WO2016114330A1 - 5レベル電力変換器および制御方法 - Google Patents

5レベル電力変換器および制御方法 Download PDF

Info

Publication number
WO2016114330A1
WO2016114330A1 PCT/JP2016/050895 JP2016050895W WO2016114330A1 WO 2016114330 A1 WO2016114330 A1 WO 2016114330A1 JP 2016050895 W JP2016050895 W JP 2016050895W WO 2016114330 A1 WO2016114330 A1 WO 2016114330A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
voltage
cmd
command value
level power
Prior art date
Application number
PCT/JP2016/050895
Other languages
English (en)
French (fr)
Inventor
長谷川 勇
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2016114330A1 publication Critical patent/WO2016114330A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Definitions

  • the present invention relates to a multi-phase five-level power converter, and more particularly to a multi-level power converter in which each phase of the five-level power converter uses a DC connection capacitor in common.
  • FIG. 7 is a circuit diagram showing a diode clamp type five-level power converter. As shown in FIG. 7, in the diode clamp type five-level power converter, the DC connection is divided into four by four capacitors C1 to C4, and the voltages of the four divided capacitors C1 to C4 are controlled equally. Thus, it becomes possible to output a voltage of 5 levels.
  • the level of the output phase voltage relative to the neutral point N is the on-off operation of the switch S p1 ⁇ S p4, S n1 ⁇ S n4, 2E, E, There are 5 levels of 0, -E, -2E.
  • Non-Patent Document 1 describes the voltage balance control of the capacitors C1 to C4.
  • Non-Patent Document 1 as shown in FIG. 7, is a five-level power converter in which an inverter and a converter are integrated, and by superimposing a three-phase common offset (zero-phase voltage) on the output voltage command value. The capacitor voltage divided into four is controlled within a certain range.
  • FIG. 8 is a time chart showing an example of an offset waveform in Non-Patent Document 1.
  • the upper waveform is the output voltage command value (sinusoidal) Vref and offset voltage Voffset before offset superposition.
  • the lower waveform is the output voltage command value Vref after the offset voltage Voffset is superimposed.
  • the left waveform and the right waveform have different offset voltage Voffset duty ratios (ratio of periods when the offset voltage Voffset is not zero).
  • FIG. 9 shows a PWM control configuration for generating the output voltage of the five-level power converter.
  • Output voltage command value Vref and four carrier signals of FIG. 9 carrier1, carrier2, carrier3, from comparing the Carrier4, each switch S of the inverter in the five-level power converter in p1 ⁇ S p4, S n1 ⁇ S n4 The on / off operation is determined, and the output voltage of the PWM waveform is generated.
  • the output voltage command value Vref in FIG. 9 has a waveform as shown in the lower part of FIG.
  • Non-Patent Document 1 determines the offset amount according to the modulation rate, and controls the voltage balance of the four capacitors C1 to C4.
  • the specific control method there is no description about the specific control method.
  • the control configuration in which the voltages of the capacitors C1 to C4 are detected and fed back is not adopted, there arises a problem that the responsiveness to disturbance is deteriorated.
  • One aspect of the present invention is a converter that converts an AC voltage into a DC voltage, and a capacitor having two or more series and one or more parallel on the DC side of the converter.
  • an inverter that converts the DC voltage of the DC connection unit into an AC voltage
  • an offset control circuit that calculates an offset command value based on a voltage detection value of the capacitor
  • a 5-level power converter control method comprising: a PWM generation circuit that performs PWM control based on a value obtained by adding a converter voltage command value and a value obtained by adding an inverter voltage command value to the offset command value.
  • the offset control circuit sets a value that is PI-controlled based on a deviation between the capacitor voltage command value and the average value of the detected voltage value of the capacitor. And outputs a value obtained by multiplying the offset waveform as an offset command value.
  • the DC connection portion is characterized in that four capacitors are connected in series.
  • the offset waveform is a signal obtained by multiplying a square wave that outputs 1 or ⁇ 1 at a duty of 50% by a change rate limitation that makes the offset waveform less than or equal to the slope of the carrier signal. .
  • the frequency of the offset command value is set to be not less than 3 times the output frequency of the 5-level power converter and not more than 1/2 of the carrier frequency.
