WO2013077585A1 - 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품 - Google Patents

딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품 Download PDF

Info

Publication number
WO2013077585A1
WO2013077585A1 PCT/KR2012/009540 KR2012009540W WO2013077585A1 WO 2013077585 A1 WO2013077585 A1 WO 2013077585A1 KR 2012009540 W KR2012009540 W KR 2012009540W WO 2013077585 A1 WO2013077585 A1 WO 2013077585A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
acid
weight
carboxylic acid
dip molding
Prior art date
Application number
PCT/KR2012/009540
Other languages
English (en)
French (fr)
Inventor
양승훈
한정수
여승욱
김병윤
김정은
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to CN201280048077.5A priority Critical patent/CN103930479B/zh
Priority to JP2014537008A priority patent/JP5975583B2/ja
Priority to US14/353,016 priority patent/US9803070B2/en
Publication of WO2013077585A1 publication Critical patent/WO2013077585A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1386Natural or synthetic rubber or rubber-like compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a carboxylic acid-modified nitrile-based copolymer latex for dip molding, a dip molding latex composition comprising the same, and a molded article prepared therefrom. More specifically, the glass transition temperature is -50 ° C to -15 ° C and the average.
  • a carboxylic acid-modified nitrile copolymer latex having a particle diameter of 90 nm or more and a carboxylic acid-modified styrene copolymer latex having a glass transition temperature of 80 ° C. or more and having an average particle diameter of less than 90 nm a molded article having excellent tensile strength can be prepared by mixing and using the same.
  • the present invention relates to a carboxylic acid-modified nitrile copolymer latex, a latex composition for deep molding including the same, and a molded article prepared therefrom.
  • an object of the present invention is to provide a carboxylic acid-modified nitrile copolymer latex capable of producing a molded article having a higher tensile strength than the conventional gloves and excellent wear feeling.
  • Another object of the present invention is to provide a latex composition for dip molding comprising the carboxylic acid-modified nitrile copolymer latex and molded articles prepared therefrom.
  • the present invention is 85 to 97% by weight of a carboxylic acid-modified nitrile copolymer latex having a glass transition temperature of -50 °C to -15 °C and an average particle diameter of 90nm or more and the glass transition temperature of 80 °C or more and average
  • a carboxylic acid-modified nitrile copolymer latex having a glass transition temperature of -50 °C to -15 °C and an average particle diameter of 90nm or more and the glass transition temperature of 80 °C or more and average
  • Carbonic acid-modified nitrile-based copolymer latex of the present invention for achieving the above object is a carboxylic acid-modified nitrile copolymer having a glass transition temperature of -50 °C to -15 °C, the average particle diameter of 90nm or more and 200nm or less.
  • Examples of preferred embodiments of the present invention include 85 to 97% by weight of a carboxylic acid-modified nitrile copolymer latex (hereinafter referred to as "latex A”) having a glass transition temperature of -50 ° C to -15 ° C and an average particle diameter of 90 nm to 200 nm. It is prepared by mixing 3 to 15% by weight of a carboxylic acid-modified styrenic copolymer latex (hereinafter referred to as "latex B”) having a glass transition temperature of 80 ° C to 105 ° C and an average particle diameter of 15 nm or more and less than 90 nm.
  • latex A carboxylic acid-modified nitrile copolymer latex
  • latex B carboxylic acid-modified styrenic copolymer latex
  • the glass transition temperature of the latex A is less than -50 ° C, the tensile strength is significantly lowered.
  • the latex A is higher than -15 ° C, cracks in the dip molded product are not preferable. If the average particle diameter is less than 90 nm, the viscosity of the latex is increased and the dip molded article is transparent, which is not preferable.
  • the average particle diameter of the latex A exceeds 200 nm, the time is increased during manufacture of the latex and the productivity is lowered, and the tensile strength after the dip molded article is manufactured is not preferable.
  • the glass transition temperature of the latex B is lower than 80 ° C.
  • the tensile strength improvement of the dip molded article is lowered.
  • the average particle diameter is 90 nm or more, the tensile strength improvement of a dip molded article falls, and a crack of a dip molded article is easy to produce.
  • the average particle diameter of the latex B is less than 15 nm, it is difficult to manufacture by emulsion polymerization, and the amount of emulsifier is increased during manufacture, which is not preferable because the tensile strength and elongation of the dip molded product are lowered.
  • the latex composition for dip molding of the present invention may include the latex A and latex B in a ratio of 97: 3 to 85:15, respectively.
  • the latex A is more than 97% and the latex B is less than 3%, the tensile strength improvement is small, the latex A is less than 85% and the elongation is greater than 15%. It lowers and tensile strength falls, and it is unpreferable.
  • a latex composition for dip molding comprising a carboxylic acid-modified nitrile copolymer latex for achieving another object of the present invention is a vulcanizing agent, ionic crosslinking agent, pigment, filler, thickener and and at least one additive selected from the group consisting of pH regulators.
  • a dip molded article for achieving another object of the present invention is characterized by being obtained by dip molding the composition.
  • latex is prepared by adding an emulsifier, a polymerization initiator, and a molecular weight regulator to each monomer constituting the latex A, and latex is prepared by adding an emulsifier, a polymerization initiator and a molecular weight regulator to each monomer constituting the latex B.
  • a carboxylic acid nitrile-based latex After mixing to prepare a carboxylic acid nitrile-based latex, it is included in a dip molding latex composition to dip molding to produce a final product.
  • latex A latex A
  • latex B mixed carboxylic acid-modified nitrile copolymer latex and latex composition including the latex used to obtain the dip molded article of the present invention
  • Latex A according to the present invention is prepared by emulsion polymerization by adding an emulsifier, a polymerization initiator, a molecular weight regulator and other additives to each monomer constituting the carboxylic acid-modified nitrile copolymer.
  • the monomer constituting the carboxylic acid-modified nitrile copolymer is composed of a conjugated diene monomer, an ethylenically unsaturated nitrile monomer, an ethylenically unsaturated acid monomer, and a copolymerizable unsaturated ethylenic monomer.
  • the conjugated diene monomer is included 40 to 89% by weight, specifically 45 to 80% by weight, most specifically 50 to 78% by weight of the total monomer constituting the carboxylic acid-modified nitrile copolymer. If the conjugated diene monomer content is less than 40% by weight, the dip molded product becomes hard and the wear is poor. If the conjugated diene monomer content is more than 90% by weight, the oil resistance of the dip molded product is deteriorated and the tensile strength is lowered.
  • the ethylenically unsaturated nitrile monomer is acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloronitrile and ⁇ -cyano ethyl acryl At least one selected from the group consisting of ronitrile, of which acrylonitrile and methacrylonitrile are preferred, and acrylonitrile is most preferably used.
  • the ethylenically unsaturated nitrile monomer is contained in 10 to 50% by weight, specifically 15 to 45% by weight, most specifically 20 to 40% by weight of the total monomers constituting the carboxylic acid-modified nitrile copolymer. If the content of the ethylenically unsaturated nitrile monomer is less than 10% by weight, the oil resistance of the dip molded product is poor, the tensile strength is lowered, and if it is more than 50% by weight, the dip molded product is hard and the wear feeling is poor.
  • the ethylenically unsaturated acid monomer is an ethylenically unsaturated monomer containing at least one acidic group selected from the group consisting of carboxyl group, sulfonic acid group and acid anhydride group
  • carboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid
  • Polycarboxylic acid anhydrides such as maleic anhydride and citraconic anhydride
  • Ethylenically unsaturated sulfonic acid monomers such as styrene sulfonic acid
  • ethylenically unsaturated polycarboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate, and mono-2-hydroxypropyl maleate.
  • methacrylic acid is particularly preferable
  • the ethylenically unsaturated acid monomer is included in 0.1 to 10% by weight, specifically 0.5 to 9% by weight, more specifically 1 to 8% by weight of the total monomers constituting the carboxylic acid-modified nitrile copolymer. If the content of the ethylenically unsaturated acid monomer is less than 0.1% by weight, the dip molded article is lowered in tensile strength. If the content of the ethylenically unsaturated acid monomer is more than 10% by weight, the dip molded article is hardened and wear is poor.
  • the carboxylic acid-modified nitrile copolymer according to the present invention may optionally further include other ethylenically unsaturated monomers copolymerizable with the ethylenically unsaturated nitrile monomer and the ethylenically unsaturated acid monomer, specifically, styrene, alkyl styrene, And vinyl aromatic monomers selected from the group consisting of vinyl naphthalene; Fluoroalkyl vinyl ethers such as fluoro ethyl vinyl ether; (Meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylol (meth) acrylamide, N-methoxy methyl (meth) acrylamide, and N-propoxy methyl (meth) acrylamide Ethylenically unsaturated amide monomers selected from the group consisting of; Non-conjugated diene monomers such as vinyl pyridine, vinyl norbornene,
  • the amount of the ethylenically unsaturated nitrile monomer and other ethylenically unsaturated monomer copolymerizable with the ethylenically unsaturated acid monomer may be used within 20% by weight of the total monomers constituting the carboxylic acid-modified nitrile copolymer, and more than 20% by weight. There is a poor balance between soft fit and tensile strength.
  • the carboxylic acid-modified nitrile copolymer latex of the present invention can be prepared by emulsion polymerization by adding an emulsifier, a polymerization initiator, a molecular weight regulator, etc. to the monomers constituting the carboxylic acid-modified nitrile copolymer.
  • anionic surfactant a nonionic surfactant, cationic surfactant, an amphoteric surfactant, etc.
  • anionic surfactants selected from the group consisting of alkylbenzene sulfonates, aliphatic sulfonates, sulfuric acid ester salts of higher alcohols, ⁇ -olefin sulfonate salts, and alkyl ether sulfuric acid ester salts can be particularly preferably used.
  • the amount of the emulsifier is 0.3 to 10 parts by weight, more specifically 0.8 to 8 parts by weight, most specifically 1.5 to 6 parts by weight based on 100 parts by weight of the monomer constituting the carboxylic acid-modified nitrile copolymer. Used.
  • the amount of the emulsifier is less than 0.3 parts by weight, the stability during the polymerization is lowered, if it exceeds 10 parts by weight, there is a problem that the production of dip molded article is difficult to increase the foaming.
  • a radical initiator can be used specifically ,.
  • inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-mentane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide Organic peroxides such as oxides, 3,5,5-trimethylhexanol peroxide and t-butyl peroxy isobutylate; Azobis isobutyronitrile; Azobis-2,4-dimethylvaleronitrile; Azobiscyclohexane carbonitrile; And azobis iso butyric
  • the amount of the polymerization initiator is less than 0.01 parts by weight, the polymerization rate is lowered, making it difficult to produce the final product. If it exceeds 2 parts by weight, the polymerization rate is too fast to control the polymerization.
  • the activating agent may be selected from the group consisting of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate, dextrose, sodium pyrrolate and sodium sulfite.
  • molecular weight modifier such as (alpha) -methylstyrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; Halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide; And sulfur compounds such as tetraethyl thiuram disulfide, dipentamethylene thiuram disulfide, and diisopropylquixanthogen disulfide.
  • molecular weight modifiers may be used alone or in combination of two or more thereof.
  • mercaptans are preferable, and t-dodecyl mercaptan can be used more preferably.
  • usage-amount of a molecular weight modifier changes with the kind, Specifically, 0.1-2.0 weight part, More specifically, 0.2-1.5 weight part, most, with respect to 100 weight part of all monomers which comprise the said carboxylic acid modified nitrile copolymer. Specifically, it is 0.3-1.0 weight part.
  • the amount of the molecular weight regulator is less than 0.1 part by weight, the physical properties of the dip molded article is significantly lowered, and if it exceeds 2 parts by weight, there is a problem that the polymerization stability is lowered.
  • additives such as chelating agent, dispersing agent, pH adjusting agent, deoxygenating agent, particle size adjusting agent, anti-aging agent, oxygen scavenger and the like can be added.
  • the method of adding the monomer mixture constituting the carboxylic acid-modified nitrile copolymer is not particularly limited, the method of introducing the monomer mixture into the polymerization reactor at once, the method of continuously introducing the monomer mixture into the polymerization reactor, and a part of the monomer mixture Any method of putting into a polymerization reactor and continuously supplying the remaining monomer to a polymerization reactor may be used.
  • the polymerization temperature at the time of the said emulsion polymerization is not specifically limited, Usually, it is 10-90 degreeC, specifically, it is 25-75 degreeC.
  • the conversion rate at the time of stopping a polymerization reaction is specifically 90% or more, More specifically, 93% or more.
  • the carboxylic acid-modified nitrile copolymer latex can be obtained by removing the unreacted monomer and adjusting the solid content concentration and pH.
  • the glass transition temperature can be adjusted according to the content of the conjugated diene monomer, and the average particle diameter can be adjusted according to the type or content of the emulsifier.
  • the latex glass transition temperature was measured by differential scanning calorimetry, and the average particle diameter was measured by a laser scattering analyzer (Nicomp).
  • Latex B according to the present invention is prepared by emulsion polymerization by adding an emulsifier, a polymerization initiator, a molecular weight regulator and other additives to each monomer constituting the carboxylic acid-modified styrene-based copolymer.
  • the monomer constituting the carboxylic acid-modified styrene copolymer is an aromatic vinyl monomer; Ethylenically unsaturated nitrile monomers; Ethylenically unsaturated acid monomers; It consists of copolymerizable ethylenically unsaturated monomers.
  • styrene As another monomer constituting the carboxylic acid-modified styrenic copolymer according to the present invention, for example, at least one selected from the group consisting of styrene and alphamethylstyrene, for example, of the aromatic vinyl monomer, styrene is most preferred. Used.
  • the aromatic vinyl monomer is included in 80 to 99% by weight, specifically 82 to 98% by weight, most specifically 85 to 96% by weight of the total monomers constituting the carboxylic acid-modified styrene-based copolymer. If the aromatic vinyl monomer content is less than 80% by weight, the tensile strength during dip molding is lowered, and if it is more than 99% by weight, the polymerization stability is lowered.
  • the ethylenically unsaturated nitrile monomer is acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloronitrile and ⁇ -cyano ethyl acryl At least one selected from the group consisting of ronitrile, of which acrylonitrile and methacrylonitrile are preferred, and acrylonitrile is most preferably used.
  • the ethylenic unsaturated nitrile monomer is included in 1-20% by weight, specifically 2-18% by weight, most specifically 4-15% by weight of the total monomers constituting the carboxylic acid-modified nitrile copolymer. If the ethylenic unsaturated nitrile monomer content is less than 1% by weight, the compatibility with the carboxylic acid nitrile copolymer is lowered, and if it is more than 20% by weight, the polymerization stability is lowered.
  • the ethylenically unsaturated acid monomer is an ethylenically unsaturated monomer containing at least one acidic group selected from the group consisting of carboxyl groups, sulfonic acid groups, and acid anhydride groups.
  • ethylenically unsaturated carboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid
  • Polycarboxylic anhydrides such as maleic anhydride and citraconic anhydride
  • Ethylenically unsaturated sulfonic acid monomers such as styrene sulfonic acid
  • One or more selected from the group consisting of ethylenically unsaturated polycarboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate, and mono-2-hydroxy propyl propyl may be used, but is not limited thereto.
  • the ethylenically unsaturated acid monomer is included in 0.1 to 10% by weight, specifically 0.5 to 9% by weight, more specifically 1 to 8% by weight of the total monomers constituting the carboxylic acid-modified nitrile copolymer. If the content of the ethylenically unsaturated acid monomer is less than 0.1% by weight, the polymerization stability is lowered. If the content of the ethylenically unsaturated acid monomer is more than 10% by weight, the dip molded product becomes hard and the wear feeling is poor.
  • the carboxylic acid-modified styrenic copolymers according to the present invention may further comprise optionally ethylenically unsaturated nitrile monomers and other ethylenically unsaturated monomers copolymerizable with ethylenically unsaturated acid monomers.
  • the amount of the ethylenically unsaturated nitrile monomer and other ethylenically unsaturated monomer copolymerizable with the ethylenically unsaturated acid monomer may be used within 5% by weight of the total monomers constituting the carboxylic acid-modified nitrile copolymer, and more than 5% by weight. There is a poor balance between soft fit and tensile strength.
  • the carboxylic acid-modified nitrile copolymer latex of the present invention can be prepared by emulsion polymerization by adding an emulsifier, a polymerization initiator, a molecular weight regulator, etc. to the monomers constituting the carboxylic acid-modified nitrile copolymer.
  • anionic surfactant a nonionic surfactant, cationic surfactant, an amphoteric surfactant, etc.
  • anionic surfactants selected from the group consisting of alkylbenzene sulfonates, aliphatic sulfonates, sulfuric acid ester salts of higher alcohols, ⁇ -olefin sulfonate salts, and alkyl ether sulfuric acid ester salts can be particularly preferably used.
  • the amount of the emulsifier is 0.3 to 30 parts by weight, more specifically 0.8 to 25 parts by weight, most specifically 1.5 to 20 parts by weight based on 100 parts by weight of the monomer constituting the carboxylic acid-modified nitrile copolymer. Used.
  • the amount of the emulsifier is less than 0.3 parts by weight, the stability during the polymerization is lowered, if it exceeds 30 parts by weight there is a problem that the production of dip molded article is difficult to increase the foaming.
  • a radical initiator can be used specifically ,.
  • inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-mentane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide Organic peroxides such as oxides, 3,5,5-trimethylhexanol peroxide and t-butyl peroxy isobutylate; At least one selected from the group consisting of azobis isobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexane carbonitrile
  • the amount of the polymerization initiator is less than 0.01 parts by weight, the polymerization rate is lowered, making it difficult to produce the final product. If it exceeds 2 parts by weight, the polymerization rate is too fast to control the polymerization.
  • the activating agent may be selected from the group consisting of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate, dextrose, sodium pyrrolate and sodium sulfite.
  • molecular weight modifier such as (alpha) -methylstyrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; Halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide; And sulfur compounds such as tetraethyl thiuram disulfide, dipentamethylene thiuram disulfide, and diisopropylquixanthogen disulfide.
  • molecular weight modifiers may be used alone or in combination of two or more thereof.
  • mercaptans are preferable, and t-dodecyl mercaptan can be used more preferably.
  • usage-amount of a molecular weight modifier changes with the kind, Specifically, 0.1-2.0 weight part, More specifically, 0.2-1.5 weight part, most, with respect to 100 weight part of all monomers which comprise the said carboxylic acid modified nitrile copolymer. Specifically, it is 0.3-1.0 weight part.
  • the amount of the molecular weight regulator is less than 0.1 part by weight, the physical properties of the dip molded article is significantly lowered, and if it exceeds 2 parts by weight, there is a problem that the polymerization stability is lowered.
  • additives such as chelating agent, dispersing agent, pH adjusting agent, deoxygenating agent, particle size adjusting agent, anti-aging agent, oxygen scavenger and the like can be added.
  • the method of adding the monomer mixture constituting the carboxylic acid-modified nitrile copolymer is not particularly limited, the method of introducing the monomer mixture into the polymerization reactor at once, the method of continuously introducing the monomer mixture into the polymerization reactor, and a part of the monomer mixture Any method of putting into a polymerization reactor and continuously supplying the remaining monomer to a polymerization reactor may be used.
  • the polymerization temperature at the time of the said emulsion polymerization is not specifically limited, Usually, it is 10-95 degreeC, specifically, it is 25-95 degreeC.
  • the conversion rate at the time of stopping the polymerization reaction is specifically 95% or more, and more specifically 98% or more.
  • the carboxylic acid-modified nitrile copolymer latex can be obtained by removing the unreacted monomer and adjusting the solid content concentration and pH.
  • the glass transition temperature can be adjusted according to the content of the conjugated diene monomer, and the average particle diameter can be adjusted according to the type or content of the emulsifier.
  • the latex glass transition temperature was measured by differential scanning calorimetry, and the average particle diameter was measured by a laser scattering analyzer (Nicomp).
  • a vulcanizing agent, an ionic crosslinking agent, a pigment, a filler, a thickener to the carboxylic acid-modified nitrile copolymer latex of the present invention prepared by mixing 85 to 97% by weight of latex A and 3 to 15% by weight of latex B obtained by the above method. And at least one additive selected from the group consisting of a pH adjusting agent, to prepare a latex composition for dip molding.
  • a latex composition for dip molding is prepared including general additives used in dip molding compositions such as ionic crosslinkers, pigments such as titanium oxide, fillers such as silica, thickeners, and pH adjusting agents such as ammonia or alkali hydroxides.
  • general additives used in dip molding compositions such as ionic crosslinkers, pigments such as titanium oxide, fillers such as silica, thickeners, and pH adjusting agents such as ammonia or alkali hydroxides.
  • the carboxylic acid-modified nitrile copolymer latex in the composition is 80 to 99% by weight, specifically 85 to 98% by weight, most specifically 88 to 97% by weight of one of the dip molded article of the present invention Phosphorus gloves are preferred in terms of physical properties.
  • Solid content concentration of the latex composition for dip molding of this invention is 10 to 40 weight% specifically, 15-35 weight% more specifically, 18-33 weight% most specifically.
  • PH of the latex composition for dip molding of this invention is 8.0-12, More specifically, it is 9-11, Most specifically, it is 9.3-10.5.
  • a conventional method can be used, and examples thereof include a direct dipping method, an anode adhesion dipping method, and a Teague adhesion dipping method.
  • an anode adhesion dipping method is preferable because of the advantage that a dip molded article having a uniform thickness can be easily obtained.
  • coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, aluminum chloride and the like; Nitrates such as barium nitrate, calcium nitrate and zinc nitrate; Acetates such as barium acetate, calcium acetate and zinc acetate; Sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate. Of these, calcium chloride and calcium nitrate are preferred.
  • the coagulant solution is a solution in which such coagulant is dissolved in water, alcohol or a mixture thereof. The concentration of coagulant in the coagulant solution is usually 5 to 75% by weight, specifically 15 to 55% by weight.
  • the dip molding mold to which a coagulant is stuck is immersed in the latex composition for dip molding made from the latex resin composition of the present invention, and then the dip molding mold is taken out to form a dip molding layer on the dip molding mold.
  • the water component evaporates first and curing through crosslinking is performed. Subsequently, the dip molding layer crosslinked by heat treatment is peeled off from the dip mold to obtain a dip molded product.
  • a dumbbell-shaped test piece was produced from the obtained dip molded product in accordance with ASTM D-412. Subsequently, the specimen was pulled at a stretching speed of 500 mm / min using a UTM (Universal Testing Machine), the tensile strength and elongation at break were measured, and the touch was measured by the stress when the elongation was 300%.
  • UTM Universal Testing Machine
  • the dip mold of the hand shape is immersed in the coagulant solution to attach the coagulant to the surface of the dip mold.
  • coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, aluminum chloride and the like; Nitrates such as barium nitrate, calcium nitrate and zinc nitrate; Acetates such as barium acetate, calcium acetate and zinc acetate; Sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate. Of these, calcium chloride and calcium nitrate are preferred.
  • the coagulant solution is a solution in which such coagulant is dissolved in water, alcohol or a mixture thereof.
  • the concentration of coagulant in the coagulant solution is usually 5 to 75% by weight, specifically 15 to 55% by weight, most specifically 18 to 40% by weight.
  • the dip mold to which the coagulant is attached is immersed in the latex composition for dip molding made of the carboxylic acid-modified nitrile copolymer latex of the present invention, and the dip mold is taken out to form a dip mold layer in the dip mold.
  • the dip molding layer formed on the dip mold is subjected to heat treatment to crosslink the carboxylic acid-modified nitrile copolymer latex.
  • the water component first evaporates and vulcanization through crosslinking is performed.
  • the dip molding layer crosslinked by heat treatment is peeled off from the dip mold to obtain a dip molded product.
  • the process according to the invention can be used for any latex article which can be produced by technically known dip molding methods. Specifically, it can be applied to dip molded latex articles selected from health care products such as surgical gloves, inspection gloves, condoms, catheters or various kinds of industrial and household gloves.
  • Agitator, thermometer, cooler, nitrogen inlet, 10L high pressure reactor equipped with a monomer, emulsifier, and polymerization initiator can be continuously added with nitrogen, and then acrylonitrile 25% by weight, 1,4-butadiene 70 2.5 weight part of sodium alkyl benzene sulfonates, 0.5 weight part of t-dodecyl mercaptans, and 140 weight part of ion-exchange water were added with respect to 100 weight part of monomer mixtures of 5 weight% of methacrylic acid, and it heated up to 40 degreeC.
  • the glass transition temperature is -40 °C
  • the average particle diameter is shown to 130nm
  • the latex prepared by the above is called "latex-A”.
  • a stirrer, a thermometer, a cooler, an inlet for nitrogen gas and a 10L high pressure reactor equipped with a monomer, an emulsifier, and a polymerization initiator were continuously replaced with nitrogen, followed by 82 wt% of styrene and 2 wt% of acrylonitrile.
  • the glass transition temperature is 100 ° C. and the average particle diameter is 42 nm.
  • the latex prepared by the above is called 'latex-B'.
  • Latex was prepared by mixing Latex-A and Latex-B at 9: 1.
  • a 3% potassium hydroxide solution and an appropriate amount of secondary distilled water were added to the latex to obtain a dip molding composition having a solid concentration of 25% and a pH of 10.0.
  • a coagulant solution was prepared by mixing 22 parts by weight calcium nitrate, 69.5 parts by weight distilled water, 8 parts by weight calcium carbonate and 0.5 parts by weight wetting agent (Teric 320 produced by Huntsman Corporation, Australia).
  • the hand-shaped ceramic mold was immersed in this solution for 1 minute, taken out, and dried at 80 ° C. for 3 minutes to apply a coagulant to the hand-shaped mold.
  • the mold to which the coagulant was applied was immersed in the dip molding composition for 1 minute, pulled up, dried at 80 ° C for 1 minute, and then immersed in water or hot water for 3 minutes.
  • the mold was dried at 80 ° C. for 3 minutes and crosslinked at 130 ° C. for 20 minutes.
  • the crosslinked dip molding layer was peeled off from the hand-shaped mold to obtain a dip molded article in the form of a glove.
  • the physical properties of this dip molded article are shown in Table 1.
  • Agitator, thermometer, cooler, nitrogen gas inlet and 10L high pressure reactor equipped with a monomer, emulsifier, and polymerization initiator can be continuously added with nitrogen, and then acrylonitrile 35% by weight, 1,4-butadiene 60 3 parts by weight of sodium alkyl benzene sulfonate, 0.5 parts by weight of t-dodecyl mercaptan and 140 parts by weight of ion-exchanged water were added to 100 parts by weight of the monomer mixture of 5% by weight and methacrylic acid, and the temperature was raised to 40 ° C.
  • latex-C the latex prepared by the above is referred to as "latex-C”.
  • a stirrer, a thermometer, a cooler, a nitrogen inlet and a 10L high pressure reactor equipped with a monomer, an emulsifier, and a polymerization initiator were continuously replaced with nitrogen, followed by 94 wt% of styrene and 2 wt% of acrylonitrile.
  • %, 6 parts by weight of sodium alkyl benzene sulfonate, 0.5 parts by weight of t-dodecyl mercaptan and 300 parts by weight of ion-exchanged water were added to 100 parts by weight of the monomer mixture of 4% by weight acrylic acid, and the temperature was raised to 55 ° C.
  • the glass transition temperature is 105 ° C. and the average particle diameter is 67 nm.
  • the latex prepared by the above is called 'latex-D'.
  • Latex was prepared by mixing Latex-C and Latex-D at 9: 1.
  • Example 1 In the same manner as in Example 1, a dip molded article in the form of a glove was manufactured, and the physical properties thereof are shown in Table 1.
  • Example 1 Except for mixing latex-A and latex-B in Example 1 was prepared in the same manner as in Example 1, except that the glove-shaped dip molded article was prepared, the physical properties are shown in Table 1.
  • Example 1 Except for mixing the latex-A and latex-B in Example 1 was prepared in the same manner as in Example 1, the glove-shaped dip molded article was prepared, the physical properties are shown in Table 1.
  • Example 1 Except for mixing the latex-A and latex-D in Example 1 in 9: 1, a dip molded article in the form of a glove was prepared in the same manner as in Example 1, the physical properties are shown in Table 1.
  • Example 1 Except for mixing the latex-C and latex-B in Example 1 in 9: 1, a dip molded article in the form of a glove was prepared in the same manner as in Example 1, the physical properties are shown in Table 1.
  • Example 1 Except that the latex-A alone in Example 1 was prepared in the same manner as in Example 1 glove-shaped dip molded article, the physical properties are shown in Table 1.
  • Example 1 Except that the latex-C alone in Example 1 was prepared in the same manner as in Example 1 glove-shaped dip molded article, the physical properties are shown in Table 1.
  • Example 1 8 Except for mixing the latex-A and latex-B in Example 1 8: 2 in the same manner as in Example 1 to prepare a dip-shaped molded article, the physical properties are shown in Table 1.
  • Example 1 Except for mixing the latex-C and latex-D in Example 1 in 8: 2, a dip molded article in the form of a glove was prepared in the same manner as in Example 1, the physical properties are shown in Table 1.
  • Agitator, thermometer, cooler, nitrogen inlet, 10L high pressure reactor equipped with a monomer, emulsifier, and polymerization initiator can be continuously added with nitrogen, and then acrylonitrile 35% by weight, 1,4-butadiene 60 5 parts by weight of sodium alkyl benzene sulfonate, 0.5 parts by weight of t-dodecyl mercaptan and 140 parts by weight of ion-exchanged water were added to 100 parts by weight of the monomer mixture of 5% by weight and methacrylic acid, and the temperature was raised to 40 ° C.
  • the glass transition temperature is -21 ° C and the average particle diameter is 80 nm, and the latex prepared by the above is called "latex-E".
  • a stirrer, a thermometer, a cooler, a nitrogen inlet and a 10L high pressure reactor equipped with a monomer, an emulsifier, and a polymerization initiator were continuously replaced with nitrogen, followed by 94 wt% of styrene and 2 wt% of acrylonitrile.
  • %, 2 parts by weight of sodium alkyl benzene sulfonate, 0.5 parts by weight of t-dodecyl mercaptan and 300 parts by weight of ion-exchanged water were added to 100 parts by weight of the monomer mixture of 4% by weight of acrylic acid, and the temperature was raised to 55 ° C.
  • the glass transition temperature is 105 ° C. and the average particle diameter is 99 nm.
  • the latex prepared by the above is called 'latex-F'.
  • Latex was prepared by mixing latex-E and latex-F at 9: 1.
  • Example 1 In the same manner as in Example 1, a dip molded article in the form of a glove was manufactured, and the physical properties thereof are shown in Table 1.
  • Example 1 9 Except for mixing the latex-C and latex-F in Example 1 9: 1 was prepared in the same manner as in Example 1 glove-shaped dip molded article, the physical properties are shown in Table 1.
  • Example 1 Except for mixing the latex-E and latex-D 9: 1 in Example 1 was prepared in the same manner as in Example 1 glove-shaped dip molded article, the physical properties are shown in Table 1.
  • the deep molded article made of carboxylic acid-modified nitrile-based latex mixed with carboxylic acid-modified styrene-based latex having a low glass transition temperature and a large average particle diameter has excellent tensile strength, elongation and stress properties. It can be seen.
  • a carboxylic acid-modified nitrile copolymer latex having a glass transition temperature of -50 ° C to -15 ° C and an average particle diameter of 90 nm or more, and a carboxylic acid having a glass transition temperature of 80 ° C or more and an average particle diameter of less than 90 nm It is possible to manufacture molded articles having excellent tensile strength by mixing the modified styrene copolymer latex 3 to 15% by weight and then using the latex to prepare the latex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)

Abstract

본 발명은 카르본산 변성 니트릴계 공중합체 라텍스와 카르본산 변성 스티렌계 공중합체를 혼합한 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물, 및 이로부터 제조된 성형품에 관한 것으로서, 유리전이온도가 낮고 평균입경이 90nm 이상인 카르본산 변성 니트릴계 라텍스와 유리전이온도가 80℃ 이상이고 평균입경이 90nm 미만인 카르본산 스티렌계 라텍스를 제조 후, 혼합하여 사용함으로써 인장강도가 우수한 성형품 제조가 가능하다.

Description

딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
본 발명은 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품에 관한 것으로서, 더욱 상세하게는 유리 전이 온도가 -50℃ 내지 -15℃이고 평균 입경이 90nm 이상인 카르본산 변성 니트릴계 공중합체 라텍스와 유리 전이 온도가 80℃ 이상이고 평균 입경이 90nm 미만인 카르본산 변성 스티렌계 공중합체 라텍스를 제조 후, 혼합하여 사용함으로써 인장 강도가 우수한 성형품 제조가 가능한 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품에 관한 것이다.
현재 니트릴계 고무장갑을 경량화하고자 하는 장갑업체들의 노력이 계속되고 있다. 장갑을 경량화하기 위해서는 장갑을 얇게 만들어야 하는데, 장갑을 얇게 만들면 장갑의 인장 강도가 저하되는 문제가 발생한다.
따라서 장갑업체들은 장갑을 얇게 만들더라도 인장 강도가 저하되지 않는 카르본산 변성 니트릴계 라텍스에 관심을 모으고 있으나, 아직 경량 장갑에서 인장 강도가 매우 우수한 특성을 나타내는 카르본산 변성 라텍스는 나오지 않은 실정이다.
이에 본 발명에서는 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 기존 장갑보다 인장 강도가 높고 착용감이 우수한 성형품 제조가 가능한 카르본산 변성 니트릴계 공중합체 라텍스를 제공하는 데 있다.
또한, 본 발명의 다른 목적은 상기 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품을 제공하는 데도 있다.
본 발명의 상기 목적은 하기 설명되는 본 발명에 의하여 모두 달성 될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 유리 전이 온도가 -50℃ 내지 -15℃이고 평균 입경이 90nm 이상인 카르본산 변성 니트릴계 공중합체 라텍스 85~97중량%와 유리 전이 온도가 80℃ 이상이고 평균 입경이 90nm 미만인 카르본산 변성 스티렌계 공중합체 라텍스 3~15중량%를 혼합하여 라텍스를 제조하고, 이를 딥 성형용 라텍스 조성에 포함시킴으로써 상기와 같은 종래 기술들을 해결할 수 있게 되었다.
상기와 같은 목적을 달성하기 위한 본 발명의 카르본산 변성 니트릴(nitrile)계 공중합체 라텍스는 유리전이온도가 -50℃ 내지 -15℃이고, 평균입경이 90nm 이상 200nm 이하인 카르본산 변성 니트릴계 공중합체 라텍스; 및 유리전이온도가 80℃ 이상이고 평균입경이 15nm 이상 90nm 미만인 카르본산 변성 스티렌계 공중합체 라텍스;를 포함하여 이루어지는 것을 특징으로 한다.
본 발명의 바람직한 실시예로는 유리 전이 온도가 -50℃ 내지 -15℃이고 평균 입경이 90nm 이상 200nm 이하인 카르본산 변성 니트릴계 공중합체 라텍스(이하 “라텍스 A”라 함) 85~97중량%와 유리 전이 온도가 80℃ 내지 105℃이고 평균 입경이 15nm 이상 90nm 미만인 카르본산 변성 스티렌계 공중합체 라텍스(이하 “라텍스 B”라 함) 3~15중량%를 혼합하여 제조된다.
상기 라텍스 A의 유리전이온도가 -50℃ 보다 작을 경우 인장 강도가 현저히 저하되며, -15℃ 보다 높을 경우 딥 성형품 균열이 생겨 바람직하지 않다. 또한 평균 입경이 90nm 미만이면 라텍스의 점도가 상승되고 딥 성형품이 투명해져 바람직하지 않다.
라텍스 A의 평균 입경이 200nm을 초과할 경우, 라텍스 제조시 시간이 많아져 생산성이 저하되며 또한 딥 성형품 제조 후 인장강도가 저하되어 바람직하지 않다.
상기 라텍스 B의 유리전이온도가 80℃ 보다 작을 경우 딥 성형품의 인장 강도 향상이 저하된다. 또한 평균 입경이 90nm 이상이어도 딥 성형품의 인장 강도 향상이 저하되고 딥 성형품의 균열이 생기기 쉽다.
라텍스 B의 평균 입경이 15nm 미만일 경우 유화 중합으로 제조가 어려우며, 제조시 유화제 양이 많아져 딥 성형품의 인장강도 및 신율이 저하되어 바람직하지 않다.
본 발명의 딥 성형용 라텍스 조성물은 상기 라텍스 A와 라텍스 B를 각각 97:3 내지 85:15의 비율로 포함할 수 있다.
상기 범위를 벗어나 라텍스 A가 97%를 초과하며 라텍스 B가 3% 미만으로 포함되는 경우는 인장 강도 향상 폭이 작고, 라텍스 A가 85% 미만이며 라텍스 B가 15% 초과하여 포함되는 경우는 신율이 저하되어 인장 강도가 저하되어 바람직하지 않다.
또한, 본 발명의 다른 목적을 달성하기 위한 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물은 상기 카르본산 변성 니트릴계 공중합체에 가황제, 이온성 가교제, 안료, 충진제, 증점제 및 pH 조절제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 포함함을 그 특징으로 한다.
또한, 본 발명의 추가의 다른 목적을 달성하기 위한 딥 성형품은 상기 조성물을 딥 성형하여 얻어지는 것을 특징으로 한다.
이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.
본 발명은 라텍스 A를 구성하는 각 단량체에 유화제, 중합개시제, 및 분자량 조절제 등을 첨가하여 라텍스를 제조하고 라텍스 B를 구성하는 각 단량체에 유화제, 중합개시제 및 분자량 조절제 등을 첨가하여 라텍스를 제조한 후 혼합하여 카르본산 니트릴계 라텍스를 제조 후, 이를 딥 성형용 라텍스 조성물에 포함시켜 딥 성형시켜 최종 제품을 제조한다.
이하 본 발명의 딥 성형품을 얻기 위해 사용되는 라텍스 A, 라텍스 B, 혼합된 카르본산 변성 니트릴계 공중합체 라텍스 및 이 라텍스를 포함한 라텍스 조성물을 상세히 설명한다.
1. 라텍스 A
본 발명에 따른 라텍스 A는 카르본산 변성 니트릴계 공중합체를 구성하는 각 단량체에 유화제, 중합개시제, 분자량 조절제 및 기타 첨가제를 첨가하여 유화 중합시켜 제조한다.
상기 카르본산 변성 니트릴계 공중합체를 구성하는 단량체는 공액 디엔계 단량체, 에틸렌성 불포화 니트릴계 단량체, 에틸렌성 불포화산 단량체, 공중합 가능한 불포화 에틸렌성 단량체로 구성된다.
본 발명에 따른 카르본산 변성 니트릴계 공중합체를 구성하는 다른 단량체로서 상기 공액디엔계 단량체의 구체적인 예를 들면, 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔 및 이소프렌으로 이루어진 그룹으로부터 선택된 1종 이상의 것이며, 이들 중 1,3-부타디엔과 이소프렌이 바람직하며, 특별히 1,3-부타디엔이 가장 바람직하게 사용된다.
상기 공액디엔계 단량체는 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 중 40~89중량%, 구체적으로는 45~80중량%, 가장 구체적으로는 50~78중량%로 포함된다. 공역 디엔계 단량체 함량이 40중량% 미만이면 딥 성형품이 딱딱해지고 착용감이 나빠지며 90중량%를 초과하면 딥 성형품의 내유성이 나빠지고 인장강도가 저하된다.
본 발명에 따른 카르본산 변성 니트릴계 공중합체를 구성하는 다른 단량체로서, 상기 에틸렌성 불포화 니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 및 α-시아노 에틸 아크릴로니트릴로 이루어진 그룹으로부터 선택된 1종 이상의 것이며, 이 중에서 아크릴로니트릴과 메타크릴로니트릴이 바람직하고, 특별히 아크릴로니트릴이 가장 바람직하게 사용된다.
에틸렌성 불포화 니트릴계 단량체는 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 중 10~50중량%, 구체적으로는 15~45중량%, 가장 구체적으로는 20~40중량%로 포함된다. 에틸렌성 불포화 니트릴계 단량체 함량이 10중량% 미만이면 딥 성형품의 내유성이 나빠지고, 인장강도가 저하되고, 50중량% 초과하면 딥 성형품이 딱딱해지고 착용감이 나빠진다.
본 발명에 따른 카르본산 변성 니트릴계 공중합체를 구성하는 다른 단량체로서, 에틸렌성 불포화산 단량체는 카르복실기, 술폰산기 및 산무수물기로 이루어진 그룹으로부터 선택된 1종 이상의 산성기를 함유하는 에틸렌성 불포화 단량체로서, 예를 들어, 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산 등의 에틸렌성 불포화 카르본산 단량체; 무수말레산, 무수시트라콘산 등의 폴리카르본산 무수물; 스티렌 술폰산 등의 에틸렌성 불포화 술폰산 단량체; 푸마르산 모노부틸, 말레인산 모노부틸, 말레인산 모노-2-히드록시 프로필 등의 에틸렌성 불포화 폴리 카르본산 부분 에스테르(partial ester) 단량체 등을 들 수 있다. 이들 중 특별히 메타크릴산이 바람직하다. 이러한 에틸렌성 불포화산 단량체는 알칼리 금속염 또는 암모늄염 같은 형태로 사용될 수 있다.
상기 에틸렌성 불포화산 단량체는 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 중 0.1~10중량%, 구체적으로는 0.5~9중량%, 더욱 구체적으로는 1~8중량%로 포함된다. 에틸렌성 불포화산 단량체의 함량이 0.1중량% 미만이면 딥 성형품이 인장강도가 저하되고, 10중량%를 초과하면 딥 성형품이 딱딱해지고 착용감이 나빠진다.
본 발명에 따른 카르본산 변성 니트릴계 공중합체는 선택적으로 상기 에틸렌성 불포화 니트릴 단량체 및 에틸렌성 불포화산 단량체와 공중합 가능한 다른 에틸렌성 불포화 단량체를 더 포함할 수 있는 바, 구체적으로는 스티렌, 알킬 스티렌, 및 비닐 나프탈렌으로 이루어진 그룹으로부터 선택된 비닐 방향족 단량체; 플루오로(fluoro) 에틸 비닐 에테르 등의 플루오로알킬비닐 에테르; (메타)아크릴아미드, N-메틸올 (메타)아크릴아미드, N,N-디메틸올 (메타)아크릴아미드, N-메톡시 메틸(메타)아크릴아미드, 및 N-프로폭시 메틸(메타)아크릴아미드로 이루어진 군으로부터 선택된 에틸렌성 불포화 아미드 단량체; 비닐 피리딘, 비닐 노보넨, 디시클로 펜타디엔, 1,4-헥사디엔 등의 비공액 디엔 단량체; (메타)아크릴산 메틸, (메타)아크릴산 에틸, (메타)아크릴산 부틸, (메타)아크릴산-2-에틸헥실, (메타)아크릴산 트리 플루오로 에틸, (메타)아크릴산 테트라 플루오로 프로필, 말레인산 디부틸, 푸마르산 디부틸, 말레인산 디에틸, (메타)아크릴산 메톡시메틸, (메타)아크릴산 에톡시에틸, (메타)아크릴산 메톡시에톡시에틸, (메타)아크릴산 시아노메틸, (메타)아크릴산 2-시아노에틸, (메타)아크릴산 1-시아노프로필, (메타)아크릴산 2-에틸-6-시아노헥실, (메타)아크릴산 3-시아노프로필, (메타)아크릴산 히드록시에틸, (메타)아크릴산 히드록시프로필, 글리시딜 (메타)아크릴레이트, 및 디메틸아미노 에틸(메타)아크릴레이트로 이루어진 군으로부터 선택된 에틸렌성 불포화 카르본산 에스테르 단량체로 이루어진 군으로부터 선택된 1종 이상의 것을 사용한다.
상기 에틸렌성 불포화 니트릴계 단량체 및 에틸렌성 불포화산 단량체와 공중합가능한 다른 에틸렌성 불포화 단량체의 사용량은 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 중 20중량% 이내로 사용될 수 있으며, 20중량%를 초과하면 부드러운 착용감과 인장 강도 사이의 균형이 잘 맞지 않는다.
본 발명의 카르본산 변성 니트릴계 공중합체 라텍스는 상기 카르본산 변성 니트릴계 공중합체를 구성하는 단량체에 유화제, 중합개시제, 분자량 조절제 등을 첨가하여 유화중합하여 제조할 수 있다.
유화제로서는 특별히 한정되진 않지만, 예를 들어, 음이온성 계면활성제, 비이온성 계면활성제, 양이온성 계면활성제, 양성 계면활성제 등을 사용할 수 있다. 이중에서 알킬벤젠 술폰산염, 지방족 술폰산염, 고급 알코올의 황산 에스테르염, α-올레핀 술폰산염, 및 알킬 에테르 황산 에스테르염으로 이루어진 군으로부터 선택된 음이온성 계면활성제가 특히 바람직하게 사용될 수 있다. 유화제의 사용량은 상기 카르본산 변성 니트릴계 공중합체를 구성하는 단량체 100중량부에 대하여, 구체적으로는 0.3~10중량부, 보다 구체적으로는 0.8~8중량부, 가장 구체적으로는 1.5~6중량부로 사용된다.
유화제의 양이 0.3중량부 미만이면 중합시 안정성이 저하되며, 10중량부를 초과하면 거품 발생이 많아져 딥 성형품 제조가 어려운 문제점이 있다.
중합개시제로서는 특별히 한정되진 않지만, 라디칼 개시제가 구체적으로는 사용될 수 있다. 라디칼 개시제로서는 과황산나트륨, 과황산칼륨, 과황산암모늄, 과인산칼륨, 과산화수소 등의 무기과산화물; t-부틸 퍼옥사이드, 큐멘 하이드로퍼옥사이드, p-멘탄하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부틸레이트 등의 유기 과산화물; 아조비스 이소부티로니트릴; 아조비스-2,4-디메틸발레로니트릴; 아조비스시클로헥산 카르보니트릴; 및 아조비스 이소 낙산(부틸산)메틸;로 이루어진 그룹으로부터 선택된 1종 이상의 것이며, 이러한 라디칼 개시제 중에서 무기 과산화물이 보다 바람직하고, 이중에서도 과황산염이 특별히 바람직하게 사용될 수 있다. 중합개시제의 사용량은 상기 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 100중량부에 대하여 구체적으로는 0.01~2중량부, 보다 구체적으로는 0.02~1.5중량부로 포함된다.
중합개시제의 양이 0.01중량부 미만이면 중합 속도가 저하되어 최종 제품을 제조하기 어렵고, 2중량부를 초과하면 중합 속도가 너무 빨라져 중합 조절을 할 수 없다.
활성화제는 소디움포름알데히드 설폭실레이트, 소디움에틸렌디아민 테트라아세테이트, 황산 제1철, 덱스트로오스, 피롤린산나트륨 및 아황산나트륨으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
분자량 조절제로서는 특별히 한정되진 않지만, 예를 들면, α-메틸스티렌다이머, t-도데실 머캅탄, n ?도데실 머캅탄, 옥틸 머캅탄 등의 머캅탄류; 사염화탄소, 염화메틸렌, 브롬화 메틸렌 등의 할로겐화 탄화수소; 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 디이소프로필키산토겐 다이 설파이드 등의 함유 황 화합물 등을 들 수 있다. 이러한 분자량 조절제는 단독으로 또는 2종 이상을 조합시켜 사용할 수 있다. 이들 중에서 머캅탄류가 바람직하고, t-도데실 머캅탄이 보다 바람직하게 사용될 수 있다. 분자량 조절제의 사용량은, 그 종류에 따라서 다르지만, 상기 카르본산 변성 니트릴계 공중합체를 구성하는 전 단량체 100중량부에 대하여 구체적으로는 0.1~2.0중량부, 더욱 구체적으로는 0.2~1.5중량부, 가장 구체적으로는 0.3~1.0중량부이다.
분자량 조절제의 양이 0.1중량부 미만이면 딥 성형품의 물성이 현저히 저하되고, 2중량부를 초과하면 중합 안정성이 저하되는 문제점이 있다.
또한 본 발명의 라텍스의 중합 시에, 필요에 따라 킬레이트제, 분산제, pH 조절제, 탈산소제, 입경조정제, 노화방지제, 산소포착제(oxygen scavenger) 등의 부재료를 첨가할 수 있음은 물론이다.
상기 카르본산 변성 니트릴계 공중합체를 구성하는 단량체 혼합물의 투입 방법은 특별히 한정되지 않고, 단량체 혼합물을 중합 반응기에 한꺼번에 투입하는 방법, 단량체 혼합물을 중합 반응기에 연속적으로 투입하는 방법, 단량체 혼합물의 일부를 중합 반응기에 투입하고, 나머지 단량체를 중합 반응기에 연속적으로 공급하는 방법 중 어느 방법을 해도 무방하다.
상기 유화 중합시 중합 온도는 특별히 한정되진 않지만, 보통 10~90℃, 구체적으로는 25~75℃이다. 중합 반응을 정지할 때의 전환율은 구체적으로는 90% 이상, 더욱 구체적으로는 93% 이상이다. 미반응 모노머를 제거하고 고형분 농도와 pH를 조절하여 카르본산 변성 니트릴계 공중합체 라텍스를 얻을 수 있다.
유리 전이 온도는 상기의 공액 디엔계 단량체의 함량에 따라 조정이 가능하고, 평균 입경은 상기의 유화제 종류나 함량에 따라 조정이 가능하다.
라텍스 유리 전이 온도는 시차 주사 열량계(Differential Scanning Calorimetry)로 측정하였고, 평균 입경은 레이져 분산 분석기(Laser Scattering Analyzer, Nicomp)로 측정하였다.
2. 라텍스 B
본 발명에 따른 라텍스 B는 카르본산 변성 스티렌계 공중합체를 구성하는 각 단량체에 유화제, 중합개시제, 분자량 조절제 및 기타 첨가제를 첨가하여 유화중합시켜 제조한다.
상기 카르본산 변성 스티렌계 공중합체를 구성하는 단량체는 방향족 비닐계 단량체; 에틸렌성 불포화 니트릴계 단량체; 에틸렌성 불포화산 단량체; 공중합 가능한 에틸렌성 불포화 단량체로 구성된다.
본 발명에 따른 카르본산 변성 스티렌계 공중합체를 구성하는 다른 단량체로서 상기 방향족 비닐계 단량체의 구체적인 예를 들면, 스티렌 및 알파메틸스티렌으로 이루어진 그룹으로부터 선택된 1종 이상의 것이며, 이들 중 스티렌이 가장 바람직하게 사용된다.
상기 방향족 비닐계 단량체는 카르본산 변성 스티렌계 공중합체를 구성하는 전체 단량체 중 80~99중량%, 구체적으로는 82~98중량%, 가장 구체적으로는 85~96중량%로 포함된다. 방향족 비닐계 단량체 함량이 80중량% 미만이면 딥 성형시 인장강도가 저하되고 99중량% 초과이면 중합 안정성이 저하된다.
본 발명에 따른 카르본산 변성 니트릴계 공중합체를 구성하는 다른 단량체로서, 상기 에틸렌성 불포화 니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 및 α-시아노 에틸 아크릴로니트릴로 이루어진 그룹으로부터 선택된 1종 이상의 것이며, 이 중에서 아크릴로니트릴과 메타크릴로니트릴이 바람직하고, 특별히 아크릴로니트릴이 가장 바람직하게 사용된다.
에틸렌성 불포화 니트릴계 단량체는 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 중 1~20중량%, 구체적으로는 2~18중량%, 가장 구체적으로는 4~15중량%로 포함된다. 에틸렌성 불포화 니트릴계 단량체 함량이 1중량% 미만이면 카르본산 니트릴계 공중합체와의 상용성이 저하되고 20중량% 초과이면 중합 안정성이 저하된다.
본 발명에 따른 카르본산 변성 스티렌계 공중합체를 구성하는 다른 단량체로서, 에틸렌성 불포화산 단량체는 카르복실기, 술폰산기, 및 산무수물기로 이루어진 그룹으로부터 선택된 1종 이상의 산성기를 함유하는 에틸렌성 불포화 단량체로서 예를 들어, 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산 등의 에틸렌성 불포화 카르본산 단량체; 무수말레산, 무수 시트라콘산 등의 폴리카르본산 무수물; 스티렌 술폰산 등의 에틸렌성 불포화 술폰산 단량체; 푸마르산 모노부틸, 말레인산 모노부틸, 말레인산 모노-2-히드록시 프로필 등의 에틸렌성 불포화 폴리 카르본산 부분 에스테르(partial ester) 단량체로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으나, 이에 한정되지 않는다.
상기 에틸렌성 불포화산 단량체는 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 중 0.1~10중량%, 구체적으로는 0.5~9중량%, 더욱 구체적으로는 1~8중량%로 포함된다. 에틸렌성 불포화산 단량체의 함량이 0.1중량% 미만이면 중합안정성이 저하되고, 10중량%를 초과하면 딥 성형품이 딱딱해지고 착용감이 나빠진다.
본 발명에 따른 카르본산 변성 스티렌계 공중합체는 선택적으로 상기 에틸렌성 불포화 니트릴 단량체 및 에틸렌성 불포화산 단량체와 공중합 가능한 다른 에틸렌성 불포화 단량체를 더 포함할 수 있는 바, 플로로(fluoro) 에틸 비닐 에테르 등의 플로로알킬비닐 에테르; (메타)아크릴아미드, N-메틸올 (메타)아크릴아미드, N,N-디메틸올 (메타)아크릴아미드, N-메톡시 메틸(메타)아크릴아미드, 및 N-프로폭시 메틸(메타)아크릴아미드로 이루어진 군으로부터 선택된 에틸렌성 불포화 아미드 단량체; 비닐 피리딘, 비닐 노보넨, 디시클로 펜타디엔, 1,4-헥사디엔 등의 비공액 디엔 단량체; (메타)아크릴산 메틸, (메타)아크릴산 에틸, (메타)아크릴산 부틸, (메타)아크릴산-2-에틸헥실, (메타)아크릴산 트리 플루오로 에틸, (메타)아크릴산 테트라 플루오로 프로필, 말레인산 디부틸, 푸마르산 디부틸, 말레인산 디에틸, (메타)아크릴산 메톡시메틸, (메타)아크릴산 에톡시에틸, (메타)아크릴산 메톡시에톡시에틸, (메타)아크릴산 시아노메틸, (메타)아크릴산 2-시아노에틸, (메타)아크릴산 1-시아노프로필, (메타)아크릴산 2-에틸-6-시아노헥실, (메타)아크릴산 3-시아노프로필, (메타)아크릴산 히드록시에틸, (메타)아크릴산 히드록시프로필, 글리시딜 (메타)아크릴레이트, 및 디메틸아미노 에틸(메타)아크릴레이트로 이루어진 군으로부터 선택된 에틸렌성 불포화 카르본산 에스테르 단량체로 이루어진 군으로부터 선택된 1종 이상의 것을 사용한다.
상기 에틸렌성 불포화 니트릴계 단량체 및 에틸렌성 불포화산 단량체와 공중합가능한 다른 에틸렌성 불포화 단량체의 사용량은 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 중 5중량% 이내로 사용될 수 있으며, 5중량%를 초과하면 부드러운 착용감과 인장 강도 사이의 균형이 잘 맞지 않는다.
본 발명의 카르본산 변성 니트릴계 공중합체 라텍스는 상기 카르본산 변성 니트릴계 공중합체를 구성하는 단량체에 유화제, 중합개시제, 분자량 조절제 등을 첨가하여 유화중합하여 제조할 수 있다.
유화제로서는 특별히 한정되진 않지만, 예를 들어, 음이온성 계면활성제, 비이온성 계면활성제, 양이온성 계면활성제, 양성 계면활성제 등을 사용할 수 있다. 이중에서 알킬벤젠 술폰산염, 지방족 술폰산염, 고급 알코올의 황산 에스테르염, α-올레핀 술폰산염, 및 알킬 에테르 황산 에스테르염으로 이루어진 군으로부터 선택된 음이온성 계면활성제가 특히 바람직하게 사용될 수 있다. 유화제의 사용량은 상기 카르본산 변성 니트릴계 공중합체를 구성하는 단량체 100중량부에 대하여, 구체적으로는 0.3~30중량부, 보다 구체적으로는 0.8~25중량부, 가장 구체적으로는 1.5~20중량부로 사용된다.
유화제의 양이 0.3중량부 미만이면 중합시 안정성이 저하되며, 30중량부를 초과하면 거품 발생이 많아져 딥 성형품 제조가 어려운 문제점이 있다.
중합개시제로서는 특별히 한정되진 않지만, 라디칼 개시제가 구체적으로는 사용될 수 있다. 라디칼 개시제로서는 과황산나트륨, 과황산칼륨, 과황산암모늄, 과인산칼륨, 과산화수소 등의 무기과산화물; t-부틸 퍼옥사이드, 큐멘 하이드로퍼옥사이드, p-멘탄하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부틸레이트 등의 유기 과산화물; 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스시클로헥산 카르보니트릴, 및 아조비스 이소 낙산(부틸산)메틸로 이루어진 그룹으로부터 선택된 1종 이상의 것이며, 이러한 라디칼 개시제 중에서 무기 과산화물이 보다 바람직하고, 이중에서도 과황산염이 특별히 바람직하게 사용될 수 있다. 중합개시제의 사용량은 상기 카르본산 변성 니트릴계 공중합체를 구성하는 전체 단량체 100중량부에 대하여 구체적으로는 0.01~2중량부, 보다 구체적으로는 0.02~1.5중량부로 포함된다.
중합개시제의 양이 0.01중량부 미만이면 중합 속도가 저하되어 최종 제품을 제조하기 어렵고, 2중량부를 초과하면 중합 속도가 너무 빨라져 중합 조절을 할 수 없다.
활성화제는 소디움포름알데히드 설폭실레이트, 소디움에틸렌디아민 테트라아세테이트, 황산 제1철, 덱스트로오스, 피롤린산나트륨 및 아황산나트륨으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
분자량 조절제로서는 특별히 한정되진 않지만, 예를 들면, α-메틸스티렌다이머, t-도데실 머캅탄, n ?도데실 머캅탄, 옥틸 머캅탄 등의 머캅탄류; 사염화탄소, 염화메틸렌, 브롬화 메틸렌 등의 할로겐화 탄화수소; 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 디이소프로필키산토겐 다이 설파이드 등의 함유 황 화합물 등을 들 수 있다. 이러한 분자량 조절제는 단독으로 또는 2종 이상을 조합시켜 사용할 수 있다. 이들 중에서 머캅탄류가 바람직하고, t-도데실 머캅탄이 보다 바람직하게 사용될 수 있다. 분자량 조절제의 사용량은, 그 종류에 따라서 다르지만, 상기 카르본산 변성 니트릴계 공중합체를 구성하는 전 단량체 100중량부에 대하여 구체적으로는 0.1~2.0중량부, 더욱 구체적으로는 0.2~1.5중량부, 가장 구체적으로는 0.3~1.0중량부이다.
분자량 조절제의 양이 0.1중량부 미만이면 딥 성형품의 물성이 현저히 저하되고, 2중량부를 초과하면 중합 안정성이 저하되는 문제점이 있다.
또한 본 발명의 라텍스의 중합 시에, 필요에 따라 킬레이트제, 분산제, pH 조절제, 탈산소제, 입경조정제, 노화방지제, 산소포착제(oxygen scavenger) 등의 부재료를 첨가할 수 있음은 물론이다.
상기 카르본산 변성 니트릴계 공중합체를 구성하는 단량체 혼합물의 투입 방법은 특별히 한정되지 않고, 단량체 혼합물을 중합 반응기에 한꺼번에 투입하는 방법, 단량체 혼합물을 중합 반응기에 연속적으로 투입하는 방법, 단량체 혼합물의 일부를 중합 반응기에 투입하고, 나머지 단량체를 중합 반응기에 연속적으로 공급하는 방법 중 어느 방법을 해도 무방하다.
상기 유화 중합시 중합 온도는 특별히 한정되진 않지만, 보통 10~95℃, 구체적으로는 25~95℃이다. 중합 반응을 정지할 때의 전환율은 구체적으로는 95% 이상, 더욱 구체적으로는 98% 이상이다. 미반응 모노머를 제거하고 고형분 농도와 pH를 조절하여 카르본산 변성 니트릴계 공중합체 라텍스를 얻을 수 있다.
유리 전이 온도는 상기의 공액 디엔계 단량체의 함량에 따라 조정이 가능하고, 평균 입경은 상기의 유화제 종류나 함량에 따라 조정이 가능하다.
라텍스 유리 전이 온도는 시차 주사 열량계(Differential Scanning Calorimetry)로 측정하였고, 평균 입경은 레이져 분산 분석기(Laser Scattering Analyzer, Nicomp)로 측정하였다.
3. 딥 성형용 라텍스 조성물
상기와 같은 방법으로 얻은 라텍스 A 85~97중량%와 라텍스 B 3~15중량%를 혼합하여 제조된 본 발명의 카르본산 변성 니트릴계 공중합체 라텍스에 가황제, 이온성 가교제, 안료, 충진제, 증점제 및 pH 조절제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 포함하여 딥 성형용 라텍스 조성물을 제조할 수 있다.
이온성 가교제, 티타늄 옥사이드와 같은 안료, 실리카와 같은 충전재, 증점제, 및 암모니아 또는 알칼리 수산화물과 같은 pH 조절제 등의 딥 성형용 조성물에 사용되는 일반적인 첨가제를 포함하여 딥 성형용 라텍스 조성물을 제조한다.
상기 조성물에서 카르본산 변성 니트릴계 공중합체 라텍스는 전체 조성물 중 80~99중량%, 구체적으로는 85~98중량%, 가장 구체적으로는 88~97중량%로 포함되는 것이 본 발명의 딥 성형품의 일종인 장갑 물성 측면에서 바람직하다.
본 발명의 딥 성형용 라텍스 조성물의 고형분 농도는 구체적인 것은 10~40중량%, 보다 구체적인 것은 15~35중량%, 가장 구체적으로는 18~33중량%이다. 본 발명의 딥 성형용 라텍스 조성물의 pH는 구체적인 것은 8.0~12, 보다 구체적으로는 9~11, 가장 구체적으로는 9.3~10.5이다.
4. 딥 성형품
본 발명의 딥 성형품을 얻기 위한 딥 성형 방법으로서 통상의 방법을 사용할 수 있고, 예를 들면 직접 침지법, 양극(anode) 응착 침지법, 티그(Teague) 응착 침지법 등을 들 수 있다. 이들 중에서, 균일한 두께의 딥 성형품을 쉽게 얻을 수 있다는 장점 때문에 양극 응착 침지법이 바람직하다.
이하, 본 발명의 라텍스 조성물을 이용하여 딥 성형품을 제조하는 방법에 대하여 상세하게 설명한다.
(a) 손 모양의 딥 성형틀을 응고제 용액에 담가 딥 성형틀의 표면에 응고제를 부착시키는 단계
응고제의 예로서는 바륨 클로라이드, 칼슘 클로라이드, 마그네슘 클로라이드, 징크 클로라이드 및 알루미늄 클로라이드 등과 같음 금속 할라이드(halide); 바륨 나이트레이트, 칼슘 나이트레이트 및 징크 나이트레이트와 같은 질산염; 바륨 아세테이트, 칼슘 아세테이트 및 징크 아세테이트와 같은 아세트산염; 칼슘 설페이트, 마그네슘 설페이트 및 알루미늄 설페이트와 같은 황산염 등이 있다. 이들 중 칼슘 클로라이드와 칼슘 나이트레이트가 바람직하다. 응고제 용액은 상기와 같은 응고제를 물, 알코올 혹은 그 혼합물에 녹인 용액이다. 응고제 용액 내의 응고제의 농도는 보통 5~75중량%, 구체적으로는 15~55중량%이다.
(b) 응고제가 부착된 딥 성형틀을 본 발명의 라텍스 주시 조성물에 침지하여 딥 성형층을 형성시키는 단계
응고제를 부착시킨 딥 성형틀을 본 발명의 라텍스 수지 조성물로 만든 딥 성형용 라텍스 조성물에 침지하고, 그리고 나서 딥 성형틀을 꺼내어 딥 성형틀에 딥 성형층을 형성시킨다.
(c) 딥 성형틀에 형성된 딥 성형층을 가열 처리하여 라텍스 수지를 가교시키는 단계
상기 가열 처리시에는 물 성분이 먼저 증발하고 가교를 통한 경화가 행해진다. 뒤이어, 가열 처리에 의하여 가교한 딥 성형층을 딥 성형틀로부터 벗겨내어 딥 성형품을 얻는다.
(d) 얻어진 딥 성형품의 물리적 성질 측정하는 단계
얻어진 딥 성형품으로부터 ASTM D-412에 준하여 덤벨 형상의 시험편을 제작했다. 뒤이어 이 시험편을 UTM (Universal Testing Machine)을 이용하여 신장속도 500mm/분으로 끌어당기고, 파단시의 인장 강도 및 신율을 측정하고 신장율이 300%일 때의 응력으로 촉감을 측정하였다.
우선, 손 모양의 딥 성형틀을 응고제 용액에 담가 딥 성형틀의 표면에 응고제를 부착시킨다. 응고제의 예로서는 바륨 클로라이드, 칼슘 클로라이드, 마그네슘 클로라이드, 징크 클로라이드 및 알루미늄 클로라이드 등과 같음 금속 할라이드(halide); 바륨 나이트레이트, 칼슘 나이트레이트 및 징크 나이트레이트와 같은 질산염; 바륨 아세테이트, 칼슘 아세테이트 및 징크 아세테이트와 같은 아세트산염; 칼슘 설페이트, 마그네슘 설페이트 및 알루미늄 설페이트와 같은 황산염 등이 있다. 이들 중 칼슘 클로라이드와 칼슘 나이트레이트가 바람직하다. 응고제 용액은 상기와 같은 응고제를 물, 알코올 혹은 그 혼합물에 녹인 용액이다. 응고제 용액 내의 응고제의 농도는 보통 5~75중량%, 구체적으로는 15~55중량%, 가장 구체적으로는 18~40중량%이다.
그 다음 상기 응고제를 부착시킨 딥 성형틀을 본 발명의 카르본산 변성 니트릴계 공중합체 라텍스로 만든 딥 성형용 라텍스 조성물에 침지하고, 딥 성형틀을 꺼내어 딥 성형틀에 딥 성형층을 형성시킨다. 뒤이어, 딥 성형틀에 형성된 딥 성형층을 가열 처리하여 카르본산 변성 니트릴계 공중합체 라텍스를 가교시킨다. 가열 처리시에는 물성분이 먼저 증발하고 가교를 통한 가황이 행해진다. 뒤이어, 가열 처리에 의하여 가교한 딥 성형층을 딥 성형틀로부터 벗겨내어 딥 성형품을 얻는다.
본 발명에 따른 방법은 기술적으로 공지된 딥?성형법에 의해 제조할 수 있는 어떤 라텍스 물품에 대해서도 사용할 수 있다. 구체적으로는 수술용 장갑, 검사장갑, 콘돔, 카테터 또는 여러 가지 종류의 산업용 및 가정용 장갑 같은 건강 관리용품에서 선택된 딥 성형 라텍스 물품에 적용할 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
교반기, 온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 아크릴로니트릴 25중량%, 1,4-부타디엔 70중량%, 메타크릴산 5중량%의 단량체 혼합물 100중량부에 대하여 알킬 벤젠 술폰산 나트륨 2.5중량부, t-도데실 머캅탄 0.5중량부 및 이온교환수 140중량부를 투입하고 40℃까지 승온시켰다.
승온한 후 중합개시제인 과황산칼륨 0.25중량부를 넣고 전환율이 95%에 이르면 소디움 디메틸 디티오 카바메이트 0.1중량부를 투입하여 중합을 정지시켰다. 탈취공정을 통하여 미반응 모노머를 제거하고 암모니아수, 산화방지제, 소포제 등을 첨가하여 고형분 농도 45%와 pH 8.5의 카르복실레이티드 아크릴로니트릴-부타디엔계 공중합체 라텍스를 얻었다.
상기 라텍스는 분석결과, 유리전이온도가 -40℃, 평균입경이 130nm로 나타나며, 지금부터 상기에 의해 제조된 라텍스를 ‘라텍스-A’라 칭한다.
다음으로, 교반기, 온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 스티렌 82중량%, 아크릴로니트릴 2중량%, 메틸메타크릴레이트 10중량%, 아크릴산 6중량%의 단량체 혼합물 100중량부에 대하여 알킬 벤젠 술폰산 나트륨 20중량부, t-도데실 머캅탄 0.5중량부 및 이온교환수 300중량부를 투입하고 60℃까지 승온시켰다.
승온한 후 중합개시제인 과황산칼륨 1.0중량부를 넣고 전환율이 99%에 이르면 온도를 낮추어 중합을 정지시켜 카크복실레이티드 스티렌계 공중합체 라텍스를 얻었다.
상기 라텍스는 분석결과, 유리전이온도가 100℃, 평균입경이 42nm로 나타나며 상기에 의해 제조된 라텍스를 ‘라텍스-B’라 칭한다.
라텍스-A와 라텍스-B를 9:1로 혼합하여 라텍스를 제조하였다.
(딥 성형용 조성물의 제조)
상기 라텍스에 3% 수산화칼륨 용액 및 적정량의 2차 증류수를 더하여 고형분 농도 25%, pH 10.0의 딥 성형용 조성물을 얻었다.
(딥 성형품 제조)
22중량부의 칼슘 나이트레이트, 69.5중량부의 증류수, 8중량부의 칼슘 카보네이트, 0.5중량부의 습윤제(wetting agent) (Teric 320 produced by Huntsman Corporation, Australia)를 혼합하여 응고제 용액을 만들었다. 이 용액에 손 모양의 세라믹 몰드를 1분간 담그고, 끄집어 낸 후 80℃에서 3분간 건조하여 응고제를 손 모양의 몰드에 도포하였다.
다음에 응고제가 도포된 몰드를 상기의 딥 성형용 조성물에 1분간 담그고, 끌어올린 뒤, 80℃에서 1분간 건조한 후 물 또는 온수에 3분간 담갔다. 다시 몰드를 80℃에서 3분간 건조한 후 130℃에서 20분간 가교시켰다. 가교된 딥 성형층을 손 모양의 몰드로부터 벗겨내어 장갑 형태의 딥 성형품을 얻었다. 이 딥 성형품의 물성을 표 1에 나타내었다.
실시예 2
교반기, 온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 아크릴로니트릴 35중량%, 1,4-부타디엔 60중량%, 메타크릴산 5중량%의 단량체 혼합물 100중량부에 대하여 알킬 벤젠 술폰산 나트륨 3중량부, t-도데실 머캅탄 0.5중량부 및 이온교환수 140중량부를 투입하고 40℃까지 승온시켰다.
승온한 후 중합개시제인 과황산칼륨 0.3중량부를 넣고 전환율이 95%에 이르면 소디움 디메틸 디티오 카바메이트 0.1중량부를 투입하여 중합을 정지시켰다. 탈취공정을 통하여 미반응 모노머를 제거하고 암모니아수, 산화방지제, 소포제 등을 첨가하여 고형분 농도 45%와 pH 8.5의 카르복실레이티드 아크릴로니트릴-부타디엔계 공중합체 라텍스를 얻었다.
상기 라텍스는 분석결과, 유리전이온도가 -23℃, 평균입경이 130nm로 나타나며, 지금부터 상기에 의해 제조된 라텍스를 ‘라텍스-C’라 칭한다.
다음으로, 교반기, 온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 스티렌 94중량%, 아크릴로니트릴 2중량%, 아크릴산 4중량%의 단량체 혼합물 100중량부에 대하여 알킬 벤젠 술폰산 나트륨 6중량부, t-도데실 머캅탄 0.5중량부 및 이온교환수 300중량부를 투입하고 55℃까지 승온시켰다.
승온한 후 중합개시제인 과황산칼륨 0.8중량부를 넣고 전환율이 99%에 이르면 온도를 낮추어 중합을 정지시켜 카크복실레이티드 스티렌계 공중합체 라텍스를 얻었다.
상기 라텍스는 분석결과, 유리전이온도가 105℃, 평균입경이 67nm로 나타나며 상기에 의해 제조된 라텍스를 ‘라텍스-D’라 칭한다.
라텍스-C와 라텍스-D를 9:1로 혼합하여 라텍스를 제조하였다.
실시예 1에서 마찬가지 방법으로 장갑 형태의 딥 성형품을 제조하였으며 물성을 표 1에 나타내었다.
실시예 3
실시예 1에서 라텍스-A와 라텍스-B를 97:3으로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
실시예 4
실시예 1에서 라텍스-A와 라텍스-B를 85:15로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
실시예 5
실시예 1에서 라텍스-A와 라텍스-D를 9:1로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
실시예 6
실시예 1에서 라텍스-C와 라텍스-B를 9:1로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
비교예 1
실시예 1에서 라텍스-A를 단독으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
비교예 2
실시예 1에서 라텍스-C를 단독으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
실시예 7
실시예 1에서 라텍스-A과 라텍스-B를 8:2로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
실시예 8
실시예 1에서 라텍스-C와 라텍스-D를 8:2로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
비교예 3
교반기, 온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 아크릴로니트릴 35중량%, 1,4-부타디엔 60중량%, 메타크릴산 5중량%의 단량체 혼합물 100중량부에 대하여 알킬 벤젠 술폰산 나트륨 5중량부, t-도데실 머캅탄 0.5중량부 및 이온교환수 140중량부를 투입하고 40℃까지 승온시켰다.
승온한 후 중합개시제인 과황산칼륨 0.4중량부를 넣고 전환율이 95%에 이르면 소디움 디메틸 디티오 카바메이트 0.1중량부를 투입하여 중합을 정지시켰다. 탈취공정을 통하여 미반응 모노머를 제거하고 암모니아수, 산화방지제, 소포제 등을 첨가하여 고형분 농도 45%와 pH 8.5의 카르복실레이티드 아크릴로니트릴-부타디엔계 공중합체 라텍스를 얻었다.
상기 라텍스는 분석결과, 유리전이온도가 -21℃, 평균입경이 80nm로 나타나며, 지금부터 상기에 의해 제조된 라텍스를 ‘라텍스-E’라 칭한다.
다음으로, 교반기, 온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 스티렌 94중량%, 아크릴로니트릴 2중량%, 아크릴산 4중량%의 단량체 혼합물 100중량부에 대하여 알킬 벤젠 술폰산 나트륨 2중량부, t-도데실 머캅탄 0.5중량부 및 이온교환수 300중량부를 투입하고 55℃까지 승온시켰다.
승온한 후 중합개시제인 과황산칼륨 0.3중량부를 넣고 전환율이 99%에 이르면 온도를 낮추어 중합을 정지시켜 카크복실레이티드 스티렌계 공중합체 라텍스를 얻었다.
상기 라텍스는 분석결과, 유리전이온도가 105℃, 평균입경이 99nm로 나타나며 상기에 의해 제조된 라텍스를 ‘라텍스-F’라 칭한다.
라텍스-E와 라텍스-F를 9:1로 혼합하여 라텍스를 제조하였다.
실시예 1에서 마찬가지 방법으로 장갑 형태의 딥 성형품을 제조하였으며 물성을 표 1에 나타내었다.
비교예 4
실시예 1에서 라텍스-C와 라텍스-F를 9:1로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
비교예 5
실시예 1에서 라텍스-E와 라텍스-D를 9:1로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 장갑 형태의 딥 성형품을 제조하였으며, 그 물성은 표 1에 나타내었다.
표 1
인장강도(MPa) 신장률(%) 300%에서의 응력(MPa)
실시예 1 34.8 622 4.8
실시예 2 32.9 630 4.7
실시예 3 30.2 652 4.0
실시예 4 34.5 600 5.0
실시예 5 33.5 614 4.8
실시예 6 35.0 624 4.6
비교예 1 23.8 682 3.1
비교예 2 27.9 659 3.7
실시예 7 28.9 564 6.5
실시예 8 27.0 528 6.2
비교예 3 25.0 538 5.6
비교예 4 26.5 570 4.2
비교예 5 24.0 538 5.8
상기 표 1의 결과를 토대로 보았을 때, 유리전이온도가 낮고 평균입경이 큰 카르본산 변성 스티렌계 라텍스가 혼합된 카르본산 변성 니트릴계 라텍스로 제조된 딥 성형품은 인장강도, 신율 및 응력의 물성이 우수함을 알 수 있다.
본 발명과 같이 유리 전이 온도가 -50℃ 내지 -15℃이고 평균 입경이 90nm 이상인 카르본산 변성 니트릴계 공중합체 라텍스 85~97중량%와 유리 전이 온도가 80℃ 이상이고 평균 입경이 90nm 미만인 카르본산 변성 스티렌계 공중합체 라텍스 3~15중량%를 혼합하여 라텍스를 제조 후 사용함으로써 인장 강도가 우수한 성형품 제조가 가능하다.

Claims (18)

  1. 유리전이온도가 -50℃ 내지 -15℃이고, 평균입경이 90nm 이상 200nm 이하인 카르본산 변성 니트릴계 공중합체 라텍스; 및
    유리전이온도가 80℃ 이상이고 평균입경이 15nm 이상 90nm 미만인 카르본산 변성 스티렌계 공중합체 라텍스;를
    포함하여 이루어지는 것을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  2. 제 1항에 있어서, 상기 유리전이온도가 -50℃ 내지 -15℃이고, 평균입경이 90nm 이상 200nm 이하인 카르본산 변성 니트릴계 공중합체 라텍스와 유리전이온도가 80℃ 이상이고 평균입경이 15nm 이상 90nm 미만인 카르본산 변성 스티렌계 공중합체 라텍스를 97:3 내지 85:15의 중량비로 포함하는 것을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  3. 제 1항에 있어서, 상기 유리전이온도가 -50℃ 내지 -15℃이고, 평균입경이 90nm 이상 200nm 이하인 카르본산 변성 니트릴계 공중합체는 공액 디엔계 단량체 40 내지 89중량%, 에틸렌성 불포화 니트릴계 단량체 10 내지 50중량% 및 에틸렌성 불포화산 단량체 0.1 내지 10중량%를 포함하는 단량체 혼합물이 중합된 것임을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  4. 제 3항에 있어서, 상기 공액 디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔 및 이소프렌으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  5. 제 3항에 있어서, 상기 에틸렌성 불포화 니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 및 α-시아노 에틸 아크릴로니트릴로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  6. 제 3항에 있어서, 상기 에틸렌성 불포화산 단량체는 아크릴산, 메타크릴산, 이타콘산, 말레이산, 푸마르산, 무수말레산, 무수 시트라콘산, 스티렌 술폰산, 푸마르산 모노부틸, 말레인산 모노부틸 및 말레인산 모노-2-히드록시 프로필로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  7. 제 1항에 있어서, 상기 유리전이온도가 80℃ 이상이고 평균입경이 15nm 이상 90nm 미만인 카르본산 변성 스티렌계 공중합체는 방향족 비닐계 단량체 80 내지 99중량%, 에틸렌성 불포화 니트릴계 단량체 1 내지 20중량%, 에틸렌성 불포화산 단량체 0.1 내지 10중량%를 포함하는 단량체 혼합물이 중합된 것임을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  8. 제 7항에 있어서, 상기 방향족 비닐계 단량체는 스티렌 및 알파메틸스티렌으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 딥 성형용 카르본산 변성 스티렌계 공중합체 라텍스.
  9. 제 7항에 있어서, 상기 에틸렌성 불포화 니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 및 α-시아노 에틸 아크릴로니트릴로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  10. 제 7항에 있어서, 상기 에틸렌성 불포화 산 단량체는 아크릴산, 메타크릴산, 이타콘산, 말레이산, 푸마르산, 무수말레산, 무수 시트라콘산, 스티렌 술폰산, 푸마르산 모노부틸, 말레인산 모노부틸 및 말레인산 모노-2-히드록시 프로필로 이루어진 그룹으로부터 선택된 것을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  11. 제 7항에 있어서, 상기 카르본산 변성 니트릴계 공중합체 라텍스는 상기 공중합체를 구성하는 단량체와 공중합 가능한 에틸렌성 불포화 단량체를 전체 공중합체 중 5중량% 이내로 더 포함함을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  12. 제 11항에 있어서, 상기 공중합 가능한 에틸렌성 불포화 단량체는 비닐 방향족 단량체, 플로로알킬비닐 에테르, 에틸렌성 불포화 아미드 단량체, 비공액디엔 단량체, 및 에틸렌성 불포화 카르본산 에스테르 단량체로 이루어진 그룹으로부터 선택된 1종 이상임을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  13. 제 1항에 있어서, 상기 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스는 카르본산 변성 니트릴계 공중합체를 구성하는 총 100중량부에 대하여 유화제 0.3 내지 30중량부, 중합개시제 0.01 내지 2중량부, 분자량 조절제 0.1 내지 2.0중량부를 포함하는 것을 특징으로 하는 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스.
  14. 제 1항 내지 제13항 중 어느 한 항에 따른 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물.
  15. 제 14항에 있어서, 상기 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스는 상기 조성물 중 80~99중량%로 포함됨을 특징으로 하는 딥 성형용 라텍스 조성물.
  16. 제 14항에 있어서, 상기 조성물은 안료, 가황촉매, 충진제, 증점제 및 pH 조절제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 포함함을 특징으로 하는 딥 성형용 라텍스 조성물.
  17. 제 14항 내지 제16항 중 어느 한 항에 따른 딥 성형용 라텍스 조성물을 딥 성형하여 얻어지는 딥 성형품.
  18. 제 17항에 있어서, 상기 딥 성형품은 검사장갑, 콘돔, 카테터, 산업용 장갑, 가정용 장갑 또는 건강 관리용품의 딥 성형 라텍스 물품인 것을 특징으로 하는 딥 성형품.
PCT/KR2012/009540 2011-11-22 2012-11-13 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품 WO2013077585A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280048077.5A CN103930479B (zh) 2011-11-22 2012-11-13 用于浸渍成型的羧酸改性腈共聚物胶乳、包含该胶乳的用于浸渍成型的胶乳组合物以及由其制备的成型制品
JP2014537008A JP5975583B2 (ja) 2011-11-22 2012-11-13 ディップ成形用カルボン酸変性ニトリル系共重合体ラテックス、これを含むディップ成形用ラテックス組成物及びこれから製造された成形品
US14/353,016 US9803070B2 (en) 2011-11-22 2012-11-13 Carboxylic acid modified-nitrile based copolymer latex for dip-forming, latex composition for dip-forming comprising the same, and product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0122144 2011-11-22
KR1020110122144A KR101424856B1 (ko) 2011-11-22 2011-11-22 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품

Publications (1)

Publication Number Publication Date
WO2013077585A1 true WO2013077585A1 (ko) 2013-05-30

Family

ID=48469987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009540 WO2013077585A1 (ko) 2011-11-22 2012-11-13 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품

Country Status (6)

Country Link
US (1) US9803070B2 (ko)
JP (1) JP5975583B2 (ko)
KR (1) KR101424856B1 (ko)
CN (1) CN103930479B (ko)
MY (1) MY171931A (ko)
WO (1) WO2013077585A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532743A (ja) * 2013-08-29 2016-10-20 エルジー・ケム・リミテッド カルボン酸変性ニトリル系共重合体ラテックス組成物及びこれを含むディップ成形品
US10982075B2 (en) 2016-06-01 2021-04-20 Synthomer Sdn. Bhd. Polymer latex for dip-molding applications

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104159959B (zh) * 2013-03-13 2016-01-20 Lg化学株式会社 羧酸改性的基于腈的共聚物组合物以及其浸渍成型制品
KR101582005B1 (ko) * 2013-08-12 2015-12-31 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
AU2014370386C1 (en) 2013-12-23 2021-11-18 Cytec Industries Inc. Polyacrylonitrile (PAN) polymers with low polydispersity index (PDI) and carbon fibers made therefrom
KR101590694B1 (ko) * 2014-03-11 2016-02-01 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 조성물을 포함하는 딥 성형용 조성물 및 이로부터 제조된 딥 성형품
WO2015147010A1 (ja) * 2014-03-28 2015-10-01 日本ゼオン株式会社 ディップ成形用組成物及びディップ成形品
KR101795842B1 (ko) 2014-10-20 2017-11-08 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
PT3230361T (pt) * 2014-12-12 2019-02-26 Synthomer Sdn Bhd Composição de látex polimérico para aplicações de moldagem por imersão
KR101775798B1 (ko) 2014-12-23 2017-09-11 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2016105112A1 (ko) * 2014-12-23 2016-06-30 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
CN105237682A (zh) * 2015-10-19 2016-01-13 杭州蓝诚实业有限公司 一种高性能羧基丁腈胶乳的制备方法
KR101964276B1 (ko) * 2015-10-21 2019-04-01 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
JP6908024B2 (ja) * 2016-03-30 2021-07-21 日本ゼオン株式会社 共重合体ラテックス
KR102081764B1 (ko) * 2016-09-01 2020-02-26 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
KR102081765B1 (ko) 2016-09-07 2020-02-26 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
US10448686B2 (en) * 2016-09-23 2019-10-22 Medline Industries, Inc. Glide-on coating for polymeric gloves
KR102229447B1 (ko) * 2016-12-09 2021-03-18 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 및 이를 포함하는 딥 성형용 라텍스 조성물
PL3555198T3 (pl) * 2016-12-15 2024-01-29 Synthomer Sdn. Bhd. Utwardzalne kompozycje lateksów polimerowych do wytwarzania wyrobów z kauczuku
CN111032765B (zh) * 2017-08-25 2022-04-26 日本瑞翁株式会社 胶乳组合物
KR102405360B1 (ko) * 2017-12-08 2022-06-02 주식회사 엘지화학 딥 성형품, 딥 성형용 라텍스 조성물 및 이들의 제조방법
US11414536B2 (en) * 2018-01-12 2022-08-16 Zeon Corporation Latex composition
KR101920009B1 (ko) 2018-03-08 2018-11-19 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 조성물, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
KR102524378B1 (ko) * 2019-09-27 2023-04-20 주식회사 엘지화학 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품
JP7463759B2 (ja) * 2020-02-18 2024-04-09 日本ゼオン株式会社 積層体および積層体の製造方法
JPWO2021166835A1 (ko) * 2020-02-18 2021-08-26
CN112940184A (zh) * 2021-03-08 2021-06-11 湖北分聚新材料有限公司 高强度手套用丁腈胶乳的制备方法
CN115043981A (zh) * 2021-03-09 2022-09-13 明光博聚瑞新材料科技有限公司 一种用于浸渍成型工艺的共聚物胶乳的制备方法以及由其生产的浸渍成型制品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084514A (en) * 1990-11-14 1992-01-28 Reichhold Chemicals, Inc. Latex gloves with improved donnability
EP0524836A1 (en) * 1991-07-26 1993-01-27 Ortho Pharmaceutical Corporation Elastomeric film products with improved chemical resistance
KR20110038992A (ko) * 2009-10-09 2011-04-15 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물, 및 이로부터 제조된 성형품
KR20110052222A (ko) * 2009-11-12 2011-05-18 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스와 이를 포함하는 딥 성형용 라텍스 조성물
KR20110088795A (ko) * 2010-01-29 2011-08-04 주식회사 엘지화학 수소화된 니트릴계 성형물, 및 이의 수소화 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123015A (ja) * 1999-10-28 2001-05-08 Nippon Zeon Co Ltd ディップ成形用ラテックス及びディップ成形物
EP1634894A1 (en) * 2004-09-09 2006-03-15 PolymerLatex GmbH Polymer latex suitable for the preparation of dip-molded articles
JP2010059230A (ja) 2008-09-01 2010-03-18 Asahi Kasei Chemicals Corp 共重合体ラテックス組成物
KR101126583B1 (ko) 2008-09-26 2012-03-29 주식회사 엘지화학 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
CA2742885A1 (en) 2008-11-25 2010-06-03 Basf Se Process for the preparation of aqueous polymer dispersions from a aromatic compound, a conjugated aliphatic diene and an ethylenically unsaturated carbonitrile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084514A (en) * 1990-11-14 1992-01-28 Reichhold Chemicals, Inc. Latex gloves with improved donnability
EP0524836A1 (en) * 1991-07-26 1993-01-27 Ortho Pharmaceutical Corporation Elastomeric film products with improved chemical resistance
KR20110038992A (ko) * 2009-10-09 2011-04-15 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물, 및 이로부터 제조된 성형품
KR20110052222A (ko) * 2009-11-12 2011-05-18 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스와 이를 포함하는 딥 성형용 라텍스 조성물
KR20110088795A (ko) * 2010-01-29 2011-08-04 주식회사 엘지화학 수소화된 니트릴계 성형물, 및 이의 수소화 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532743A (ja) * 2013-08-29 2016-10-20 エルジー・ケム・リミテッド カルボン酸変性ニトリル系共重合体ラテックス組成物及びこれを含むディップ成形品
US9969861B2 (en) 2013-08-29 2018-05-15 Lg Chem, Ltd. Carboxylic acid-modified nitrile-based copolymer latex composition and dip molded article including the same
US10982075B2 (en) 2016-06-01 2021-04-20 Synthomer Sdn. Bhd. Polymer latex for dip-molding applications

Also Published As

Publication number Publication date
KR20130056505A (ko) 2013-05-30
US9803070B2 (en) 2017-10-31
US20140302265A1 (en) 2014-10-09
CN103930479B (zh) 2016-04-13
JP5975583B2 (ja) 2016-08-23
JP2014530289A (ja) 2014-11-17
KR101424856B1 (ko) 2014-08-04
CN103930479A (zh) 2014-07-16
MY171931A (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2013077585A1 (ko) 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2015030533A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 조성물 및 이를 포함하는 딥 성형품
WO2010035955A2 (ko) 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
WO2010143912A2 (ko) 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
WO2016064173A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2018048121A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2018043984A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2019172539A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 조성물, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2019112312A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2013109033A1 (ko) 딥 성형용 라텍스 조성물
WO2014142424A1 (ko) 카르본산 변성 니트릴계 공중합체 조성물 및 이로부터 제조된 딥 성형품
WO2018048122A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2017090882A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 딥 성형품
WO2016105112A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2017069433A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
KR20120083031A (ko) 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
KR20110038992A (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물, 및 이로부터 제조된 성형품
WO2020116793A1 (ko) 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품
KR20120086927A (ko) 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
KR101192276B1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스와 이를 포함하는 딥 성형용 라텍스 조성물
WO2021201418A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스
KR101431876B1 (ko) 딥 성형용 라텍스 수지 조성물 및 이를 이용한 딥 성형물 제조 방법
WO2014142425A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2017090881A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2019112306A1 (ko) 딥 성형품, 딥 성형용 라텍스 조성물 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014537008

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14353016

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852282

Country of ref document: EP

Kind code of ref document: A1