WO2013073662A1 - 直接還元鉄製造システム - Google Patents

直接還元鉄製造システム Download PDF

Info

Publication number
WO2013073662A1
WO2013073662A1 PCT/JP2012/079765 JP2012079765W WO2013073662A1 WO 2013073662 A1 WO2013073662 A1 WO 2013073662A1 JP 2012079765 W JP2012079765 W JP 2012079765W WO 2013073662 A1 WO2013073662 A1 WO 2013073662A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reduced iron
direct
production system
reduction furnace
Prior art date
Application number
PCT/JP2012/079765
Other languages
English (en)
French (fr)
Inventor
雅一 坂口
晴章 平山
洲崎 誠
石田 一男
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/352,922 priority Critical patent/US9557113B2/en
Priority to MX2014004993A priority patent/MX2014004993A/es
Priority to RU2014117534/02A priority patent/RU2567965C1/ru
Priority to CA2853420A priority patent/CA2853420C/en
Publication of WO2013073662A1 publication Critical patent/WO2013073662A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/42Sulphur removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a direct reduced iron production system.
  • direct reduced iron When iron ore such as fine ore or agglomerate is reduced in a solid phase with a modified natural gas at a temperature of, for example, about 1000 ° C., direct reduced iron (DRI) is obtained.
  • DRI direct reduced iron
  • the efficiency of the reducing furnace exhaust gas is increased by returning it to the reducing gas flow and reusing it.
  • Water (H 2 O) and carbon dioxide (CO 2 ) generated in the reduction furnace are inactive in the reduction furnace, so it is necessary to remove them when they are reused. Carbon dioxide is removed by a removal unit such as an amine solvent (Patent Document 1).
  • the amine solvent is replaced with a new one to reduce the concentration of deteriorated substances and managed.
  • the amine solvent is frequently replaced. There is a problem that a large amount of solvent is consumed.
  • the present invention provides a direct reduced iron production system capable of reducing the amount of acid gas absorbent used when removing acidic gas such as CO 2 in exhaust gas from a direct reduction iron furnace.
  • the task is to do.
  • the first invention of the present invention for solving the above-mentioned problems is a direct reduction furnace for directly reducing iron ore to reduced iron using a high-temperature reducing gas containing hydrogen and carbon monoxide, and from the direct reduction furnace
  • An acid gas removal device comprising an acid gas component absorption tower for removing an acid gas component in the exhaust gas from the reduction furnace discharged by an acid gas absorption liquid and a regeneration tower for discharging the acid gas, the acid gas component absorption tower, and the regeneration
  • the present invention provides a direct reduced iron production system comprising a deteriorated substance removing device that separates and removes deteriorated substances in an absorbing solution that is circulated and used between towers.
  • the first invention in the first invention, it comprises a bypass circuit for bypassing a part of the lean solution returned from the regeneration tower to the absorption tower, and a filter interposed in the bypass circuit.
  • a bypass circuit for bypassing a part of the lean solution returned from the regeneration tower to the absorption tower, and a filter interposed in the bypass circuit.
  • an introduction line for introducing the reduction furnace exhaust gas into the acidic gas removal device and a heat exchanger interposed in the introduction line and exchanging heat of the reduction furnace exhaust gas.
  • a bag filter provided on the upstream side of the heat exchanger, and a scrubber provided on the downstream side of the heat exchanger.
  • the fourth invention is the direct reduced iron production system according to any one of the first to third inventions, wherein the acid gas absorbing liquid has a low boiling point.
  • a fifth invention is the direct reduced iron production system according to any one of the first to fourth inventions, wherein the high-temperature reducing gas is a gas derived from natural gas, coal gasification gas, or coke oven gas. It is in.
  • the high-temperature reducing gas is a gas derived from natural gas, coal gasification gas, or coke oven gas. It is in.
  • the deteriorated product in the acidic gas absorbent that circulates between the absorption tower and the regeneration tower can be separated by the deteriorated substance removing device, so that frequent replacement of the acidic gas absorbent is unnecessary.
  • the amount of solvent used can be greatly reduced.
  • by continuously managing the concentration of solvent-degraded products it is possible to suppress the occurrence of forming, realize stable operation, and suppress corrosion of equipment.
  • By stabilizing the operation it is possible to realize a stable operation of the entire directly reduced iron process and cost reduction by reducing solvent consumption.
  • the deteriorated material removal apparatus is operated using the heat in the direct reduced iron process system, it does not require additional energy consumption and is economical.
  • FIG. 1 is a schematic diagram of a directly reduced iron production system according to the first embodiment.
  • FIG. 2 is a schematic diagram of a directly reduced iron production system according to the second embodiment.
  • FIG. 3 is a schematic diagram of a directly reduced iron production system according to the third embodiment.
  • FIG. 4 is a schematic diagram of a directly reduced iron production system according to the fourth embodiment.
  • FIG. 5 is a schematic diagram of another directly reduced iron production system according to the fourth embodiment.
  • FIG. 6 is a schematic diagram of a directly reduced iron production system according to the fifth embodiment.
  • FIG. 7 is a schematic diagram of another directly reduced iron production system according to the fifth embodiment.
  • FIG. 1 is a schematic diagram of a directly reduced iron production system according to the first embodiment.
  • the directly reduced iron production system 10A directly reduces iron ore 12a to reduced iron 12b using a high-temperature reducing gas (hereinafter referred to as “reducing gas”) 11 containing hydrogen and carbon monoxide.
  • reducing gas high-temperature reducing gas
  • the acidic gas component (CO 2 , H 2 S) in the reduction furnace (hereinafter referred to as “reduction furnace”) 13 and the reduction furnace exhaust gas 14 discharged from the direct reduction furnace 13 is converted into an acidic gas absorbing liquid such as an amine solvent (
  • An acid gas removing device 16 comprising an acid gas component absorption tower (hereinafter referred to as “absorption tower”) 16a to be removed by 15) and a regeneration tower 16b for releasing the acid gas and regenerating the absorption liquid 15;
  • a deteriorated substance removing device 17 that separates and removes deteriorated substances in the absorbing liquid 15 that is circulated and used in the absorption tower 16a and the regeneration tower 16b.
  • L 1 is a gas supply line for introducing the reducing furnace exhaust gas 14 to the acid gas removal device 16
  • L 2 is a rich solution line
  • L 3 is a lean solution line
  • L 4 is a lean solution branch line
  • L 5 is A reboiler line that circulates the lean solution in the lower part of the regeneration tower
  • L 6 is a gas discharge line
  • L 7 is a condensed water line
  • L 8 is a recovered gas discharge line
  • L 9 is a purified gas discharge line
  • L 10 is a gas discharge line.
  • the reducing gas 11 is heated to a predetermined high temperature (for example, 900 to 1,050 ° C.) when being introduced into the reducing furnace 13.
  • the iron ore 12a is supplied from the top, and the supplied iron ore 12a moves toward the furnace bottom.
  • the iron ore is oxidized by hydrogen (H 2 ) and carbon monoxide (CO), which are main components of the reducing gas 11, in countercurrent contact with the high-temperature reducing gas 11 supplied from the side of the reducing furnace 13.
  • (Iron) 12a is reduced to become reduced iron 12b, and hydrogen (H 2 ) and carbon monoxide (CO) are converted into water (H 2 O) and carbon dioxide (CO 2 ), respectively.
  • the reduced iron ore 12a is taken out from the lower side of the reduction furnace 13 as reduced iron 12b.
  • hydrogen (H 2 ) and carbon monoxide (CO) in the reducing gas 11 are not used in the reduction furnace 13, and most of the hydrogen (H 2 ) and carbon monoxide (CO) are used. It is discharged from the gas supply line L 1 as reducing furnace exhaust gas 14 without being used.
  • the reduction furnace exhaust gas 14 from the reduction furnace 13 contains dust such as iron powder generated from the reduction furnace 13 and adversely affects the operation of the acidic gas removal device 16 connected to the downstream side, so that the scrubber 20 In addition to removing dust, water (H 2 O) generated in the reduction furnace 13 is removed.
  • the reducing furnace exhaust gas 14 is pressurized by a compressor 21 interposed in the gas supply line L 1 and then introduced into the cooling and cleaning tower 22.
  • the gas temperature is lowered by cooling water and then introduced into the absorption tower 16 a of the acidic gas removal device 16.
  • the CO 2 and H 2 S acidic gases are removed from the reducing furnace exhaust gas 14 by the chemical absorption reaction of the absorbing liquid 15 to form a purified gas 14A from which the acidic gases have been removed, and a purified gas supply line from the top side. It is discharged from the L 9. Since this purified gas 14A contains unused H 2 and CO, they may be combined with the reducing gas 11 and reused as the reducing gas 11 (described later).
  • a part of the gas 14 a exiting the scrubber 20 is on the downstream side of the scrubber 20. in, and to discharge out of the system by a gas discharge line L 10 branched from the gas supply line L 1.
  • the absorption tower 16 a absorbs and removes CO 2 and H 2 S acid gas components from the absorption liquid 15 out of CO, H 2 , CO 2 and H 2 S contained in the reduction furnace exhaust gas 14. is doing.
  • the absorbent 15 is what has absorbed CO 2 and H 2 S in the absorber tower 16a called rich solution 15a, the rich solution 15a is supplied to the regenerator 16b side rich solution line L 2.
  • the rich solution 15a introduced into the regeneration tower 16b releases the absorbed CO 2 and H 2 S by the heat of water vapor superheated by the reboiler 23 in the inside of the tower to become the lean solution 15b, and the lean solution line L 3 is returned again to the absorption tower 16a and recycled.
  • a cooling unit (not shown) is provided for removing the absorption liquid accompanying the purified gas 14A. Further, in the regeneration tower 16b, the recovered gas 14B mainly composed of CO 2 and H 2 S released from the rich solution 15a is discharged out of the system through the gas discharge line L 6 from the top.
  • the recovered gas 14B is cooled by the cooler 25 interposed in the gas discharge line L 6 , and then the condensed water 27 is separated by the gas-liquid separator 26. Condensed water 27 is separated is returned through the condensed water line L 7 to the regenerator within 16b.
  • the reduction furnace exhaust gas 14 from the reduction furnace 13 contains a large amount of CO and iron components, and those that cannot be removed by the scrubber 20 interposed in the gas supply line L 1 may be mixed into the acid gas removal device 16. is there.
  • a part of the absorbing liquid 15 undergoes a chemical reaction with such CO and iron components due to a long operation, thereby generating a deteriorated product, resulting in a decrease in processing capability.
  • the CO-deteriorated product generates formic acid due to the dissolution of CO in the reducing furnace exhaust gas 14 in the absorbent 15, and this formic acid reacts with an absorbent such as an amine solvent.
  • an absorbent such as an amine solvent.
  • the salt By making the salt, it becomes a heat-stable salt, which accumulates in the absorbent 15. Due to the accumulation of the thermally stable salt in the absorption liquid system, for example, the boiling point of the absorption liquid rises. If this boiling point rise occurs, the temperature rise in the reboiler 23 of the regeneration tower 16b promotes the thermal deterioration of the solvent, and the thermal efficiency of the reboiler 23 decreases, which is not preferable. Further, when the viscosity increases, the pressure loss increases and foaming occurs, which is not preferable.
  • the iron-derived deteriorated product is caused by the deterioration of the absorbent.
  • glycine such as bicine (N, N-bis (2-hydroxyethyl) glycine) is generated due to the deterioration.
  • bicine N, N-bis (2-hydroxyethyl) glycine
  • the trivalent iron complex participates in the oxidation-reduction reaction, which promotes dissolution of iron and accelerates it. Since corrosion is accelerated, it is not preferable.
  • the dust derived from iron ore flowing from the reduction furnace 13 has a large specific surface area, rapid generation of an iron complex is expected.
  • the absorbing solution 15 itself is also decomposed by heating in the reboiler 23 to generate a deteriorated component, so that the acid gas absorbing ability is lowered.
  • the absorption liquid 15 Since the absorption liquid 15 is circulated and reused as the rich solution 15a and the lean solution 15b, the above-described deteriorated substances accumulate in the absorption liquid 15, causing a reduction in processing capacity and corrosion of the apparatus.
  • the lean solution branch line L 4 branched from the lean solution line L 3 returning from the regeneration tower 16b to the absorption tower 16a is provided, and the deteriorated substance removing device 17 is provided in the lean solution branch line L 4 .
  • the absorption liquid is regenerated by separating and removing the deteriorated substances.
  • the lean solution 15b to be supplied to the lean-solution branch line L 4 are, are managed as needed by opening and closing the valve V interposed in the lean-solution branch line L 4.
  • the concentration of the deteriorated material accumulated in the absorbing liquid 15 is reduced, and the performance of the absorbing liquid 15 is recovered or maintained, and the performance of the absorbing liquid 15 over a long period of time is improved. Maintenance is performed.
  • the degradation product removing device 17 includes an absorption liquid regeneration method by distillation using a difference in boiling point between the absorption liquid 15 to be used and the degradation product, a method of concentrating and separating degradation products by electrodialysis, and degradation products by ion exchange. There is a method of separating the above, and a method of combining them is also included.
  • Examples of the reclaimer of the absorbing liquid regeneration method include a heat exchanger type reclaimer.
  • the valve V When removing the deteriorated product, the valve V is opened to degrade a part of the lean solution 15b when the reference value of one or both of the deteriorated product caused by CO or the deteriorated product caused by Fe is exceeded.
  • the material removal device 17 is supplied to start the operation of removing the deteriorated material. And when the density
  • the reference value for starting the deterioration removal of the deterioration caused by CO for example, it may be performed when it exceeds 2% by weight.
  • glycine such as bicine
  • it may be performed when it exceeds 5 ppm.
  • the degradation product When measuring the values of both CO-induced degradation products (thermally stable salt concentration) and Fe-induced degradation products (glycine such as bicine), the degradation product will be used when either of them reaches the reference value. A removal operation can be initiated.
  • concentration of the said deteriorated material is an example, and is suitably changed with the kind of absorption liquids, such as an amine solvent of the absorption liquid 15, and various conditions in the acidic gas removal apparatus 16. FIG.
  • the iron concentration is expected to increase rapidly, it is necessary to monitor the concentration frequently separately.
  • Deterioration monitoring may be performed by an automatic or manual analysis operation, and may be determined by a determination unit (not shown).
  • an amine-based solvent as the absorbing liquid 15 that absorbs the acidic gas components (CO 2 , H 2 S).
  • the amine solvent include methylethylamine (MEA).
  • MEA methylethylamine
  • 1DMA2P (1-dimethylamino-2-propanol; boiling point 124 ° C)
  • DMAE N, N-dimethylaminoethanol; boiling point 134 ° C
  • MPZ (1-methylpiperazine; boiling point 138 ° C), PZ (piperazine; boiling point) 146 ° C.), 2MPZ (2-methylpiperazine; boiling point 155 ° C.), DEAE (N, N-diethyl-2-aminoethanol; boiling point 161 ° C.), AMP (2-amino-2-methyl-1-propanol; boiling point 166 ° C), EAE (2-ethylaminoethanol; boiling point 170 ° C), monoethanolamine (MEA; boiling point 170 ° C),
  • the deteriorated concentrate 29 concentrated by the deteriorated material removing device 17 is discharged out of the system.
  • the gas 30 of the volatilized absorption liquid generated when the concentration treatment is performed by the deteriorated material removing device 17 is returned to the lower side of the regeneration tower 16b.
  • the deteriorated product in the absorbent 15 circulating through the absorption tower 16a and the regeneration tower 16b can be separated by the deteriorated substance removing device 17, the replacement of the absorbent 15 frequently. This eliminates the need for the solvent and can greatly reduce the amount of solvent used.
  • FIG. 2 is a schematic diagram of a directly reduced iron production system according to the second embodiment.
  • symbol is attached
  • a bug is added to the gas supply line L 1 for supplying the reducing furnace exhaust gas 14 in the direct reduced iron manufacturing system 10A of the first embodiment shown in FIG.
  • a filter 31 and a heat exchanger 32 are installed. By installing the bag filter 31, the dust removal efficiency in the reduction furnace exhaust gas 14 is improved before the scrubber 20 is processed. Further, the heat exchange efficiency of the heat exchanger 32 is maintained by removing dust in the reduction furnace exhaust gas 14 supplied to the heat exchanger 32.
  • the reboiler 23 and the deteriorated material removing device 17 each require a heat source.
  • the heat exchanger 32 installed in the gas supply line L 1 is used as the heat source to generate the steam 24. It is possible to use the steam 24.
  • FIG. 3 is a schematic diagram of a directly reduced iron production system according to the third embodiment.
  • direct reduced iron manufacturing system 10A, 10B which concerns on Example 1 and 2 shown in FIG.1 and 2, the same code
  • FIG. 3 in the directly reduced iron manufacturing system 10C of the present embodiment, in the directly reduced iron manufacturing system 10B shown in FIG. 2, a part of the lean solution 15b introduced from the regeneration tower 16b to the absorption tower 16a is bypassed.
  • a lean solution bypass line L 11 is provided, and a filter 41 is interposed in the lean solution bypass line L 11 .
  • the filter 41 By installing this filter 41 in the system, it is possible to maintain the performance of the absorbent 15 such as an amine solvent for a long period of time by further removing deteriorated substances and impurities that cannot be removed by the deteriorated substance removing device 17. Become.
  • the component that cannot be removed by the deteriorated material removing device 17 is a volatile deterioration factor substance having a boiling point lower than that of an absorbing solution such as an amine solvent.
  • an activated carbon filter is used as the filter 41.
  • the filter is not limited to the activated carbon filter as long as impurities can be removed.
  • Bypass quantity of lean solution 15b to the lean solution bypass line L 11 is, although about 1/10 of the total amount may be appropriately adjusted by the concentration of impurities.
  • FIG. 4 is a schematic diagram of a directly reduced iron manufacturing system according to the fourth embodiment
  • FIG. 5 is a schematic diagram of another directly reduced iron manufacturing system according to the fourth embodiment.
  • symbol is attached
  • the directly reduced iron manufacturing system 10 ⁇ / b> D of the present embodiment a case where natural gas is used as the reducing gas 11 is illustrated.
  • a gas reformer 51 for reforming the natural gas 50 is provided, and the steam 24 is supplied. Steam reforming, carbon dioxide reforming, or a combination of these is performed, and natural gas 50 is converted into hydrogen (H 2 ) and carbon monoxide (CO), and hydrogen (H 2 ) and monoxide are oxidized.
  • the reformed gas 52 containing carbon (CO) as a main component is obtained.
  • the reformed gas 52 reformed by the reformer 51 is gas-cooled by the gas cooler 53 and then separated from the condensed water 55 by the gas-liquid separator 54.
  • the reformed gas 52 from which the moisture has been separated is introduced into the gas heater 56, heated to a predetermined high temperature (for example, 900 to 1,050 ° C.), and supplied as the reducing gas 11 into the reducing furnace 13.
  • the purified gas 14A purified by the absorption tower 16a is joined to the natural gas 50 side, as shown in FIG.
  • the refined gas supply line (* 1) is provided so that the refined gas 14A merges with the reformed gas 52 after separating the condensed water 55.
  • this refined gas 14 ⁇ / b> A is merged with the reformed gas 52, the refined gas 14 ⁇ / b> A is adjusted to have an ideal reducing gas composition for the reduction reaction in the reduction furnace 13 and introduced into the reformer 51.
  • the recovered gas 14B released from the regeneration tower 16b is mainly composed of CO 2 and H 2 S, provided with a recovered gas supply line (* 2), and used for the reforming furnace or gas heater 56 of the gas reformer 51. It has been introduced into the furnace. Then, H 2 S is burned in the furnace to form sulfur dioxide (SO 2 ), diluted with a large amount of combustion gas discharged from each furnace, and then appropriately treated as exhaust gas from each furnace (for example, desulfurization treatment). Etc.) and then release to the atmosphere.
  • SO 2 sulfur dioxide
  • Etc. desulfurization treatment
  • the steam generated by the waste heat of the reforming furnace and the steam generated by the heat recovered by the cooler 53 for removing moisture in the reformed gas 52 emitted from the gas reformer 51 are described above.
  • the reboiler 23 and the deteriorated substance removing device 17 can be used as the water vapor 24.
  • a part of the gas 14a exiting the scrubber 20 is provided with a reducing furnace exhaust gas supply line (* 3) to provide gas reforming. It can be introduced into the reforming furnace of the vessel 51 or the furnace of the gas heater 56 and combusted here.
  • the exhaust gas from the furnace of the gas reformer 51 or the gas heater 56 is exhausted after sufficiently recovering waste heat by heat recovery means such as a heat exchanger.
  • heat recovery means for example, water vapor is produced and used in the heat-requiring part in the system such as the reboiler 23 and the deteriorated substance removing device 17, or the steam turbine is driven and used as power for the compressor 21 described above. Or it can generate electricity and use it as electricity.
  • FIG. 6 is a schematic diagram of a directly reduced iron manufacturing system according to the fifth embodiment
  • FIG. 7 is a schematic diagram of another directly reduced iron manufacturing system according to the fifth embodiment.
  • symbol is attached
  • FIG. 6 in the directly reduced iron production system 10 ⁇ / b> E of the present embodiment, a case where a coal gasification gas 60 other than natural gas is used as the reducing gas 11 is illustrated.
  • coal gasification gas 60 obtained by gasifying and refining coal in a gasification furnace (not shown) is heated by a gas heater 56 to form the reducing gas 11.
  • a refined coke oven gas can be used as the reducing gas 11.
  • a refined gas supply line (* 1) is provided as shown in FIG.
  • the coal gasified gas 60 is merged, and then heated to a predetermined temperature by the gas heater 56 to form the reducing gas 11 and introduced into the reducing furnace 13.
  • the recovered gas 14B discharged from the regeneration tower 16b is provided with a recovered gas supply line (* 2) and introduced into the furnace of the gas heater 56. Then, H 2 S is burned in the furnace to form sulfur dioxide (SO 2 ), diluted with a large amount of combustion gas discharged from the furnace, and then subjected to appropriate treatment (for example, desulfurization treatment) as exhaust gas from each furnace. After doing, release to the atmosphere.
  • appropriate treatment for example, desulfurization treatment
  • the gas heater 56 may be omitted.
  • the coal gasification gas 60 and the like increase the amount of the reducing gas 11 by the partial oxidation reaction by introducing the fuel 70 such as oxygen and natural gas on the upstream side of the reduction furnace 13.
  • the fuel 70 such as oxygen and natural gas
  • the fuel 70 may be supplied as necessary in the direct reduced iron production system 10D of the fourth embodiment to increase the amount of the reducing gas 11.
  • Example 5 in order to avoid accumulation of CH 4 and N 2 which are inactive components in the system, a part of the gas 14a exiting the scrubber 20 is supplied to the reducing furnace exhaust gas supply line (* 3 ) May be provided and introduced into the furnace of the gas heater 56, where the combustion treatment may be performed.

Abstract

 水素、一酸化炭素を含む高温還元ガス11を用いて、鉄鉱石12aを還元鉄12bに直接還元する直接還元炉13と、該直接還元炉13から排出される還元炉排ガス14中の酸性ガス成分(CO2、H2S)をアミン系溶剤等の吸収液15により除去する酸性ガス成分吸収塔16aと酸性ガスを放出する再生塔16bとからなる酸性ガス除去装置16と、吸収塔16aと再生塔16bとを循環利用される吸収液15中の劣化物を分離除去する劣化物除去装置17とを具備する。

Description

直接還元鉄製造システム
 本発明は、直接還元鉄製造システムに関する。
 粉鉱や塊鉱等の鉄鉱石を例えば1000℃前後の温度で、変性天然ガスにより固相のまま還元すると、直接還元鉄(DRI:Direct Reduced Iron)が得られる。この直接還元製鉄法は、還元炉での還元ガスの利用率が低いために、還元炉排ガスを還元ガス流れに戻し、再利用することで高効率化していた。
 還元炉で発生する水(H2O)、二酸化炭素(CO2)とは、還元炉内では不活性なため、再利用する際には除去する必要があり、水は冷却器又はスクラバで、二酸化炭素は例えばアミン系溶剤等の除去ユニットで除去されている(特許文献1)。
特表2001-520310号公報
 しかしながら直接還元製鉄炉からの排ガスに特有な一酸化炭素(CO)や、微量金属成分、または酸性ガス除去装置における再生塔リボイラにおける熱によって、アミン系溶剤の溶剤劣化物が生成されることで、フォーミングが発生して酸性ガス除去性能が低下したり、運転が難しくなるだけでなく、酸性ガス除去装置の腐食劣化が発生する、という問題がある。
 従来の直接還元プロセスにおいては、アミン系溶剤を新しいものに入れ替えることで、劣化物の濃度を下げて、管理をしており、特に直接還元製鉄炉システムにおいては、高頻度でアミン系溶剤を入れ替えしなければならず、大量の溶剤を消費する、という問題がある。
 そこで、頻繁なアミン系溶剤の入れ替えが不要となり、従来よりも大幅にアミン系溶剤の使用量の節減を図ることができる方策の出現が切望されている。
 本発明は、前記問題に鑑み、直接還元製鉄炉からの排ガス中のCO2等の酸性ガスを除去するに際して、酸性ガス吸収液の使用量の節減を図ることができる直接還元鉄製造システムを提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、水素、一酸化炭素を含む高温還元ガスを用いて、鉄鉱石を還元鉄に直接還元する直接還元炉と、該直接還元炉から排出される還元炉排ガス中の酸性ガス成分を酸性ガス吸収液により除去する酸性ガス成分吸収塔と酸性ガスを放出する再生塔とからなる酸性ガス除去装置と、前記酸性ガス成分吸収塔と前記再生塔との間を循環利用される吸収液中の劣化物を分離除去する劣化物除去装置とを具備することを特徴とする直接還元鉄製造システムにある。
 第2の発明は、第1の発明において、前記再生塔から前記吸収塔に返送するリーン溶液の一部をバイパスするバイパス回路と、該バイパス回路に介装されるフィルタとを具備することを特徴とする直接還元鉄製造システムにある。
 第3の発明は、第1又は2の発明において、前記還元炉排ガスを前記酸性ガス除去装置に導入する導入ラインと、該導入ラインに介装され、前記還元炉排ガスを熱交換する熱交換器と、該熱交換器の前流側に設けられるバグフィルタと、前記熱交換器の後流側に設けられるスクラバと、を具備することを特徴とする直接還元鉄製造システムにある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記酸性ガス吸収液が、低沸点であることを特徴とする直接還元鉄製造システムにある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記高温還元ガスが、天然ガス又は石炭ガス化ガス又はコークス炉ガス由来のガスであることを特徴とする直接還元鉄製造システムにある。
 本発明によれば、吸収塔と再生塔とを循環する酸性ガス吸収液中の劣化物を劣化物除去装置により、分離することができるため、頻繁な酸性ガス吸収液の入れ替えが不要となり、従来よりも大幅に溶剤使用量の節減を図ることができる。
 また、連続した溶剤劣化物の濃度の管理を行うことにより、フォーミング発生を抑え、安定した運転を実現し、機器の腐食も抑えることができる。
 この運転の安定化によって、直接還元鉄プロセス全体の安定運転、及び溶剤消費量削減による低コスト化を実現することができる。
 さらに、直接還元鉄プロセス系内での熱を利用して劣化物除去装置を稼動することにより、追加のエネルギー消費を必要とせず、経済的となる。
図1は、実施例1に係る直接還元鉄製造システムの概略図である。 図2は、実施例2に係る直接還元鉄製造システムの概略図である。 図3は、実施例3に係る直接還元鉄製造システムの概略図である。 図4は、実施例4に係る直接還元鉄製造システムの概略図である。 図5は、実施例4に係る他の直接還元鉄製造システムの概略図である。 図6は、実施例5に係る直接還元鉄製造システムの概略図である。 図7は、実施例5に係る他の直接還元鉄製造システムの概略図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例に係る直接還元鉄製造システムについて、図面を参照して説明する。図1は、実施例1に係る直接還元鉄製造システムの概略図である。図1に示すように、直接還元鉄製造システム10Aは、水素、一酸化炭素を含む高温還元ガス(以下「還元ガス」という)11を用いて、鉄鉱石12aを還元鉄12bに直接還元する直接還元炉(以下「還元炉」という)13と、該直接還元炉13から排出される還元炉排ガス14中の酸性ガス成分(CO2、H2S)をアミン系溶剤等の酸性ガス吸収液(以下「吸収液」という)15により除去する酸性ガス成分吸収塔(以下「吸収塔」という)16aと酸性ガスを放出して吸収液15を再生する再生塔16bとからなる酸性ガス除去装置16と、吸収塔16aと再生塔16bとを循環利用される吸収液15中の劣化物を分離除去する劣化物除去装置17とを具備するものである。
 図1中、符号15aはリッチ溶液、15bはリーン溶液、20はスクラバ、21は圧縮機、22は冷却洗浄塔、23はリボイラ、24は水蒸気、25は冷却器、26は気液分離器、27は凝縮水、L1は還元炉排ガス14を酸性ガス除去装置16へ導入するガス供給ライン、L2はリッチ溶液ライン、L3はリーン溶液ライン、L4はリーン溶液分岐ライン、L5は再生塔の下部でリーン溶液を循環させるリボイラライン、L6はガス放出ライン、L7は凝縮水ライン、L8は回収ガス排出ライン、L9は精製ガス排出ライン、L10はガス排出ラインを各々図示する。
 ここで、還元ガス11は、還元炉13に導入する際には、所定の高温(例えば900~1,050℃)の温度まで加熱されている。
 還元ガス11が導入される還元炉13においては、上部より鉄鉱石12aが供給され、供給された鉄鉱石12aは炉底部側へ移動していく。この際、同時に還元炉13の側部から供給される高温の還元ガス11と向流接触して、還元ガス11の主成分の水素(H2)と一酸化炭素(CO)によって鉄鉱石(酸化鉄)12aが還元され、還元鉄12bとなると共に、水素(H2)と一酸化炭素(CO)とは、各々水(H2O)と二酸化炭素(CO2)とに転化する。
 還元された鉄鉱石12aは、還元鉄12bとして還元炉13の下部側から取り出される。
 また、還元ガス11中の水素(H2)と一酸化炭素(CO)とは、還元炉13内で全量は使用されず、大部分の水素(H2)と一酸化炭素(CO)とが未使用のまま還元炉排ガス14として、ガス供給ラインL1より排出される。
 ここで、還元炉13からの還元炉排ガス14は、還元炉13から発生する鉄粉等のダストを含み、後流側に接続される酸性ガス除去装置16の運転に悪影響を与えるため、スクラバ20によってダストを除去すると共に、還元炉13で発生した水(H2O)を除去している。
 還元炉排ガス14は、ガス供給ラインL1に介装された圧縮機21によって、昇圧され、その後、冷却洗浄塔22に導入される。この冷却洗浄塔22では、ガス温度を冷却水により低下させた後、酸性ガス除去装置16の吸収塔16aに導入される。
 この吸収塔16aでは、還元炉排ガス14からCO2とH2Sの酸性ガスが吸収液15の化学吸収反応によって除去され、酸性ガスが除去された精製ガス14Aとなり、頂部側から精製ガス供給ラインL9より排出される。
 この精製ガス14A中には、未利用のH2とCOとが含まれているので、還元ガス11に合流し、還元ガス11として再利用するようにしてもよい(後述する)。
 ここで、還元炉排ガス14中に含まれる系内不活性成分であるCH4やN2の系内蓄積を避けるために、スクラバ20を出たガスの一部14aは、スクラバ20の後流側で、ガス供給ラインL1から分岐されるガス排出ラインL10により系外に排出するようにしている。
 酸性ガス除去装置16では、吸収塔16aにおいて、還元炉排ガス14に含有するCO、H2、CO2及びH2Sの内、吸収液15でCO2とH2Sの酸性ガス成分を吸収除去している。
 この吸収液15は、吸収塔16a内でCO2とH2Sを吸収したものをリッチ溶液15aと称し、このリッチ溶液15aは、リッチ溶液ラインL2で再生塔16b側に供給される。再生塔16bに導入されたリッチ溶液15aは、この塔内部において、リボイラ23で過熱された水蒸気の熱により、吸収したCO2とH2Sを放出して、リーン溶液15bとなり、リーン溶液ラインL3を介して再度吸収塔16aに戻され、循環再利用されている。
 吸収塔16aの上部側には、精製ガス14A中に同伴する吸収液を除去するための冷却部(図示せず)が設けられている。
 また、再生塔16bでは、リッチ溶液15aから放出されたCO2とH2Sを主成分とする回収ガス14Bがその頂部からガス放出ラインL6を介して、系外へ排出される。
 回収ガス14Bは、ガス放出ラインL6に介装された冷却器25で冷却された後、気液分離器26で凝縮水27を分離している。分離された凝縮水27は、再生塔16b内に凝縮水ラインL7を介して戻している。
 還元炉13からの還元炉排ガス14中には、COや鉄成分を多く含み、ガス供給ラインL1に介装されたスクラバ20において除去できないものが、酸性ガス除去装置16に混入する可能性がある。
 また、長時間の運転によって吸収液15の一部がこのようなCOや鉄成分と化学反応を起こすことによって劣化物を生成し、処理能力が低下する。
 ここで、CO起因の劣化物は、還元炉排ガス14中のCOが吸収液15中に溶解することに起因して、ギ酸を生成し、このギ酸がアミン系溶剤等の吸収液と反応して塩を作ることで、熱安定性塩となり、これが吸収液15内に蓄積することとなる。
 この熱安定性塩の吸収液系内の蓄積により、例えば吸収液の沸点上昇が発生する。
 この沸点上昇が発生すると、再生塔16bのリボイラ23での温度上昇により、溶剤の熱劣化が促進され、また、リボイラ23の熱効率が低下するので好ましくない。
 また、粘度上昇する場合には、圧損が上昇し、フォーミングが発生するので好ましくない。
 また、鉄起因の劣化物は、吸収液の劣化により生じる。例えば吸収液としてアミン系溶剤を用いる場合、その劣化により、ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン)等のグリシン類が生成される。このようなグリシン類は、鉄とキレート錯体を作ることにより、鉄表面の皮膜生成を妨げると同時に、3価の鉄錯体が酸化還元反応に関与することで鉄の溶解を助長し、加速的に腐食を促進することとなるので、好ましくない。
 特に、還元炉13から流入する鉄鉱石起因のダストは比表面積が大きいため、鉄錯体の急激な生成が予想される。
 また、吸収液15自体もリボイラ23での加熱によって分解し劣化成分を生成することで酸性ガスの吸収能力が低下することとなる。
 吸収液15は、リッチ溶液15aとリーン溶液15bとして循環・再利用されているため、以上のような劣化物は吸収液15中に蓄積し、処理能力低下及び装置の腐食の原因となる。
 このため、本発明では、再生塔16bから吸収塔16aに返送するリーン溶液ラインL3から分岐するリーン溶液分岐ラインL4を設け、このリーン溶液分岐ラインL4に劣化物除去装置17を設け、劣化物を分離・除去して吸収液を再生させるようにしている。なお、リーン溶液分岐ラインL4に供給されるリーン溶液15bは、リーン溶液分岐ラインL4に介装されたバルブVの開閉により必要に応じて管理されている。
 この劣化物除去装置17を設けることにより、吸収液15中に蓄積する劣化物の濃度を低減させ、吸収液15の性能を回復又は維持し、長期間に亙っての吸収液15の性能の維持管理を行うようにしている。
 この劣化物除去装置17は、使用する吸収液15と、劣化物との沸点の違いを利用した蒸留による吸収液再生方式と、電気透析によって劣化物を濃縮分離する方法と、イオン交換によって劣化物を分離する方法があり、それぞれを組み合わせた方式も含まれる。
 吸収液再生方式のリクレーマとしては、例えば熱交換器型リクレーマを挙げることができる。
 劣化物の除去を実施する場合には、CO起因の劣化物、Fe起因の劣化物のいずれか一方又は両方の基準値を超えた際に、バルブVを開き、リーン溶液15bの一部を劣化物除去装置17に供給し、劣化物除去の操作を開始する。
 そして、リーン溶液15b中の劣化物の濃度が所定値未満まで低下した際に、劣化物除去操作を停止する。
 ここで、CO起因の劣化物(熱安定性塩濃度)の劣化物除去開始基準値としては、例えば2重量%を超えた場合に行うようにすることができる。
 また、Fe起因の劣化物(例えばビシン等のグリシン類)の劣化物除去開始基準値としては、例えば5ppmを超えた場合に行うようにすることができる。
 CO起因の劣化物(熱安定性塩濃度)及びFe起因の劣化物(ビシン等のグリシン類)の両方の値を測定する場合には、いずれか一方が基準値に達した際に、劣化物除去操作を開始するようにすることができる。
 なお、前記劣化物の濃度は一例であり、吸収液15のアミン系溶剤等の吸収液の種類、酸性ガス除去装置16での諸条件により適宜変更される。
 なお、鉄濃度の急激な上昇が予想されるため、濃度監視は別途頻繁に行う必要がある。
 劣化物の監視は、自動又は手動の分析操作により行い、図示しない判定手段にて判定するようにしてもよい。
 ここで、酸性ガス成分(CO2、H2S)を吸収する吸収液15としては、アミン系の溶剤を用いることが好ましい。このアミン系の溶剤としては、例えばメチルエチルアミン(MEA)等を例示することができる。
 特に、1DMA2P(1-ジメチルアミノ-2-プロパノール;沸点124℃)、DMAE(N,N-ジメチルアミノエタノール;沸点134℃)、MPZ(1-メチルピペラジン;沸点138℃)、PZ(ピペラジン;沸点146℃)、2MPZ(2-メチルピペラジン;沸点155℃)、DEAE(N,N-ジエチル-2-アミノエタノール;沸点161℃)、AMP(2-アミノ-2-メチル-1-プロパノール;沸点166℃)、EAE(2-エチルアミノエタノール;沸点170℃)、モノエタノールアミン(MEA;沸点170℃)、nBAE(2-ブチルアミノエタノール;沸点200℃)、4AMPR(4-ピペリジンメタンアミン;沸点200℃)のような低沸点のアミンをベースとした溶剤を用いることで、劣化物を例えば蒸発分離することを容易としている。
 これは、アミン系の溶剤であっても、例えばMDEA(N-メチルジエタノールアミン)等のような高沸点(247℃)のアミンをベースとした溶剤を用いる場合には、水蒸気を用いた蒸発により劣化物の蒸発分離が困難であり、再生利用が効率的でないからである。
 この劣化物除去装置17で濃縮処理された劣化濃縮物29は系外に排出される。
 なお、劣化物除去装置17で濃縮処理した際に発生する揮発された吸収液のガス30は、再生塔16bの下部側に戻される。
 以上、本実施例によれば、吸収塔16aと再生塔16bとを循環する吸収液15中の劣化物を劣化物除去装置17により、分離することができるため、頻繁な吸収液15の入れ替えが不要となり、従来よりも大幅に溶剤使用量の節減を図ることができる。
 また、連続した溶剤劣化物の濃度の管理を行うことにより、フォーミング発生を抑え、安定した運転を実現し、機器の腐食も抑えることができる。
 この運転の安定化によって、直接還元鉄プロセス全体の安定運転、及び溶剤消費量削減による低コスト化を実現することができる。
 本発明による実施例に係る直接還元鉄製造システムについて、図面を参照して説明する。図2は、実施例2に係る直接還元鉄製造システムの概略図である。なお、図1に示す実施例1に係る直接還元鉄製造システム10Aと同一の構成については、同一符号を付して重複した説明は省略する。
 図2に示すように、本実施例の直接還元鉄製造システム10Bでは、図1に示す実施例1の直接還元鉄製造システム10Aにおいて、還元炉排ガス14を供給するガス供給ラインL1に、バグフィルタ31及び熱交換器32が設置されている。
 このバグフィルタ31の設置により、スクラバ20の処理以前において還元炉排ガス14中のダスト除去の効率化を図っている。また、熱交換器32に供給する還元炉排ガス14中のダストを除去することで、熱交換器32の熱交換効率の維持を図るようにしている。
 リボイラ23と劣化物除去装置17にはそれぞれ熱源が必要であるが、本実施例では、その熱源としてガス供給ラインL1に設置された熱交換器32により水蒸気24を発生させ、この発生させた水蒸気24の蒸気を利用することが可能となる。
 本発明による実施例に係る直接還元鉄製造システムについて、図面を参照して説明する。図3は、実施例3に係る直接還元鉄製造システムの概略図である。なお、図1及び2に示す実施例1及び2に係る直接還元鉄製造システム10A、10Bと同一の構成については、同一符号を付して重複した説明は省略する。
 図3に示すように、本実施例の直接還元鉄製造システム10Cでは、図2に示す直接還元鉄製造システム10Bにおいて、再生塔16bから吸収塔16aに導入されるリーン溶液15bの一部をバイパスさせるリーン溶液バイパスラインL11を設け、このリーン溶液バイパスラインL11にフィルタ41を介装している。
 このフィルタ41を系内に設置することで、劣化物除去装置17で除去できない劣化物や不純物等をさらに除去することでアミン系溶剤等の吸収液15の性能を長期間維持することが可能となる。
 この劣化物除去装置17で除去できない成分とは、沸点がアミン系溶剤等の吸収液よりも低い揮発性劣化要因物質等である。
 本実施例では、フィルタ41として活性炭フィルタを用いているが、不純物を除去できるものであれば活性炭フィルタに限定されるものではない。
 このリーン溶液バイパスラインL11へのリーン溶液15bのバイパス量は、全量の1/10程度としているが、不純物の濃度により適宜調整してもよい。
 本発明による実施例に係る直接還元鉄製造システムについて、図面を参照して説明する。図4は、実施例4に係る直接還元鉄製造システムの概略図、図5は、実施例4に係る他の直接還元鉄製造システムの概略図である。なお、図1乃至3に示す実施例1乃至3に係る直接還元鉄製造システム10A~10Cと同一の構成については、同一符号を付して重複した説明は省略する。
 図4に示すように、本実施例の直接還元鉄製造システム10Dでは、還元ガス11として、天然ガスを用いる場合を例示する。
 天然ガス50からのガスを改質して還元ガス11を供給する場合には、天然ガス50を改質するガス改質器(以下「改質器」という)51を設け、水蒸気24を供給して水蒸気改質、炭酸ガス改質、あるいはこれらを組み合わせた反応が行われ、天然ガス50は、水素(H2)と一酸化炭素(CO)とに転化し、水素(H2)と一酸化炭素(CO)が主成分の改質ガス52を得るようにしている。
 改質器51で改質された改質ガス52は、ガス冷却器53でガス冷却された後、気液分離器54で凝縮水55を分離している。
 水分が分離された改質ガス52は、ガスヒータ56に導入され、所定の高温(例えば900~1,050℃)に加熱され、還元ガス11として、還元炉13内に供給される。
 また、実施例4の直接還元鉄製造システム10Dにおいて、吸収塔16aにて精製された精製ガス14Aを、天然ガス50側に合流する場合には、図5に示すように、気液分離器54で凝縮水55を分離した後の改質ガス52に精製ガス14Aを合流するように、精製ガス供給ライン(※1)を設けるようにしている。
 この精製ガス14Aを改質ガス52に合流する場合には、還元炉13での還元反応に理想的な還元ガス組成となるように調整して、改質器51に導入するようにしている。
 また、再生塔16bから放出される回収ガス14Bは、CO2とH2Sが主成分であり、回収ガス供給ライン(※2)を設け、ガス改質器51の改質炉又はガスヒータ56の炉に導入している。
 そして炉内でH2Sを燃焼させて二酸化硫黄(SO2)とし、それぞれの炉から排出される大量の燃焼ガスによって希釈された後、それぞれの炉からの排ガスとして適切な処理(例えば脱硫処理等)を行った後、大気に放出する。
 これにより、再生塔16bから放出される回収ガス14B中のH2Sを直接系外に排出することが防止される。また、H2Sを例えば触媒等で処理する場合では、使用する触媒が劣化するので、その都度触媒の交換が必要となるが、本実施例のように燃焼処理する場合には、これが不要となり経済的となる。
 ここで、改質炉の廃熱によって発生させた水蒸気や、ガス改質器51から出た改質ガス52中の水分除去のための冷却器53で回収した熱によって発生させた水蒸気は、前述したリボイラ23及び劣化物除去装置17の水蒸気24として利用することができる。
 また、系内不活性成分であるCH4やN2の系内蓄積を避けるために、スクラバ20を出たガスの一部14aは、還元炉排ガス供給ライン(※3)を設け、ガス改質器51の改質炉又はガスヒータ56の炉に導入して、ここで燃焼処理することができる。
 また、ガス改質器51又はガスヒータ56の炉の排ガスは、例えば熱交換器等の熱回収手段によって十分に廃熱回収を行った後排出される。この熱回収手段により、例えば水蒸気を製造し、リボイラ23や劣化物除去装置17等、系内の熱必要部で使用され、又はスチームタービンを駆動して、前述の圧縮機21の動力として利用するか、または発電を行い電力として利用することができる。
 本発明による実施例に係る直接還元鉄製造システムについて、図面を参照して説明する。図6は、実施例5に係る直接還元鉄製造システムの概略図、図7は、実施例5に係る他の直接還元鉄製造システムの概略図である。なお、図1乃至5に示す実施例1乃至4に係る直接還元鉄製造システム10A~10Dと同一の構成については、同一符号を付して重複した説明は省略する。
 図6に示すように、本実施例の直接還元鉄製造システム10Eでは、還元ガス11として、天然ガス以外の石炭ガス化ガス60を用いる場合を例示する。
 本実施例では、石炭をガス化炉(図示せず)でガス化し、精製して得た石炭ガス化ガス60を用い、ガスヒータ56で加熱して還元ガス11としている。
 また、石炭ガス化ガス60以外としては、コークス炉ガスを精製したものを還元ガス11として利用することもできる。
 実施例5の直接還元鉄製造システム10Eにおいて、精製ガス14Aを石炭ガス化ガス60に合流する場合には、図7に示すように、精製ガス供給ライン(※1)を設け、精製ガス14Aを石炭ガス化ガス60に合流させ、その後、ガスヒータ56で所定温度まで加熱して還元ガス11とし、還元炉13に導入するようにしている。
 また、再生塔16bから放出される回収ガス14Bは、回収ガス供給ライン(※2)を設け、ガスヒータ56の炉に導入している。
 そして炉内でH2Sを燃焼させて二酸化硫黄(SO2)とし、炉から排出される大量の燃焼ガスによって希釈された後、それぞれの炉からの排ガスとして適切な処理(例えば脱硫処理)を行った後、大気に放出する。
 また、図6及び7の実施例5において、ガスヒータ56を省略するようにしてもよい。このガスヒータ56を省略する場合には、石炭ガス化ガス60等は、還元炉13の前流側において、酸素と天然ガス等の燃料70の導入による部分酸化反応によって、還元ガス11を増量すると共に、前記必要温度(900~1050℃)まで内部加熱された後、還元炉13に導入するようにしてもよい。
 なお、この酸素と天然ガス等の燃料70は、実施例4の直接還元鉄製造システム10Dにおいても、必要に応じて供給して、還元ガス11の増量を行うようにしてもよい。
 また、実施例5においても、系内不活性成分であるCH4やN2の系内蓄積を避けるために、スクラバ20を出たガスの一部14aについては、還元炉排ガス供給ライン(※3)を設け、ガスヒータ56の炉に導入して、ここで燃焼処理するようにしてもよい。
 10A~10E 直接還元鉄製造システム
 11 高温還元ガス
 12a 鉄鉱石
 12b 還元鉄
 13 直接還元炉
 14 還元炉排ガス
 15 酸性ガス吸収液(吸収液)
 16 酸性ガス除去装置
 16a 酸性ガス成分吸収塔(吸収塔)
 16b 再生塔
 17 劣化物除去装置

Claims (5)

  1.  水素、一酸化炭素を含む高温還元ガスを用いて、鉄鉱石を還元鉄に直接還元する直接還元炉と、
     該直接還元炉から排出される還元炉排ガス中の酸性ガス成分を吸収液により除去する酸性ガス成分吸収塔と酸性ガスを放出する再生塔とからなる酸性ガス除去装置と、
     前記酸性ガス成分吸収塔と前記再生塔との間を循環利用される吸収液中の劣化物を分離除去する劣化物除去装置とを具備することを特徴とする直接還元鉄製造システム。
  2.  請求項1において、
     前記再生塔から前記吸収塔に返送するリーン溶液の一部をバイパスするバイパス回路と、
     該バイパス回路に介装されるフィルタとを具備することを特徴とする直接還元鉄製造システム。
  3.  請求項1又は2において、
     前記還元炉排ガスを前記酸性ガス除去装置に導入する導入ラインと、
     該導入ラインに介装され、前記還元炉排ガスを熱交換する熱交換器と、
     該熱交換器の前流側に設けられるバグフィルタと、
     前記熱交換器の後流側に設けられるスクラバと、を具備することを特徴とする直接還元鉄製造システム。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記酸性ガス吸収液が、低沸点であることを特徴とする直接還元鉄製造システム。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記高温還元ガスが、天然ガス又は石炭ガス化ガス又はコークス炉ガス由来のガスであることを特徴とする直接還元鉄製造システム。
PCT/JP2012/079765 2011-11-17 2012-11-16 直接還元鉄製造システム WO2013073662A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/352,922 US9557113B2 (en) 2011-11-17 2012-11-16 Direct reduced iron manufacturing system
MX2014004993A MX2014004993A (es) 2011-11-17 2012-11-16 Sistema de manufactura de hierro reducido directo.
RU2014117534/02A RU2567965C1 (ru) 2011-11-17 2012-11-16 Установка для производства железа прямого восстановления
CA2853420A CA2853420C (en) 2011-11-17 2012-11-16 Direct reduced iron manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011251966A JP2013108108A (ja) 2011-11-17 2011-11-17 直接還元鉄製造システム
JP2011-251966 2011-11-17

Publications (1)

Publication Number Publication Date
WO2013073662A1 true WO2013073662A1 (ja) 2013-05-23

Family

ID=48429715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079765 WO2013073662A1 (ja) 2011-11-17 2012-11-16 直接還元鉄製造システム

Country Status (7)

Country Link
US (1) US9557113B2 (ja)
JP (1) JP2013108108A (ja)
CA (1) CA2853420C (ja)
MX (1) MX2014004993A (ja)
MY (1) MY171824A (ja)
RU (1) RU2567965C1 (ja)
WO (1) WO2013073662A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044487A1 (ja) * 2020-08-31 2022-03-03 株式会社Ihi 二酸化炭素回収システム

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2500015A1 (en) 2002-09-27 2004-04-08 Axesstel, Inc. Telephony terminal providing connection between a telephone and a data network
JP2013108109A (ja) * 2011-11-17 2013-06-06 Mitsubishi Heavy Ind Ltd 直接還元鉄製造システム
JP2013108108A (ja) * 2011-11-17 2013-06-06 Mitsubishi Heavy Ind Ltd 直接還元鉄製造システム
CN103409577B (zh) * 2013-08-10 2015-09-09 山西鑫立能源科技有限公司 连续外热式还原气直接还原铁方法
KR20160058826A (ko) * 2013-09-19 2016-05-25 다우 글로벌 테크놀로지스 엘엘씨 풍부/희박 용매 재생을 위한 스트리퍼 공급 장치의 최적화
JP2015097982A (ja) * 2013-11-18 2015-05-28 三菱日立パワーシステムズ株式会社 リクレーミング方法
CN104673417B (zh) * 2015-02-16 2017-03-15 上海尧兴投资管理有限公司 用于煤制天然气的预冷却和干燥净化的系统和方法
CA2979698C (en) * 2016-04-26 2019-04-30 Bruce R. CLEMENTS System and method of high pressure oxy-fired (hiprox) flash metallization
JP6770453B2 (ja) * 2017-02-01 2020-10-14 三菱重工エンジニアリング株式会社 排ガス処理システム
EP3401001A1 (de) * 2017-05-12 2018-11-14 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Verfahren und anlage zur abtrennung von begleitgasen aus einem rohsynthesegas
JP7134618B2 (ja) 2017-10-31 2022-09-12 三菱重工エンジニアリング株式会社 酸性ガス回収方法及びシステム
KR20190074806A (ko) 2017-12-20 2019-06-28 주식회사 포스코 배가스 처리 장치 및 그 처리 방법
CN108671701A (zh) * 2018-05-17 2018-10-19 浙江卫星能源有限公司 一种含硫化氢的气体的脱硫方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169920A (ja) * 1983-03-03 1984-09-26 ザ・ダウ・ケミカル・カンパニ− 煙道ガスからのco↓2の回収の改良法
US5110350A (en) * 1983-05-16 1992-05-05 Hylsa S.A. De C.V. Method of reducing iron ore
JP2001019416A (ja) * 1999-06-10 2001-01-23 Praxair Technol Inc 酸素含有混合物からの二酸化炭素の回収方法及び装置
WO2010042023A1 (en) * 2008-10-06 2010-04-15 Luossavaara-Kiirunavaara Ab Process for production of direct reduced iron
WO2011012964A2 (en) * 2009-07-31 2011-02-03 Hyl Technologies, S.A. De C.V. Method for producing direct reduced iron with limited co2 emissions
JP2011104580A (ja) * 2009-10-19 2011-06-02 Mitsubishi Heavy Ind Ltd リクレーミング装置およびリクレーミング方法
JP2011136258A (ja) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547685A (en) 1947-11-25 1951-04-03 Brassert & Co Reduction of metallic oxides
JPS5362718A (en) 1976-11-18 1978-06-05 Nippon Steel Corp Manufacture of reduced iron
US4439233A (en) 1983-05-09 1984-03-27 Midrex Corporation Direct reduction of iron
US4528030A (en) 1983-05-16 1985-07-09 Hylsa, S.A. Method of reducing iron ore
JPS6347308A (ja) 1986-08-18 1988-02-29 Nippon Kokan Kk <Nkk> 溶融還元精錬設備
RU2069701C1 (ru) 1993-08-30 1996-11-27 С.В.Г. Сидерурхика дель Ориноко, С.А. Способ прямого восстановления железоокисного материала и установка для его осуществления
US5858057A (en) 1996-09-25 1999-01-12 Hylsa S.A. De C.V. Method for producing direct reduced iron with a controlled amount of carbon
JP4967191B2 (ja) 1997-10-10 2012-07-04 ヒルサ エス エー デ シー ブイ Driの浸炭を制御するための方法および装置
US6027545A (en) 1998-02-20 2000-02-22 Hylsa, S.A. De C.V. Method and apparatus for producing direct reduced iron with improved reducing gas utilization
US6592829B2 (en) 1999-06-10 2003-07-15 Praxair Technology, Inc. Carbon dioxide recovery plant
EA010000B1 (ru) 2004-04-22 2008-06-30 Флуор Текнолоджиз Корпорейшн Усовершенствованная установка для удаления серы и способ обработки отходящих газов
US8951261B2 (en) 2009-11-20 2015-02-10 Zimmer Knee Creations, Inc. Subchondral treatment of joint pain
US8496730B2 (en) 2010-05-14 2013-07-30 Midrex Technologies, Inc. System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas
JP2013108109A (ja) * 2011-11-17 2013-06-06 Mitsubishi Heavy Ind Ltd 直接還元鉄製造システム
JP2013108108A (ja) * 2011-11-17 2013-06-06 Mitsubishi Heavy Ind Ltd 直接還元鉄製造システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169920A (ja) * 1983-03-03 1984-09-26 ザ・ダウ・ケミカル・カンパニ− 煙道ガスからのco↓2の回収の改良法
US5110350A (en) * 1983-05-16 1992-05-05 Hylsa S.A. De C.V. Method of reducing iron ore
JP2001019416A (ja) * 1999-06-10 2001-01-23 Praxair Technol Inc 酸素含有混合物からの二酸化炭素の回収方法及び装置
WO2010042023A1 (en) * 2008-10-06 2010-04-15 Luossavaara-Kiirunavaara Ab Process for production of direct reduced iron
WO2011012964A2 (en) * 2009-07-31 2011-02-03 Hyl Technologies, S.A. De C.V. Method for producing direct reduced iron with limited co2 emissions
JP2011104580A (ja) * 2009-10-19 2011-06-02 Mitsubishi Heavy Ind Ltd リクレーミング装置およびリクレーミング方法
JP2011136258A (ja) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044487A1 (ja) * 2020-08-31 2022-03-03 株式会社Ihi 二酸化炭素回収システム
JP7388567B2 (ja) 2020-08-31 2023-11-29 株式会社Ihi 二酸化炭素回収システム

Also Published As

Publication number Publication date
US9557113B2 (en) 2017-01-31
MX2014004993A (es) 2014-05-22
CA2853420C (en) 2017-07-11
JP2013108108A (ja) 2013-06-06
RU2567965C1 (ru) 2015-11-10
CA2853420A1 (en) 2013-05-23
US20140252700A1 (en) 2014-09-11
MY171824A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2013073662A1 (ja) 直接還元鉄製造システム
WO2013073663A1 (ja) 直接還元鉄製造システム
US8512460B2 (en) Carbon dioxide recovery system
JP5868741B2 (ja) 酸性ガス除去装置
JP4875522B2 (ja) Co2回収装置及び廃棄物抽出方法
CA2877852C (en) Exhaust gas treatment system
JP6071838B2 (ja) Co2又はh2s又はその双方の回収装置及び方法
US9216380B1 (en) Ammonia stripper for a carbon capture system for reduction of energy consumption
JP2010241630A (ja) Co2回収装置及びその方法
JP5931834B2 (ja) リクレーミング装置及び方法、co2又はh2s又はその双方の回収装置
JP6634395B2 (ja) 排ガス処理装置及びそれを用いたco2回収装置
WO2013161574A1 (ja) Co2回収装置およびco2回収方法
JP2014036942A (ja) Co2回収装置およびco2回収方法
JP2015134334A (ja) リクレーミング装置及び方法、co2又はh2s又はその双方の回収装置
JP2011005368A (ja) Co2回収装置及び方法
JP4573519B2 (ja) バイオガス発電装置
WO2022044487A1 (ja) 二酸化炭素回収システム
KR102209400B1 (ko) 코크스 오븐 가스 정제 장치 및 정제 방법
JP2009056415A (ja) ハロゲン化物除去装置
KR20210078986A (ko) 산성가스 함유 배가스로부터 산성가스를 제거하는 배가스 정제장치 및 방법
JP2012040557A (ja) ハロゲン化物除去装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14352922

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2853420

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/004993

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2014117534

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201402507

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850462

Country of ref document: EP

Kind code of ref document: A1