WO2016064173A1 - 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품 - Google Patents

카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품 Download PDF

Info

Publication number
WO2016064173A1
WO2016064173A1 PCT/KR2015/011100 KR2015011100W WO2016064173A1 WO 2016064173 A1 WO2016064173 A1 WO 2016064173A1 KR 2015011100 W KR2015011100 W KR 2015011100W WO 2016064173 A1 WO2016064173 A1 WO 2016064173A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
weight
meth
dip
acrylate
Prior art date
Application number
PCT/KR2015/011100
Other languages
English (en)
French (fr)
Inventor
차유진
한정수
김지현
여승욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580047795.4A priority Critical patent/CN106661307B/zh
Priority to US15/507,940 priority patent/US10023728B2/en
Priority to JP2017513188A priority patent/JP6360970B2/ja
Publication of WO2016064173A1 publication Critical patent/WO2016064173A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/041Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • A61L29/042Rubbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • A61L31/049Rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/46Acrylonitrile with carboxylic acids, sulfonic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/005Hydrogenated nitrile rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • C08J2313/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2413/00Characterised by the use of rubbers containing carboxyl groups
    • C08J2413/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a latex composition for dip molding comprising two different carboxylic acid-modified nitrile copolymer latexes, and to a dip molded article having excellent durability against sweat and high tensile strength and elongation rate.
  • Rubber gloves used in various fields such as household, food, electronics, and medical fields have usually been made by molding natural rubber.
  • Synthetic rubber latex that does not cause allergic reactions such as rubber gloves made by dip molding latex compositions containing sulfur and vulcanization accelerators to carboxylic acid-modified nitrile copolymer latexes such as acrylic acid-acrylonitrile-butadiene copolymer latex are widely used. It is used.
  • Rubber gloves made by combining sulfur and a vulcanization accelerator have good durability such that sulfur forms crosslinks between polymer chains so that the rubber gloves are not easily broken even if the rubber gloves are used for a long time, and the strength of the rubber gloves can be improved.
  • rubber gloves when rubber gloves are manufactured using sulfur and vulcanization accelerators, they have to undergo a long stirring aging process of 24 hours or more, and thus there is a problem in that productivity is lowered.
  • rubber gloves containing sulfur and vulcanization accelerators as essential ingredients may cause unpleasant odors or discoloration of rubber gloves when worn over a long period of time, resulting in a decrease in product value, causing allergic reactions to some users.
  • skin abnormalities such as tingling.
  • the inventors of the present invention have been studying dip molded articles (eg, rubber gloves) having excellent durability without using a sulfur and vulcanization accelerator and requiring a long stirring aging process.
  • the present invention has been made by confirming that a dip molded product (eg, rubber gloves) is produced from a latex composition for dip molding including a carboxylic acid-modified nitrile copolymer latex having a particle diameter (for example, latex B), and exhibiting excellent tensile strength, elongation and durability. Was completed.
  • Patent Document 1 KR2014-0053859 A
  • Another object of the present invention is to provide a dip molded article having excellent durability against sweat and high tensile strength and elongation rate, prepared from the latex composition for dip molding.
  • the present invention has a) a carboxylic acid-modified nitrile copolymer latex having a glass transition temperature of -30 to -5 and an average particle diameter of 100 nm to 200 nm, comprising a reactive compound; And b) a carboxylic acid-modified nitrile copolymer latex having a glass transition temperature of -30 to -15 and an average particle diameter of 100 nm to 200 nm.
  • the present invention also provides a dip molded article prepared from the latex composition for dip molding.
  • the latex composition for dip molding according to the present invention may include both two different carboxylic acid-modified nitrile copolymer latexes in a weight ratio of 3: 7 to 8: 2, thereby providing excellent tensile strength, elongation, stress, and durability. .
  • the tensile strength, elongation rate, stress and durability of the dip molded article manufactured from the latex composition for dip molding may be excellent. Accordingly, the carboxylic acid-modified nitrile copolymer latex and dip molded articles using the same may be used in industries that require the same. For example, it can be easily applied to the rubber gloves industry.
  • the present invention does not include sulfur and vulcanization accelerators, and does not require a long stirring aging process without causing an allergic reaction, and has excellent tensile strength, elongation rate, stress (stress at 300% elongation and 500%) and durability. It provides a latex composition for dip molding comprising different carboxylic acid-modified nitrile copolymer latex.
  • the latex composition for dip molding according to an embodiment of the present invention has a) a glass transition temperature of -30 to -5 and an average particle diameter of 100 nm to 200 nm, and a carboxylic acid-modified nitrile copolymer including a reactive compound.
  • Latex (hereinafter referred to as latex A); And b) a carboxylic acid-modified nitrile copolymer latex having a glass transition temperature of -30 to -15 and an average particle diameter of 100 nm to 200 nm (hereinafter, latex B).
  • glass transition temperature (Tg) used in the present invention refers to a point in time at which molecules in the latex become active and move due to temperature, that is, a point in time when the latex is changed to an elastic state before it changes from a solid phase to a liquid phase. do.
  • the latex A may have a glass transition temperature of ⁇ 30 to ⁇ 5 ° C. and an average particle diameter of 100 nm to 200 nm.
  • the latex A has a glass transition temperature of ⁇ 30 to ⁇ 10 ° C. Can be represented. If the glass transition temperature is lower than ⁇ 30 ° C., the tensile strength of the dip molded product manufactured from the dip molding latex composition including the same may decrease significantly due to stickiness or stickiness, and the glass transition temperature may be-. When the temperature is higher than 5 ° C., a problem may occur in a dip molded product manufactured from a latex composition for dip molding including the same.
  • a process time may be increased when manufacturing a dip molded product from a latex composition for deep molding including the same, thereby decreasing productivity and decreasing tensile strength of the manufactured dip molded product. Can be.
  • the latex B may have a glass transition temperature of ⁇ 30 to ⁇ 15 ° C. and an average particle diameter of 100 nm to 200 nm.
  • the latex B has a glass transition temperature of ⁇ 25 to ⁇ 20 ° C. Can be represented. If the glass transition temperature is lower than ⁇ 30 ° C., the tensile strength of the dip molded product prepared from the dip molding latex composition including the same may be significantly reduced or sticky, resulting in lower fit. In this case, the elongation rate of the dip molded article manufactured from the latex composition for dip molding including the same may be lowered, thereby reducing the wearing comfort.
  • the average particle diameter of the latex B is greater than 200 nm, it may be difficult to achieve uniform mixing with the latex A, so that the tensile strength of the dip molded product manufactured from the latex composition for dip molding including the same may be reduced.
  • dip molding latex composition is characterized in that it comprises the latex A and latex B in a weight ratio of 3: 7 to 8: 2.
  • the weight ratio of the latex A is greater than 8 and the weight ratio of the latex B is less than 2, the effect of improving the tensile strength of the dip molded article manufactured from the latex composition for dip molding including the same may be insignificant.
  • the weight ratio is less than 3 and the weight ratio of the latex B is greater than 7, elongation and durability of the dip molded article prepared from the latex composition for dip molding including the same may be drastically lowered.
  • the carboxylic acid-modified nitrile copolymer latex according to an embodiment of the present invention includes 0.1 parts by weight to 5 parts by weight of a reactive compound based on 100 parts by weight of the monomer mixture, and the monomer mixture is conjugated diene. 40% to 89% by weight of the monomer; 10 wt% to 50 wt% of an ethylenically unsaturated nitrile monomer; And 0.1 wt% to 10 wt% of an ethylenically unsaturated acid monomer.
  • the conjugated diene monomer may be included in an amount of 40 wt% to 89 wt%, preferably 45 wt% to 80 wt%, and more preferably 50 wt% to 78 wt%. If the conjugated diene-based monomer is included in less than 40% by weight, the dip molded product prepared from the latex composition for dip molding comprising the same may be hard and the wearing comfort may be lowered, and if included in excess of 89% by weight The oil resistance of the dip molded article manufactured from the latex composition for dip molding may be worsened and the tensile strength may be lowered.
  • the conjugated diene monomer is not particularly limited, but for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and isoprene It may be one or more selected from the group consisting of.
  • the conjugated diene monomer may be 1,3-butadiene, isoprene or a combination thereof, and more preferably 1,3-butadiene.
  • the ethylenically unsaturated nitrile monomer may be included in an amount of 10 wt% to 50 wt%, preferably 15 wt% to 45 wt%, and more preferably 20 wt% to 40 wt%. . If the ethylenically unsaturated nitrile monomer is included in less than 10% by weight, the oil resistance of the dip molded product prepared from the latex composition for dip molding including the same may be worsened and the tensile strength may be lowered, exceeding 50% by weight. When included, the dip molded article manufactured from the latex composition for dip molding including the same may be hard and the wearing comfort may be reduced.
  • the ethylenically unsaturated nitrile monomer is not particularly limited, but may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloronitrile and ⁇ -cyano ethyl acrylonitrile, for example. have.
  • acrylonitrile, methacrylonitrile or combinations thereof more preferably acrylonitrile.
  • the ethylenically unsaturated acid monomer may be included in an amount of 0.1 wt% to 10 wt%, preferably 0.5 wt% to 9 wt%, and more preferably 1 wt% to 8 wt%. If the ethylenically unsaturated acid monomer is included in less than 0.1% by weight, the tensile strength of the dip molded product prepared from the latex composition for dip molding including the same may be lowered. The dip molded article manufactured from the latex composition for dip molding may be hardened and the fit may be reduced.
  • the ethylenically unsaturated acid monomer may be an ethylenically unsaturated monomer having a carboxyl group, a sulfonic acid group or an acid anhydride group.
  • the ethylenically unsaturated acid monomers are ethylenically unsaturated carboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid; Polycarboxylic acid anhydrides such as maleic anhydride and citraconic anhydride; Ethylenically unsaturated sulfonic acid monomers such as styrene sulfonic acid; It may be one or more selected from the group consisting of ethylenically unsaturated polycarboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate, mono-2-hydroxy propyl maleate and the like. Preferably methacrylic acid.
  • the reactive compound may be included as one component of the latex A to improve the tensile strength and durability of the dip molded product prepared from the latex composition for dip molding including the latex A without addition of sulfur and a vulcanization accelerator. As described above, it may be included in an amount of 0.1 parts by weight to 5 parts by weight, and preferably 0.5 parts by weight to 3 parts by weight, based on 100 parts by weight of the monomer mixture. If the reactive compound is included in less than 0.1 part by weight, the tensile strength of the finally manufactured dip molded product may be lowered. If it is included in an amount of more than 5 parts by weight, the touch and fit of the finally manufactured dip molded product may be reduced. Can be.
  • the reactive compound may be a compound having at least one reactive group selected from the group consisting of a vinyl group, an epoxy group and a glycidyl group.
  • the reactive compound may be a poly (tetramethylene ether) glycol diglycidyl ether compound, a 3-alkoxy-2-hydroxypropyl acrylate compound having 12 to 13 carbon atoms, and a propylene glycol polybutylene glycol monoacrylate compound. It may be at least one selected from the group consisting of.
  • the reactive compound may have a weight average molecular weight of 250 or more, preferably 250 to 1000. If the weight average molecular weight of the reactive compound is less than 250, the touch, fit and tensile strength of the finally manufactured dip molded product may be lowered.
  • the latex A according to the present invention may further include 20% by weight or less of ethylenically unsaturated monomer, preferably 0.1% to 20% by weight of ethylenically unsaturated monomer may be further included.
  • the ethylenically unsaturated monomer is a monomer copolymerizable with the ethylenically unsaturated nitrile monomer and the ethylenically unsaturated acid monomer included in the latex A, but is not particularly limited, such as styrene, alkyl styrene, vinyl naphthalene and fluoroethyl vinyl ether. Fluoroalkylvinyl ethers; (Meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylol (meth) acrylamide, N-methoxy methyl (meth) acrylamide, N-propoxy methyl (meth) acrylamide, etc.
  • Ethylenically unsaturated amide monomers such as vinyl pyridine, vinyl norbornene, dicyclo pentadiene and 1,4-hexadiene; Methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, dibutyl maleate, difumaric acid Butyl, diethyl maleate, methoxy methyl (meth) acrylate, ethoxy ethyl (meth) acrylate, methoxy ethoxy ethyl (meth) acrylate, cyano methyl (meth) acrylate, 2-cyano ethyl (meth) acrylate, (Meth) acrylic acid 1-cyan
  • the latex A is an additive such as a molecular weight regulator, an emulsifier, a polymerization initiator, an activator, and the like in a reactant including a monomer mixture including a conjugated diene monomer, an ethylenically unsaturated nitrile monomer, and an ethylenically unsaturated acid monomer and a reactive compound. It may be prepared by the emulsion polymerization by further comprising.
  • the emulsion polymerization is not particularly limited and may be carried out by a method commonly known in the art, and a monomer mixture comprising a conjugated diene monomer, an ethylenically unsaturated nitrile monomer and an ethylenically unsaturated acid monomer included in the latex A.
  • Reactants and additives containing a and a reactive compound in a batch at a time, a method of continuously adding the reactant, or a portion of the reactant may be added in a batch and the remaining reactants may be continuously added. .
  • the polymerization temperature is not particularly limited, but may be in a temperature range of 10 to 90 ° C, and preferably 25 to 75 ° C.
  • the polymerization stop time may be a time when the polymerization conversion is 90% or more, preferably 93% or more.
  • the emulsion polymerization may remove the unreacted material after the polymerization stop, and adjust the solid content concentration and pH to obtain a latex A.
  • the emulsifier used in the emulsion polymerization is not particularly limited and may be those commonly known in the art, but for example, anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, and the like may be used. Specifically, at least one anionic surfactant selected from the group consisting of alkylbenzene sulfonates, aliphatic sulfonates, sulfuric ester salts of higher alcohols, ⁇ -olefin sulfonates and alkyl ether sulfate ester salts may be preferred.
  • the amount of the emulsifier is not particularly limited and may be appropriately adjusted by those skilled in the art.
  • the emulsifier may be used in an amount of 0.3 parts by weight to 10 parts by weight based on 100 parts by weight of the total monomer mixture. Preferably 0.8 to 9 parts by weight, more preferably 1.5 to 6 parts by weight can be used.
  • the amount of the emulsifier is less than 0.3 parts by weight, the stability may be lowered during emulsion polymerization, and when used in excess of 10 parts by weight, foaming increases during emulsion polymerization, so that latex compositions for dip molding including latex A including the same It may not be easy when manufacturing a dip molded article from the.
  • the polymerization initiator is not particularly limited and may be conventionally known in the art, for example, a radical initiator may be used.
  • the radical initiator include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-mentanehydro peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide Organic peroxides such as oxides, 3,5,5-trimethylhexanol peroxide and t-butyl peroxy isobutylate; It may be at least one selected from the group consisting of azobis isobutyronitrile, azobis-2,4-dimethylbareronitrile, azobis
  • the amount of the polymerization initiator is not particularly limited and may be appropriately adjusted by those skilled in the art.
  • the polymerization initiator may be used in an amount of 0.01 to 2 parts by weight, preferably 0.02 to 1.5 parts by weight, based on 100 parts by weight of the monomer mixture. .
  • the polymerization initiator may be used in less than 0.01 parts by weight, it may be difficult to manufacture the latex A by lowering the polymerization rate, and when used in excess of 2 parts by weight, the polymerization rate may be too fast to control the degree of polymerization.
  • the activator is not particularly limited and may be one commonly known in the art, but for example, sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate, dextrose, sodium pyrrolate and sodium sulfite One or more selected from the group can be used.
  • the molecular weight modifier is not particularly limited and may be one commonly known in the art, for example, mercaptans such as ⁇ -methylstyrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; Halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide; Sulfur-containing compounds, such as tetraethyl thiuram disulfide, dipentamethylene thiuram disulfide, and diisopropyl chianthogen disulfide, etc. are mentioned.
  • mercaptans such as ⁇ -methylstyrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan
  • Halogenated hydrocarbons such as carbon tetrachlor
  • the said molecular weight modifier can be used individually by 1 type or in combination of 2 or more types. It may preferably be mercaptans, in particular t-dodecyl mercaptan.
  • the amount of the molecular weight modifier is not particularly limited and may be appropriately adjusted by those skilled in the art, but for example, 0.1 part by weight to 2 parts by weight, preferably 0.2 part by weight to 1.5 parts by weight, based on 100 parts by weight of the monomer mixture. More preferably, it may be 0.3 part by weight to 1 part by weight.
  • the physical properties of the latex A may be lowered as a result of lowering the properties of the latex A, and when used in excess of 2 parts by weight, the polymerization stability may be lowered. .
  • additives such as chelating agents, dispersing agents, pH adjusting agents, deoxygenating agents, particle size adjusting agents, antioxidants, and oxygen trapping agents may be further included as necessary.
  • Carbonic acid-modified nitrile copolymer latex (latex B) is 40% to 89% by weight of the conjugated diene monomer; 10 wt% to 50 wt% of an ethylenically unsaturated nitrile monomer; And 0.1 wt% to 10 wt% of an ethylenically unsaturated acid monomer.
  • the conjugated diene monomer may be included in an amount of 40 wt% to 89 wt%, preferably 45 wt% to 80 wt%, and more preferably 50 wt% to 78 wt%. If the conjugated diene-based monomer is included in less than 40% by weight, the dip molded product prepared from the latex composition for dip molding comprising the same may be hard and the wearing comfort may be lowered, and if included in excess of 89% by weight The oil resistance of the dip molded article manufactured from the latex composition for dip molding may be worsened and the tensile strength may be lowered.
  • the conjugated diene-based monomer may be the same as or included in the conjugated diene-based monomer described above in the latex A.
  • the ethylenically unsaturated nitrile monomer may be included in an amount of 10 wt% to 50 wt%, preferably 15 wt% to 45 wt%, and more preferably 20 wt% to 40 wt%. . If the ethylenically unsaturated nitrile monomer is included in less than 10% by weight, the oil resistance of the dip molded product prepared from the latex composition for dip molding including the same may be worsened and the tensile strength may be lowered, exceeding 50% by weight. When included, the dip molded article manufactured from the latex composition for dip molding including the same may be hard and the wearing comfort may be reduced.
  • the ethylenically unsaturated nitrile monomer may be the same as or included in the ethylenically unsaturated nitrile monomer described above in Latex A.
  • the ethylenically unsaturated acid monomer may be included in an amount of 0.1 wt% to 10 wt%, preferably 0.5 wt% to 9 wt%, and more preferably 1 wt% to 8 wt%. If the ethylenically unsaturated acid monomer is included in less than 0.1% by weight, the tensile strength of the dip molded product prepared from the latex composition for dip molding including the same may be lowered. The dip molded article manufactured from the latex composition for dip molding may be hardened and the fit may be reduced.
  • the ethylenic unsaturated acid monomer may be the same as or described above in the latex A.
  • the latex B may further include 20% by weight or less of ethylenically unsaturated monomer, like the latex A, and preferably may further include 0.1% to 20% by weight of ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer may be the same as or included in the ethylenically unsaturated monomer described above in Latex A.
  • the latex B can be prepared by emulsion polymerization as in the latex A, wherein the conjugated diene monomer, ethylenically unsaturated nitrile monomer and ethylenically unsaturated acid monomer contained in the latex B, molecular weight regulator, emulsifier, polymerization initiator It may be prepared by emulsion polymerization by further including an additive such as an activator.
  • the emulsion polymerization is not particularly limited and can be carried out by a method commonly known in the art, and a monomer mixture comprising a conjugated diene monomer, an ethylenically unsaturated nitrile monomer and an ethylenically unsaturated acid monomer included in the latex B. And a method in which additives are collectively added to the polymerization reactor at once, a method of continuously adding the monomer mixture, or a portion of the monomer mixture may be added in a batch and the remaining monomer mixture may be continuously added.
  • the polymerization temperature is not particularly limited, but may be in a temperature range of 10 to 90 ° C, and preferably 25 to 75 ° C.
  • the polymerization stop time may be a time when the polymerization conversion is 90% or more, preferably 93% or more.
  • the emulsion polymerization may remove the unreacted material after the polymerization is stopped and adjust the solid content concentration and pH to obtain latex B.
  • the amount of the emulsifier is not particularly limited and may be appropriately adjusted by those skilled in the art.
  • the emulsifier may be used in an amount of 0.3 parts by weight to 10 parts by weight based on 100 parts by weight of the monomer mixture. Preferably 0.8 to 9 parts by weight, more preferably 1.5 to 6 parts by weight can be used.
  • the amount of the emulsifier is less than 0.3 parts by weight, the stability may be lowered during emulsion polymerization, and when used in excess of 10 parts by weight, foaming increases during emulsion polymerization, so that latex composition for dip molding including latex B including the same It may not be easy when manufacturing a dip molded article from the.
  • the emulsifier may be the same as or included in the emulsifier described above in Latex A.
  • the amount of the polymerization initiator is not particularly limited and may be appropriately adjusted by those skilled in the art.
  • the polymerization initiator may be used in an amount of 0.01 to 2 parts by weight, preferably 0.02 to 1.5 parts by weight, based on 100 parts by weight of the monomer mixture. .
  • the polymerization initiator may be used in less than 0.01 parts by weight, it may be difficult to manufacture the latex B by lowering the polymerization rate, and when used in excess of 2 parts by weight, the polymerization rate may be too fast to control the degree of polymerization.
  • the polymerization initiator may be the same as or included in the polymerization initiator described above in latex A.
  • the amount of the molecular weight modifier is not particularly limited and may be appropriately adjusted by those skilled in the art, but for example, 0.1 part by weight to 2 parts by weight, preferably 0.2 part by weight to 1.5 parts by weight, based on 100 parts by weight of the monomer mixture. More preferably, it may be 0.3 part by weight to 1 part by weight.
  • the molecular weight modifier is used in less than 0.1 parts by weight, the physical properties of the latex B may be lowered as a result of the physical properties of the latex B, as a result, the polymerization stability may be lowered when used in excess of 2 parts by weight .
  • the molecular weight regulator may be the same as or included in the above-described molecular weight regulator in the latex A.
  • the activator may be the same as or included in the activator described above in the latex A.
  • additives such as chelating agents, dispersing agents, pH adjusting agents, deoxygenating agents, particle size adjusting agents, anti-aging agents and oxygen trapping agents may be further included.
  • the latex composition for dip molding comprising a carboxylic acid-modified nitrile copolymer latex (latex A) comprising the reactive compound and a carboxylic acid-modified nitrile copolymer latex (latex B) not containing the reactive compound according to the present invention It may be desirable to include the latex A and latex B in an amount of 80 wt% to 99 wt% based on the total weight of the composition. That is, the latex composition for dip molding includes the latex A and latex B, and the total content of latex A and latex B included in the dip molding latex composition is 80% by weight relative to the total weight of the latex composition for dip molding To 99% by weight. Preferably from 85% to 98% by weight, more preferably from 88% to 97% by weight.
  • the latex composition for dip molding may further include at least one additive selected from the group consisting of an ionic crosslinking agent, a pigment, a thickener and a pH adjusting agent in addition to the latex A and the latex B described above.
  • the solid concentration of the latex composition for dip molding may be 10% to 40% by weight, preferably 15% to 35% by weight, more preferably 15% to 30% by weight.
  • the pH of the latex composition for dip molding may be 8 to 12, preferably 9 to 11, more preferably 9.3 to 10.5.
  • the present invention provides a dip molded article prepared from the latex composition for dip molding.
  • the dip molded article according to an embodiment of the present invention has a nitrogen content of 6.69 wt% to 8.94 wt% based on the total weight of the dip molded article.
  • the dip molded article according to an embodiment of the present invention is not particularly limited and may be manufactured by a method commonly known in the art, such as a direct dipping method, an anode adhesion dipping method, and a Teague adhesion dipping method. It can manufacture using a method such as a paper method.
  • the positive electrode adhesion dipping method may be used, and when the dip molded product is manufactured using the positive electrode adhesion dipping method, there is an advantage in that a dip molded product having a uniform thickness may be manufactured.
  • the dip molded article is a step of dipping a hand-shaped dip molding die in a coagulant solution to attach a coagulant to the surface of the dip molding die (step a); Forming a dip molding layer by dipping the dip molding mold having the coagulant adhered to the surface in the latex composition for dip molding; And it may be prepared through the step of cross-linking the latex resin by heating the dip molding layer.
  • the step a is a step for attaching the coagulant to the hand-shaped dip molding surface, but is not particularly limited, soaking the dip molding mold in the coagulant solution for more than 1 minute, can be carried out by drying at 70 to 150 °C have.
  • the coagulant solution is a solution in which a coagulant is dissolved in water, alcohol or a mixture thereof.
  • the coagulant solution may generally include 5 wt% to 50 wt% coagulant, and may preferably include 10 wt% to 40 wt% coagulant. have.
  • the coagulant is not particularly limited but includes, for example, metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; Nitrates such as barium nitrate, calcium nitrate and zinc nitrate; Acetates such as barium acetate, calcium acetate and zinc acetate; Sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate, and the like.
  • metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride
  • Nitrates such as barium nitrate, calcium nitrate and zinc nitrate
  • Acetates such as barium acetate, calcium acetate and zinc acetate
  • Sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate, and the like.
  • calcium chloride, calcium nitrate or a combination thereof Preferably calcium chloride, calcium nit
  • the step b is a step for forming a dip molding layer from the latex composition for a dip molding according to the present invention in the dip molding mold to which the coagulant is attached, the dip molding mold to which the flocculant is attached, the latex composition for dip molding
  • the dip molding layer can be formed by immersing in a 1 minute or more and then taken out.
  • Step c is a step for obtaining a dip molded product by crosslinking a latex resin to the dip molded layer, and may be performed by heating the dip molded layer.
  • the heat treatment is not particularly limited, but may be performed by, for example, primary heat treatment at 70 to 150 ° C. for 1 minute to 10 minutes, and then secondary heat treatment at 100 to 180 ° C. for 5 minutes to 30 minutes.
  • the water component is first evaporated in the dip molding layer, and the dip molding may be obtained by curing of the latex resin of the dip molding layer through crosslinking.
  • the dip molded article is not particularly limited and may be applied to various latex industries, but for example, the dip molded article may be applied to at least one molded article selected from the group consisting of inspection gloves, condoms, catheters, industrial gloves, household gloves, and health care products. .
  • a carboxylic acid-modified nitrile copolymer latex was prepared in the same manner as in Preparation Example 1 except that 31.5% by weight of acrylonitrile, 62.5% by weight of 1,3-butadiene and 6% by weight of methacrylic acid were used. Latex A-2) was prepared.
  • a carboxylic acid-modified nitrile copolymer latex (latex A-3) was prepared in the same manner as in Preparation Example 1.
  • a carboxylic acid-modified nitrile copolymer latex (latex A-4) was prepared in the same manner as in Preparation Example 1.
  • a carboxylic acid-modified nitrile copolymer latex (latex A-5) was prepared in the same manner as in Preparation Example 1.
  • a carboxylic acid-modified nitrile copolymer latex (latex A-6) was prepared in the same manner as in Preparation Example 1.
  • the glass transition temperature was measured according to a conventional method using a differential scanning calorimetry (Differential Scanning Calotimetry), the average particle diameter was measured according to a conventional method using a laser scattering analyzer (Nicomp).
  • the gel content of each latex was dried for at least 48 hours at 25 °C, 60% humidity conditions to prepare a polymer film and finely cut the weight (W 0 ) and then put into a # 200 mesh barrel, 200 ml of Submerged in methyl ethyl kecon (MEK) solution for 48 hours, taken out and dried in an oven of 130 to measure the weight (W 1 ).
  • the ratio of the weight of the polymer film (W 0 ) and the weight of the polymer film (W 1 ) after drying in the oven was obtained as a percentage.
  • the surface tension was obtained by measuring the force required to detach the platinum summon from the sample liquid when the platinum summon was hung horizontally using a surface tension meter to contact each sample liquid (latex) and pulled. ),
  • Each polymer film obtained by drying each latex at 130 ° C. was chopped and immersed in a tetrahydrofuran (THF) solution to filter out the dissolved liquid, and compared with a standard sample using GPC (gel permeation chromatography), relative molecular weight. was obtained by measuring.
  • THF tetrahydrofuran
  • Carbonic acid modified nitrile copolymer latex containing the reactive compound prepared in Preparation Example 1 (latex A-1) and carboxylic acid modified nitrile copolymer latex containing no reactive compound prepared in Preparation Example 7 Latex B) was prepared by mixing at a weight ratio of 5: 5, and 2.0 parts by weight of 1.25% potassium hydroxide solution, an appropriate amount of distilled water, 1 part by weight of titanium oxide and 1.5 parts by weight of zinc oxide were added and mixed to obtain a solid content of 15% and pH 9.8
  • a latex composition for dip molding was prepared. In this case, the parts by weight are shown based on 100 parts by weight of the latex composition for dip molding.
  • a coagulant solution was prepared by mixing 12 parts by weight of calcium nitrate, 87.9 parts by weight of midstream and 0.1 part by weight of humectant (Teric 320, Huntsman Corporation, Australia). At this time, parts by weight are based on 100 parts by weight of the coagulant solution.
  • the hand-shaped ceramic mold was immersed in the coagulant solution for 10 seconds, taken out, and dried at 80 ° C. for 4 minutes to apply a coagulant to the hand-shaped ceramic mold.
  • the mold to which the coagulant was applied was immersed in the latex composition for dip molding for 10 seconds, taken out, dried at 80 ° C. for 2 minutes, and then soaked in water for 1 minute.
  • the mold was dried at 80 ° C. for 3 minutes and crosslinked at 120 ° C. for 20 minutes.
  • the crosslinked dip molding layer was peeled off from the hand-shaped mold to obtain a dip molded article in the form of a glove.
  • the carboxylic acid-modified nitrile copolymer latex (latex A-2) prepared in Preparation Example 2 was used instead of the carboxylic acid-modified nitrile copolymer latex prepared in Preparation Example 1 (latex A-2).
  • a latex composition for dip molding and a dip molded article were manufactured in the same manner as in Example 1.
  • a carboxylic acid-modified nitrile-based copolymer latex (latex A-1) prepared in Preparation Example 1 and a carboxylic acid-modified nitrile-based copolymer latex (latex A-3) prepared in Preparation Example 3 and Example A latex composition for dip molding and a dip molded product were prepared in the same manner as in Example 1, except that the carboxylic acid-modified nitrile copolymer latex prepared in 7 was mixed in a weight ratio of 6: 4. .
  • a carboxylic acid-modified nitrile-based copolymer latex prepared in Preparation Example 1 (latex A-1) without using the carboxylic acid-modified nitrile-based copolymer latex prepared in Preparation Example 4 (latex A-4) and Preparation Example A latex composition for dip molding and a dip molded product were prepared in the same manner as in Example 1, except that the carboxylic acid-modified nitrile copolymer latex prepared in 7 (latex B) was mixed in a weight ratio of 6: 4. .
  • a carboxylic acid-modified nitrile-based copolymer latex (latex A-1) prepared in Preparation Example 1 and a carboxylic acid-modified nitrile-based copolymer latex (latex A-5) prepared in Preparation Example 5, and Preparation Example A latex composition for dip molding and a dip molded product were prepared in the same manner as in Example 1, except that the carboxylic acid-modified nitrile copolymer latex prepared in 7 (latex B) was mixed in a weight ratio of 6: 4. .
  • a carboxylic acid-modified nitrile-based copolymer latex (latex A-1) prepared in Preparation Example 1 and a carboxylic acid-modified nitrile-based copolymer latex (latex A-5) prepared in Preparation Example 5, and Preparation Example A latex composition for dip molding and a dip molded product were prepared in the same manner as in Example 1, except that the carboxylic acid-modified nitrile copolymer latex prepared in 7 was mixed in a weight ratio of 4: 6. .
  • a carboxylic acid-modified nitrile-based copolymer latex (latex A-1) prepared in Preparation Example 1 and a carboxylic acid-modified nitrile-based copolymer latex (latex A-5) prepared in Preparation Example 5, and Preparation Example A latex composition for dip molding and a dip molded product were manufactured in the same manner as in Example 1, except that the carboxylic acid-modified nitrile copolymer latex prepared in 7 (latex B) was mixed at a weight ratio of 3: 7.
  • a carboxylic acid-modified nitrile-based copolymer latex (latex A-1) prepared in Preparation Example 1 and a carboxylic acid-modified nitrile-based copolymer latex (latex A-6) prepared in Preparation Example 6 and Preparation Example A latex composition for dip molding and a dip molded product were prepared in the same manner as in Example 1, except that the carboxylic acid-modified nitrile copolymer latex prepared in 7 (latex B) was mixed at a weight ratio of 8: 2.
  • the carboxylic acid-modified nitrile copolymer latex prepared in Preparation Example 5 (latex A-5) and the carboxylic acid-modified nitrile copolymer latex prepared in Preparation Example 7 (latex B) were mixed at a weight ratio of 2: 8.
  • a latex composition for dip molding and a dip molded article were manufactured in the same manner as in Example 8 except for the use.
  • the carboxylic acid-modified nitrile copolymer latex prepared in Preparation Example 6 (latex A-6) and the carboxylic acid-modified nitrile copolymer latex prepared in Preparation Example 7 (latex B) were mixed at a weight ratio of 9: 1.
  • a latex composition for dip molding and a dip molded article were manufactured in the same manner as in Example 9 except for using the same.
  • Each dip molded product is manufactured in a dumbbell-shaped specimen according to ASTM D-412, and the cross head speed is 500 using a UTM (Universal Testing Machine) device (Model: 4466, Instron) according to ASTM D638. After pulling at mm / min, the points at which each specimen was cut were measured.
  • Max load (N) represents the external force applied to the specimen at the time when the specimen is cut, tensile strength was calculated by the following equation (1).
  • the elongation (%) was calculated by the following equation (2), the stress at 300% (MPa) is the tensile strength when the specimen is stretched three times the initial length, the stress (MPa) at 500% is Tensile strength at the time of elongation 5 times the initial length was measured.
  • the specimens After cutting each dip molded product into S-shaped specimens, the specimens are immersed in an artificially created sweat solution, and the specimens are cut by repeating the reduction and increasing the ratio to 200% of the initial length at a rate of once every 2 seconds. The number of times up to the time point was measured.
  • Example 1 14.1 30.0 516.4 6.6 26.03 325
  • Example 2 13.2 28.4 498.5 6.8 28.21 447
  • Example 3 13.1 30.8 465.9 7.2 - 520
  • Example 4 6.9 15.5 539.0 4.5 11.37 894
  • Example 5 7.2 16.1 533.9 4.8 12.90 916
  • Example 6 8.9 19.1 522.6 5.6 16.52 277
  • Example 7 9.1 20.5 527.0 7.0 23.87 208
  • Example 8 12.6 28.7 524.9 6.9 27.1 214
  • Example 9 10.9 24.4 409.9 9.8 - 1444
  • Comparative Example 2 9.2 20.9 405.5 9.3 - 171
  • Comparative Example 3 9.7 22.3 404.0 9.5 - 111
  • Comparative Example 4 8.2 17.1 548.4 4.8 12.19 199
  • the dip molded articles of Examples 1 to 9 prepared from the latex composition for dip molding comprising two different carboxylic acid-modified nitrile copolymer latex according to the present invention is Comparative Examples 1 to Compared to the dip molded product of Comparative Example 4, it was excellent in Max load, tensile strength, elongation rate, stress (at 300% and 500%) and durability.
  • the dip molded articles of Examples 1 to 9 prepared from a latex composition for dip molding comprising two different carboxylic acid modified nitrile copolymer latexes according to the present invention are a kind of carboxylic acid modified nitrile copolymer latex.
  • Example 8 and Example 9 showed all excellent properties in the Max load, tensile strength, elongation rate, stress and durability, Comparative Examples 3 and 4 did not balance the characteristics.
  • the latex composition for dip molding according to the present invention can form a dip molded article having properties excellent in both tensile strength, elongation, stress and durability by including two different carboxylic acid-modified nitrile copolymer latexes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Gloves (AREA)

Abstract

본 발명은 2종의 서로 상이한 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 땀에 대한 내구성이 우수하며 인장강도 및 신장율이 높은 딥 성형품에 관한 것이다. 이에 따른, 딥 성형용 라텍스 조성물은 인장강도, 신장율, 응력 및 내구성이 모두 우수할 수 있어 이를 필요로 하는 산업, 예컨대 고무장갑산업 등에 용이하게 적용할 수 있다.

Description

카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
관련출원과의 상호인용
본 출원은 2014년 10월 20일자 한국 특허 출원 제10-2014-0141775호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 2종의 서로 상이한 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 땀에 대한 내구성이 우수하며 인장강도 및 신장율이 높은 딥 성형품에 관한 것이다.
가사, 식품 산업, 전자 산업, 의료 분야 등 다양한 분야에서 사용되는 고무장갑은 통상 천연고무를 성형하여 만들어 왔다. 그러나, 최근 천연고무에 함유된 천연 단백질로 인한 알러지 문제와 불안정한 수급 문제로 인하여 그 사용이 제한되고 있다. 이에 알러지 반응을 일으키지 않는 합성 고무 라텍스, 예컨대 아크릴산-아크릴로니트릴-부타디엔 공중합체 라텍스 등의 카르본산 변성 니트릴계 공중합체 라텍스에 황 및 가황 촉진제를 배합한 라텍스 조성물을 딥 성형하여 만든 고무장갑이 널리 사용되고 있다. 이러한 황 및 가황 촉진제를 배합하여 만들어진 고무장갑은 황이 고분자 사슬간에 가교결합을 형성하여 고무장갑을 오랫동안 사용하더라도 쉽게 파손되지 않을 정도로 내구성이 좋아지고, 고무장갑의 강도가 향상될 수 있다.
그러나, 황 및 가황 촉진제를 이용하여 고무장갑을 제조할 경우에는 24시간 이상의 긴 교반숙성 공정을 거쳐야 하며, 이로 인하여 생산성이 저하되는 문제가 있다. 또한, 황 및 가황 촉진제를 필수 성분으로서 배합한 고무장갑은 장시간 착용하고 작업을 계속할 경우 황으로 인하여 불쾌한 냄새가 발생하거나 고무장갑의 변색이 일어나 상품가치가 저하되며, 일부 사용자들에게는 알러지 반응을 일으켜 따끔거림 등의 피부이상을 일으키는 문제가 있다.
따라서, 황 및 가황 촉진제를 사용하지 않아 사용의 불쾌감, 변색, 알러지 반응 등의 문제를 발생시키지 않으면서 내구성이 좋은 고무장갑을 제조하기 위한 연구가 진행되고 있다. 일례로, 공액디엔 고무 라텍스와 유기과산화물을 포함하는 딥 성형용 라텍스 조성물을 이용한 긴 교반 숙성 공정이 필요하지 않고 변색이 유발되지 않는 고무장갑이 연구된 바 있으나, 유기과산화물 용액이 인체에 매우 해롭고 열이나 충격이 가해졌을 때 화재와 폭발이 일어날 수 있어 공정에 안전성이 매우 떨어지는 단점이 있다.
또한, 아크릴 에멀젼 라텍스에 가교 가능한 모노머를 사용하여 긴 교반 숙성 공정 없이 황 및 가황 촉진제에 의한 알러지 반응을 일으키지 않는 고무장갑이 개발된 바 있으나, 상기 고무장갑은 열에 매우 취약한 아크릴로부터 제조되어 열에 매우 민감한 문제가 있다.
상기와 같은 배경 하에, 본 발명자들은 황 및 가황 촉진제를 사용하지 않아 긴 교반 숙성 공정을 필요로 하지 않으면서 우수한 내구성을 갖는 딥 성형품(예컨대, 고무장갑)을 연구하던 중, -30 내지 -5의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 가지며, 반응성 화합물을 포함하는 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A) 및 -30 내지 -15의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 갖는 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 포함하는 딥 성형용 라텍스 조성물로부터 딥 성형품(예컨대, 고무장갑)을 제조한 결과 우수한 인장강도, 신장율 및 내구성을 나타내는 것을 확인함으로써 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR2014-0053859 A
본 발명의 목적은 2종의 서로 상이한 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기의 딥 성형용 라텍스 조성물로부터 제조된, 땀에 대한 내구성이 우수하며 인장강도 및 신장율이 높은 딥 성형품을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 a) -30 내지 -5의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 가지며, 반응성 화합물을 포함하는 카르본산 변성 니트릴계 공중합체 라텍스; 및 b) -30 내지 -15의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 갖는 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물을 제공한다.
또한, 본 발명은 상기의 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품을 제공한다.
본 발명에 따른 딥 성형용 라텍스 조성물은 2종의 상이한 카르본산 변성 니트릴계 공중합체 라텍스를 3:7 내지 8:2의 중량비율로 포함함으로써 인장강도, 신장율, 응력 및 내구성이 모두 우수할 수 있다.
따라서, 상기 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 인장강도, 신장율, 응력 및 내구성이 우수할 수 있으며, 이에 상기 카르본산 변성 니트릴계 공중합체 라텍스 및 이를 이용한 딥 성형품은 이를 필요로 하는 산업, 예컨대 고무장갑산업 등에 용이하게 적용할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 황 및 가황 촉진제를 포함하지 않아 알러지 반응을 일으키지 않으면서 긴 교반 숙성공정이 필요치 않고, 인장강도, 신장율, 응력(신장율 300% 및 500%에서의 응력) 및 내구성이 우수한 2종의 서로 상이한 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물을 제공한다.
본 발명의 일 실시예에 따른 상기 딥 성형용 라텍스 조성물은 a) -30 내지 -5의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 가지며, 반응성 화합물을 포함하는 카르본산 변성 니트릴계 공중합체 라텍스(이하, 라텍스 A); 및 b) -30 내지 -15의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 갖는 카르본산 변성 니트릴계 공중합체 라텍스(이하, 라텍스 B)를 포함하는 것을 특징으로 한다.
본 발명에서 사용되는 용어 "유리전이온도(Tg)"는 라텍스 내의 분자들이 온도에 의하여 활성을 가지며 움직이기 시작하는 시점, 즉 라텍스가 고상에서 액상으로 변화하기 전 탄성을 가진 상태로 변화된 시점을 의미한다.
상기 라텍스 A는 전술한 바와 같이 -30 내지 -5℃의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 가질 수 있으며, 바람직하게는 상기 라텍스 A는 -30 내지 -10℃의 유리전이온도를 나타낼 수 있다. 만약, 상기 유리전이온도가 -30℃보다 낮을 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 인장강도가 현저히 저하되거나 끈적거림으로 인하여 착용감이 떨어질 수 있으며, 상기 유리전이온도가 -5℃보다 높을 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품에 균열이 생기는 문제가 발생할 수 있다. 또한, 상기 라텍스 A의 평균입경이 200 nm보다 클 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 딥 성형품을 제조할 시 공정시간이 길어질 수 있어 생산성이 저하되고 제조된 딥 성형품의 인장강도가 저하될 수 있다.
상기 라텍스 B는 전술한 바와 같이 -30 내지 -15℃의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 가질 수 있으며, 바람직하게는 상기 라텍스 B는 -25 내지 -20℃의 유리전이온도를 나타낼 수 있다. 만약, 상기 유리전이온도가 -30℃보다 낮을 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 인장강도가 현저히 저하되거나 끈적거림으로 인하여 착용감이 저하될 수 있으며, -15℃보다 높을 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 신장율이 낮아져 착용감이 저하될 수 있다.
또한, 상기 라텍스 B의 평균입경이 200 nm보다 클 경우에는 상기 라텍스 A와의 혼합이 균일하게 이뤄지기 어려울 수 있어 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 인장강도가 저하될 수 있다.
또한, 상기 딥 성형용 라텍스 조성물은 상기 라텍스 A와 라텍스 B를 3:7 내지 8:2의 중량비로 포함하는 것을 특징으로 한다.
만약, 상기 라텍스 A의 중량비율이 8을 초과하고 라텍스 B의 중량비율이 2 미만인 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 인장강도 향상 효과가 미미할 수 있으며, 상기 라텍스 A의 중량비율이 3 미만이고 라텍스 B의 중량비율이 7을 초과하는 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 신장율 및 내구성이 급격히 저하될 수 있다.
이하, 본 발명에 따른 상기 각 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A 및 라텍스 B)를 더욱 자세히 설명한다.
카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A)
본 발명의 일 실시예에 따른 상기 카르본산 변성 니트릴계 공중합체 라텍스(이하, 라텍스 A)는 단량체 혼합물 100 중량부에 대하여 0.1 중량부 내지 5 중량부의 반응성 화합물을 포함하고, 상기 단량체 혼합물은 공액디엔계 단량체 40 중량% 내지 89 중량%; 에틸렌성 불포화 니트릴계 단량체 10 중량% 내지 50 중량%; 및 에틸렌성 불포화산 단량체 0.1 중량% 내지 10 중량%를 포함하는 것을 특징으로 한다.
상기 공액디엔계 단량체는 전술한 바와 같이 40 중량% 내지 89 중량%로 포함될 수 있으며, 바람직하게는 45 중량% 내지 80 중량%, 더욱 바람직하게는 50 중량% 내지 78 중량%로 포함될 수 있다. 만약, 상기 공액디엔계 단량체가 40 중량% 미만으로 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품이 딱딱해지고 착용감이 저하될 수 있으며, 89 중량%를 초과하여 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 내유성이 나빠지고 인장강도가 저하될 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔 및 이소프렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 바람직하게는, 상기 공액디엔계 단량체는 1,3-부타디엔, 이소프렌 또는 이들 조합일 수 있으며, 더욱 바람직하게는 1,3-부타디엔일 수 있다.
상기 에틸렌성 불포화 니트릴계 단량체는 전술한 바와 같이 10 중량% 내지 50 중량%로 포함될 수 있으며, 바람직하게는 15 중량% 내지 45 중량%, 더욱 바람직하게는 20 중량% 내지 40 중량%로 포함될 수 있다. 만약, 상기 에틸렌성 불포화 니트릴계 단량체가 10 중량% 미만으로 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 내유성이 나빠지고 인장강도가 저하될 수 있으며, 50 중량%를 초과하여 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품이 딱딱해지고 착용감이 저하될 수 있다.
상기 에틸렌성 불포화 니트릴계 단량체는 특별히 제한되는 것은 아니나, 예컨대 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 및 α-시아노 에틸 아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 바람직하게는 아크릴로니트릴, 메타크릴로니트릴 또는 이들 조합일 수 있으며, 더욱 바람직하게는 아크릴로니트릴일 수 있다.
상기 에틸렌성 불포화산 단량체는 전술한 바와 같이 0.1 중량% 내지 10 중량%로 포함될 수 있으며, 바람직하게는 0.5 중량% 내지 9 중량%, 더욱 바람직하게는 1 중량% 내지 8 중량%일 수 있다. 만약, 상기 에틸렌성 불포화산 단량체가 0.1 중량% 미만으로 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 인장강도가 저하될 수 있으며, 10 중량%를 초과하여 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품이 딱딱해지고 착용감이 저하될 수 있다.
상기 에틸렌성 불포화산 단량체는 카르복실기, 술폰산기 또는 산무수물기를 갖는 에틸렌성 불포화 단량체일 수 있다. 구체적으로, 상기 에틸렌성 불포화산 단량체는 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산 등의 에틸렌성 불포화 카르본산 단량체; 무수말레산, 무수시트라콘산 등의 폴리카르본산 무수물; 스티렌 술폰산 등의 에틸렌성 불포화 술폰산 단량체; 푸마르산 모노부틸, 말레인산 모노부틸, 말레인산 모노-2-히드록시 프로필 등의 에틸렌성 불포화 폴리 카르본산 부분 에스테르(partial ester) 단량체 등으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 바람직하게는 메타크릴산일 수 있다. 또한, 상기 에틸렌성 불포화산 단량체는 알칼리 금속염 또는 암모늄염 같은 형태로 사용될 수도 있다.
상기 반응성 화합물은 상기 라텍스 A의 일 성분으로 포함되어 황 및 가황촉진제의 첨가 없이 상기 라텍스 A를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 인장강도 및 내구성을 향상시키는 작용을 할 수 있는 것으로, 전술한 바와 같이 상기 단량체 혼합물 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있으며, 바람직하게는 0.5 중량부 내지 3 중량부일 수 있다. 만약, 상기 반응성 화합물이 0.1 중량부 미만으로 포함될 경우에는 최종적으로 제조된 딥 성형품의 인장강도가 저하될 수 있으며, 5 중량부를 초과하여 포함될 경우에는 최종적으로 제조된 딥 성형품의 촉감과 착용감이 저하될 수 있다.
상기 반응성 화합물은 비닐기, 에폭시기 및 글리시딜기로 이루어진 군으로부터 선택된 1종 이상의 반응성기를 갖는 화합물인 것일 수 있다. 구체적으로, 상기 반응성 화합물은 폴리(테트라메틸렌에테르) 글리콜 디글리시딜 에테르 화합물, 탄소수 12-13의 3-알콕시-2-하이드록시프로필 아크릴레이트 화합물 및 프로필렌 글리콜 폴리부티렌 글리콜 모노아크릴레이트 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또한, 상기 반응성 화합물은 중량평균분자량이 250 이상인 것일 수 있으며, 바람직하게는 250 내지 1000일 수 있다. 만약, 상기 반응성 화합물의 중량평균분자량이 250보다 작을 경우에는 최종적으로 제조된 딥 성형품의 촉감과 착용감 및 인장강도가 저하될 수 있다.
또한, 본 발명에 따른 상기 라텍스 A는 20 중량% 이하의 에틸렌성 불포화 단량체를 더 포함할 수 있으며, 바람직하게는 0.1 중량% 내지 20 중량%의 에틸렌성 불포화 단량체를 더 포함할 수 있다.
상기 에틸렌성 불포화 단량체는 상기 라텍스 A에 포함되는 에틸렌성 불포화 니트릴 단량체 및 에틸렌성 불포화산 단량체와 공중합 가능한 단량체로, 특별히 제한되는 것은 아니나 예컨대 스티렌, 알킬 스티렌, 비닐 나프탈렌 및 플로로 에틸 비닐 에테르 등의 플루오로알킬비닐 에테르; (메타)아크릴아미드, N-메틸올(메타)아크릴아미드, N,N-디메틸올(메타)아크릴아미드, N-메톡시 메틸(메타)아크릴아미드 및 N-프로폭시 메틸(메타)아크릴아미드 등의 에틸렌성 불포화 아미드 단량체; 비닐 피리딘, 비닐 노보넨, 디시클로 펜타디엔 및 1,4-헥사디엔 등의 비공액디엔 단량체; (메타)아크릴산 메틸, (메타)아크릴산 에틸, (메타)아크릴산 부틸, (메타)아크릴산-2-에틸 헥실, (메타)아크릴산 트리 플루오르 에틸, (메타)아크릴산 테트라 플루오르 프로필, 말레인산 디부틸, 푸마르산 디부틸, 말레인산 디에틸, (메타)아크릴산 메톡시 메틸, (메타)아크릴산 에톡시 에틸, (메타)아크릴산 메톡시 에톡시 에틸, (메타)아크릴산 시아노 메틸, (메타)아크릴산 2-시아노 에틸, (메타)아크릴산 1-시아노 프로필, (메타)아크릴산 2-에틸-6-시아노 헥실, (메타)아크릴산 3-시아노 프로필, (메타)아크릴산 히드록시 에틸, (메타)아크릴산 히드록시 에틸, (메타)아크릴산 히드록시 프로필, 글리시딜 (메타)아크릴레이트 및 다이메틸아미노 에틸 (메타)아크릴레이트 등의 에틸렌성 불포화 카르본산 에스테르 단량체로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
한편, 상기 라텍스 A는 상기 공액디엔계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 에틸렌성 불포화산 단량체를 포함하는 단량체 혼합물과 반응성 화합물을 포함하는 반응물에 분자량 조절제, 유화제, 중합개시제, 활성화제 등의 첨가제를 추가로 포함시켜 유화중합하여 제조된 것일 수 있다.
상기 유화중합은 특별히 제한되지 않고 당업계에 통상적으로 알려진 방법에 의하여 수행할 수 있으며, 상기 라텍스 A에 포함되는 공액디엔계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 에틸렌성 불포화산 단량체를 포함하는 단량체 혼합물과 반응성 화합물을 포함하는 반응물 및 첨가제들을 중합 반응기에 일괄적으로 한번에 투입하는 방법, 상기 반응물을 연속적으로 투입하는 방법, 또는 상기 반응물의 일부를 일괄적으로 투입하고 나머지 반응물을 연속적으로 투입할 수도 있다.
상기 유화중합시에 중합온도는 특별히 제한되는 것은 아니나 10 내지 90℃의 온도범위일 수 있으며, 바람직하게는 25 내지 75℃일 수 있다. 또한, 중합정지 시점은 중합 전환율이 90% 이상인 시점, 바람직하게는 93% 이상인 시점일 수 있다. 상기 유화중합은 중합 정지 후 미반응물을 제거하고 고형분 농도와 pH를 조절하여 라텍스 A를 수득할 수 있다.
상기 유화중합에 사용되는 유화제는 특별히 제한되지 않고 당업계에 통상적으로 알려진 것을 사용할 수 있으나, 예컨대 음이온성 계면활성제, 비이온성 계면활성제, 양이온성 계면활성제, 양성 계면활성제 등을 사용할 수 있다. 구체적으로, 알킬벤젠 술폰산염, 지방족 술폰산염, 고급 알코올의 황산 에스테르염, α-올레핀 술폰산염 및 알킬 에테르 황산 에스테르염으로 이루어진 군으로부터 선택된 1종 이상의 음이온성 계면활성제가 바람직할 수 있다. 상기 유화제의 사용량은 특별히 제한되지 않고 당업자에 의하여 적절히 조절하여 사용될 수 있으나, 예컨대 전체 단량체 혼합물 100 중량부에 대하여 0.3 중량부 내지 10 중량부로 사용될 수 있다. 바람직하게는 0.8 중량부 내지 9 중량부, 더욱 바람직하게는 1.5 중량부 내지 6 중량부로 사용될 수 있다. 상기 유화제의 사용량이 0.3 중량부 미만일 경우에는 유화중합시 안정성이 저하될 수 있고, 10 중량부를 초과하여 사용할 경우에는 유화중합시 거품 발생이 많아져 이를 포함하는 라텍스 A를 포함하는 딥 성형용 라텍스 조성물로부터 딥 성형품을 제조할 때 용이하지 못할 수 있다.
상기 중합개시제는 특별히 제한되지 않고 당업계에 통상적으로 알려진 것을 사용할 수 있으나, 예컨대 라티칼 개시제가 사용될 수 있다. 상기 라디칼 개시제로는 과황산 나트륨, 과황산칼륨, 과황산암모늄, 과인산칼륨, 과산화수소 등의 무기과산화물; t-부틸 퍼옥사이드, 큐멘 하이드로퍼옥사이드, p-멘탄하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부틸레이트 등의 유기 과산화물; 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸바레로니트릴, 아조비스시클로헥산 카르보니트릴, 및 아조비스 이소 낙산(부틸산)메틸로 이루어진 군으로부터 선택된 1종 이상인 것이리 수 있다. 바람직하게는 무기 과산화물일 수 있으며, 이중에서도 과황산염이 특히 바람직할 수 있다. 상기 중합개시제의 사용량은 특별히 제한되지 않고 당업자에 의하여 적절히 조절하여 사용될 수 있으나, 예컨대 상기 단량체 혼합물 100 중량부에 대하여 0.01 중량부 내지 2 중량부, 바람직하게는 0.02 중량부 내지 1.5 중량부로 사용될 수 있다. 상기 중합개시제가 0.01 중량부 미만으로 사용될 경우에는 중합 속도가 저하되어 라텍스 A의 제조가 어려울 수 있으며, 2 중량부를 초과하여 사용될 경우에는 중합 속도가 너무 빨라져 중합도를 조절하기 어려워질 수 있다.
상기 활성화제는 특별히 제한되지 않고 당업계에 통상적으로 알려진 것을 사용할 수 있으나, 예컨대 소듐포름알데히드 설폭실레이트, 소듐에틸렌디아민 테트라아세테이트, 황산 제1철, 덱스트로오스, 피롤린산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다.
상기 분자량 조절제는 특별히 제한되지 않고 당업계에 통상적으로 알려진 것을 사용할 수 있으나, 예컨대 α-메틸스티렌다이머, t-도데실 머캅탄, n-도데실 머캅탄, 옥틸 머캅탄 등의 머캅탄류; 사염화탄소, 염화메틸렌, 브롬화 메틸렌 등의 할로겐화 탄화수소; 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 디이소프로필키산토겐 다이 설파이드 등의 함유황 화합물 등을 들 수 있다. 상기 분자량 조절제는 1종 단독 또는 2종 이상을 조합하여 사용할 수 있다. 바람직하게는 머캅탄류일 수 있으며, 특히 t-도데실 머캅탄이 바람직할 수 있다. 상기 분자량 조절제의 사용량은 특별히 제한되지 않고 당업자에 의하여 적절히 조절하여 사용될 수 있으나, 예컨대 단량체 혼합물 100 중량부에 대하여 0.1 중량부 내지 2 중량부, 바람직하게는 0.2 중량부 내지 1.5 중량부로 사용될 수 있다. 더욱 바람직하게는 0.3 중량부 내지 1 중량부 일 수 있다. 상기 분자량 조절제가 0.1 중량부 미만으로 사용될 경우에는 라텍스 A의 물성이 저하되어 결과적으로 최종적으로 제조된 딥 성형품의 물성이 저하될 수 있으며, 2 중량부를 초과하여 사용될 경우에는 중합 안정도가 저하될 수 있다.
또한, 중합시에 필요에 따라 킬레이트제, 분산제, pH 조절제, 탈산소제, 입경조정제, 노화방지제, 산소포착제 등의 부첨가제를 추가로 포함할 수 있다.
카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)
본 발명의 일 실시예에 따른 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)는 공액디엔계 단량체 40 중량% 내지 89 중량%; 에틸렌성 불포화 니트릴계 단량체 10 중량% 내지 50 중량%; 및 에틸렌성 불포화산 단량체 0.1 중량% 내지 10 중량%를 포함하는 것을 특징으로 한다.
상기 공액디엔계 단량체는 전술한 바와 같이 40 중량% 내지 89 중량%로 포함되리 수 있으며, 바람직하게는 45 중량% 내지 80 중량%, 더욱 바람직하게는 50 중량% 내지 78 중량%로 포함될 수 있다. 만약, 상기 공액디엔계 단량체가 40 중량% 미만으로 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품이 딱딱해지고 착용감이 저하될 수 있으며, 89 중량%를 초과하여 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 내유성이 나빠지고 인장강도가 저하될 수 있다. 상기 공액디엔계 단량체는 상기 라텍스 A에서 전술한 공액디엔계 단량체와 같은 것이거나, 포함되는 것일 수 있다.
상기 에틸렌성 불포화 니트릴계 단량체는 전술한 바와 같이 10 중량% 내지 50 중량%로 포함될 수 있으며, 바람직하게는 15 중량% 내지 45 중량%, 더욱 바람직하게는 20 중량% 내지 40 중량%로 포함될 수 있다. 만약, 상기 에틸렌성 불포화 니트릴계 단량체가 10 중량% 미만으로 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 내유성이 나빠지고 인장강도가 저하될 수 있으며, 50 중량%를 초과하여 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품이 딱딱해지고 착용감이 저하될 수 있다. 상기 에틸렌성 불포화 니트릴계 단량체는 상기 라텍스 A에서 전술한 에틸렌성 불포화 니트릴계 단량체와 같은 것이거나, 포함되는 것일 수 있다.
상기 에틸렌성 불포화산 단량체는 전술한 바와 같이 0.1 중량% 내지 10 중량%로 포함될 수 있으며, 바람직하게는 0.5 중량% 내지 9 중량%, 더욱 바람직하게는 1 중량% 내지 8 중량%일 수 있다. 만약, 상기 에틸렌성 불포화산 단량체가 0.1 중량% 미만으로 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품의 인장강도가 저하될 수 있으며, 10 중량%를 초과하여 포함될 경우에는 이를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품이 딱딱해지고 착용감이 저하될 수 있다. 상기 에틸렌성 불포화산 단랑체는 상기 라텍스 A에서 전술한 것과 같은 것이거나, 포함되는 것일 수 있다.
또한, 상기 라텍스 B는 라텍스 A와 마찬가지로 에틸렌성 불포화 단량체를 20 중량% 이하로 더 포함할 수 있으며, 바람직하게는 0.1 중량% 내지 20 중량%의 에틸렌성 불포화 단량체를 더 포함할 수 있다. 상기 에틸렌성 불포화 단량체는 상기 라텍스 A에서 전술한 에틸렌성 불포화 단량체와 같은 것이거나, 포함되는 것일 수 있다.
한편, 상기 라텍스 B는 상기 라텍스 A와 마찬가지로 유화중합하여 제조할 수 있으며, 이때 라텍스 B에 포함되는 공액디엔계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 에틸렌성 불포화산 단량체에 분자량 조절제, 유화제, 중합개시제, 활성화제 등의 첨가제를 추가로 포함시켜 유화중합하여 제조된 것일 수 있다.
상기 유화중합은 특별히 제한되지 않고 당업계에 통상적으로 알려진 방법에 의하여 수행할 수 있으며, 상기 라텍스 B에 포함되는 공액디엔계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 에틸렌성 불포화산 단량체를 포함하는 단량체 혼합물 및 첨가제들을 중합 반응기에 일괄적으로 한번에 투입하는 방법, 상기 단량체 혼합물을 연속적으로 투입하는 방법, 또는 상기 단량체 혼합물의 일부를 일괄적으로 투입하고 나머지 단량체 혼합물을 연속적으로 투입할 수도 있다.
상기 유화중합시에 중합온도는 특별히 제한되는 것은 아니나 10 내지 90℃의 온도범위일 수 있으며, 바람직하게는 25 내지 75℃일 수 있다. 또한, 중합정지 시점은 중합 전환율이 90% 이상인 시점, 바람직하게는 93% 이상인 시점일 수 있다. 상기 유화중합은 중합 정지 후 미반응물을 제거하고 고형분 농도와 pH를 조절하여 라텍스 B를 수득할 수 있다.
상기 유화제의 사용량은 특별히 제한되지 않고 당업자에 의하여 적절히 조절하여 사용될 수 있으나, 예컨대 단량체 혼합물 100 중량부에 대하여 0.3 중량부 내지 10 중량부로 사용될 수 있다. 바람직하게는 0.8 중량부 내지 9 중량부, 더욱 바람직하게는 1.5 중량부 내지 6 중량부로 사용될 수 있다. 상기 유화제의 사용량이 0.3 중량부 미만일 경우에는 유화중합시 안정성이 저하될 수 있고, 10 중량부를 초과하여 사용할 경우에는 유화중합시 거품 발생이 많아져 이를 포함하는 라텍스 B를 포함하는 딥 성형용 라텍스 조성물로부터 딥 성형품을 제조할 때 용이하지 못할 수 있다. 상기 유화제는 라텍스 A에서 전술한 유화제와 같은 것이거나, 포함되는 것일 수 있다.
상기 중합개시제의 사용량은 특별히 제한되지 않고 당업자에 의하여 적절히 조절하여 사용될 수 있으나, 예컨대 상기 단량체 혼합물 100 중량부에 대하여 0.01 중량부 내지 2 중량부, 바람직하게는 0.02 중량부 내지 1.5 중량부로 사용될 수 있다. 상기 중합개시제가 0.01 중량부 미만으로 사용될 경우에는 중합 속도가 저하되어 라텍스 B의 제조가 어려울 수 있으며, 2 중량부를 초과하여 사용될 경우에는 중합 속도가 너무 빨라져 중합도를 조절하기 어려워질 수 있다. 상기 중합개시제는 라텍스 A에서 전술한 중합개시제와 같은 것이거나, 포함되는 것일 수 있다.
상기 분자량 조절제의 사용량은 특별히 제한되지 않고 당업자에 의하여 적절히 조절하여 사용될 수 있으나, 예컨대 단량체 혼합물 100 중량부에 대하여 0.1 중량부 내지 2 중량부, 바람직하게는 0.2 중량부 내지 1.5 중량부로 사용될 수 있다. 더욱 바람직하게는 0.3 중량부 내지 1 중량부 일 수 있다. 상기 분자량 조절제가 0.1 중량부 미만으로 사용될 경우에는 라텍스 B의 물성이 저하되어 결과적으로 최종적으로 제조된 딥 성형품의 물성이 저하될 수 있으며, 2 중량부를 초과하여 사용될 경우에는 중합 안정도가 저하될 수 있다. 상기 분자량 조절제는 상기 라텍스 A에서 전술한 분자량 조절제와 같은 것이거나, 포함되는 것일 수 있다.
상기 활성화제는 상기 라텍스 A에서 전술한 활성화제와 같은 것이거나, 포함되는 것일 수 있다.
또한, 중합시에 필요에 따라 킬레이트제, 분산제, pH 조절제, 탈산소제, 입경조절제, 노화방지제, 산소포착제 등의 부첨가제를 추가로 포함할 수 있다.
본 발명에 따른 상기 반응성 화합물을 포함하는 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A) 및 반응성 화합물을 포함하지 않는 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 포함하는 딥 성형용 라텍스 조성물은 상기 조성물 전체 중량에 대하여, 상기 라텍스 A와 라텍스 B를 80 중량% 내지 99 중량%로 포함하는 것이 바람직할 수 있다. 즉, 상기 딥 성형용 라텍스 조성물은 상기 라텍스 A 및 라텍스 B를 포함하고, 상기 딥 성형용 라텍스 조성물에 포함된 라텍스 A와 라텍스 B의 전체 함량은 상기 딥 성형용 라텍스 조성물 전체 중량에 대하여 80 중량% 내지 99 중량%일 수 있다. 바람직하게는 85 중량% 내지 98 중량%, 더욱 바람직하게는 88 중량% 내지 97 중량%일 수 있다.
상기 딥 성형용 라텍스 조성물은 상기 기재한 라텍스 A 및 라텍스 B 이외에 이온성 가교제, 안료, 증점제 및 pH 조절제로 이루어진 군으로부터 선택된 1종 이상의 첨가제를 추가로 포함할 수 있다.
또한, 상기 딥 성형용 라텍스 조성물의 고형분 농도가 10 중량% 내지 40 중량%일 수 있고, 바람직하게는 15 중량% 내지 35 중량%, 더욱 바람직하게는 15 중량% 내지 30 중량%일 수 있다. 상기 딥 성형용 라텍스 조성물의 pH는 8 내지 12일 수 있으며, 바람직하게는 9 내지 11, 더욱 바람직하게는 9.3 내지 10.5일 수 있다.
아울러, 본 발명은 상기의 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품을 제공한다.
본 발명의 일 실시예에 따른 상기 딥 성형품은 딥 성형품 전체 중량을 기준으로 질소 함유량이 6.69 중량% 내지 8.94 중량%인 것을 특징으로 한다.
본 발명의 일 실시예에 따른 상기 딥 성형품은 특별히 한정되지 않고 당업계에 통상적으로 공지된 방법을 통하여 제조할 수 있으며, 예컨대 직접 침지법, 양극(anode) 응착 침지법, 티그(Teague) 응착 침지법 등의 방법을 사용하여 제조할 수 있다. 바람직하게는 양극 응착 침지법을 사용할 수 있으며, 상기 양극 응착 침지법을 사용하여 딥 성형품을 제조할 경우에는 균일한 두께의 딥 성형품을 제조할 수 있는 이점이 있다.
구체적인 예로, 상기 딥 성형품은 손 모양의 딥 성형틀을 응고제 용액에 담궈 딥 성형틀의 표면에 응고제를 부착시키는 단계(단계 a); 상기 응고제가 표면에 부착된 딥 성형틀을 상기의 딥 성형용 라텍스 조성물에 침지하여 딥 성형층을 형성시키는 단계(단계 b); 및 상기 딥 성형층을 가열 처리하여 라텍스 수지를 가교시키는 단계를 통하여 제조할 수 있다.
상기 단계 a는 손 모양의 딥 성형틀 표면에 응고제를 부착시키기 위한 단계로, 특별히 한정되는 것은 아니나 상기 딥 성형틀을 응고제 용액에 1분 이상 담궜다, 꺼낸 후 70 내지 150℃에서 건조하여 수행할 수 있다.
상기 응고제 용액은 응고제를 물, 알코올 또는 이의 혼합물에 녹인 용액으로, 통상적으로 5 중량% 내지 50 중량%의 응고제를 포함할 수 있으며, 바람직하게는 10 중량% 내지 40 중량%의 응고제를 포함할 수 있다.
상기 응고제는 특별히 한정되는 것은 아니나, 예컨대 바륨 클로라이드, 칼슘 클로라이드, 마그네슘 클로라이드, 징크 클로라이드 및 알루미늄 클로라이드 등과 같은 금속 할라이드(halides); 바륨 나이트레이트, 칼슘 나이트레이트 및 징크 나이트레이트 등과 같은 질산염; 바륨 아세테이트, 칼슘 아세테이트 및 징크 아세테이트와 같은 아세트산염; 칼슘 설페이트, 마그네슘 설페이트 및 알루미늄 설페이트와 같은 황산염 등을 사용할 수 있다. 바람직하게는 칼슘 클로라이드, 칼슘 나이트레이트 또는 이들 조합일 수 있다.
상기 단계 b는, 상기 응고제가 부착된 딥 성형틀에 본 발명에 따른 딥 성형용 라텍스 조성물로부터 딥 성형층을 형성시키기 위한 단계로, 상기 응집제가 부착된 딥 성형틀을 상기의 딥 성형용 라텍스 조성물에 1분 이상 침지 후 꺼냄으로써 상기 딥 성형층을 형성시킬 수 있다.
상기 단계 c는 상기 딥 성형층에 라텍스 수지를 가교시켜 딥 성형품을 수득하기 위한 단계로, 상기 딥 성형층을 가열 처리하여 수행할 수 있다.
상기 가열 처리는 특별히 한정되는 것은 아니나, 예컨대 70 내지 150℃에서 1분 내지 10분 동안 1차 가열 처리 한 후 100 내지 180℃에서 5분 내지 30분 동안 2차 가열 처리를 하여 수행할 수 있다.
상기 가열 처리시 딥 성형층에서 물 성분이 먼저 증발하게 되고, 가교를 통하여 상기 딥 성형층의 라텍스 수지의 경화가 일어남으로써 딥 성형품을 얻을 수 있다.
상기 딥 성형품은 특별히 제한되지 않고 다양한 라텍스 산업에 적용할 수 있으나, 예를 들어 검사장갑, 콘돔, 카테터, 산업용 장갑, 가정용 장갑 및 건강 관리용품으로 이루어진 군으로부터 선택된 1종 이상의 성형품에 적용할 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조 실시예 1
온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합개시제를 연속적으로 투입할 수 있도록 장치된 10 l 고압 반응기를 질소로 치환한 후, 아크릴로니트릴 26.2 중량%, 1,3-부타디엔 68 중량%, 메타크릴산 5.8 중량%의 단량체 혼합물 100 중량부에 대하여 알킬벤젠 술폰산 나트륨 2.5 중량부, t-도데실 머캅탄 0.6 중량부 및 이온교환수 140 중량부 및 폴리(테트라메틸렌에테르) 글리콜 디글리시딜 에테르 0.9 중량부를 투입하고 40℃까지 승온시켰다. 승온 후 중합개시제인 과황산칼륨 0.25 중량부를 넣고 중합을 개시하여 전환율 95%에 이르면 소듐 디메틸 디티오 카바메이트 0.1 중량부를 투입하여 중합을 정지시켰다. 탈취공정을 통하여 미반응물을 제거하고 암모니아수, 산화방지제, 소포제 등을 첨가하여 고형분 농도 45%, pH 7.0의 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)를 제조하였다.
제조 실시예 2
아크릴로니트릴을 31.5 중량%, 1,3-부타디엔을 62.5 중량%, 메타크릴산을 6 중량%로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-2)를 제조하였다.
제조 실시예 3
아크릴로니트릴을 33.5 중량%, 1,3-부타디엔을 62.5 중량%, 메타크릴산을 4 중량%로 사용하고, 폴리(테트라메틸렌에테르) 글리콜 디글리시딜 에테르를 3 중량부로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-3)를 제조하였다.
제조 실시예 4
아크릴로니트릴을 31.5 중량%, 1,3-부타디엔을 66 중량%, 메타크릴산을 2.5 중량%로 사용하고, 폴리(테트라메틸렌에테르) 글리콜 디글리시딜 에테르를 2 중량부로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-4)를 제조하였다.
제조 실시예 5
아크릴로니트릴을 35 중량%, 1,3-부타디엔을 62.5 중량%, 메타크릴산을 2.5 중량%로 사용하고, 폴리(테트라메틸렌에테르) 글리콜 디글리시딜 에테르를 2 중량부로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-5)를 제조하였다.
제조 실시예 6
아크릴로니트릴을 38 중량%, 1,3-부타디엔을 57 중량%, 메타크릴산을 5 중량%로 사용하고, 폴리(테트라메틸렌에테르) 글리콜 디글리시딜 에테르를 2 중량부로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-6)를 제조하였다.
제조 실시예 7
온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합개시제를 연속적으로 투입할 수 있도록 장치된 10 l 고압 반응기를 질소로 치환한 후, 아크릴로니트릴 29 중량%, 1,3-부타디엔 64 중량%, 메타크릴산 7 중량%의 단량체 혼합물 100 중량부에 대하여 알킬벤젠 술폰산 나트륨 2.5 중량부, t-도데실 머캅탄 0.6 중량부 및 이온교환수 140 중량부를 투입하고 40℃까지 승온시켰다. 승온 후 중합개시제인 과황산칼륨 0.25 중량부를 넣고 중합을 개시하여 전환율 95%에 이르면 소듐 디메틸 디티오 카바메이트 0.1 중량부를 투입하여 중합을 정지시켰다. 탈취공정을 통하여 미반응물을 제거하고 암모니아수, 산화방지제, 소포제 등을 첨가하여 고형분 농도 45%, pH 8.0의 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 제조하였다.
상기 제조 실시예 1 내지 제조 실시예 4에서 제조한 각 카르본산 변성 니트릴계 공중합체 라텍스의 평균입경, 130℃에서의 겔 함량(%), 유리전이온도(Tg), 표면장력(mN/m) 및 분자량(kDa)를 각각 측정하였다. 결과를 하기 표 1에 나타내었다.
이때, 유리전이온도는 시차주사열량계(Differential Scanning Calotimetry)를 이용하여 통상의 방법에 따라 측정하였으며, 평균입경은 레이저 분산 분석기(Laser Scattering Analyzer, Nicomp)를 이용하여 통상의 방법에 따라 측정하였다. 또한, 겔 함량은 각 라텍스를 25℃, 습도 60%의 조건에서 48 시간 이상 건조시켜 고분자 필름을 제조하고 잘게 잘라 무게(W0)를 측정한 후 #200 메쉬의 통에 넣은 후, 200 ㎖의 메틸에틸케콘(MEK) 용액에 48시간 동안 담갔다 꺼내어 130의 오븐에서 건조하여 무게(W1)를 측정하였다. 이렇게 측정된 #200 메쉬의 통에 넣은 고분자 필름의 무게(W0)와 오븐에서 말린 후의 고분자 필름의 무게(W1)의 비를 백분율로 계산하여 얻었다. 표면장력은 표면장력 측정기를 이용하여 백금소환을 수평으로 매달아 상기 각 시료액(라텍스)에 접촉시키고 잡아당겼을 때 상기 백금소환을 상기 시료액에서 떼어내는데 필요한 힘을 측정하여 얻었으며, 분자량(kDa)는 상기 각 라텍스를 130℃로 건조하여 얻어진 각 고분자 필름을 잘게 잘라 테트라하이드로퓨란(THF) 용액에 침지시켜 용해되어 나온 액체를 걸러 GPC(gel permeation chromatography)를 이용하여 표준 시료와 비교하여 상대 분자량을 측정하여 얻었다.
구분 평균입경(nm) 겔 함량(% at 130) 유리전이온도(Tg, ℃) 표면장력(mN/m) 분자량(kDa)
제조 실시예 1 117.4 68.7 -16.4 41.55 9.0
제조 실시예 2 106.6 72.06 -17.31 40.09 7.3
제조 실시예 3 128.5 66.15 -18.29 40.78 6.5
제조 실시예 4 121.3 58.63 -25.45 39.65 9.7
제조 실시예 5 118.2 66.89 -19.1 41.82 8.3
제조 실시예 6 122.0 87.18 -9.5 37.12 6.0
제조 실시예 7 123.8 40.1 -25.8 33.1 19.8
실시예 1
1) 딥 성형용 라텍스 조성물
상기 제조 실시예 1에서 제조된 반응성 화합물이 포함된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)와 제조 실시예 7에서 제조된 반응성 화합물을 포함하지 않은 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 5:5의 중량비로 혼합하여 준비하고, 1.25% 수산화칼륨 용액 2.0 중량부, 적정량의 증류수, 티타늄 옥사이드 1 중량부 및 산화아연 1.5 중량부를 첨가하고 혼합하여 고형분 농도 15%, pH 9.8의 딥 성형용 라텍스 조성물을 제조하였다. 이때, 상기 중량부는 딥 성형용 라텍스 조성물 100 중량부를 기준으로 하여 나타낸 것이다.
2) 딥 성형품 제조
12 중량부의 칼슘 나이트레이트, 87.9 중량부의 중류수 및 0.1 중량부의 습윤제(Teric 320, Huntsman Corporation, Australia)를 혼합하여 응고제 용액을 제조하였다. 이때, 중량부는 응고제 용액 100 중량부를 기준으로 나타낸 것이다. 응고제 용액에 손 모양의 세라믹 몰드를 10초간 담그고, 끄집어낸 후 80℃에서 4분간 건조하여 응고제를 손 모양의 세라믹 몰드에 도포하였다.
그 후, 응고제가 도포된 몰드를 상기 딥 성형용 라텍스 조성물에 10초간 담그고, 끄집어 낸 후 80℃에서 2분간 건조한 후 물에 1분간 담갔다. 다시 몰드를 80℃에서 3분간 건조한 후 120℃에서 20분간 가교시켰다. 가교된 딥 성형층을 손 모양의 몰드로부터 벗겨내어 장갑 형태의 딥 성형품을 얻었다.
실시예 2
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1) 대신에 제조 실시예 2에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-2)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
실시예 3
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)을 사용하지 않고 제조 실시예 3에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-3)와 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합ㅊ 라텍스(라텍스 B)를 6:4의 중량비로 혼합하여 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
실시예 4
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)을 사용하지 않고 제조 실시예 4에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-4)와 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 6:4의 중량비로 혼합하여 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
실시예 5
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)을 사용하지 않고 제조 실시예 5에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-5)와 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 6:4의 중량비로 혼합하여 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
실시예 6
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1) 대신에 제조 실시예 5에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-5)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
실시예 7
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)을 사용하지 않고 제조 실시예 5에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-5)와 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 4:6의 중량비로 혼합하여 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
실시예 8
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)을 사용하지 않고 제조 실시예 5에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-5)와 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 3:7의 중량비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
실시예 9
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)을 사용하지 않고 제조 실시예 6에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-6)와 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 8:2의 중량비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
비교예 1
제조 실시예 1에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-1)를 사용하지 않고 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(B)만 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
비교예 2
제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 사용하지 않고 제조 실시예 6에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(A-6)만 사용한 것을 제외하고는 상기 실시예 9와 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
비교예 3
제조 실시예 5에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-5)와 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 2:8의 중량비로 혼합하여 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
비교예 4
제조 실시예 6에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 A-6)와 제조 실시예 7에서 제조된 카르본산 변성 니트릴계 공중합체 라텍스(라텍스 B)를 9:1의 중량비로 혼합하여 사용한 것을 제외하고는 상기 실시예 9와 동일한 방법을 통하여 딥 성형용 라텍스 조성물 및 딥 성형품을 제조하였다.
실험예
상기 실시예 1 내지 9 및 비교예 1 내지 4에서 제조한 각 딥 성형품의 물성을 비교분석하기 위하여, 각 딥 성형품의 Max load(N), 인장강도(MPa), 신장율(%), 신장율 300%에서의 응력(MPa), 신장율 500%에서의 응력(MPa) 및 내구성을 측정하였다. 결과를 하기 표 2에 나타내었다.
1) Max load(N), 인장강도, 신율, 300%에서의 응력 및 500%에서의 응력
상기 각 딥 성형품을 ASTM D-412에 따라 덤벨형상의 시편으로 제작하고, ASTM D638에 준하여 UTM(Universal Testing Machine) 장치(모델명: 4466, Instron)을 이용하여 크로스헤드 스피드(cross head speed)를 500 mm/min으로 당긴 후, 상기 각 시편이 절단되는 지점을 측정하였다. Max load(N)는 상기 시편이 절단되는 시점에 시편에 가해진 외력을 나타내며, 인장강도는 하기 수학식 1에 의하여 계산하였다. 또한, 신장율(%)은 하기 수학식 2에 의하여 계산하였으며, 300%에서의 응력(MPa)은 시편이 초기 길이의 3배로 신장되었을 때의 인장강도, 500%에서의 응력(MPa)은 시편이 초기 길이의 5배로 신장되었을 때의 인장강도를 측정하였다.
[수학식 1]
Figure PCTKR2015011100-appb-I000001
[수학식 2]
Figure PCTKR2015011100-appb-I000002
2) 내구성
상기 각 딥 성형품을 S자 형태의 시편으로 잘라 제작한 후, 인공적으로 만든 땀 용액에 상기 각 시편을 담그고 2초당 1회 속도로 초기 길이 대비 200% 비율로 늘렸다가 줄이기를 반복하여 시편이 절단되는 시점까지의 횟수를 측정하였다.
구분 Mas load(N) 인장강도(MPa) 신장율(%) 응력(MPa, at 300%) 응력(MPa, at 500%) 내구성(회)
실시예 1 14.1 30.0 516.4 6.6 26.03 325
실시예 2 13.2 28.4 498.5 6.8 28.21 447
실시예 3 13.1 30.8 465.9 7.2 - 520
실시예 4 6.9 15.5 539.0 4.5 11.37 894
실시예 5 7.2 16.1 533.9 4.8 12.90 916
실시예 6 8.9 19.1 522.6 5.6 16.52 277
실시예 7 9.1 20.5 527.0 7.0 23.87 208
실시예 8 12.6 28.7 524.9 6.9 27.1 214
실시예 9 10.9 24.4 409.9 9.8 - 1444
비교예 1 4.3 102 424.9 5.2 - 143
비교예 2 9.2 20.9 405.5 9.3 - 171
비교예 3 9.7 22.3 404.0 9.5 - 111
비교예 4 8.2 17.1 548.4 4.8 12.19 199
상기 표 2에 나타난 바와 같이, 본 발명에 따른 2종의 상이한 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 실시예 1 내지 실시예 9의 딥 성형품이 비교예 1 내지 비교예 4의 딥 성형품과 비교하여 Max load, 인장강도, 신장율, 응력(at 300% 및 500%) 및 내구성에 있어 우수함을 나타내었다.
구체적으로, 본 발명에 따른 2종의 상이한 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 실시예 1 내지 실시예 9의 딥 성형품이 일종의 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물로부터 제조된 비교예 1 및 비교예 2의 딥 성형품과 비교하여 Max load, 인장강도, 신장율, 응력(at 300% 및 500%) 및 내구성에서 현저히 우수한 특성을 나타내었다. 특히, 응력(at 500%) 시험에서는 비교예 1 및 비교예 2의 딥 성형품은 500%가 되기 전에 절단되어 측정치를 얻지 못한 반면 본 발명에 따른 실시예 1 내지 9의 딥 성형품은 우수한 응력 특성(at 500%)을 나타내었다.
또한, 본 발명에 따른 실시예 8 및 실시예 9와 2종의 카르본산 변성 니트릴계 공중합체 라텍스의 비율만 상이한 조건에서 제조된 비교예 3 및 비교예 4와 비교한 결과 상기 실시예 8 및 실시예 9는 상기 Max load, 인장강도, 신장율, 응력 및 내구성에 있어 모두 우수한 특성을 나타내었으나, 상기 비교예 3 및 비교예 4는 상기 특성에 균형을 이루지 못하였다.
따라서, 본 발명에 따른 딥 성형용 라텍스 조성물은 2종의 상이한 카르본산 변성 니트릴계 공중합체 라텍스를 포함함으로써 인장강도, 신장율, 응력 및 내구성에 모두 우수한 특성을 갖는 딥 성형품을 형성할 수 있다.

Claims (18)

  1. a) -30 내지 -5℃의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 갖으며, 반응성 화합물을 포함하는 카르본산 변성 니트릴계 공중합체 라텍스; 및
    b) -30 내지 -15℃의 유리전이온도 및 100 nm 내지 200 nm의 평균입경을 갖는 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물.
  2. 청구항 1에 있어서,
    상기 조성물은 a) 카르본산 변성 니트릴계 공중합체 라텍스와 b) 카르본산 변성 니트릴계 공중합체 라텍스를 3:7 내지 8:2의 중량비로 포함하는 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  3. 청구항 1에 있어서,
    상기 a) 카르본산 변성 니트릴계 공중합체 라텍스는 단량체 혼합물 100 중량부에 대하여 0.1 중량부 내지 5 중량부의 반응성 화합물을 포함하고,
    상기 단량체 혼합물은
    공액디엔계 단량체 40 중량% 내지 89 중량%;
    에틸렌성 불포화 니트릴계 단량체 10 중량% 내지 50 중량%; 및
    에틸렌성 불포화산 단량체 0.1 중량% 내지 10 중량%를 특징으로 하는 딥 성형용 라텍스 조성물.
  4. 청구항 3에 있어서,
    상기 반응성 화합물은 비닐기, 에폭시기 및 글리시딜기로 이루어진 군으로부터 선택된 1종 이상의 반응성기를 갖는 화합물인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  5. 청구항 3에 있어서,
    상기 반응성 화합물은 폴리(테트라메틸렌에테르) 글리콜 디글리시딜 에테르 화합물, 12개의 탄소원자 및 13개의 탄소원자로 구성된 알콕시기를 가지는 3-알콕시-2-하이드록시프로필 아크릴레이트 화합물 및 프로필렌 글리콜 폴리부티렌 글리콜 모노아크릴레이트 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  6. 청구항 3에 있어서,
    상기 반응성 화합물은 중량평균분자량이 250 내지 1000인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  7. 청구항 1에 있어서,
    상기 b) 카르본산 변성 니트릴계 공중합체 라텍스는,
    공액디엔계 단량체 40 중량% 내지 89 중량%;
    에틸렌성 불포화 니트릴계 단량체 10 중량% 내지 50 중량%; 및
    에틸렌성 불포화산 단량체 0.1 중량% 내지 10 중량%를 포함하는 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  8. 청구항 3 또는 청구항 7에 있어서,
    상기 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔 및 이소프렌으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  9. 청구항 3 또는 청구항 7에 있어서,
    상기 에틸렌성 불포화 니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 및 α-시아노 에틸 아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  10. 청구항 3 또는 청구항 7에 있어서,
    상기 에틸렌성 불포화산 단량체는 카르복실기, 술폰산기 또는 산무수물기를 갖는 에틸렌성 불포화 단량체인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  11. 청구항 3 또는 청구항 7에 있어서,
    상기 에틸렌성 불포화산 단량체는 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산, 무수말레산, 무수시트라콘산, 스티렌 술폰산, 푸마르산 모노부틸, 말레인산 모노부틸 및 말레인산 모노-2-히드록시 프로필로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  12. 청구항 3 또는 청구항 7에 있어서,
    상기 a) 카르본산 변성 니트릴계 공중합체 라텍스 및 b) 카르본산 변성 니트릴계 공중합체 라텍스는 각각 0.1 중량% 내지 20 중량%의 에틸렌성 불포화 단량체를 더 포함하는 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  13. 청구항 12에 있어서,
    상기 에틸렌성 불포화 단량체는 스티렌, 알킬 스티렌, 비닐 나프탈렌, 플로로 에틸 비닐 에테르, (메타)아크릴아미드, N-메틸올(메타)아크릴아미드, N,N-디메틸올(메타)아크릴아미드, N-메톡시 메틸(메타)아크릴아미드, N-프로폭시 메틸(메타)아크릴아미드, 비닐 피리딘, 비닐 노보넨, 디시클로 펜타디엔, 1,4-헥사디엔, (메타)아크릴산 메틸, (메타)아크릴산 에틸, (메타)아크릴산 부틸, (메타)아크릴산-2-에틸 헥실, (메타)아크릴산 트리 플루오르 에틸, (메타)아크릴산 테트라 플루오르 프로필, 말레인산 디부틸, 푸마르산 디부틸, 말레인산 디에틸, (메타)아크릴산 메톡시 메틸, (메타)아크릴산 에톡시 에틸, (메타)아크릴산 메톡시 에톡시 에틸, (메타)아크릴산 시아노 메틸, (메타)아크릴산 2-시아노 에틸, (메타)아크릴산 1-시아노 프로필, (메타)아크릴산 2-에틸-6-시아노 헥실, (메타)아크릴산 3-시아노 프로필, (메타)아크릴산 히드록시 에틸, (메타)아크릴산 히드록시 에틸, (메타)아크릴산 히드록시 프로필, 글리시딜 (메타)아크릴레이트 및 다이메틸아미노 에틸 (메타)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  14. 청구항 1에 있어서,
    상기 딥 성형용 라텍스 조성물은 상기 조성물 전체 중량에 대하여 a) 카르본산 변성 니트릴계 공중합체 라텍스 및 b) 카르본산 변성 니트릴계 공중합체 라텍스를 80 중량% 내지 99 중량%로 포함하는 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  15. 청구항 1에 있어서,
    상기 딥 성형용 라텍스 조성물의 고형분 농도가 10 중량% 내지 40 중량%이고, pH는 8 내지 12인 것을 특징으로 하는 딥 성형용 라텍스 조성물.
  16. 청구항 1에 기재된 딥 성형용 라텍스 조성물로부터 제조된 딥 성형품.
  17. 청구항 16에 있어서,
    상기 딥 성형품은 딥 성형품 전체 중량을 기준으로 질소 함유량이 6.69 중량% 내지 8.94 중량%인 것을 특징으로 하는 딥 성형품.
  18. 청구항 16에 있어서,
    상기 딥 성형품은 검사장갑, 콘돔, 카테터, 산업용 장갑, 가정용 장갑 및 건강 관리용품으로 이루어진 군으로부터 선택된 1종 이상의 성형품인 것을 특징으로 하는 딥 성형품.
PCT/KR2015/011100 2014-10-20 2015-10-20 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품 WO2016064173A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580047795.4A CN106661307B (zh) 2014-10-20 2015-10-20 包含羧酸改性的基于腈的共聚物胶乳的胶乳组合物以及由其制备的浸渍成型制品
US15/507,940 US10023728B2 (en) 2014-10-20 2015-10-20 Latex composition for dip-forming including carboxylic acid modified-nitrile based copolymer latex and dip-formed article prepared therefrom
JP2017513188A JP6360970B2 (ja) 2014-10-20 2015-10-20 カルボン酸変性ニトリル系共重合体ラテックスを含むディップ成形用ラテックス組成物及びこれから製造されたディップ成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140141775A KR101795842B1 (ko) 2014-10-20 2014-10-20 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
KR10-2014-0141775 2014-10-20

Publications (1)

Publication Number Publication Date
WO2016064173A1 true WO2016064173A1 (ko) 2016-04-28

Family

ID=55761144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011100 WO2016064173A1 (ko) 2014-10-20 2015-10-20 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품

Country Status (5)

Country Link
US (1) US10023728B2 (ko)
JP (1) JP6360970B2 (ko)
KR (1) KR101795842B1 (ko)
CN (1) CN106661307B (ko)
WO (1) WO2016064173A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071885A (zh) * 2016-09-07 2018-12-21 株式会社Lg化学 用于浸渍成型的胶乳组合物,以及由其制备的成型制品
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
JP2019523796A (ja) * 2016-06-01 2019-08-29 シントマー スンディリアン ブルハド 浸漬成形用途のためのポリマーラテックス
JP2020516761A (ja) * 2017-04-10 2020-06-11 アランセオ・ドイチュランド・ゲーエムベーハー Hxnbrラテックス及び多官能エポキシドを含有する加硫可能な組成物

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775798B1 (ko) * 2014-12-23 2017-09-11 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
AT518357B1 (de) * 2016-03-04 2018-09-15 Semperit Ag Holding Verfahren zum Herstellen eines Prophylaxeartikels
KR102229443B1 (ko) * 2016-11-08 2021-03-17 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
KR102229447B1 (ko) 2016-12-09 2021-03-18 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 및 이를 포함하는 딥 성형용 라텍스 조성물
JP7234940B2 (ja) * 2018-01-12 2023-03-08 日本ゼオン株式会社 ラテックス組成物
JP2020037635A (ja) * 2018-09-03 2020-03-12 ミドリ安全株式会社 手袋用ディップ組成物、手袋の製造方法、及び手袋
WO2020235988A1 (en) * 2019-05-17 2020-11-26 Synthomer Sdn. Bhd. Method for repairing or recycling an elastomeric film
WO2021054816A1 (en) * 2019-09-20 2021-03-25 Synthomer Sdn. Bhd. Polymer latex for the preparation of an elastomeric film having excellent stress retention properties and softness
KR102478106B1 (ko) 2019-10-01 2022-12-15 주식회사 엘지화학 딥 성형용 라텍스 조성물, 이를 포함하는 딥 성형품 및 이를 이용한 딥 성형품 제조방법
JP7325854B2 (ja) 2020-03-31 2023-08-15 エルジー・ケム・リミテッド カルボン酸変性ニトリル系共重合体ラテックス、これを含むディップ成形用ラテックス組成物およびこれより成形された成形品
WO2021201419A1 (ko) * 2020-03-31 2021-10-07 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스
EP3950817B1 (en) * 2020-03-31 2023-04-05 Lg Chem, Ltd. Carboxylic acid-modified nitrile-based copolymer latex
CN113795528A (zh) 2020-03-31 2021-12-14 株式会社Lg化学 羧酸改性的腈类共聚物胶乳、包含它的用于浸渍成型的胶乳组合物和由该组合物形成的制品
EP3950816A4 (en) * 2020-03-31 2022-04-20 Lg Chem, Ltd. CARBONIC ACID MODIFIED COPOLYMER LATEX, NITRILE BASED, LATEX COMPOSITION FOR DIP FORMING THEREOF AND ARTICLE MOLDED THEREOF
KR102563070B1 (ko) * 2020-03-31 2023-08-03 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스
JPWO2021241407A1 (ko) * 2020-05-27 2021-12-02

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031042A (en) * 1996-06-20 2000-02-29 North Safety Products Inc. Soft nitrile rubber formulation
JP2006249430A (ja) * 2005-03-08 2006-09-21 Zeon Chemicals Lp ジエンゴムと、ニトリルゴムで修飾された熱可塑性共重合体との混合物
US20070100063A1 (en) * 2004-09-06 2007-05-03 Yutaka Ozawa Acrylic polymer emulsion and glove formed from the same
KR20100035191A (ko) * 2008-09-26 2010-04-05 주식회사 엘지화학 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
KR20130056505A (ko) * 2011-11-22 2013-05-30 주식회사 엘지화학 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272226B2 (ja) * 2008-12-16 2013-08-28 エルジー・ケム・リミテッド カルボン酸変性ニトリル系共重合体ラテックス、これを含むディップ成形用ラテックス組成物
KR101421322B1 (ko) 2010-12-20 2014-07-18 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이를 사용하여 제조된 니트릴 고무 제품
KR101467020B1 (ko) 2011-01-17 2014-12-01 주식회사 엘지화학 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
PL2692788T3 (pl) 2011-03-31 2016-06-30 Zeon Corp Kompozycja wysoce nasyconego kauczuku nitrylowego i usieciowany kauczuk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031042A (en) * 1996-06-20 2000-02-29 North Safety Products Inc. Soft nitrile rubber formulation
US20070100063A1 (en) * 2004-09-06 2007-05-03 Yutaka Ozawa Acrylic polymer emulsion and glove formed from the same
JP2006249430A (ja) * 2005-03-08 2006-09-21 Zeon Chemicals Lp ジエンゴムと、ニトリルゴムで修飾された熱可塑性共重合体との混合物
KR20100035191A (ko) * 2008-09-26 2010-04-05 주식회사 엘지화학 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
KR20130056505A (ko) * 2011-11-22 2013-05-30 주식회사 엘지화학 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
US10377893B2 (en) 2013-07-16 2019-08-13 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
JP2019523796A (ja) * 2016-06-01 2019-08-29 シントマー スンディリアン ブルハド 浸漬成形用途のためのポリマーラテックス
US10982075B2 (en) 2016-06-01 2021-04-20 Synthomer Sdn. Bhd. Polymer latex for dip-molding applications
TWI755399B (zh) * 2016-06-01 2022-02-21 馬來西亞商昕特瑪私人有限公司 用於浸漬模塑應用之聚合物乳膠
CN109071885A (zh) * 2016-09-07 2018-12-21 株式会社Lg化学 用于浸渍成型的胶乳组合物,以及由其制备的成型制品
US20190085157A1 (en) * 2016-09-07 2019-03-21 Lg Chem, Ltd. Latex Composition For Dip Molding, And Molded Product Manufactured Therefrom
JP2019510854A (ja) * 2016-09-07 2019-04-18 エルジー・ケム・リミテッド ディップ成形用ラテックス組成物及びこれより製造された成形品
US10717851B2 (en) 2016-09-07 2020-07-21 Lg Chem, Ltd. Latex composition for dip molding, and molded product manufactured therefrom
JP2020516761A (ja) * 2017-04-10 2020-06-11 アランセオ・ドイチュランド・ゲーエムベーハー Hxnbrラテックス及び多官能エポキシドを含有する加硫可能な組成物

Also Published As

Publication number Publication date
KR101795842B1 (ko) 2017-11-08
JP6360970B2 (ja) 2018-07-18
US20170283599A1 (en) 2017-10-05
CN106661307A (zh) 2017-05-10
KR20160046166A (ko) 2016-04-28
US10023728B2 (en) 2018-07-17
CN106661307B (zh) 2019-03-12
JP2017532406A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
WO2016064173A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2015030533A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 조성물 및 이를 포함하는 딥 성형품
WO2014142424A1 (ko) 카르본산 변성 니트릴계 공중합체 조성물 및 이로부터 제조된 딥 성형품
WO2013077585A1 (ko) 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2019172539A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 조성물, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2018048121A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2010035955A2 (ko) 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
WO2017090882A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 딥 성형품
WO2019112312A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2013109033A1 (ko) 딥 성형용 라텍스 조성물
WO2010143912A2 (ko) 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
WO2018048122A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2016105112A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2016093649A1 (ko) 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
KR102069828B1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2021201418A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스
WO2021060743A1 (ko) 그라프트 중합체의 제조방법
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2020116793A1 (ko) 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품
WO2021201416A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2017069433A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2017090881A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2019112306A1 (ko) 딥 성형품, 딥 성형용 라텍스 조성물 및 이들의 제조방법
WO2018105891A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 및 이를 포함하는 딥 성형용 라텍스 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15507940

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017513188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851977

Country of ref document: EP

Kind code of ref document: A1