  • the number of output phases may be three.
  • the present invention in the five-level power converter, it is possible to simplify the voltage balance control of the capacitor and further improve the response to disturbance.
  • FIG. 1 is a block diagram of an entire system of a five-level power converter according to Embodiment 1.
  • FIG. FIG. 2 is a block diagram illustrating an offset control circuit according to the first embodiment.
  • FIG. 10 is a block diagram illustrating an example of generating an offset waveform in the second embodiment.
  • 6 is a time chart showing output voltages and voltage command values in the second embodiment. The time chart which shows the capacitor voltage when the frequency of an offset command value is 3f. The time chart which shows the capacitor voltage when the frequency of an offset command value is set to f.
  • FIG. The time chart which shows an output voltage command value and an offset voltage.
  • the time chart which shows the example of a PWM control structure. A time chart showing an example of level skip occurrence.
  • the present invention improves the response to disturbance by detecting the capacitor voltage and forming a feedback loop. Furthermore, by adjusting the amplitude of the offset to be superimposed, the balance of the capacitor voltage is controlled, and the offset generation is simplified.
  • FIG. 1 shows a block diagram of the entire system of the five-level power converter according to the first embodiment
  • FIG. 2 shows a block diagram of a capacitor voltage offset control circuit. Note that the five-level power converter according to the first embodiment has three output phases.
  • the five-level power converter includes a system 1, a converter CONV that converts an AC voltage output from the system 1 into a DC voltage, and a series number on the DC side of the converter CONV.
  • a DC connection part to which capacitors of two or more and 1 or more in parallel are connected, an inverter INV for converting a DC voltage of the DC connection part into an AC voltage, a load LOAD to which an AC voltage output from the inverter INV is supplied,
  • An input filter 2 interposed between the system 1 and the converter CONV, and an output filter 3 interposed between the inverter INV and the load LOAD are provided.
  • the DC voltage at the DC connection portion is divided into four by the four capacitors C1 to C4.
  • Vdc1 is a voltage between the P arm and the neutral point of the DC connection portion
  • Vdc2 is a voltage between the neutral point and the N arm of the DC connection portion
  • Vc1 and Vc2 are capacitor voltages of the capacitors C3 and C2
  • Vu_cmd, Vv_cmd, and Vw_cmd are U-phase, V-phase, and W-phase voltage command values of the inverter INV
  • Vuc_cmd, Vvc_cmd, and Vwc_cmd are U-phase, V-phase, and W-phase voltage command values of the converter CONV.
  • the PWM control is performed based on the offset control circuit 4 that calculates the offset command value offset_cmd of the converter CONV from the capacitor voltages Vc1 and Vc2, and the value obtained by adding the voltage command values Vuc_cmd, Vvc_cmd, Vwc_cmd, and the offset command value offset_cmd of the converter CONV.
  • PWM converter circuit 5 on the converter CONV side to perform, offset control circuit 6 for calculating offset command value offset_cmd of inverter INV from capacitor voltages Vc1 and Vc2, voltage command values Vu_cmd, Vv_cmd, Vw_cmd and offset command value offset_cmd of inverter INV And an inverter INV-side PWM generation circuit 7 that performs PWM control based on the added value.
  • FIG. 2 is a block diagram showing the offset control circuits 4 and 6 in the first embodiment.
  • Vc_cmd is a voltage command value for the capacitors C1 to C4
  • Kp is a proportional gain
  • Ki is an integral gain
  • Z -1 is a one-sample delay.
  • the capacitor voltages Vc1 and Vc2 are added by the adder 11, and multiplied by 0.5 by the average value calculation unit 12, and the average value of the capacitor voltages Vc1 and Vc2 is calculated.
  • the subtractor 13 calculates the deviation between the average value of the capacitor voltages Vc1 and Vc2 and the capacitor voltage command value Vc_cmd, and the PI calculation unit 14 performs the PI calculation based on the deviation.
  • the PI calculation unit 14 multiplies the deviation between the voltage command value Vc_cmd of the capacitors C1 to C4 and the average value of the capacitor voltage detection values Vc1 and Vc2 by the multiplication unit 15 by the proportional gain Kp.
  • the subtraction unit 16 calculates a deviation between the output of the multiplication unit 15 and the output of the division unit 17, and the multiplication unit 18 multiplies the deviation by an integral gain Ki.
  • the adder 19 adds the output of the multiplier 18 and the output of the multiplier 18 one sample before.
  • the adder 20 adds the output of the multiplier 15 and the output of the adder 19.
  • the limiter 21 performs limiter processing on the output of the adder 20 and outputs the result as AMP.
  • the subtractor 22 calculates a deviation between the output of the adder 20 one sample before and the output of the limiter 21 one sample before.
  • the division unit 17 divides the output of the subtraction unit 22 by the proportional gain Kp and outputs the result to the subtraction unit 16.
  • the multiplier 23 multiplies the AMP output from the PI calculation unit 14 by the offset waveform offset_wave_form, and outputs the result as an offset command value offset_cmd.
  • the offset waveform offset_wave_form here is a square wave of duty 50% that outputs 1 or -1.
  • the offset command value offset_cmd is superimposed on the voltage command values Vuc_cmd, Vvc_cmd, Vw_cmd of the converter CONV and the voltage command values Vu_cmd, Vv_cmd, Vw_cmd of the inverter INV.
  • PWM generation circuits 5 and 7 in FIG. 1 have the same configuration as that in FIG. 9 and generate an on / off signal for each switch of the converter CONV and the inverter INV.
  • the difference between the average value of the capacitor voltages Vc1 and Vc2 and the capacitor voltage command value Vc_cmd is taken, and the PI-controlled output value AMP is used as the amplitude of the waveform of the offset command value offset_cmd.
  • the voltage of .about.C4 can be balanced. Further, since the configuration is based on feedback, stability can be improved even when the capacitor voltage fluctuates due to disturbance. Further, the capacitor voltage can be balanced by the simple control block as described above.
  • FIG. 3 shows an example of offset waveform generation.
  • fo in FIG. 3 represents the frequency of the offset waveform
  • phi represents the phase of the offset waveform.
  • the square wave generating unit 31 generates a square wave based on the frequency fo and the phase phi.
  • This square wave is a waveform that outputs 1 or ⁇ 1 at a duty of 50%.
  • Equation (1) shows an equation representing a square wave.
  • the change rate limiting unit 32 generates an offset waveform by limiting a square wave having a frequency fo and a phase phi.
  • the change rate limiting unit 32 sets the slope of the offset waveform to be equal to or smaller than the slopes of the carrier signals carrier1 to carrier4 of the converter CONV and the inverter INV. As a result, the output voltage command value Vref in the PWM generation circuits 5 and 7 does not have a steep voltage change as shown in FIG. 9, and level skipping can be prevented.
  • the solid line indicates the waveform of the output voltage command value Vref and the output voltage when the change rate limiting unit 32 is provided.
  • the broken line in the upper part of FIG. 4 is the output voltage command value when the change rate limiting unit 32 is not provided, that is, the output of the square wave generating unit 31.
  • the output voltage command value Vref rises with a slope when the broken line (the output of the square wave generator 31) changes in steps.
  • the slope of the output voltage command value Vref is lower than the slope of the carrier signal. Therefore, no voltage change for 2E occurs in the output voltage waveform.
  • the offset frequency fo is set within the range of equation (2).
  • f is an output frequency of the 5-level power converter
  • fc is a carrier frequency of the 5-level power converter.
  • a harmonic current of a 3f component that is three times the output frequency is generated in the power converter.
  • 3f ⁇ fo is satisfied. This is because the suppression of the harmonic current of the f component leads to the suppression of the capacitor voltage fluctuation.
  • the level skip can be suppressed, and thereby, the insulation deterioration / breakdown of the load such as the motor can be suppressed.
  • the capacitor voltage fluctuation can be suppressed even when the output frequency of the five-level power converter is low.
  • Embodiments 1 and 2 have been described using the three-phase five-level power converter of FIG.
  • the present invention is a power conversion device having an inverter INV and a converter CONV, and any configuration other than that shown in FIG. Applicable.
  • the capacitor block 2 series configuration has two circuits, and the number of phases is not limited to three.
  • the offset control circuit 4 on the converter CONV side and the offset control circuit 6 on the inverter INV side have different configurations, but these two offset control circuits 4 and 6 are integrated into one. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

コンデンサC3,C2の電圧検出値Vc1,Vc2に基づいてオフセット指令値offset_cmdを演算するオフセット制御回路4,6と,オフセット指令値offset_cmdにコンバータ電圧指令値Vuc_cmd,Vvc_cmd,Vwc_cmdを加算した値、および、オフセット指令値offset_cmdにインバータ電圧指令値Vu_cmd,Vv_cmd,Vw_cmdを加算した値に基づいて、PWM制御を行うPWM発生回路5,7と、を設ける。オフセット制御回路4,6は、コンデンサ電圧指令値Vc_cmdと、前記コンデンサの電圧検出値Vc1,Vc2の平均値と、の偏差に基づいてPI制御した値にオフセット波形を乗算した値をオフセット指令値offset_cmdとして出力する。これにより、5レベル電力変換器において、コンデンサの電圧バランス制御を簡潔にし、さらに外乱に対する応答性を向上させる。

Description

5レベル電力変換器および制御方法
 本発明は、多相の5レベル電力変換器に係り、特に、各相の5レベル電力変換器が直流接続部のコンデンサを共通して用いたマルチレベル電力変換器に関する。
 図7は、ダイオードクランプ型の5レベル電力変換器を示す回路図である。図7に示すように、ダイオードクランプ型の5レベル電力変換器は、直流接続部を4つのコンデンサC1~C4で4分割しており、4分割したコンデンサC1~C4の電圧をそれぞれ等しく制御することで5レベルの電圧を出力することが可能となる。
 例えば、コンデンサC1~C4の電圧をEとした場合、中性点Nを基準とした出力相電圧のレベルは、スイッチSp1~Sp4、Sn1~Sn4のオンオフ動作によって、2E,E,0,-E,-2Eの5レベルとなる。
 非特許文献1は、そのコンデンサC1~C4の電圧バランス制御に関して記載したものである。非特許文献1は、図7に示すように、インバータとコンバータとを一体構成とした5レベル電力変換器であり、三相共通のオフセット(零相電圧)を出力電圧指令値に重畳することにより、4分割したコンデンサ電圧を一定範囲内に制御している。
 図8は、非特許文献1におけるオフセット波形例を示すタイムチャートである。上部波形がオフセット重畳前の出力電圧指令値(正弦波状)Vrefとオフセット電圧Voffsetである。下部波形がオフセット電圧Voffset重畳後の出力電圧指令値Vrefである。また、左側波形と右側波形では、オフセット電圧Voffsetのduty(オフセット電圧Voffsetが零以外の期間の比率)が異なっている。左側波形はduty=100%,右側波形はduty≒50%である。このdutyを調整することによって、コンデンサC1~C4の電圧をバランス制御する。
 また、この5レベル電力変換器の出力電圧を生成するPWM制御構成を、図9に示す。図9の出力電圧指令値Vrefと4種類のキャリア信号carrier1,carrier2,carrier3,carrier4とを比較することより、5レベル電力変換器内におけるインバータの各スイッチSp1~Sp4,Sn1~Sn4のオンオフ動作を決定し、PWM波形の出力電圧を生成する。
 図7の各コンデンサC1~C4における印加電圧をEとすると、各信号と出力電圧との関係は表1のようになる。
Figure JPOXMLDOC01-appb-T000001
 オフセットVoffset(零相電圧)重畳時、図9の出力電圧指令値Vrefは、図8の下部のような波形となる。
 非特許文献1の制御方法は、変調率に応じてオフセット量を決定し、4つのコンデンサC1~C4の電圧バランスを制御している。しかし、その具体的な制御方法に関する記述はない。また、コンデンサC1~C4の電圧を検出しフィードバックした制御構成をとらない場合、外乱に対する応答性が悪くなる等の問題が生じる。
 また、オフセット電圧Voffsetの波形が急峻に変化するため、図10に示すように、2段分の電圧変化が発生する。図10に示すように、出力電圧指令値Vrefに急峻な変化があると、表1のmode3→mode1のようなレベルスキップが発生する。これにより、出力電圧値が0→2Eと変化する2段分の電圧変化が発生する。この2段分の電圧変化は、モータなどの負荷の絶縁劣化・絶縁破壊をもたらす問題がある。
"A Sinusoidal PWM Method With Voltage Balancing Capability for Diode-Clamped Five-Level Converters"IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL45,No3,MAY/JUNE 2009
 以上示したようなことから、5レベル電力変換器において、コンデンサの電圧バランス制御を簡潔にし、さらに外乱に対する応答性を向上させることが課題となる。
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、交流電圧を直流電圧に変換するコンバータと、コンバータの直流側に直列数2以上かつ並列数1以上のコンデンサが接続された直流接続部と、前記直流接続部の直流電圧を交流電圧に変換するインバータと、前記コンデンサの電圧検出値に基づいてオフセット指令値を演算するオフセット制御回路と、前記オフセット指令値にコンバータ電圧指令値を加算した値、および、前記オフセット指令値にインバータ電圧指令値を加算した値に基づいて、PWM制御を行うPWM発生回路と、を備えた5レベル電力変換器の制御方法であって、前記オフセット制御回路は、コンデンサ電圧指令値と、前記コンデンサの電圧検出値の平均値と、の偏差に基づいてPI制御した値にオフセット波形を乗算した値をオフセット指令値として出力することを特徴とする。
 また、その一態様として、前記直流接続部は、4つのコンデンサが直列接続されたことを特徴とする。
 また、その一態様として、前記オフセット波形は、1または-1をduty50%で出力する方形波に、オフセット波形がキャリア信号の傾き以下となる変化率制限を掛けた信号であることを特徴とする。
 また、その一態様として、オフセット指令値の周波数を、5レベル電力変換器の出力周波数の3倍以上、かつ、キャリア周波数の1/2以下とすることを特徴とする。
 また、出力相数が3相であってもよい。
 本発明によれば、5レベル電力変換器において、コンデンサの電圧バランス制御を簡潔にし、さらに外乱に対する応答性を向上させることが可能となる。
実施形態1における5レベル電力変換器のシステム全体のブロック図。 実施形態1におけるオフセット制御回路を示すブロック図。 実施形態2におけるオフセット波形生成例を示すブロック図。 実施形態2における出力電圧と電圧指令値を示すタイムチャート。 オフセット指令値の周波数を3fとした場合のコンデンサ電圧を示すタイムチャート。 オフセット指令値の周波数をfとした場合のコンデンサ電圧を示すタイムチャート。 非特許文献1の5レベル電力変換器を示す図。 出力電圧指令値とオフセット電圧を示すタイムチャート。 PWM制御構成例を示すタイムチャート。 レベルスキップ発生例を示すタイムチャート。
 本発明は、コンデンサ電圧を検出しフィードバックループを形成することにより、外乱に対する応答性を向上させるものである。さらに、重畳するオフセットの振幅を調整することにより、コンデンサ電圧のバランスを制御し、オフセットの生成を簡単化する。
 以下、本発明に係る5レベル電力変換器の実施形態を図1~図6に基づいて詳述する。
 [実施形態1]
 図1は本実施形態1における5レベル電力変換器のシステム全体のブロック図を示し、図2はコンデンサ電圧のオフセット制御回路のブロック図を示す。なお、本実施形態1の5レベル電力変換器は、出力相数を三相とする。
 まず、5レベル電力変換器の主回路を簡単に説明する。図1に示すように、本実施形態1における5レベル電力変換器は、系統1と、系統1から出力された交流電圧を直流電圧に変換するコンバータCONVと、コンバータCONVの直流側に、直列数2以上かつ並列数1以上のコンデンサが接続された直流接続部と、直流接続部の直流電圧を交流電圧に変換するインバータINVと、インバータINVから出力された交流電圧が供給される負荷LOADと、系統1とコンバータCONVとの間に介挿されたインプットフィルタ2と、インバータINVと負荷LOADとの間に介挿されたアウトプットフィルタと3と、を備える。なお、本実施形態1では、直流接続部の直流電圧を4つのコンデンサC1~C4で4分割している。
 ここで、図1のVdc1は直流接続部のPアームと中性点間の電圧,Vdc2は直流接続部の中性点とNアーム間の電圧、Vc1,Vc2はコンデンサC3,C2のコンデンサ電圧、Vu_cmd,Vv_cmd,Vw_cmdはインバータINVのU相、V相、W相の電圧指令値、Vuc_cmd,Vvc_cmd,Vwc_cmdはコンバータCONVのU相、V相、W相の電圧指令値である。
 また、コンデンサ電圧Vc1,Vc2からコンバータCONVのオフセット指令値offset_cmdを演算するオフセット制御回路4と、コンバータCONVの電圧指令値Vuc_cmd,Vvc_cmd,Vwc_cmdとオフセット指令値offset_cmdを加算した値に基づいてPWM制御を行うコンバータCONV側のPWM発生回路5と、コンデンサ電圧Vc1,Vc2からインバータINVのオフセット指令値offset_cmdを演算するオフセット制御回路6と、インバータINVの電圧指令値Vu_cmd,Vv_cmd,Vw_cmdとオフセット指令値offset_cmdを加算した値に基づいてPWM制御を行うインバータINV側のPWM発生回路7と、を備える。
 図2は、本実施形態1におけるオフセット制御回路4,6を示すブロック図である。図2のVc_cmdはコンデンサC1~C4の電圧指令値、Kpは比例ゲイン、Kiは積分ゲイン、Z-1は1サンプル遅延を表す。
 図2に示すように、加算器11によりコンデンサ電圧Vc1とVc2を加算し、平均値演算部12で0.5倍して、コンデンサ電圧Vc1とVc2の平均値を算出する。減算器13で、このコンデンサ電圧Vc1とVc2の平均値とコンデンサ電圧指令値Vc_cmdの偏差を算出し、PI演算部14で当該偏差に基づいてPI演算を行う。
 PI演算部14は、乗算部15によりコンデンサC1~C4の電圧指令値Vc_cmdとコンデンサ電圧検出値Vc1,Vc2の平均値との偏差に比例ゲインKpを乗算する。減算部16では、乗算部15の出力と除算部17の出力との偏差を演算し、乗算部18でこの偏差に積分ゲインKiを乗算する。加算部19では乗算部18の出力と乗算部18の1サンプル前の出力とを加算する。加算部20で乗算部15の出力と加算部19との出力とを加算する。リミッタ21では、加算部20の出力をリミッタ処理し、AMPとして出力する。減算部22は加算部20の1サンプル前の出力とリミッタ21の1サンプル前の出力との偏差を演算する。除算部17は減算部22の出力を比例ゲインKpで除算し、減算部16に出力する。
 乗算器23はPI演算部14の出力であるAMPにオフセット波形offset_wave_formを乗算し、オフセット指令値offset_cmdとして出力する。なお、ここでのオフセット波形offset_wave_formは、1または-1を出力するduty50%の方形波である。
 このオフセット指令値offset_cmdを図1に示すように、コンバータCONVの電圧指令値Vuc_cmd,Vvc_cmd,Vw_cmd、インバータINVの電圧指令値Vu_cmd,Vv_cmd,Vw_cmdにそれぞれ重畳する。
 なお、図1のPWM発生回路5,7は、図9と同じ構成をとり、コンバータCONVおよびインバータINVの各スイッチのオンオフ信号を生成する。
 図2に示すように、コンデンサ電圧Vc1,Vc2の電圧の平均値とコンデンサ電圧指令値Vc_cmdとの差をとり、PI制御した出力値AMPをオフセット指令値offset_cmdの波形の振幅とすることでコンデンサC1~C4の電圧をバランス制御することができる。また、フィードバックによる構成であるため、コンデンサ電圧が外乱により変動した場合においても安定性向上できる。また、上記のような簡単な制御ブロックでコンデンサ電圧のバランスをとることができる。
 [実施形態2]
 本実施形態2では、出力線間電圧のレベルスキップが発生しないオフセット波形の生成方法に関して説明する。図3にオフセットの波形生成例を示す。ここで、図3のfoはオフセット波形の周波数、phiはオフセット波形の位相を表す。方形波生成部31は、周波数fo,位相phiに基づいて方形波を生成する。この方形波は、1または-1をduty50%で出力する波形である。(1)式に方形波(square wave)を表す式を示す。
Figure JPOXMLDOC01-appb-M000002
 図3に示すように、変化率制限部32により、周波数fo、位相phiの方形波(square wave)に制限を掛けることによりオフセット波形が生成される。
 ここで、変化率制限部32により、オフセット波形の傾きが、コンバータCONV,インバータINVのキャリア信号carrier1~carrier4の傾き以下となるように設定する。これにより、PWM発生回路5,7内の出力電圧指令値Vrefは、図9のような急峻な電圧の変化がなくなり、レベルスキップを防止することができる。
 具体的には、図4のようになる。実線が変化率制限部32を設けた場合の出力電圧指令値Vrefと出力電圧の波形を示している。(図4上部の破線は、変化率制限部32を設けない場合の出力電圧指令値、すなわち、方形波生成部31の出力である。)変化率制限部32では、図4に示すように、破線(方形波生成部31の出力)のステップ変化時に出力電圧指令値Vrefは傾きをもって上昇している。この出力電圧指令値Vrefの傾きはキャリア信号の傾きよりも低い。したがって、出力電圧波形では、2E分の電圧変化が発生していない。
 次に、実施形態1,実施形態2においてのオフセット周波数foの決定方法に関して説明する。
 5レベル電力変換器の出力周波数が低いときオフセット周波数foを高くすることにより、コンデンサ電圧の変動を低減することができる。この時、オフセット周波数foは、(2)式の範囲で設定する。ここでfは5レベル電力変換器の出力周波数、fcは5レベル電力変換器のキャリア周波数で示す。
Figure JPOXMLDOC01-appb-M000003
 オフセット周波数foは高いほどコンデンサ電圧変動を小さくすることができるが、キャリア周波数fcの半分よりも高い周波数は制御できないため、fo<fc/2としている。
 また、3相電力変換器の場合、出力周波数の3倍の3f成分の高調波電流が電力変換器内に発生する。この3f成分の高調波電流を抑制するため、3f≦foとしている。f成分の高調波電流の抑制は、コンデンサ電圧変動の抑制につながるからである。
 図5に、fo=3f=1.5Hz時のシミュレーション結果、図6に高周波数のfo=180Hz適用後のシミュレーション結果をそれぞれ示す。図5と図6を比較すると高周波を適用した図6の方がコンデンサ電圧変動を85%程度低減できていることがわかる。
 以上示したように、本実施形態2によれば、レベルスキップを抑制することができ、これにより、モータなどの負荷の絶縁劣化・絶縁破壊を抑制できる。
 また、オフセット周波数foを(2)式とすることにより、5レベル電力変換器の出力周波数が低い場合においても、コンデンサ電圧変動を抑制できる。
 以上の実施形態1,2は、図7の3相5レベル電力変換器を用いて説明した。本発明は、インバータINVとコンバータCONVを持つ電力変換装置で、直流部にコンデンサブロック(コンデンサ並列数が1以上ある構成)を2直列以上接続している構成であれば、図7以外の構成でも適用できる。例えば、コンデンサブロック2直列構成が2回路ある構成、さらに、その相数も3相に限らない。
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
 例えば、図1では、コンバータCONV側のオフセット制御回路4と、インバータINV側のオフセット制御回路6は、別々の構成となっているが、これら2つのオフセット制御回路4,6は1つに統合してもよい。

Claims (6)

  1.  交流電圧を直流電圧に変換するコンバータと、
     コンバータの直流側に直列数2以上かつ並列数1以上のコンデンサが接続された直流接続部と、
     前記直流接続部の直流電圧を交流電圧に変換するインバータと、
     前記コンデンサの電圧検出値に基づいてオフセット指令値を演算するオフセット制御回路と、
     前記オフセット指令値にコンバータ電圧指令値を加算した値、および、前記オフセット指令値にインバータ電圧指令値を加算した値に基づいて、PWM制御を行うPWM発生回路と、
    を備えた5レベル電力変換器の制御方法であって、
     前記オフセット制御回路は、
     コンデンサ電圧指令値と、前記コンデンサの電圧検出値の平均値と、の偏差に基づいてPI制御した値にオフセット波形を乗算した値を前記オフセット指令値として出力する5レベル電力変換器の制御方法。
  2.  前記直流接続部は、4つの前記コンデンサが直列接続されたことを特徴とする請求項1記載の5レベル電力変換装置の制御方法。
  3.  前記オフセット波形は、
     1または-1をduty50%で出力する方形波に、前記オフセット波形がキャリア信号の傾き以下となる変化率制限を掛けた信号である請求項1または2記載の5レベル電力変換器の制御方法。
  4.  オフセット指令値の周波数を、5レベル電力変換器の出力周波数の3倍以上、かつ、キャリア周波数の1/2以下とする請求項1~3のうち何れかに記載の5レベル電力変換器の制御方法。
  5.  請求項1~4のうち何れかに記載の制御方法を用いた5レベル電力変換器。
  6.  出力相数が3相である請求項5に記載の5レベル電力変換器。
PCT/JP2016/050895 2015-01-14 2016-01-14 5レベル電力変換器および制御方法 WO2016114330A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015004608A JP6394401B2 (ja) 2015-01-14 2015-01-14 5レベル電力変換器および制御方法
JP2015-004608 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016114330A1 true WO2016114330A1 (ja) 2016-07-21

Family

ID=56405871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050895 WO2016114330A1 (ja) 2015-01-14 2016-01-14 5レベル電力変換器および制御方法

Country Status (2)

Country Link
JP (1) JP6394401B2 (ja)
WO (1) WO2016114330A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047686A (ja) * 2017-09-06 2019-03-22 株式会社明電舎 マルチレベル電力変換装置
CN111130364A (zh) * 2019-12-31 2020-05-08 北京交通大学 一种三相整流器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108712058B (zh) * 2017-04-12 2021-10-01 全球能源互联网研究院有限公司 一种屏蔽式均压电路
JP7403416B2 (ja) 2020-08-25 2023-12-22 ニチコン株式会社 スイッチング電源装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332252A (ja) * 1998-05-08 1999-11-30 Denso Corp マルチレベル形電力変換装置
JP2010172141A (ja) * 2009-01-23 2010-08-05 Sanken Electric Co Ltd 3相電力変換装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110815A (ja) * 2011-11-18 2013-06-06 Meidensha Corp 中性点クランプ型マルチレベル電力変換装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332252A (ja) * 1998-05-08 1999-11-30 Denso Corp マルチレベル形電力変換装置
JP2010172141A (ja) * 2009-01-23 2010-08-05 Sanken Electric Co Ltd 3相電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047686A (ja) * 2017-09-06 2019-03-22 株式会社明電舎 マルチレベル電力変換装置
CN111130364A (zh) * 2019-12-31 2020-05-08 北京交通大学 一种三相整流器

Also Published As

Publication number Publication date
JP6394401B2 (ja) 2018-09-26
JP2016131443A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
US9509229B2 (en) Power supply apparatus including power conversion circuit controlled by PWM control circuit
US9780692B2 (en) Control device of neutral-point-clamped power converter apparatus, and control method of neutral-point-clamped power converter apparatus
US10541598B1 (en) DC power generating system with voltage ripple compensation
JP6503277B2 (ja) 制御器および交流電動機駆動装置
JP5742980B1 (ja) 電力変換装置の制御方法
JP2015201996A (ja) 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法
JP2013255317A (ja) 3レベルインバータの制御装置
EP2763301B1 (en) Power converter control method
JP6368664B2 (ja) アクティブフィルタ、及びそれを用いたモータ駆動装置、並びに冷凍装置
WO2016114330A1 (ja) 5レベル電力変換器および制御方法
JP5192258B2 (ja) クランプ式電力変換装置
JP2016077105A (ja) 電力変換装置の制御装置および制御方法
JP4893219B2 (ja) 電力変換装置
JP2011211818A (ja) 電力変換装置,電力変換方法及び電動機駆動システム
JP2018088750A (ja) 電力変換装置
JP2003169480A (ja) 中性点クランプ式電力変換器の制御装置
JP5953881B2 (ja) 3レベル整流器の制御装置
JP2016046962A (ja) マルチレベル電力変換装置
JP2016015816A (ja) 5レベル変換器の制御装置
JP2019054569A (ja) 3レベル電力変換器
JP7202244B2 (ja) 電力変換装置
JP5540699B2 (ja) 電力変換装置
KR20220093758A (ko) 역률 보상 회로 제어 장치
JP6502870B2 (ja) 電力変換装置
JP2019201493A (ja) マルチレベル電力変換装置およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737401

Country of ref document: EP

Kind code of ref document: A1