WO2013075524A1 - Film de séparation multicouches poreux pour batterie secondaire à ions lithium, et procédé de fabrication - Google Patents

Film de séparation multicouches poreux pour batterie secondaire à ions lithium, et procédé de fabrication Download PDF

Info

Publication number
WO2013075524A1
WO2013075524A1 PCT/CN2012/080782 CN2012080782W WO2013075524A1 WO 2013075524 A1 WO2013075524 A1 WO 2013075524A1 CN 2012080782 W CN2012080782 W CN 2012080782W WO 2013075524 A1 WO2013075524 A1 WO 2013075524A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
lithium ion
ion secondary
secondary battery
heat resistant
Prior art date
Application number
PCT/CN2012/080782
Other languages
English (en)
Chinese (zh)
Inventor
王松钊
王辉
蔡朝辉
吴耀根
廖凯明
Original Assignee
佛山市金辉高科光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市金辉高科光电材料有限公司 filed Critical 佛山市金辉高科光电材料有限公司
Publication of WO2013075524A1 publication Critical patent/WO2013075524A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion battery technology, and in particular to a lithium ion secondary battery porous multilayer separator and a method of manufacturing the same.
  • the rechargeable lithium ion secondary battery has the advantages of high working voltage, high energy density, long cycle life, no memory effect, no pollution, and rapid charge and discharge, and is widely used in daily electronics, electrical appliances and digital products. Broad market space and good development prospects. With the increasing demand for portable battery quality, lithium ion secondary batteries have become a hot spot in the research of new power supply technologies in recent years. Seeking higher energy density of lithium ion secondary batteries is an important direction of current research, and it is followed by technical issues on how to ensure the safety of lithium batteries.
  • Polymer separator is one of the key components of lithium ion secondary battery, and it is the key to ensure the safety performance of lithium battery. Its quality has a great influence on the capacity, service life and battery safety of lithium battery.
  • the polymer membrane as the separator of the lithium ion secondary battery must meet certain requirements: First, the diaphragm itself must be a non-conductive material, separating the positive and negative electrodes of the battery to prevent short-circuit between the two electrodes; secondly, the diaphragm must be a porous material. Allows the passage of positive and negative ions in the electrolyte to maintain good ion conductivity between the positive and negative electrodes during charging and discharging of the lithium ion battery. Third, the diaphragm must have good shutdown performance.
  • the battery When the external is short-circuited or connected by mistake, the battery is internally generated. At very large currents, when the inside of the battery rises to a certain temperature, the diaphragm will thermally melt and cause the microporous structure to close, thereby cutting off the current, stopping the battery and ensuring battery safety. Finally, the diaphragm must have sufficient chemical stability. It can be wetted by electrolyte and has sufficient mechanical strength and the like while being resistant to electrolyte corrosion. With the development of new energy vehicles, the design of lithium-ion battery packs has seriously challenged the safety of lithium-ion batteries. Therefore, lithium-ion battery manufacturers have put forward higher and higher requirements for lithium-ion battery separators.
  • Lithium-ion battery separators must have a suitable closed-cell temperature to cut off the current in time to ensure battery safety.
  • the diaphragm must have a high heat-resistant temperature to prevent the diaphragm from melting and cracking when the battery is short-circuited, causing the battery to short-circuit. ⁇ ) Exploded.
  • a suitable closed cell temperature of a lithium battery separator is 120-140 ° C, and a closed cell temperature is too high or too low to be suitable as a lithium battery separator.
  • the closed cell temperature of the polyethylene membrane prepared by the wet method is 130-140 ° C, which is an ideal closed cell temperature, but the heat resistance of the polyethylene separator is poor, the film rupture temperature is lower than 150 ° C, and the safety of the battery is short-circuited. Not well protected.
  • the heat resistance of the separator prepared by these systems is still insufficient.
  • Cikon patent CN 101689624A discloses a polyethylene film as a substrate, which is covered with a layer of a metal hydroxide which is dehydrated by a wholly aromatic polyamide and a temperature of 200 ° C or more and 400 ° C or less.
  • a composite film of a heat-resistant organic polymer material the object of which is to provide a separator excellent in heat resistance, shutdown function, flame retardancy and handleability.
  • the coating layer is formed by laminating a porous layer formed of a heat-resistant polymer by a wet coagulation method, and requires a process of coagulating solidification, washing with water to remove coagulating liquid, and drying water, and the process is complicated, and the thickness of the separator is uniform. Poor.
  • the Chinese invention patent CN101281961 discloses a coating composition for a lithium ion secondary battery separator, and in particular, a coating comprising an electrically insulating oxide particle and a binder on a polyethylene film.
  • the coating is prepared by coating a coating liquid containing a binder, electrically insulating oxide particles and a solvent to form a coating liquid, and then directly drying and molding. Since the coating method is room temperature coating, it is difficult to ensure the effective dispersion of the inorganic particles and the adhesion between them and the binder, and the coating pore structure is small. Summary of the invention
  • an object of the present invention is to provide a porous multilayer separator for a lithium ion secondary battery.
  • Another object of the present invention is to provide a method for producing a porous multilayer separator for a lithium ion secondary battery.
  • a porous multilayer separator for a lithium ion secondary battery comprising a polyolefin porous film and at least one heat resistant coating layer coated on the polyolefin porous film, wherein the heat resistant coating layer is composed of a heat resistant resin and an inorganic
  • the insulating particle composition has a weight ratio of the heat resistant resin to the inorganic insulating particles of 1:0.5-5.
  • the weight ratio of the heat resistant resin to the inorganic insulating particles is less than 1:0.5, the added inorganic porous insulating particles have no significant effect on the heat resistance effect and heat shrinkage effect of the separator; if the weight ratio is greater than 1:5, the resin content is excessive Small, the inorganic non-conductive particles are not firmly bonded, and the inorganic ions are likely to fall off.
  • the heat resistant resin described in the present invention is one or two of polyvinylidene fluoride, polycarbonate, polyester, polyarylate, polyamide, polyacrylonitrile, and poly 4-mercapto-1-pentene. More than one kind of mixture.
  • the inorganic insulating particles according to the present invention are one or a mixture of two or more of aluminum, magnesium oxide, hydroxide, or silicon oxide, carbide and nitride.
  • a method for manufacturing a porous multilayer separator for a lithium ion secondary battery comprising a heat resistant resin coating comprising the steps of:
  • preparing a coating liquid first dissolving the heat resistant resin, adding inorganic insulating particles in a weight ratio of the heat resistant resin to the inorganic insulating particles of 1:0.2-10, stirring and mixing to prepare a heat resistant resin and inorganic insulating particles. Uniform coating liquid;
  • Coating applying the above coating liquid onto the surface of the hot polyolefin microporous base film to form a heat-resistant coating, a polyolefin microporous base film volatilizing solvent containing a coating layer, and a solvent to volatilize to obtain a microporous film containing a microporous coating;
  • the microporous film containing the microporous coating is uniaxially stretched or biaxially stretched in the longitudinal or transverse direction thereof to enlarge the micropores of the coating;
  • the heat resistant resin is polyvinylidene fluoride, polycarbonate, polyester, polyarylate, polyamide. And one or a mixture of two or more of polyacrylonitrile and poly 4-mercapto-1-pentene.
  • the inorganic porous insulating particles are oxides and hydroxides of aluminum and magnesium, and oxides and carbonization of silicon.
  • One or more of the substance and the nitride are mixed.
  • the solvent used for dissolving the heat resistant resin in the step a of the present invention is one of N-nonylpyrrolidone, N,N-dimercaptoacrylamide, N,N-dimercaptoamide, and dimercaptosulfoxide. Or a mixture of two or more.
  • the melting point of the heat resistant resin is greater than 180 ° C; the specific surface area of the inorganic insulating particles is 5 to 200 m 2 /g; and the amount of the heat resistant resin is 5 to 50 based on the total weight of the heat resistant resin and the solvent; %.
  • the temperature of the polyolefin micropores is 50-100 ° C
  • the solvent volatilization temperature is 30-110 ° C
  • the volatilization time is 10-300 S.
  • the stretching in the c step of the present invention may be a biaxial stretching in the longitudinal direction and the transverse direction, or a uniaxial stretching in the longitudinal direction or the transverse direction.
  • the total magnification of stretching is 1.1-5 times, preferably 1.5-3 times, the total stretching ratio is less than 1.1, the hole diameter expansion effect of the coating is not obvious; the stretching ratio is more than 5, and the coating is easy to be microporous with polyolefin.
  • the membrane is detached and the membrane is easily broken.
  • the stretching temperature is 80 to 150 ° C, preferably 90 to 120 ° C.
  • the heat setting temperature in the step d of the present invention is 100-160 ° C, and the heat setting time is 10 s-120 s.
  • the inorganic insulating particles in the step a according to the present invention have a particle size of 10 to 1000 nm.
  • the thickness of the polyolefin microporous base film is less than ⁇ , the diaphragm is too thin, and the mechanical properties of the separator are insufficient.
  • the thickness of the polyolefin microporous base film is greater than 25 ⁇ , the thickness of the composite separator obtained after coating is too large, resulting in a decrease in the energy density of the lithium ion battery, which is not conducive to the application of the power lithium battery.
  • the polyolefin microporous base film of the present invention has a thickness of 12-25 ⁇ m, and each layer of the heat resistant coating has a thickness of 2-6 ⁇ m; finally, a porous multilayer separator of a lithium ion secondary battery containing a heat resistant resin coating is obtained.
  • the thickness can be adjusted as needed, preferably having a thickness of 18-40 ⁇ m.
  • the porous multilayer separator for a lithium ion secondary battery according to the present invention may be a single layer coated with a heat resistant coating on one side of the polyolefin microporous base film, or may be coated with the same layer or different layers according to the performance requirements.
  • the heat-resistant coating layer is coated; the polyolefin microporous base film may be coated with a heat-resistant coating on one side or both sides, wherein the porous multilayer separator obtained by double-side coating has better heat resistance.
  • the porous multilayer separator coating prepared by the invention has excellent heat resistance, and the heat resistant coating layer is also a film layer having a microporous structure, and the film layer has sufficient High porosity and heat-resistant temperature, even in the case of melt fracture of polyolefin microporous base film, the coating can maintain its integrity and block the direct contact of the battery electrode, thus ensuring the safety of the battery;
  • the thermal coating and the micropores of the microporous membrane of the matrix membrane layer penetrate each other to ensure the permeation performance of lithium ions.
  • the porous multilayer separator of the present invention expands the pore diameter of the microporous coating by subsequent biaxial stretching, thereby increasing the porosity and the permeation ability of lithium ions.
  • the porous multilayer separator prepared by the preparation method of the present invention has a porosity of 30-80%, a gas permeability of 200-700 s/100 ml, a pore size of 0.01-0.2 ⁇ , a closed cell temperature of 130-140 ° C, and a breakage.
  • the film temperature is greater than 190 °C.
  • a method for manufacturing a porous multilayer separator for a lithium ion secondary battery comprising a heat resistant resin coating comprising the steps of:
  • preparing a coating liquid first dissolving the heat resistant resin, adding inorganic insulating particles in a weight ratio of the heat resistant resin to the inorganic insulating particles of 1:0.2-10, stirring and mixing to prepare a heat resistant resin and inorganic insulating particles. Uniform coating liquid;
  • b. coating applying the above coating liquid onto the surface of the hot polyolefin microporous base film to form a heat resistant coating layer, a coating layer containing a polyolefin microporous base film volatile solvent, After the solvent is volatilized, a microporous film containing a microporous coating is obtained;
  • the microporous film containing the microporous coating is uniaxially stretched or biaxially stretched in the longitudinal or transverse direction thereof to enlarge the micropores of the coating;
  • the polyethylene microporous base film having a thickness of 20 ⁇ m and a porosity of 50% was heated to 100 ° C, and the suspension was applied by a doctor coating at a coating speed of 5 cm/s.
  • the temperature at which the solvent is volatilized is controlled to be 80 ° C, and the time for controlling the evaporation of the solvent by blowing is 60 S; then the coating step is performed on the side of the uncoated suspension to obtain two sides.
  • a separator having a microporous heat-resistant layer containing a heat resistant resin and magnesium oxide is attached to the separator; the separator prepared above is subjected to a low-stretching treatment at a stretching temperature of 110 ° C and a longitudinal stretching of 1.3 times. The film was stretched 1.3 times in the width direction to enlarge the pore diameter of the heat-resistant coating; and heat-set at 120 ° C for 60 seconds to obtain a porous multilayer composite separator having a thickness of 26 ⁇ m.
  • the performance test data of the diaphragm is shown in Table 1.
  • the solvent was volatilized, and then the polyethylene microporous base film having a thickness of 20 ⁇ m and a porosity of 50% was heated to 100 ° C, and the suspension was applied by a coating method at a coating speed of 5 cm/s. Covering the polyethylene microporous base film, the temperature at which the solvent is volatilized is controlled to be 80 ° C, and the evaporation time of the solvent is controlled by a blowing method to be 100 S; then the coating step is performed on the side of the uncoated suspension.
  • the performance test data of the diaphragm is shown in Table 1.
  • the polyethylene microporous base film having a thickness of 20 ⁇ m and a porosity of 50% was heated to 100 ° C, and the suspension was applied by a knife coating at 5 cm/s.
  • the speed is coated on the polyethylene microporous base film, the temperature at which the solvent is volatilized is controlled to be 100 ° C, and the time for controlling the evaporation of the solvent by the blowing method is 10 S; then the coating on the side not coated with the suspension is applied a step of obtaining a separator having a microporous heat-resistant layer containing a heat-resistant resin and an alumina uniformly adhered on both sides; and performing the low-stretching treatment on the separator prepared above, the stretching temperature is 110 ° C, and the stretching in the longitudinal direction 1.3 times and 1.3 times in the width direction, the pore diameter of the heat-resistant coating is enlarged.
  • a porous multilayer composite separator having a thickness of 20 ⁇ m and a porosity of 50% was heated to
  • the polyethylene microporous base film having a porosity of 50% was heated to 100 ° C, and the suspension was applied to the polyethylene microporous base film at a coating speed of 5 cm/s by knife coating.
  • the temperature at which the solvent is volatilized is 80 ° C, and the time for controlling the evaporation of the solvent by blowing is 60 S; then the coating step is performed on the side of the uncoated suspension to obtain uniform heat resistance on both sides.
  • the polyethylene microporous base film having a thickness of 20 ⁇ m and a porosity of 50% was heated to 100 ° C, and the suspension was applied by a knife coating at 5 cm/s.
  • the speed is coated on the polyethylene microporous base film, the temperature at which the solvent is volatilized is controlled to be 80 ° C, and the time for controlling the evaporation of the solvent by blowing is 60 S; then the coating on the side not coated with the suspension is applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

L'invention concerne un film de séparation multicouches poreux pour batterie secondaire à ions lithium, comprenant un film poreux de polyoléfines et au moins une couche d'un revêtement thermorésistant appliquée sur le film poreux de polyoléfines, le revêtement thermorésistant comprenant une résine thermorésistante et des particules isolantes minérales selon un rapport en poids entre la résine thermorésistante et les particules isolantes minérales de 1:0,5-5. Le revêtement de film de séparation multicouches poreux est obtenu en préparant un liquide de revêtement, et par des processus de l'application, d'étirement et de mise en forme, et possède une excellente résistance thermique, une résistance suffisante en température et, même si le film poreux de polyoléfines est fondu et brisé, le revêtement conserve toujours son intégrité de manière à séparer les électrodes de la batterie et empêcher leur contact direct. Le revêtement thermorésistant est un film ayant une structure microporeuse, possède une porosité suffisante, et est en communication avec les micropores du film poreux de polyoléfines, garantissant ainsi la perméabilité des ions lithium. L'invention concerne également un procédé de fabrication du film de séparation multicouches poreux pour batterie secondaire à ions lithium.
PCT/CN2012/080782 2011-11-25 2012-08-30 Film de séparation multicouches poreux pour batterie secondaire à ions lithium, et procédé de fabrication WO2013075524A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110382570.8A CN102394282B (zh) 2011-11-25 2011-11-25 一种锂离子二次电池多孔多层隔膜及其制造方法
CN201110382570.8 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013075524A1 true WO2013075524A1 (fr) 2013-05-30

Family

ID=45861537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080782 WO2013075524A1 (fr) 2011-11-25 2012-08-30 Film de séparation multicouches poreux pour batterie secondaire à ions lithium, et procédé de fabrication

Country Status (2)

Country Link
CN (1) CN102394282B (fr)
WO (1) WO2013075524A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406006A (zh) * 2018-10-20 2019-03-01 武汉惠强新能源材料科技有限公司 锂电池隔膜闭孔、破膜温度测试装置
CN113363666A (zh) * 2021-05-06 2021-09-07 惠州锂威新能源科技有限公司 隔膜的制备方法、隔膜及应用隔膜的电化学装置
CN114552003A (zh) * 2020-11-24 2022-05-27 天津大学 一种提高电解液加装性能的方法
CN116903907A (zh) * 2023-08-17 2023-10-20 深圳市三实新材料科技有限公司 一种防水透气膜的制备方法及其应用

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394282B (zh) * 2011-11-25 2014-12-10 佛山市金辉高科光电材料有限公司 一种锂离子二次电池多孔多层隔膜及其制造方法
JP2013222582A (ja) * 2012-04-16 2013-10-28 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6279479B2 (ja) * 2012-10-31 2018-02-14 旭化成株式会社 多層多孔膜及びその製造方法、並びに非水電解液電池用セパレータ
CN102942831B (zh) * 2012-11-21 2014-10-29 佛山市金辉高科光电材料有限公司 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法
EP2978047B1 (fr) * 2013-03-19 2017-11-22 Sony Corporation Séparateur, batterie, bloc de batteries, appareil électronique, véhicule électrique, dispositif de stockage d'énergie, et système d'énergie
CN104157812B (zh) * 2014-04-23 2017-08-25 华南理工大学 锂离子电池隔膜及其制备方法及锂离子电池
CN104064710A (zh) * 2014-06-20 2014-09-24 青岛中科华联新材料有限公司 采用陶瓷涂覆的高孔隙率锂电池隔膜的生产工艺
CN108134036B (zh) * 2014-12-16 2020-06-16 东莞新能源科技有限公司 一种有机-无机复合电解质膜,其制备方法及应用
CN105655518B (zh) * 2015-09-07 2019-04-09 浙江南洋经中新材料有限公司 一种新型多孔锂电池隔膜的制备工艺
CN105489916B (zh) * 2015-11-26 2018-07-27 同济大学 一种锂离子电池用聚合物多孔薄膜及其制备方法和应用
CN105355812B (zh) * 2015-12-14 2018-06-19 苏州锂盾储能材料技术有限公司 一种锂电隔膜的制备方法
CN106025149A (zh) * 2016-06-30 2016-10-12 深圳中兴创新材料技术有限公司 一种耐高温复合锂电池隔膜及其制备方法
CN106252571A (zh) * 2016-08-31 2016-12-21 乐凯胶片股份有限公司 一种用于锂离子电池的多层多孔隔膜
CN106876635B (zh) * 2016-11-23 2020-07-17 深圳市研一新材料有限责任公司 一种新能源汽车锂离子电池增强隔膜
CN106784559B (zh) * 2016-11-23 2020-08-14 德阳九鼎智远知识产权运营有限公司 一种含有纳米颗粒增强层的新能源汽车电池隔膜
CN108321337A (zh) * 2017-01-17 2018-07-24 上海恩捷新材料科技股份有限公司 一种隔离膜及其制备方法和用途
EP3674354A4 (fr) * 2017-08-25 2021-07-28 Beijing Normal University Membrane poreuse composite et ses procédés de préparation et d'utilisation
JP6953991B2 (ja) * 2017-10-18 2021-10-27 トヨタ自動車株式会社 セパレータ、非水電解質二次電池、およびセパレータの製造方法
JP7104790B2 (ja) * 2017-12-26 2022-07-21 ファイバーウェイ・マテリアルズ・サイエンス・アンド・テクノロジー・デベロップメント・カンパニー・リミテッド 電池用セパレーター、その製造方法及び応用
CN110350155B (zh) * 2018-04-04 2022-01-14 北京师范大学 一种含沿横向拉伸方向取向的纳米纤维状多孔层的复合微孔膜
CN109499371B (zh) * 2018-11-12 2021-10-15 苏州富淼膜科技有限公司 一种聚亚苯基砜内衬膜及其制备方法
CN112582749B (zh) * 2020-12-11 2022-09-13 重庆金美新材料科技有限公司 一种安全锂离子电池隔膜、制备方法及锂离子电池
CN113594631A (zh) * 2021-06-30 2021-11-02 华为技术有限公司 隔膜及其制备方法、二次电池和用电设备
CN115513604B (zh) * 2022-11-02 2023-12-22 上海恩捷新材料科技有限公司 高保液率的复合锂电池隔膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069302A (zh) * 2004-12-07 2007-11-07 松下电器产业株式会社 隔膜和使用该隔膜的非水电解质二次电池
CN101356665A (zh) * 2006-04-28 2009-01-28 松下电器产业株式会社 非水电解质二次电池用隔膜及非水电解质二次电池
CN101689624A (zh) * 2007-06-19 2010-03-31 帝人株式会社 非水系二次电池用隔膜、其制造方法和非水系二次电池
CN101714619A (zh) * 2007-10-03 2010-05-26 索尼株式会社 设置耐热绝缘层的隔膜和非水电解质二次电池
CN101809783A (zh) * 2007-09-27 2010-08-18 三洋电机株式会社 非水电解质电池用隔膜和非水电解质电池
CN102394282A (zh) * 2011-11-25 2012-03-28 佛山市金辉高科光电材料有限公司 一种锂离子二次电池多孔多层隔膜及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932748B2 (en) * 2005-10-24 2015-01-13 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyolefin membrane, its production method, and battery separator
CN101281961A (zh) * 2007-04-06 2008-10-08 比亚迪股份有限公司 锂离子电池隔膜用的涂层组合物及该隔膜的制造方法
CN102064300A (zh) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 一种锂离子二次电池用多孔复合隔膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069302A (zh) * 2004-12-07 2007-11-07 松下电器产业株式会社 隔膜和使用该隔膜的非水电解质二次电池
CN101356665A (zh) * 2006-04-28 2009-01-28 松下电器产业株式会社 非水电解质二次电池用隔膜及非水电解质二次电池
CN101689624A (zh) * 2007-06-19 2010-03-31 帝人株式会社 非水系二次电池用隔膜、其制造方法和非水系二次电池
CN101809783A (zh) * 2007-09-27 2010-08-18 三洋电机株式会社 非水电解质电池用隔膜和非水电解质电池
CN101714619A (zh) * 2007-10-03 2010-05-26 索尼株式会社 设置耐热绝缘层的隔膜和非水电解质二次电池
CN102394282A (zh) * 2011-11-25 2012-03-28 佛山市金辉高科光电材料有限公司 一种锂离子二次电池多孔多层隔膜及其制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406006A (zh) * 2018-10-20 2019-03-01 武汉惠强新能源材料科技有限公司 锂电池隔膜闭孔、破膜温度测试装置
CN114552003A (zh) * 2020-11-24 2022-05-27 天津大学 一种提高电解液加装性能的方法
CN113363666A (zh) * 2021-05-06 2021-09-07 惠州锂威新能源科技有限公司 隔膜的制备方法、隔膜及应用隔膜的电化学装置
CN113363666B (zh) * 2021-05-06 2022-09-09 惠州锂威新能源科技有限公司 隔膜的制备方法、隔膜及应用隔膜的电化学装置
CN116903907A (zh) * 2023-08-17 2023-10-20 深圳市三实新材料科技有限公司 一种防水透气膜的制备方法及其应用
CN116903907B (zh) * 2023-08-17 2024-03-22 深圳市三实新材料科技有限公司 一种防水透气膜的制备方法及其应用

Also Published As

Publication number Publication date
CN102394282A (zh) 2012-03-28
CN102394282B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013075524A1 (fr) Film de séparation multicouches poreux pour batterie secondaire à ions lithium, et procédé de fabrication
US10084169B2 (en) Coated separator with compressible elasticity, thermal shutdown and high temperature resistance
JP6938657B2 (ja) リチウムイオン電池用複合機能多層セパレーター
US9281509B2 (en) Polyolefin microporous membrane and method of producing the same, separator for non-aqueous secondary battery and non-aqueous secondary battery
Li et al. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability
CN101997102B (zh) 一种锂离子电池隔膜及其制作方法
TWI491096B (zh) 多層電池隔離膜及其製造方法
JP5672007B2 (ja) 多孔性ポリプロピレンフィルムロール
WO2014083988A1 (fr) Séparateur pour batteries secondaires non aqueuses, et batterie secondaire non aqueuse
TW201101560A (en) Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, adsorbent for nonaqueous secondary battery, and nonaqueous secondary battery
TW200415813A (en) Durable separator for an electrochemical cell
JPWO2008149895A1 (ja) 非水系二次電池セパレータ用ポリオレフィン微多孔膜基材、その製造方法、非水系二次電池セパレータおよび非水系二次電池
KR20130048843A (ko) 내열성 및 안정성이 우수한 폴리올레핀계 복합 미세다공막 및 이를 제조하는 방법
CN112688029B (zh) 一种锂离子电池多层复合隔膜及其制备方法
WO2013075523A1 (fr) Microfilm poreux multicouche en polyoléfine et procédé pour sa fabrication
JP2010240936A (ja) 多層多孔膜
CN111916621A (zh) 一种锂离子电池用耐高温复合隔膜及其制备方法
WO2012119361A1 (fr) Membrane composite co-extrudée comprenant une micropoudre de caoutchouc pré-réticulé nanométrique et batterie à ion lithium la comprenant
JP2008004442A (ja) リチウム二次電池用セパレータおよびリチウム二次電池
JP6984033B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2016060061A (ja) 積層微多孔フィルム及びその製造方法、並びに電池用セパレータ
WO2013185335A1 (fr) Séparateur composite pour batterie lithium-ion
JP2011192529A (ja) ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
JP2011113921A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2011192528A (ja) ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852257

Country of ref document: EP

Kind code of ref document: A1