WO2013073826A1 - ZnO-MnO 복합체, 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법 - Google Patents

ZnO-MnO 복합체, 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법 Download PDF

Info

Publication number
WO2013073826A1
WO2013073826A1 PCT/KR2012/009589 KR2012009589W WO2013073826A1 WO 2013073826 A1 WO2013073826 A1 WO 2013073826A1 KR 2012009589 W KR2012009589 W KR 2012009589W WO 2013073826 A1 WO2013073826 A1 WO 2013073826A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
producing
zno
Prior art date
Application number
PCT/KR2012/009589
Other languages
English (en)
French (fr)
Inventor
조원일
류승호
송민섭
이선영
정영민
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2013073826A1 publication Critical patent/WO2013073826A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a ZnO-MnO composite, a negative electrode active material for a lithium secondary battery comprising the same and a method of manufacturing the same.
  • the lithium secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the performance of the battery depends largely on the electrochemical properties of the negative electrode material.
  • lithium metal with a large theoretical capacity was used as a negative electrode active material for lithium secondary batteries.
  • lithium metal grows in the dendrite phase during the layer / discharge process, and internal short circuit occurs due to contact with the positive electrode, which may cause a sudden reaction to cause explosion of the battery.
  • the dendrite phase growth of lithium metal becomes more active as the current density increases, there is a problem that it is not suitable for a battery requiring high-speed layering.
  • Carbon-based negative electrode active material has been used for a long time to satisfy the low occlusion / emission potential, high reversible capacity, small volume change during the layer / discharge, stability in the electrolyte required for the negative electrode material of the battery.
  • the lithium secondary battery is also required to be thinned, miniaturized and high capacity.
  • the carbon-based negative electrode active material has a theoretical capacity of 372 mAh / g (based on LiC 6 ) and shows a capacity behavior of nearly 95%, and thus it is difficult to expect a further increase in capacity.
  • silicon-based as a non-carbon-based material that can exhibit a high capacity
  • Research on various materials such as materials and metal oxide-based materials has been conducted, but the degree of improvement in battery performance using them is still insufficient.
  • the present invention is to provide a ZnO-MnO composite and a negative electrode active material including the same to enable the provision of a negative electrode for a lithium secondary battery with excellent electrical properties.
  • the present invention is to provide a method for producing the negative electrode active material in a more simplified process.
  • ZnO and MnO are chemically bonded composites with a 2 ⁇ value of X-ray diffraction pattern (sampling width 0.0 ⁇ , scan rate 4 ° / min, using Cu- ⁇ ⁇ rays) (31.5 ⁇ 0.1) ° , (34.2 ⁇ 0.1) ° , (35.0 ⁇ 0.1) ° , (35.9 ⁇ 0.1) ° , (40.6 ⁇ 0.1) ° , (4g 2 ⁇ 0.1) ° , (56.1 ⁇ 0.1) ° , (56.1 ⁇ 0.1) ° 58.9 ⁇ 0.1) ° , (62.4 ⁇ 0.1) ° .
  • the ZnO-MnO composite may be to satisfy the following X-ray diffraction pattern (sampling width 0.01 ° , scanning rate 4 ° / min, using Cu-K a line):
  • the ratio of the peak intensities observed at 2 ⁇ values (35.9 ⁇ 0.1) ° and (40.6 ⁇ 0.1) ° is 1: 1.5 to ⁇ : 2.
  • a negative active material for a lithium secondary battery including composite particles in which ZnO and MnO are chemically bonded is provided.
  • the composite particles may be those having an average particle diameter of 150 nm or less.
  • ZnMn 2 0 4 powder is thermally treated in an inert or reducing atmosphere to form composite particles chemically bonded to ZnO and MnO.
  • a method of manufacturing a negative electrode active material for a lithium secondary battery comprising the step of forming.
  • the heat treatment may be performed for 2 to 10 hours at a temperature of 500 to 900 ° C.
  • the heat treatment may be carried out in the presence of heunhap gas containing argon gas (from 90 to 98 volume 0/0) and hydrogen gas (2 to 10% by volume).
  • the ZnMn 2 0 4 powder may be prepared by a solvothermal synthesis method or a co-precipitation method.
  • the solvent-thermal synthesis method preparing a composition comprising zinc nitrate [ ⁇ ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 0], manganese nitrate [ ⁇ ( ⁇ 0 3 ) 2 ⁇ ⁇ 2 and a solvent; And heat-treating the composition at a temperature of 150 to 200 ° C. for 12 to 48 hours to form a ZnMn 2 0 4 powder.
  • the composition may include zinc nitrate and manganese nitrate in a molar ratio of 1: 2.
  • the solvent may be at least one selected from the group consisting of methanol, ethanol, acetone, and propanol.
  • the coprecipitation method to prepare a composition containing zinc acetate [Zn (CH 2 COO) 2 ⁇ 2H 2 0], manganese acetate [Mn (CH 2 COO) 2 ⁇ 4H 2 0], saliva premise and solvent step ; And coprecipitation reaction of the composition at a temperature of 25 to 80 t.
  • the composition may include zinc acetate and manganese acetate in a molar ratio of 1: 2.
  • the concentration of zinc acetate and manganese acetate contained in the composition may be 0.1 to 0.4 M (mol / L).
  • the coprecipitation reaction can be performed for 1 to 24 hours while injecting the composition into the coprecipitation reaction at a rate of 2 to 20 ml / min; It can be carried out in a co-precipitating reaction machine equipped with an impeller set at a rotation speed of 300 to 900 rpm.
  • a ZnO-MnO composite and a negative electrode active material including the same, which enables the provision of a negative electrode for a lithium secondary battery having excellent electrical characteristics, and a method for manufacturing the negative electrode active material in a more simplified process.
  • FIG. 1 is a graph showing the results of X-ray diffraction (XRD) analysis of the ZnO-MnO complex according to an embodiment of the present invention
  • Figure 2 is a flow chart schematically showing a method for producing a ZnO-MnO composite according to an embodiment of the present invention
  • Figure 3 is a flow chart schematically showing a method of manufacturing a ZnO-MnO composite according to another embodiment of the present invention.
  • FIG. 4 is a graph showing the results of X-ray diffraction (XRD) analysis of the negative electrode active material according to an embodiment and a comparative example of the present invention
  • FIG. 5 is a photograph of a negative electrode active material according to an embodiment of the present invention observed with a transmission electron microscope (TEM);
  • FIG. 6 is a graph illustrating test cycle characteristics of a lithium secondary battery including an anode active material according to an embodiment or a comparative example of the present invention
  • FIG. 7 is a graph illustrating output characteristics of a lithium secondary battery including a negative active material according to an embodiment of the present invention.
  • the inventors of the present invention conducted a study on a negative active material for a lithium secondary battery, and when the ZnMn 2 0 4 powder was heat-treated, ZnO and MnO were physically mixed with each other (mechanical composite, etc.). Particles are formed, the lithium secondary battery including the composite particles confirmed that the charge / discharge capacity is large and the output characteristics and cycle characteristics can be improved, to complete the present invention.
  • a ZnO-MnO composite chemically bonded to ZnO and MnO is provided.
  • the composite according to the present invention is chemically bonded (complexed) of ZnO and MnO, and unlike ZnO and MnO are simply physically mixed with the particle mixture, ZnO and MnO are simultaneously present in one particle. .
  • the structural characteristics of the ZnO-MnO complex can be confirmed through X-ray diffraction analysis, etc.
  • the ZnO-MnO complex has an X-ray diffraction pattern (sampling width 0.0 ⁇ , scan rate 4 ° / Min, Cu- ⁇ line (31 ⁇ 5 ⁇ 0.1) ° , (34.2 ⁇ 0.1) ° , (35.0 ⁇ ().
  • the ⁇ ⁇ ⁇ - ⁇ ⁇ ⁇ composite according to the present invention may satisfy the following X-ray diffraction pattern (sampling width 0.0 ⁇ , scan rate 4 ° / min, using Cu- ⁇ rays):
  • the ratio of peak intensities observed at 2 ⁇ values (31.5 ⁇ 0.1) ° and (35.9 ⁇ 0.1) ° is 1: 1.05 to 1: 1.75, preferably 1: 1.05 to 1: 1.50, more preferably 1: 1.05 to 1: 1.40, even more preferably 1: 1.05 to 1: 1.30;
  • the ratio of the peak intensities observed at 2 ⁇ values (35.0 ⁇ 0.1) ° and (40.6 ⁇ 0 ⁇ 1) ° is 1: 1.05 to 1: 1.60, preferably 1: 1.05 to 1: 1.50, more preferably 1: 1.05 to 1: 1.40, even more preferably 1: 1.05 to 1: 1.30;
  • the ratio of the peak intensities observed at ⁇ ) 2 ⁇ values (35.9 ⁇ 0.1) ° and (40.6 ⁇ 0.1) ° is 1: 1.5 to 1: 2.0, preferably 1: 1.5 to 1: 1.90, more preferably 1: 1.5 to 1: 1.85, even more preferably 1: 1.5 to 1: 1.80.
  • FIGS. 1 and 4 illustrate compounds in which ⁇ and ⁇ are physically mixed (Comparative Example 2), ZnMn 2 0 4 particles (Comparative Example 1), and a ⁇ - ⁇ composite according to an embodiment of the present invention.
  • XRD X-ray diffraction
  • Figure 5 is an enlarged observation of the ⁇ - ⁇ composite according to the present invention with a transmission electron microscope ( ⁇ ), through (A) to (D) of Figure 5, the composite is ⁇ and ⁇ ⁇ It can be seen that O is not simply physically mixed, but exists as a complex in a particle.
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ composite of the present invention has the above structural characteristics, it enables the expression of improved electrical properties when applied to the active material of the negative electrode for a lithium secondary battery.
  • a negative active material for a lithium secondary battery including a composite particle in which ⁇ and ⁇ are chemically bonded Is provided.
  • the negative active material according to the present invention includes the above-described ZnO-MnO composite, and may satisfy the X-ray diffraction pattern as described above.
  • the composite may have an average particle diameter of 150 nm or less, preferably 10 to 150 nm, more preferably 50 to 100 nm. That is, in consideration of electrochemical properties according to particle size, the composite particles preferably have an average particle diameter in the above-described range.
  • a method for producing a negative active material for a lithium secondary battery comprising the step of heat-treating the ZnMn 2 0 4 powder in an inert or reducing atmosphere to form composite particles chemically bonded to ZnO and MnO This is provided.
  • the ZnO-MnO composite may be performed by a method including a heat treatment of a ZnMn 2 0 4 powder.
  • the heat treatment for the ZnMn 2 0 4 powder is for 2 to 10 hours under a temperature of 500 to 900 ° C; Preferably for 2 to 8 hours at a temperature of 500 to 900 ° C; More preferably, it may be performed for 2 to 6 hours at a temperature of 600 to 800 ° C. That is, in view of the expression of the heat treatment effect on the ZnMn 2 0 4 powder and the efficiency of the heat treatment process, it is preferable to perform the heat treatment in the above range of conditions.
  • ZnMn 2 0 4 powder When the ZnMn 2 0 4 powder is heat-treated as described above, a ZnMn 2 0 4 powder or a complex of a form completely different from ZnO and MnO physically mixed (mechanical composites, etc.) is formed (ZnO and MnO in one particle). Is chemically complexed), which will be described with reference to Examples and Test Examples to be described later.
  • the heat treatment for the ZnMn 2 0 4 powder is preferably carried out under an inert or reducing atmosphere, for this purpose it is a mixture containing argon gas (90 to 98 volume 0 /.) And hydrogen gas (2 to 10 volume%) It may be carried out in a gas atmosphere.
  • the ⁇ ⁇ ⁇ ⁇ 2 ⁇ 4 powder can be prepared and used directly.
  • the solvothermal synthesis method is a method of forming nanoparticles by reacting a target material with a solvent at a low temperature, so that the reaction speed is high and uniform particles can be formed.
  • FIG. 3 is a flowchart schematically illustrating a method of preparing a ZnO-MnO composite by preparing ZnMn 2 0 4 powder using the solvent thermal synthesis method and then thermally treating the ZnMn 2 0 4 powder.
  • the zinc nitrate and manganese nitrate is preferably included in the composition in a molar ratio of 1: 2.
  • the solvent included in the composition may be a conventional one used in the solvent thermal synthesis method, preferably one or more solvents selected from the group consisting of methane, ethanol, acetone, and propanol may be used.
  • the composition may be prepared by mixing zinc nitrate, manganese nitrate and a solvent and stirring for about 2 to 4 hours. Subsequently, the composition is placed in a solvent thermal synthesis reactor and thermally treated at a temperature of 150 to 200 ° C. for 12 to 48 hours to obtain a product including ZnMn 2 0 4 powder.
  • ZnMn 2 0 4 from the product by using a method such as centrifugation
  • the powder may be separated, and further washing and drying of the separated ZnMn 2 0 4 powder may be carried out as necessary.
  • the washing and drying step may be performed by washing the ZnMn 2 0 4 powder 3 to 5 times with a solvent such as ethanol and drying in a vacuum oven at 70 to 100 ° C for 10 to 24 hours. Can be.
  • the ZnMn 2 0 4 powder thus obtained may be thermally treated in an inert or reducing atmosphere as described above to form a ZnO-MnO composite according to the present invention.
  • the ZnMn 2 0 4 powder can be prepared using a co-precipitation method (co-precipitation method).
  • the preparation of ZnMn 2 0 4 powder through the co-precipitation method, zinc acetate [Zn (CH 2 COO) 2 ⁇ 23 ⁇ 40], manganese acetate [Mn (CH 2 COO) 2 Preparing a composition comprising 4H 2 0], a saliva premise and a solvent; And it can be carried out by a method comprising the step of coprecipitation reaction under the silver degree of 25 to 80 ° C.
  • the zinc acetate and manganese acetate is preferably included in the composition in a molar ratio of 1: 2.
  • the concentration of zinc acetate and manganese acetate contained in the composition may be adjusted to 0.1 to 4 M (mol / L).
  • the premise of saliva included in the composition is not particularly limited as long as it can form a precipitate of the starting material zinc acetate and manganese acetate.
  • the needle premise is oxalic acid (C 2 H 2 C) 4 2H 2 0), sodium bicarbonate (NaHC0 3 ), sodium carbonate (Na 2 C0 3 ), ammonia water (NH 4 OH), and At least one compound selected from the group consisting of sodium hydroxide (NaOH).
  • the solvent included in the composition may be a conventional one used in the coprecipitation method, preferably one or more solvents selected from the group consisting of methane, ethane, acetone, and propane may be used.
  • the co-precipitation method in accordance with the above-described conditions belong to the present invention It may be carried out according to a conventional method in the art. However, according to the present invention, the composition is injected into the coprecipitation reaction, the precursor is collected without induction of the coprecipitation reaction, and the composition containing the collected precursor is injected into the coprecipitation reaction back to the coprecipitation reaction for about 1 to 24 hours It is preferable in terms of improving the yield according to the method of carrying out.
  • the composition to the coprecipitation reaction it is preferable to inject at a rate of 2 to 20ml / min using a conventional solution injector. And, the coprecipitation reaction is preferably carried out at a temperature of 25 to 80 ° C.
  • the rotation speed of the impeller during the progress of the coprecipitation reaction is preferably 300 to 900 rpm in view of improving the yield.
  • the negative electrode including the negative electrode active material according to the invention to prepare a paste containing the negative electrode active material, and uniformly applied to the current collector for the electrode, such as copper, aluminum, stainless, nickel, 50 to 200 ° C. It may be prepared by a method including a step of drying at a temperature. .
  • the paste may include the negative electrode active material, the binder, the conductive material, and the solvent.
  • the negative electrode active material is replaced with the above description.
  • the binder is a component that acts as a binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), cellulose, styrene-butadiene rubber (SBR), polyimide, polyacrylic acid (Polyacrylic acid ), Polymethylmethacrylate (PMMA), and polyacrylonitrile (PAN).
  • the conductive material may be carbon black, vapor-grown carbon fiber, acetylene black, or the like as a component for improving the output of the battery by reducing the resistance of the electrode.
  • the solvent is a component that serves as a dispersion medium of the slurry, N-methylpyrrolidone (NMP), isopropyl alcohol, acetone, water and the like can be used.
  • NMP N-methylpyrrolidone
  • the lithium secondary battery comprising a negative electrode active material according to the invention the negative electrode, It may include a positive electrode, a separation membrane and an electrolyte.
  • the cathode is replaced with the above description.
  • the anode may include a lithium compound common in the art to which the present invention belongs; Preferably LiCo0 2, LiNi0 2, LiMn 2 0 4, Li (Ni 1/3 Mn 1/3 Co 1/3) (LiNiO 0 5 Mni. 5 O 4 and a lithium metal such as LiNi 5Mn 0. 5 O 2 Oxides; lithium metal phosphates such as LiFePO 4 , LiMnPO 4, and Li 3 V 2 ((P0 4 ) 3 );
  • the separation membrane is positioned between the cathode and the anode to block internal short circuits and to impregnate the electrolyte, and the material may be polypropylene: polyethylene, or the like.
  • the electrolyte may be a lithium salt dissolved in an organic solvent.
  • organic solvent is ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-meteuk when ethane, 1,2-diethoxyethane, gamma-butyrolactone, tetrahydrofuran, 2-methyl-_ Tetrahydrofuran, 1,3-dioxene, 4-methyl-1,3-dioxene, ethyl ether, sulfolane, ethylmethylcarbonate, butyronitrile, or a mixture of middles .
  • the lithium salt is LiC10 4 , LiCF 3 S0 3 , LiAsF 6 , LiBF 4 , LiN (CF 3 S0 2 ) 2 , LiPF 6 , LiSCN, LiB (C 2 0 4 ) 2 , LiN (S0 2 C 2 F 5 ) 2 or a combination thereof.
  • preferred embodiments are provided to help understanding of the present invention. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto.
  • Zinc nitrate [ ⁇ ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 and manganese nitrate [ ⁇ ( ⁇ 0 3 ) 2 ⁇ ⁇ 2 ⁇ ] has a molar ratio of 1: 2 (zinc nitrate about 1. 33 86 g and manganese nitrate about 1.6106 g) was prepared in a mixed solution dissolved in 135 ml of ethanol, and the solution was stirred for 3 hours using a cross-shaped magnetic bar. .
  • the solution was placed in a reactor for solvent thermal synthesis (volume 200 cc) and thermally treated in an oven at about 180 ° C. for about 24 hours to obtain ZnMn20 4 powder. After separating the powder using a centrifugal separator, it was ethanol three times Washed and dried in a vacuum oven at 80 ° C for 12 hours.
  • the ZnMn 2 0 4 powder obtained after drying was heat treated at a temperature of 700 ° C. for 6 hours in a reducing gas (about 95% by volume of argon gas and about 5% by volume of hydrogen gas) to obtain a negative electrode active material of a ZnO-MnO composite type.
  • Zinc nitrate [ ⁇ ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 and manganese nitrate [Mn (N0 3 ) 2 'xH 2 C ) ] has a molar ratio of 1: 2 (about 1.3386 g of zinc nitrate and about 1.6106 g of manganese nitrate). ), A mixed solution dissolved in 135 ml of ethanol was prepared, and the solution was stirred for 3 hours using a cross-shaped magnetic bar.
  • the solution was placed in a reaction vessel for synthesis of solvent heat (volume 200 cc) and thermally treated in an oven at about 180 ° C. for about 24 hours to obtain a cathode active material in the form of ZnMn 2 0 4 powder.
  • the mixture was homogeneously mixed in NMP solvent in a weight ratio to prepare a slurry.
  • the slurry was coated on a copper foil with a uniform thickness and dried in an 80 oven, which was then compressed to a thickness of about 70% of the initial thickness at 110 ° C. using a hot press. It was then dried in a vacuum oven at 80 ° C for more than 12 hours.
  • the dried foil was punched into a circular disk form and used as a negative electrode;
  • the anode is lithium metal;
  • Separation membranes are commercially available Celgard 2500 (cdgard 2500);
  • Electrolyte was prepared by ethylene carbonate (EC), dimethyl carbonate (DMC), and ethylmethyl carbonate (EMC) in which 1M LiPF 6 was dissolved.
  • EC: DMC: EMC 1: 1: 1 Using volume ratio of 2032-type Coin salol was prepared.
  • a coin cell was manufactured in the same manner as in Preparation Example 1, except that the negative electrode active material according to Comparative Example 1 was used.
  • a coin cell was manufactured in the same manner as in Preparation Example 1, except that the negative electrode active material according to Comparative Example 2 was used.
  • the negative active material according to Example 1 was found to satisfy the following X-ray diffraction pattern:
  • i) 2 ⁇ values are (31.5 ⁇ () .1) ° , (34.2 ⁇ 0.1) ° , (35.0 ⁇ 0.1) ° , (35.9 ⁇ 0.1) ° , (40.6 ⁇ 0.1) ° , (47.2 ⁇ 0.1) ° , (56.1 ⁇ 0.1) ° , (58.9 ⁇ 0.1) ° , (62.4 ⁇ 0.1) ° , (66.3 ⁇ 0.1) ° , (6g 3 ⁇ 0.1) ° , (68.4 ⁇ 0.1) ° , (70.4 ⁇ 0.1) ° 13 significant peaks were observed among (72 ⁇ 1 ⁇ 0 ⁇ 1) ° , (74 ⁇ 1 ⁇ 0.1) °, and (76.8 ⁇ 0.1) ° ;
  • the ratio of the peak intensities at which the values of ⁇ ) 2 ⁇ are observed at (35.0 ⁇ 1) ° and (40.6 ⁇ 1) ° , respectively, is about 1: 1.21;
  • the ratio of peak intensities at which 2 ⁇ values are observed at (35.9 ⁇ (U) ° and (40.6 ⁇ 0.1) ° , respectively, is about 1:75.
  • the negative electrode active material according to Example 1 is prepared by heat-treating ZnMn 2 0 4 powder in a reducing gas atmosphere, the negative electrode active material according to Comparative Example 1 (ZnMn 2 0 4 powder) and the negative electrode active material according to Comparative Example 2 (physical Phase changed into a complex having a completely different phase from the negative electrode active material complexed with I could confirm it.
  • the negative electrode active material according to Example 1 was found to have an average particle diameter of 50 to 100 nm.
  • the negative electrode active material according to Example 1 is not simply physically mixed ZnO and MnO, but present in a composite form in one particle could.
  • the coin sal according to Preparation Example 1 has a relatively low initial discharge capacity and charging capacity as compared to the coin cell according to Sejo Example 2 as the negative electrode active material of Example 1 It showed, but was higher than the coin cell according to Preparation Example 3.
  • the coin cell according to Preparation Example 1 was found that the charge capacity retention after about 50 cycles of layer discharge was about two times higher than that of the Coin cells of Preparation Examples 2 and 3, indicating that the cycle characteristics were excellent.
  • the charge cell according to Preparation Example 1 was charged and discharged once at a rate of C / 10 in a range of 0.01 to 3.0 V, and then layered at a rate of C / 5, C / 5, 1C, 5C, and 10C. Discharge was carried out at a speed, respectively, and the results are shown in FIG. 7.
  • the coin sal according to Preparation Example 1 is 663 mAh / g at the discharge rate C / 5, 577 mAh / g at the discharge rate 1C, 473 mAh / g at the discharge rate 5C, discharge rate 10C At 375 mAh / g it was confirmed that the excellent output characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 ZnO 및 MnO가 화학적으로 결합된 복합체, 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법에 관한 것이다. 본 발명에 따르면, 전기적 특성이 우수한 리튬 이차전지용 음극의 제공을 가능케 하는 ZnO-MnO 복합체 및 이를 포함하는 음극 활물질이 제공되며, 상기 음극 활물질을 보다 단순화된 공정으로 제조할 수 있는 방법이 제공된다.

Description

【명세서】
【발명의 명 칭】
ZnO-MnO 복합체, 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법
【기술분야】
본 발명은 ZnO-MnO 복합체, 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법에 관한 것 이다.
【배경 기술】
리튬 이차전지는 1990년대 상용화된 이 래, 전자기기 , 휴대용 컴퓨터, 휴대전화 등의 확산과 더불어 그 수요가 급격히 증가하고 있다.
리튬 이차전지는 양극, 음극, 전해질 및 분리 막으로 구성되는데, 특히 음극 소재의 전기화학적 특성에 의해 전지의 성능이 크게 좌우된다.
초기에는 리튬 이차전지용 음극 활물질로서 이론용량이 큰 리튬 금속이 사용되 었다. 그러나, 리튬 금속은 층 /방전 과정에서 덴드라이트상으로 성장하여 양극과의 접촉에 의해 내부 단락이 발생하고, 이로 인해 급격 한 반웅이 유발되어 전지의 폭발이 초래될 수 있다. 또한, 리튬 금속의 덴드라이트상 성장은 전류 밀도가 클수록 활발해지기 때문에 고속 층전이 필요한 전지에는 적합하지 않은 문제점 이 있다.
이 러 한 리튬 금속의 단점을 보완하기 위해, 음극 활물질로서 그라파이트 등의 탄소계 물질을 사용하는 방안이 제안되 었다. 탄소계 음극 활물질은 전지의 음극 소재에 요구되는 낮은 흡장 /방출 전위 , 높은 가역용량, 층 /방전시 작은 부피 변화, 전해질 내에서 의 안정성 등을 만족시 켜 오랫동안 사용되 어오고 있다.
최근 전기 전자 및 통신 관련 산업 이 급속히 발전함에 따라 정 밀 전기 전자 제품의 경박 단소화가 요구되고 있으며, 그에 맞추어 리튬 이차전지도 박막화, 소형화 및 고용량화가 요구되고 있다. 그러나, 탄소계 음극 활물질은 이론용량이 372 mAh/g(LiC6 기준)으로서 현재 95 %에 가까운 용량 거동을 보이고 있어 , 더 이상의 용량 증가를 기대하기 어 려운 실정 이다.
그에 따라, 고용량을 나타낼 수 있는 비탄소계 물질로서 실리콘계 물질, 금속산화물계 물질 등 다양한 소재에 대한 연구가 이루어지고 있으나, 이를 사용한 전지 성능의 향상 정도는 아직 미흡한 실정이다.
【발명의 내용】
【해결하려는 과제】
이에 본 발명은 전기 적 특성 이 우수한 리튬 이차전지용 음극의 제공을 가능케 하는 ZnO-MnO 복합체 및 이를 포함하는 음극 활물질을 제공하고자 한다.
또한, 본 발명은 보다 단순화된 공정으로 상기 음극 활물질을 제조할 수 있는 방법을 제공하고자 한다.
【과제의 해결 수단】
본 발명 에 따르면, ZnO 및 MnO가 화학적으로 결합된 복합체로서, X-선 회 절 패턴 (샘풀링 폭 0.0Γ , 스캔 속도 4° /분, Cu-Κ α 선 이용)의 2 Θ 값으로 (31.5±0.1)° , (34.2±0.1)° , (35.0±0.1)° , (35.9±0.1)° , (40.6士0.1)° , (4그 2±0.1)° , (56.1±0.1)° , (58.9±0.1)° , (62.4±0.1)° . , (66.3±으1)° , (6그 3士0.1)° , (68.4±0.1)° , (70.4±0.1)° , (72.1±0·1)° , (74.1±0.1)° , 및 (76.8±0.1)° 중에서 적어도 13개의 피크를 갖는 ZnO-MnO 복합체가 제공된다.
상기 ZnO-MnO 복합체는 하기 X-선 회 절 패턴 (샘플링 폭 0.01° , 스캔 속도 4° /분, Cu-K a 선 이용)을 만족하는 것 일 수 있다:
ΐ) 2 Θ 값 (31.5±0.1)° 와 (35.9±ai)° 에서 관찰되는 피크 세기의 비율이 1: 1.05 내지 1: 1.75;
ϋ) 2 Θ 값 (35.0±0.1)° 와 (40.6±0.1)° 에서 관찰되는 피크 세기 의 비율이 1 : 1.05 내지 1 : 1.60; 및
ίϋ) 2 θ 값 (35.9±0.1)° 와 (40.6±0.1)° 에서 관찰되는 피크 세기의 비율이 1 : 1.5 내지 ι: 2.
또한, 본 발명에 따르면, ZnO 및 MnO가 화학적으로 결합된 복합체 입자를 포함하는 리튬 이차전지용 음극 활물질이 제공된다.
여 기서, 상기 복합체 입자는 150 nm 이하의 평균입경을 갖는 것 일 수 있다.
한편, 본 발명에 따르면, 비활성 또는 환원성 분위 기 하에서 ZnMn204 분말을 열처 리하여 ZnO 및 MnO가 화학적으로 결합된 복합체 입자를 형성시 키는 단계를 포함하는 리튬 이차전지용 음극 활물질의 제조방법 이 제공된다. ᅳ
이 때, 상기 열처 리는 500 내지 900 °C의 온도 하에서 2 내지 10 시간 동안 수행될 수 있다.
또한, 상기 열처리는 아르곤 가스 (90 내지 98 부피0 /0) 및 수소 가스 (2 내지 10 부피 %)를 포함하는 흔합 가스의 존재 하에 수행될 수 있다.
한편, 상기 ZnMn204 분말은 용매열 합성 법 (solvothermal synthesis method) 또는 공침 법 (co-precipitation method)에 의해 준비 되는 것 일 수 있다. 여기서, 상기 용매열 합성 법은, 아연 나이트레이트 [Ζη(Ν03)2·6Η20], 망간 나이트레이트 [Μη(Ν03)2·χΗ2이 및 용매를 포함하는 조성물을 준비하는 단계; 및 상기 조성물을 150 내지 200 °C의 온도 하에서 12 내지 48 시간 동안 열처리하여 ZnMn204 분말을 형성하는 단계를 포함하는 방법으로 수행될 수 있다.
상기 용매열 합성 법에 있어서, 상기 조성물은 아연 나이트레이트 및 망간 나이트레이트를 1:2의 몰비로 포함할 수 있다.
또한, 상기 용매열 합성 법에 있어서 , 상기 용매는 메탄올, 에 탄올, 아세톤, 및 프로판올로 이루어진 군에서 선택되는 1종 이상일 수 있다.
한편, 상기 공침 법은, 아연 아세테이트 [Zn(CH2COO)2 · 2H20], 망간 아세테이트 [Mn(CH2COO)2 · 4H20], 침 전제 및 용매를 포함하는 조성물을 준비하는 단계 ; 및 상기 조성물을 25 내지 80 t의 온도 하에서 공침 반응시 키는 단계를 포함하는 방법으로 수행될 수 있다.
그리고, 상기 공침 법에 있어서 , 상기 조성물은 아연 아세테이트 및 망간 아세테이트를 1 :2의 몰비로 포함할 수 있다. 이 때, 상기 조성물에 포함되는 아연 아세테이트 및 망간 아세테이트의 농도는 0.1 내지 0.4 M (mol/L)일 수 있다.
그리고, 상기 공침 반웅은 상기 조성물을 공침 반웅기에 2 내지 20 ml/min의 속도로 주입하면서 1 내지 24 시간 동안 수행될 수 있으며 ; 회 전속도 300 내지 900 rpm으로 설정된 임 펠러가 구비된 공침 반웅기 에서 수행될 수 있다.
[발명의 효과】 본 발명에 따르면, 전기적 특성이 우수한 리륨 이차전지용 음극의 제공을 가능케 하는 ZnO-MnO 복합체 및 이를 포함하는 음극 활물질이 제공되며, 상기 음극 활물질을 보다 단순화된 공정으로 제조할 수 있는 방법이 제공된다.
【도면의 간단한 설명】
도 1은 본 발명의 일 실시예에 따른 ZnO-MnO 복합체에 대한 X-선 회절 (XRD) 분석 결과를 나타낸 그래프이고;
도 2는 본 발명의 일 구현예에 따른 ZnO-MnO 복합체의 제조방법을 개략적으로 나타낸 순서도이며;
도 3은 본 발명의 다른 구현예에 따른 ZnO-MnO 복합체의 제조방법을 개략적으로 나타낸 순서도이고;
도 4는 본 발명의 일 실시예 및 비교예에 따른 음극 활물질에 대한 X-선 회절 (XRD) 분석 결과를 나타낸 그래프이며;
도 5는 본 발명의 일 실시예에 따른 음극 활물질을 투과전자현미경 (TEM)으로 관찰한 사진이고;
도 6은 본 발명의 일 실시예 또는 비교예에 따른 음극 활물질을 포함하는 리튬 이차전지의 사이클 특성을 시험하여 나타낸 그래프이며;
도 7은 본 발명의 일 실시예에 따른 음극 활물질을 포함하는 리튬 이차전지의 출력 특성을 시험하여 나타낸 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예들에 따른 ZnO-MnO 복합체 및 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법에 대하여 설명하기로 한다. 그에 앞서, 본 명세서 전체에서 명시적인 언급이 없는 한, 몇 가지 용어들은 다음과 같은 의미로 정의된다.
여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및 /또는 군의 존재나 부가를 제외시키는 것은 아니다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 첨부한 도면을 참조하여 본 발명의 구현예들에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 지금까지 비탄소계 음극 활물질로 Si, Sn 등의 금속합금과 다양한 금속산화물들이 제안되었다. 그러나, 상기 예시된 물질들을 음극 활물질로 사용할 경우 층전에 따른 부피팽창에 의해 전지의 충 /방전 용량 및 출력 특성 등이 층분히 확보될 수 없는 한계가 있었다.
이에 본 발명자들은 리튬 이차전지용 음극 활물질에 대한 연구를 거듭하는 과정에서, ZnMn204 분말을 열처리할 경우, ZnO와 MnO가 물리적으로 흔합된 것 (기계적 복합체 등)과는 전혀 다른 형태의 화학적 복합체 입자가 형성되고, 상기 복합체 입자를 포함하는 리튬 이차전지는 충 /방전 용량이 크고 출력 특성 및 사이클 특성이 향상될 수 있음을 확인하여, 본 발명을 완성하게 되었다.
이러한 본 발명의 일 구현예에 따르면, ZnO 및 MnO가 화학적으로 결합된 ZnO-MnO 복합체가 제공된다.
즉, 본 발명에 따른 상기 복합체는 ZnO 및 MnO가 화학적으로 결합 (복합화)된 것으로서, ZnO 및 MnO가 단순히 물리적으로 섞여 있는 입자 흔합물과는 달리, 하나의 입자 내에 ZnO와 MnO가 동시에 존재하게 된다. 이와 같은 ZnO-MnO 복합체의 구조적 특성은 X-선 회절 분석 등을 통해 확인할 수 있는데, 구체적으로, 본 발명에 따론 상기 ZnO-MnO 복합체는 X-선 회절 패턴 (샘플링 폭 0.0Γ , 스캔 속도 4° /분, Cu-Κα선 이용)의 2Θ값으로 (31·5±0.1)° , (34.2士0.1)° , (35.0±().1)° , (35.9±0.1)° , (40.6±0.1)° , (47.2±0.1)° , (56.1±0.1)° , (58.9士 0.1)° , (62·4±0.1)° , (66.3±0.1)° , (67.3士0.1)° , (68.4±0.1)° , (70.4±0.1)° , (72·1±0.1)° , (74.1±0.1)° , 및 (76.8±0.1)° 중에서 적어도 13개의 피크를 갖는 것일 수 있다.
또한, 본 발명에 따른 ΖηΟ-ΜηΟ 복합체는 하기 X-선 회절 패턴 (샘플링 폭 0.0Γ , 스캔 속도 4° /분, Cu-Κα선 이용)을 만족할 수 있다:
i) 2Θ값 (31.5±0.1)° 와 (35.9±0.1)° 에서 관찰되는 피크 세기의 비율이 1: 1.05 내지 1: 1.75, 바람직하게는 1: 1.05 내지 1: 1.50, 보다 바람직하게는 1: 1.05 내지 1: 1.40, 보다 더 바람직하게는 1: 1.05 내지 1:1.30;
ϋ) 2Θ값 (35.0±0.1)° 와 (40.6±0·1)° 에서 관찰되는 피크 세기의 비율이 1: 1.05 내지 1: 1.60, 바람직하게는 1: 1.05 내지 1: 1.50, 보다 바람직하게는 1: 1.05 내지 1: 1.40, 보다 더 바람직하게는 1: 1.05 내지 1: 1.30; 및
πί)2θ값 (35.9士0.1)° 와 (40.6±0.1)° 에서 관찰되는 피크 세기의 비율이 1: 1.5 내지 1: 2.0, 바람직하게는 1: 1.5 내지 1: 1.90, 보다 바람직하게는 1: 1.5 내지 1:1.85, 보다 더 바람직하게는 1: 1.5 내지 1: 1.80.
일 예로, 도 1 및 도 4는 ΖηΟ와 ΜηΟ가 물리적으로 흔합되어 있는 화합물 (비교예 2), ZnMn204 입자 (비교예 1), 및 본 발명의 일 실시예에 따른 ΖηΟ-ΜηΟ 복합체 (실시예 1)에 대한 X-선 회절 (XRD) 분석 결과를 나타낸 그래프로서, 이를 통해 본 발명에 따른 음극 활물질은 상기 비교 대상물질들과 전혀 다른 구조를 갖는 물질임을 확인할 수 있다.
그리고 다른 예로, 도 5는 본 발명에 따른 상기 ΖηΟ-ΜηΟ 복합체를 투과전자현미경 (ΤΕΜ)으로 확대 관찰한 사진으로서, 도 5의 (Α) 내지 (D)를 통해, 상기 복합체는 ΖηΟ 및 ΜηΟ가 단순히 물리적으로 섞여 있는 것이 아니라, 한 입자 내에 복합체 형태로 존재함을 확인할 수 있다.
이러한 본 발명의 ΖηΟ-ΜηΟ 복합체는 상기와 같은 구조적 특징을 가짐에 따라, 리튬 이차전지용 음극의 활물질에 적용될 경우 보다 향상된 전기적 특성의 발현을 가능케 한다. 이와 관련하여, 본 발명의 다른 구현예에 따르면, ΖηΟ 및 ΜηΟ가 화학적으로 결합된 복합체 입자를 포함하는 리튬 이차전지용 음극 활물질이 제공된다.
본 발명에 따른 음극 활물질은 전술한 ZnO-MnO 복합체를 포함하는 것으로서, 전술한 바와 같은 X-선 회절 패턴을 만족하는 것일 수 있다.
그리고, 상기 복합체는 평균입경이 150 nm 이하, 바람직하게는 10 내지 150 nm, 보다 바람직하게는 50 내지 100 nm일 수 있다. 즉, 입자 크기에 따른 전기화학적 특성 등을 고려하여, 상기 복합체 입자는 전술한 범위의 평균 입경을 갖는 것이 바람직하다. 한편, 본 발명의 또 다른 구현예에 따르면, 비활성 또는 환원성 분위기 하에서 ZnMn204 분말을 열처리하여 ZnO 및 MnO가 화학적으로 결합된 복합체 입자를 형성시키는 단계를 포함하는 리튬 이차전지용 음극 활물질의 제조방법이 제공된다.
도 2는 본 발명의 일 구현예에 따른 리튬 이차전지용 음극 활물질의 제조방법을 개략적으로 나타낸 순서도로서, 상기 ZnO-MnO 복합체는 ZnMn204 분말을 열처리하는 공정을 포함하는 방법으로 수행될 수 있다. 여기서, 상기 ZnMn204 분말에 대한 열처리는 500 내지 900 °C의 온도 하에서 2 내지 10 시간 동안; 바람직하게는 500 내지 900 °C의 온도 하에서 2 내지 8 시간 동안; 보다 바람직하게는 600 내지 800 °C의 온도 하에서 2 내지 6 시간 동안 수행될 수 있다. 즉, ZnMn204 분말에 대한 열처리 효과의 발현과 열처리 공정의 효율 등을 감안하여, 상기 조건 범위에서 열처리를 수행하는 것이 바람직하다.
상기와 같이 ZnMn204 분말을 열처리할 경우, ZnMn204 분말 또는 ZnO와 MnO를 물리적으로 흔합한 것 (기계적 복합체 등)과는 전혀 다른 형태의 복합체가 형성 (하나의 입자 내에 ZnO와 MnO가 화학적으로 복합화)됨을 확인할 수 있는데, 이에 대해서는 후술할 실시예 및 시험예를 통해 설명하기로 한다.
이때, 상기 ZnMn204 분말에 대한 열처리는 비활성 또는 환원성 분위기 하에서 수행되는 것이 바람직한데, 이를 위하여 아르곤 가스 (90 내지 98 부피0 /。)와 수소 가스 (2 내지 10 부피%)를 포함하는 흔합 가스 분위기 하에서 수행될 수 있다. 한편, 본 발명에 따른 제조방법에 있어서, 상기 ΖηΜη 2θ4 분말은 직접 제조하여 사용할 수 있다.
상기 ZnMn204 분말을 제조하여 사용할 경우에는 본 발명 이 속하는 기술분야에서 통상적 인 무기 재료 나노입자 합성 법을 이용할 수 있으며 ; 바람직하게는 용매 열 합성 법 (solvothermal synthesis method) 또는 공침 법 (co-precipitation method) 등을 이용할 수 있다.
그 중, 상기 용매열 합성 법 (solvothermal synthesis method)은 저온에서 대상물질을 용매와 반웅시 킴으로써 나노입자를 형성시 키는 방법으로, 반웅속도가 빠르고, 균일한 입자를 형성 할 수 있다.
도 3은 상기 용매열 합성 법을 이용하여 ZnMn204 분말을 제조한 후, 상기 ZnMn204 분말을 열처 리하여 ZnO-MnO 복합체를 제조하는 방법을 개략적으로 나타낸 순서도이다.
즉, 본 발명의 일 구현예에 따르면, 상기 용매열 합성 법을 통한 ZnMn204 분말의 제조는, 아연 나이트레이트 [Ζη(Ν03)2·6Η20], 망간 나이트레이트 [Μη(Ν03)2·χΗ2이 및 용매를 포함하는 조성물올 준비하는 단계; 및 상기 조성물을 150 내지 200 °C의 온도 하에서 12 내지 48 시간 동안 열처 리하여 ZnMn204 분말을 형성하는 단계를 포함하는 방법으로 수행될 수 있다.
이때, 목적 화합물인 ZnMn204 에서 Zn과 Mn의 몰비가 1:2인 점을 감안하여 , 상기 아연 나이트레이트와 망간 나이트레이트는 1 :2의 몰비로 조성물에 포함되도록 하는 것이 바람직하다.
그리고, 상기 조성물에 포함되는 용매는 용매열 합성 법에 사용되는 통상의 것 일 수 있으며 , 바람직하게는 메탄을, 에탄올, 아세톤, 및 프로판올로 이루어진 군에서 선택되는 1종 이상의 용매가 사용될 수 있다. 이와 같이 아연 나이트레이트, 망간 나이트레이트 및 용매를 흔합하여 약 2 내지 4 시 간 동안 교반하는 방법으로 상기 조성물은 준비될 수 있다. 이 어서 , 상기 조성물을 용매열 합성 반웅기에 넣고 150 내지 200 °C의 온도 하에서 12 내지 48 시간 동안 열처 리하면 ZnMn204 분말을 포함하는 생성물을 얻을 수 있다.
그리고, 원심분리 등의 방법을 이용하여 상기 생성물로부터 ZnMn204 분말을 분리할 수 있고, 필요에 따라 분리된 ZnMn204 분말을 세척 및 건조하는 단계가 더욱 수행될 수 있다. 이 때, 상기 세척 및 건조 단계는 에탄올 등의 용매 등으로 상기 ZnMn204 분말을 3 내지 5회 정도 세척하고, 70 내지 100 °C의 진공오본에서 10 내지 24 시간 동안 건조하는 방법으로 수행될 수 있다.
이 렇게 얻어진 ZnMn204 분말을, 전술한 바와 같이, 비활성 또는 환원성 분위기 하에서 열처 리하여 본 발명에 따른 ZnO-MnO 복합체가 형성될 수 있다.
한편, 상기 ZnMn204 분말은 공침 법 (co-precipitation method)을 이용하여 제조될 수 있다.
구체적으로, 본 발명의 일 구현예에 따르면, 상기 공침 법을 통한 ZnMn204 분말의 제조는, 아연 아세테이트 [Zn(CH2COO)2 · 2¾0], 망간 아세테이트 [Mn(CH2COO)2 · 4H20], 침 전제 및 용매를 포함하는 조성물을 준비하는 단계; 및 상기 조성물을 25 내지 80 °C의 은도 하에서 공침 반웅시키는 단계를 포함하는 방법으로 수행될 수 있다.
이 때, 목적 화합물인 ZnMn204 에서 Zn과 Mn의 몰비가 1 :2인 점을 감안하여 , 상기 아연 아세테이트와 망간 아세테이트는 1 :2의 몰비로 조성물에 포함되도록 하는 것이 바람직하다. 그리고, 공침 반웅의 효율 등을 감안하여, 상기 조성물에 포함되는 아연 아세테이트 및 망간아세테이트의 농도는 0.1 내지 으 4 M (mol/L)이 되도록 조절될 수 있다.
그리고, 상기 조성물에 포함되는 침 전제는 출발물질인 아연 아세테이트와 망간 아세테이트의 침 전을 형성시 킬 수 있는 것 이 라면 특별히 제한되지 않는다. 다만, 본 발명에 따르면, 상기 침 전제는 옥살산 (C2H2C)4 · 2H20), 탄산수소나트륨 (NaHC03), 탄산나트륨 (Na2C03), 암모니아수 (NH4OH), 및 수산화나트륨 (NaOH)으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
또한, 상기 조성물에 포함되는 용매는 공침 법 에 사용되는 통상의 것 일 수 있으며, 바람직하게는 메탄을, 에탄을, 아세톤, 및 프로판을로 이루어진 군에서 선택되는 1종 이상의 용매가 사용될 수 있다.
상기 공침 법은 전술한 조건들을 감안하여 본 발명 이 속하는 기술분야에서 통상적인 방법에 따라 수행될 수 있다. 다만, 본 발명에 따르면, 상기 조성물을 공침 반웅기에 주입하되, 공침 반응의 유도 없이 전구체를 수거하고, 수거된 전구체를 포함하는 조성물을 다시 공침 반웅기에 주입하여 약 1 내지 24 시간 동안 공침 반웅을 수행하는 방법에 따르는 것이 수율의 향상 측면에서 바람직하다.
이때, 상기 조성물을 공침 반웅기에 주입할 때는, 통상적인 용액 주입기를 이용하여 2 내지 20ml/min의 속도로 주입하는 것이 바람직하다. 그리고, 상기 공침 반웅은 25 내지 80 °C의 온도 하에서 수행되는 것이 바람직하다.
그리고, 상기 공침 반웅의 진행시 임벨러의 회전 속도는 300 내지 900 rpm이 되도록 하는 것이 수율의 향상 측면에서 바람직하다. 한편, 본 발명에 따른 음극 활물질을 포함하는 음극은 상기 음극 활물질을 포함하는 페이스트를 제조하고, 이를 구리, 알루미늄, 스테인레스, 니켈 등의 전극용 집전체에 균일하게 도포한 후, 50 내지 200 °C와 온도에서 건조시키는 공정을 포함하는 방법으로 제조될 수 있다. .
여기서, 상기 페이스트에는 상기 음극 활물질, 결합재, 도전재 및 용매가 포함될 수 있다. 그 중 상기 음극 활물질에 대해서는 앞서 설명한 내용으로 갈음한다. 상기 결합재는 바인더 역할을 하는 성분으로서, 폴리테트라플루오르에틸렌 (PTFE), 폴리비닐리덴 플루오라이드 (PVdF), 셀를로오스, 스타이렌부타다이엔러버 (SBR), 폴리이미드, 플리아크릴릭산 (Polyacrylic acid), 폴리메틸메타그릴레이트 (PMMA), 및 폴리아크릴로나이트릴 (PAN)로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다. 상기 도전재는 전극의 저항을 줄여 전지의 출력을 향상시키기 위한 성분으로서, 카본 블랙, 기상성장 탄소섬유, 아세틸렌 블랙 등이 사용될 수 있다. 또한, 상기 용매는 슬러리의 분산매 역할을 하는 성분으로서, N-메틸피롤리돈 (NMP), 이소프로필 알콜, 아세톤, 물 등이 사용될 수 있다. 한편, 본 발명에 따른 음극 활물질을 포함하는 리튬 이차전지는 음극, 양극, 분리 막 및 전해질을 포함할 수 있다.
상기 음극에 대해서는 전술한 내용으로 갈음한다.
상기 양극은 본 발명 이 속하는 기술분야에서 통상적 인 리튬화합물이 포함될 수 있으며 ; 바람직하게는 LiCo02, LiNi02, LiMn204, Li(Ni1/3Mn1/3Co1/3)( LiNiO0 5Mni.5O4 및 LiNi 5Mn0.5O2와 같은 리튬금속산화물; LiFeP04, LiMnP04 및 Li3V2((P04)3)와 같은 리튬금속인산화물 등이 포함될 수 있다.
또한, 상기 분리 막은 상기 음극 및 양극 사이 에 위치하여 내부 단락을 차단하고 전해 액을 함침하는 역할을 하는 것으로서, 그 소재는 폴리프로필렌: 폴리에 틸렌 등일 수 있다.
또한, 상기 전해질은 유기용매에 리튬염 이 용해된 것 일 수 있다.
여 기서, 상기 유기용매는 에틸렌카보네이트, 프로필렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 1,2-디 메특시에탄, 1,2-디에톡시에탄, 감마-부티로락톤, 테트라히드로퓨란, 2_메틸테트라히드로푸란, 1,3-디옥센, 4-메틸 -1,3-디옥센, 디 에 틸에 테르, 술포란, 에 틸메틸카보네 이트, 부티로나이트릴, 또는 미들의 흔합물일 수 있다. 또한, 상기 리튬염은 LiC104, LiCF3S03, LiAsF6, LiBF4, LiN(CF3S02)2, LiPF6, LiSCN, LiB(C204)2, LiN(S02C2F5)2 또는 이들의 흔합물일 수 있다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시 예들은 본 발명을 예시하기 위 한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
실시 예 1
아연 나이트레이트 [Ζη(Ν03)2·6Η2이와 망간 나이트레이트 [Μη(Ν03)2·χΗ2σ]를 1:2의 몰비 (아연 나이트레이트 약 1.3386 g 및 망간 나이트레이트 약 1.6106 g)로 135 ml의 에탄올에 용해시 킨 흔합 용액을 준비하고, 십자모양의 마그네틱 바를 이용하여 상기 용액을 3 시간 동안 교반하였다. .
이어서 , 상기 용액을 용매열 합성용 반응기 (용량 200 cc)에 넣고 약 180 °C의 오븐에서 약 24 시간 동안 열처 리하여 ZnMn204 분말을 얻었다. 상기 분말을 원심분리 기를 이용하여 분리 한 후, 이를 에탄을로 3 회 세척 하고 80 °C의 진공오븐에서 12 시간 동안 건조하였다.
건조 후 얻어진 ZnMn204 분말을 환원성 가스 (아르곤 가스 약 95 부피 % 및 수소 가스 약 5 부피 %) 분위기에서 700 °C의 온도로 6 시간 동안 열처 리하여 ZnO-MnO 복합체 형 태의 음극 활물질을 얻었다.
비교예 1
아연 나이트레이트 [Ζη(Ν03)2·6Η2이와 망간 나이트레이트 [Mn(N03)2'xH2C)]를 1 :2의 몰비 (아연 나이트레이트 약 1.3386 g 및 망간 나이트레이트 약 1.6106 g)로 135 ml의 에탄올에 용해시 킨 흔합 용액을 준비하고, 십자모양의 마그네틱 바를 이용하여 상기 용액을 3 시 간 동안 교반하였다.
이어서, 상기 용액을 용매열 합성용 반웅기 (용량 200 cc)에 넣고 약 180 °C의 오븐에서 약 24 시간 동안 열처 리하여 ZnMn204 분말 형 태의 음극 활물질을 얻었다.
비교예 2
실시 예 1을 통해 제조한 ZnO-MnO 복합체의 전기화학적 특성과 비교하기 위하여 , 각각 상용품인 ΖηΟ 분말 약 5 g 및 MnO 분말 약 8.72 g을 흔합하고, 이를 볼-밀링 법 (350rpm의 속도로 4시간)을 이용하여 물리 적으로 복합화한 음극 활물질을 얻었다.
제조예 1
실시 예 1에 따른 각각의 음극 활물질 : 도전재 (acetylene black): 결합재 (PVdF) = 80: 12: 8의 중량비로 NMP 용매에 균질하게 흔합하여 슬러 리를 제조하였다. 상기 슬러 리를 구리 호일 (Cu foil)에 균일한 두께로 코팅하여 80 오븐에서 건조시 킨 후, 이를 핫 프레스 (hot press)를 이용하여 110 °C에서 초기 두께 대비 약 70 %의 두께로 압축하였고, 이를 80 °C의 진공오본에서 12 시간 이상 건조시 켰다.
상기 건조된 호일을 원형 디스크 형 태로 펀칭하여 음극으로 사용하였고; 양극은 리튬 금속; 분리 막은 상용품인 셀가드 2500(cdgard 2500); 전해액은 1M LiPF6가 용해된 에 틸렌 카보네이트 (ethylene carbonate: EC), 디 메틸 카보네이트 (dimethyl carbonate: DMC), 에 틸메틸 카보네이트 (ethylmethyl carbonate: EMC)를 EC:DMC:EMC = 1 :1 :1 부피 비율로 사용하여 2032-type의 코인 샐올 제조하였다.
제조예 2
비교예 1에 따른 음극 활물질을 사용한 것으로 제외하고, 제조예 1과 동일한 방법으로 코인 셀을 제조하였다.
제조예 3
비교예 2에 따른 음극 활물질을 사용한 것으로 제외하고, 제조예 1과 동일한 방법으로 코인 셀을 제조하였다.
시험예 1
(X-선 회절 분석을 통한 결정구조 확인)
실시예 1, 비교예 1 및 비교예 2에 따른 각각의 음극 활물질에 대하여, XRD 장치 (제조사: Rigaku International corp., 모델명: D/MAX-2500V/PC)를 이용하여 결정 구조를 확인하였고, 그 결과를 도 1 및 도 4에 나타내었다. X-선 회절 분석 시험은 2Θ값이 10 내지 80° 범위에서 샘플링 폭이 0.0Γ , 스캔 속도 4° /분인 조건 하에서 Cu-Κα선을 이용하여 수행되었다.
도 1 및 도 4를 통해 알 수 있는 바와 같이, 실시예 1에 따른 음극 활물질은 하기 X-선 회절 패턴을 만족하는 것으로 확인되었다:
i) 2Θ값이 (31.5士().1)° , (34.2±0.1)° , (35.0±0.1)° , (35.9士0.1)° , (40.6±0.1)° , (47.2±0.1)° , (56.1士0.1)° , (58.9±0.1)° , (62.4±0.1)° , (66.3±0.1)° , (6그 3±0.1)° , (68.4±0.1)° , (70.4±0.1)° , (72·1±0·1)° , (74·1±0.1)° , 및 (76.8±0.1)° 중에서 13 개의 유의적 피크가 관찰되었고;
ii) 2Θ값이 각각 (3L5±0.1)° 와 (35.9±0.1)° 에서 관찰되는 피크 세기의 비율이 약 1: 1.09 이고;
ϋί)2θ값이 각각 (35.0±으1)° 와 (40.6±으1)° 에서 관찰되는 피크 세기의 비율이 약 1: 1.21 이며;
ίν) 2θ값이 각각 (35.9±(U)° 와 (40.6±0.1)° 에서 관찰되는 피크 세기의 비율이 약 1: 1.75 이다.
그리고, 실시예 1에 따른 음극 활물질은 ZnMn204 분말을 환원성 가스 분위기에서 열처리하여 제조됨에 따라, 비교예 1에 따른 음극 활물질 (ZnMn204 분말) 및 비교예 2에 따른 음극 활물질 (물리적으로 복합화된 음극 활물질)과는 완전히 다른 상을 갖는 복합체 형태로 상 변화되었음을 확인할 수 있었다.
시험예 2
(투과전자현미경을 이용한 입자크기 측정 및 형상 관찰)
실시예 1에 따른 음극 활물질에 대하여, TEM (제조사: FEI Company, 모델명: Tecnai G2)을 이용하여 입자크기를 측정하였고 그 형성을 관찰하였으며, 그 결과를 도 5에 나타내었다.
도 5의 (A) 및 (B)를 통해 알 수 있는 바와 같이, 실시예 1에 따른 음극 활물질은 평균입경이 50 내지 100 nm인 것으로 확인되었다. 또한, 도 5의 (C) 및 (D)를 통해 알 수 있는 바와 같이, 실시예 1에 따른 음극 활물질은 ZnO 및 MnO가 단순히 물리적으로 섞여 있는 것이 아니라, 한 입자 내에 복합체 형태로 존재함을 확인할 수 있었다.
시험예 3
(전지의 사이클 특성 평가)
제조예 1 내지 제조예 3에 따른 코인 셀에 대하여 각각 0.01 내지 3.0 V 범위에서 C/10의 속도로 층전 및 방전을 실시하여 사이클 특성을 평가하였고, 그 결과를 도 6 및 표 1에 나타내었다.
【표 1】
Figure imgf000016_0001
도 6 및 표 1을 통해 알 수 있는 바와 같이, 제조예 1에 따른 코인 샐은 실시예 1의 음극 활물질을 포함함에 따라 초기 방전용량 및 충전용량이 쎄조예 2에 따른 코인 셀에 비하여 비교적 낮은 특성을 보였으나, 제조예 3에 따른 코인 셀에 비하여 높은 것으로 나타났다. 그러나, 제조예 1에 따른 코인 셀은 층방전 50 사이클 후 충전용량 유지을이 제조예 2 및 제조예 3의 코인 셀에 비하여 약 2 배 이상 높은 것으로 나타나 사이클 특성이 우수함을 확인할 수 있었다.
시험예 4 (전지의 출력 특성 평가)
제조예 1에 따른 코인 셀에 대하여 0.01 내지 3.0 V 범위에서 C/10의 속도로 1회 충전 및 방전을 실시 한 후, C/5의 속도로 층전을, C/5, 1C, 5C, 10C의 속도로 방전을 각각 실시하였고, 그 결과를 도 7에 나타내었다.
도 7을 통해 알 수 있는 바와 같이, 제조예 1에 따른 코인 샐은 방전속도 C/5에서 663 mAh/g, 방전속도 1C에서 577 mAh/g, 방전속도 5C에서 473 mAh/g, 방전속도 10C에서 375 mAh/g을 나타내 출력 특성 이 우수함을 확인할 수 있었다.

Claims

【특허청구범위】
【청구항 1】
ZnO 및 MnO가 화학적으로 결합된 복합체로서, X-선 회절 패턴 (샘플링 폭 으01° , 스캔 속도 4° /분, Cu-Κα선 이용)의 2Θ값으로 (31.5±0.1)° ,
(34.2士0.1)° , (35.0±0.1)° , (35,9±0.1)° , (40.6±0.1)° , (47.2±0.1)° , (56.1士0.1)° ,
(58.9±0.1)° , (62.4±0.1)° , (66·3±0.1)° , (67.3±0.1)° , (68.4±0.1)° , (70.4±0.1)° ,
(72.1±0.1)° , (74.1±으1)° , 및 (76.8±0.1)° 중에서 적어도 13개의 피크를 갖는 ZnO-MnO 복합체.
【청구항 2】
제 1 항에 있어서,
하기 X-선 회절 패턴 (샘플링 폭 0.0Γ , 스캔 속도 4° /분, Cu-Ka선 이용)을 만족하는 ZnO-MnO 복합체:
ΐ) 2Θ값 (31.5±0.1)° 와 (35.9±0.1)° 에서 관찰되는 피크 세기의 비율이 1: 1.05 내지 1: 1.75;
ϋ) 2Θ값 (35.0±0.1)° 와 (40.6±0.1)° 에서 관찰되는 피크 세기의 비율이 1: 1.05 내지 1: 1.60; 및
ϋί)2θ값 (35.9±0.1)° 와 (40.6±0.1)° 에서 관찰되는 피크 세기의 비율이 1: 1.5 내지 1:2.0.
【청구항 3】
ZnO 및 MnO가 화학적으로 결합된 복합체 입자를 포함하는 리튬 이차전지용 음극 활물질.
【청구항 4】
제 3 항에 있어서,
상기 복합체는 X-선 회절 패턴 (샘플링 폭 0.0Γ , 스캔 속도 4° /분, Cu-Ka선 이용)의 2Θ값으로 (31.5±0.1)° , (34.2±0.1)° , (35.0±0.1)° , (35.9±0.1)° , (40.6±0.1)° , (47.2±0.1)° , (56.1±0.1)° , (58.9±0.1)° , (62.4±0.1)° , (66.3±0.1)° , (67.3±0.1)° , (68.4士으1)° , (70.4士 0·1)° , (72.1±0.1)° , (74.1±0.1)° , 2013/073826
및 (76.8±0.1)° 중에서 적어도 13개의 피크를 갖는 음극 활물질.
【청구항 5】
제 3 항에 있어서,
상기 복합체는 하기 X-선 회절 패턴 (샘플링 폭 0.0Γ , 스캔 속도 4° /분, Cu-Κα선 이용)을 만족하는 음극 활물질:
i) 2Θ값 (31.5±0.1)° 와 (35.9±0.1)° 에서 관찰되는 피크 세기의 비율이 1: 1.05 내지 1: 1.75;
ϋ) 2Θ값 (35.0±0.1)° 와 (40.6±0.1)° 에서 관찰되는 피크 세기의 비율이 1: 1.05 내지 1: 1.60; 및
ϋί)2θ값 (35.9±0.1)° 와 (40.6±0.1)° 에서 관찰되는 피크 세기의 비율이 1: 1.5 내지 1:2.0.
【청구항 6】
제 3 항에 있어서,
상기 복합체 입자는 150nm 이하의 평균입경을 갖는 음극 활물질.
【청구항 7】
비활성 또는 환원성 분위기 하에서 ZnMn204 분말을 열처리하여 ZnO 및 MnO가 화학적으로 결합된 복합체 입자를 형성시키는 단계
를 포함하는 리튬 이차전지용 음극 활물질의 제조방법.
【청구항 8]
제 7 항에 있어서,
상기 열처리는 500 내지 900 °C의 온도 하에서 2 내지 10 시간 동안 수행되는 음극 활물질의 제조방법.
【청구항 9】
제 7 항에 있어서,
상기 복합체 입자는 150 nm 이하의 평균입경을 갖는 음극 활물질의 제조방법.
【청구항 10】
제 7 항에 있어서,
상기 열처리는 아르곤 가스 (90 내지 98 부피0 /0) 및 수소 가스 (2 내지 10 부피0 /0)를 포함하는 흔합 가스의 존재 하에 수행되는 음극 활물질의 제조방법.
【청구항 111
제 7 항에 있어서,
상기 ZnMn204 분말은 용매열 합성법 (solvothermal synthesis method) 또는 공침법 (co-precipitation method)에 의해 준비되는 음극 활물질의 제조방법.
【청구항 12】
제 11 항에 있어서,
상기 용매열 합성법은, 아연 나이트레이트 [Ζη(Ν03)2·6Η20], 망간 나이트레이트 [Μη(Ν03)2·χΗ2이 및 용매를 포함하는 조성물을 준비하는 단계; 상기 조성물을 150 내지 200 °C의 온도 하에서 12 내지 48 시간 동안 열처리하여 ZnMn204 분말을 형성하는 단계
를 포함하는 방법으로 수행되는 음극 활물질의 제조방법.
【청구항 13]
제 12 항에 있어서,
상기 조성물은 아연 나이트레이트 및 망간 나이트레이트를 1:2의 몰비로 포함하는 음극 활물질의 제조방법.
【청구항 14]
제 12 항에 있어서, 상기 용매는 메탄을, 에탄을, 아세톤, 및 프로판을로 이루어지는 군에서 선택되는 1종 이상인 음극 활물질의 제조방법.
【청구항 15】
제 12 항에 있어서,
상기 용매열 합성법은 상기 ZnMn204 분말을 세척 및 건조하는 단계를 더 포함하는 방법으로 수행되는 음극 활물질의 제조방법.
【청구항 16]
제 11 항에 있어서,
상기 공침법은, 아연 아세테이트 [Zn(CH2COO)2 · 2¾0], 망간 아세테이트 [Mn(CH2COO)2 · 4¾0], 침전제 및 용매를 포함하는 조성물을 준비하는 단계; 및
상기 조성물을 25 내지 80 I의 온도 하에서 공침 반응시키는 단계 를 포함하는 방법으로 수행되는 음극 활물질의 제조 방법.
【청구항 17]
제 16 항에 있어서,
상기 조성물은 아연 아세테이트 및 망간 아세테이트를 1:2의 몰비로 포함하는 음극 활물질의 제조방법.
【청구항 18]
제 16 항에 있어서,
상기 조성물에 포함되는 아연 아세테이트 및 망간 아세테이트의 농도는 0.1 내지 0.4M(mol/L)인 음극 활물질의 제조방법.
【청구항 19]
제 16 항에 있어서,
상기 침전제는 옥살산 (C2H204 · 2¾0), 탄산수소나트륨 (NaHC03), 탄산나트륨 (Na2C03), 암모니아수 (NH4OH), 및 수산화나트륨 (NaOH)으로 이루어진 군에서 선택되는 1종 이상의 화합물인 음극 활물질의 제조방법.
【청구항 20】
제 16 항에 있어서,
상기 공침 반웅은 상기 조성물을 공침 반웅기에 2 내지 20 ml/min의 속도로 주입하면서 1 내지 24 시간 동안 수행되는 음극 활물질의 제조방법.
【청구항 21】
제 20 항에 있어서,
상기 공침 반웅은 회전속도 300 내지 900 rpm으로 설정된 임펠러가 구비된 공침 반웅기에서 수행되는 음극 활물질의 제조방법.
PCT/KR2012/009589 2011-11-14 2012-11-14 ZnO-MnO 복합체, 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법 WO2013073826A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110118275A KR101361754B1 (ko) 2011-11-14 2011-11-14 리튬이차전지용 음극 활물질 및 이의 제조방법
KR10-2011-0118275 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073826A1 true WO2013073826A1 (ko) 2013-05-23

Family

ID=48429839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009589 WO2013073826A1 (ko) 2011-11-14 2012-11-14 ZnO-MnO 복합체, 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101361754B1 (ko)
WO (1) WO2013073826A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538615A (zh) * 2014-12-17 2015-04-22 吉林大学 一种锂离子二次电池负极材料及其制备方法
CN104934590A (zh) * 2015-05-07 2015-09-23 哈尔滨工业大学(威海) 一种锰酸锌/石墨烯复合材料的制备方法
CN108467066A (zh) * 2018-04-08 2018-08-31 淮北师范大学 一种米粒状多孔微纳结构ZnMn2O4锂离子电池负极材料
CN110299524A (zh) * 2019-06-28 2019-10-01 陕西科技大学 一种制备锂离子电池负极材料MnO2/Ag的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346306A (zh) * 2013-06-08 2013-10-09 苏州诺信创新能源有限公司 用于锂离子电池的锌黑锰纳米颗粒的制备方法
CN110289410A (zh) * 2019-06-28 2019-09-27 陕西科技大学 一种具有高比容量的MnO2/Ag复合材料的制备方法
CN111153438B (zh) * 2020-01-03 2022-06-03 济南大学 一种ZnMn2O4空心棒及其制备方法和应用
KR102310428B1 (ko) * 2020-04-01 2021-10-08 공주대학교 산학협력단 양기능성 촉매체를 포함하는 전극 소재, 그의 제조 방법, 및 이를 포함하는 금속공기전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009766B1 (ko) * 1989-07-10 1997-06-18 소마루 가부시끼가이샤 배리스터 재료 및 그 제조 방법
KR20000060301A (ko) * 1999-03-13 2000-10-16 박호군 리튬 이차전지용 음극 활물질 및 그의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009766B1 (ko) * 1989-07-10 1997-06-18 소마루 가부시끼가이샤 배리스터 재료 및 그 제조 방법
KR20000060301A (ko) * 1999-03-13 2000-10-16 박호군 리튬 이차전지용 음극 활물질 및 그의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L. XIAO ET AL., JPS, vol. 194, 24 June 2009 (2009-06-24), pages 1089 - 1093 *
Y. DENG ET AL., J_MATER_CHEM_2011, vol. 21, 30 June 2011 (2011-06-30), pages 11987 - 11995 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538615A (zh) * 2014-12-17 2015-04-22 吉林大学 一种锂离子二次电池负极材料及其制备方法
CN104934590A (zh) * 2015-05-07 2015-09-23 哈尔滨工业大学(威海) 一种锰酸锌/石墨烯复合材料的制备方法
CN108467066A (zh) * 2018-04-08 2018-08-31 淮北师范大学 一种米粒状多孔微纳结构ZnMn2O4锂离子电池负极材料
CN110299524A (zh) * 2019-06-28 2019-10-01 陕西科技大学 一种制备锂离子电池负极材料MnO2/Ag的方法
CN110299524B (zh) * 2019-06-28 2022-04-01 陕西科技大学 一种制备锂离子电池负极材料MnO2/Ag的方法

Also Published As

Publication number Publication date
KR101361754B1 (ko) 2014-02-13
KR20130052926A (ko) 2013-05-23

Similar Documents

Publication Publication Date Title
KR101666879B1 (ko) 리튬 이차 전지용 양극 활물질, 리튬 이차 전지용 양극 활물질의 제조 방법 및 상기 양극 활물질을 포함하는 리튬 이차 전지
KR101666878B1 (ko) 리튬 이차 전지용 음극 활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR101562686B1 (ko) 옥시수산화코발트 입자 분말 및 그의 제조법 및 코발트산리튬 입자 분말, 그의 제조법, 및 그것을 사용한 비수전해질 이차 전지
WO2013073826A1 (ko) ZnO-MnO 복합체, 이를 포함하는 리튬 이차전지용 음극 활물질 및 이의 제조방법
KR101904896B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2014104466A1 (ko) 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법
KR101330613B1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
JP6760620B2 (ja) リチウム二次電池用正極活物質の製造方法および前記正極活物質を含むリチウム二次電池
EP2985823B1 (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
CN110857224B (zh) 正极活性物质及其制造方法以及正电极和可再充电锂电池
JPWO2012176471A1 (ja) リチウム含有複合酸化物粉末およびその製造方法
KR101530963B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 리튬 이차 전지
KR101407606B1 (ko) 리튬 이차 전지용 양극 활물질의 제조방법, 이로부터 제조된 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN109802102B (zh) 用于可再充电锂电池的正极活性材料、包括其的可再充电锂电池和电池模块
KR101488483B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 리튬 이차 전지
KR101632358B1 (ko) ZnO-MnO-C 복합체, 산화아연 및 산화망간을 포함하는 복합체의 제조방법 및 이를 포함하는 리튬 이차 전지용 음극 활물질
KR20130073810A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101250205B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차 전지
KR20120100740A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2011118870A1 (ko) 리튬 이차전지용 양극 활물질, 리튬 이차전지용 양극, 리튬 이차전지 및 이들의 제조방법
KR101504698B1 (ko) 이차전지용 음극 활물질 및 그를 포함하는 이차전지
CN114171739A (zh) 电化学装置和电子装置
KR101545717B1 (ko) 아연 망간 산화물의 제조방법
JP6669345B2 (ja) リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP2023026409A (ja) リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849779

Country of ref document: EP

Kind code of ref document: A1