WO2013080362A1 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- WO2013080362A1 WO2013080362A1 PCT/JP2011/077833 JP2011077833W WO2013080362A1 WO 2013080362 A1 WO2013080362 A1 WO 2013080362A1 JP 2011077833 W JP2011077833 W JP 2011077833W WO 2013080362 A1 WO2013080362 A1 WO 2013080362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- fuel ratio
- valve
- amount
- fuel
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B25/00—Engines characterised by using fresh charge for scavenging cylinders
- F02B25/14—Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
- F02B25/145—Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke with intake and exhaust valves exclusively in the cylinder head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0223—Variable control of the intake valves only
- F02D13/0234—Variable control of the intake valves only changing the valve timing only
- F02D13/0238—Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0261—Controlling the valve overlap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3094—Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/08—Engine blow-by from crankcase chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/04—Injectors peculiar thereto
- F02M69/042—Positioning of injectors with respect to engine, e.g. in the air intake conduit
- F02M69/046—Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device suitable for controlling an internal combustion engine with a supercharger.
- Patent Document 1 discloses an internal combustion engine with a turbocharger.
- the amount of fresh air blown from the intake passage to the exhaust passage through the combustion chamber is estimated based on the oxygen concentration (air-fuel ratio) of the exhaust gas detected by the air-fuel ratio sensor. ing.
- the target air-fuel ratio and target ignition timing are corrected based on the estimated amount of fresh air blown.
- Patent Document 1 As the amount of fresh air blown down decreases, the in-cylinder scavenging action (scavenging effect) in the valve overlap period decreases and the in-cylinder residual gas amount increases, so that knocking is performed. There is a description that is likely to occur.
- the air-fuel ratio is enriched (the fuel injection amount is increased) in accordance with a decrease in the amount of fresh air blow-through, that is, a decrease in the in-cylinder scavenging action.
- Japanese Unexamined Patent Publication No. 2007-263082 Japanese Unexamined Patent Publication No. 2007-263083 Japanese Unexamined Patent Publication No. 2008-75549 Japanese Unexamined Patent Publication No. 2010-216464
- the present invention has been made to solve the above-described problems, and prevents the combustion of unburned fuel from occurring inside the catalyst while improving the torque of the internal combustion engine utilizing the scavenging effect.
- An object of the present invention is to provide a control device for an internal combustion engine.
- the present invention is a control device for an internal combustion engine, and includes a supercharger, a fuel injection valve, a catalyst, an injection timing setting means, an intake valve passage air amount acquisition means, and a fuel injection amount control means.
- the supercharger supercharges intake air.
- the fuel injection valve is for injecting fuel into the internal combustion engine.
- the catalyst is disposed in the exhaust passage and can purify the exhaust gas.
- the injection timing setting means performs fuel injection after the exhaust valve is closed when a gas blow-off from the intake passage through the combustion chamber to the exhaust passage occurs or when it is a condition that the gas is likely to blow through.
- the fuel injection timing by the fuel injection valve is set so that is executed.
- the intake valve passing air amount acquisition means acquires the intake valve passing air amount passing through the intake valve.
- the fuel injection amount control means is configured to determine whether the air-fuel ratio specified in relation to the intake valve passing air amount is the stoichiometric air-fuel ratio when the gas blow-through occurs or when the gas blow-through is likely to occur.
- the fuel injection amount is set to be a leaner value.
- the present invention by setting the fuel injection timing by the injection timing setting means, it is possible to prevent the fuel from being blown into the exhaust passage together with fresh air during the valve overlap period. Then, by setting the fuel injection amount by the fuel injection amount setting means, the air-fuel ratio specified in relation to the intake valve passing air amount becomes leaner than the stoichiometric air-fuel ratio, but it is blown out from the intake valve passing air amount.
- the fuel injection amount can be set so that the air-fuel ratio specified by the relationship with the in-cylinder charged air amount obtained by subtracting the air volume becomes a value in the vicinity of the theoretical air-fuel ratio. As a result, unburned fuel can be prevented from being included in the exhaust gas (burned gas) discharged from the cylinder.
- the present invention it is possible to prevent the unburned fuel from being blown into the exhaust passage and to prevent the unburned fuel from being discharged from the cylinder.
- oxygen trapped (occluded) in the catalyst from causing an oxidation reaction with unburned fuel in the inside of the catalyst, thereby preventing a rapid rise in the temperature of the catalyst when a gas blowout occurs. be able to.
- the air-fuel ratio specified in relation to the in-cylinder charged air amount can be brought close to the stoichiometric air-fuel ratio. For this reason, it is possible to prevent the deterioration of the catalyst from being promoted while ensuring the torque improvement effect of the internal combustion engine using the scavenge effect.
- the control device for an internal combustion engine may further include a catalyst temperature determination unit that determines whether or not the temperature of the catalyst is higher than a predetermined value.
- the fuel injection amount control means is when the gas is blown out or when the gas is likely to blow out, and when the temperature of the catalyst is higher than the predetermined value.
- the fuel injection amount may be set so that the air-fuel ratio specified by the relationship with the intake valve passing air amount becomes a leaner value than the stoichiometric air-fuel ratio. This prevents the deterioration of the catalyst from being promoted while ensuring the torque improvement effect of the internal combustion engine using the scavenging effect in a situation where the catalyst is likely to deteriorate due to the high temperature of the catalyst. It becomes possible.
- the control device for an internal combustion engine in the present invention may further include an air-fuel ratio sensor that is disposed in the exhaust passage upstream of the catalyst and detects an air-fuel ratio of exhaust gas upstream of the catalyst.
- the fuel injection amount control means includes air-fuel ratio lean correction means for correcting the fuel injection amount so that the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor becomes a value leaner than the stoichiometric air-fuel ratio. It may be a thing.
- the air-fuel ratio lean correction means for correcting the fuel injection amount so that the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor becomes a value leaner than the stoichiometric air-fuel ratio, and
- the fuel injection amount can be set so that the air-fuel ratio specified by the relationship becomes a leaner value than the stoichiometric air-fuel ratio.
- the air-fuel ratio lean correction means changes the target air-fuel ratio of the exhaust gas to a leaner value when the gas blow-through amount is large than when the gas blow-off amount is small. It may further include a lean degree determination means. As a result, it is possible to keep the target air-fuel ratio lean, regardless of the amount of fresh air blown through, so that the exhaust emission due to the fact that the air-fuel ratio of the catalyst atmosphere deviates from the vicinity of the stoichiometric air-fuel ratio. Deterioration can be minimized.
- the lean degree determination means in the present invention is the stoichiometric air-fuel ratio as the air-fuel ratio specified by the relationship with the in-cylinder charged air amount obtained by subtracting the gas blow-through amount from the intake valve passing air amount.
- the target air-fuel ratio of the exhaust gas may be changed to a leaner value.
- the air-fuel ratio specified by the relationship with the in-cylinder charged air amount that is, the air-fuel ratio at the time of combustion in the cylinder, is controlled so as to be close to the theoretical air-fuel ratio regardless of the amount of fresh air blown through. become able to.
- the control device for an internal combustion engine is disposed in the exhaust passage upstream of the catalyst, detects an air-fuel ratio of exhaust gas upstream of the catalyst, and is detected by the air-fuel ratio sensor.
- An air-fuel ratio feedback control means for adjusting the fuel injection amount so that the air-fuel ratio of the exhaust gas to be set becomes a predetermined target air-fuel ratio, and a condition in which the gas blow-through occurs or the gas blow-through is likely to occur
- the air-fuel ratio feedback stop means for stopping the adjustment of the fuel injection amount by the air-fuel ratio feedback control means, and the in-cylinder charged air amount to be filled in the cylinder out of the intake valve passing air amount is acquired.
- In-cylinder air amount acquisition means may be provided.
- the fuel injection amount control means has an air-fuel ratio that is specified in relation to the in-cylinder charged air amount when the gas blow-through occurs or when the gas is likely to blow through.
- the fuel injection amount may be set so that the stoichiometric air-fuel ratio is obtained. Accordingly, the fuel injection amount is set so that the air-fuel ratio feedback stopping unit and the in-cylinder air amount acquisition unit are provided, and the air-fuel ratio specified in relation to the in-cylinder charged air amount becomes the stoichiometric air-fuel ratio.
- the fuel injection amount can be set so that the air-fuel ratio specified in relation to the intake valve passing air amount becomes a leaner value than the stoichiometric air-fuel ratio.
- control device for an internal combustion engine includes a variable valve mechanism that can change both the opening / closing timing of the intake valve and the closing timing of the exhaust valve, and when the gas blows out or In the case where the blow-through is likely to occur, the intake valve is controlled when the amount of blow-through of the gas is controlled by adjusting a valve overlap period in which the open period of the intake valve overlaps the open period of the exhaust valve. And an overlap period adjusting unit that prioritizes the adjustment of the closing timing of the exhaust valve with respect to the adjustment of the opening / closing timing of the exhaust valve.
- the closing timing of the intake valve changes by adjusting the opening / closing timing of the intake valve for adjusting the valve overlap period
- the actual compression ratio of the internal combustion engine changes, and the ease of occurrence of knocking changes.
- the adjustment to the closing timing of the exhaust valve is given priority over the adjustment of the opening / closing timing of the intake valve, so that knock resistance is not impaired as much as possible.
- the fuel injection valve according to the present invention may include a first fuel injection valve that injects fuel toward the intake passage and a second fuel injection valve that injects fuel toward the inside of the cylinder.
- the control device for the internal combustion engine selects a second fuel injection valve as a fuel injection valve to be used when performing fuel injection control by the injection timing setting means and the fuel injection amount control means. May be further provided. This prevents wet fuel adhering to the periphery of the intake port from blowing into the exhaust passage along with fresh air during the valve overlap period, thus more reliably preventing unburned fuel from being blown into the exhaust passage. Can do.
- control device for an internal combustion engine includes a gas blow-off determination unit that determines whether or not the gas blow-through has occurred, or whether or not a condition that easily causes the gas blow-off is satisfied, and the catalyst.
- an air-fuel ratio sensor that is disposed in the exhaust passage upstream of the catalyst and detects an air-fuel ratio of the exhaust gas upstream of the catalyst.
- the gas blow-off determination means determines that the gas blow-off has occurred when the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor is leaner than a theoretical value with respect to the stoichiometric air-fuel ratio. There may be. As a result, it is possible to accurately discriminate between a monotonous air-fuel ratio roughness caused by variations in the air-fuel ratio between cylinders and a blow-through of gas (fresh air).
- Embodiment 1 of this invention It is a figure for demonstrating the system configuration
- FIG. 1 is a diagram for explaining a system configuration of an internal combustion engine 10 according to Embodiment 1 of the present invention.
- the system shown in FIG. 1 includes an internal combustion engine 10.
- a piston 12 is provided in the cylinder of the internal combustion engine 10.
- a combustion chamber 14 (see FIG. 2) is formed on the top side of the piston 12 in the cylinder.
- An intake passage 16 and an exhaust passage 18 communicate with the combustion chamber 14.
- An air filter 20 is disposed in the vicinity of the inlet of the intake passage 16.
- An air flow meter 22 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 16 is provided in the intake passage 16 on the downstream side of the air filter 20.
- a compressor 24 a of the turbocharger 24 is disposed in the intake passage 16 on the downstream side of the air flow meter 22.
- the intake passage 16 is connected to an air bypass passage 26 for bypassing the compressor 24a.
- An air bypass valve (ABV) 28 for controlling the flow rate of air flowing through the air bypass passage 26 is disposed in the middle of the air bypass passage 26.
- An intercooler 30 for cooling the air compressed by the compressor 24a is disposed in the intake passage 16 on the downstream side of the compressor 24a.
- An electronically controlled throttle valve 32 is provided in the intake passage 16 downstream of the intercooler 30.
- a throttle upstream pressure sensor 34 for detecting the intake pressure at this portion is attached to the intake passage 16 upstream of the throttle valve 32 and downstream of the intercooler 30, and downstream of the throttle valve 32.
- a throttle downstream pressure sensor 36 for detecting the intake pressure at this portion is attached to the intake passage 16 (collection portion of the intake manifold).
- a port injection valve 38 for injecting fuel into the intake port is installed in the intake passage 16 (each intake port) after branching toward each cylinder. Further, each cylinder of the internal combustion engine 10 is provided with an in-cylinder injection valve 40 for directly injecting fuel into the combustion chamber 14 (in-cylinder) and an ignition plug 42 for igniting the air-fuel mixture. Yes. In the internal combustion engine 10, at least one of the port injection valve 38 and the in-cylinder injection valve 40 is selected in accordance with operating conditions in order to stabilize combustion and improve fuel efficiency.
- the internal combustion engine 10 includes an intake variable valve mechanism 46 that varies the valve opening characteristic of the intake valve 44 and an exhaust variable valve mechanism 50 that varies the valve opening characteristic of the exhaust valve 48. More specifically, here, these variable valve mechanisms 46 and 50 change the rotational phase of the cam shaft (not shown) with respect to the rotational phase of the crankshaft 52, thereby fixing the intake valve and the intake valve. 44 and a variable phase mechanism (VVT (Variable Valve Timing) mechanism) that makes the opening and closing timing of the exhaust valve 48 continuously variable. Further, an intake cam angle sensor 54 and an exhaust cam angle sensor 56 for detecting the rotation angles of the respective cam shafts, that is, the intake cam angle and the exhaust cam angle, are arranged in the vicinity of the intake cam shaft and the exhaust cam shaft, respectively. Has been.
- VVT Variable Valve Timing
- a turbine 24b of the turbocharger 24 is disposed in the exhaust passage 18.
- an exhaust purification catalyst in this case, a three-way catalyst
- SC start catalyst
- UBC underfloor catalyst
- a muffler 62 is installed in the exhaust passage 18 on the downstream side of the downstream catalyst 60.
- an A / F sensor 64 that emits a substantially linear output with respect to the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 58 (exhaust gas discharged from each cylinder) in the exhaust passage 18 upstream of the upstream catalyst 58. Is disposed in the exhaust passage 18 between the upstream catalyst 58 and the downstream catalyst 60 when the exhaust gas flowing out from the upstream catalyst 58 is rich with respect to the stoichiometric air-fuel ratio.
- An O 2 sensor 66 that generates a lean output when the exhaust gas is lean with respect to the stoichiometric air-fuel ratio is disposed.
- the exhaust passage 18 is connected to an exhaust bypass passage 68 that bypasses the turbine 24b and connects the inlet side and the outlet side of the turbine 24b.
- a waste gate valve (WGV) 70 that opens and closes the exhaust bypass passage 68 is installed in the middle of the exhaust bypass passage 68.
- the internal combustion engine 10 includes an exhaust gas recirculation passage (EGR passage) 72 that connects the intake passage 16 and the exhaust passage 18.
- An EGR valve 74 for adjusting the amount of exhaust gas (EGR gas) that recirculates from the exhaust passage 18 to the intake passage 16 is disposed in the middle of the EGR passage 72.
- a crank angle sensor 76 for detecting the crank angle and the engine speed is disposed in the vicinity of the crankshaft 52.
- the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 80.
- the input portion of the ECU 80 includes an internal combustion engine such as the air flow meter 22, the throttle upstream pressure sensor 34, the throttle downstream pressure sensor 36, the cam angle sensors 54 and 56, the A / F sensor 64, the O 2 sensor 66, and the crank angle sensor 76.
- Various sensors for detecting the operating state of the engine 10 are connected.
- the output portion of the ECU 80 includes the above-described internal combustion engine 10 such as the ABV 28, the throttle valve 32, the port injection valve 38, the in-cylinder injection valve 40, the ignition plug 42, the variable valve mechanisms 46 and 50, the WGV 70 and the EGR valve 74.
- Various actuators for controlling the operation are connected.
- the ECU 80 controls the operating state of the internal combustion engine 10 by driving the various actuators according to a predetermined program based on the sensor outputs.
- the intake valve passing through the intake valve 44 is basically passed during the operation of the internal combustion engine 10 except for certain exceptional operating conditions (such as during cold start).
- the basic fuel injection amount is set so that the air-fuel ratio specified in relation to the air amount becomes the stoichiometric air-fuel ratio (stoichiometric).
- the ECU 80 causes the operation state (the amount of intake air (load factor) on the output base of the air flow meter 22 and the engine speed) to be determined.
- a map (not shown) that defines the basic fuel injection amount is stored, and the basic fuel injection amount corresponding to the current operating state is calculated with reference to such a map.
- the main feedback control is performed based on the output of the upstream A / F sensor 64. Is executed.
- the fuel injection amount is corrected with respect to the basic fuel injection amount so that the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 58 matches the target air-fuel ratio (basically the theoretical air-fuel ratio).
- the sub-feedback control executed based on the output of the downstream O 2 sensor 66, the main feedback control is performed so that the air-fuel ratio of the exhaust gas flowing out downstream of the downstream catalyst 60 becomes the stoichiometric air-fuel ratio. The contents of are corrected.
- FIG. 2 is a diagram showing an example of control states of the valve timings of the intake valve 44 and the exhaust valve 48 shown in FIG.
- a valve overlap period (hereinafter simply referred to as “O / L period”) in which the valve opening period of the intake valve 44 and the valve opening period of the exhaust valve 48 overlap in the vicinity of the intake and exhaust top dead center. (Abbreviated) is set.
- the opening / closing timing (phase) of the intake valve 44 can be changed within a predetermined variable range by using the intake variable valve mechanism 46, and the opening / closing timing (phase) of the exhaust valve 48 is set to the exhaust gas.
- the variable valve mechanism 50 can be used to change within a predetermined variable range.
- FIG. 3 is a view for explaining the scavenging effect caused by blowing fresh air from the intake passage 16 through the combustion chamber 14 to the exhaust passage 18.
- illustration of the cylinder injection valve 40 is abbreviate
- the intake pressure (upstream of the intake valve 44) is higher than the exhaust pressure (downstream of the exhaust valve) due to supercharging by the turbocharger 24.
- a phenomenon occurs in which fresh air (intake) blows through the combustion chamber 14 from the intake passage 16 toward the exhaust passage 18. If such blow-through of fresh air occurs, the residual gas in the cylinder, which normally has at least the clearance volume of the combustion chamber 14, is pushed out by using fresh air from the intake passage 16. Can be scavenged and replaced with fresh air (scavenging effect). Thereby, effects, such as a torque improvement of the internal combustion engine 10, can be acquired.
- the scavenging effect is obtained by intentionally setting the amount of O / L for the purpose of obtaining this effect in a predetermined low rotation high load region where the occurrence of this effect can be expected, and for other purposes.
- / L amount may be obtained in association with the establishment of an operating condition in which this effect is established in a situation where the amount is set.
- oxygen contained in fresh air blown through the combustion chamber 14 due to excessive scavenging is captured by the catalysts 58 and 60 (mainly the upstream catalyst 58). (Occluded).
- the cylinder charge air amount that is actually filled into the cylinder is determined from the amount of air that flows through the intake valve 44 and flows into the cylinder (intake valve passage air amount). The amount obtained by subtracting the amount of fresh air.
- the air-fuel ratio at the time of combustion in the cylinder will be the stoichiometric air-fuel ratio.
- the value becomes richer than the fuel ratio.
- rich gas including unburned unburned fuel that has remained unburned and richer than the stoichiometric air-fuel ratio
- the unburned fuel in the rich gas is discharged into the upstream catalyst 58. It will cause an oxidation reaction with the oxygen trapped in the water.
- the present embodiment when the occurrence of the above-described fresh air blow-off is detected, when the temperature of the upstream catalyst 58 is higher than a predetermined value (when the deterioration of the upstream catalyst 58 is a concern). Did the following fuel injection control. Specifically, when these conditions (occurrence of fresh air blow-out and the upstream catalyst 58 are at a high temperature) are satisfied, after the exhaust valve 48 is closed (that is, after the end of the O / L period). The fuel injection timing is set (changed) so that the fuel injection is executed in step (b).
- the air-fuel ratio of the exhaust gas detected by the A / F sensor 64 (that is, the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 58) is a value that is leaner than the stoichiometric air-fuel ratio.
- the basic fuel injection amount is corrected by the (main) air-fuel ratio feedback control.
- FIG. 4 is a flowchart showing a control routine executed by the ECU 80 in order to realize the control according to the first embodiment of the present invention. This routine is repeatedly executed every predetermined control cycle.
- the appropriate values of the target valve timing (VVT) of the intake valve 44 and the exhaust valve 48 are acquired (step 100).
- the ECU 80 stores a map (not shown) in which an appropriate value of the target VVT is set in advance in relation to the engine speed and the load factor (air filling rate).
- an O / L period for using the scavenge effect is set in an amount corresponding to the operating state in a predetermined low rotation and high load region where the scavenge effect can be expected.
- a reference value of the target VVT corresponding to the current operating state (engine speed and load factor) is acquired with reference to such a map.
- step 102 it is determined whether or not a precondition for performing the control of the present embodiment is established (step 102). Specifically, the precondition in this step 102 is under a temperature condition where there is a concern that the upstream catalyst 58 is deteriorated, and whether or not an operating condition in which a fresh air blow-out (scavenging effect) actually occurs is satisfied. This is a condition for determining whether or not.
- This precondition is that the temperature of the upstream catalyst 58 is higher than a predetermined value, whether the intake pressure (throttle downstream pressure) is higher than the exhaust pressure (substantially atmospheric pressure), and the opening / closing timing of the intake valve 44 Whether or not the advance angle value is greater than a predetermined adaptation value A (or the retard value of the opening / closing timing of the exhaust valve 48 is greater than the predetermined adaptation value B). Further, when the engine speed changes, even if the opening areas of the intake and exhaust valves 44 and 48 during the O / L period are the same, the opening time thereof changes. Therefore, the engine speed is also taken into consideration in the determination of the precondition in this step 102. Note that the temperature of the upstream catalyst 58 can be estimated based on, for example, the operation history of the internal combustion engine 10, or may be obtained by providing a separate temperature sensor.
- the air-fuel ratio (A / F) of the exhaust gas detected using the A / F sensor 64 is set to the stoichiometric air-fuel ratio (stoichiometric) by a predetermined value ⁇ ( For example, it is determined whether or not the value is larger than the value obtained by adding 0.5) (that is, whether it is lean) (step 104). If a fresh air blow-out occurs in a situation where the air-fuel ratio of the exhaust gas is controlled to the stoichiometric air-fuel ratio by the air-fuel ratio feedback control described above, the output of the A / F sensor 64 becomes a value on the lean side of the stoichiometric air-fuel ratio. Change.
- this step 104 it is determined whether or not a fresh air blow-off actually occurs by determining whether or not the air-fuel ratio of the exhaust gas is larger than the value obtained by adding the predetermined value ⁇ to the stoichiometric air-fuel ratio. To be judged.
- the predetermined value ⁇ is a value used to prevent erroneous determination due to variations in air-fuel ratio between cylinders.
- step 104 If the determination in step 104 is satisfied after the determination in step 102 is satisfied, that is, if the occurrence of fresh air blow-off is detected, whether or not only the port injection valve 38 is being used. Is determined (step 106). As a result, when the port injection valve 38 and the in-cylinder injection valve 40 are used together, the fuel injection valve used for fuel injection control is switched so that only the in-cylinder injection valve 40 is used (step 108). . In addition, the fuel injection timing is retarded so that the fuel injection is executed after the exhaust valve 48 is closed (that is, after the end of the O / L period) (step 110). According to the in-cylinder injection valve 40, fuel injection can be performed at an arbitrary timing in the intake stroke and the compression stroke.
- the fuel injection timing is retarded so that fuel does not blow into the exhaust passage 18 together with fresh air during the O / L period. Specifically, fuel injection is executed in the intake stroke after the exhaust valve 48 is closed, the subsequent compression stroke, or a period extending over both.
- step 106 when it is determined in step 106 that only the port injection valve 38 is in use, the fuel injection mode by the port injection valve 38 is changed after the exhaust valve 48 is closed (that is, O / L). It is changed to the intake synchronous injection performed after the period (step 112).
- the intake asynchronous injection that is, the fuel injection that is executed during the exhaust stroke is executed.
- the intake asynchronous injection is switched to the intake synchronous injection so that the fuel is fed into the combustion chamber 14 together with the intake air during the passage of the intake stroke after the exhaust valve 48 is closed.
- step 110 or 112 the (main) air-fuel ratio feedback control is performed so that the air-fuel ratio of the exhaust gas detected by the A / F sensor 64 becomes a leaner value than the stoichiometric air-fuel ratio.
- the target air-fuel ratio is made lean at (step 114).
- the basic fuel injection amount itself is set so that the air-fuel ratio specified by the relationship with the intake valve passing air amount becomes the stoichiometric air-fuel ratio.
- the lean degree of the target air-fuel ratio (that is, the fuel subtraction amount with respect to the basic fuel injection amount) is determined in accordance with the fresh air blow-through amount. More specifically, the fuel injection amount is adjusted so that the air-fuel ratio specified by the relationship with the in-cylinder charged air amount obtained by subtracting the fresh air amount from the intake valve passing air amount becomes the stoichiometric air-fuel ratio. (Decrease). As the amount of fresh air blown through increases, the amount of cylinder air charged in the cylinder among the amount of intake valve passing air decreases. Accordingly, in step 114, the lean degree of the target air-fuel ratio (the amount by which the fuel injection amount is subtracted) is adjusted so as to increase the amount of fresh air blown through.
- the amount of fresh air blown into the exhaust passage 18 itself can be calculated based on the intake pressure (throttle downstream pressure), the exhaust pressure, the O / L amount, and the engine speed (opening time during the O / L period). it can.
- the intake pressure can be obtained by using the throttle downstream pressure sensor 36
- the exhaust pressure can be obtained by separately estimating the turbine rotational speed, the opening degree of the WGV 70, and the intake detected by the air flow meter 22. It can be acquired based on the amount of air.
- step 104 if the determination in step 102 or 104 is not established and no blow-through of fresh air is detected, the fuel injection control is returned to the normal control. .
- step 110 or 112 when the occurrence of fresh air blow-off (scavenging effect) is detected under a situation where there is a concern about deterioration of the upstream catalyst 58, the processing of step 110 or 112 is performed.
- the fuel injection timing is changed. This prevents the fuel from blowing into the exhaust passage 18 together with fresh air during the O / L period regardless of which of the port injection valve 38 and the in-cylinder injection valve 40 is used. Can do. In other words, the entire amount of injected fuel can be reliably present in the cylinder during combustion.
- the air-fuel ratio specified in relation to the intake valve passing air amount becomes leaner than the stoichiometric air-fuel ratio.
- the fuel injection amount is corrected so that the air-fuel ratio specified by the relationship with the in-cylinder charged air amount obtained by subtracting the air volume becomes the stoichiometric air-fuel ratio.
- unburned fuel can be prevented from being included in the exhaust gas (burned gas) discharged from the cylinder.
- the control of this embodiment it is possible to prevent the unburned fuel from being blown into the exhaust passage 18 and to prevent the unburned fuel from being discharged from the cylinder. Thereby, it is possible to prevent oxygen trapped (occluded) in the upstream catalyst 58 from causing an oxidation reaction with the unburned fuel in the upstream catalyst 58, so that the temperature of the upstream catalyst 58 at the time of occurrence of fresh air blow-off occurs. Can be prevented from rising rapidly. Further, according to the control of the present embodiment, even during the leaning of the target air-fuel ratio, the air-fuel ratio specified in relation to the in-cylinder charged air amount is maintained at the stoichiometric air-fuel ratio. can do. For this reason, it is possible to prevent the deterioration of the upstream catalyst 58 from being promoted while ensuring the torque improvement effect of the internal combustion engine 10 using the scavenge effect.
- the lean degree of the target air-fuel ratio is determined according to the amount of fresh air blown through. As a result, it is possible to keep the target air-fuel ratio lean, regardless of the amount of fresh air blown through, so that the exhaust gas due to the air-fuel ratio in the atmosphere of the upstream catalyst 58 deviating from the vicinity of the stoichiometric air-fuel ratio. Deterioration of emissions can be minimized. Further, according to the leaning of the target air-fuel ratio in step 114, the air-fuel ratio specified by the relationship with the in-cylinder charged air amount, that is, the air during combustion in the cylinder, regardless of the amount of fresh air blown through. It becomes possible to control the fuel ratio so that it becomes a value near the stoichiometric air-fuel ratio.
- the in-cylinder injection valve 40 when the occurrence of fresh air blow-through (scavenging effect) is detected, and the port injection valve 38 and the in-cylinder injection valve 40 are used together, the in-cylinder injection valve 40 The fuel injection valve used for the fuel injection control is switched so as to use only the fuel injection control.
- the port injection valve 38 When the port injection valve 38 is used, a part of the injected fuel adheres as wet fuel around the intake port.
- the in-cylinder injection valve 40 by switching so that the entire amount of fuel injection is performed using the in-cylinder injection valve 40, it is possible to avoid the wet fuel from being blown into the exhaust passage 18 together with fresh air during the O / L period. Thereby, it is possible to more reliably prevent the unburned fuel from being blown into the exhaust passage 18.
- the presence or absence of occurrence of fresh air blow-through is determined in a multiple manner by the processing of steps 102 and 104 described above.
- the lean target air-fuel ratio described above the deterioration of the upstream catalyst 58 can be suppressed while ensuring the torque improvement effect of the internal combustion engine 10, but the air-fuel ratio of the atmosphere of the upstream catalyst 58 is set to the vicinity of the theoretical air-fuel ratio. It changes from the value of to a leaner value. Therefore, the lean execution of the target air-fuel ratio can be kept to a minimum by detecting the occurrence of fresh air blow-through (scavenging effect) more accurately by the processing of steps 102 and 104 described above. In addition, by such a determination, it is possible to accurately determine a monotonous air-fuel ratio roughness caused by variations in the air-fuel ratio between cylinders and a fresh air blow-through.
- the ECU 80 executes the processing of step 110 or 112 so that the “injection timing setting means” in the present invention causes the ECU 80 to take in the intake air according to a known relational expression based on the air flow meter 22.
- the “intake valve passing air amount acquiring means” in the present invention is realized, and when the ECU 80 executes the process of step 114, the “fuel injection amount control means” in the present invention is realized.
- the processing in step 104 corresponds to “determination of whether or not gas has blown from the intake passage through the combustion chamber to the exhaust passage” in the present invention, and the processing in step 102 in the present invention.
- the “catalyst temperature determination means” in the present invention is realized by the ECU 80 executing the processing of step 102.
- the A / F sensor 64 corresponds to the “air-fuel ratio sensor” in the present invention, and the ECU 80 executes the processing of the above-described step 114 to execute the “air-fuel ratio in the present invention.
- a “lean correction means” is realized.
- the “lean degree determination means” in the present invention is realized by the ECU 80 executing the processing of step 114.
- the port injection valve 38 corresponds to the “first fuel injection valve” in the present invention
- the in-cylinder injection valve 40 corresponds to the “second fuel injection valve” in the present invention.
- the “fuel injection valve selection means” in the present invention is realized by the ECU 80 executing the processing of step 108 when the determination of step 106 is not established.
- the “gas blow-off determination means” in the present invention is realized by the ECU 80 executing the processing of steps 102 and 104 described above.
- Embodiment 2 a second embodiment of the present invention will be described with reference to FIG.
- the system of the present embodiment can be realized by causing the ECU 80 to execute a routine shown in FIG. 5 described later instead of the routine shown in FIG. 4 using the hardware configuration shown in FIG.
- the fuel injection timing is retarded and the air-fuel ratio is decreased.
- the target air-fuel ratio is made lean by using feedback control.
- the system of the present embodiment retards the fuel injection timing when the occurrence of fresh air blow-out (scavenging effect) is detected in a situation where deterioration of the upstream catalyst 58 is a concern.
- the air-fuel ratio feedback control is stopped (that is, changed to the air-fuel ratio open control without feedback), and the air-fuel ratio specified in relation to the in-cylinder charged air amount is the stoichiometric air-fuel ratio.
- the fuel injection amount was set so that
- FIG. 5 is a flowchart showing a control routine executed by the ECU 80 in order to realize the control of the second embodiment of the present invention.
- the same steps as those shown in FIG. 4 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- step 110 or 112 the air-fuel ratio feedback control (corresponding to the main and sub feedback control described above) is then stopped, and the air-fuel ratio without feedback.
- the control is changed to open control (step 200).
- the in-cylinder charged air amount is calculated (step 200).
- the amount of air charged in the cylinder under the condition where the blow-through of fresh air is detected is blown into the exhaust passage 18 from the amount of air passing through the intake valve on the output base of the air flow meter 22. It can be calculated (estimated) by subtracting the fresh air amount.
- the fuel injection amount is set so that the air-fuel ratio specified in relation to the in-cylinder charged air amount calculated in step 200 becomes the stoichiometric air-fuel ratio (step 202).
- this step 202 the use of the above-described map that defines the basic fuel injection amount for obtaining the stoichiometric air-fuel ratio is stopped, and the fuel injection amount is determined so that the stoichiometric air-fuel ratio is obtained on the basis of the in-cylinder charged air amount.
- the air-fuel ratio feedback control closed loop is used as usual (step 206).
- the fuel produced by the processing of step 110 or 112 above when the occurrence of a blow-through of fresh air (scavenging effect) is detected in a situation where deterioration of the upstream catalyst 58 is a concern, the fuel produced by the processing of step 110 or 112 above.
- the retarding of the injection timing and the control of the fuel injection amount in steps 200 to 204 are executed.
- the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 58 is controlled so that the air-fuel ratio at the time of combustion in the cylinder becomes the stoichiometric air-fuel ratio, similarly to the control of the first embodiment described above. Can be controlled to a value leaner than the stoichiometric air-fuel ratio.
- the intake valve passing air amount when the intake valve passing air amount is taken as a reference, it can be said that the target air-fuel ratio is made lean when the fresh air blow-off is detected.
- the air-fuel ratio feedback control is stopped while the air-fuel ratio is specified in relation to the in-cylinder charged air amount in order to make the target air-fuel ratio lean when the fresh air blow-off is detected.
- the fuel injection amount is set so that the fuel ratio becomes the stoichiometric air-fuel ratio.
- the fuel injection amount control in the present invention is not limited to the above method. That is, at the time of detecting the blow-through of fresh air, for example, while stopping the air-fuel ratio feedback control, the fuel injection amount so that the air-fuel ratio specified in relation to the intake valve passing air amount becomes a leaner value than the stoichiometric air-fuel ratio. May be set.
- the ECU 80 executes the main feedback control described above in the first embodiment, whereby the “air-fuel ratio feedback control means” in the present invention causes the ECU 80 to execute the processing in step 200.
- the “air-fuel ratio feedback stopping means” in the present invention and the “in-cylinder air amount acquiring means” in the present invention are realized by the ECU 80 executing the processing of step 202.
- Embodiment 3 FIG. Next, a third embodiment of the present invention will be described with reference to FIG.
- the system of the present embodiment can be realized by causing the ECU 80 to execute a routine shown in FIG. 6 described later instead of the routine shown in FIG. 4 using the hardware configuration shown in FIG.
- the present embodiment is characterized in that the adjustment of the opening / closing timing of the exhaust valve 48 is performed with priority (preceding) over the adjustment of the opening / closing timing of the intake valve 44. And when the adjustment allowance of the opening / closing timing of the exhaust valve 48 has been used up, the adjustment of the opening / closing timing of the intake valve 44 is executed.
- the delay of the fuel injection timing described in the first or second embodiment is performed.
- the leaning of the target air-fuel ratio is executed.
- FIG. 6 is a flowchart showing a control routine executed by the ECU 80 in order to realize the control of the third embodiment of the present invention.
- the same steps as those shown in FIG. 4 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the control routine combined with the control of the first embodiment described above step 114) will be described as an example, but instead of this, the control of the second embodiment described above (steps 200 to 204) and A combined control routine may be used.
- step 104 when the determination in step 104 is established, that is, when the occurrence of blow-through of fresh air is detected, the exhaust valve angle sensor 56 is used to open the current opening / closing timing of the exhaust valve 48 ( It is determined whether or not the advance value of (EX ⁇ VVT) is the most advanced value (step 300).
- step 300 if it is determined in step 300 that the advance value of the open / close timing of the exhaust valve 48 has not yet reached the maximum advance value, the advance angle of the open / close timing of the exhaust valve 48 is executed (step) 302).
- the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 58 becomes leaner. If the atmosphere of the upstream catalyst 58 is disturbed so as to deviate from the stoichiometric air-fuel ratio atmosphere due to such lean air-fuel ratio, the purification performance of the upstream catalyst 58 is impaired.
- step 302 based on the output of the A / F sensor 64, the blow-off fresh air in which the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 58 falls below the value obtained by adding the predetermined value ⁇ to the stoichiometric air-fuel ratio.
- the advance angle of the opening / closing timing of the exhaust valve 48 is executed so that the amount becomes equal.
- step 300 when it is determined in step 300 that the advance value of the opening / closing timing of the exhaust valve 48 has reached the most advanced value, the intake cam angle sensor 54 is then used to present the current opening / closing timing of the intake valve 44. It is determined whether or not the retardation value of (IN ⁇ VVT) is the maximum retardation value (step 304). As a result, if it is determined that the retard value of the opening / closing timing of the intake valve 44 has not yet reached the maximum retard value, the retard of the opening / closing timing of the intake valve 44 is executed (step 306).
- the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 58 falls below the value obtained by adding the predetermined value ⁇ to the theoretical air-fuel ratio.
- the opening / closing timing of the intake valve 44 is retarded so that the amount of fresh air blown.
- step 306 when it is determined in step 306 that the retard value of the opening / closing timing of the intake valve 44 has reached the most retarded value, that is, the advance angle of the opening / closing timing of the exhaust valve 48 and the delay of the opening / closing timing of the intake valve 44. If the exhaust gas flowing into the upstream catalyst 58 has not been completely leaned despite the fact that the corner has been executed, the processing after step 106 in the routine shown in FIG. 4 is executed.
- the intake variable valve mechanism 46 is a mechanism that allows the opening timing and closing timing of the intake valve 44 to be changed without changing the relationship between them (that is, the operating angle). For this reason, when the opening timing of the intake valve 44 is changed to adjust the O / L amount, the closing timing of the intake valve 44 is changed. When the closing timing of the intake valve 44 changes, the actual compression ratio of the internal combustion engine 10 changes, and the ease of knocking changes. On the other hand, such a change does not occur in the adjustment of the O / L amount by adjusting the opening / closing timing of the exhaust valve 48.
- the adjustment of the opening / closing timing of the exhaust valve 48 has priority over the adjustment of the opening / closing timing of the intake valve 44.
- the “overlap period adjusting means” in the present invention is realized by the ECU 80 executing the processing of steps 300 to 306.
- a variable valve mechanism that continuously varies the opening / closing timing of the intake valve 44 and the exhaust valve 48 while fixing the operating angle in order to adjust the O / L period. 46 and 50 are used.
- the O / L period is not necessarily variable, and is a value at which fresh air is blown out depending on the operating conditions. It may be fixed by.
- a mechanism that can vary only the opening timing of the intake valve 44 for adjusting the O / L period may be used.
- the exhaust valve 48 uses a mechanism that can vary only the closing timing of the exhaust valve 48 to adjust the O / L period, regardless of the control described in any of the first to third embodiments. It may be done.
- the internal combustion engine 10 including both the port injection valve 38 and the in-cylinder injection valve 40 has been described as an example.
- the internal combustion engine of the present invention is not limited to the above-described configuration, and a fuel injection valve (for example, a port injection valve) that can inject fuel into the intake passage and a cylinder injection circle that can directly inject fuel into the cylinder. Only one of them may be provided.
- the internal combustion engine 10 including the turbocharger 24 has been described as an example.
- the supercharger provided in the internal combustion engine according to the present invention is not limited to the one having the above-described configuration.
- the supercharger may use power from the crankshaft of the internal combustion engine or use an electric motor. It may be a thing.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
本発明における内燃機関(10)の制御装置は、吸入空気を過給するターボ過給機(24)と、内燃機関(10)に燃料を噴射するポート噴射弁(38)および筒内噴射弁(40)と、触媒(58、60)とを備える。上記制御装置は、燃焼室(14)を介した吸気通路(16)から排気通路(18)へのガスの吹き抜けが発生したか否か、或いは当該ガスの吹き抜けが発生し易い条件が成立したか否かを判定する。そして、上記制御装置は、この判定が成立する場合に、排気弁(48)の閉弁後に燃料噴射が実行されるようにポート噴射弁(38)または筒内噴射弁(40)による燃料噴射時期を設定する。更に、上記制御装置は、上記判定が成立する場合に、吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定する。
Description
この発明は、内燃機関の制御装置に係り、特に、過給機付き内燃機関を制御するうえで好適な内燃機関の制御装置に関する。
従来、例えば特許文献1には、ターボ過給機付き内燃機関が開示されている。この従来の内燃機関では、空燃比センサにより検出される排気ガスの酸素濃度(空燃比)などに基づいて、燃焼室を介して吸気通路から排気通路に吹き抜ける新気の吹き抜け量を推定するようにしている。そして、推定された新気の吹き抜け量に基づいて、目標空燃比や目標点火時期を補正するようにしている。
より具体的には、上記特許文献1には、新気の吹き抜け量が少なくなるほど、バルブオーバーラップ期間における筒内掃気作用(スカベンジ効果)が低下して筒内残留ガス量が増大するため、ノッキングが発生し易くなるという記載がある。そして、上記特許文献1では、新気の吹き抜け量の減少分、つまり筒内掃気作用の低下分に応じて、空燃比のリッチ化(燃料噴射量の増量)を行うこととしている。
新気の吹き抜けが発生している状況下において、上記特許文献1に記載のように燃料噴射量の増量を行うと、新気とともに噴射燃料の一部が排気通路に吹き抜けてしまうことや、筒内で燃焼されなかった未燃燃料を含むガス(空燃比が理論空燃比よりもリッチなガス)が排気通路に排出されてしまうことが起こり得る。このようにして排気通路に導入された未燃燃料が触媒に流入し、触媒に捕捉(吸蔵)されている酸素との間で酸化反応を起こすと、触媒の温度が急上昇する。その結果、触媒の劣化が促進することが懸念される。
尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
この発明は、上述のような課題を解決するためになされたもので、スカベンジ効果を利用した内燃機関のトルク向上を図りつつ、触媒の内部にて未燃燃料の燃焼が発生するのを防止することのできる内燃機関の制御装置を提供することを目的とする。
本発明は、内燃機関の制御装置であって、過給機と、燃料噴射弁と、触媒と、噴射時期設定手段と、吸気弁通過空気量取得手段と、燃料噴射量制御手段とを備えている。
過給機は、吸入空気を過給するものである。燃料噴射弁は、内燃機関に燃料を噴射するものである。触媒は、排気通路に配置され、排気ガスを浄化可能なものである。噴射時期設定手段は、燃焼室を介した吸気通路から前記排気通路へのガスの吹き抜けが発生した場合、或いは当該ガスの吹き抜けが発生し易い条件である場合に、排気弁の閉弁後に燃料噴射が実行されるように前記燃料噴射弁による燃料噴射時期を設定する。吸気弁通過空気量取得手段は、吸気弁を通過する吸気弁通過空気量を取得する。燃料噴射量制御手段は、前記ガスの吹き抜けが発生した場合、或いは前記ガスの吹き抜けが発生し易い条件である場合に、前記吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定する。
過給機は、吸入空気を過給するものである。燃料噴射弁は、内燃機関に燃料を噴射するものである。触媒は、排気通路に配置され、排気ガスを浄化可能なものである。噴射時期設定手段は、燃焼室を介した吸気通路から前記排気通路へのガスの吹き抜けが発生した場合、或いは当該ガスの吹き抜けが発生し易い条件である場合に、排気弁の閉弁後に燃料噴射が実行されるように前記燃料噴射弁による燃料噴射時期を設定する。吸気弁通過空気量取得手段は、吸気弁を通過する吸気弁通過空気量を取得する。燃料噴射量制御手段は、前記ガスの吹き抜けが発生した場合、或いは前記ガスの吹き抜けが発生し易い条件である場合に、前記吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定する。
本発明によれば、上記噴射時期設定手段による燃料噴射時期の設定により、バルブオーバーラップ期間中に燃料が新気とともに排気通路に吹き抜けてしまうのを防止することができる。そして、上記燃料噴射量設定手段による燃料噴射量の設定により、吸気弁通過空気量との関係で特定される空燃比としては理論空燃比よりもリーンとなるが、吸気弁通過空気量から吹き抜け新気量を引いて得られる筒内充填空気量との関係で特定される空燃比としては理論空燃比近傍の値となるように、燃料噴射量を設定することができる。その結果、筒内から排出される排気ガス(既燃ガス)中に未燃燃料が含まれないようにすることができる。このため、本発明によれば、排気通路への未燃燃料の吹き抜けの防止と、筒内からの未燃燃料の排出防止とを実現することができる。これにより、触媒に捕捉(吸蔵)されている酸素が触媒の内部において未燃燃料と酸化反応を起こすことを防止することができるので、ガスの吹き抜け発生時に触媒の温度が急上昇するのを防止することができる。また、本発明によれば、このような燃料噴射量の制御を行っている間であっても、筒内充填空気量との関係で特定される空燃比は理論空燃比に近づけることができる。このため、スカベンジ効果を利用した内燃機関のトルク向上効果を確保しつつ、触媒の劣化が促進するのを防止することが可能となる。
また、本発明における内燃機関の制御装置は、前記触媒の温度が所定値よりも高いか否かを判定する触媒温度判定手段を更に備えていてもよい。そして、前記燃料噴射量制御手段は、前記ガスの吹き抜けが発生した場合或いは前記ガスの吹き抜けが発生し易い条件である場合であって、かつ、前記触媒の温度が上記所定値よりも高い場合に、前記吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定するものであってもよい。
これにより、触媒の温度が高いことで当該触媒の劣化が懸念されるような状況下において、スカベンジ効果を利用した内燃機関のトルク向上効果を確保しつつ、触媒の劣化が促進するのを防止することが可能となる。
これにより、触媒の温度が高いことで当該触媒の劣化が懸念されるような状況下において、スカベンジ効果を利用した内燃機関のトルク向上効果を確保しつつ、触媒の劣化が促進するのを防止することが可能となる。
また、本発明における内燃機関の制御装置は、前記触媒よりも上流側の前記排気通路に配置され、前記触媒の上流における排気ガスの空燃比を検出する空燃比センサを更に備えるものであってもよい。そして、前記燃料噴射量制御手段は、前記空燃比センサにより検出される排気ガスの空燃比が、理論空燃比よりもリーンな値となるように燃料噴射量を補正する空燃比リーン補正手段を含むものであってもよい。
これにより、空燃比センサにより検出される排気ガスの空燃比を理論空燃比よりもリーンな値となるように燃料噴射量を補正する空燃比リーン補正手段を用いて、吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定することができる。
これにより、空燃比センサにより検出される排気ガスの空燃比を理論空燃比よりもリーンな値となるように燃料噴射量を補正する空燃比リーン補正手段を用いて、吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定することができる。
また、本発明における前記空燃比リーン補正手段は、前記ガスの吹き抜け量が多い場合には、当該ガスの吹き抜け量が少ない場合に比して、排気ガスの目標空燃比をよりリーンな値に変更するリーン度合決定手段を更に備えるものであってもよい。
これにより、吹き抜け新気量の多寡にかかわらず、目標空燃比のリーン化の実行を必要最小限に留めることができるので、触媒の雰囲気の空燃比が理論空燃比近傍から外れることによる排気エミッションの悪化を最小限に抑制することができる。
これにより、吹き抜け新気量の多寡にかかわらず、目標空燃比のリーン化の実行を必要最小限に留めることができるので、触媒の雰囲気の空燃比が理論空燃比近傍から外れることによる排気エミッションの悪化を最小限に抑制することができる。
また、本発明における前記リーン度合決定手段は、前記吸気弁通過空気量から前記ガスの吹き抜け量を引いて得られる筒内充填空気量との関係で特定される空燃比としては理論空燃比となるように、排気ガスの目標空燃比をよりリーンな値に変更するものであってもよい。
これにより、吹き抜け新気量の多寡にかかわらず、筒内充填空気量との関係で特定される空燃比、すなわち、筒内の燃焼時の空燃比を理論空燃比近傍の値となるように制御できるようになる。
これにより、吹き抜け新気量の多寡にかかわらず、筒内充填空気量との関係で特定される空燃比、すなわち、筒内の燃焼時の空燃比を理論空燃比近傍の値となるように制御できるようになる。
また、本発明における内燃機関の制御装置は、前記触媒よりも上流側の前記排気通路に配置され、前記触媒の上流における排気ガスの空燃比を検出する空燃比センサと、前記空燃比センサにより検出される排気ガスの空燃比が、所定の目標空燃比となるように燃料噴射量を調整する空燃比フィードバック制御手段と、前記ガスの吹き抜けが発生した場合、或いは前記ガスの吹き抜けが発生し易い条件である場合に、前記空燃比フィードバック制御手段による燃料噴射量の調整を中止する空燃比フィードバック中止手段と、前記吸気弁通過空気量のうちの筒内に充填される筒内充填空気量を取得する筒内空気量取得手段と、を備えるものであってもよい。そして、前記燃料噴射量制御手段は、前記ガスの吹き抜けが発生した場合、或いは前記ガスの吹き抜けが発生し易い条件である場合に、前記筒内充填空気量との関係で特定される空燃比が理論空燃比となるように燃料噴射量を設定するものであってもよい。
これにより、上記の空燃比フィードバック中止手段および筒内空気量取得手段を備え、かつ、筒内充填空気量との関係で特定される空燃比が理論空燃比となるように燃料噴射量を設定する手法を用いて、吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定することができる。
これにより、上記の空燃比フィードバック中止手段および筒内空気量取得手段を備え、かつ、筒内充填空気量との関係で特定される空燃比が理論空燃比となるように燃料噴射量を設定する手法を用いて、吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定することができる。
また、本発明における内燃機関の制御装置は、前記吸気弁の開閉時期および前記排気弁の閉じ時期の双方を変更可能とする可変動弁機構と、前記ガスの吹き抜けが発生した場合或いは前記ガスの吹き抜けが発生し易い条件である場合において、前記吸気弁の開弁期間と前記排気弁の開弁期間とが重なるバルブオーバーラップ期間の調整によって前記ガスの吹き抜け量を制御する際に、前記吸気弁の開閉時期の調整に対して前記排気弁の閉じ時期の調整を優先して実行するオーバーラップ期間調整手段と、を更に備えるものであってもよい。
バルブオーバーラップ期間の調整のための吸気弁の開閉時期の調整によって吸気弁の閉じ時期が変化すると、内燃機関の実圧縮比が変化し、ノックの発生し易さが変化してしまう。これに対し、上記の手法によれば、吸気弁の開閉時期の調整に対して排気弁の少なくとも閉じ時期の調整を優先して実行するようにしたことで、対ノック性をできるだけ損なわないようにしつつ、ガス(新気)の吹き抜けによる排気ガスの空燃比の荒れ(大きなリーン化)を防止することができる。
バルブオーバーラップ期間の調整のための吸気弁の開閉時期の調整によって吸気弁の閉じ時期が変化すると、内燃機関の実圧縮比が変化し、ノックの発生し易さが変化してしまう。これに対し、上記の手法によれば、吸気弁の開閉時期の調整に対して排気弁の少なくとも閉じ時期の調整を優先して実行するようにしたことで、対ノック性をできるだけ損なわないようにしつつ、ガス(新気)の吹き抜けによる排気ガスの空燃比の荒れ(大きなリーン化)を防止することができる。
また、本発明における前記燃料噴射弁は、前記吸気通路に向けて燃料を噴射する第1燃料噴射弁と、筒内に向けて燃料を噴射する第2燃料噴射弁とを含むものであってもよい。そして、前記内燃機関の制御装置は、前記噴射時期設定手段および前記燃料噴射量制御手段による燃料噴射制御を行う際に用いる燃料噴射弁として、前記第2燃料噴射弁を選択する燃料噴射弁選択手段を更に備えるものであってもよい。
これにより、吸気ポート周辺に付着するウェット燃料がバルブオーバーラップ期間中に新気とともに排気通路に吹き抜けるのを回避することができるので、排気通路への未燃燃料の吹き抜けをより確実に防止することができる。
これにより、吸気ポート周辺に付着するウェット燃料がバルブオーバーラップ期間中に新気とともに排気通路に吹き抜けるのを回避することができるので、排気通路への未燃燃料の吹き抜けをより確実に防止することができる。
また、本発明における内燃機関の制御装置は、前記ガスの吹き抜けが発生したか否か、或いは当該ガスの吹き抜けが発生し易い条件が成立したか否かを判定するガス吹き抜け判定手段と、前記触媒よりも上流側の前記排気通路に配置され、前記触媒の上流における排気ガスの空燃比を検出する空燃比センサと、を更に備えるものであってもよい。そして、前記ガス吹き抜け判定手段は、前記空燃比センサにより検出される排気ガスの空燃比が理論空燃比に対して所定値以上リーンである場合に、前記ガスの吹き抜けが発生したと判定するものであってもよい。
これにより、空燃比の気筒間ばらつき等に起因する単調な空燃比の荒れと、ガス(新気)の吹き抜けとを正確に判別することができる。
これにより、空燃比の気筒間ばらつき等に起因する単調な空燃比の荒れと、ガス(新気)の吹き抜けとを正確に判別することができる。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1における内燃機関10のシステム構成を説明するための図である。図1に示すシステムは、内燃機関10を備えている。内燃機関10の筒内には、ピストン12が設けられている。筒内におけるピストン12の頂部側には、燃焼室14(図2参照)が形成されている。燃焼室14には、吸気通路16および排気通路18が連通している。
[システム構成の説明]
図1は、本発明の実施の形態1における内燃機関10のシステム構成を説明するための図である。図1に示すシステムは、内燃機関10を備えている。内燃機関10の筒内には、ピストン12が設けられている。筒内におけるピストン12の頂部側には、燃焼室14(図2参照)が形成されている。燃焼室14には、吸気通路16および排気通路18が連通している。
吸気通路16の入口近傍には、エアフィルタ20が配置されている。エアフィルタ20の下流側の吸気通路16には、吸気通路16に吸入される空気の流量に応じた信号を出力するエアフローメータ22が設けられている。エアフローメータ22よりも下流側の吸気通路16には、ターボ過給機24のコンプレッサ24aが配置されている。また、吸気通路16には、コンプレッサ24aをバイパスするためのエアバイパス通路26が接続されている。エアバイパス通路26の途中には、エアバイパス通路26を流れる空気の流量を制御するためのエアバイパスバルブ(ABV)28が配置されている。
コンプレッサ24aよりも下流側の吸気通路16には、コンプレッサ24aにより圧縮された空気を冷却するインタークーラ30が配置されている。インタークーラ30よりも下流側の吸気通路16には、電子制御式のスロットルバルブ32が設けられている。また、スロットルバルブ32の上流側であって、インタークーラ30の下流側の吸気通路16には、この部位における吸気圧力を検出するスロットル上流圧センサ34が取り付けられており、スロットルバルブ32の下流側の吸気通路16(吸気マニホールドの集合部)には、この部位における吸気圧力を検出するスロットル下流圧センサ36が取り付けられている。
各気筒に向けて枝分かれした後の吸気通路16(各吸気ポート)には、吸気ポート内に燃料を噴射するためのポート噴射弁38が設置されている。更に、内燃機関10の各気筒には、燃焼室14内(筒内)に直接燃料を噴射するための筒内噴射弁40、および、混合気に点火するための点火プラグ42がそれぞれ設けられている。内燃機関10では、燃焼安定化や燃費向上のために、運転条件に応じてポート噴射弁38および筒内噴射弁40のうちの少なくとも一方が選択されるようになっている。
また、内燃機関10は、吸気弁44の開弁特性を可変とする吸気可変動弁機構46と、排気弁48の開弁特性を可変とする排気可変動弁機構50とを備えている。より具体的には、ここでは、これらの可変動弁機構46、50は、クランク軸52の回転位相に対するカム軸(図示省略)の回転位相を変化させることにより、作用角を固定としつつ吸気弁44や排気弁48の開閉時期を連続的に可変とする位相可変機構(VVT(Variable Valve Timing)機構)を備えるものとする。また、吸気カム軸および排気カム軸の近傍には、それぞれのカム軸の回転角度、すなわち、吸気カム角および排気カム角を検出するための吸気カム角センサ54および排気カム角センサ56がそれぞれ配置されている。
排気通路18には、ターボ過給機24のタービン24bが配置されている。タービン24bよりも下流側の排気通路18には、排気ガスを浄化するための排気浄化触媒(ここでは三元触媒)として、上流側から順に、上流触媒(SC:スタートキャタリスト)58および下流触媒(UFC:床下触媒)60が直列に配置されている。下流触媒60よりも下流側の排気通路18には、マフラー62が設置されている。
また、上流触媒58の上流側の排気通路18には、上流触媒58に流入する排気ガス(各気筒から排出された排気ガス)の空燃比に対してほぼリニアな出力を発するA/Fセンサ64が配置されており、排気通路18における上流触媒58と下流触媒60との間の部位には、上流触媒58から流出してくる排気ガスが理論空燃比に対してリッチである場合にリッチ出力を発生し、また、その排気ガスが理論空燃比に対してリーンである場合にリーン出力を発生するO2センサ66が配置されている。
また、排気通路18には、タービン24bをバイパスしてタービン24bの入口側と出口側とを接続する排気バイパス通路68が接続されている。排気バイパス通路68の途中には、排気バイパス通路68の開閉を担うウェイストゲートバルブ(WGV)70が設置されている。更に、内燃機関10は、吸気通路16と排気通路18とを連通する排気ガス再循環通路(EGR通路)72を備えている。EGR通路72の途中には、排気通路18から吸気通路16に還流する排気ガス(EGRガス)の量を調整するためのEGR弁74が配置されている。また、更に、クランク軸52の近傍には、クランク角度およびエンジン回転数を検出するためのクランク角センサ76が配置されている。
また、図1に示すシステムは、ECU(Electronic Control Unit)80を備えている。ECU80の入力部には、上述したエアフローメータ22、スロットル上流圧センサ34、スロットル下流圧センサ36、カム角センサ54、56、A/Fセンサ64、O2センサ66およびクランク角センサ76等の内燃機関10の運転状態を検出するための各種センサが接続されている。また、ECU80の出力部には、上述したABV28、スロットルバルブ32、ポート噴射弁38、筒内噴射弁40、点火プラグ42、可変動弁機構46、50、WGV70およびEGR弁74等の内燃機関10の運転を制御するための各種のアクチュエータが接続されている。ECU80は、それらのセンサ出力に基づいて、所定のプログラムに従って上記各種のアクチュエータを駆動することにより、内燃機関10の運転状態を制御するものである。
上述した構成を有する内燃機関10のシステムでは、内燃機関10の運転中には所定の例外的な運転条件(冷間始動時など)を除き、基本的に、吸気弁44を通過する吸気弁通過空気量との関係で特定される空燃比が理論空燃比(ストイキ)となるように基本燃料噴射量が設定されている。具体的には、このような基本燃料噴射量の取得を可能とするために、ECU80には、運転状態(エアフローメータ22の出力ベースの吸入空気量(負荷率)とエンジン回転数)に応じて基本燃料噴射量を定めたマップ(図示省略)を記憶しており、そのようなマップを参照して、現在の運転状態に応じた基本燃料噴射量が算出されるようになっている。
更に、上記内燃機関10のシステムでは、内燃機関10の始動後にA/Fセンサ64およびO2センサ66が活性化した後には、上流側のA/Fセンサ64の出力に基づいてメインのフィードバック制御が実行される。メインフィードバック制御では、上流触媒58に流入する排気ガスの空燃比が目標空燃比(基本的には理論空燃比)と一致するように、上記基本燃料噴射量に対する燃料噴射量の補正が行われる。尚、下流側のO2センサ66の出力に基づいて実行されるサブのフィードバック制御では、下流触媒60の下流に流出してくる排気ガスの空燃比が理論空燃比となるように、メインフィードバック制御の内容が修正される。
[燃焼室を介した吸気通路から排気通路への新気の吹き抜けによるスカベンジ効果]
図2は、図1に示す吸気弁44および排気弁48のそれぞれのバルブタイミングの制御状態の一例を表した図である。
図2は、図1に示す吸気弁44および排気弁48のそれぞれのバルブタイミングの制御状態の一例を表した図である。
図2に示す制御状態では、吸排気上死点の近傍において、吸気弁44の開弁期間と排気弁48の開弁期間とが重なるバルブオーバーラップ期間(以下、単に「O/L期間」と略する)が設定されている。上述したように、吸気弁44の開閉時期(位相)は、吸気可変動弁機構46を用いて所定の可変範囲内で変更可能となっており、排気弁48の開閉時期(位相)は、排気可変動弁機構50を用いて所定の可変範囲内で変更可能となっている。これらの可変動弁機構46、50を用いて、吸気弁44の開閉時期の進角値と排気弁48の開閉時期の遅角値のうちの少なくとも一方を変更することにより、上記O/L期間を増減することができる。
図3は、燃焼室14を介した吸気通路16から排気通路18への新気の吹き抜けによるスカベンジ効果を説明するための図である。尚、図3においては、筒内噴射弁40の図示を省略している。
図2に示すようにO/L期間が設定されている状態において、ターボ過給機24による過給によって(吸気弁44の上流の)吸気圧力が(排気弁の下流の)排気圧力よりも高くなっていると、図3に示すように、新気(吸気)が燃焼室14を介して吸気通路16から排気通路18に向けて吹き抜けるという現象が生ずる。このような新気の吹き抜けが発生していると、通常であれば燃焼室14のすきま容積分は少なくとも存在してしまう筒内の残留ガスを、吸気通路16からの新気を用いて押し出すことによって掃気し、新気に置き換えることができる(スカベンジ効果)。これにより、内燃機関10のトルク向上などの効果を得ることができる。
尚、上記スカベンジ効果は、本効果の発生を見込める所定の低回転高負荷領域において本効果を得る目的でO/L量が意図的に設定されることによって得られる場合と、他の目的でO/L量が設定されている状況下において本効果が成立する運転条件が成立することに伴って得られる場合とがある。
[実施の形態1の制御]
上述したスカベンジ効果を利用して内燃機関10のトルク向上を図る際、掃気のために導入される新気の量は、燃焼室14のすきま容積分の筒内残留ガスを置き換えるだけの量であることが理想的である。しかしながら、内燃機関10の運転中にそのような理想的な掃気を常時実現できるようにO/L期間を制御し続けることは困難である。
上述したスカベンジ効果を利用して内燃機関10のトルク向上を図る際、掃気のために導入される新気の量は、燃焼室14のすきま容積分の筒内残留ガスを置き換えるだけの量であることが理想的である。しかしながら、内燃機関10の運転中にそのような理想的な掃気を常時実現できるようにO/L期間を制御し続けることは困難である。
スカベンジ効果の利用のためにO/L期間を設定している際に、過剰な掃気によって燃焼室14を吹き抜けた新気に含まれる酸素は、触媒58、60(主に上流触媒58)によって捕捉(吸蔵)される。また、新気の吹き抜けが発生している場合において実際に筒内に充填される筒内充填空気量は、吸気弁44を通過して筒内に流入する空気量(吸気弁通過空気量)から吹き抜け新気量を引いた量である。そうであるのに、吸気弁通過空気量との関係で特定される空燃比が理論空燃比となるように燃料噴射量が制御されていると、筒内の燃焼時の空燃比は、理論空燃比よりもリッチな値となってしまう。その結果、その後に筒内から排出されたリッチガス(燃え残った未燃燃料を含み、理論空燃比よりもリッチなガス)が上流触媒58に流入すると、このリッチガス中の未燃燃料が上流触媒58に捕捉されていた酸素と酸化反応を起こすこととなる。また、O/L期間中もしくはO/L期間よりも前に燃料噴射が行われていると、吹き抜け新気とともに未燃燃料が上流触媒58に流入する。この場合にも、上流触媒58に流入した未燃燃料と酸素とが酸化反応を起こすこととなる。その結果、上流触媒58の温度が急上昇する。このため、上流触媒58が高温状態であった時には、このような温度上昇によって、上流触媒58の劣化が促進することが懸念される。また、このような課題は、スカベンジ効果を利用する際にトルク向上のために空燃比を理論空燃比よりもリッチな所定の出力空燃比に制御しているような場合において、より顕著となる。
そこで、本実施形態では、上述した新気の吹き抜けの発生が検出された場合において、上流触媒58の温度が所定値よりも高い場合(上流触媒58の劣化が懸念される状況である場合)には、次のような燃料噴射制御を行うようにした。具体的には、これらの条件(新気の吹き抜けの発生および上流触媒58が高温であること)が成立する場合には、排気弁48の閉弁後(すなわち、O/L期間の終了後)において燃料噴射が実行されるように燃料噴射時期を設定(変更)するようにした。更に、これらの条件が成立する場合には、A/Fセンサ64により検出される排気ガスの空燃比(すなわち、上流触媒58に流入する排気ガスの空燃比)が理論空燃比よりもリーンな値となるように、上記(メイン)空燃比フィードバック制御によって基本燃料噴射量を補正するようにした。
図4は、本発明の実施の形態1の制御を実現するために、ECU80が実行する制御ルーチンを表したフローチャートである。尚、本ルーチンは、所定の制御周期毎に繰り返し実行されるものとする。
図4に示すルーチンでは、先ず、吸気弁44および排気弁48の目標バルブタイミング(VVT)の適合値が取得される(ステップ100)。ECU80には、エンジン回転数および負荷率(空気充填率)との関係で目標VVTの適合値を予め設定したマップ(図示省略)が記憶されている。このマップでは、スカベンジ効果を期待できる所定の低回転高負荷領域においては、スカベンジ効果を利用するためのO/L期間が運転状態に応じた量で設定されている。本ステップ100では、そのようなマップを参照して、現在の運転状態(エンジン回転数および負荷率)に応じた目標VVTの適合値が取得される。
次に、本実施形態の制御を行う前提条件が成立しているか否かが判定される(ステップ102)。具体的には、本ステップ102における前提条件とは、上流触媒58の劣化が懸念される温度状況下であって、新気の吹き抜け(スカベンジ効果)が実際に発生する運転条件が成立するか否かを判断するための条件である。本前提条件は、上流触媒58の温度が所定値よりも高いか否か、吸気圧力(スロットル下流圧)が排気圧力(ほぼ大気圧)よりも高いか否か、および、吸気弁44の開閉時期の進角値が所定の適合値Aよりも大きいか(または排気弁48の開閉時期の遅角値が所定の適合値Bよりも大きいか)否かである。また、エンジン回転数が変化すると、O/L期間中の吸排気弁44、48の開口面積が同じであっても、その開口時間が変化する。従って、本ステップ102における前提条件の判定には、エンジン回転数も考慮される。尚、上流触媒58の温度は、例えば、内燃機関10の運転履歴に基づいて推定することができるし、別途温度センサを備えて取得してもよい。
上記ステップ102における前提条件が成立すると判定された場合には、A/Fセンサ64を用いて検出される排気ガスの空燃比(A/F)が、理論空燃比(ストイキ)に所定値α(例えば、0.5)を加えた値よりも大きいか(すなわち、リーンであるか)否かが判定される(ステップ104)。上記の空燃比フィードバック制御によって排気ガスの空燃比が理論空燃比に制御されている状況下において新気の吹き抜けが発生すると、A/Fセンサ64の出力が理論空燃比よりもリーン側の値に変化する。そこで、本ステップ104では、排気ガスの空燃比が理論空燃比に所定値αを加えた値よりも大きいか否かを判定することによって、新気の吹き抜けが現実に発生しているか否かが判断される。尚、上記所定値αは、気筒間の空燃比のばらつきなどによる誤判定を防止するために用いる値である。
上記ステップ102の判定成立に続いて上記ステップ104の判定が成立する場合、すなわち、新気の吹き抜けの発生が検出された場合には、ポート噴射弁38のみが使用されている状況であるか否かが判定される(ステップ106)。その結果、ポート噴射弁38と筒内噴射弁40とが併用されている場合には、筒内噴射弁40のみを使用するように、燃料噴射制御に用いる燃料噴射弁が切り替えられる(ステップ108)。そのうえで、排気弁48の閉弁後(すなわち、O/L期間の終了後)に燃料噴射が実行されるように、燃料噴射時期が遅角される(ステップ110)。筒内噴射弁40によれば、吸気行程と圧縮行程において任意のタイミングで燃料噴射を行うことができる。本ステップ110の処理によれば、O/L期間中に新気とともに燃料が排気通路18に吹き抜けることがないように、燃料噴射時期の遅角が実行される。具体的には、排気弁48の閉弁後の吸気行程、その後の圧縮行程、もしくは両者に跨る期間において燃料噴射が実行される。
一方、上記ステップ106においてポート噴射弁38のみが使用されている状況であると判定された場合には、ポート噴射弁38による燃料噴射態様が、排気弁48の閉弁後(すなわち、O/L期間の終了後)に行われる吸気同期噴射に変更される(ステップ112)。ポート噴射弁38による燃料噴射としては、通常は、吸気非同期噴射、すなわち、排気行程の経過中に実行される燃料噴射が実行されている。本ステップ112では、排気弁48の閉弁後の吸気行程の経過中に吸入空気とともに燃料が燃焼室14内に送り込むようにするために、そのような吸気非同期噴射から吸気同期噴射に切り替えられる。
上記ステップ110もしくは112の処理が実行された後は、A/Fセンサ64により検出される排気ガスの空燃比が理論空燃比よりもリーンな値となるように、上記(メイン)空燃比フィードバック制御における目標空燃比のリーン化が実行される(ステップ114)。上述したように、基本燃料噴射量自体は、吸気弁通過空気量との関係で特定される空燃比が理論空燃比となるように設定されている。本ステップ114では、A/Fセンサ64により検出される排気ガスの空燃比が理論空燃比よりもリーンな値となるように、基本燃料噴射量から所定量の燃料量を減算する補正(リーン補正)が実行される。
本ステップ114では、新気の吹き抜け量に応じて、目標空燃比のリーン度合い(すなわち、基本燃料噴射量に対する燃料の減算量)が決定される。より具体的には、吸気弁通過空気量から吹き抜け新気量を引いて得られる筒内充填空気量との関係で特定される空燃比としては理論空燃比となるように、燃料噴射量が調整(減少)される。新気の吹き抜け量が多くなるほど、吸気弁通過空気量のうちで筒内に充填される筒内充填空気量が減少する。従って、本ステップ114では、新気の吹き抜け量が多くなるほど、目標空燃比のリーン度合い(燃料噴射量の減算量)が大きくなるように調整される。尚、排気通路18への吹き抜け新気量自体は、吸気圧力(スロットル下流圧)、排気圧力、O/L量およびエンジン回転数(O/L期間中の開口時間)に基づいて算出することができる。この場合において、上記吸気圧力は、スロットル下流圧センサ36を用いて取得することができ、排気圧力は、別途推定されるタービン回転数、WGV70の開度、および、エアフローメータ22により検出される吸入空気量などに基づいて取得することができる。
尚、上記ステップ104の判定が成立した後に、上記ステップ102または104の判定が不成立となることによって新気の吹き抜けが検出されなくなった場合には、燃料噴射制御は、通常時の制御に戻される。
以上説明した図4に示すルーチンによれば、上流触媒58の劣化が懸念される状況下において新気の吹き抜け(スカベンジ効果)の発生が検出された場合には、上記ステップ110もしくは112の処理によって燃料噴射時期が変更される。これにより、ポート噴射弁38および筒内噴射弁40のうちのどちらが使用されている場合であっても、O/L期間中に燃料が新気とともに排気通路18に吹き抜けてしまうのを防止することができる。言い換えれば、噴射された燃料の全量を燃焼時に確実に筒内に存在させられるようになる。そして、上記ステップ114の処理による目標空燃比のリーン化により、吸気弁通過空気量との関係で特定される空燃比としては理論空燃比よりもリーンとなるが、吸気弁通過空気量から吹き抜け新気量を引いて得られる筒内充填空気量との関係で特定される空燃比としては理論空燃比となるように、燃料噴射量が補正されることになる。その結果、筒内から排出される排気ガス(既燃ガス)中に未燃燃料が含まれないようにすることができる。
このため、本実施形態の制御によれば、排気通路18への未燃燃料の吹き抜けの防止と、筒内からの未燃燃料の排出防止とを実現することができる。これにより、上流触媒58に捕捉(吸蔵)されている酸素が上流触媒58の内部において未燃燃料と酸化反応を起こすことを防止することができるので、新気の吹き抜け発生時に上流触媒58の温度が急上昇するのを防止することができる。また、本実施形態の制御によれば、このような目標空燃比のリーン化を行っている間であっても、筒内充填空気量との関係で特定される空燃比は理論空燃比に維持することができる。このため、スカベンジ効果を利用した内燃機関10のトルク向上効果を確保しつつ、上流触媒58の劣化が促進するのを防止することが可能となる。
また、上記ルーチンによれば、吹き抜け新気量に応じて、目標空燃比のリーン度合いが決定される。これにより、吹き抜け新気量の多寡にかかわらず、目標空燃比のリーン化の実行を必要最小限に留めることができるので、上流触媒58の雰囲気の空燃比が理論空燃比近傍から外れることによる排気エミッションの悪化を最小限に抑制することができる。また、上記ステップ114による目標空燃比のリーン化によれば、吹き抜け新気量の多寡にかかわらず、筒内充填空気量との関係で特定される空燃比、すなわち、筒内の燃焼時の空燃比を理論空燃比近傍の値となるように制御できるようになる。
また、上記ルーチンによれば、新気の吹き抜け(スカベンジ効果)の発生が検出された場合において、ポート噴射弁38と筒内噴射弁40とが併用されている場合には、筒内噴射弁40のみを使用するように、燃料噴射制御に用いる燃料噴射弁が切り替えられる。ポート噴射弁38の使用時には、噴射燃料の一部が吸気ポート周辺にウェット燃料として付着する。これに対し、全量の燃料噴射を筒内噴射弁40を用いて行うように切り替えることで、上記ウェット燃料がO/L期間中に新気とともに排気通路18に吹き抜けるのを回避することができる。これにより、排気通路18への未燃燃料の吹き抜けをより確実に防止することができる。
更に、上記ルーチンによれば、上記ステップ102および104の処理によって、新気の吹き抜け(スカベンジ効果)の発生の有無が多重的に判定されている。上述した目標空燃比のリーン化によれば、内燃機関10のトルク向上効果を確保しつつ、上流触媒58の劣化抑制を図ることができるが、上流触媒58の雰囲気の空燃比を理論空燃比近傍の値からそれよりもリーンな値に変更してしまう。従って、上記ステップ102および104の処理によって新気の吹き抜け(スカベンジ効果)の発生をより正確に検出することによって、目標空燃比のリーン化の実行を必要最小限に留めることができる。また、このような判定により、空燃比の気筒間ばらつき等に起因する単調な空燃比の荒れと、新気の吹き抜けとを正確に判別することができる。
尚、上述した実施の形態1においては、ECU80が上記ステップ110または112の処理を実行することにより本発明における「噴射時期設定手段」が、ECU80がエアフローメータ22に基づいて既知の関係式に従って吸気弁通過空気量を算出することにより本発明における「吸気弁通過空気量取得手段」が、ECU80が上記ステップ114の処理を実行することにより本発明における「燃料噴射量制御手段」が、それぞれ実現されている。また、上記ステップ104の処理が本発明における「燃焼室を介した吸気通路から前記排気通路へのガスの吹き抜けが発生したか否かの判定」に相当し、上記ステップ102の処理が本発明における「当該ガスの吹き抜けが発生し易い条件が成立したか否かの判定」に相当している。
また、上述した実施の形態1においては、ECU80が上記ステップ102の処理を実行することにより本発明における「触媒温度判定手段」が実現されている。
また、上述した実施の形態1においては、A/Fセンサ64が本発明における「空燃比センサ」に相当しているとともに、ECU80が上記ステップ114の処理を実行することにより本発明における「空燃比リーン補正手段」が実現されている。
また、上述した実施の形態1においては、ECU80が上記ステップ114の処理を実行することにより本発明における「リーン度合決定手段」が実現されている。
また、上述した実施の形態1においては、ポート噴射弁38が本発明における「第1燃料噴射弁」に相当し、筒内噴射弁40が本発明における「第2燃料噴射弁」に相当している。また、ECU80が上記ステップ106の判定が不成立である場合に上記ステップ108の処理を実行することにより本発明における「燃料噴射弁選択手段」が実現されている。
また、上述した実施の形態1においては、ECU80が上記ステップ102および104の処理を実行することにより本発明における「ガス吹き抜け判定手段」が実現されている。
また、上述した実施の形態1においては、ECU80が上記ステップ102の処理を実行することにより本発明における「触媒温度判定手段」が実現されている。
また、上述した実施の形態1においては、A/Fセンサ64が本発明における「空燃比センサ」に相当しているとともに、ECU80が上記ステップ114の処理を実行することにより本発明における「空燃比リーン補正手段」が実現されている。
また、上述した実施の形態1においては、ECU80が上記ステップ114の処理を実行することにより本発明における「リーン度合決定手段」が実現されている。
また、上述した実施の形態1においては、ポート噴射弁38が本発明における「第1燃料噴射弁」に相当し、筒内噴射弁40が本発明における「第2燃料噴射弁」に相当している。また、ECU80が上記ステップ106の判定が不成立である場合に上記ステップ108の処理を実行することにより本発明における「燃料噴射弁選択手段」が実現されている。
また、上述した実施の形態1においては、ECU80が上記ステップ102および104の処理を実行することにより本発明における「ガス吹き抜け判定手段」が実現されている。
実施の形態2.
次に、図5を参照して、本発明の実施の形態2について説明する。
本実施形態のシステムは、図1に示すハードウェア構成を用いて、ECU80に図4に示すルーチンに代えて後述の図5に示すルーチンを実行させることにより実現することができるものである。
次に、図5を参照して、本発明の実施の形態2について説明する。
本実施形態のシステムは、図1に示すハードウェア構成を用いて、ECU80に図4に示すルーチンに代えて後述の図5に示すルーチンを実行させることにより実現することができるものである。
上述した実施の形態1においては、上流触媒58の劣化が懸念される状況下において新気の吹き抜け(スカベンジ効果)の発生が検出された場合には、燃料噴射時期の遅角化とともに、空燃比フィードバック制御を利用して目標空燃比のリーン化とを実行するようにしている。これに対し、本実施形態のシステムは、上流触媒58の劣化が懸念される状況下において新気の吹き抜け(スカベンジ効果)の発生が検出された場合には、燃料噴射時期の遅角化を行う点は同じであるが、以下の点において上述した実施の形態1のシステムと相違している。すなわち、本実施形態では、空燃比フィードバック制御を中止する(すなわち、フィードバックを伴わない空燃比オープン制御に変更する)とともに、筒内充填空気量との関係で特定される空燃比が理論空燃比となるように燃料噴射量を設定するようにした。
図5は、本発明の実施の形態2の制御を実現するために、ECU80が実行する制御ルーチンを表したフローチャートである。尚、図5において、実施の形態1における図4に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
図5に示すルーチンでは、上記ステップ110または112の処理が実行された後には、次いで、空燃比フィードバック制御(上述したメインおよびサブのフィードバック制御が相当)を中止して、フィードバックを伴わない空燃比オープン制御に変更される(ステップ200)。
次に、筒内充填空気量が算出される(ステップ200)。新気の吹き抜けが検出されている状況下における筒内充填空気量は、実施の形態1において既述したように、エアフローメータ22の出力ベースの吸気弁通過空気量から、排気通路18への吹き抜け新気量を引くことにより算出(推定)することができる。
次に、上記ステップ200において算出された筒内充填空気量との関係で特定される空燃比が理論空燃比となるように、燃料噴射量が設定される(ステップ202)。本ステップ202では、理論空燃比を得るための基本燃料噴射量を定めた上述のマップの使用が中止され、筒内充填空気量を基準として理論空燃比が得られるように燃料噴射量が決定される。尚、上記ステップ102または104の判定が不成立である場合には、上記空燃比フィードバック制御(クローズドループ)が通常通り使用される(ステップ206)。
以上説明した図5に示すルーチンによれば、上流触媒58の劣化が懸念される状況下において新気の吹き抜け(スカベンジ効果)の発生が検出された場合に、上記ステップ110もしくは112の処理による燃料噴射時期の遅角化と、上記ステップ200~204による燃料噴射量の制御とが実行される。このような制御によっても、上述した実施の形態1の制御と同様に、筒内の燃焼時の空燃比は理論空燃比となるように制御しつつ、上流触媒58に流入する排気ガスの空燃比は理論空燃比よりもリーンな値に制御することができる。言い換えれば、本実施形態の手法によれば、吸気弁通過空気量を基準としてみた場合には、新気の吹き抜けの検出時に、目標空燃比のリーン化が行われることになるといえる。
以上のような本実施形態の制御によっても、排気通路18への未燃燃料の吹き抜けの防止と、筒内からの未燃燃料の排出防止とを実現することができる。これにより、上流触媒58に捕捉(吸蔵)されている酸素が、上流触媒58の内部において未燃燃料と酸化反応を起こすことを防止することができるので、上流触媒58の温度が急上昇するのを防止することができる。また、上述した実施の形態1の制御と同様に、本実施形態の制御によれば、このような目標空燃比のリーン化を行っている間であっても、筒内充填空気量との関係で特定される空燃比は理論空燃比に維持することができる。このため、スカベンジ効果を利用した内燃機関10のトルク向上効果を確保しつつ、上流触媒58の劣化が促進するのを防止することが可能となる。
ところで、上述した実施の形態2においては、新気の吹き抜け検出時における目標空燃比のリーン化のために、空燃比フィードバック制御を中止しつつ、筒内充填空気量との関係で特定される空燃比が理論空燃比となるように燃料噴射量を設定している。しかしながら、本発明における燃料噴射量制御は、上記の手法に限定されるものではない。すなわち、新気の吹き抜け検出時に、例えば、空燃比フィードバック制御を中止しつつ、吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定するものであってもよい。
尚、上述した実施の形態2においては、ECU80が実施の形態1において上述したメインのフィードバック制御を実行することにより本発明における「空燃比フィードバック制御手段」が、ECU80が上記ステップ200の処理を実行することにより本発明における「空燃比フィードバック中止手段」が、ECU80が上記ステップ202の処理を実行することにより本発明における「筒内空気量取得手段」が、それぞれ実現されている。
実施の形態3.
次に、図6を参照して、本発明の実施の形態3について説明する。
本実施形態のシステムは、図1に示すハードウェア構成を用いて、ECU80に図4に示すルーチンに代えて後述の図6に示すルーチンを実行させることにより実現することができるものである。
次に、図6を参照して、本発明の実施の形態3について説明する。
本実施形態のシステムは、図1に示すハードウェア構成を用いて、ECU80に図4に示すルーチンに代えて後述の図6に示すルーチンを実行させることにより実現することができるものである。
上述した実施の形態1および2においては、新気の吹き抜け(スカベンジ効果)が検出された場合に、燃料噴射時期の遅角化と目標空燃比のリーン化とを実行するようにしている。これに対し、本実施形態では、新気の吹き抜けが検出された場合に、上述した燃料噴射時期の遅角化と目標空燃比のリーン化とに先立って、次のような制御を実行するようにしている。
すなわち、本実施形態では、新気の吹き抜けが検出された場合には、A/Fセンサ64の出力に基づいてO/L量を調整することによって、過剰な掃気とならないように吹き抜け新気量(スカベンジ量)を調整するようにした。この際、本実施形態では、排気弁48の開閉時期の調整を吸気弁44の開閉時期の調整に対して優先(先行)して実施することを特徴としている。そして、排気弁48の開閉時期の調整代を使い切ってしまった場合には、吸気弁44の開閉時期の調整を実行するようにした。そのうえで、吸気弁44の開閉時期の調整代を更に使い切ったにもかかわらず吹き抜け新気量の調整が十分でない場合に、上述した実施の形態1または2において説明した燃料噴射時期の遅角化と目標空燃比のリーン化とを実行するようにした。
図6は、本発明の実施の形態3の制御を実現するために、ECU80が実行する制御ルーチンを表したフローチャートである。尚、図6において、実施の形態1における図4に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。また、ここでは、上述した実施の形態1の制御(ステップ114)と組み合わせた制御ルーチンを例に挙げて説明するが、これに代え、上述した実施の形態2の制御(ステップ200~204)と組み合わせた制御ルーチンを用いるようにしてもよい。
図6に示すルーチンでは、上記ステップ104の判定が成立する場合、すなわち、新気の吹き抜けの発生が検出された場合には、排気カム角センサ56を用いて現在の排気弁48の開閉時期(EX-VVT)の進角値が最進角値であるか否かが判定される(ステップ300)。
その結果、上記ステップ300において排気弁48の開閉時期の進角値が未だ最進角値に達していないと判定された場合には、排気弁48の開閉時期の進角が実行される(ステップ302)。吹き抜け新気量が多いほど、上流触媒58に流入する排気ガスの空燃比が大きくリーン化する。このような空燃比のリーン化によって上流触媒58の雰囲気が理論空燃比雰囲気から外れるように乱されると、上流触媒58の浄化性能を損なってしまう。そこで、本ステップ302では、A/Fセンサ64の出力に基づいて、上流触媒58に流入する排気ガスの空燃比が理論空燃比に上記所定値αを加えて得た値以下に収まる吹き抜け新気量になるように、排気弁48の開閉時期の進角が実行される。
一方、上記ステップ300において排気弁48の開閉時期の進角値が最進角値に達したと判定された場合には、次いで、吸気カム角センサ54を用いて現在の吸気弁44の開閉時期(IN-VVT)の遅角値が最遅角値であるか否かが判定される(ステップ304)。その結果、吸気弁44の開閉時期の遅角値が未だ最遅角値に達していないと判定された場合には、吸気弁44の開閉時期の遅角が実行される(ステップ306)。具体的には、本ステップ306では、A/Fセンサ64の出力に基づいて、上流触媒58に流入する排気ガスの空燃比が理論空燃比に上記所定値αを加えて得た値以下に収まる吹き抜け新気量になるように、吸気弁44の開閉時期の遅角が実行される。
一方、上記ステップ306において吸気弁44の開閉時期の遅角値が最遅角値に達したと判定された場合、つまり、排気弁48の開閉時期の進角および吸気弁44の開閉時期の遅角を実行したにもかかわらず、上流触媒58に流入する排気ガスの大きなリーン化を解消し切れなかった場合には、上記図4に示すルーチンにおける上記ステップ106以降の処理が実行される。
以上説明した図6に示すルーチンによれば、実施の形態1において上述した効果に加え、次のような効果を奏することができる。すなわち、吸気可変動弁機構46は、吸気弁44の開き時期と閉じ時期を両者の関係(すなわち、作用角)を変化させることなく変更可能とする機構である。このため、O/L量の調整のために吸気弁44の開き時期を変更する際には、吸気弁44の閉じ時期の変更を伴うこととなる。吸気弁44の閉じ時期が変化すると、内燃機関10の実圧縮比が変化し、ノックの発生し易さが変化してしまう。これに対し、排気弁48の開閉時期の調整によるO/L量の調整には、そのような変化は生じない。従って、本実施形態の制御では、吹き抜け新気量の調整のためにO/L量の調整を行う際に、吸気弁44の開閉時期の調整に対して排気弁48の開閉時期の調整を優先(先行)して実行するようにしたことで、対ノック性をできるだけ損なわないようにしつつ、吹き抜け新気による排気ガスの空燃比の荒れ(大きなリーン化)を防止することができる。
尚、上述した実施の形態3においては、ECU80が上記ステップ300~306の処理を実行することにより本発明における「オーバーラップ期間調整手段」が実現されている。
ところで、上述した実施の形態1乃至3においては、O/L期間の調整のために、作用角を固定しつつ吸気弁44や排気弁48の開閉時期を連続的に可変とする可変動弁機構46、50を用いるようにしている。しかしながら、上述した実施の形態1および2で説明した制御との関係においては、O/L期間は、必ずしも可変となっているものに限らず、運転条件次第では新気の吹き抜けが生ずるような値で固定されたものであってもよい。また、上述した実施の形態1および2で説明した制御との関係においては、吸気弁44の開き時期のみをO/L期間の調整のために可変できる機構が用いられていてもよい。一方、排気弁48については、上述した実施の形態1乃至3の何れで説明した制御との関係においても、排気弁48の閉じ時期のみをO/L期間の調整のために可変できる機構が用いられていてもよい。
また、上述した実施の形態1乃至3においては、ポート噴射弁38および筒内噴射弁40の双方を備える内燃機関10を例に挙げて説明を行った。しかしながら、本発明の内燃機関は、上記の構成のものに限らず、吸気通路に燃料を噴射可能な燃料噴射弁(例えば、ポート噴射弁)および筒内に燃料を直接噴射可能な筒内噴射円の何れか一方のみを備えるものであってもよい。
また、上述した実施の形態1乃至3においては、ターボ過給機24を備える内燃機関10を例に挙げて説明を行った。しかしながら、本発明における内燃機関が備える過給機は、上記の構成のものに限らず、例えば、内燃機関のクランク軸からの動力を利用するものであってもよく、或いは、電動モータを利用するものであってもよい。
10 内燃機関
12 ピストン
14 燃焼室
16 吸気通路
18 排気通路
22 エアフローメータ
24 ターボ過給機
24a ターボ過給機のコンプレッサ
24b ターボ過給機のタービン
32 スロットルバルブ
34 スロットル上流圧センサ
36 スロットル下流圧センサ
38 ポート噴射弁
40 筒内噴射弁
42 点火プラグ
44 吸気弁
46 吸気可変動弁機構
48 排気弁
50 排気可変動弁機構
52 クランク軸
54 吸気カム角センサ
56 排気カム角センサ
58 上流触媒
60 下流触媒
64 A/Fセンサ
66 O2センサ
76 クランク角センサ
80 ECU(Electronic Control Unit)
12 ピストン
14 燃焼室
16 吸気通路
18 排気通路
22 エアフローメータ
24 ターボ過給機
24a ターボ過給機のコンプレッサ
24b ターボ過給機のタービン
32 スロットルバルブ
34 スロットル上流圧センサ
36 スロットル下流圧センサ
38 ポート噴射弁
40 筒内噴射弁
42 点火プラグ
44 吸気弁
46 吸気可変動弁機構
48 排気弁
50 排気可変動弁機構
52 クランク軸
54 吸気カム角センサ
56 排気カム角センサ
58 上流触媒
60 下流触媒
64 A/Fセンサ
66 O2センサ
76 クランク角センサ
80 ECU(Electronic Control Unit)
Claims (9)
- 吸入空気を過給する過給機と、
内燃機関に燃料を噴射する燃料噴射弁と、
排気通路に配置され、排気ガスを浄化可能な触媒と、
燃焼室を介した吸気通路から前記排気通路へのガスの吹き抜けが発生した場合、或いは当該ガスの吹き抜けが発生し易い条件である場合に、排気弁の閉弁後に燃料噴射が実行されるように前記燃料噴射弁による燃料噴射時期を設定する噴射時期設定手段と、
吸気弁を通過する吸気弁通過空気量を取得する吸気弁通過空気量取得手段と、
前記ガスの吹き抜けが発生した場合、或いは前記ガスの吹き抜けが発生し易い条件である場合に、前記吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定する燃料噴射量制御手段と、
を備えることを特徴とする内燃機関の制御装置。 - 前記内燃機関の制御装置は、前記触媒の温度が所定値よりも高いか否かを判定する触媒温度判定手段を更に備え、
前記燃料噴射量制御手段は、前記ガスの吹き抜けが発生した場合或いは前記ガスの吹き抜けが発生し易い条件である場合であって、かつ、前記触媒の温度が上記所定値よりも高い場合に、前記吸気弁通過空気量との関係で特定される空燃比が理論空燃比よりもリーンな値となるように燃料噴射量を設定することを特徴とする請求項1記載の内燃機関の制御装置。 - 前記内燃機関の制御装置は、前記触媒よりも上流側の前記排気通路に配置され、前記触媒の上流における排気ガスの空燃比を検出する空燃比センサを更に備え、
前記燃料噴射量制御手段は、前記空燃比センサにより検出される排気ガスの空燃比が、理論空燃比よりもリーンな値となるように燃料噴射量を補正する空燃比リーン補正手段を含むことを特徴とする請求項1または2記載の内燃機関の制御装置。 - 前記空燃比リーン補正手段は、前記ガスの吹き抜け量が多い場合には、当該ガスの吹き抜け量が少ない場合に比して、排気ガスの目標空燃比をよりリーンな値に変更するリーン度合決定手段を更に備えることを特徴とする請求項3記載の内燃機関の制御装置。
- 前記リーン度合決定手段は、前記吸気弁通過空気量から前記ガスの吹き抜け量を引いて得られる筒内充填空気量との関係で特定される空燃比としては理論空燃比となるように、排気ガスの目標空燃比をよりリーンな値に変更することを特徴とする請求項4記載の内燃機関の制御装置。
- 前記内燃機関の制御装置は、
前記触媒よりも上流側の前記排気通路に配置され、前記触媒の上流における排気ガスの空燃比を検出する空燃比センサと、
前記空燃比センサにより検出される排気ガスの空燃比が、所定の目標空燃比となるように燃料噴射量を調整する空燃比フィードバック制御手段と、
前記ガスの吹き抜けが発生した場合、或いは前記ガスの吹き抜けが発生し易い条件である場合に、前記空燃比フィードバック制御手段による燃料噴射量の調整を中止する空燃比フィードバック中止手段と、
前記吸気弁通過空気量のうちの筒内に充填される筒内充填空気量を取得する筒内空気量取得手段と、
を備え、
前記燃料噴射量制御手段は、前記ガスの吹き抜けが発生した場合、或いは前記ガスの吹き抜けが発生し易い条件である場合に、前記筒内充填空気量との関係で特定される空燃比が理論空燃比となるように燃料噴射量を設定するものであることを特徴とする請求項1または2記載の内燃機関の制御装置。 - 前記内燃機関の制御装置は、
前記吸気弁の開閉時期および前記排気弁の閉じ時期の双方を変更可能とする可変動弁機構と、
前記ガスの吹き抜けが発生した場合或いは前記ガスの吹き抜けが発生し易い条件である場合において、前記吸気弁の開弁期間と前記排気弁の開弁期間とが重なるバルブオーバーラップ期間の調整によって前記ガスの吹き抜け量を制御する際に、前記吸気弁の開閉時期の調整に対して前記排気弁の閉じ時期の調整を優先して実行するオーバーラップ期間調整手段と、
を更に備えることを特徴とする請求項1乃至6の何れか1項記載の内燃機関の制御装置。 - 前記燃料噴射弁は、前記吸気通路に向けて燃料を噴射する第1燃料噴射弁と、筒内に向けて燃料を噴射する第2燃料噴射弁とを含み、
前記内燃機関の制御装置は、前記噴射時期設定手段および前記燃料噴射量制御手段による燃料噴射制御を行う際に用いる燃料噴射弁として、前記第2燃料噴射弁を選択する燃料噴射弁選択手段を更に備えることを特徴とする請求項1乃至7の何れか1項記載の内燃機関の制御装置。 - 前記内燃機関の制御装置は、
前記ガスの吹き抜けが発生したか否か、或いは当該ガスの吹き抜けが発生し易い条件が成立したか否かを判定するガス吹き抜け判定手段と、
前記触媒よりも上流側の前記排気通路に配置され、前記触媒の上流における排気ガスの空燃比を検出する空燃比センサと、
を更に備え、
前記ガス吹き抜け判定手段は、前記空燃比センサにより検出される排気ガスの空燃比が理論空燃比に対して所定値以上リーンである場合に、前記ガスの吹き抜けが発生したと判定することを特徴とする請求項1乃至8の何れか1項記載の内燃機関の制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180075256.3A CN103975148A (zh) | 2011-12-01 | 2011-12-01 | 内燃机的控制装置 |
EP11876529.6A EP2787203A1 (en) | 2011-12-01 | 2011-12-01 | Control device for internal combustion engine |
PCT/JP2011/077833 WO2013080362A1 (ja) | 2011-12-01 | 2011-12-01 | 内燃機関の制御装置 |
US14/361,475 US20140331651A1 (en) | 2011-12-01 | 2011-12-01 | Control apparatus for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/077833 WO2013080362A1 (ja) | 2011-12-01 | 2011-12-01 | 内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080362A1 true WO2013080362A1 (ja) | 2013-06-06 |
Family
ID=48534877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/077833 WO2013080362A1 (ja) | 2011-12-01 | 2011-12-01 | 内燃機関の制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140331651A1 (ja) |
EP (1) | EP2787203A1 (ja) |
CN (1) | CN103975148A (ja) |
WO (1) | WO2013080362A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015200294A (ja) * | 2014-04-10 | 2015-11-12 | 日産自動車株式会社 | エンジン |
CN105324569A (zh) * | 2013-06-28 | 2016-02-10 | 三菱自动车工业株式会社 | 引擎控制装置 |
JP2016188611A (ja) * | 2015-03-30 | 2016-11-04 | トヨタ自動車株式会社 | 内燃機関 |
JP2017057760A (ja) * | 2015-09-15 | 2017-03-23 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
EP3015692A4 (en) * | 2013-06-28 | 2017-05-17 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Engine control device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012204885B3 (de) * | 2012-03-27 | 2013-03-14 | Ford Global Technologies, Llc | Verfahren zum Betreiben einer Brennkraftmaschine mit Closed-Loop-Regelung und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens |
WO2014083654A1 (ja) * | 2012-11-29 | 2014-06-05 | トヨタ自動車株式会社 | 過給機付きエンジンの制御装置 |
US9506426B2 (en) * | 2014-03-24 | 2016-11-29 | Ford Global Technologies, Llc | Methods and systems for recycling engine feedgas cold-start emissions |
DE102015216830A1 (de) | 2015-09-03 | 2017-03-09 | Volkswagen Aktiengesellschaft | Verfahren sowie Vorrichtung zur Abgasnachbehandlung einer Brennkraftmaschine |
DE102015224790A1 (de) | 2015-12-10 | 2017-06-14 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine |
WO2019049676A1 (ja) * | 2017-09-05 | 2019-03-14 | トヨタ自動車株式会社 | 内燃機関の制御装置および制御方法 |
JP7067003B2 (ja) * | 2017-09-25 | 2022-05-16 | 三菱自動車工業株式会社 | エンジンの制御装置 |
US10233854B1 (en) * | 2017-11-07 | 2019-03-19 | Fca Us Llc | Engine control systems and methods for regulating emissions during scavenging |
JP7131479B2 (ja) * | 2019-05-21 | 2022-09-06 | トヨタ自動車株式会社 | ハイブリッド車両および、その制御方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63297746A (ja) * | 1987-05-29 | 1988-12-05 | Mazda Motor Corp | 過給機付エンジンの空燃比制御装置 |
JPH0481533A (ja) * | 1990-07-23 | 1992-03-16 | Mazda Motor Corp | 過給機エンジンの燃料制御装置 |
JPH11200930A (ja) * | 1998-01-20 | 1999-07-27 | Toyota Motor Corp | 内燃機関 |
JP2006183553A (ja) * | 2004-12-27 | 2006-07-13 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2006194112A (ja) * | 2005-01-12 | 2006-07-27 | Toyota Motor Corp | 内燃機関の燃料噴射量制御装置 |
JP2007263083A (ja) | 2006-03-30 | 2007-10-11 | Nissan Motor Co Ltd | 内燃機関の制御装置及び制御方法 |
JP2007263082A (ja) | 2006-03-30 | 2007-10-11 | Nissan Motor Co Ltd | 内燃機関の制御装置及び制御方法 |
JP2008025511A (ja) * | 2006-07-24 | 2008-02-07 | Toyota Motor Corp | 内燃機関の空燃比制御装置 |
JP2008075549A (ja) | 2006-09-21 | 2008-04-03 | Hitachi Ltd | 内燃機関の制御装置 |
JP2008101540A (ja) * | 2006-10-19 | 2008-05-01 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2010216464A (ja) | 2009-02-20 | 2010-09-30 | Mazda Motor Corp | ターボ過給機付きエンジンの制御方法および制御装置 |
WO2011055431A1 (ja) * | 2009-11-04 | 2011-05-12 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3818226B2 (ja) * | 2001-07-06 | 2006-09-06 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP2005009474A (ja) * | 2003-05-26 | 2005-01-13 | Toyota Motor Corp | 動力出力装置およびその制御方法 |
JP4033110B2 (ja) * | 2003-11-11 | 2008-01-16 | トヨタ自動車株式会社 | 内燃機関および内燃機関の制御方法 |
JP4650321B2 (ja) * | 2006-03-28 | 2011-03-16 | トヨタ自動車株式会社 | 制御装置 |
KR20080074719A (ko) * | 2007-02-08 | 2008-08-13 | 베르트질레 슈바이츠 악티엔게젤샤프트 | 길이방향으로 소기되는 2행정 대형 디젤 엔진의 실린더에급기를 충전하는 방법, 및 길이방향으로 소기되는 2행정대형 디젤 엔진 |
JP4544271B2 (ja) * | 2007-06-13 | 2010-09-15 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
FR2926850B1 (fr) * | 2008-01-28 | 2010-03-05 | Inst Francais Du Petrole | Procede de balayage des gaz brules residuels avec une double levee de soupape d'admission d'un moteur a combustion interne suralimente a injection directe, notamment de type diesel |
JP4609541B2 (ja) * | 2008-07-18 | 2011-01-12 | トヨタ自動車株式会社 | 過給機付き内燃機関の制御装置 |
US8181452B2 (en) * | 2009-09-29 | 2012-05-22 | Ford Global Technologies, Llc | Particulate filter regeneration during engine shutdown |
-
2011
- 2011-12-01 WO PCT/JP2011/077833 patent/WO2013080362A1/ja active Application Filing
- 2011-12-01 US US14/361,475 patent/US20140331651A1/en not_active Abandoned
- 2011-12-01 CN CN201180075256.3A patent/CN103975148A/zh active Pending
- 2011-12-01 EP EP11876529.6A patent/EP2787203A1/en not_active Withdrawn
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63297746A (ja) * | 1987-05-29 | 1988-12-05 | Mazda Motor Corp | 過給機付エンジンの空燃比制御装置 |
JPH0481533A (ja) * | 1990-07-23 | 1992-03-16 | Mazda Motor Corp | 過給機エンジンの燃料制御装置 |
JPH11200930A (ja) * | 1998-01-20 | 1999-07-27 | Toyota Motor Corp | 内燃機関 |
JP2006183553A (ja) * | 2004-12-27 | 2006-07-13 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2006194112A (ja) * | 2005-01-12 | 2006-07-27 | Toyota Motor Corp | 内燃機関の燃料噴射量制御装置 |
JP2007263083A (ja) | 2006-03-30 | 2007-10-11 | Nissan Motor Co Ltd | 内燃機関の制御装置及び制御方法 |
JP2007263082A (ja) | 2006-03-30 | 2007-10-11 | Nissan Motor Co Ltd | 内燃機関の制御装置及び制御方法 |
JP2008025511A (ja) * | 2006-07-24 | 2008-02-07 | Toyota Motor Corp | 内燃機関の空燃比制御装置 |
JP2008075549A (ja) | 2006-09-21 | 2008-04-03 | Hitachi Ltd | 内燃機関の制御装置 |
JP2008101540A (ja) * | 2006-10-19 | 2008-05-01 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2010216464A (ja) | 2009-02-20 | 2010-09-30 | Mazda Motor Corp | ターボ過給機付きエンジンの制御方法および制御装置 |
WO2011055431A1 (ja) * | 2009-11-04 | 2011-05-12 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105324569A (zh) * | 2013-06-28 | 2016-02-10 | 三菱自动车工业株式会社 | 引擎控制装置 |
EP3015693A4 (en) * | 2013-06-28 | 2017-03-08 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Engine control device |
EP3015692A4 (en) * | 2013-06-28 | 2017-05-17 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Engine control device |
US10107179B2 (en) | 2013-06-28 | 2018-10-23 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Engine control device |
JP2015200294A (ja) * | 2014-04-10 | 2015-11-12 | 日産自動車株式会社 | エンジン |
JP2016188611A (ja) * | 2015-03-30 | 2016-11-04 | トヨタ自動車株式会社 | 内燃機関 |
US10180109B2 (en) | 2015-03-30 | 2019-01-15 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
JP2017057760A (ja) * | 2015-09-15 | 2017-03-23 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US20140331651A1 (en) | 2014-11-13 |
EP2787203A1 (en) | 2014-10-08 |
CN103975148A (zh) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013080362A1 (ja) | 内燃機関の制御装置 | |
JP4609541B2 (ja) | 過給機付き内燃機関の制御装置 | |
JP4253339B2 (ja) | 内燃機関の制御装置 | |
JP5668763B2 (ja) | 多気筒内燃機関の制御装置 | |
US20160341133A1 (en) | Method and system for pre-ignition control | |
JP5115629B2 (ja) | 内燃機関の制御装置 | |
KR101497861B1 (ko) | 내연 기관의 제어 장치 | |
JP5397567B1 (ja) | 内燃機関の制御装置 | |
JP2008157057A (ja) | 内燃機関の制御装置 | |
JP2005307847A (ja) | 内燃機関の空気量算出装置 | |
JP2012229666A (ja) | 内燃機関の制御装置 | |
JP2013185536A (ja) | 内燃機関の制御装置 | |
JP2009019611A (ja) | 過給機付き内燃機関の制御装置 | |
JP4655980B2 (ja) | 内燃機関の制御装置及び制御方法 | |
JP2015200294A (ja) | エンジン | |
JP2013253500A (ja) | 内燃機関の制御装置 | |
JP5110119B2 (ja) | 多気筒内燃機関の制御装置 | |
US10563595B2 (en) | Control device of internal combustion engine | |
US20160369729A1 (en) | Control apparatus and control method for internal combustion engine | |
JP2017145715A (ja) | ターボ過給エンジン | |
JP2012188994A (ja) | 過給機付き内燃機関の制御装置 | |
JPWO2013080362A1 (ja) | 内燃機関の制御装置 | |
JP6406300B2 (ja) | エンジンの制御装置 | |
JP5467928B2 (ja) | 内燃機関の点火時期補正制御方法 | |
JP5857678B2 (ja) | 内燃機関の制御装置及び内燃機関の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11876529 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013546924 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14361475 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |