WO2014104466A1 - 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법 - Google Patents

망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법 Download PDF

Info

Publication number
WO2014104466A1
WO2014104466A1 PCT/KR2013/001201 KR2013001201W WO2014104466A1 WO 2014104466 A1 WO2014104466 A1 WO 2014104466A1 KR 2013001201 W KR2013001201 W KR 2013001201W WO 2014104466 A1 WO2014104466 A1 WO 2014104466A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
nickel
transition metal
manganese
lithium secondary
Prior art date
Application number
PCT/KR2013/001201
Other languages
English (en)
French (fr)
Inventor
조우석
송준호
김점수
임태은
김영준
김상민
조현상
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to EP13867383.5A priority Critical patent/EP2940762B1/en
Priority to US14/655,616 priority patent/US20150349339A1/en
Publication of WO2014104466A1 publication Critical patent/WO2014104466A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, and more particularly, to a cathode active material for a lithium secondary battery, and a method of manufacturing the same, by improving the battery properties and thermal stability by uniformly coating manganese phosphate on the surface of the cathode active material.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • the lithium secondary battery is a secondary battery having a structure in which lithium is eluted as ions from the positive electrode and moved to the negative electrode during layer charge, and is reversed during discharge, and lithium ions are returned from the negative electrode to the positive electrode during discharge. Is caused.
  • Lithium-containing cobalt oxide (LiCo0 2 ) has been mainly used as a positive electrode active material of lithium secondary batteries until recently.
  • Lithium-containing manganese oxides such as LiMn02 having a layered crystal structure and LiMn 2 0 4 having a spinel crystal structure, and lithium-containing nickel
  • oxides LiNi0 2
  • LiCo0 2 is widely used because of its excellent physical properties such as excellent cycle characteristics and ease of manufacture.
  • LiCo0 2 is inferior in safety and uses a large amount of expensive cobalt. There is a limit to apply as a power source in a field that requires a large amount of batteries.
  • LiNi0 2 is less expensive than cobalt-based oxide, but is attracting attention as a high capacity material because more than 70% of lithium can be reversibly layer discharged, but there is a problem of poor stability.
  • the nickel-rich (Ni-rich) composition in which the nickel content of the nickel-based lithium composite oxide exceeds 50%, deterioration of battery characteristics due to layer discharge becomes a problem. This is known to be due to elution of nickel from the positive electrode active material due to the positive electrode and the electrolyte reaction reaction. In particular, it is known to bring about the deterioration of high temperature life characteristics.
  • structural stability and chemical stability are poor, and the thermal stability of the anode, in particular, the degradation of the thermal stability at high temperatures has been pointed out as a serious problem.
  • the present invention is to provide a positive electrode active material for lithium secondary batteries with improved coating properties and thermal stability by uniformly coating the manganese phosphate on the surface of the nickel-rich cathode active material.
  • the present invention is to provide a method for producing the positive electrode active material for the lithium secondary battery.
  • the present invention is a coating layer containing manganese phosphate oxide is formed on the surface of the nickel-based lithium transition metal oxide, the nickel-based lithium transition metal oxide is nickel (Ni), manganese (Mn), and cobalt (Co) as a transition metal It includes, and provides a cathode active material for lithium secondary batteries having a nickel content of 50% or more based on the total transition metal.
  • the invention also relates to a nickel-based coating solution containing manganese salts and phosphates Adding lithium transition metal oxide to form a coating layer; And heat treating the nickel-based lithium transition metal oxide having the coating layer formed thereon, wherein the nickel-based lithium transition metal oxide includes nickel (Ni), manganese (Mn), and cobalt (Co) as transition metals.
  • a cathode active material for a lithium secondary battery having a nickel content of 50% or more based on the total transition metal a cathode active material for a lithium secondary battery according to a specific embodiment of the present invention, a method for manufacturing the same, and a lithium secondary battery including the same will be described in detail.
  • this is presented as an example of the invention, whereby the scope of the invention is not limited, it is apparent to those skilled in the art that various modifications to the embodiments are possible within the scope of the invention.
  • the present invention is a layered cathode material including a ternary powder system by uniformly dispersing manganese phosphate on the surface of the cathode material in a nickel-rich (Ni-rich) composition with a nickel content of at least 50% in the transition metal, thereby allowing lithium
  • Ni-rich nickel-rich
  • the present invention can effectively improve the thermal stability (Thermal stability) of the positive electrode which is directly linked to such battery safety.
  • the present invention can provide a cathode material having improved thermal stability while improving the electrochemical cell characteristics of a nickel-rich cathode material.
  • a cathode active material for lithium secondary battery coated with manganese phosphate is provided.
  • the cathode active material for a lithium secondary battery may be a coating layer containing manganese phosphate on the surface of the nickel-based lithium transition metal oxide.
  • the nickel-based lithium transition metal oxide includes manganese (Mn) and cobalt (Co) together with nickel (Ni) as a transition metal, and the Ni content may be 50% or more based on the total transition metal.
  • the present invention has excellent thermal stability and battery characteristics due to the manganese phosphate coating layer
  • a cathode active material for a secondary battery can be provided.
  • the nickel-based lithium transition metal oxide may exhibit high capacity because the content of Ni is 50% or more based on the total transition metal (molar basis).
  • the nickel (Ni) content in the nickel-based lithium transition metal oxide may be 50% or more, or 50% to 90%, preferably 55% or more, more preferably 60% or more in molar ratio based on the total transition metal. have. If the content of Ni is less than 50%, it is difficult to expect a high capacity. On the contrary, if the content of Ni is more than 90%, structural stability and chemical safety are poor, and high reaction stability with the electrolyte may greatly reduce high temperature safety. not.
  • the nickel-based lithium transition metal oxide includes manganese (Mn) and cobalt (Co) together with nickel (Ni) as a transition metal.
  • the content of Mn may be 10% to 30%, preferably 15% to 20%, based on the total transition metal (molar basis)
  • the content of Co is 10% to 30%, based on the total transition metal, Preferably from 15% to 20%.
  • a part of the transition metal component in the nickel-based lithium transition metal oxide is Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si , Ti and Zr may be substituted with one or more metal elements (M) selected from the group consisting of.
  • the substituted metal element (M) is preferably Ti, Zr, Al, etc. in terms of structural stability.
  • the content of the substituted element (M) is preferably 0.01% to 10%, preferably 0.05% to 5%, more preferably 0.1% to 2% based on the total transition metal (molar basis). Do.
  • the metal element (M) component is less than 0.1%, the effect of substitution is relatively low, while if the amount of the component exceeds 5%, the battery capacity is relatively reduced because the amount of transition metal such as nickel is relatively reduced It is not desirable because it can decrease.
  • the total content of the total transition metal is a transition metal content such as nickel (Ni), manganese (Mn), cobalt (Co), and the like except for lithium (Li) and the transition metal component. It refers to the total of the content of the metal element (M) to substitute for.
  • the content of lithium in comparison to the total content of transition metals such as nickel (Ni), manganese (Mn) and cobalt (Co) and the metal element (M) replacing the transition metal component is L005 to 1.30 on a molar basis.
  • transition metals such as nickel (Ni), manganese (Mn) and cobalt (Co)
  • M metal element replacing the transition metal component
  • the nickel-based lithium transition metal oxide may be represented by the following Chemical Formula 1.
  • a is at least 0.5 or from 0.5 to 0.9, preferably at least 0.55, more preferably at least 0.6; b is 1 or more and 0.3 or less, preferably 0.15 to 0.2; c is 0.1 or more and 0.3 or less, preferably 15 to 0.2; d is 0 or more and 0.1 or less, and the sum of a, b, c, and d, that is, a + b + c + d may be 1.
  • M is selected from the group consisting of Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti and Zr It is at least 1 type of metal element, and Ti, Zr, Al, etc. are preferable from a structural stability viewpoint.
  • the nickel-based lithium transition metal oxide is LiNi 05 Co— 0 . 2 Mno. 3 0 2 , LiNio. 6 Co 0 . 2 Mno. 2 0 2 , LiNi 0 . 7 Coo. 15 Mn 0 . 15 0 2 and so on. Among them, LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 and the like are preferable.
  • the positive electrode active material serving as the base material of the coating is characterized by using a lithium metal composite oxide in which nickel occupies 50% or more at an octahedra site occupied by a transition metal.
  • the lithium metal composite oxide may have a layered structure (space group R-3m) and a spinel structure (space group Fd-3m).
  • the nickel-based lithium transition metal oxide may have a high crystal structure and have an average particle diameter of 3 urn or more or 3 to 15, preferably 5 ⁇ m or more, more preferably 8 or more.
  • the electrode active material including the nickel-based lithium transition metal oxide may have a structure (primary particle structure) composed of single particles having an average particle diameter of 3 ⁇ or more, or a structure having a structure in which the single particles are concave, that is, a single particle. It may be in the form of a spherical shape of the field, and may have a structure (secondary particle structure) having internal voids. Such a concave particle structure maximizes the surface area that reacts with the electrolyte, thereby exhibiting a high rate characteristic and extending the reversible capacity of the positive electrode.
  • the cathode active material for a lithium secondary battery of the present invention is lithium as described above
  • Manganese phosphate is coated on the core surface of the composite oxide.
  • the manganese phosphate may be a compound having a metal valence of manganese of 2, and Mn 3 (P0 4 ) 2 may be preferably used.
  • the manganese phosphate has a crystal structure as shown in FIG. 1, which is a monoclinic bravais lattice, and may be a space group 14 or P 21 / c.
  • the crystal structure of the manganese phosphate is monoclonal (monoclinic) .
  • Mn may be located at an octahedral position and P is a tetrahedral position.
  • the manganese phosphate is a space group No. 14, P 2l / c (# 14) may have a crystal structure.
  • the space group of crystals is a mathematical description of the symmetry of the crystal structure, which is composed of a combination of 14 Bravey lattice and 32 crystallographic point groups, which the crystals have from the symmetric manipulations and combinations. Refers to a representation of 230 possible space groups.
  • Manganese phosphate constituting the coating layer of the positive electrode active material according to the present invention is a polyanion-based material having a crystal structure as described above, and has a tunnel (channel) through which alkali ions containing lithium can pass. , Through which the diffusion of lithium ions can be efficiently achieved. Accordingly, direct contact between the positive electrode active material and the electrolyte is controlled by manganese phosphate coating such as Mn 3 (P0 4 ) 2 to suppress the side reaction of the electrolyte, and lithium ions have a structure that can diffuse through the coated species. There is an advantageous effect favorable to the improvement of electrochemical properties.
  • the manganese phosphate may have an average particle diameter of 100 nm or less, or 2 nm to 100 nm, preferably 50 nm or less, more preferably 30 nm or less, or 5 nm or more and 30 nm or less.
  • the manganese phosphate may have an average particle diameter of 100 nm or less in terms of uniformity of the coating.
  • the average particle diameter of the manganese phosphate may be measured by using a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
  • the coating layer is present in the form of particles, whereby the film thickness of the coating layer can be said to be similar to the particle size of the silicon oxide as described above.
  • the manganese phosphate may be from 0.1% to 5.0% by weight, preferably 0.2 to 3.0 parts by weight 0/0, more preferably from 0.5 to 1.0 wt% based on the total weight of the positive electrode active material.
  • the content of manganese phosphate is heat stability can be a 0.1 0 /. In the above aspect, in terms of output characteristics and life property is not more than 5.0 wt. 0/0 dwalsu.
  • the cathode active material for a lithium secondary battery of the present invention is characterized by coating manganese phosphate on the core surface of the lithium composite oxide as described above, and can exhibit excellent battery performance in life characteristics and output characteristics at room temperature and high temperature.
  • thermal stability evaluation through differential scanning calorimetry (DSC) measurement, there is an excellent effect that the exothermic temperature and the calorific value of the thermal decomposition is significantly improved. Accordingly, the thermal stability of the positive electrode material is remarkably improved to ensure the stability of the battery.
  • the cathode active material for a lithium secondary battery of the present invention was measured for a cathode active material in which a coating layer containing manganese phosphate was formed on the surface of the nickel-based lithium transition metal oxide according to a thermal stability evaluation method using a differential scanning calorimeter.
  • the maximum exothermic peak temperature (T coat ) is 10 ° C. than the maximum exothermic peak temperature (T noncoat ) measured for the positive electrode active material in which the coating layer containing manganese phosphate oxide is not formed on the surface of the nickel-based lithium transition metal oxide.
  • higher than 10 X to 35 ° C., preferably at least 12 ° C., more preferably at least 15 ° C., more preferably 20 or higher, can exhibit excellent thermal stability at high temperatures.
  • the cathode active material for a lithium secondary battery of the present invention is a cathode in which a coating layer containing manganese phosphate is formed on the surface of the nickel-based lithium transition metal oxide according to a thermal stability evaluation method using a differential scanning calorimeter.
  • the measured calorific value (H coat ) for the active material is 80% or less of the measured calorific value (H noncoat ) for the positive electrode active material in which the coating layer containing manganese phosphate is not formed on the surface of the nickel-based lithium transition metal oxide, or 40% to 80%, preferably 77% or less, more preferably 75% or less, more Preferably 65% or less.
  • the method of manufacturing a cathode active material for a lithium secondary battery may include forming a coating layer by adding a nickel-based lithium transition metal oxide to a coating solution containing manganese salt and phosphate; And heat treating the nickel-based lithium transition metal oxide having the coating layer formed thereon.
  • the nickel-based litop transition metal oxide may include nickel (Ni), manganese (Mn), and cobalt (Co) as transition metals, and the nickel (Ni) content may be 50% or more based on the total transition metal. .
  • the method of manufacturing a cathode active material for a lithium secondary battery according to the present invention is uniformly dispersing manganese phosphate in the form of nanoparticles on the surface of the cathode active material core by applying a wet coating process, rather than a conventional dry coating process. Can be formed.
  • the manganese phosphate forming the coating layer in the cathode active material for a lithium secondary battery of the present invention may be produced by reacting various manganese salts and phosphates in a solution phase.
  • the manganese salt may be at least one of manganese oxide, manganese oxalate, manganese acetate, manganese nitrate or derivatives thereof.
  • the phosphate may be at least one of ammonium phosphate, sodium phosphate, potassium phosphate or derivatives thereof.
  • the manganese salts and phosphates may preferably be used in a stoichiometric range in which the molar ratio of manganese (Mn) of manganese salts and phosphate (P) of phosphate is optimized for manganese phosphate of the resulting coating layer.
  • the manganese salts and phosphates may form Mn 3 (P0 4 ) 2 as the manganese oxide of the final coating layer with a molar ratio of manganese (Mn) of manganese salts and phosphoric acid (P) of phosphate salts of 3: 2 , respectively.
  • the manganese salt and phosphate salt may be coated on the core surface of the lithium metal composite oxide by a wet process in the form of a solution or dispersion using one or more solvents such as distilled water, isopropanol (IP A), ethanol, and the like. Compared with the conventional dry process, there is an advantage that can be uniformly coated in the form of nanoparticles.
  • the method for preparing a cathode active material for a lithium secondary battery according to the present invention is characterized by performing a coating process by a wet method of adding a nickel-based lithium transition metal oxide to a solution containing the manganese salt and phosphate.
  • the nickel-based lithium transition metal oxide has a Ni content of 50% or more based on the total transition metal (molar basis), as described above with respect to the cathode active material for a lithium secondary battery.
  • the manufacturing method of the positive electrode active material for the lithium secondary battery may include the step of forming a coating layer using a manganese salt and phosphateol on the surface of the nickel-based lithium transition metal oxide represented by the formula (1).
  • M is selected from the group consisting of Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti and Zr It may be one or more metal elements.
  • the nickel-based lithium transition metal oxide is LiNi 0.5 Co_ 0 . 2 Mn 0 . 3 O 2 , LiNi 0.6 Co 0 . 2 Mn 0.2 O 2 , LiNi 07 Co 0 .i 5 Mn 0 . 15 O 2 , among which LiNio. Etc. 6 Coo .2 Mn 0.2 0 2 is preferred.
  • a manganese phosphate precursor is formed on a surface of the nickel-based lithium transition metal oxide by stirring by adding a nickel-based lithium transition metal oxide to a solution containing the manganese salt and phosphate.
  • a coating layer of the compound can be formed.
  • the manganese phosphate precursor compound may be in a form including manganese (Mn) and phosphoric acid (P0 4 ) in a stoichiometric composition range capable of forming manganese phosphate of the final coating layer.
  • the manganese phosphate precursor compound may be present in a form in which the molar ratio of manganese (Mn) and phosphoric acid (P0 4 ) is 3: 2, and thus Mn 3 (P0 4 ) 2 as a manganese oxide of the final coating layer. Can be formed.
  • the method may further include a step of filtering and drying the nickel-based lithium transition metal oxide on which the coating layer of the manganese phosphate precursor compound is formed, thereby removing the solvent and the like. The drying process is 80 r to
  • the drying process may be performed for 6 hours to 16 hours, preferably 7 hours to 15 hours, more preferably 8 hours to 14 hours.
  • the heat treatment of the nickel-based lithium transition metal oxideol having the coating layer is performed at 200 ° C. to 700 ° C., preferably 300 ° C. to 650 ° C., more preferably. Can be carried out in the temperature range of 400 ° C to 600.
  • the heat treatment process temperature is less than 200 ° C, amorphous manganese phosphate may be formed on the surface of the active material core during heat treatment, and the interfacial bond between the active material core and the coating species is lowered and the bond strength of the coating may be significantly decreased. have.
  • the heat treatment-process temperature exceeds 700 ° C., the nickel-based lithium transition metal oxide, which is an active material core, may deteriorate due to high temperature heat treatment.
  • the heat treatment process may be carried out with a reaction time of 1 hour to 12 hours, preferably 2 hours to 11 hours, more preferably 3 hours to 10 hours.
  • the heat treatment process time is less than 1 hour, the manganese phosphate coating layer may not be properly formed on the surface of the nickel-based lithium transition metal oxide.
  • the heat treatment process time exceeds 12 hours, it may cause deterioration of the nickel-based lithium transition metal oxide which is the active material core.
  • Method for producing a cathode active material for a lithium secondary battery in particular, the coating of manganese phosphate applying a wet method, a) preparing a solution containing a manganese salt and phosphate as described above, b) the a) To the solution of the step is added a nickel-rich lithium metal composite oxide having a nickel content of 50% or more as described above and stirred at room temperature (25 ° C) to form a coating layer of manganese phosphate precursor on the surface. C) drying at 80 to 150 ° C. after filtration to remove solvent; d) 200 to powder recovered after drying Heat treatment at 700 ° C; may include.
  • manganese salt is dissolved in distilled water to prepare a solution;
  • an active material core powder made of nickel-rich lithium metal composite oxide having a nickel content of 50% or more as described above was added thereto.
  • Stirring; Phosphate was added to a solution in which the active material core powder was mixed, followed by stirring at 360 rpm for 2 hours;
  • the reaction solution was removed by distilled water through filtering, and the filtered product was dried at 120 degrees for 12 hours to completely remove residual moisture;
  • a heat treatment process is performed at 550 ° C. for 10 hours in an argon atmosphere to prepare a cathode active material coated with final manganese phosphate Mn 3 (P0 4 ) 2 .
  • a lithium secondary battery including a cathode active material coated with manganese phosphate is provided as described above.
  • the lithium secondary battery may include a positive electrode including the positive electrode active material; A negative electrode including a negative electrode active material capable of inserting or detaching lithium ions; A separator present between the anode and the cathode; And non-aqueous electrolytes.
  • the manganese phosphate is uniformly coated on the surface of the lithium metal composite oxide core, so that the positive electrode active material coated with manganese phosphate when applied as a positive electrode for a lithium secondary battery suppresses side reaction between the lithium metal composite oxide and the electrolyte solution.
  • the elution and deterioration of the metal element from the anode can be suppressed.
  • the lithium secondary battery of the present invention is characterized in that the positive electrode active material coated on the surface of the manganese phosphate as described above comprises a positive electrode material, a positive electrode, a negative electrode, a separator,
  • the electrolyte, the conductive material, and the binder can be optimized and applied in various configurations.
  • the temperature position of the main exothermic peak that is, the maximum exothermic peak, is determined by thermal stability evaluation by differential scanning calorimetry (DSC) measurement at 4.3 V state of charge.
  • DSC differential scanning calorimetry
  • the calorific value is at least 20% or 25% to 'before coating . It is reduced to 60%, preferably at least 23%, more preferably at least 25%, more preferably at least 35%.
  • the lithium secondary battery of the present invention is measured using a positive electrode active material in which a coating charge containing manganese phosphate is formed on the surface of the nickel-based lithium transition metal oxide, which is an active material core, according to a thermal stability evaluation method using a differential scanning calorimeter.
  • the maximum exothermic peak temperature (T coat ) is 10 times the maximum exothermic peak temperature (T noncoat ) measured using the positive electrode active material in which the coating layer containing manganese phosphate is not formed on the surface of the nickel-based lithium transition metal oxide.
  • the lithium secondary battery of the present invention also has a positive electrode active material in which a coating layer containing silicon oxide is formed on the surface of the nickel-based lithium transition metal oxide according to a thermal stability evaluation method using a differential scanning calorimeter.
  • the calorific value (H coat ) measured by using is 80% or less of the calorific value (H noncoat ) measured using the positive electrode active material in which the coating layer containing manganese phosphate is not formed on the surface of the nickel-based lithium transition metal oxide. Or 40% to 80%, preferably 77% or less, more preferably 75% or less, and more preferably 65% or less.
  • the lithium secondary battery using the cathode active material of the present invention can secure excellent thermal stability as compared with the case of applying the cathode active material not coated with manganese phosphate Mn 3 (P0 4 ) 2 .
  • the lithium secondary battery has improved rate characteristics and lifetime characteristics compared to before manganese phosphate oxide coating.
  • the lithium secondary battery has a discharge capacity of 5C of the rate characteristic measured by the constant current layer discharge method is 60 mAh / g or more or 60 to 180 mAh / g, preferably 88 mAh / g or more, more preferably 100 mAh It can be more than / g.
  • the lithium secondary battery has an initial capacity retention rate after 50 layer discharges at room temperature cycle evaluation conducted at 0.5 ° C. at 25 ° C. It may be at least 85%, preferably at least 95% by volume.
  • the lithium secondary battery may have a capacity retention rate of at least 85%, preferably at least 90% of the initial capacity after 50 times-layer discharge at a high temperature cycle evaluation conducted under a condition of 0.5 C at 60 ° C.
  • the capacity may be 150 mAh / g or more, preferably 160 mAh / g or more.
  • the calorific value of the 4.3 V layered anode is 300 J / g or less or 50 to 300 J / g, preferably 280 J / g or less, more preferably Preferably it can be lowered to less than 250 J / g.
  • a lithium secondary battery having improved battery characteristics may be effectively manufactured.
  • the positive electrode active material according to the present invention When the positive electrode active material according to the present invention is applied to a lithium secondary battery, thermal stability is remarkably improved, in particular, high temperature characteristics are improved, and side reactions of the electrolyte are suppressed, thereby significantly improving cycle characteristics and output characteristics.
  • the positive electrode active material according to the present invention can provide a positive electrode active material with a markedly improved thermal stability by increasing the temperature of the main exothermic peak and decreasing the amount of heat generated by DSC evaluation.
  • Example 1 shows the crystal structure and XRD pattern of Mn 3 (P0 4 ) 2 coated species produced according to Example 1 of the present invention (intensity: intensity, 2 theta / angle: 2theta / degree).
  • Figure 2 is a schematic diagram showing the surface coating method of Mn 3 (P 0 2 nanoparticles according to Example 1 of the present invention.
  • FIG. 3 shows surface SEM images of NCM622 coated with ⁇ 3 ( ⁇ 0 4 ) 2 according to Comparative Example 1 and Examples 1 and 3 of the present invention [a) 0 wt%, b) 0.5 wt%, c) 1.0 wt%] 4 shows Mn ? According to Examples 1 and 3 of the present invention; (P0 4 ) 2 shows the surface EDS mapping results of the coated NCM622 [a) 0.5 wt%. b) 1.0 wt].
  • FIG. 6 is a graph showing room temperature life characteristics of Mn 3 (P0 4 ) 2 coated NCM622 according to Comparative Example 1 and Examples 1 and 3 of the present invention (25 ° C.).
  • Example 1
  • a cathode active material for a lithium secondary battery made of a nickel-based lithium transition metal oxide coated with manganese phosphate Mn 3 (P0 4 ) 2 having an average particle diameter of 100 nm or less was produced.
  • the manganese phosphate is the anode It was coated in an amount of 0.5% by weight based on the total weight of the active material.
  • Manganese Phosphorus Mn 3 (P0 4 ) in the final coating layer varying the content of manganese Mn (CH 3 COO) 2 and phosphate (NH 4 ) 2 HP0 4 to 0.1554 g, 0.2073 g, 0.0558 g and 0.0745 g, respectively.
  • a cathode active material for a lithium secondary battery consisting of 2 0 2 was prepared. At this time, the manganese phosphate was coated in an amount of 1.0% by weight based on the total weight of the positive electrode active material.
  • a cathode active material for a lithium secondary battery composed of 2 Mn a2 0 2 was prepared.
  • a cathode active material for a lithium secondary battery in which an A1 2 0 3 coating layer was formed was prepared as follows.
  • A1 2 0 3 powder having an average particle diameter of 50 nm was dispersed in isopropanol (IPA, isopropanol) based on the weight of the positive electrode active material, and then nickel-based lithium transition metal oxide (NCM622 powder) LiNi 0 . 6Coo. 2 Mno. 2 02 was added and sonicated for 1 minute for uniform dispersion. Thereafter, while stirring for 1 hour at 360 rpm at 60 ° C., all of the solvent isopropane (IP A) to remove the LiNi 06 Co 02 Mno. A1 2 0 3 was adsorbed and applied to the surface of 2 0 2 . The solvent-evaporated silicone compound coated particles were subjected to heat treatment for 5 hours with silver at 50 C C under an air atmosphere.
  • IPA isopropanol
  • NCM622 powder nickel-based lithium transition metal oxide
  • A1 and A 2 are, unlike the comparative example, except that the amount of 03 each at 1.0 weight 0/0 and 3.0% by weight.
  • a cathode active material for a lithium secondary battery consisting of 2 0 2 was prepared.
  • the slurry was prepared using 95 wt% of the active material, 3 wt% of Super-P as the conductive material, and N-methyl pyrrolidone (NMP) as the binder using the positive electrode active material powders of Examples 1 to 3 and Comparative Examples 1-4. Prepared.
  • the slurry was applied to an aluminum foil (Al foil) having a thickness of 20, dried, compacted by a press, and dried for 16 hours at 120 1 in a vacuum to prepare a disc electrode having a diameter of 16 mm.
  • Lithium metal foil squeezed to 16 mm in diameter was used as the counter electrode, and polypropylene (PP) film was used as the separator, and ethylene carbonate / dimethoxyethane (EC / DME) 1: 1 of 1M LiPF 6 was used as the electrolyte.
  • a mixed solution of v / v was used, and after the electrolyte solution was impregnated into the separator, the separator was sandwiched between the working electrode and the counter electrode, and a battery for electrochemical characterization was manufactured using a 2032 coin cell.
  • b) Evaluation of Battery Performance-Evaluation of the layer discharge characteristics of the battery was performed by using a constant current method, and the layer discharge voltage range was performed at 3.0 V to 4.3 V.
  • the lithium secondary battery to which the positive electrode active material of Examples 1 to 3 coated with manganese phosphate on the core surface of the nickel high content lithium composite oxide according to the present invention is compared with Comparative Example 1 before coating. It can be seen that the output characteristics are improved, and the high temperature life characteristics are significantly improved.
  • the lithium secondary battery of the positive electrode active material of Comparative Examples 2 to 4 coated with the conventionally known alumina has the characteristics of output characteristics and lifetime characteristics due to surface coating. It can be seen that the degradation is not improved in the electrochemical properties to include. In particular, it can be seen that the lithium secondary battery to which the cathode active materials of Comparative Examples 2 to 4 are significantly dropped to 97.4 to 141.0 mAh / g and 58.5 to 120.3 mAh / g, respectively.
  • a measurement graph of the output characteristics of the lithium secondary battery to which the positive electrode active materials of Examples 1 to 3 and Comparative Examples 1 to 4 is shown in FIG. 5, and detailed capacity according to each C-rate is shown. ) Is shown in Table 2 below. Table 2
  • lithium secondary to which the positive electrode active materials of Examples 1 to 3 and Comparative Examples 1 to 4 were applied A graph measuring the life characteristics of the battery at room temperature (25 ° C) is shown in FIG. 6, and the capacity change according to the increase / discharge cycle (cycle number) is shown in Table 3 below.
  • Comparative Example 1 in which a separate coating layer is not formed when the positive electrode active material of Examples 1 to 3 coated with manganese phosphate on the core surface of the nickel high content lithium composite oxide according to the present invention Compared with the capacity, the capacity is about 4mAh / g, but when compared with the capacity retention rate, Comparative Example 1 showed a capacity retention rate of 92.6% compared to the initial capacity, whereas in Examples 1 to 3 capacity compared to the initial capacity after 50 charge and discharge It can be seen that the retention rate shows a significantly improved capacity retention rate of 93.3% to 95.6%.
  • the positive electrode active material coated with manganese phosphate on the core surface of the nickel high content lithium composite oxide significantly improves the shelf life characteristics. It can be seen that there is an excellent effect to improve.
  • the graphs of the high temperature life characteristics of the lithium secondary battery to which the cathode active materials of Examples 1 to 3 and Comparative Examples 1 to 4 are measured are shown in FIG. 7, and the capacity according to the increase of the layer discharge cycle (cycle number) is shown. (capacity) change is shown in Table 4 below. At this time, the high temperature life evaluation was performed in a chamber fixed at a temperature of 60 ° C.
  • Comparative Example 1 in which a separate coating layer is not formed when the cathode active materials of Examples 1 to 3 coated with manganese phosphate on the core surface of the nickel high content lithium composite oxide according to the present invention. And it can be seen that the high temperature life characteristics are significantly improved compared to Comparative Examples 2 to 4 coated with alumina.
  • the initial capacity was 175.5 mAh / g
  • the capacity retention was 142.2 mAh / g after 50 times of layer discharge. After 50 charge / discharge cycles, the capacity retention rate It can be seen that there is a significant improvement from 88.3% to 90.9%. More specifically, in the case of Example 1 coated with 0.5 wt% manganese phosphate, the initial capacity was 176.4 mAh / g, and the capacity after 16 layer discharges was 160.4 mAh / g, which was 9 (). 9% higher than the initial capacity. Retention rate was obtained, which can be seen that the capacity improved about 13% after 50 times of layer discharge compared to Comparative Example 1.
  • Example 3 coated with 1.0 wt% manganese phosphate
  • the initial capacity was 172.8 mAh / g
  • the capacity was 152.6 mAh / g, indicating a capacity retention of 88.3%, compared with Comparative Example 1.
  • the capacity has improved by 7%.
  • the optimum coating amount to improve the high temperature life characteristics through the embodiment of the present invention was found to be 0.5 ⁇ %.
  • the cathode active material coated with manganese phosphate on the core surface of the nickel high content lithium composite oxide has an excellent effect of remarkably improving the high temperature life characteristics.
  • differential scanning calorimetry (DSC) measurement was performed to evaluate thermal safety of lithium secondary batteries to which the positive electrode active materials of Examples 1 and 3 and Comparative Examples 1 to 4 were applied. It is possible to use it as an indicator of thermal stability by calculating the silver content of structural change (phase change or phase decomposition) of cathode material and the accompanying calorific value from DSC evaluation. The detailed method for DSC evaluation is shown below.
  • the lithium salt remaining on the surface of the positive electrode was removed by washing with DMC.
  • the positive electrode was dried. 7 mg of the positive electrode powder recovered from the positive electrode was put into a pressure measuring pan for DSC measurement, and then injected with 3
  • the temperature range for DSC analysis was from 25 ° C to 350 ° C, and the temperature increase rate was 10 ' C / min. The experiment was conducted in a controlled environment.
  • DSC measurements of the 4.3 V state of charge electrode using the positive electrode active materials of Examples 1, 3 and Comparative Example 1 are shown in Table 5 below.
  • representative DSC curves measured using the positive electrode active materials of Examples 1 and 3 and Comparative Examples 1 to 4 are shown in FIG. 8 (heat flow rate: heat flow, temperature: temperature / Celsius / ° C.).
  • heat flow rate heat flow
  • temperature temperature / Celsius / ° C.
  • Comparative Example l (Bare) not coated with Mn 3 (P0 4 ) 2 has a main exothermic peak in the range of 275 ° C, the calorific value was 323 J / g.
  • Examples 1 and 3 (0.5 wt%, 1.0 wt%) coated with Mn 3 (P0 4 ) 2 according to the present invention showed that the main exothermic peak appeared at a high temperature and the calorific value also decreased compared to Comparative Example 1 Can be.
  • Example 1 As the coating amount of Mn 3 (P0 4 ) 2 increased from 0.5 wt 0 /. To 1.0 wt%, the temperature of the main exothermic peak was 292 ° C to 295 °, respectively. It moved to high temperature to C, and it was confirmed that the calorific value also had a range of 236 J / g to 217 J / g, respectively, and the calorific value was significantly reduced compared to Comparative Example 1. In particular, in the case of Example 3, compared with Comparative Example 1, the temperature of the main exothermic peak was increased by 20 ° C or more, it was confirmed that the calorific value is reduced by about 32.7% to show the best thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지용 양극 활물질 및 그의 제조 방법에 관한 것으로, 특히 니켈 고함량(Ni-rich) 양극 활물질의 표면에 망간 인산화물이 코팅된 양극 재료를 제공함으로써 전지 특성이 개선된 리튬 이차전지용 양극 활물질 및 그의 제조 방법에 관한 것이다. 본 발명에 따르면, 니켈 고함량(Ni-rich) 양극 활물질의 표면에 망간 인산화물을 균일하게 코팅해줌으로써, 전해액의 부반응이 억제되어 출력특성과 고온 수명특성, 열안정성이 우수한 리튬 이차전지를 제조할 수 있다.

Description

【명세서】
【발명의 명칭】
망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법
【기술분야】
본 발명은 리튬 이차전지용 양극 활물질에 관한 것으로서, 좀더 상세하게는 양극 활물질 표면에 망간 인산화물을 균일하게 코팅시킴으로써 전지 특성과 열안정성이 개선된 리튬 이차전지용 양극 활물질 및 그의 제조 방법에 관한 것이다.
【배경기술】
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 았다. 리튬 아차전지는 이러한 요구를 가장 잘 층족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
이러한 리튬 이차 전지는 에너지 밀도가 크고, 수명이 길다는 등의 장점이 있기 때문에, 비디오 카메라, 노트북, 휴대전화 등 휴대형 전자 기기 등의 전원으로서 널리 사용되고 있고, 최근에는, 하이브리드 자동차나 전기 자동차에 탑재되는 대형 전지로도 적용되고 있다. 리튬 이차 전지는 층전시에는 양극으로부터 리튬이 이온으로서 용출하여 음극으로 이동하여 흡장되고, 방전시에는 반대로 음극으로부터 양극으로 리튬 이온이 되돌아가는 구조의 이차 전지인데, 높은 에너지 밀도는 양극 활물질의 전위에 기인한다.
리튬 이차 전지의 양극 활물질로는 최근까지 리튬 함유 코발트 산화물 (LiCo02)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMn02, 스피넬 결정 구조의 LiMn204 등의 리륨 함유 망간 산화물과, 리튬 함유 니켈 산화물 (LiNi02)의 사용도 고려되고 있다. 이 중 LiCo02은 우수한 사이클 특성 등 제반 물성이 우수하고 제조가 용이하여 현재 많이 사용되고 있지만, 안전성이 떨어지고, 고가의 코발트를 다량 사용하기 때문에 전기 자동차 등과 같이 대량의 전지가 소요되는 분야의 동력원으로 적용하기에는 한계가 있다.
또한, LiNi02는 코발트계 산화물보다 비용이 저렴하면서도 70% 이상의 리튬이 가역적으로 층방전될 수 있어 고용량 재료로서 주목을 받고 있으나, 안정성이 떨어지는 문제점이 있다. 특히, 이러한 니켈계 리튬 복합산화물 중에서 니켈의 함량이 50%를 초과하는 니켈 고함량 (Ni-rich) 조성에서는 층방전에 따른 전지특성의 열화가 문제가 된다. 이는 양극과 전해액 반웅으로 인한 양극 활물질로부터 니켈의 용출에 의한 것으로 알려져 있으며. 특히 고온 수명 특성의 저하를 가져오는 것으로 알려겨 있다. 또한, 니켈 고함량 (Ni-rich) 조성에서는 구조적 안정성 및 화학적 안정성이 떨어져 양극의 열 안정성, 특히, 고온에서 열안정성의 저하가 심각한 문제점으로 지적되고 있다.
따라서, 니켈의 함량이 높은 양극 활물질의 경우에서 양극 활물질과 전해액의 직접적인 접촉으로 인한 부반웅에 기인하는 전지 특성의 열화를 해결함으로써, 고용량화에 적합하면서 고온 안정성 문제를 해결할 수 있는 양극 활물질의 개발에 대한 연구가 필요하다.
【발명의 내용】
【해결하려는 과제】
본 발명은 니켈 고함량 (Ni-rich)계 양극활물질의 표면에 망간 인산화물을 균일하게 코팅함으로써, 전지 특성과 열안정성이 개선된 리튬 이차전지용 양극 활물질올 제공하고자 한다ᅳ
또한, 본 발명은 상기 리튬 이차전지용 양극 활물질의 제조 방법을 제공하고자 한다.
【과제의 해결 수단】
본 발명은 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물올 포함하는 코팅층이 형성되어 있으며, 상기 니켈계 리튬 전이금속 산화물은 전이금속으로서 니켈 (Ni), 망간 (Mn), 및 코발트 (Co)를 포함하고, 전체 전이금속을 기준으로 니켈의 함량이 50% 이상인 리튬 이차전지용 양극 활물질을 제공한다.
본 발명은 또한, 망간염 및 인산염을 포함하는 코팅 용액에 니켈계 리튬 전이금속 산화물을 첨가하여 코팅층을 형성시키는 단계; 및 상기 코팅층이 형성된 니켈계 리륨 전이금속 산화물을 열처리하는 단계;를 포함하고, 상기 니켈계 리튬 전이금속 산화물은 전이금속으로서 니켈 (Ni), 망간 (Mn), 및 코발트 (Co)를 포함하고, 전체 전이금속을 기준으로 니켈의 함량이 50% 이상인 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다. 이하, 발명의 구체적인 구현예에 따른 리튬 이차전지용 양극 활물질 및 그의 제조 방법, 이를 포함하는 리튬 이차전지에 대하여 상세하게 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
본 명세서 전체에서 '특별한 언급이 없는 한 "포함" 또는 "함유 "라 함은 어떤 구성 요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
본 발명은 삼성분계를 포함하는 층상계 양극 소재로서 전이금속 중 니켈의 함량이 50% 이상인 니켈 고함량 (Ni-rich)계 조성에서 망간 인산화물을 양극재 표면에 균일하게 분산시켜 코팅함으로써, 리튬 이차 전지 제조시 층방전에 따른 전지특성의 열화를 획기적으로 개선하며 상온 및 고온에서의 수명 특성올 현저히 향상시키고 우수한 출력 특성을 확보할 수 있다. 또한, 본 발명은 이러한 전지 안전성에 직접 연계되는 양극의 열 안정성 (Thermal stability)을 효과적으로 개선 시킬 수 있다.
따라서, 본 발명은 니켈 고함량 (Ni-rich) 양극 소재의 전기화학적 전지특성올 향상시키면서 열안정성이 개선된 양극 소재를 제공할 수 있다. 발명의 일 구현예에 따르면, 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질이 제공된다. 상기 리튬 이차전지용 양극 활물질은 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성된 것일 수 있다. 여기서, 상기 니켈계 리튬 전이금속 산화물은 전이금속으로서 니켈 (Ni)과 함께 망간 (Mn), 코발트 (Co)를 포함하고, 전체 전이금속을 기준으로 Ni의 함량이 50% 이상이 될 수 있다. 본 발명은 상기 망간인산화물 코팅층으로 인해 열안정성과 전지 특성이 뛰어난 리튬 이차전지용 양극 활물질을 제공할 수 있다.
본 발명에서 상기 니켈계 리튬 전이금속 산화물은 전체 전이금속을 기준 (몰 기준)으로 Ni의 함량이 50% 이상으로서 과량이므로 고용량을 발휘할 수 있다. 상기 니켈계 리튬 전이금속 산화물에서 니켈 (Ni) 함량은 전체 전이금속을 기준으로 몰 비율로 50% 이상 또는 50% 내지 90%, 바람직하게는 55% 이상, 좀더 바람직하게는 60% 이상이 될 수 있다. Ni의 함량이 50% 미만인 경우에는 높은 용량을 기대하기 어렵고, 반대로 90%를 초과하는 경우에는 구조안정성 및 화학적 안전성이 떨어져, 전해액과의 높은 반웅성에 의해 고온 안전성이 크게 저하될 수 있으므로 바람직하지 않다. 상기 니켈계 리튬 전이금속 산화물은 전이금속으로서 니켈 (Ni)과 함께 망간 (Mn), 코발트 (Co)을 포함하고 있다. 여기서, Mn의 함량은 전체 전이금속을 기준 (몰 기준)으로 10% 내지 30%, 바람직하게는 15% 내지 20%일 수 있고, Co의 함량은 전체 전이금속을 기준으로 10% 내지 30%, 바람직하게는 15% 내지 20%로 구성될 수 있다.
또한, 상기 니켈계 리튬 전이금속 산화물에서 상기 전이금속 성분의 일부가 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군에서 선택되는 하나 또는 그 이상의 금속 원소 (M)로 치환되어 있을 수 있다. 상기 치환된 금속 원소 (M)은 구조안정성 측면에서 Ti, Zr, Al 등이 바람직하다. 이 때, 상기 치환된 원소 (M)의 함량은 전체 전이금속을 기준 (몰 기준)으로 0.01% 내지 10%, 바람직하게는 0.05% 내지 5%, 좀더 바람직하게는 0.1% 내지 2%인 것이 바람직하다. 상기 금속 원소 (M) 성분이 0.1% 미만이면, 치환에 따른 효과가 상대적으로 낮고, 반면에 상기 성분의 양이 5%를 초과하면, 상대적으로 니켈 등 전이금속의 양이 감소되기 때문에 전지 용량이 감소할 수 있으므로 바람직하지 않다. 본 발명의 니켈계 리튬 전이금속 산화물에서 상기 전체 전이금속의 총함량이라 함은 리튬 (Li)을 제외한 니켈 (Ni), 망간 (Mn), 코발트 (Co) 등의 전이금속 함량과 이러한 전이금속 성분을 치환하는 상기 금속 원소 (M)의 함량의 총합을 지칭하는 것이다. 여기서, 니켈 (Ni), 망간 (Mn), 코발트 (Co) 등의 전이금속 함량과 이러한 전이금속 성분을 치환하는 상기 금속 원소 (M)의 총함량 대비 리륨의 함량은 몰 기준으로 L005 내지 1.30인 것이 바람직하고, 더욱 바람직하게는 1.01 내지 1.20일 수 있다.
본 발명의 양극 활물질에서 상기 니켈계 리튬 전이금속 산화물은 하기 화학식 1로 표시될 수 있다ᅳ
[화학식 1]
LiNiaCobMncMd02
식 중, a는 0.5 이상 또는 0.5 내지 0.9, 바람직하게는 0.55 이상이며, 좀더 바람직하게는 0.6 이상이며; b는 으1 이상 내지 0.3 이하, 바람직하게는 0.15 내지 0.2 이고; c는 0.1 이상 내지 0.3 이하, 바람직하게는 으 15 내지 0.2 이며; d는 0 이상 내지 0.1 이하이고, 상기 a, b, c, d의 총합, 즉, a+b+c+d은 1이 될 수 있다. 또한, 상기 식 중, M은 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군에서 선택된 1 종 이상의 금속 원소이며, 구조안정성 측면에서 Ti,Zr,Al 등이 바람직하다.
상기 니켈계 리튬 전이금속 산화물은 LiNi05Co— 0.2Mno.302, LiNio.6Co0.2Mno.202, LiNi0.7Coo.15Mn0.1502 등이 될 수 있다. 이 중에서, 전지 특성 측면에서 LiNi0.6Co0.2Mn0.2O2등이 바람직하다.
전술한 바와 같이, 본 발명에서 코팅의 모재가 되는 양극 활물질은 전이금속이 점유하는 팔면체 위치 (octahedra site)에 니켈이 50% 이상 점유하는 리튬 금속 복합 산화물을 양극 재료를 사용하는 것을 특징으로 한다. 상기 리튬 금속 복합 산화물은 층상 구조 (layered structure, 공간군 R- 3m), 스피넬 구조 (spinel structure, 공간군 Fd-3m)를 갖는 것이 될 수 있다. 한편, 본 발명에서 상기 니켈계 리튬 전이금속 산화물은 높은 결정구조를 가지면서 평균 입경이 3 urn 이상 또는 3 내지 15 , 바람직하게는 5 μm 이상, 좀더 바람직하게는 8 이상일 수 있다. 이러한 니켈계 리튬 전이금속 산화물을 포함하는 전극 활물질은 평균 입경이 3 βΐα 이상인 단일 입자들로 이루어진 구조 (1차 입자 구조)일 수도 있고, 상기 단일 입자들이 웅집된 구조로 이루어진 구조, 즉, 단일 입자들의 웅집체 형태로 이루어져 있어서, 내부 공극을 가지고 있는 구조 (2차 입자 구조)일 수도 있다. 이러한 웅집형 입자 구조는 전해액과 반웅하는 표면적을 최대화시켜 고율의 레이트 (rate) 특성을 발휘함과 동시에 양극의 가역 용량을 확장시킬 수 있다. 본 발명의 리튬 이차전지용 양극 활물질은 상술한 바와 같은 리튬 복합 산화물의 코어 표면에 망간 인산화물을 코팅시킨 것을 특징으로 한다. 특히, 상기 망간 인산화물은 망간의 금속 원자가 (metallic valence)가 2인 화합물이 될 수 있으며, 바람직하게는 Mn3(P04)2 등을 들 수 있다.
상기 망간 인산화물은 도 1에 나타낸 바와 같은 결정구조를 갖는 것으로, 단사정계 (Monoclinic) 브라베이 (bravais) 격자이며, 공간군 (space group) 14, P21/c가 될 수 있다. 특히, 상기 망간 인산화물의 결정 구조는 사정계 (monoclinic)로 . Mn은 팔면체 위치 (octahedra), P는 사면체 위치 (tetrahedral)에 배치될 수 있다. 또한, 상기 망간 인산화물은 공간군 (Space group) No. 14, P2l/c (#14)에 속하는 결정 구조를 가질 수 있다. 여기서, 결정의 공간군 (Space group)이라 함은 그 결정 구조의 대칭성을 수학적으로 기술한 것으로서, 14 브라베이 격자와 32개의 결정학적 점군의 조합으로 이루어지며, 이 대칭 조작들와 조합으로부터 결정이 가질 수 있는 230개의 공간군을 표현한 것을 지칭한다. 한편, 상기 결정 구조의 격자상수는 a = 8.94. A, b = 10.04 A, c = 24.14 A (angstrom)이며, 이때, =γ = 90°, β = 120°가 될 수 있다.
본 발명에 따른 양극활물질의 코팅층을 구성하는 망간 인산화물은 상술한 바와 같은 결정 구조를 갖는 다가 음이온 (polyanion)계 재료로서, 리륨을 포함하는 알카리 이온이 통과할 수 있는 터널 (채널)을 가지고 있어, 이를 통하여 리튬 이온의 확산이 효율적으로 이뤄질 수 있다. 이에 따라, Mn3(P04)2 등의 망간인산화물 코팅에 의해 양극 활물질과 전해액의 직접 접촉이 제어되어 전해액 부반응이 억제되고, 리튬 이온은 코팅종을 통하여 확산할 수 있는 구조를 가지고 있으므로, 전기화학 특성 개선에 유리한 우수한 효과가 있다.
상기 망간 인산화물은 평균입경 100 nm 이하 또는 2 nm 내지 100 nm가 될 수 있으며, 바람직하게는 50 nm 이하, 좀더 바람직하게는 30 nm 이하 또는 5 nm 이상 30 nm 이하가 될 수 있다. 상기 망간 인산화물은 코팅의 균일도 측면에서 평균입경 100 nm 이하가 될 수 있다. 상기 망간 인산화물의 평균입경은 주사 전자현미경 (SEM, scanning electron microscope) 및 투과 전자현미경 (TEM, transmission electron microscope) 등을 이용하여 측정할 수 있다. 본 발명의 리튬 이차전지용 양극 활물질에서 상기 망간 인산화물의 코팅층은 입자 형태로 존재하고 있으며, 이에 따라 상기 코팅층의 막 두께는 상술한 바와 같은 실리콘 산화물의 입자 크기와 유사하다고 할 수 있다. 또한, 상기 망간 인산화물은 양극 활물질 총 중량에 대하여 0.1 중량% 내지 5.0 중량 %, 바람직하게는 0.2 내지 3.0 중량0 /0, 좀더 바람직하게는 0.5 내지 1.0 중량%가 될 수 있다. 상기 망간 인산화물의 함량은 열안정성 측면에서 0.1 중량0 /。 이상이 될 수 있으며, 출력특성과 수명특성 측면에서 5.0 중량0 /0 이하가 돨수 있다.
본 발명의 리튬 이차전지용 양극 활물질은 상술한 바와 같은 리튬 복합 산화물의 코어 표면에 망간 인산화물을 코팅시킨 것을 특징으로 하며, 상온 및 고온에서 수명 특성 및 출력 특성 등에서 우수한 전지 성능을 발휘할 수 있도록 한다. 또한, 시차주사열량계 (DSC, differential scanning calorimetry) 측정을 통한 열안정성 평가 결과, 열분해가 일어나는 발열온도 및 발열량이 획기적으로 개선되는 우수한 효과가 있다. 이에 따라, 양극 소재의 열안정성이 획기적으로 개선되어 전지의 안정성을 확보할 수 있다. 특히, 본 발명의 리튬 이차전지용 양극 활물질은 시차주사열량계를 이용한 열안정성 평가 방법에 따라, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있는 양극 활물질에 대한 측정한 최대 발열 피크 온도 (Tcoat)가, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물올 포함하는 코팅층이 형성되어 있지 않은 양극 활물질에 대해 측정한 최대 발열 피크 온도 (Tnoncoat)보다 10 °C 이상 또는 10 X 내지 35 °C, 바람직하게는 12 °C 이상, 좀더 바람직하게는 15 °C 이상, 더욱 바람직하게는 20 이상 높게 나타나며, 고온에서 우수한 열안정성을 나타낼 수 있다.
이렇게 향상된 열안정성 관련하여, 본 발명의 리튬 이차전지용 양극 활물질은 시차주사열량계를 이용한 열안정성 평가 방법에 따라, 상기 니켈계 리륨 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있는 양극 활물질에 대한 측정한 발열량 (Hcoat)이, 상기 니켈계 리륨 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있지 않은 양극 활물질에 대한 측정한 발열량 (Hnoncoat)의 80% 이하 또는 40% 내지 80%, 바람직하게는 77% 이하, 좀더 바람직하게는 75% 이하, 더욱 바람직하게는 65% 이하로 나타날 수 있다.
한편, 발명의 다른 구현예에 따라, 상술한 바와 같은 리튬 이차전지용 양극 활물질을 제조하는 방법이 제공된다. 상기 리튬 이차전지용 양극 활물질의 제조 방법은 망간염 및 인산염을 포함하는 코팅 용액에 니켈계 리튬 전이금속 산화물을 첨가하여 코팅층을 형성시키는 단계; 및 상기 코팅층이 형성된 니켈계 리튬 전이금속 산화물을 열처리하는 단계;를 포함할 수 있다. 여기서, 상기 니켈계 리톱 전이금속 산화물은 전이금속으로서 니켈 (Ni), 망간 (Mn), 및 코발트 (Co)를 포함하고, 전체 전이금속을 기준으로 니켈 (Ni)의 함량이 50% 이상일 수 있다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조 방법은 특히, 종래의 건식 코팅 공정이 아닌 습식 코팅 공정을 적용함으로써, 양극 활물질 코어의 표면에 망간 인산화물을 나노 입자의 형태로 고르게 분산시켜 균일한 코팅층이 형성되도록 할 수 있다.
본 발명의 리튬 이차전지용 양극 활물질에서 코팅층을 형성하는 망간 인산화물은 다양한 망간염과 인산염을 용액상으로 반응시켜 생성시킬 수 있다. 바람직하게는, 상기 망간염은 산화망간, 옥살산망간, 아세트산망간, 질산염망간 또는 그의 유도체 등 중에서 1종 이상이 될 수 있다. 또한, 상기 인산염은 인산암모늄, 인산나트륨, 인산칼륨또는 그의 유도체 등 중에서 1종 이상이 될 수 있다.
상기 망간염과 인산염은 바람직하게는 망간염의 망간 (Mn)과 인산염의 인산 (P)의 몰 비율이 최종 생성되는 코팅층의 망간인산화물에 최적화되는 화학양론적 범위의 함량으로 사용할 수 있다. 예컨대, 상기 망간염과 인산염은 각각, 망간염의 망간 (Mn)과 인산염의 인산 (P)의 몰 비율이 3:2로 최종 코팅층의 망간산화물로서 Mn3(P04)2를 형성할 수 있는 함량 범위로 사용될 수 있다.
상기 망간염과 인산염은 증류수, 이소프로판올 (IP A), 에탄올 등의 용매 1종 이상을 사용한 용액 또는 분산액 형태의 습식 공정으로 리튬 금속 복합 산화물의 코어 표면에 코팅할 수 있으며, 이러한 습식 공정은 적용함으로써 기존의 건식 공정에 비해 나노입자의 형태로 균일하게 코팅할 수 있는 장점이 있다. 본 발명에 따른 리튬 이차전지용 양극 활물질의 제조 방법은 상기 망간염과 인산염을 포함하는 용액에 니켈계 리튬 전이금속 산화물을 첨가하는 습식법으로 코팅 공정을 수행하는 것을 특징으로 한다. 여기서, 상기 니켈계 리튬 전이금속 산화물은 전체 전이금속을 기준 (몰 기준)으로 Ni의 함량이 50% 이상인 것으로, 리튬 이차전지용 양극 활물질 관련하여 전술한 바와 같다.
특히, 상기 리륨 이차전지용 양극 활물질의 제조 방법은 하기의 화학식 1로 표시되는 니켈계 리튬 전이금속 산화물의 표면에 망간염 및 인산염올 사용하여 코팅층을 형성시키는 단계를 포함하는 것일 수 있다.
[화학식 1]
LiNiaCobMncMd02
식 중, a는 0.5 이상 또는 0.5 내지 0.9, 바람직하게는 0.55 이상이며, 좀더 바람직하게는 0.6 이상이며; b는 으1 이상 내지 0.3 이하, 바람직하게는 0.15 내지 0.2이고; c는 0.1 이상 내지 0.3 이하, 바람직하게는 0.15 내지 0.2 이며; d는 0 이상 내지 0.1 이하이고, a+b+c+d= 1이 될 수 있다. 또한, 상기 식 증, M은 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군에서 선택된 1 종 이상의 금속 원소가 될 수 있다.
상기 니켈계 리튬 전이금속 산화물은 LiNi0.5Co_0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2, LiNi07Co0.i5Mn0.15O2 등이 될 수 있으며, 이 중 전지특성 측면에서 LiNio.6Coo.2Mn0.202등이 바람직하다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조 방법은, 상기 망간염과 인산염을 포함하는 용액에 니켈계 리튬 전이금속 산화물을 투입하여 교반시킴으로써, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간인산화물 전구체 화합물의 코팅층을 형성시킬 수 있다. 여기서, 망간인산화물 전구체 화합물은 최종 생성되는 코팅층의 망간인산화물을 형성할 수 있는 화학양론적으로 (Stoichiometric) 조성 범위로 망간 (Mn)과 인산 (P04)을 포함하는 형태가 될 수 있다. 예컨대, 상기 망간인산화물 전구체 화합물은 망간 (Mn)과 인산 (P04)의 몰 비율이 3:2로 포함되어 있는 형태로 존재할 수 있으며, 이로써 최종 코팅층의 망간산화물로서 Mn3(P04)2를 형성시킬 수 있다. 본 발명에서는 이렇게 망간인산화물 전구체 화합물의 코팅층이 형성된 니켈계 리튬 전이금속 산화물을 필터링한 후에 건조시키는 단계를 추가로 포함하여 용매 등을 제거할 수 있다. 상기 건조 공정은 80 r 내지
150 °C, 바람직하게는 100 °C 내지 140 °C, 좀더 바람직하게는 110 °C 내지 130 °C 온도 범위에서 수행할 수 있다. 또한, 이러한 건조 공정은 6 시간 내지 16 시간 동안 수행할 수 있으며, 바람직하게는 7 시간 내지 15 시간, 좀더 바람직하게는 8 시간 내지 14 시간 동안 수행할 수 있다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조 방법에서 상기 코팅층이 형성된 니켈계 리튬 전이금속 산화물올 열처리하는 단계는 200 °C 내지 700 °C, 바람직하게는 300 °C 내지 650 °C, 좀더 바람직하게는 400 °C 내지 600 온도 범위에서 수행할 수 있다. 상기 열처리 공정 온도가 200 °C 미만이 경우에, 열처리시 활물질 코어의 표면에 비정질의 망간인산화물 등이 형성될 수 있으며, 활물질 코어와 코팅종의 계면 결합이 낮아지며 코팅의 결합강도가 현저히 떨어질 수 있다. 반대로 상기 열처리- 공정 온도가 700 °C를 초과하여 수행할 경우에는, 활물질 코어인 니켈계 리튬 전이금속 산화물이 고온 열처리로 인해 열화될 수 있다.
또한, 이러한 열처리 공정은 1 시간 내지 12 시간 반응시간으로 수행할 수 있으며, 바람직하게는 2 시간 내지 11 시간, 좀더 바람직하게는 3 시간 내지 10 시간 동안 수행할 수 있다. 상기 열처리 공정 시간이 1 시간 미만일 경우 니켈계 리튬 전이금속 산화물의 표면에 망간인산화물 코팅층이 제대로 형성되지 못할 수 있다. 반면에, 상기 열처리 공정시간이 12 시간을 초과할 경우에는 활물질 코어인 니켈계 리튬 전이금속 산화물의 열화를 가져 올 수 있다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조 방법은 특히, 망간 인산화물의 코팅은 습식법을 적용하며, a) 상술한 바와 같은 망간염과 인산염이 포함된 용액올 제조하는 단계, b) 상기 a) 단계의 용액에 상술한 바와 같은 니켈의 함량이 50% 이상인 니켈 고함량 (Ni-rich)의 리튬 금속 복합 산화물을 첨가하고 상온 (25 °C)에서 교반하여 표면에 망간 인산화물 전구체의 코팅층을 형성시키는 단계, c) 용매 제거를 위해 필터링 후 80 내지 150 °C에서 건조시키는 단계; d) 건조 후에 회수된 분말을 200 내지 700 °C에서 열처리하는 단계;를 포함할 수 있다.
한편, 본 발명에 따른 리튬 이차전지용 양극 활물질의 제조 방법으로 또다른 일례에서는, 망간염을 증류수에 용해시켜 용액을 제조하고; 상기 망간염이 용해된 증류수 용액에 상술한 바와 같은 니켈의 .함량이 50% 이상인 니켈 고함량 (Ni-rich)의 리튬 금속 복합 산화물로 이뤄진 활물질 코어 분말을 투입하여 실은에서 360 rpm으로 1 시간 동안 교반하고; 상기 활물질 코어 분말을 흔합한 용액에 인산염을 투입한 후, 실은에서 360 rpm으로 2시간 교반하고; 이렇게 반웅을 완료한 반웅 용액은 필터링을 통하여 증류수 제거한 후에, 필터링한 결과물을 120 도에서 12 시간 건조하여 잔류 수분을 완전히 제거하고; 전기로를 이용하여 아르곤 분위기 하에서 550 도에서 10 시간 열처리 공정을 수행하여, 최종 망간인산화물 Mn3(P04)2 등이 코팅된 양극활물질을 제조할 수 있다ᅳ
한편, 발명의 또다른 구현예에 따라, 상술한 바와 같이 망간 인산화물이 코팅된 양극 활물질을 포함하는 리튬 이차 전지가 제공된다. 상기 리튬 이차 전지는 상기 양극 활물질을 포함하는 양극; 리튬 이온의 삽입 또는 탈리가 가능한 음극 활물질을 포함하는 음극; 상기 양극과 음극 사이에 존재하는 세퍼레이터; 및 비수성 전해질을 포함할 수 있다.
본 발명에 따르면 리튬 금속 복합산화물 코어 표면에 망간인산화물이 균일하게 코팅되도록 함으로써, 리튬 이차전지용 양극으로 적용하는 경우에 망간 인산화물로 코팅한 양극 활물질은 리튬 금속 복합산화물과 전해액 간의 부반웅올 억제하고, 양극으로부터의 금속원소 용출 및 열화 현상을 억제할 수 있다.
한편, 본 발명의 리륨 이차 전지는 상술한 바와 같이 망간인산화물이 표면에 코팅된 양극 활물질을 양극재를 포함하는 것을 특징으로 하여, 리튬 이차 전지에 사용 가능한 것으로 알려진 범위에서 양극, 음극, 분리막, 전해액, 도전재, 바인더 등을 최적화하여 다양한 구성으로 적용할 수 있다. 본 발명에 따른 양극 활물질을 사용한 리튬 이차 전지는 4.3V 충전 상태에서 시차주사열량계 (DSC, differential scanning calorimetry) 측정을 통한 열안정성 평가에 의한 주 발열 피크, 즉, 최대 발열 피크의 온도 위치가 코팅전과 비교하여 10 °C 이상 또는 10 °C 내지 35 V, 바람직하게는 12 °C 이상, 좀더 바람직하게는 15 t 이상, 더욱 바람직하게는 20 °C 이상 양의 방향으로 움직인다. 또한, 발열량은 '코팅전과 비교하여 20% 이상 또는 25% 내지 .60%, 바람직하게는 23% 이상, 좀더 바람직하게는 25% 이상, 더욱 바람직하게는 35% 이상으로 감소한다.
특히, 본 발명의 리튬 이차전지는 시차주사열량계를 이용한 열안정성 평가 방법에 따라, 활물질 코어인 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅충이 형성되어 있는 양극 활물질을 사용하여 측정한 최대 발열 피크 온도 (Tcoat)가, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있지 않은 양극 활물질을 사용하여 측정한 최대 발열 피크 온도 (Tnoncoat)보다 10 이상 또는
10 °C 내지 35 °C, 바람직하게는 12 °C 이상, 좀더 바람직하게는 15 °C 이상, 더욱 바람직하게는 20 t 이상 높게 나타나며, 고온에서 우수한 열안정성을 나타낼 수 있다.
이렇게 향상된 열안정성 관련하여, 본 발명의 리튬 이차전지는 또한, 시차주사열량계를 이용한 열안정성 평가 방법에 따라, 상기 니켈계 리튬 전이금속 산화물의 표면에 실리콘 산화물을 포함하는 코팅층이 형성되어 있는 양극 활물질을 사용하여 측정한 발열량 (Hcoat)이, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있지 않은 양극 활물질올 사용하여 측정한 발열량 (Hnoncoat)의 80% 이하 또는 40% 내지 80%, 바람직하게는 77% 이하, 좀더 바람직하게는 75% 이하, 더욱 바람직하게는 65% 이하로 나타날 수.있다.
이와 같이, 본 발명의 양극 활물질을 사용한 리튬 이차 전지는 망간인산화물 Mn3(P04)2 등을 코팅하지 않은 양극 활물질을 적용한 경우에 비해 우수한 열안정성을 확보할 수 있다.
상기 리튬 이차 전지는 망간인산화물 산화물 코팅전과 비교하여 향상된 율특성과 수명 특성을 갖는다. 특히, 상기 리튬 이차전지는 정전류 층방전 방법으로 측정한 율 특성의 5C의 방전용량이 60 mAh/g 이상 또는 60 내지 180 mAh/g, 바람직하게는 88 mAh/g 이상, 좀더 바람직하게는 100 mAh/g 이상이 될 수 있다. 이와 더불어, 상기 리튬 이차전지는 25 °C에서 0.5 C 조건 하에서 진행한 상온 사이클 평가에서 50회 층방전 후 용량 유지율이 초기 용량 대비 85% 이상, 바람직하게는 95% 이상이 될 수 있다. 또한, 상기 리튬 이차 전지는 60 °C에서 0.5 C 조건 하에서 진행한 고온 사이클 평가에서 50회 - 층방전 후 용량 유지율이 초기 용량 대비 85% 이상, 바람직하게는 90% 이상이 될 수 있다. 이때 용량으로는 150 mAh/g이상, 바람직하게는 160 mAh/g 이상이 될 수 있다.
또한, 본 발명에서 제공하는 양극활물질의 망간인산화물의 코팅층으로 인해, 4.3 V 층전상태 양극의 발열량을 300 J/g 이하 또는 50 내지 300 J/g, 바람직하게는 280 J/g 이하, 좀더 바람직하게는 250 J/g 이하로 낮출 수 있는 효과가 있다.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.
【발명의 효과】
본 발명은 니켈 고함량 (Ni-rich) 양극 활물질의 표면에 망간 인산화물을 균일하게 코팅해줌으로써, 전지 특성이 개선된 리튬 이차전지를 효과적으로 제조할 수 있다.
본 발명에 따른 양극 활물질은 리튬 이차 전지에 적용시, 열안정성이 획기적으로 개선되고 특히 고온 특성이 개선되며, 전해액의 부반웅이 억제되어 사이클 특성 및 출력 특성을 현저히 향상시킬 수 있다. 특히, 본 발명에 따른 양극 활물질은 DSC 평가에 의한 주 발열 피크의 온도를 증가시키고 발열량을 감소시킴으로써, 열안정성이 현저히 개선된 양극 활물질을 제공할 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 실시예 1에 따라 생성된 Mn3(P04)2 코팅종의 결정구조 및 XRD 패턴을 나타낸 것이다 (강도: intensity, 2세타 /각도: 2theta/degree).
도 2는 본 발명의 실시예 1에 따라 Mn3(P 02 나노입자의 표면 코팅 방법을 나타낸 모식도이다.
도 3은 본 발명의 비교예 1 및 실시예 1과 3에 따라 Μη3(Ρ04)2 코팅된 NCM622의 표면 SEM 이미지를 나타낸 것이다 [a) 0 wt%, b) 0.5 wt%, c) 1.0 wt%] 도 4는 본 발명의 실시예 1과 3에 따라 Mn?(P04)2 코팅된 NCM622의 표면 EDS 매핑 (mapping) 결과를 나타낸 것이다 [a) 0.5 wt%. b) 1.0 wt].
도 5는 본 발명의 비교예 1 및 실시예 1과 3에 따라 Mn3(P04)2 코팅된 NCM622의 출력 특성을 나타낸 그래프이다.
도 6은 본 발명의 비교예 1 및 실시예 1과 3에 따라 Mn3(P04)2 코팅된 NCM622의 상온 수명 특성을 나타낸 그래프이다 (25 °C).
도 7은 본 발명의 비교예 1 및 실시예 1과 3에 따라 Mn3(P04)2 코팅된 NCM622의 고온 수명 특성을 나타낸 그래프이다 (60 °C).
도 8은 본 발명의 비교예 1 및 실시예 1과 3에 따라 Mn3(P04)2 코팅된 NCM622 전극의 DSC 곡선 그래프이다 (4.3 V 완층상태).
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 1
도 2에 나타낸 바와 같이, 망간염과 인산염을 포함하는 용액을 사용하여 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질을 제조하였다.
먼저, 망간염으로 Mn(CH3COO)2 0.1036 g을 증류수 20 mL에 용해시킨 후, 평균 입경이 11 의 니켈계 리튬 전이금속 산화물 (NCM622 powder) LiNi06Co02Mn02O2 10 g을 투입하여 25 °C (Celsius)에서 360 rpm으로 1시간 동안 교반시켰다. 다음 과정으로 인산염으로 (NH4)2HP04 0.0372 g를 투입한 후 다시 25 °C에서 360 rpm으로 2 시간 동안 교반하였다. 이렇게 교반한 후에: 최종 반웅액을 필터링하여 용매를 제거하고, 여과된 고형분을 120 °C에서 12 시간 동안 건조시켰다ᅳ 이렇게 회수된 분말을 비활성의 Ar 가스 분위기 하의 550 °C에서 10 시간 동안 열처리 공정을 수행하였다.
상기 열처리 공정을 마친 후에, 평균입경 100 nm 이하의 망간 인산화물 Mn3(P04)2이 코팅된 니켈계 리튬 전이금속 산화물로 이루어진 리튬이차전지용 양극 활물질이 생성되었다. 이때, 망간 인산화물은 양극 활물질 총 중량에 대하여 0.5 중량%의 함량으로 코팅되었다.
실시예 2-3
망간염 Mn(CH3COO)2 및 인산염 (NH4)2HP04의 함량을 각각 0.1554 g, 0.2073 g 및 0.0558 g, 0.0745 g으로 달리하여 최종 생성된 코팅층의 망간인산화물 Mn3(P04)2의 함량을 각각 각각 0.75 중량 % 및 1.0 중량 %로 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 평균입경 100 nm 이하의 망간 인산화물이 코팅된 니켈계 리튬 전이금속 산화물 LiNio.6Co0.2Mn0.202로 이루어진 리튬이차전지용 양극 활물질을 제조하였다. 이때, 망간 인산화물은 양극 활물질 총 중량에 대하여 1.0 중량 %의 함량으로 코팅되었다.
비교예 .1
별도의 코팅층을 형성시키지 않은 채, 실시예 1에 적용된 바와 동일한 니켈계 리튬 전이금속 산화물 LMa6C0o.2Mna202로 이루어진 리튬이차전지용 양극 활물질을 준비하였다.
비교예 2
망간염 및 인산염을 사용하여 망간인산화물 코팅층을 형성시킨 대신에, 다음과 같은 방법으로 A1203 코팅층이 형성된 리튬이차전지용 양극 활물질을 제조하였다.
먼저, 평균입경 50 nm의 A1203 분말을 양극활물질 무게 대비 0.5 wt%를 이소프로판올 (IPA, isopropanol)에 분산시킨 후 평균 입경이 11 ^의 니켈계 리튬 전이금속 산화물 (NCM622 powder) LiNi0.6Coo.2Mno.202를 투입한 후 균일한 분산을 위하여 1분간 초음파 처리하였다. 이 후, 60 °C에서 360 rpm으로 1 시간 동안 교반하면서 주면서, 용매인 이소프로판을 (IP A)를 모두 제거하여 LiNi06Co02Mno.202의 표면에 A1203를 흡착시켜 도포해주었다. 이렇게 용매를 증발시킨 실리콘 화합물 코팅 입자는 에어 (Air) 분위기 하에서 50C C의 은도로 5 시간 동안 열처리를 수행하였다.
상기 열처리 단계를 마친 후에, 평균빕경 50 nm의 A1203가 코팅된 니켈계 리튬 전이금속 산화물로 이루어진 리튬이차전지용 양극 활물질이 생성되었다ᅳ 이때, 상기 A1203은 양극 활물질 총 중량에 대하여 0.5 중량0 /。의 함량으로 코팅되었다. 비교예 3-4
A1203의 함량을 각각 1.0 중량0 /0 및 3.0 중량 %로 달리한 것을 제외하고는, 비교예. 2와 동일한 방법으로 평균입경 50 nm의 A1203가 코팅된 니켈계 리튬 전이금속 산화물 LiNio.6Coo.2Mn0.202로 이루어진 리튬이차전지용 양극 활물질을 제조하였다. 시험예
실시예 1-3 및 비교예 1-4에 따른 양극 재료를 사용하여 다음과 같은 방법으로 양극 활물질의 전기화학 성능을 평가할 수 있는 리튬 이차전지를 제조한 후에, 이에 대한 전지 성능 평가를 수행하였다. a) 리튬 이차전지 제조
실시예 1ᅳ 3 및 비교예 1-4의 양극 활물질 분말을 사용하여 활물질 95 wt%, 도전재로 Super-P 3 wt%, 바인더로 N-메틸 피롤리돈 (NMP)를 용매로 하여 슬러리를 제조하였다.
이 슬러리를 두께 20 의 알루미늄 박 (Al foil)에 도포하여 건조 후, 프레스로 압밀화시켜, 진공상에서 120 1로 16 시간 건조해 직경 16 mm의 원판 전극을 제조하였다.
상대극으로는 직경 16 mm로 편칭을 한 리튬 금속박을, 분리막으로는 폴리프로필렌 (PP) 필름올 사용하였고, 전해액으로는 1M의 LiPF6의 에틸렌카보네이트 /디메록시에탄 (EC/DME) 1:1 v/v의 흔합 용액을 사용하였으며, 전해액을 분리막에 함침시킨 후, 이 분리막을 작용극과 상대극 사이에 끼운 후 2032 코인셀로 전기화학 특성 평가용 전지를 제조하였다. b) 전지 성능 평가 - 전지의 층방전 특성 평가는 정전류법을 이용하여 수행하였으며, 층방전 전압 범위는 3.0 V 내지 4.3 V로 수행하였다. 초기 용량 평가는 0.1 C의 전류밀도로 실시하였으며, 출력특성은 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, 5 C로 평가하였다. 상온 수명 특성은 25 °C에서 실시하였으며, 으5 C로 진행하였다. 고온 수명 특성은 60 °C에서 실시하였으며 ,0.5C로 진행하였다. 실시예 1~3 및 비교예 1~4에 따른 양극 활물질을 사용하여 제조된 리튬 이차전지에 대한 전지 성능 평가는 하기 표 1에 나타낸 바와 같다.
【표 1】
Figure imgf000019_0001
상기 표 1에 나타낸 바와 같이, 본 발명에 따라 니켈 고함량 리튬 복합 산화물의 코어 표면에 망간인산화물이 코팅된 실시예 1~3의 양극 활물질을 적용한 리튬 이차전지는 코팅전의 비교예 1과 비교하여 출력특성이 향상되며, 고온 수명특성이 현저히 개선됨을 알 수 있다.
반면에, 기존에 알려진 알루미나를 코팅한 비교예 2~4의 양극 활물질을 리튬 이차전지는 표면 코팅에 의한 출력 특성, 수명특성을 포함하는 전기화학 특성에 개선되지 않고 열화됨을 알 수 있다. 특히, 비교예 2~4의 양극 활물질을 적용한 리륨 이차전지는 상온 및 고온 수명 특성이 각각 97.4 내지 141.0 mAh/g 및 58.5 내지 120.3 mAh/g으로 현저히 떨어진 것을 알 수 있다. 또한, 실시예 1~3 및 비교예 1~4의 양극 활물질을 적용한 리튬 이차 전지의 출력 특성에 대한 측정 그래프를 도 5에 나타내었으며, 각 C- 레이트 (C-rate)에 따른 상세한 용량 (capacity)은 하기의 표 2에 나타내었다. 【표 2】
Figure imgf000020_0001
상기 표 2에 나타낸 바와 같이, 본 발명에 따라 니켈 고함량 리튬 복합 산화물의 코어 표면에 망간인산화물을 코팅한 실시예 1~3의 양극 활물질을 적용한 경우에 전지의 출력 특성이 별도의 코팅층이 형성되지 않은 비교예 1과 비교하여 동등 이상으로 개선됨을 확인할 수 있다. 특히, 망간인산화물 Mn3(P04)2를 ().5 wt% 코팅한 실시예 1의 경우, 5 C에서의 용량이 121.2 mAh/g으로 비교예 1의 54.9 mAh/g 보다 크게 개선되어 있음을 확인 할 수 있다. 또한, 실시예 1~3 및 비교예 1~4의 양극 활물질을 적용한 리튬 이차 전지의 상온 (25 °C) 수명 특성을 측정한 그래프를 도 6에 나타내었으며, 충방전 사이클 증가 (사이클 횟수: cycle number)에 따른 용량 (capacity) 변화를 하기의 표 3에 나타내었다.
【표 3】
Figure imgf000021_0001
상기 표 3에 나타낸 바와 같이, 본 발명에 따라 니켈 고함량 리튬 복합 산화물의 코어 표면에 망간인산화물이 코팅된 실시예 1~3의 양극 활물질을 적용한 경우에 별도의 코팅층이 형성되지 않은 비교예 1과 비교하여 용량이 4mAh/g 정도 작게 나오나 용량 유지율로 비교할 경우 비교예 1은 초기용량 대비 92.6%의 용량 유지율을 나타낸 반면에, 실시예 1~3의 경우에 50회 충방전 후 초기 용량 대비 용량 유지율이 93.3% 내지 95.6%로 현저히 향상된 용량 유지율을 나타냄을 알 수 있다.
이에 반하여, 2ᄋ3를 코팅한 비교예 2~4에서는 50회 충방전 후 초기 용량 대비 용량유지율이 65.9% 내지 84.2%으로 현저히 저하되었음을 알 수 있다.
따라서, 본 발명에 따라 니켈 고함량 리튬 복합 산화물의 코어 표면에 망간인산화물을 코팅한 양극활물질이 상온 수명 특성을 현저히 개선하는 우수한 효과가 있음을 알 수 있다. 또한, 실시예 1~3 및 비교예 1~4의 양극 활물질을 적용한 리튬 이차 전지의 고온 수명 특성을 측정한 그래프를 도 7에 나타내었으며, 층방전 사이클 증가 (사이클 횟수: cycle number)에 따른 용량 (capacity) 변화를 하기의 표 4에 나타내었다. 이 때, 고온 수명 평가는 60 °C의 온도로 고정된 챔버 내에서 수행하였다.
【표 4]
Figure imgf000022_0001
상기 표 4에 나타낸 바와 같이, 본 발명에 따라 니켈 고함량 리튬 복합 산화물의 코어 표면에 망간인산화물이 코팅된 실시예 1~3의 양극 활물질을 적용한 경우에 별도의 코팅층이 형성되지 않은 비교예 1 및 알루미나를 코팅한 비교예 2~4에 비해 고온 수명 특성이 현저히 개선됨을 알 수 있다.
특히, 비교예 1의 경우에 초기 용량이 175.5 mAh/g에 50회 층ᅳ방전 후 용량이 142.2 mAh/g으로 초기용량 대비 81.3%의 용량 유지율을 나타낸 반면에, 실시예 1~3의 경우에 50회 충방전 후 초기 용량 대비 용량 유지율이 88.3% 내지 90.9%로 현저히 향상되었음을 알 수 있다. 좀더 구체적으로, 망간인산화물 0.5 wt%를 코팅한 실시예 1의 경우 초기용량이 176.4 mAh/g에 50회 층방전 후 용량이 160.4 mAh/g으로 초기용량 대비 9().9%의 높은 용량 유지율을 얻을 수 있었으며, 이는 비교예 1과 비교하여 50회 층방전 후 용량이 13% 가량 개선된 것을 알 수 있다. 또한, 망간인산화물 1.0 wt%를 코팅한 실시예 3의 경우도 초기용량이 172.8 mAh/g에 50회 충방전 후 용량이 152.6 mAh/g으로 88.3%의 용량 유지을을 나타내며 비교예 1과 비교하여 50회 충방전후 용량이 7% 가량 향상되었음올 확인할 수 있다.
본 발명의 실시예를 통한 고온 수명 특성을 향상시키기 위한 최적 코팅량은 0.5 ^%로 확인되었다.
이에 반하여, A1203를 코팅한 비교예 2~4에서는 50회 층방전 후 초기 용량 대비 용량유지율이 43.8% 내지 73.4%으로 현저히 저하되었음을 알 수 있다.
따라서, 본 발명에 따라 니켈 고함량 리튬 복합 산화물의 코어 표면에 망간인산화물을 코팅한 양극활물질이 고온 수명 특성을 현저히 개선하는 우수한 효과가 있음을 알 수 있다. 또한, 실시예 1, 3 및 비교예 1~4의 양극 활물질을 적용한 리튬 이차 전지의 열 안전성 평가를 위하여 시차주사열량계 (DSC, differential scanning calorimetry) 측정을 실시하였다. DSC 평가로부터 양극재의 구조 변화 (상 변화 혹은 상 분해)가 나타나는 은도와 이때 수반하는 발열량을 계산함으로서 열안정성의 지표로 사용할 수 있다. DSC 평가에 대한 상세한 방법을 하기에 나타낸다.
먼저, 4.3 V 층전상태로 완전 층전된 상태의 전지를 해체해서 양극을 회수한 후, 양극 표면에 남아있는 리튬염을 DMC로 세척하여 제거하였다. 양극의 건조를 실시하였다. 양극으로부터 회수된 7 mg의 양극 분말을 DSC 측정용 내압팬에 투입한 후 3|aL의 전해액 (1M의 LiPF6 가 용해된 EC:EMC (1:2))을 주입하여 양극 분말을 전해액에 완전히 함침된 상태로 하였다. DSC 분석을 위한 온도범위는 25 °C에서 350°C로 하였으며, 승온 속도는 lO 'C/min으로 하였다. 상기 실험은 분위기가 제어된 환경에서 진행되었다. 실시예 1, 3 및 비교예 1의 양극 활물질을 사용하여 4.3 V 충전 상태 전극의 DSC 측정 결과를 하기의 표 5에 나타내었다. 또한, 실시예 1, 3 및 비교예 1~4의 양극 활물질을 사용하여 측정한 대표 DSC 곡선올 도 8에 나타내었다 (열유속: heat flow, 온도: temperature/Celsius/ °C). 각 비교예 및 실시예에 대하여 상기 기술된 방법으로 3회 이상 DSC 측정을 실시하여 평균값으로 산측하였다.
【표 5]
Figure imgf000024_0001
상기 표 5에 나타낸 바와 같이, Mn3(P04)2를 코팅하지 않은 비교예 l(Bare)은 주 발열 피크가 275 °C의 범위에서 나타나며, 발열량은 323 J/g의 값을 나타내었다. 본 발명에 따라 Mn3(P04)2를 코팅한 실시예 1 및 3(0.5 wt%, 1.0 wt%)은 비교예 1과 비교하여 고온에서 주 발열 피크가 나타났으며, 발열량도 감소했음을 알 수 있다.
좀더 구체적으로는, 실시예 1 및 3의 경우에 각각 Mn3(P04)2의 코팅량이 0.5 wt0/。에서 1.0 wt%으로 증가함에 따라 주 발열 피크의 온도가 각각 292 °C 내지 295 °C로 고온으로 이동하였으며, 발열량도 또한 각각 236 J/g 내지 217 J/g의 범위를 갖는 것이 확인되었으며, 비교예 1과 비교하여 발열량이 현저히 감소하였다. 특히, 실시예 3의 경우, 비교예 1과 비교하여 주 발열 피크의 온도가 20 °C 이상 증가하였으며, 발열량은 32.7% 가량 감소되어 가장 우수한 열 안전성을 나타냄을 확인하였다.

Claims

【특허청구범위】
【청구항 1】
니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물올 포함하는 코팅층이 형성되어 있으며,
상기 니켈계 리튬 전이금속 산화물은 전이금속으로서 니켈, 망간, 및 코발트를 포함하고, 전체 전이금속을 기준으로 니켈의 함량이 50% 이상인 리튬 이차전지용 양극 활물질.
【청구항 2】
제 1항에 있어서,
상기 니켈계 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 리튬 이차전지용 양극 활물질:
[화학식 1]
LiNiaCobMncMd02
식 중,
a는 0.5 이상이며, b는 0.2 이상 내지 0.3 이하이고, c는 0.2 이상 내지
0.3이하이며, d는 0.01 이상 내지 0.1 이하이고, a+b+c+d= 1이며,
M은 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군에서 선택된 1 종 이상의 금속 원소임.
【청구항 3】
제 1항에 있어서,
상기 망간 인산화물은 단사정계이며, 공간군 14의 결정 구조를 갖는 것인 리튬 이차전지용 양극 활물질.
【청구항 4】
제 1항에 있어서,
상기 망간 인산화물은 평균입경 100 nm 이하인 리륨 이차전지용 양극 활물질.
【청구항 5】
제 1항에 있어서,
상기 망간 인산화물의 함량은 양극 활물질 총 중량에 대하여 0.1 중량0 /0 내지 5.0 중량 %인 리튬 이차전지용 양극 활물질.
【청구항 6】
제 1항에 있어서,
시차주사열량계를 이용한 열안정성 평가 방법에 따라, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있는 양극 활물질에 대한 측정한 최대 발열 피크 온도 (Tcoat)가, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있지 않은 양극 활물질에 대해 측정한 최대 발열 피크 온도 (Tnoncoat)보다 10 °C 이상 높게 나타나는 것인 리튬 이차전지용 양극 활물질.
【청구항 7】
거 11항에 있어서,
시차주사열량계를 이용한 열안정성 평가 방법에 따라, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있는 양극 활물질에 대한 측정한 발열량 (Hcoat)이, 상기 니켈계 리튬 전이금속 산화물의 표면에 망간 인산화물을 포함하는 코팅층이 형성되어 있지 않은 양극 활물질에 대한 측정한 발열량 (Hnoncoat)의 80% 이하로 나타나는 것인 리튬 이차전지용 양극 활물질.
【청구항 8】
망간염 및 인산염을 포함하는 코팅 용액에 니켈계 리튬 전이금속 산화물을 첨가하여 코팅층을 형성시키는 단계; 및 상기 코팅층이 형성된 니켈계 리튬 전이금속 산화물을 열처리하는 단계;를 포함하고,
상기 니켈계 리튬 전이금속 산화물은 전이금속으로서 니켈, 망간, 및 코발트를 포함하고, 전체 전이금속올 기준으로 니켈의 함량이 50% 이상인 리튬 이차전지용 양극 활물질의 제조 방법.
【청구항 9】
거 18항에 있어서,
상기 망간염은 산화망간, 옥살산망간, 아세트산망간, 질산염망간 및 그의 유도체로 이루어진 군에서 선택된 1종 이상인 리튬 이차전지용 양극 활물질의 제조 방법.
【청구항 10】 제 8항에 있어서,
상기 인산염은 인산암모늄, 인산나트륨, 인산 칼륨 및 그의 유도체로 이루어진 군에서 선택된 1종 이상인 리튬 이차전지용 양극 활물질의 제조 방법.
【청구항 11】
거 18항에 있어서,
상기 열처리 단계는 200 내지 700 °C에서 수행하는 리튬 이차전지용 양극 활물질의 제조 방법.
PCT/KR2013/001201 2012-12-27 2013-02-15 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법 WO2014104466A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13867383.5A EP2940762B1 (en) 2012-12-27 2013-02-15 Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
US14/655,616 US20150349339A1 (en) 2012-12-27 2013-02-15 A cathode active material coated with manganese phosphate for a lithium secondary battery and a preparation method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0154157 2012-12-27
KR1020120154157A KR101475922B1 (ko) 2012-12-27 2012-12-27 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법

Publications (1)

Publication Number Publication Date
WO2014104466A1 true WO2014104466A1 (ko) 2014-07-03

Family

ID=51021504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001201 WO2014104466A1 (ko) 2012-12-27 2013-02-15 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법

Country Status (4)

Country Link
US (1) US20150349339A1 (ko)
EP (1) EP2940762B1 (ko)
KR (1) KR101475922B1 (ko)
WO (1) WO2014104466A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938036B2 (en) * 2014-09-12 2021-03-02 Lg Chem, Ltd. Method of preparing positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery, and lithium secondary battery including the positive electrode material

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388045B2 (en) 2013-05-08 2016-07-12 Changs Ascending Enterprise Co. Synthesis and characterization of lithium nickel manganese cobalt phosphorous oxide
US9692041B2 (en) * 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
CA2956032C (en) * 2014-07-24 2019-04-16 Changs Ascending Enterprise Co., Ltd. Synthesis and characterization of lithium nickel manganese cobalt phosphorous oxide
KR20170073217A (ko) 2015-12-18 2017-06-28 삼성전자주식회사 복합 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 전지
US10374262B2 (en) 2016-02-08 2019-08-06 Northwestern University Protective cathode coatings for lithium-ion batteries
WO2017209895A1 (en) * 2016-05-31 2017-12-07 3M Innovative Properties Company Lithium ion batteries, electronic devices, and methods
TWI672852B (zh) 2016-11-15 2019-09-21 加拿大商納諾萬麥帝瑞爾公司 以磷酸鹽穩化的鋰離子電池陰極
CN107359319A (zh) * 2017-05-27 2017-11-17 中国电力科学研究院 一种富锂锰基层状正极材料及其制备方法
WO2019103461A2 (ko) * 2017-11-21 2019-05-31 주식회사 엘지화학 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
CN110034274B (zh) * 2018-01-11 2022-07-15 宁波纳微新能源科技有限公司 改性三元正极材料、其制备方法及锂离子电池
GB201800742D0 (en) * 2018-01-17 2018-02-28 Johnson Matthey Plc Manganese phosphate coated lithium nickel oxide materials
KR102327530B1 (ko) 2018-05-21 2021-11-17 주식회사 엘지화학 이차 전지용 양극 및 이를 포함하는 이차 전지
EP3977542A4 (fr) * 2019-05-31 2023-08-16 Hydro-Québec Matériaux d'électrode comprenant un oxyde lamellaire de potassium et de métal, électrodes les comprenant et leur utilisation en électrochimie
CN115411236B (zh) * 2021-05-28 2024-05-17 中国科学院物理研究所 磷酸铝/磷酸钠修饰表面的镍铁锰基材料、制备方法、用途
CN113735089B (zh) * 2021-09-18 2023-09-29 西安理工大学 一种纳米颗粒自组装水合磷酸锰纳米球的制备方法
CN113871595A (zh) * 2021-09-27 2021-12-31 陕西红马科技有限公司 一种具有多原子阳离子化合物涂层的正极材料及其制备方法与应用
CN114420922A (zh) * 2021-12-25 2022-04-29 常州锂源新能源科技有限公司 一种均匀包覆磷酸锰的三元正极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024520A (ko) * 2000-09-25 2002-03-30 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조방법
US20080131778A1 (en) * 2006-07-03 2008-06-05 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
WO2008091707A2 (en) * 2007-01-25 2008-07-31 Massachusetts Institute Of Technology Oxide coatings on lithium oxide particles
KR20120007749A (ko) * 2010-07-15 2012-01-25 현대자동차주식회사 리튬이차전지용 양극재료 및 그의 제조방법
KR20120079125A (ko) * 2009-10-09 2012-07-11 토요잉크Sc홀딩스주식회사 리튬 이차전지용 양극 활물질 재료, 그의 제조방법, 및 그것을 사용한 리튬 이차전지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437339B1 (ko) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 전지용 활물질의 제조방법 및 그로부터 제조되는 전지용활물질
JP4502664B2 (ja) * 2004-02-24 2010-07-14 三洋電機株式会社 非水電解液二次電池
KR20110019574A (ko) * 2009-08-20 2011-02-28 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬 전지 및 이의 제조방법
US8609283B2 (en) * 2009-09-09 2013-12-17 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US8568620B2 (en) * 2010-08-02 2013-10-29 Tsinghua University Electrode composite material, method for making the same, and lithium ion battery using the same
US20130208429A1 (en) * 2012-02-13 2013-08-15 Huawei Technologies Co., Ltd. Positive pole material of lithium ion battery, method for preparing the same, positive pole, and lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024520A (ko) * 2000-09-25 2002-03-30 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조방법
US20080131778A1 (en) * 2006-07-03 2008-06-05 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
WO2008091707A2 (en) * 2007-01-25 2008-07-31 Massachusetts Institute Of Technology Oxide coatings on lithium oxide particles
KR20120079125A (ko) * 2009-10-09 2012-07-11 토요잉크Sc홀딩스주식회사 리튬 이차전지용 양극 활물질 재료, 그의 제조방법, 및 그것을 사용한 리튬 이차전지
KR20120007749A (ko) * 2010-07-15 2012-01-25 현대자동차주식회사 리튬이차전지용 양극재료 및 그의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938036B2 (en) * 2014-09-12 2021-03-02 Lg Chem, Ltd. Method of preparing positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery, and lithium secondary battery including the positive electrode material

Also Published As

Publication number Publication date
EP2940762A1 (en) 2015-11-04
KR101475922B1 (ko) 2014-12-23
EP2940762B1 (en) 2018-04-04
US20150349339A1 (en) 2015-12-03
EP2940762A4 (en) 2016-09-28
KR20140084567A (ko) 2014-07-07

Similar Documents

Publication Publication Date Title
KR101475922B1 (ko) 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법
JP7460250B2 (ja) リチウム二次電池用正極活物質及びこの製造方法
CN108336326B (zh) 锂二次电池用正极活性物质及其制备方法和锂二次电池
EP3242351B1 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
KR101587293B1 (ko) 비수전해액 이차 전지용 Li-Ni계 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JP5879761B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
TWI633699B (zh) 用於可充電電池組之鋰過渡金屬氧化物陰極材料之前驅物
KR101562686B1 (ko) 옥시수산화코발트 입자 분말 및 그의 제조법 및 코발트산리튬 입자 분말, 그의 제조법, 및 그것을 사용한 비수전해질 이차 전지
JP5987401B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法および二次電池
KR20170075596A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
TWI452758B (zh) 鋰離子電池正極材料及其製備方法以及鋰離子電池
JP6756279B2 (ja) 正極活物質の製造方法
KR20120026822A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP6724361B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
KR101361754B1 (ko) 리튬이차전지용 음극 활물질 및 이의 제조방법
WO2014104467A1 (ko) 실리콘 산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법
CN110556531A (zh) 正极材料及其制备方法及包含该正极材料的锂离子电池
JP7262419B2 (ja) 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
Du et al. Confined growth of primary grains towards stabilizing integrated structure of Ni-rich materials
Liu et al. A new, high energy rechargeable lithium ion battery with a surface-treated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode and a nano-structured Li4Ti5O12 anode
US20200006804A1 (en) Lithium Ion Battery Silicate Positive Electrode Material, and Preparation and Application Thereof
Kim et al. Polydopamine-assisted coating layer of a fast Li-ion conductor Li6. 25La3Zr2Al0. 25O12 on Ni-rich cathodes for Li-ion batteries
JP2020009756A (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP7230227B2 (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP7249600B2 (ja) 正極活物質およびそれを備えた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14655616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013867383

Country of ref document: EP