極性が正の場合は、正側平滑コンデンサ12の電圧の方が負側平滑コンデンサ13の電圧よりも高くなる方向に作用する。
図3(c)は、図3(a)、図3(b)で示した回路にチョッパ回路Cを追加したものである。チョッパ回路Cは、正負平滑コンデンサ12、13の電圧アンバランスを解消するために設けられた回路であり、図に示すように、3相交流電動機22の相電流ivを、正負平滑コンデンサ12、13では無く、チョッパ回路Cのリアクトル27に流すように制御する。
以上の説明は、3相交流電動機22からインバータ回路Bへの電流について行ったが、3相交流電源1から整流回路Aへの電流についても同様で、正負平滑コンデンサ12、13の接続点に流れ込む3相交流電源1の相電流isをチョッパ回路Cのリアクトル27に流すように制御する。
交流電動機の制御装置の場合、整流回路Aの周波数は50Hzまたは60Hzであるのに対して、インバータ回路Bの周波数は0〜120Hz程度の範囲で可変周波数駆動される。従って、インバータ回路Bの方が正負平滑コンデンサ12、13の電圧アンバランスに対する影響が大きい。
上記のような正負平滑コンデンサ12、13の電圧アンバランスの解消のためには、3相交流電動機22および3相交流電源1の相電流の内、正負平滑コンデンサ12、13の接続点に流れ込む電流の合計と、チョッパ回路のリアクトル27に流れ込む電流が等しくなれば良い。
上述したように、3相交流電動機22のV相と、3相交流電源1のS相とが正負平滑コンデンサ12、13の接続点に接続されている。従って、正負平滑コンデンサ12、13の接続点に流れ込む電流ix(直流中性点電流)は次式で与えられる。
ix=is−iv 式1
上記式1は、3相平衡条件により次式に変形できる。
ix=−ir−it+iu+iw 式2
一方、チョッパ回路Cのリアクトル27に流すためのチョッパ電流指令値ich_refは、上述したように、整流回路Aの電流指令値ir_ref、it_refとインバータ回路Bの電流指令値iu_ref、iw_refとの合成によって生成されて、次式で与えられる。
ich_ref=(ir_ref)+(it_ref)−(iu_ref)−(iw_ref) 式3
ここで、電流制御器38、41、46、49、56が充分に高速かつ高精度に動作していれば、各電流検出器35、36、43、44、51で検出された電流値とそれに対応する電流指令値は一致する。従って、上記式3は次式に置換えることが出来る。
ich_fb=(ir_fb)+(it_fb)−(iu_fb)−(iw_fb) 式4
各電流検出器35、36、43、44、51で検出された電流値は、実際の電流値と等しいことが期待できるため、チョッパ回路Cのリアクトル27に流れるチョッパ電流ichは次式となる。
ich=ir+it−iu−iw 式5
式2と式5との比較により、3相交流電動機22および3相交流電源1から正負平滑コンデンサ12、13の接続点に流れ込む電流ixと、チョッパ回路Cのリアクトル27に流れるチョッパ電流ichは、大きさが同じで極性が逆である。このことから、3相交流電動機22および3相交流電源1から正負平滑コンデンサ12、13の接続点に流れ込む電流ixは、正負平滑コンデンサ12、13を充放電せず、チョッパ回路Cのリアクトル27に全て流れ込む事が分かる。
以上のように、この実施の形態では、整流回路A、インバータ回路Bの各相、およびチョッパ回路Cにそれぞれ電流制御器38、41、46、49、56を備え、チョッパ回路Cの電流指令を整流回路Aの電流指令とインバータ回路Bの電流指令とから合成して生成する。これにより、電圧アンバランスの原因となる直流中性点電流ixが正負平滑コンデンサ12、13に流れることを抑制できる。このため、正負平滑コンデンサ12、13の電圧差や直流中性点電流ixを検出すること無く、高速で安定なチョッパ制御系を構成する事ができる。
実施の形態2.
上記実施の形態1では、3相交流電源1を用いた交流電動機の制御装置を示したが、入力の交流電源は別の構成でも良く、この実施の形態2では単相3線式の交流電源を用いた交流電動機の制御装置を示す。図4は、この実施の形態1による交流電動機の制御装置を示した回路図であり、図1に示した上記実施の形態1における3相交流電源1を、単相交流電源58、59から構成される単相3線式の電源に置き換えたものである。この場合、1方の単相交流電源58がリアクトル2を介してIGBT4、5の接続点に接続され、他方の単相交流電源59がリアクトル3を介してIGBT8、9の接続点に接続され、単相交流電源58、59の接続点が正負平滑コンデンサ12、13の接続点に接続されている。その他の構成および動作に関しては、上記実施の形態1と同様であるため説明を省略する。
この実施の形態2においても、整流回路A、インバータ回路Bの各相、およびチョッパ回路Cにそれぞれ電流制御器38、41、46、49、56を備え、チョッパ回路Cの電流指令を整流回路Aの電流指令とインバータ回路Bの電流指令とから合成して生成する。これにより、電圧アンバランスの原因となる直流中性点電流ixが正負平滑コンデンサ12、13に流れることを抑制できる。このため、正負平滑コンデンサ12、13の電圧差や直流中性点電流ixを検出すること無く、高速で安定なチョッパ制御系を構成する事ができる。
実施の形態3.
この実施の形態3では1つの交流電源を用いた交流電動機の制御装置を示す。図5は、この実施の形態3による交流電動機の制御装置を示した回路図であり、図1に示した上記実施の形態1における3相交流電源1を、1つの単相交流電源60に置き換えたものである。この場合、整流回路Aの第1のハーフブリッジ型変換回路は、直列接続されたIGBT4、5および各IGBT4、5に逆並列接続されたダイオード6、7で構成されるハーフブリッジ型変換回路のみとなり、単相交流電源60は、IGBT4、5の接続点と正負平滑コンデンサ12、13の接続点との間に接続され、単相交流電源60とIGBT4、5の接続点との間にリアクトル2が配される。
この場合、整流回路Aの電流制御においては、単相交流電源60の電流は電流検出器35により検出され、検出された電流値ia_fbは、与えられた電流指令値(第1の電流指令)ia_refと減算器37で減算され、誤差電流が電流制御器(第1の電流制御器)38に入力される。電流制御器38は、入力である誤差電流が零となるように電圧指令(PWM信号)を生成して出力する。このPWM信号を入力とするIGBT駆動回路39で、IGBT4、5をオン・オフ制御する。これにより、電流検出器35で検出された電流値ia_fbと電流指令値ia_refに差があると、それを減少させる方向に回路がフィードバック動作する。
インバータ回路Bの電流制御においては、上記実施の形態1と同様であり、チョッパ回路Cのリアクトル27に流すチョッパ電流指令値ich_refは、以下に示すように、整流回路Aの電流指令値ia_refとインバータ回路Bの電流指令値iu_ref、iw_refとの合成によって生成される。まず、加算器53でインバータ回路Bの電流指令値iu_ref、iw_refが加算される。整流回路Aの電流指令値ia_refは、減算器54で加算器53の出力と減算されてチョッパ電流指令値ich_refが生成される。
このように、この実施の形態3においても、整流回路A、インバータ回路Bの各相、およびチョッパ回路Cに電流制御器38、46、49、56を備え、チョッパ回路Cの電流指令を整流回路Aの電流指令とインバータ回路Bの電流指令とから合成して生成する。これにより、電圧アンバランスの原因となる直流中性点電流ixが正負平滑コンデンサ12、13に流れることを抑制できる。このため、正負平滑コンデンサ12、13の電圧差や直流中性点電流ixを検出すること無く、高速で安定なチョッパ制御系を構成する事ができる。
実施の形態4.
図6は、この実施の形態4による交流電動機の制御装置を示した回路図であり、図1に示した上記実施の形態1におけるチョッパ回路Cの制御に、正負平滑コンデンサ12、13の電圧アンバランスを検出して制御する機能を追加したものである。その他の構成および動作に関しては、図1に示した実施の形態1と同様であるため説明を省略する。
図に示すように、正側平滑コンデンサ12および負側平滑コンデンサ13の電圧を電圧検出器28、29でそれぞれ検出し、この電圧差を減算器30で求め、電圧制御器61を介して加算器62へ入力する。
ここで、電圧制御器61は、正負平滑コンデンサ12、13の電圧アンバランスを入力とし、チョッパ回路Cのリアクトル27に流すための電流指令値(第4の電流指令)を出力するものである。正負平滑コンデンサ12、13の電圧アンバランスを零とするためのフィードバック制御に使用され、図2の電流制御器と同様に、例えば図7のようなPI制御器61a〜61dを用いて構成することができる。
一方、上述したように、加算器52では整流回路Aの電流指令値ir_ref、it_refが加算され、加算器53ではインバータ回路Bの電流指令値iu_ref、iw_refが加算される。加算器52、53の出力は減算器54で減算されて電流指令値が生成される。
加算器62では、電圧制御器61の出力と減算器54の出力を加算して、チョッパ回路Cのリアクトル27に流すチョッパ電流指令値を生成する。
次に動作について説明する。この実施の形態では、チョッパ回路Cの電流指令値を整流回路Aの電流指令値とインバータ回路Bの電流指令値とを合成して生成しているため、電圧アンバランスの原因となる直流中性点電流ixが正負平滑コンデンサ12、13に流れることを抑制できる。
この時、正負平滑コンデンサ12、13の各電圧を検出し、正負平滑コンデンサ12、13の電圧アンバランスが生じていれば、電圧制御器61は電圧アンバランスがそれを減少させる方向にチョッパ回路Cの電流指令値を変化させる。これにより、正負平滑コンデンサ12、13の電圧アンバランスが零になるようにフィードバック制御される。
ところで、実施の形態1の説明から明らかなように、電流制御器38、41、46、49、56が充分に高速かつ高精度に動作し、電流検出器35、36、43、44、51が実際の電流と等しい電流を検出していれば、正負平滑コンデンサ12、13の電圧アンバランスは零となり、追加した正負平滑コンデンサ12、13の電圧アンバランスを検出して制御する機能は動作しない。この機能が動作するのは、電流制御器38、41、46、49、56または電流検出器35、36、43、44、51に誤差が生じた場合である。
一般にこれらの誤差は小さいため、この誤差に起因して発生する、正負平滑コンデンサ12、13の電圧アンバランスは小さく抑えることができる。このため、正負平滑コンデンサ12、13の電圧アンバランスを検出して制御する機能は、微小な誤差成分のみに対して働くため、検出やフィルタによる遅れの影響が従来の技術に比較して小さく抑えられる。また、微小な誤差成分のみを扱うため高速な応答を必要としない。
このように、この実施の形態4によれば、整流回路A、インバータ回路Bの各相、およびチョッパ回路Cに電流制御器38、41、46、49、56を備え、整流回路Aの電流指令とインバータ回路Bの電流指令とから合成した電流指令に、さらに正負平滑コンデンサ12、13の電圧アンバランスを零にするための電流指令を合成してチョッパ回路Cの電流指令を生成する。このように生成されるチョッパ回路Cの電流指令は、主として整流回路Aの電流指令とインバータ回路Bの電流指令とから決定され、正負平滑コンデンサ12、13の電圧アンバランスの検出は微小な誤差成分の制御にのみ使用される。このため、検出やフィルタによる遅れの影響が軽減されて高速で安定で信頼性の高いチョッパ制御系を構成する事ができる。
実施の形態5.
図8は、この実施の形態5による交流電動機の制御装置を示した回路図である。この実施の形態は、上記実施の形態4で示したチョッパ回路Cの制御を、上記実施の形態2で示した単相3線式の交流電源58、59を用いた交流電動機の制御装置に適用した場合を示すものである。
この実施の形態5においても、整流回路A、インバータ回路Bの各相、およびチョッパ回路Cに電流制御器38、41、46、49、56を備え、整流回路Aの電流指令とインバータ回路Bの電流指令とから合成した電流指令に、さらに正負平滑コンデンサ12、13の電圧アンバランスを零にするための電流指令を合成してチョッパ回路Cの電流指令を生成する。このように生成されるチョッパ回路Cの電流指令は、主として整流回路Aの電流指令とインバータ回路Bの電流指令とから決定され、正負平滑コンデンサ12、13の電圧アンバランスの検出は微小な誤差成分の制御にのみ使用される。このため、検出やフィルタによる遅れの影響が軽減されて高速で安定で信頼性の高いチョッパ制御系を構成する事ができる。
実施の形態6.
図9は、この実施の形態6による交流電動機の制御装置を示した回路図である。この実施の形態は、上記実施の形態4で示したチョッパ回路Cの制御を、上記実施の形態3で示した1つの単相交流電源60を用いた交流電動機の制御装置に適用した場合を示すものである。
この実施の形態6においても、整流回路A、インバータ回路Bの各相、およびチョッパ回路Cに電流制御器38、46、49、56を備え、整流回路Aの電流指令とインバータ回路Bの電流指令とから合成した電流指令に、さらに正負平滑コンデンサ12、13の電圧アンバランスを零にするための電流指令を合成してチョッパ回路Cの電流指令を生成する。このように生成されるチョッパ回路Cの電流指令は、主として整流回路Aの電流指令とインバータ回路Bの電流指令とから決定され、正負平滑コンデンサ12、13の電圧アンバランスの検出は微小な誤差成分の制御にのみ使用される。このため、検出やフィルタによる遅れの影響が軽減されて高速で安定で信頼性の高いチョッパ制御系を構成する事ができる。
実施の形態7.
上記各実施の形態における交流電動機の制御装置において、正負平滑コンデンサ12、13の電圧アンバランスを解消するチョッパ回路Cの動作を停止させる手段を設けた場合を以下に示す。
図10は、この実施の形態7による交流電動機の制御装置を示した部分回路図である。その他の部分の構成および動作に関しては、例えば、図1に示した実施の形態1と同様であるため説明を省略する。
図に示すように、チョッパ回路CのIGBT23、24を駆動するIGBT駆動回路57には、チョッパ回路Cの動作を停止させるゲートオフ回路70の出力が接続されており、ゲートオフ回路70の入力には周波数判定器63の出力が接続されている。周波数判定器63には、インバータ回路Bの出力周波数fが入力され、周波数判定器63内部に設定された所定値f1と比較される。インバータ回路Bの出力周波数fが所定値f1以上の場合、周波数判定器63はチョッパ回路Cを停止する信号をゲートオフ回路70に出力し、ゲートオフ回路70によりIGBT駆動回路57が停止させられることで、チョッパ回路Cでは双方のIGBT23、24がオフ状態を保持して動作を停止する。
上述したように、正負平滑コンデンサ12、13の電圧アンバランスは、インバータ回路Cの出力周波数fが低くなるほど大きくなる。従って、インバータ回路Bの出力周波数fが高い領域においては、正負平滑コンデンサ12、13の電圧アンバランスが設計的に許容できる範囲が存在する。
この実施の形態では、インバータ回路Bの出力周波数fが所定値以上の時にはチョッパ回路Cの動作を停止する手段を設けたため、インバータ回路Cの出力周波数が低くて正負平滑コンデンサ12、13の電圧アンバランスが大きくなる時のみチョッパ回路Cを動作させる。そして、それ以外のインバータ回路Bの出力周波数fが高い領域において、チョッパ回路Cの動作を停止させることで、チョッパ回路Cが発生する損失を低減する事ができる。
実施の形態8.
上記実施の形態7では、インバータ回路Cの出力周波数に基づいてチョッパ回路Cの動作を停止させるものを示したが、この実施の形態では、正負平滑コンデンサ12、13の電圧差に基づいてチョッパ回路Cの動作を停止させる。
図11は、この実施の形態8による交流電動機の制御装置を示した部分回路図である。その他の部分の構成および動作に関しては、例えば、図1に示した実施の形態1と同様であるため説明を省略する。
図に示すように、チョッパ回路CのIGBT23、24を駆動するIGBT駆動回路57には、チョッパ回路Cの動作を停止させるゲートオフ回路70の出力が接続されており、ゲートオフ回路70の入力には電圧判定器64の出力が接続されている。電圧判定器64には、正負平滑コンデンサ12、13の電圧差ΔVが入力され、電圧判定器64内部に設定された所定値v1と比較される。正負平滑コンデンサ12、13の電圧差ΔVが所定値v1以下の場合、電圧判定器64はチョッパ回路Cを停止する信号をゲートオフ回路70に出力し、ゲートオフ回路70によりIGBT駆動回路57が停止させられることで、チョッパ回路Cでは双方のIGBT23、24がオフ状態を保持して動作を停止する。
正負平滑コンデンサ12、13の電圧アンバランスは、整流回路Aやインバータ回路Bの相電流、出力周波数等により、その度合いは変化するものであり、設計的に許容できる範囲が存在する。
この実施の形態では、正負平滑コンデンサ12、13の電圧差ΔVが所定値以下の時にはチョッパ回路Cの動作を停止する手段を設けたため、正負平滑コンデンサ12、13の電圧アンバランスが大きくなる時のみチョッパ回路Cを動作させる。そして、それ以外の時にはチョッパ回路Cの動作を停止させることで、チョッパ回路Cが発生する損失を低減する事ができる。
実施の形態9.
この実施の形態9では、図12に示すように、上記実施の形態7、8で説明した周波数判定器63と電圧判定器64との出力の論理和をOR回路65で求め、このOR回路65の出力によりゲートオフ回路70を動作させるようにした。
周波数判定器63と電圧判定器64との、いずれかがチョッパ回路Cの停止を判定するとチョッパ回路Cの動作が停止されるため、チョッパ回路Cが発生する損失を効果的に低減することができる。
なお、図12では、周波数判定器63と電圧判定器64との出力の論理和を求めて制御に用いるものを示したが、図13に示すように、周波数判定器63と電圧判定器64との出力の論理積を用いても良い。この場合、周波数判定器63と電圧判定器64との各出力をAND回路66に入力して論理積を求める。このAND回路66の出力によりゲートオフ回路70を動作させるようにした。これにより、周波数判定器63と電圧判定器64との双方がチョッパ回路Cの停止を判定した場合のみチョッパ回路Cの動作が停止されるため、正負平滑コンデンサ12、13の電圧アンバランスを低く保ちながら、チョッパ回路Cが発生する損失を低減することができる。
上記実施の形態1〜9では、この発明による電力変換装置として交流電動機の制御装置を示した。交流電動機の制御装置では、インバータ回路Bの周波数は0〜120Hz程度の範囲で可変周波数駆動されるため正負平滑コンデンサ12、13の電圧アンバランスに対する影響が大きい。このため、高速で安定なチョッパ制御系を構成できるこの発明は、交流電動機の制御装置に対し特に有効なものであるが、正負平滑コンデンサ12、13の電圧アンバランスが生じるものであればこれに限るものではない。
この発明の実施の形態1による交流電動機の制御装置を示す回路図である。 この発明の実施の形態1による交流電動機の制御装置の電流制御器を示す回路図である。 この発明の実施の形態1による交流電動機の制御装置の動作説明図である。 この発明の実施の形態2による交流電動機の制御装置を示す回路図である。 この発明の実施の形態3による交流電動機の制御装置を示す回路図である。 この発明の実施の形態4による交流電動機の制御装置を示す回路図である。 この発明の実施の形態4による交流電動機の制御装置の電圧制御器を示す回路図である。 この発明の実施の形態5による交流電動機の制御装置を示す回路図である。 この発明の実施の形態6による交流電動機の制御装置を示す回路図である。 この発明の実施の形態7による交流電動機の制御装置を示す部分回路図である。 この発明の実施の形態8による交流電動機の制御装置を示す部分回路図である。 この発明の実施の形態9による交流電動機の制御装置を示す部分回路図である。 この発明の実施の形態9の別例による交流電動機の制御装置を示す部分回路図である。
符号の説明
1 3相交流電源、2,3 リアクトル、
4〜7,8〜11 第1のハーフブリッジ型変換回路、12 正側平滑コンデンサ、
13 負側平滑コンデンサ、
14〜17,18〜21 第2のハーフブリッジ型変換回路、22 3相交流電動機、
23,24 IGBT(スイッチ素子)、25,26 ダイオード、27 リアクトル、
28,29 電圧検出器、30 減算器、
35,36 第1の電流検出手段としての電流検出器、
37,40,45,48,54,55 減算器、38,41 第1の電流制御器、
39,42,47,50,57 IGBT駆動回路、
43,44 第2の電流検出手段としての電流検出器、46,49 第2の電流制御器、
51 第3の電流検出手段としての電流検出器、52,53 加算器、
56 第3の電流制御器、58,59 単相交流電源、60 単相交流電源、
61 電圧制御器、62 加算器、63 周波数判定器、64 電圧判定器、
70 ゲートオフ回路、A 第1の電力変換器としての整流回路、
B 第2の電力変換器としてのインバータ回路、
C 第3の電力変換器としてのチョッパ回路。

Claims (10)

  1. 正相、中性相および負相を有する3線直流における正相と負相との間に接続した2直列スイッチ素子、該各スイッチ素子にそれぞれ逆並列接続されたダイオードからなる第1のハーフブリッジ型変換回路、該3線直流の正相と中性相との間に接続された正側平滑コンデンサ、および該正側平滑コンデンサに直列接続されて上記3線直流の中性相と負相との間に接続された負側平滑コンデンサを有し、交流電源からの交流を上記3線直流に変換する第1の電力変換器と、
    上記3線直流の正相および負相との間に接続した2直列スイッチ素子、該各スイッチ素子にそれぞれ逆並列接続されたダイオードからなる2個の第2のハーフブリッジ型変換回路を有して、該2個の第2のハーフブリッジ型変換回路の2直列スイッチ素子の接続点をそれぞれ第1相、第2相の出力、上記3線直流の中性相を第3相の出力として、上記3線直流を3相交流に変換する第2の電力変換器と、
    上記3線直流の正相と負相との間に接続した2直列スイッチ素子、該各スイッチ素子にそれぞれ逆並列接続されたダイオード、および上記2直列スイッチ素子の接続点と上記正側、負側平滑コンデンサの接続点との間に接続されたリアクトルを有した第3の電力変換器と、
    上記交流電源から上記第1の電力変換器に入力される電流を検出する第1の電流検出手段を有して、該検出電流が第1の電流指令に追従するように上記第1のハーフブリッジ型変換回路への制御信号を生成する第1の電流制御器と、
    上記第2の電力変換器から出力される電流を検出する第2の電流検出手段を有して、該検出電流が第2の電流指令に追従するように上記各第2のハーフブリッジ型変換回路への制御信号を生成する第2の電流制御器と、
    上記第3の電力変換器の上記リアクトルに流れる電流を検出する第3の電流検出手段を有して、該検出電流が第3の電流指令に追従するように上記2直列スイッチ素子への制御信号を生成する第3の電流制御器とを備え、
    上記第1の電流指令と上記第2の電流指令とに基づいて上記第3の電流指令を生成することを特徴とする電力変換装置。
  2. 上記第1の電力変換器は、上記第1のハーフブリッジ型変換回路を2個備えて、上記交流電源である3相交流電源の第1相、第2相の各相を上記各第1のハーフブリッジ型変換回路の2直列スイッチ素子の接続点にリアクトルを介して接続し、第3相を上記3線直流の中性相に接続して構成し、
    上記第3の電流指令は、上記第1の電流指令となる上記3相交流電源の第1相電流指令および第2相電流指令を加算した電流指令と、上記第2の電流指令となる上記第2の電力変換器の第1相電流指令および第2相電流指令を加算した電流指令との差に基づいて生成されることを特徴とする請求項1記載の電力変換装置。
  3. 上記第1の電力変換器は、上記第1のハーフブリッジ型変換回路を2個備えて、上記交流電源である単相3線式交流電源の2つの単相電源を、上記各第1のハーフブリッジ型変換回路の2直列スイッチ素子の接続点と上記3線直流の中性相との間にそれぞれリアクトルを介して接続して構成し、
    上記第3の電流指令は、上記第1の電流指令となる上記2つの単相電源の電流指令を加算した電流指令と、上記第2の電流指令となる上記第2の電力変換器の第1相電流指令および第2相電流指令を加算した電流指令との差に基づいて生成されることを特徴とする請求項1記載の電力変換装置。
  4. 上記第1の電力変換器は、上記交流電源である単相交流電源を、上記第1のハーフブリッジ型変換回路の2直列スイッチ素子の接続点と上記3線直流の中性相との間にリアクトルを介して接続して構成し、
    上記第3の電流指令は、上記第1の電流指令となる上記単相交流電源の電流指令と、上記第2の電流指令となる上記第2の電力変換器の第1相電流指令および第2相電流指令を加算した電流指令との差に基づいて生成されることを特徴とする請求項1記載の電力変換装置。
  5. 上記正側平滑コンデンサと上記負側平滑コンデンサとの電圧差を検出し、該検出された電圧差を小さくするように上記第3の電力変換器の上記リアクトルに流れる電流の指令値となる第4の電流指令を演算する手段を備え、上記第3の電流指令は、上記第4の電流指令を加算したものであることを特徴とする請求項1〜4のいずれかに記載の電力変換装置。
  6. 上記第3の電力変換器の2直列スイッチ素子の双方をオフするゲートオフ手段を備え、上記正側平滑コンデンサと上記負側平滑コンデンサとの電圧差を検出し、該検出された電圧差が所定値以下の時、上記ゲートオフ手段により上記2直列スイッチ素子の双方をオフすることを特徴とする請求項1〜5のいずれかに記載の電力変換装置。
  7. 上記第3の電力変換器の2直列スイッチ素子の双方をオフするゲートオフ手段を備え、上記第2の電力変換器の出力周波数が所定値以上の時、上記ゲートオフ手段により上記2直列スイッチ素子の双方をオフすることを特徴とする請求項1〜5のいずれかに記載の電力変換装置。
  8. 上記第3の電力変換器の2直列スイッチ素子の双方をオフするゲートオフ手段と、上記正側平滑コンデンサと上記負側平滑コンデンサとの電圧差が所定値以下であることを検出する第1の検出手段と、上記第2の電力変換器の出力周波数が所定値以上であることを検出する第2の検出手段とを備え、上記第1、第2の検出手段の一方、または双方にて上記各検出がなされたとき、上記ゲートオフ手段により上記2直列スイッチ素子の双方をオフすることを特徴とする請求項1〜5のいずれかに記載の電力変換装置。
  9. 上記第3の電力変換器の2直列スイッチ素子の双方をオフするゲートオフ手段と、上記正側平滑コンデンサと上記負側平滑コンデンサとの電圧差が所定値以下であることを検出する第1の検出手段と、上記第2の電力変換器の出力周波数が所定値以上であることを検出する第2の検出手段とを備え、上記第1、第2の検出手段の双方にて上記各検出がなされたとき、上記ゲートオフ手段により上記2直列スイッチ素子の双方をオフすることを特徴とする請求項1〜5のいずれかに記載の電力変換装置。
  10. 上記第2の電力変換器の3相交流出力を3相交流電動機に接続することを特徴とする請求項1〜9のいずれかに記載の電力変換装置。
JP2006038738A 2006-02-16 2006-02-16 電力変換装置 Expired - Fee Related JP4783174B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038738A JP4783174B2 (ja) 2006-02-16 2006-02-16 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038738A JP4783174B2 (ja) 2006-02-16 2006-02-16 電力変換装置

Publications (2)

Publication Number Publication Date
JP2007221902A JP2007221902A (ja) 2007-08-30
JP4783174B2 true JP4783174B2 (ja) 2011-09-28

Family

ID=38498538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038738A Expired - Fee Related JP4783174B2 (ja) 2006-02-16 2006-02-16 電力変換装置

Country Status (1)

Country Link
JP (1) JP4783174B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431442A (zh) * 2015-03-05 2017-12-01 利莱森玛电机公司 包括交流发电机的机电组件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321071B2 (ja) * 2009-01-08 2013-10-23 富士電機株式会社 電力変換装置
JP5659584B2 (ja) * 2010-07-09 2015-01-28 富士電機株式会社 電源装置
CN102457191A (zh) * 2010-10-21 2012-05-16 联正电子(深圳)有限公司 非隔离型不间断电源装置及其控制方法
CN102075107B (zh) * 2010-12-17 2013-07-10 湘潭大学 一种三相四线制dc/ac变换器主电路及其控制方法
CN106170916A (zh) * 2014-02-07 2016-11-30 Abb 瑞士股份有限公司 具有平衡降压/升压变换器的不间断电源
EP3467987B1 (en) * 2017-10-06 2023-12-20 General Electric Technology GmbH Converter scheme

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249380B2 (ja) * 1995-06-13 2002-01-21 株式会社東芝 電力変換装置
JP3324056B2 (ja) * 1996-11-29 2002-09-17 株式会社日立製作所 電力変換装置
JP3301714B2 (ja) * 1997-04-18 2002-07-15 株式会社日立製作所 電力変換装置及びその起動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431442A (zh) * 2015-03-05 2017-12-01 利莱森玛电机公司 包括交流发电机的机电组件

Also Published As

Publication number Publication date
JP2007221902A (ja) 2007-08-30

Similar Documents

Publication Publication Date Title
JP3249380B2 (ja) 電力変換装置
JP4669723B2 (ja) 電動機制御装置
JP6735827B2 (ja) 電力変換装置
JP5223711B2 (ja) 無停電電源装置
JP4783174B2 (ja) 電力変換装置
JP5939411B2 (ja) 電力変換装置
JP5505042B2 (ja) 中性点昇圧方式の直流−三相変換装置
JPH0336964A (ja) 多重インバータ装置
JP6138276B2 (ja) 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
AU2017336112B2 (en) Control device for power converter
JPWO2008072348A1 (ja) インバータ装置
JP5192258B2 (ja) クランプ式電力変換装置
JP2013162536A (ja) 電力変換装置
US20170272006A1 (en) Power conversion apparatus; motor driving apparatus, blower, and compressor, each including same; and air conditioner, refrigerator, and freezer, each including at least one of them
JP5375715B2 (ja) 中性点昇圧方式の直流−三相変換装置
JP4825034B2 (ja) 電力変換装置
JP4755504B2 (ja) 電力変換装置
JP4019979B2 (ja) 交流−交流電力変換装置
JP6021147B2 (ja) 風力発電装置
JP4365376B2 (ja) 電力変換装置
JP4712148B2 (ja) 電力変換装置
JP6157599B2 (ja) 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
JP2005073380A (ja) 電力変換器の制御装置
JPH07213067A (ja) Pwmコンバータの制御回路
JP2010226806A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees