WO2013077104A1 - スイッチング回路及び包絡線信号増幅器 - Google Patents

スイッチング回路及び包絡線信号増幅器 Download PDF

Info

Publication number
WO2013077104A1
WO2013077104A1 PCT/JP2012/076347 JP2012076347W WO2013077104A1 WO 2013077104 A1 WO2013077104 A1 WO 2013077104A1 JP 2012076347 W JP2012076347 W JP 2012076347W WO 2013077104 A1 WO2013077104 A1 WO 2013077104A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switching
switching circuit
circuit
modulation
Prior art date
Application number
PCT/JP2012/076347
Other languages
English (en)
French (fr)
Inventor
初川 聡
藤川 一洋
築野 孝
信夫 志賀
大平 孝
和千 和田
トヤ ウリン
晃太郎 谷村
Original Assignee
住友電気工業株式会社
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 国立大学法人豊橋技術科学大学 filed Critical 住友電気工業株式会社
Priority to EP20120851806 priority Critical patent/EP2784933A4/en
Priority to CN201280052674.5A priority patent/CN103891136B/zh
Publication of WO2013077104A1 publication Critical patent/WO2013077104A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/16Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/54Amplifiers using transit-time effect in tubes or semiconductor devices
    • H03F3/55Amplifiers using transit-time effect in tubes or semiconductor devices with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • H03F3/607Distributed amplifiers using FET's
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit

Definitions

  • the present invention relates to a switching circuit that switches a switching element connected to an inductance element with a PWM signal, and an envelope signal amplifier including the switching circuit.
  • EER envelope Elimination and Restoration
  • an amplitude component (envelope) and a phase component are extracted from a modulation signal to be amplified, and the amplitude of the modulated signal is modulated by amplitude-modulating a signal corresponding to the phase component with a signal corresponding to the amplitude component. Is amplified in proportion to the amplitude of the original modulation signal.
  • the voltage following the extracted envelope is used as the power supply voltage of the saturation type amplifier, and the amplitude of the amplified signal is extracted by amplifying the signal corresponding to the phase component with this amplifier.
  • the envelope is obtained, for example, by power amplification of a detection signal (hereinafter referred to as an envelope signal) obtained by envelope detection of a modulation signal to be amplified.
  • a saturation type amplifier is used for power amplification of the envelope signal in order to increase efficiency.
  • an envelope signal is demodulated as a modulation signal by switching a switching element with a PWM signal generated by pulse width modulation of the envelope signal and integrating the PWM signal amplified by the switching.
  • a class D amplifier in which complementary switching elements are push-pull connected and a class E amplifier that turns on the switching element when the voltage applied from the inductance element is zero are often used.
  • a class D amplifier it is technically difficult to increase the breakdown voltage of complementary switching elements in a balanced manner.
  • the surge voltage applied from the inductance element to the switching element may greatly exceed the power supply voltage when the switching element is turned off depending on design conditions and operating conditions. For this reason, there is a limit to applying a push-pull or a single switching element to a high-frequency and high-power amplifier.
  • the above-described PWM signal includes an envelope signal component having a relatively low frequency and a PWM signal component having a high frequency
  • an amplifier having a wideband frequency characteristic is included in the PWM signal amplifier. Needed.
  • a distributed amplifier as shown in Patent Document 1 may be applied to an amplifier for a PWM signal.
  • the power propagating to the opposite side of the output end must be consumed by the resistor and terminated. There is a problem of large loss.
  • a low-pass filter is required to extract the envelope signal as a modulation signal from the amplified PWM signal, and the insertion loss of this filter cannot be ignored.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a switching circuit that can synthesize a PWM signal amplified by a plurality of switching elements with low loss and demodulate a modulation signal. And an envelope signal amplifier including the switching circuit.
  • a switching circuit includes a connection circuit that cascade-connects control terminals for controlling switching of N switching elements (N is an integer of 2 or more) via N-1 first inductance elements.
  • a switching circuit comprising: a second inductance element whose one end is electrically connected to a DC power source; and a third inductance element separately connected between each one end of the switching element, the connection circuit
  • the N switching elements are sequentially switched by a PWM signal input to the input terminal of the auxiliary terminal, and are inserted so as to be cascade-connected to one end side or the other end side of the second inductance element.
  • a switching element is further provided.
  • control terminals of the N switching elements are specially arranged at the connection nodes of the N-1 first inductance elements and the input / output terminals of the connection circuit that constitute the connection circuit through which the PWM signal propagates.
  • the third inductance element is interposed between one end of each switching element and the other end of the second inductance element, one end of which is connected to the DC power supply.
  • each switching element is sequentially switched at a constant time interval by the PWM signal propagating through the connection circuit, and a substantially equal amplitude PWM signal amplified for each switching element is added at the other end of the second inductance element. Therefore, when a PWM signal having a modulation period (PWM period) in which N times the time interval is one period is amplified, at one end of each switching element with respect to the fundamental wave of the PWM signal.
  • PWM period modulation period
  • each signal point can be represented on a circle centered at the origin with a phase difference of ⁇ 2 ⁇ / N so that they are arranged at equal intervals. Addition is performed so that the fundamental wave of the PWM signal disappears.
  • each switching element when the signal amplitude and phase at one end of each switching element are made to correspond to the signal point on the complex plane with respect to the Mth order (M is an integer of 2 or more) harmonics of the PWM signal, the origin is the center.
  • M is an integer of 2 or more
  • the harmonics of the PWM signal are added so as to cancel each other.
  • the frequency of the modulation signal of a mobile phone fluctuates.
  • the frequency of the modulation signal of the mobile phone is low, that is, when the frequency of the envelope signal obtained by detecting the envelope of the modulation signal is low, the PWM signal obtained by pulse width modulation of the envelope signal has a long duty state. It will last for hours.
  • the state in which the duty in the PWM signal is constant continues for a long time, in the switching circuit, the second inductance element is magnetically saturated, and the output voltage gradually approaches the power supply voltage.
  • the auxiliary switching is turned off before the second inductance element is saturated with the magnetic flux, thereby limiting the current flowing through the second inductance element and suppressing the magnetic flux saturation of the second inductance element. be able to.
  • the output voltage can be suppressed from approaching the power supply voltage for a long time.
  • the auxiliary switching element may be driven at a frequency higher than a reciprocal of a time constant at which the second inductance element is magnetically saturated.
  • the switching circuit according to the present invention may be a drive signal for driving the auxiliary switching element, and further includes a drive circuit that generates the drive signal by reducing the frequency of the PWM signal. Good.
  • each of the N switching elements may be a first conductivity type transistor, and the auxiliary switching element may be a second conductivity type transistor different from the first conductivity type. Good.
  • the switching circuit according to the present invention may be configured such that a connection member that electrically connects one end of the switching element and the other end of the second inductance element is replaced with the third inductance element.
  • a connecting member is interposed instead of the third inductance element to be interposed between one end of each switching element and the other end of the second inductance element.
  • the parasitic inductance of the connection member fulfills the function of the third inductance element.
  • N may be 8 or more.
  • N 8 or more
  • signal points on the complex plane corresponding to each one end of the switching element do not overlap one point for at least the second to seventh harmonics, and these harmonics are not overlapped. The waves cancel each other.
  • the switching circuit according to the present invention may be configured such that the switching element and the first, second, and third inductance elements are formed on a semiconductor substrate of a monolithic integrated circuit.
  • the switching circuit is formed on the semiconductor substrate of the monolithic integrated circuit, the switching circuit is miniaturized and the high frequency characteristics as an amplifier are improved.
  • the switching element may be a vertical MOSFET.
  • each switching element is composed of a vertical MOSFET
  • the switching circuit is increased in withstand voltage and power, and the on-resistance is reduced and the loss is reduced.
  • the drain electrode, the source electrode, and the gate electrode of each switching element are separated on both sides of the monolithic integrated circuit. For this reason, for example, the wiring length from the drain electrode of each switching element to the other end of the second inductance element is equalized, and the PWM signal amplified for each switching element is added in a balanced manner at the other end of the second inductance element.
  • An envelope signal amplifier includes a modulation circuit that performs pulse width modulation on an analog signal and the switching circuit according to the above-described invention, and the modulation circuit performs pulse width modulation on the envelope signal of the modulation signal.
  • the switching circuit is switched by the obtained PWM signal.
  • the modulation circuit performs pulse width modulation on the envelope signal of the input modulation signal, and the switching circuit is switched with the PWM signal obtained by pulse width modulation to demodulate the envelope signal.
  • a switching circuit capable of synthesizing the PWM signals amplified by the plurality of switching elements with low loss and demodulating the modulation signal is applied to the envelope signal amplifier.
  • each switching element is sequentially switched at a constant time interval by the PWM signal propagating through the connection circuit, and the substantially equal amplitude PWM signal amplified for each switching element is added at the other end of the second inductance element. Is done.
  • the auxiliary switching is turned off before the second inductance element is saturated with the magnetic flux, thereby limiting the current flowing through the second inductance element and suppressing the magnetic flux saturation of the second inductance element. Can do. As a result, for example, even when the frequency of the modulation signal of the mobile phone decreases and the duty in the PWM signal is constant, the output voltage can be suppressed from approaching the power supply voltage for a long time.
  • FIG. 1 is a block diagram showing a main configuration of an EER amplifier according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram schematically showing signal waveforms of respective parts of the EER amplifier.
  • FIG. 3 is a circuit diagram showing a configuration of the switching circuit according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing the amplitude and phase of the signal at the drain in association with signal points on the complex plane.
  • FIG. 5 is a graph showing the cancellation characteristics of the fundamental wave and the harmonics with respect to the number of amplification stages (n).
  • FIG. 6 is an explanatory diagram schematically showing signal waveforms of respective parts of the EER amplifier when the frequency of the modulation signal of the mobile phone is lowered (when there is no transistor M0).
  • FIG. 7 is an explanatory view schematically showing signal waveforms of respective parts of the EER amplifier according to Embodiment 1 of the present invention when the frequency of the modulation signal of the mobile phone is lowered (when the transistor M0 is provided).
  • FIG. 8 is a circuit diagram showing a configuration of a switching circuit according to a modification of the present invention.
  • FIG. 9 is a circuit diagram showing a configuration of a switching circuit according to a modification of the present invention.
  • FIG. 10 is a circuit diagram showing a configuration of a switching circuit according to a modification of the present invention.
  • FIG. 11 is a schematic plan view of a switching circuit according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic plan view of a switching circuit according to Embodiment 3 of the present invention.
  • an envelope signal amplifier having a switching circuit according to the present invention is applied to an EER amplifier (hereinafter referred to as an EER amplifier) used in a mobile phone base station
  • EER amplifier an EER amplifier
  • the present invention can also be applied to other systems using an envelope signal amplifier, such as an ET (Envelope Tracking) system.
  • ET envelope Tracking
  • FIG. 1 is a block diagram showing a main configuration of an EER amplifier according to Embodiment 1 of the present invention.
  • the EER amplifier includes a detector 2 that detects an envelope of a mobile phone modulation signal input from an input terminal 1, an envelope signal amplifier 3 that amplifies a detection signal (envelope signal), and an amplitude of the input modulation signal. And a switching circuit 5 that amplifies the extracted phase component.
  • the envelope signal amplifier 3 includes a triangular wave generator 31 for generating a triangular wave having a constant frequency and a PWM obtained by pulse width modulation of the detection signal supplied from the detector 2 by comparing the triangular wave supplied from the triangular wave generator 31. And a comparator 32 for supplying a signal to the switching circuit 33.
  • the PWM signal that has been switched by the switching circuit 33 and whose amplitude has been increased is demodulated into an envelope signal from which the modulation frequency component and the harmonic component of pulse width modulation have been removed, and is supplied to the switching circuit 5.
  • the switching circuit 5 uses the envelope signal given from the switching circuit 33 of the envelope signal amplifier 3 as a power supply voltage, and is amplified by switching a switching element (not shown) based on the phase component given from the limiter 4. The amplitude of the phase component is made to follow the envelope signal.
  • FIG. 2 is an explanatory diagram schematically showing signal waveforms of respective parts of the EER amplifier. 2A to 2G, the horizontal axis represents time, and the vertical axis represents the signal amplitude of each part. However, the scale of each vertical axis is unequal.
  • FIG. 2A shows the waveform of the modulation signal applied to the input terminal 1.
  • the input modulation signal is obtained by subjecting a carrier wave to phase modulation and amplitude modulation.
  • FIG. 2B shows the waveform of the phase component extracted by the limiter 4 from the input modulation signal
  • FIG. 2C shows the waveform of the detection signal (envelope signal) obtained by detecting the input modulation signal with the envelope 2. Show.
  • the phase signal in FIG. 2B has a constant amplitude
  • the envelope signal in FIG. 2C has a carrier component removed from the modulated signal.
  • FIG. 2D shows a waveform of a triangular wave input to the comparator 32
  • FIG. 2E shows a waveform of a PWM signal that is pulse width modulated by comparing the envelope signal shown in FIG. 2C with the triangular wave by the comparator 32.
  • Yes when the peak value of the envelope signal is low (or high), the pulse width modulation is performed so that the pulse width of the PWM signal becomes wide (or narrow).
  • FIG. 2F shows the waveform of a signal from which the PWM signal is inverted and amplified by the switching circuit 33 to remove the modulation frequency component of the pulse width modulation and the frequency component higher than that. That is, the signal in FIG. 2F is obtained by amplifying the envelope signal in FIG. 2C.
  • FIG. 2G shows the waveform of the output signal when the phase component shown in FIG. 2B is amplified by the switching circuit 5 using the envelope signal itself shown in FIG. 2F as a power source.
  • the amplitude of the signal output from the switching circuit 5 follows the power supply voltage, a phase signal having an amplitude following the envelope signal is output from the switching circuit 5.
  • the amplitude component is amplified while the phase component of the modulation signal shown in FIG. 2A is maintained, and is output from the EER amplifier as the signal shown in FIG. 2G.
  • the modulation frequency of the pulse width modulation that is, the frequency of the triangular wave generated by the triangular wave generator 31 is 200 MHz, but is not limited to this, and the bandwidth of the envelope signal is 10 MHz. It is preferable to have a frequency corresponding to about double.
  • FIG. 3 is a circuit diagram showing a configuration of the switching circuit 33 according to the first embodiment of the present invention.
  • the switching circuit 33 includes a coil L2 having one end electrically connected to the power source Vdd, and a coil L3 between the other end of the coil L2 and the drains D1, D2,... Dn (n is an integer of 2 or more).
  • the sources S1, S2,... Sn of the transistors M1, M2,... Mn are connected to the ground potential.
  • the other end of the coil L2 is connected to the output terminal 332 of the switching circuit 33.
  • n ⁇ 1 coils L1 are connected individually.
  • n-1 coils L1 and stray capacitances Cgs (not shown) of the gates G1, G2,... Gn constitute a connection circuit, and one end and the other end of the connection circuit are a coil L1a and a termination resistor Rs, respectively.
  • a capacitor C1 described later may be interposed between the termination resistor Rs and the ground potential.
  • the impedance of the terminating resistor Rs is matched with the characteristic impedance of the connection circuit.
  • the switching circuit 33 further includes a field effect transistor (MOSFET, hereinafter simply referred to as a transistor) M0 inserted so as to be cascaded between the power supply Vdd and the coil L2.
  • MOSFET field effect transistor
  • the drain of the transistor M0 is connected to the power supply Vdd, and the source is connected to one end of the coil L2.
  • a drive signal from the drive circuit 333 is input to the gate of the transistor M0.
  • the drive circuit 333 generates a drive signal from the PWM signal input from the comparator 32 via the input terminal 331 by reducing its frequency.
  • the drive signal is set to a pulse width such that the ON time of the transistor M0 is smaller than the time constant at which the coil L2 is magnetically saturated.
  • the drive signal is set to a frequency higher than 1 ⁇ 2 times the reciprocal of the time constant at which the coil L2 is magnetically saturated.
  • the drive signal is set to a frequency higher than the reciprocal of the time constant at which the coil L2 is magnetically saturated.
  • the PWM signal applied from the comparator 32 to the termination resistor Rs via the input terminal 331 is constant at the gate Gm (m is an integer from 1 to n) while propagating through the connection circuit. Given at time intervals. This time interval is set to 1 / n of the modulation period of pulse width modulation. That is, a PWM signal whose phase is delayed by 2 ⁇ (m ⁇ 1) / n with respect to the gate G1 is given to the gate Gm.
  • the PWM signal propagates to the gate Gm of the transistor Mm, the transistor Mm switches between the coil L3 connected to the drain Dm and the ground potential, and the PWM signal amplified by inverting the polarity is output from the drain Dm.
  • the signal output from the other end of the coil L2, that is, the output terminal 332 is equal to the PWM signal of equal amplitude output from each of the drains D1, D2,... Dn via the separate coils L3.
  • the added signal is applied to the output terminal 332 via the coil L3. Therefore, the signal output from the other end of the coil L2, that is, the output terminal 332 is equal to the PWM signal of equal amplitude output from each of the drains D1, D2,... Dn via the separate coils L3. The added signal.
  • FIG. 4 is a diagram showing the amplitude and phase of signals in the drains D1, D2,... D8 in association with signal points on the complex plane.
  • the horizontal axis represents the real axis
  • the vertical axis represents the imaginary axis.
  • 4A shows signal points for a fundamental wave having the same frequency as the modulation frequency of pulse width modulation (here, 200 MHz)
  • FIGS. 4B, 4C, and 4D respectively show the second harmonic, the third harmonic, Signal points for the second harmonic are shown.
  • the transistors M1, M2,... M8 are sequentially switched at a time interval of 2/8 of the period of the second harmonic, that is, sequentially with a phase difference of ⁇ / 2.
  • each of the signal points shown in FIGS. 4A to 4D has a positional relationship that is point-symmetric with respect to the origin. Therefore, in any of FIGS. 4A to 4D, drains D1, D2,. When the signals of D8 are added evenly, it is shown that the added signals cancel each other and the signal has an amplitude of zero.
  • the signal output from the output terminal 332 is a signal obtained by equally adding the signals output from the drains D1, D2,... Dn. , 3rd and 4th harmonics are shown to be canceled at the output terminal 332.
  • the amplitude of the added signal becomes zero.
  • FIG. 5 is a graph showing the cancellation characteristics of the fundamental wave and the harmonics with respect to the number of amplification stages (n).
  • the horizontal axis in the figure represents the frequency (Hz), and the vertical axis represents the signal amplitude (V) at the output terminal 332.
  • FIG. 5 shows a simulation result when each transistor M1, M2,... Mn is switched by a PWM signal so that a signal amplitude of 1 V per amplification stage can be obtained.
  • the signals output from the transistors M1, M2,... Mn are added in substantially the same phase, so the amplitude (V) of the added signal is The value corresponds to the number of amplification stages n.
  • the gates of n transistors are connected to the connection nodes of the n ⁇ 1 coils and the input / output terminals of the connection circuit that constitute the connection circuit through which the PWM signal propagates.
  • a third coil is separately connected between the drain of each transistor and the other end of the second coil having one end connected to Vdd.
  • each transistor is sequentially switched by a PWM signal propagating through the connection circuit at a time interval of 1 / n of the modulation period of the pulse width modulation, and the substantially equal amplitude PWM signal amplified for each transistor is the second coil. Is added at the other end. For this reason, when the signal amplitude and phase at the drain of each transistor are associated with signal points on the complex plane, the origin is centered with respect to the fundamental wave of pulse width modulation and the harmonics of the (n ⁇ 1) th or lower order.
  • each signal point can be represented on a circle with a phase difference of ⁇ 2k ⁇ / 8 (k is an integer from 1 to n ⁇ 1) so that the signal points are arranged at equal intervals, addition is performed so that the fundamental wave of the PWM signal cancels out. Is done. That is, the PWM signal can be added without using a transmission line and a filter with a large loss, and the fundamental wave and harmonics of pulse width modulation can be removed.
  • PWM signals amplified by a plurality of switching elements can be synthesized with low loss, and an envelope signal as a modulation signal can be demodulated.
  • the signal point on the complex plane corresponding to the drain of the transistor does not overlap with one point for at least the second harmonic to the seventh harmonic, and practical cancellation characteristics. Can be obtained.
  • the envelope signal as the modulation signal input to the EER amplifier is pulse-width modulated by the comparator, and the PWM signal obtained by the pulse width modulation is combined by switching the transistors to synthesize the envelope signal. To do.
  • a switching circuit capable of synthesizing PWM signals amplified by a plurality of transistors with low loss and demodulating a modulation signal can be applied to an envelope signal amplifier.
  • the frequency of the modulation signal of a mobile phone fluctuates.
  • the switching circuit 33 shown in FIG. 3 does not include the transistor M0 and its driving circuit 333, when the frequency of the modulation signal of the mobile phone decreases, the output voltage at the output terminal 332 of the switching circuit 33 asymptotically approaches the power supply voltage Vdd. There is a possibility that.
  • FIG. 6 shows the waveform (C) of the envelope signal when the frequency of the modulation signal of the mobile phone is further lowered, and the waveform (F) of the output voltage at the output terminal 332 of the switching circuit 33.
  • the frequency of the modulation signal of the mobile phone that is, the frequency of the envelope signal further decreases and the state where the duty in the PWM signal becomes constant continues for a long time
  • the coil L2 is magnetically saturated.
  • the output voltage at the output terminal 332 of the switching circuit 33 gradually approaches the power supply voltage Vdd.
  • the time until the coil L2 is magnetically saturated is indicated by a time constant ⁇ .
  • the switching circuit 33 of the present embodiment includes the transistor M0 that is cascade-connected to the coil L2, and the transistor M0 is turned off before the coil L2 is saturated with magnetic flux.
  • FIG. 7 shows the waveform (C) of the envelope signal, the waveform (F) of the output voltage at the output terminal 332 of the switching circuit 33, and the waveform (H) of the drive signal for the transistor M0.
  • FIG. 7H for example, by driving the transistor M0 at a frequency higher than the reciprocal of the time constant ⁇ at which the coil L2 is magnetically saturated, that is, before the coil L2 is saturated with the magnetic flux, the transistor M0 is turned off.
  • the current flowing through the coil L2 can be limited, and the magnetic flux saturation of the coil L2 can be suppressed.
  • the output voltage at the output terminal 332 of the switching circuit 33 gradually approaches the power supply voltage Vdd even when the frequency of the modulation signal of the mobile phone decreases and the duty of the PWM signal is constant for a long time. Can be suppressed.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the mode in which the transistor M0 is connected between the power supply Vdd and the coil L2, that is, the mode in which the transistor M0 is inserted so as to be cascaded to one end side of the coil L2, is exemplified.
  • the transistor M0 may be inserted in a cascade connection to the other end of the coil L2.
  • the transistor M0 gate voltage may be determined with respect to the source voltage.
  • an N-type transistor is used as the transistor M0 in the same manner as the transistors M1 to Mn.
  • a P-type transistor M0 may be used as the transistor M0.
  • the control is easy.
  • a field effect transistor is exemplified as the transistor M0.
  • various switching elements such as a bipolar transistor and an IGBT (Insulated Gate Bipolar Transistor) are applicable.
  • the case where the power supply voltage is the positive voltage Vdd is exemplified, but the idea of the present invention can also be applied when the power supply voltage is the negative voltage Vss.
  • an N-type transistor different from the P-type transistors M1 to Mn may be used as the transistor M0.
  • the transistor M0 may be a second conductivity type transistor different from the first conductivity type transistors M1 to Mn.
  • a diode may be connected in parallel to the coil L2, as shown in FIG. Specifically, the cathode of the diode is connected to one end (power supply voltage Vdd side) of the coil L2, and the anode is connected to the other end of the coil L2. According to this, the back electromotive force of the coil L2 that is induced when the transistor M0 or the transistors M1 to Mn is turned off and no current flows through the coil L2 can be suppressed.
  • a diode may be connected between one end of the coil L2 (power supply voltage Vdd side) and the ground potential.
  • the cathode (or anode) of the diode is connected to one end (power supply voltage Vdd side) of the coil L2, and the anode (or cathode) is connected to the ground potential.
  • the switching circuit 33 does not exclude the configuration of discrete components on the circuit board, whereas in the second embodiment, the switching circuit is formed as an IC on the semiconductor substrate. It is a form.
  • FIG. 11 is a schematic plan view of the switching circuit 33a according to the second embodiment of the present invention.
  • the switching circuit 33a is formed on a semiconductor substrate of a monolithic integrated circuit.
  • One end of the coil L2 is electrically connected to the power source Vdd, and the other end of the coil L2 and the drains D1,.
  • 16 transistors M1,... M16 connected by (connection member).
  • the sources S1,... S16 of the transistors M1,... M16 are connected to a ground potential (a part of which is shown by hatching in FIG. 11).
  • the other end of the coil L2 is an output terminal 332 of the switching circuit 33a.
  • the gates G1,... G16 of the transistors M1,... M16 are respectively connected to both ends of the coils L1,.
  • Fifteen coils L1,... L1 and stray capacitances Cgs (not shown) of the gates G1,... G16 constitute a connection circuit, and one end and the other end of the connection circuit are respectively a coil L1a and a termination resistor Rs Are connected to the input terminal 331 and one end of the capacitor C1 through a series circuit.
  • the other end of the capacitor C1 is connected to the ground potential.
  • the capacitor C1 is for cutting a DC bias voltage with respect to the gates G1,.
  • the coil L2, the 15 coils L1,... L1, the coils L1a and L1a, the termination resistors Rs and Rs, and the capacitor C1 are formed of a conductor pattern.
  • the conductor pattern (connecting member) connecting the other end of the coil L2 and the drains D1,... D16 has a parasitic inductance, and is replaced with each coil L3 of the switching circuit 33 in the first embodiment. Substantially, each coil L3 is replaced by the parasitic inductance of the conductor pattern and the inductance of the wiring from the semiconductor chips of the transistors M1,... M16 to the drains D1,.
  • the switching circuit 33a further includes a transistor M0 connected in series between the power supply Vdd and the coil L2.
  • the drain D0 of the transistor M0 is connected to the power supply Vdd, and the source S0 is connected to one end of the coil L2.
  • the gate G0 of the transistor M0 is connected to the output of the drive circuit 333. Note that although the drive circuit 333 is omitted in FIG. 11, the drive circuit 333 may be formed over the same semiconductor substrate, or the drive circuit 333 may be formed over another semiconductor substrate.
  • the transistors M1,... M16 are sequentially switched while the PWM signal applied from the input terminal 331 to the termination resistor Rs propagates through the connection circuit including the 15 coils L1,.
  • the PWM signals amplified by the transistors M1,... M16 and output from the drains D1,... D16 are added by the coil L2, so that the fundamental wave and harmonics of pulse width modulation are canceled at the output terminal 332 This is the same as the switching circuit 33 in the first embodiment.
  • the current flowing through the coil L2 can be limited and the magnetic flux saturation of the coil L2 can be suppressed.
  • the output voltage can be prevented from approaching the power supply voltage Vdd for a long time.
  • the switching circuit 33a is formed on a monolithic integrated circuit, the entire circuit is reduced in size, which is better than a case where a discrete part is used on a circuit board made of an insulating base material. Has high frequency characteristics.
  • symbol is attached
  • a connecting member is interposed between the drain of each transistor and the other end of the second coil, instead of the third coil that is to be interposed separately. .
  • the role of the third coil can be imposed on the parasitic inductance of the connection member.
  • the switching circuit is formed on the semiconductor substrate of the monolithic integrated circuit, the switching circuit can be downsized and the high frequency characteristics as an amplifier can be improved. (Embodiment 3)
  • the second embodiment is a form in which a lateral MOSFET is provided on a semiconductor substrate
  • the third embodiment is a form in which a high withstand voltage and high power vertical MOSFET is provided on the same semiconductor substrate.
  • FIG. 12 is a schematic plan view of the switching circuit 33b according to the third embodiment of the present invention.
  • 12A and 12B are plan views showing the front and back surfaces of the switching circuit 33b.
  • the switching circuit 33b is formed on a semiconductor substrate of a monolithic integrated circuit, and includes transistors M1, M2,... M8 made of vertical MOSFETs arranged in a ring shape.
  • Each of the transistors M1, M2,... M8 has sources S1,... S8 and gates G1,... G8 formed on the surface of the semiconductor substrate, and drains D1, D2,. Yes.
  • the sources S1,... S16 of the transistors M1,... M16 are connected to an annular conductor pattern connected to the ground potential.
  • the gates G1,... G8 of the transistors M1,... M8 are respectively connected to both ends of the coils L1,.
  • Seven coils L1,... L1 and stray capacitances Cgs (not shown) of the gates G1,... G8 form a connection circuit, and one end and the other end of the connection circuit are a coil L1a and a termination resistor Rs, respectively.
  • the switching circuit 33b also includes a coil L2 having one end connected to the power supply Vdd on the back surface of the semiconductor substrate, and the other end of the coil L2 is connected to the drains D1, D2,. -It is connected to one point connected at equal distance from D8 by each different conductor pattern (connecting member).
  • the other end of the coil L2 is an output terminal 332 of the switching circuit 33b.
  • the conductor pattern (connection member) has a parasitic inductance, and replaces the coil L3 of the switching circuit 33 in the first embodiment.
  • the switching circuit 33a further includes a transistor M0 connected in series between the power supply Vdd and the coil L2.
  • the transistor M0 also has a source S0 and a gate formed on the front surface of the semiconductor substrate, and a drain D0 formed on the back surface.
  • the drain D0 of the transistor M0 is connected to the power supply Vdd.
  • the source S0 on the front surface of the semiconductor substrate is connected to one end of the coil L2 on the back surface through a via or the like, and the gate G0 is connected to the output of the drive circuit 333.
  • the drive circuit 333 is omitted in FIG. 12, the drive circuit 333 may be formed on the same semiconductor substrate, or the drive circuit 333 may be formed on another semiconductor substrate.
  • the transistors M1, M2,... M8 are sequentially switched while the PWM signal applied from the input terminal 331 to the termination resistor Rs propagates through the connection circuit including the seven coils L1,. To do.
  • the PWM signals amplified by the transistors M1, M2,... M8 and output from the drains D1,... D8 are added by the coil L2, thereby canceling the fundamental wave and the harmonics of the pulse width modulation at the output terminal 332 This is the same as the switching circuit 33 in the first embodiment.
  • the current flowing through the coil L2 can be limited and the magnetic flux saturation of the coil L2 can be suppressed.
  • the output voltage can be prevented from approaching the power supply voltage Vdd for a long time.
  • the sources S1,... S8 and the gates G1,... G8 and the drains D1,. Can do.
  • a conductor pattern wiring member that connects the drains D1, D2,.
  • symbol is attached
  • each transistor is formed of a vertical MOSFET, so that the switching circuit can have a high breakdown voltage and high power, and the on-resistance can be reduced to reduce loss. It becomes.
  • the drain electrode of each transistor, the source electrode, and the gate electrode are separated on both surfaces of the monolithic integrated circuit, the wiring length from the drain electrode of each transistor to the other end of the second coil is equalized. Accordingly, the PWM signal amplified for each transistor can be added in a balanced manner at the other end of the second coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 本発明の一実施形態のスイッチング回路33は、N個(Nは2以上の整数)のトランジスタM1~Mnのスイッチングを制御するための各制御端子をN-1個のコイルL1を介して縦続接続する接続回路と、一端が直流電源に電気的に接続されるコイルL2の他端及びトランジスタM1~Mnの各一端の間に各別に接続されたコイルL3とを備え、接続回路の入力端子に入力されるPWM信号にて、スイッチング素子M1~Mnを順次スイッチングさせるようにしてある。また、スイッチング回路33は、コイルL2の一端側又は他端側に縦続接続されるように挿入されたトランジスタM0を更に備える。

Description

スイッチング回路及び包絡線信号増幅器
 本発明は、インダクタンス素子に接続されたスイッチング素子をPWM信号でスイッチングさせるスイッチング回路、及び該スイッチング回路を備える包絡線信号増幅器に関する。
 近年、携帯電話の基地局等で高周波の変調信号を電力増幅するのに用いられる増幅方式の一つにEER(Envelope Elimination and Restoration)方式がある。EER方式では、増幅すべき変調信号から振幅成分(包絡線)と位相成分とを抽出し、位相成分に相当する信号を振幅成分に応じた信号で振幅変調することにより、変調された信号の振幅が、元の変調信号の振幅に比例するように増幅する。
 より具体的には、抽出された包絡線に追従する電圧を飽和型の増幅器の電源電圧とし、この増幅器で位相成分に相当する信号を増幅することにより、増幅された信号の振幅を抽出された包絡線に追従させる。上記の包絡線に追従する電圧は、例えば、増幅すべき変調信号を包絡線検波した検波信号(以下、包絡線信号という)を電力増幅することによって得られる。包絡線信号の電力増幅には、効率を高めるために飽和型の増幅器が用いられる。例えば、包絡線信号をパルス幅変調して生成したPWM信号でスイッチング素子をスイッチングさせ、スイッチングによって増幅されたPWM信号を積分することにより、包絡線信号が変調信号として復調される。
 PWM信号を増幅するには、相補的なスイッチング素子をプッシュプル接続させたD級増幅器や、インダクタンス素子から印加される電圧がゼロの時にスイッチング素子をオンさせるE級増幅器が用いられることが多い。但し、D級増幅器では、相補的なスイッチング素子の耐圧をバランスよく高めることが技術的に困難である。また、E級増幅器では、設計条件及び動作条件によりスイッチング素子がオフするときにインダクタンス素子からスイッチング素子に印加されるサージ電圧が電源電圧を大きく超えることがある。このような理由から、プッシュプル又は単一のスイッチング素子を高周波且つ大電力の増幅器に適用するには自ずと限界がある。
 加えて、上述したPWM信号には比較的周波数が低い包絡線信号の成分と周波数が高いPWM信号の成分とが含まれているため、PWM信号の増幅器には、広帯域な周波数特性を有する増幅器が必要とされる。このような条件を満たす増幅器として、例えば特許文献1に示すような分布増幅器をPWM信号の増幅器に適用することが考えられる。
特開2002-033627号公報
 しかしながら、分布増幅器では、複数のスイッチング素子が出力する電力を合成するための分布定数線路において、出力端とは反対側に伝播する電力を抵抗で消費させて終端しなければならず、終端抵抗での損失が大きいという問題がある。また、増幅されたPWM信号から変調信号としての包絡線信号を取り出すのにローパスフィルタが必要であり、このフィルタの挿入損失も無視できないものとなる。
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、複数のスイッチング素子にて増幅したPWM信号を低損失で合成し、変調信号を復調することが可能なスイッチング回路、及び該スイッチング回路を備える包絡線信号増幅器を提供することにある。
 本発明に係るスイッチング回路は、N個(Nは2以上の整数)のスイッチング素子のスイッチングを制御するための各制御端子をN-1個の第1インダクタンス素子を介して縦続接続する接続回路と、一端が直流電源に電気的に接続される第2インダクタンス素子の他端及び前記スイッチング素子の各一端の間に各別に接続された第3インダクタンス素子とを備えるスイッチング回路であって、前記接続回路の入力端子に入力されるPWM信号にて、前記N個のスイッチング素子を順次スイッチングさせるようにしてあり、前記第2インダクタンス素子の一端側又は他端側に縦続接続されるように挿入された補助スイッチング素子を更に備えることを特徴とする。
 本発明にあっては、PWM信号が伝播する接続回路を構成するN-1個の第1インダクタンス素子の各接続節点及び接続回路の入出力端子に、N個のスイッチング素子夫々の制御端子を格別に接続してあり、各スイッチング素子の一端と、直流電源に一端が接続された第2インダクタンス素子の他端との間に第3インダクタンス素子を各別に介装させる。
 これにより、接続回路を伝播するPWM信号によって各スイッチング素子が一定の時間間隔で順次スイッチングし、スイッチング素子毎に増幅された略等振幅のPWM信号が第2インダクタンス素子の他端において加算される。このため、前記時間間隔のN倍が1周期となるような変調周期(PWM周期)を有するPWM信号を増幅することとした場合は、PWM信号の基本波に対して、各スイッチング素子の一端における信号振幅及び位相を複素平面上の信号点に対応させたときに、原点を中心とする円上に-2π/Nの位相差で各信号点が等間隔に並ぶように表すことができるため、PWM信号の基本波がうち消し合うように加算される。
 同様に、PWM信号のM次(Mは2以上の整数)高調波に対して、各スイッチング素子の一端における信号振幅及び位相を複素平面上の信号点に対応させたときに、原点を中心とする円上に-2Mπ/Nの位相差で各信号点が等間隔に並ぶように表すことができる場合は、PWM信号の高調波が打ち消し合うように加算される。
 従って、複数のスイッチング素子にて増幅したPWM信号を低損失で合成し、変調信号を復調することが可能となる。
 ところで、例えば、携帯電話の変調信号の周波数は変動するものである。携帯電話の変調信号の周波数が低い場合、すなわち、この変調信号を包絡線検波した包絡線信号の周波数が低い場合、この包絡線信号をパルス幅変調したPWM信号においてデューティーが一定となる状態が長時間継続することとなる。このように、PWM信号におけるデューティーが一定となる状態が長時間継続すると、スイッチング回路では、第2インダクタンス素子が磁気飽和してしまい、出力電圧が電源電圧に漸近してしまうこととなる。
 そこで、このスイッチング回路によれば、第2インダクタンス素子が磁束飽和する前に補助スイッチングをオフ状態とすることにより、第2インダクタンス素子に流れる電流を制限し、第2インダクタンス素子の磁束飽和を抑制することができる。その結果、例えば、携帯電話の変調信号の周波数が低下し、PWM信号におけるデューティーが一定となる状態が長時間継続しても、出力電圧が電源電圧に漸近することを抑制することができる。
 本発明に係るスイッチング回路では、前記補助スイッチング素子は、前記第2インダクタンス素子が磁気飽和する時定数の逆数よりも高い周波数で駆動されてもよい。
 本発明に係るスイッチング回路では、前記補助スイッチング素子を駆動するための駆動信号であって、前記PWM信号からその周波数を低下させることによって当該駆動信号を生成する駆動回路を更に備える形態であってもよい。
 本発明に係るスイッチング回路では、前記N個のスイッチング素子それぞれは、第1導電型のトランジスタであり、前記補助スイッチング素子は、前記第1導電型とは異なる第2導電型のトランジスタであってもよい。
 本発明に係るスイッチング回路は、前記スイッチング素子の一端及び前記第2インダクタンス素子の他端の間を電気的に接続する接続部材を、前記第3インダクタンス素子に置き換える形態であってもよい。
 本発明にあっては、各スイッチング素子の一端と第2インダクタンス素子の他端との間に各別に介装されるべき第3インダクタンス素子に代えて、接続部材を介装させる。これにより、接続部材の寄生インダクタンスが、第3インダクタンス素子の機能を果たす。
 本発明に係るスイッチング回路は、Nは8以上であってもよい。
 本発明にあっては、各スイッチング素子の一端におけるPWM信号のM次高調波の信号振幅及び位相を複素平面上の信号点に対応させた場合、各信号点間の位相差(-2Mπ/N)は、基本波に対する信号点間の位相差(-2π/N)のM倍となる。つまり、各信号点が最初に1点に重なるのは、N次高調波(M=N)の場合である。これにより、Nが8以上の場合、少なくとも2次高調波から7次高調波に対して、スイッチング素子の各一端に対応する複素平面上の信号点が1点に重なることがなく、これらの高調波が互いに打ち消される。
 本発明に係るスイッチング回路は、前記スイッチング素子と、前記第1、第2及び第3インダクタンス素子とが、モノリシック集積回路の半導体基板に形成されている形態であってもよい。
 本発明にあっては、スイッチング回路がモノリシック集積回路の半導体基板に形成されているため、スイッチング回路が小型化され、増幅器としての高周波特性が良好となる。
 本発明に係るスイッチング回路は、前記スイッチング素子が、縦型のMOSFETであってもよい。
 本発明にあっては、各スイッチング素子が縦型のMOSFETからなるため、スイッチング回路が高耐圧、大電力化されると共に、オン抵抗が小さくなって損失が低減される。更に、モノリシック集積回路の各スイッチング素子に縦型のMOSFETを適用した場合は、各スイッチング素子のドレイン電極と、ソース電極及びゲート電極とがモノリシック集積回路の両面に分離される。このため、例えば、各スイッチング素子のドレイン電極から第2インダクタンス素子の他端に至る配線長が均等化され、スイッチング素子毎に増幅されたPWM信号が第2インダクタンス素子の他端においてバランスよく加算される。
 本発明に係る包絡線信号増幅器は、アナログの信号をパルス幅変調する変調回路と、前述の発明に記載のスイッチング回路とを備え、前記変調回路が変調信号の包絡線信号をパルス幅変調して得られたPWM信号にて前記スイッチング回路をスイッチングさせるようにしてあることを特徴とする。
 本発明にあっては、入力された変調信号の包絡線信号を変調回路がパルス幅変調し、パルス幅変調して得られたPWM信号でスイッチング回路をスイッチングさせて包絡線信号に復調する。これにより、複数のスイッチング素子にて増幅したPWM信号を低損失で合成し、変調信号を復調することが可能なスイッチング回路が、包絡線信号増幅器に適用される。
 本発明によれば、接続回路を伝播するPWM信号によって各スイッチング素子が一定の時間間隔で順次スイッチングし、スイッチング素子毎に増幅された略等振幅のPWM信号が第2インダクタンス素子の他端において加算される。
 このため、前記時間間隔のN倍が1周期となるような変調周期を有するPWM信号を増幅することとした場合は、PWM信号の基本波に対して、各スイッチング素子の一端における信号振幅及び位相を複素平面上の信号点に対応させたときに、原点を中心とする円上に-2π/Nの位相差で各信号点が等間隔に並ぶように表すことができるため、PWM信号の基本波がうち消し合うように加算される。同様に、PWM信号のM次(Mは2以上の整数)高調波に対して、各スイッチング素子の一端における信号振幅及び位相を複素平面上の信号点に対応させたときに、原点を中心とする円上に-2Mπ/Nの位相差で各信号点が等間隔に並ぶように表すことができる場合は、PWM信号の高調波が打ち消し合うように加算される。
 従って、複数のスイッチング素子にて増幅したPWM信号を低損失で合成し、変調信号を復調することが可能となる。
 また、本発明によれば、第2インダクタンス素子が磁束飽和する前に補助スイッチングをオフ状態とすることにより、第2インダクタンス素子に流れる電流を制限し、第2インダクタンス素子の磁束飽和を抑制することができる。その結果、例えば、携帯電話の変調信号の周波数が低下し、PWM信号におけるデューティーが一定となる状態が長時間継続しても、出力電圧が電源電圧に漸近することを抑制することができる。
図1は、本発明の実施の形態1に係るEER増幅器の要部構成を示すブロック図である。 図2は、EER増幅器の各部の信号波形を模式的に示す説明図である。 図3は、本発明の実施の形態1に係るスイッチング回路の構成を示す回路図である。 図4は、ドレインにおける信号の振幅及び位相を複素平面上の信号点に対応付けて示す図である。 図5は、増幅段数(n)に対する基本波及び高調波の打ち消し特性を示すグラフである。 図6は、携帯電話の変調信号の周波数が低下した場合のEER増幅器の各部の信号波形を模式的に示す説明図である(トランジスタM0が無い場合)。 図7は、携帯電話の変調信号の周波数が低下した場合の本発明の実施の形態1に係るEER増幅器の各部の信号波形を模式的に示す説明図である(トランジスタM0が有る場合)。 図8は、本発明の変形例に係るスイッチング回路の構成を示す回路図である。 図9は、本発明の変形例に係るスイッチング回路の構成を示す回路図である。 図10は、本発明の変形例に係るスイッチング回路の構成を示す回路図である。 図11は、本発明の実施の形態2に係るスイッチング回路の模式的な平面図である。 図12は、本発明の実施の形態3に係るスイッチング回路の模式的な平面図である。
 以下、本発明に係るスイッチング回路を有する包絡線信号増幅器を、携帯電話の基地局で用いられるEER方式による増幅器(以下、EER増幅器という)に適用した実施の形態について詳述する。また、本発明は、包絡線信号増幅器を用いる他の方式、例えば、ET(Envelope Tracking)方式等にも適用が可能である。
(実施の形態1)
 図1は、本発明の実施の形態1に係るEER増幅器の要部構成を示すブロック図である。EER増幅器は、入力端子1から入力された携帯電話の変調信号を包絡線検波する検波器2と、検波信号(包絡線信号)を増幅する包絡線信号増幅器3と、入力された変調信号の振幅を制限して位相成分を抽出するリミッタ4と、抽出した位相成分を増幅するスイッチング回路5とを備える。
 包絡線信号増幅器3は、一定周波数の三角波を発生させる三角波発生器31と、該三角波発生器31から与えられた三角波との比較により、検波器2から与えられた検波信号をパルス幅変調したPWM信号をスイッチング回路33に与える比較器32とを備える。スイッチング回路33でスイッチングされて振幅が増大したPWM信号は、パルス幅変調の変調周波数成分及び高調波成分が除去されて包絡線信号に復調され、スイッチング回路5に与えられる。スイッチング回路5は、包絡線信号増幅器3のスイッチング回路33から与えられた包絡線信号を電源電圧としており、リミッタ4から与えられた位相成分に基づいて図示しないスイッチング素子をスイッチングさせることにより、増幅された位相成分の振幅を包絡線信号に追従させる。
 図2は、EER増幅器の各部の信号波形を模式的に示す説明図である。図2Aから図2Gにおいて、横軸は時間を表し、縦軸は各部の信号の振幅を表す。但し、各縦軸の縮尺は不均等である。
 図2Aは、入力端子1に与えられる変調信号の波形を示している。入力された変調信号は、搬送波が位相変調及び振幅変調されたものである。図2Bは、入力された変調信号からリミッタ4が抽出した位相成分の波形を示し、図2Cは、入力された変調信号を検波器2が包絡線検波した検波信号(包絡線信号)の波形を示している。図2Bの位相信号は振幅が一定であり、図2Cの包絡線信号は変調信号から搬送波の成分が除去されている。
 図2Dは、比較器32に入力される三角波の波形を示し、図2Eは、図2Cに示す包絡線信号が比較器32で三角波と比較されてパルス幅変調されたPWM信号の波形を示している。ここでは、包絡線信号の波高値が低い(又は高い)場合、PWM信号のパルス幅が広く(又は狭く)なるようにパルス幅変調される。このPWM信号をスイッチング回路33で極性反転して増幅することにより、パルス幅変調の変調周波数成分及びそれより高い周波数成分が除去された信号の波形を図2Fに示す。つまり、図2Fの信号は、図2Cの包絡線信号が増幅されたものとなる。
 図2Gは、図2Fに示す包絡線信号そのものを電源とするスイッチング回路5により、図2Bに示す位相成分を増幅したときの出力信号の波形を示す。この場合、スイッチング回路5が出力する信号の振幅は電源電圧に追従するため、包絡線信号に追従する振幅を有する位相信号がスイッチング回路5から出力される。このようにして、図2Aに示す変調信号の位相成分が保たれた状態で振幅成分が増幅され、図2Gに示す信号としてEER増幅器から出力される。
 尚、本実施の形態1では、パルス幅変調の変調周波数、即ち三角波発生器31が発生させる三角波の周波数は200MHzであるが、これに限定されるものではなく、包絡線信号の帯域幅の10倍程度に相当する周波数となるようにすることが好ましい。
 図3は、本発明の実施の形態1に係るスイッチング回路33の構成を示す回路図である。スイッチング回路33は、一端が電源Vddに電気的に接続されるコイルL2と、該コイルL2の他端及びドレインD1,D2,・・Dn(nは2以上の整数)間にコイルL3が各別に介装されたn個の電界効果トランジスタ(MOSFET。以下、単にトランジスタという)M1,M2,・・Mnとを備える。トランジスタM1,M2,・・Mn夫々のソースS1,S2,・・Snは、接地電位に接続されている。コイルL2の他端は、スイッチング回路33の出力端子332に接続されている。
 トランジスタMk,Mk+1(kは1からn-1の整数)のゲートGk,Gk+1間には、n-1個のコイルL1が各別に接続されている。n-1個のコイルL1と、ゲートG1,G2,・・Gnの図示しない浮遊容量Cgsとが接続回路を構成しており、該接続回路の一端及び他端は、夫々コイルL1aと終端抵抗Rsとの直列回路を介して入力端子331及び接地電位に接続されている。終端抵抗Rs及び接地電位の間には、後述するコンデンサC1を介装させてもよい。終端抵抗Rsのインピーダンスは、接続回路の特性インピーダンスと一致させてある。
 スイッチング回路33は、更に、電源VddとコイルL2との間に縦続接続されるように挿入された電界効果トランジスタ(MOSFET。以下、単にトランジスタという)M0を備える。トランジスタM0のドレインは電源Vddに接続されており、ソースはコイルL2の一端に接続されている。トランジスタM0のゲートには駆動回路333からの駆動信号が入力される。駆動回路333は、比較器32から入力端子331を介して入力されるPWM信号から、その周波数を低下させることによって駆動信号を生成する。
 駆動信号は、トランジスタM0のオン時間が、コイルL2が磁気飽和する時定数よりも小さくなるようなパルス幅に設定される。又は、駆動信号は、コイルL2が磁気飽和する時定数の逆数の1/2倍よりも高い周波数に設定される。好ましくは、駆動信号は、コイルL2が磁気飽和する時定数の逆数よりも高い周波数に設定される。これにより、トランジスタM0は、コイルL2が磁束飽和する前にオフ状態となる。この詳細は後述することとする。なお、トランジスタM0は、トランジスタM1~Mnと比べて高速な動作が不要なため、トランジスタM0としては比較的安価なトランジスタを用いることが可能である。
 上述したスイッチング回路33において、比較器32から入力端子331を介して終端抵抗Rsに与えられたPWM信号が、接続回路を伝播する間にゲートGm(mは1からnまでの整数)に一定の時間間隔で与えられる。この時間間隔は、パルス幅変調の変調周期の1/nとなるようにしてある。即ち、ゲートGmには、ゲートG1に対して2π(m-1)/nだけ位相が遅れたPWM信号が与えられる。そして、PWM信号がトランジスタMmのゲートGmに伝播したときに、トランジスタMmが、ドレインDmに接続されたコイルL3と接地電位との間をスイッチングし、極性反転して増幅したPWM信号をドレインDmからコイルL3を介して出力端子332へ与える。従って、コイルL2の他端、即ち出力端子332から出力される信号は、ドレインD1,D2,・・Dnの夫々から出力された等振幅のPWM信号が、各別のコイルL3を介して均等に加算された信号となる。
 次に、各トランジスタMmのドレインDmから出力端子332に与えられたPWM信号が加算される仕組みを、n=8の場合について説明する。
 図4は、ドレインD1,D2,・・D8における信号の振幅及び位相を複素平面上の信号点に対応付けて示す図である。図において横軸は実軸を表し、縦軸は虚軸を表す。図4Aは、パルス幅変調の変調周波数(ここでは200MHz)と同一の周波数を有する基本波に対する信号点を示し、図4B,4C,4Dの夫々は、2次高調波,3次高調波,4次高調波に対する信号点を示している。
 図4Aにおいて、ドレインD1に対応する信号点を実軸上においた場合、ドレインD1,D2,・・D8における信号振幅は一定であるので、ドレインD1,D2,・・D8に対応する信号点は、原点を中心とする同心円上に並ぶ。また、トランジスタM1,M2,・・M8はパルス幅変調の変調周期(基本波の周期)の1/8の時間間隔をおいて順次、即ち-π/4の位相差で順次スイッチングするため、ドレインD1,D2,・・D8に対応する隣り合う信号点間の位相差は、-π/4(=-2π/8)となる。
 同様に、図4Bにおいて、トランジスタM1,M2,・・M8は2次高調波の周期の2/8の時間間隔をおいて順次、即ち-π/2の位相差で順次スイッチングするため、ドレインD1,D2,・・D8に対応する隣り合う信号点間の位相差は、-π/2(=-2×2π/8)となる。また、図4Cにあっては、ドレインD1,D2,・・D8に対応する隣り合う信号点間の位相差は、-3π/4(=-3×2π/8)となる。更に、図4Dにあっては、ドレインD1,D2,・・D8に対応する隣り合う信号点間の位相差は、-π(=-4×2π/8)となる。
 以上の図4Aから4Dに示す各信号点は、原点について点対称となる位置関係にあるため、図4Aから4Dのどの図にあっても、全ての信号点に対応するドレインD1,D2,・・D8の信号を均等に加算したときは、加算された信号が打ち消し合って振幅がゼロの信号となることが示される。一方、出力端子332から出力される信号は、ドレインD1,D2,・・Dnの夫々から出力された信号が均等に加算された信号であるから、n=8の場合、少なくとも基本波及び2次,3次,4次の高調波が出力端子332において打ち消されることが示される。
 図示しない5次,6次,7次の高調波については、ドレインD1,D2,・・D8に対応する隣り合う信号点間の位相差が、夫々-5π/4(=-5×2π/8),-3π/2(=-6×2π/8),-7π/4(=-7×2π/8)となる。これらの高調波についても、ドレインD1,D2,・・D8の信号を均等に加算したときは、加算された信号の振幅がゼロとなる。
 これに対し、8次の高調波については、ドレインD1,D2,・・D8に対応する隣り合う信号点間の位相差が、-2π(=-8×2π/8)となり、全ての信号点が1点に重なる。従って、ドレインD1,D2,・・D8の信号を均等に加算したときは、加算された信号が打ち消し合うことがなく、加算した信号の数だけ信号の振幅が増大することが推察される。
 以上の事柄から帰納的に言えることは、図3に示すスイッチング回路33の出力端子332からは、パルス幅変調の基本波及びn-1次以下の高調波が打ち消されて出力されるということである。つまり、スイッチング回路33の出力端子332からは、図2Fに示すような包絡線信号が出力されると言える。
 以下では、スイッチング回路33のトランジスタの個数、即ちPWM信号の増幅段数の違いによって、基本波及び高調波がどのように打ち消されるかを説明する。
 図5は、増幅段数(n)に対する基本波及び高調波の打ち消し特性を示すグラフである。図の横軸は周波数(Hz)を表し、縦軸は出力端子332における信号の振幅(V)を表す。また、n=4、6、8及び16の場合の信号振幅を、夫々2点鎖線、1点鎖線、実線及び破線で示す。図5では、増幅段の1段当たり1Vの信号振幅が得られるように各トランジスタM1,M2,・・MnをPWM信号でスイッチングさせた場合のシミュレーション結果を示す。パルス幅変調の基本波(200MHz)より十分低い周波数では、各トランジスタM1,M2,・・Mnから出力される信号が略同位相で加算されるため、加算された信号の振幅(V)は、増幅段数nに相当する値となる。
 先ず、n=4の場合、パルス幅変調の基本波及び2次,3次の高調波が出力端子332において打ち消されるため、f=200MHz、400MHz及び600MHzにおける高調波信号の振幅がゼロとなる。また、上述したように4次の高調波が出力端子332で加算されるため、f=800MHzにおける信号の振幅にピークが現れる(2点鎖線参照)。このようなピークは、8次(4次×2)の高調波であるf=1.6GHzにも現れる。
 次に、n=6の場合、パルス幅変調の基本波及び2次から5次の高調波が出力端子332において打ち消されるため、f=200MHzから200MHzおきに1GHzまでの高調波信号の振幅がゼロとなる。また、6次の高調波が出力端子332で加算されるため、f=1.2GHzにおける信号の振幅にピークが現れる(1点鎖線参照)。
 同様にn=8の場合、パルス幅変調の基本波及び2次から7次の高調波が出力端子332において打ち消されるため、f=200MHzから200MHzおきに1.4GHzまでの信号の振幅がゼロとなる。また、8次の高調波が出力端子332で加算されるため、f=1.6GHzにおける信号の振幅にピークが現れる(実線参照)。
 更に、n=16の場合、パルス幅変調の基本波及び2次から15次の高調波が出力端子332において打ち消されるため、f=3GHzまでの高調波信号の振幅がゼロとなり、図5に示す周波数の範囲では信号の振幅に大きなピークが現れることがない。
 このように、増幅段数を8以上とすれば、f=1.4GHzまでの高調波が打ち消されるため、ほぼ実用的な打ち消し特性が得られることが示される。
 以上のように本実施の形態1によれば、PWM信号が伝播する接続回路を構成するn-1個のコイルの各接続節点及び接続回路の入出力端子に、n個のトランジスタのゲートを各別に接続してあり、各トランジスタのドレインと、Vddに一端が接続された第2のコイルの他端との間に第3のコイルを各別に介装させる。
 これにより、接続回路を伝播するPWM信号によって各トランジスタが、パルス幅変調の変調周期の1/nの時間間隔で順次スイッチングし、トランジスタ毎に増幅された略等振幅のPWM信号が第2のコイルの他端において加算される。このため、各トランジスタのドレインにおける信号振幅及び位相を複素平面上の信号点に対応付けたときに、パルス幅変調の基本波及びn-1次以下の高調波に対して、原点を中心とする円上に-2kπ/8(kは1からn-1の整数)の位相差で各信号点が等間隔に並ぶように表すことができるため、PWM信号の基本波がうち消し合うように加算される。つまり、損失が大きい伝送線路及びフィルタを用いずにPWM信号を加算して、パルス幅変調の基本波及び高調波を除去することができる。
 従って、複数のスイッチング素子にて増幅したPWM信号を低損失で合成し、変調信号としての包絡線信号を復調することが可能となる。
 また、各トランジスタのドレインにおけるPWM信号のM次高調波の信号振幅及び位相を複素平面上の信号点に対応付けた場合、各信号点間の位相差は(-2Mπ/n)は、基本波に対する信号点間の位相差(-2π/n)のM倍となる。つまり、各信号点が最初に1点に重なるのは、n次高調波(M=n)の場合となる。
 従って、nが8以上の場合は、少なくとも2次高調波から7次高調波に対して、トランジスタのドレインに対応する複素平面上の信号点が1点に重なることがなく、実用的な打ち消し特性を得ることが可能となる。
 更にまた、EER増幅器に入力された変調信号としての包絡線信号を比較器がパルス幅変調し、パルス幅変調して得られたPWM信号でトランジスタをスイッチングさせて合成することにより包絡線信号に復調する。
 従って、複数のトランジスタにて増幅したPWM信号を低損失で合成し、変調信号を復調することが可能なスイッチング回路を、包絡線信号増幅器に適用することが可能となる。
 次に、上述したスイッチング回路33におけるトランジスタM0及びその駆動回路333の作用効果について説明する。
 携帯電話の変調信号の周波数は変動するものである。ここで、図3に示すスイッチング回路33においてトランジスタM0及びその駆動回路333を備えない場合、携帯電話の変調信号の周波数が低下すると、スイッチング回路33の出力端子332における出力電圧が電源電圧Vddに漸近してしまう可能性がある。
 詳説すれば、携帯電話の変調信号の周波数が低い場合(図2Aに示す振幅変調成分の周波数が低いP1部分)、すなわち、この変調信号を包絡線検波した包絡線信号の周波数が低い場合(図2Cに示すP1部分)、この包絡線信号をパルス幅変調したPWM信号においてデューティーが一定となる状態が継続することとなる(図2Eに示すP2部分)。
 ここで、図6に、携帯電話の変調信号の周波数が更に低下した場合の包絡線信号の波形(C)、及び、スイッチング回路33の出力端子332における出力電圧の波形(F)を示す。図6Cに示すように、携帯電話の変調信号の周波数、すなわち、包絡線信号の周波数が更に低下し、PWM信号におけるデューティーが一定となる状態が長時間継続すると、コイルL2が磁気飽和してしまう。すると、図6Fに示すように、スイッチング回路33の出力端子332における出力電圧が電源電圧Vddに漸近してしまうこととなる。なお、図6Fでは、コイルL2が磁気飽和するまでの時間を時定数τで示している。
 そこで、本実施形態のスイッチング回路33では、コイルL2に縦続接続するトランジスタM0を備え、コイルL2が磁束飽和する前にトランジスタM0をオフ状態とする。図7は、包絡線信号の波形(C)、スイッチング回路33の出力端子332における出力電圧の波形(F)、及び、トランジスタM0の駆動信号の波形(H)を示す。図7Hに示すように、例えばコイルL2が磁気飽和する時定数τの逆数よりも高い周波数でトランジスタM0を駆動することにより、すなわち、コイルL2が磁束飽和する前にトランジスタM0をオフ状態とすることにより、コイルL2に流れる電流を制限し、コイルL2の磁束飽和を抑制することができる。その結果、携帯電話の変調信号の周波数が低下し、PWM信号におけるデューティーが一定となる状態が長時間継続しても、スイッチング回路33の出力端子332における出力電圧が電源電圧Vddに漸近することを抑制することができる。
 なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、本実施形態では、トランジスタM0が電源VddとコイルL2との間に接続される形態、すなわち、トランジスタM0がコイルL2の一端側に縦続接続されるように挿入される形態を例示したが、トランジスタM0は、図8に示すように、コイルL2の他端側に縦続接続されるように挿入される形態であってもよい。なお、この場合、トランジスタM0ゲート電圧は、ソース電圧に対して決定してもよい。
 また、本実施形態では、トランジスタM0としてトランジスタM1~Mnと同様にN型トランジスタを用いたが、図9に示すように、トランジスタM0としてP型トランジスタM0を用いてもよい。P型トランジスタの場合、電源電圧Vddを基準としてゲート電圧が決まるので、制御が容易である。
 また、本実施形態では、トランジスタM0として電界効果型トランジスタを例示したが、トランジスタM0としては、バイポーラ型トランジスタやIGBT(Insulated Gate Bipolar Transistor)等の様々なスイッチング素子が適用可能である。
 また、本実施形態では、電源電圧が正電圧Vddである場合を例示したが、電源電圧が負電圧Vssである場合にも、本発明の思想が適用可能である。この場合にも、トランジスタM0としてP型のトランジスタM1~Mnと異なるN型トランジスタを用いてもよい。換言すれば、トランジスタM0は、第1導電型のトランジスタM1~Mnとは異なる第2導電型のトランジスタであってもよい。これにより、上記同様の効果が得られる。
 また、本実施形態では、図9に示すように、コイルL2に並列にダイオードが接続されてもよい。具体的には、ダイオードのカソードがコイルL2の一端(電源電圧Vdd側)に接続され、アノードがコイルL2の他端に接続される。これによれば、トランジスタM0又はトランジスタM1~Mnがオフ状態になり、コイルL2に電流が流れなくなった場合に誘起するコイルL2の逆起電力を抑制することができる。
 また、本実施形態では、図10に示すように、コイルL2の一端(電源電圧Vdd側)と接地電位との間にダイオードが接続されてもよい。具体的には、ダイオードのカソード(又は、アノード)がコイルL2の一端(電源電圧Vdd側)に接続され、アノード(又は、カソード)が接地電位に接続される。これによれば、トランジスタM0がオフ状態のときにも、コイルL2への電流の供給を継続することが可能となる。
(実施の形態2)
 実施の形態1は、スイッチング回路33が、回路基板上のディスクリート部品で構成されることを排除しない形態であるのに対し、実施の形態2は、スイッチング回路が半導体基板上にICとして形成される形態である。
 図11は、本発明の実施の形態2に係るスイッチング回路33aの模式的な平面図である。スイッチング回路33aは、モノリシック集積回路の半導体基板上に形成されており、一端が電源Vddに電気的に接続されるコイルL2と、該コイルL2の他端及びドレインD1,・・D16間が導体パターン(接続部材)にて接続された16個のトランジスタM1,・・M16とを備える。トランジスタM1,・・M16夫々のソースS1,・・S16は、接地電位(図11では、一部を斜線で示す)に接続されている。コイルL2の他端は、スイッチング回路33aの出力端子332となっている。
 トランジスタM1,・・M16夫々のゲートG1,・・G16は、15個直列に接続されたコイルL1,・・L1の両端及び各接続点に各別に接続されている。15個のコイルL1,・・L1と、ゲートG1,・・G16の図示しない浮遊容量Cgsとが接続回路を構成しており、該接続回路の一端及び他端は、夫々コイルL1aと終端抵抗Rsとの直列回路を介して入力端子331及びコンデンサC1の一端に接続されている。コンデンサC1の他端は接地電位に接続されている。コンデンサC1は、ゲートG1,・・G16に対する直流バイアス電圧をカットするためのものである。
 コイルL2、15個のコイルL1,・・L1、コイルL1a,L1a、終端抵抗Rs,Rs、及びコンデンサC1は、導体パターンによって形成されている。コイルL2の他端及びドレインD1,・・D16間を接続する導体パターン(接続部材)は、寄生インダクタンスを有しており、実施の形態1におけるスイッチング回路33の各コイルL3に置き換わるものである。実質的には、上記導体パターンが有する寄生インダクタンスと、トランジスタM1,・・M16夫々の半導体チップからドレインD1,・・D16までの配線のインダクタンスとによって、各コイルL3が置き換えられる。
 スイッチング回路33aは、更に、電源VddとコイルL2との間に直列に接続されたトランジスタM0を備える。トランジスタM0のドレインD0は電源Vddに接続されており、ソースS0はコイルL2の一端に接続されている。トランジスタM0のゲートG0は駆動回路333の出力に接続される。なお、図11では駆動回路333を省略したが、駆動回路333も同一の半導体基板上に形成されてもよいし、駆動回路333は別の半導体基板上に形成されてもよい。
 上述した構成において、入力端子331から終端抵抗Rsに与えられたPWM信号が、15個のコイルL1,・・L1を含む接続回路を伝播する間に、トランジスタM1,・・M16が順次スイッチングする。トランジスタM1,・・M16で夫々増幅されてドレインD1,・・D16から出力されたPWM信号が、コイルL2で加算されることにより、出力端子332においてパルス幅変調の基本波及び高調波が打ち消されるのは、実施の形態1におけるスイッチング回路33と同様である。
 また、コイルL2が磁束飽和する前にトランジスタM0をオフ状態とすることにより、コイルL2に流れる電流を制限し、コイルL2の磁束飽和を抑制することができる。その結果、例えば、携帯電話の変調信号の周波数が低下し、PWM信号におけるデューティーが一定となる状態が長時間継続しても、出力電圧が電源電圧Vddに漸近することを抑制することができるのは、実施の形態1におけるスイッチング回路33と同様である。
 スイッチング回路33aは、モノリシック集積回路上に形成されているため、回路全体が小型化されており、絶縁体基材からなる回路基板上にディスクリート部品を用いて構成した場合と比較して、良好な高周波特性を有している。その他、実施の形態1に対応する箇所には同様の符号を付して、その詳細な説明を省略する。
 以上のように本実施の形態2によれば、各トランジスタのドレインと第2のコイルの他端との間に各別に介装されるべき第3のコイルに代えて、接続部材を介装させる。これにより、接続部材の寄生インダクタンスに、第3のコイルの役割を負わせることが可能となる。
 また、スイッチング回路がモノリシック集積回路の半導体基板に形成されているため、スイッチング回路が小型化され、増幅器としての高周波特性を良好にすることが可能となる。
(実施の形態3)
 実施の形態2は、半導体基板上に横型のMOSFETを備える形態であるのに対し、実施の形態3は、同じ半導体基板上に高耐圧・大電力の縦型のMOSFETを備える形態である。
 図12は、本発明の実施の形態3に係るスイッチング回路33bの模式的な平面図である。図12A及び12Bの夫々は、スイッチング回路33bの表面及び裏面を示す平面図である。スイッチング回路33bは、モノリシック集積回路の半導体基板上に形成されており、環状に配された縦型のMOSFETからなるトランジスタM1,M2,・・M8を備える。トランジスタM1,M2,・・M8の夫々は、半導体基板の表面にソースS1,・・S8及びゲートG1,・・G8が形成されており、裏面にドレインD1,D2,・・D8が形成されている。
 トランジスタM1,・・M16夫々のソースS1,・・S16は、接地電位に接続された環状の導体パターンに接続されている。トランジスタM1,・・M8夫々のゲートG1,・・G8は、環状に配されて7個直列に接続されたコイルL1,・・L1の両端及び各接続点に各別に接続されている。7個のコイルL1,・・L1と、ゲートG1,・・G8の図示しない浮遊容量Cgsとが接続回路を構成しており、該接続回路の一端及び他端は、夫々コイルL1aと終端抵抗Rsとの直列回路を介して入力端子331及びコンデンサC1の一端に接続されている。コンデンサC1の他端は接地電位に接続されている。
 スイッチング回路33bは、また、半導体基板の裏面において、一端が電源Vddに接続されたコイルL2を備え、該コイルL2の他端は、トランジスタM1,M2,・・M8夫々のドレインD1,D2,・・D8から各別の導体パターン(接続部材)にて等距離に接続される1点と接続されている。コイルL2の他端は、スイッチング回路33bの出力端子332となっている。上記導体パターン(接続部材)は、寄生インダクタンスを有しており、実施の形態1におけるスイッチング回路33のコイルL3に置き換わるものである。
 スイッチング回路33aは、更に、電源VddとコイルL2との間に直列に接続されたトランジスタM0を備える。トランジスタM0も、半導体基板の表面にソースS0及びゲートが形成されており、裏面にドレインD0が形成されている。トランジスタM0のドレインD0は電源Vddに接続されている。一方、半導体基板の表面のソースS0は、ビア等を介して裏面のコイルL2の一端に接続されており、ゲートG0は駆動回路333の出力に接続される。なお、図12でも駆動回路333を省略したが、駆動回路333も同一の半導体基板上に形成されてもよいし、駆動回路333は別の半導体基板上に形成されてもよい。
 上述した構成において、入力端子331から終端抵抗Rsに与えられたPWM信号が、7個のコイルL1,・・L1を含む接続回路を伝播する間に、トランジスタM1,M2,・・M8が順次スイッチングする。トランジスタM1,M2,・・M8で増幅されてドレインD1,・・D8から出力されたPWM信号が、コイルL2で加算されることにより、出力端子332においてパルス幅変調の基本波及び高調波が打ち消されるのは、実施の形態1におけるスイッチング回路33と同様である。
 また、コイルL2が磁束飽和する前にトランジスタM0をオフ状態とすることにより、コイルL2に流れる電流を制限し、コイルL2の磁束飽和を抑制することができる。その結果、例えば、携帯電話の変調信号の周波数が低下し、PWM信号におけるデューティーが一定となる状態が長時間継続しても、出力電圧が電源電圧Vddに漸近することを抑制することができるのは、実施の形態1におけるスイッチング回路33と同様である。
 スイッチング回路33bは、ソースS1,・・S8及びゲートG1,・・G8とドレインD1,・・D8とが、モノリシック集積回路の表面と裏面とに分離されているため、配線の自由度を高めることができる。また、図12に示すように、トランジスタM1,M2,・・M8を環状に配した場合は、ドレインD1,D2,・・D8と特定の1点とを各別に接続する導体パターン(配線部材)の長さが均一となり、寄生インダクタンスも均一化されるため、ドレインD1,D2,・・D8から出力されるPWM信号をバランスよく加算することができる。その他、実施の形態1及び2に対応する箇所には同様の符号を付して、その詳細な説明を省略する。
 以上のように本実施の形態3によれば、各トランジスタが縦型のMOSFETからなるため、スイッチング回路を高耐圧、大電力化できる上に、オン抵抗を小さくして損失を低減することが可能となる。
 更に、各トランジスタのドレイン電極と、ソース電極及びゲート電極とがモノリシック集積回路の両面に分離されるため、各トランジスタのドレイン電極から第2のコイルの他端に至る配線長が均等化される。従って、トランジスタ毎に増幅されたPWM信号を第2のコイルの他端においてバランスよく加算することが可能となる。
 複数のスイッチング素子にて増幅したPWM信号を低損失で合成し、変調信号を復調する用途に適用することができる。
 2 検波器
 3 包絡線信号増幅器
 33、33a、33b スイッチング回路
 333 駆動回路
 L1 コイル(第1インダクタンス素子)
 L2 コイル(第2インダクタンス素子)
 L3 コイル(第3インダクタンス素子)
 Rs 終端抵抗
 M1、M2、・・Mn 電界効果トランジスタ(MOSFET)
 D1、D2、・・Dn ドレイン(スイッチング素子の一端)
 G1、G2、・・Gn ゲート(スイッチング素子の制御端子)
 M0 電界効果トランジスタ(MOSFET)(補助スイッチング素子)
 D ダイオード
 Vdd 電源(直流電源)

Claims (9)

  1.  N個(Nは2以上の整数)のスイッチング素子のスイッチングを制御するための各制御端子をN-1個の第1インダクタンス素子を介して縦続接続する接続回路と、一端が直流電源に電気的に接続される第2インダクタンス素子の他端及び前記スイッチング素子の各一端の間に各別に接続された第3インダクタンス素子とを備えるスイッチング回路であって、
     前記接続回路の入力端子に入力されるPWM信号にて、前記N個のスイッチング素子を順次スイッチングさせるようにしてあり、
     前記第2インダクタンス素子の一端側又は他端側に縦続接続されるように挿入された補助スイッチング素子を更に備える、
    ことを特徴とするスイッチング回路。
  2.  前記補助スイッチング素子は、前記第2インダクタンス素子が磁気飽和する時定数の逆数よりも高い周波数で駆動されることを特徴とする請求項1に記載のスイッチング回路。
  3.  前記補助スイッチング素子を駆動するための駆動信号であって、前記PWM信号からその周波数を低下させることによって当該駆動信号を生成する駆動回路を更に備えることを特徴とする請求項2に記載のスイッチング回路。
  4.  前記N個のスイッチング素子それぞれは、第1導電型のトランジスタであり、
     前記補助スイッチング素子は、前記第1導電型とは異なる第2導電型のトランジスタである、
    ことを特徴とする請求項1~3の何れか1項に記載のスイッチング回路。
  5.  前記スイッチング素子の一端及び前記第2インダクタンス素子の他端の間を電気的に接続する接続部材を、前記第3インダクタンス素子に置き換えることを特徴とする請求項1~4の何れか1項に記載のスイッチング回路。
  6.  Nは8以上であることを特徴とする請求項1~5の何れか1項に記載のスイッチング回路。
  7.  前記スイッチング素子と、前記第1、第2及び第3インダクタンス素子とが、モノリシック集積回路の半導体基板に形成されていることを特徴とする請求項1~6の何れか1項に記載のスイッチング回路。
  8.  前記スイッチング素子は、縦型のMOSFETであることを特徴とする請求項1~7の何れか1項に記載のスイッチング回路。
  9.  アナログの信号をパルス幅変調する変調回路と、
     請求項1~8の何れか1項に記載のスイッチング回路とを備え、
     前記変調回路が変調信号の包絡線信号をパルス幅変調して得られたPWM信号にて前記スイッチング回路をスイッチングさせるようにしてあること
     を特徴とする包絡線信号増幅器。
PCT/JP2012/076347 2011-11-24 2012-10-11 スイッチング回路及び包絡線信号増幅器 WO2013077104A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20120851806 EP2784933A4 (en) 2011-11-24 2012-10-11 CIRCUIT AND HOSE SIGNAL AMPLIFIERS
CN201280052674.5A CN103891136B (zh) 2011-11-24 2012-10-11 开关电路以及包络信号放大器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-256130 2011-11-24
JP2011256130A JP5706298B2 (ja) 2011-11-24 2011-11-24 スイッチング回路及び包絡線信号増幅器

Publications (1)

Publication Number Publication Date
WO2013077104A1 true WO2013077104A1 (ja) 2013-05-30

Family

ID=48466287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076347 WO2013077104A1 (ja) 2011-11-24 2012-10-11 スイッチング回路及び包絡線信号増幅器

Country Status (6)

Country Link
US (1) US8917142B2 (ja)
EP (1) EP2784933A4 (ja)
JP (1) JP5706298B2 (ja)
CN (1) CN103891136B (ja)
TW (1) TW201325071A (ja)
WO (1) WO2013077104A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10447207B2 (en) * 2016-08-08 2019-10-15 Skyworks Solutions, Inc. Switch with envelope injection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117013A (ja) * 1989-09-29 1991-05-17 Anritsu Corp 分布型増幅器
JPH06273191A (ja) * 1993-03-18 1994-09-30 Mitsutoyo Corp 変位検出装置
JP2002033627A (ja) 2000-07-19 2002-01-31 Fujitsu Ltd 分布増幅器
JP2005506747A (ja) * 2001-10-15 2005-03-03 スリーエム イノベイティブ プロパティズ カンパニー 増幅器の変調
WO2011148710A1 (ja) * 2010-05-25 2011-12-01 住友電気工業株式会社 スイッチング回路及び包絡線信号増幅器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340240A (ja) * 1995-06-13 1996-12-24 Nippon Telegr & Teleph Corp <Ntt> 分布増幅型リタイミング再生回路
US6342815B1 (en) * 2000-10-04 2002-01-29 Trw Inc. Manufacturable HBT power distributed amplifier for wideband telecommunications
JP2005168106A (ja) * 2003-11-28 2005-06-23 Toshiba Corp 電源装置
GB0522477D0 (en) * 2005-11-03 2005-12-14 Analog Devices Inc Modulator
JP2008124715A (ja) * 2006-11-10 2008-05-29 Nec Corp 高周波電力増幅器
US7923974B2 (en) * 2008-01-04 2011-04-12 Chil Semiconductor Corporation Modification of switch activation order in a power supply
JP2011135357A (ja) * 2009-12-24 2011-07-07 Toyohashi Univ Of Technology スイッチング回路、分布定数型のスイッチング回路、及び包絡線信号増幅器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117013A (ja) * 1989-09-29 1991-05-17 Anritsu Corp 分布型増幅器
JPH06273191A (ja) * 1993-03-18 1994-09-30 Mitsutoyo Corp 変位検出装置
JP2002033627A (ja) 2000-07-19 2002-01-31 Fujitsu Ltd 分布増幅器
JP2005506747A (ja) * 2001-10-15 2005-03-03 スリーエム イノベイティブ プロパティズ カンパニー 増幅器の変調
WO2011148710A1 (ja) * 2010-05-25 2011-12-01 住友電気工業株式会社 スイッチング回路及び包絡線信号増幅器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784933A4 *

Also Published As

Publication number Publication date
EP2784933A1 (en) 2014-10-01
US8917142B2 (en) 2014-12-23
CN103891136B (zh) 2016-09-07
CN103891136A (zh) 2014-06-25
TW201325071A (zh) 2013-06-16
JP5706298B2 (ja) 2015-04-22
JP2013110680A (ja) 2013-06-06
US20130135046A1 (en) 2013-05-30
EP2784933A4 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2009065068A2 (en) Switching amplifiers
US20100102881A1 (en) Sampling frequency reduction for switching amplifiers
EP1719244B1 (en) Dynamically biased amplifier
JP5706298B2 (ja) スイッチング回路及び包絡線信号増幅器
JP2003152468A (ja) パワーアンプ
JP5519404B2 (ja) スイッチング回路及び包絡線信号増幅器
CA2489126C (en) Pulse width modulator circuit having negative bias
US20120157010A1 (en) Electrical Power Amplifier Circuit, and Transmission Device and Communication Device Using the Same
US20210391856A1 (en) Modulator circuit, corresponding device and method
US7388431B2 (en) Switching amplifier and control method thereof
US9887670B2 (en) Power supply circuit, high-frequency power amplification circuit, and power supply control method
JP6494908B2 (ja) 高周波増幅器
JP6340191B2 (ja) 電力増幅器
WO2015130235A1 (en) Buck-boost power amplifier with independently controlled power stages and compensated nonlinear pulse width modulator
WO2013136539A1 (ja) 振幅変調装置
JP2024078708A (ja) スイッチング電源、増幅装置及び通信装置
JP2011135357A (ja) スイッチング回路、分布定数型のスイッチング回路、及び包絡線信号増幅器
CN109716647B (zh) 包括补偿电路的放大装置
JP4532456B2 (ja) D級増幅装置
JP2016532339A (ja) 高電圧広帯域幅の増幅器
JP2020150406A (ja) 増幅装置および送信装置
JP2013093810A (ja) 信号変換回路ならびにそれを用いた増幅回路,送信装置および通信装置
KR20090051086A (ko) 증폭 회로 및 증폭 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012851806

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE