WO2013073395A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2013073395A1
WO2013073395A1 PCT/JP2012/078571 JP2012078571W WO2013073395A1 WO 2013073395 A1 WO2013073395 A1 WO 2013073395A1 JP 2012078571 W JP2012078571 W JP 2012078571W WO 2013073395 A1 WO2013073395 A1 WO 2013073395A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
automatic transmission
gear
shift stage
piston
Prior art date
Application number
PCT/JP2012/078571
Other languages
English (en)
French (fr)
Inventor
遠藤 剛
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2013544213A priority Critical patent/JP5836391B2/ja
Priority to EP12849227.9A priority patent/EP2781799B1/en
Priority to KR1020147016168A priority patent/KR101602590B1/ko
Priority to CN201280056112.8A priority patent/CN103946599B/zh
Priority to US14/358,622 priority patent/US9347551B2/en
Publication of WO2013073395A1 publication Critical patent/WO2013073395A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/08Timing control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • F16H59/045Ratio selector apparatus consisting of fluid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H2059/6807Status of gear-change operation, e.g. clutch fully engaged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/24Interruption of shift, e.g. if new shift is initiated during ongoing previous shift

Definitions

  • the present invention relates to a control device for an automatic transmission that includes a frictional engagement element that is controlled from an engaged state to a released state by shift control.
  • An object of the present invention is to provide a control device for an automatic transmission that can prevent occurrence of a shock or racing when a shift is performed to return the shift stage after the shift control is completed.
  • the present invention is a control device for an automatic transmission that includes a first frictional engagement element that is engaged at a first speed and released at a second speed.
  • Piston stroke return determination means for detecting a released state of the piston pressing the friction plate of the first friction engagement element; After the shift from the first gear to the second gear is completed, the execution of the shift from the second gear to the first gear is limited until it is determined that the piston is in a predetermined release state.
  • Shift start determination means Is provided.
  • the first gear after the shift from the first gear to the second gear is completed, the first gear from the second gear until the piston is determined to be in a predetermined release state. Execution of shifting to the shift stage is restricted. That is, in the shift from the first gear to the second gear, the first friction engagement element that is engaged at the first gear and released at the second gear is controlled from the engaged state to the released state. On the other hand, in the shift from the second shift stage to the first shift stage (that is, shift control for returning the shift stage), the first friction engagement element is controlled from the released state to the engaged state.
  • the shift from the first gear to the second gear is completed, there is variation in the released state of the piston that presses the friction plate of the first friction engagement element.
  • the shift from the second shift stage to the first shift stage (that is, shift control for returning the shift stage) is executed, thereby completing the previous shift. It is possible to execute the next shift after eliminating the unevenness of the piston release state that sometimes occurs.
  • the precharge hydraulic pressure for supplying the first friction engagement element is supplied, the supply hydraulic pressure is too large, and a fastening shock is generated. Therefore, it is possible to prevent the occurrence of overshooting.
  • 1 is an overall system diagram illustrating a configuration of a power train of a vehicle to which an automatic transmission control device of an embodiment is applied. It is a flowchart which shows the flow of the shift start judgment process performed with the AT controller of an Example. It is a figure which shows an example of the hydraulic pressure-speed map which shows the piston stroke speed with respect to command hydraulic pressure. It is a figure which shows each characteristic of the command oil pressure and actual pressure in a target gear stage, an actual gear stage, throttle opening, an estimated stroke rate, and a 1st friction engagement element when the shift start judgment processing of an Example is performed.
  • the configuration of the automatic transmission control device according to the embodiment will be described by dividing it into an “overall system configuration” and a “shift start determination processing configuration”.
  • FIG. 1 is an overall system diagram showing a configuration of a power train of a vehicle to which an automatic transmission control device of an embodiment is applied.
  • the vehicle power train in the embodiment has an engine 1, a torque converter 2, and an automatic transmission 3, as shown in FIG.
  • the engine 1 is a gasoline engine or a diesel engine, and its output is adjusted by a throttle valve whose opening increases from fully closed to fully open as the accelerator pedal operated by the driver is depressed.
  • the engine output shaft 1 a of the engine 1 is connected to the input shaft 4 of the automatic transmission 3 via the torque converter 2.
  • the automatic transmission 3 is a stepped automatic transmission.
  • the automatic transmission 3 includes a front planetary gear set (not shown) and a rear planetary gear set (not shown) arranged on the input shaft 4 and the output shaft 5 arranged coaxially, a plurality of frictional engagement elements 6, and the like. And a valve body 7.
  • the plurality of frictional engagement elements 6 are operated by hydraulic pressure, and a power transmission path is switched by a combination of engagement and release to realize a desired shift stage.
  • Each friction engagement element 6 is controlled to be engaged / slip engaged / released by a control hydraulic pressure generated by the valve body 7 based on a control command from the AT controller 9.
  • the plurality of frictional engagement elements 6 include a first frictional engagement element that is engaged at least at the first speed and released at the second speed.
  • the “first gear” and the “second gear” are arbitrary gears, for example, the first gear and the second gear, the second gear and the fourth gear, or the second gear. And 1st gear.
  • a normally open wet multi-plate clutch or wet multi-plate brake capable of continuously controlling the oil flow rate and hydraulic pressure with a proportional solenoid is used.
  • An oil passage (not shown) for supplying hydraulic pressure to each friction engagement element 6 is formed in the valve body 7, and a solenoid 8 driven based on a control command input from the AT controller 9 includes: A pressure regulating valve (not shown) provided in each oil passage is operated to control the oil pressure of the command pressure set by the AT controller 9 to be supplied to a predetermined friction engagement element 6. Further, when the vehicle is traveling, the hydraulic pressure is controlled so as to be supplied only to the frictional engagement element 6 necessary for obtaining a desired gear position.
  • the AT controller 9 performs a shift to a shift stage that is automatically set based on a shift map (not shown) in accordance with a traveling state obtained from the vehicle speed, the accelerator opening, the throttle opening, and the like. That is, the AT controller 9 supplies the frictional engagement element 6 to be engaged based on outputs from the engine rotation sensor 10, the throttle opening sensor 11, the turbine rotation sensor 12, the output shaft rotation sensor 13, the inhibitor switch 14, and the like. Determine the operating oil pressure command. Then, a command for driving the solenoid 8 is output so that the hydraulic pressure of the determined command pressure is supplied to the frictional engagement element 6 to be engaged, and a discharge command for discharging the hydraulic oil from the frictional engagement element 6 to be released. Is output.
  • the engine rotation sensor 10 detects the rotation of the output shaft of the engine 1 and outputs a signal indicating the detected rotation speed of the output shaft (engine rotation speed Ne) to the AT controller 9.
  • the throttle opening sensor 11 detects the opening of the throttle valve of the engine 1 and outputs a signal indicating the detected opening of the throttle valve (throttle opening Tvo) to the AT controller 9.
  • the turbine rotation sensor 12 outputs the rotation of the input shaft 4 of the automatic transmission 3 and outputs a signal indicating the rotation speed of the input shaft 4 (turbine rotation speed Nt) to the AT controller 9.
  • the output shaft rotation sensor 13 outputs the rotation of the output shaft 5 of the automatic transmission 3 and outputs a signal indicating the rotation speed of the output shaft 5 (output shaft rotation speed No) to the AT controller 9.
  • the inhibitor switch 14 outputs a signal indicating a selection range of a shift selection mechanism (not shown) to the AT controller 9.
  • the AT controller 9 determines whether or not the latter shift control is possible when there is a request for the shift control with the target shift stage as the original shift stage during a certain shift control or after completion of the certain shift control. To do. That is, the AT controller 9 presses the friction plate of the first friction engagement element that is engaged at the first speed and released at the second speed after the shift from the first speed to the second speed. The execution of the shift from the second shift stage to the first shift stage is limited until it is determined that the piston to be released is in the released state. As a result, the shift control for returning the shift stage changed in the previous shift control to the original shift stage is not executed until the piston stroke returns, and the request for the shift control to return to the original shift stage is suspended. The That is, the AT controller 9 delays the start timing of the shift control for returning the gear position until it can be determined that the piston stroke has returned.
  • FIG. 2 is a flowchart illustrating a shift start determination process executed by the AT controller according to the embodiment.
  • the flow chart shown in FIG. 2 executes the shift from the second shift stage to the first shift stage until it is determined that the piston is in the released state after the shift from the first shift stage to the second shift stage. This corresponds to shift start determination means for limiting the shift.
  • shift start determination means for limiting the shift.
  • step S1 it is determined whether or not the currently executed shift control from the first shift stage to the second shift stage (hereinafter referred to as “previous shift control”) has been completed. If YES (end of shifting), the process proceeds to step S2. If NO (during shifting), step S1 is repeated.
  • the end determination of the previous shift control is determined as the end of the shift if the actual gear stage matches the target gear stage of the shift, and the shift is in progress if the actual gear stage does not match the target gear stage of the shift. Judge.
  • step S2 following the determination of the end of the previous shift in step S1, the shift control from the second shift stage to the first shift stage (that is, the target shift stage is changed to the original shift stage in the previous shift control). It is determined whether or not there has been a request for execution of the return shift control (hereinafter referred to as “shift control for returning the shift stage”). If YES (shift request is present), the process proceeds to step S3. If NO (shift request is not requested), the shift start determination routine is terminated.
  • step S3 following the determination that there is a shift request in step S2, the stroke rate of the piston that presses the friction plate of the first friction engagement element that is engaged at the first shift stage and released at the second shift stage is calculated.
  • the “stroke rate” is a value indicating the ratio of the distance that the piston has moved in the possible stroke distance of the piston, and is expressed as a percentage.
  • the fully open state (completely released state) is set to 0%, and the fully closed state (completely connected state) is set to 100%.
  • the stroke rate is zero, it is determined that the piston stroke has returned.
  • the map hydroaulic-speed map; refer FIG.
  • step S4 following the calculation of the stroke rate in step S3, it is determined whether or not the calculated stroke rate is greater than a preset stroke threshold. If YES (stroke rate> stroke threshold), the process proceeds to step S5. If NO (stroke rate ⁇ stroke threshold), the process proceeds to step S10.
  • the “stroke threshold” is a stroke rate at which it can be determined that the piston is in a released state, and is a value that the piston stroke has returned. Although an arbitrary value is set in advance, it is set to zero here.
  • This step S3 corresponds to piston stroke return determination means for detecting the released state of the piston that presses the friction plate of the first friction engagement element.
  • step S5 following the determination that stroke rate> stroke threshold in step S4, the throttle valve opening (throttle opening Tvo) of engine 1 is detected, and the process proceeds to step S6.
  • the throttle opening degree Tvo is detected by the throttle opening degree sensor 11 as described above.
  • step S6 following the detection of the throttle opening Tvo in step S5, it is determined whether or not the detected throttle opening Tvo is less than the throttle threshold. If YES (throttle opening ⁇ throttle threshold), the process proceeds to step S7. If NO (throttle opening ⁇ throttle threshold), the process proceeds to step S10.
  • the “throttle threshold value” is a value that can be determined that the driver's required driving force is relatively high, and is set to an arbitrary value in advance.
  • step S7 following the determination that throttle opening ⁇ throttle threshold in step S6, the input torque input to the automatic transmission 3 is estimated, and the process proceeds to step S8.
  • the “input torque” is estimated based on, for example, the accelerator opening, engine speed, engine output possible torque, and the like.
  • This step S7 corresponds to input torque estimating means for estimating the input torque to the automatic transmission 3.
  • step S8 following the estimation of the input torque in step S7, it is determined whether or not the estimated input torque is less than the torque threshold. If YES (input torque ⁇ torque threshold), the process proceeds to step S9. If NO (input torque ⁇ torque threshold), the process proceeds to step S10.
  • the “torque threshold value” is a value with which it can be determined that the required driving force of the driver is relatively high, and is set to an arbitrary value in advance.
  • step S9 following the determination of input torque ⁇ torque threshold value in step S8, it is determined whether a predetermined time has elapsed since the timing at which the previous shift control determined in step S1 was completed. If YES (predetermined time has elapsed), the process proceeds to step S10. If NO (predetermined time has not elapsed), the process returns to step S3.
  • the “predetermined time” is a time during which it can be determined that the piston in the first frictional engagement element is in the released state, and is set to an arbitrary value in advance.
  • step S10 it is determined whether stroke rate ⁇ stroke threshold in step S4, or throttle opening ⁇ throttle threshold in step S6, or input torque ⁇ torque threshold in step S8, or Based on one of the determinations that the predetermined time has elapsed in step S9, a shift control for returning the requested gear in step S2, that is, a gear shift control from the second gear to the first gear is executed. Then, the routine ends.
  • FIG. 4 shows the target gear stage, actual gear stage, throttle opening, stroke rate in the first friction engagement element, command oil pressure and actual pressure in the first friction engagement element when the shift start determination process of the embodiment is executed. It is a figure which shows each characteristic.
  • the target gear stage is changed from the first gear stage (for example, second gear) to the second gear stage (for example, first gear), and a downshift request is output.
  • the first frictional engagement element that is engaged at the first speed and released at the second speed is changed from the engagement control to the release control.
  • step S1 is repeated, the upshift request is limited, and the upshift is not executed.
  • step S1 the first shift stage (for example, the second speed stage) to the second shift stage (for example, the first speed stage), and when the previous shift control (downshift shift) is completed.
  • step S2 the process proceeds from step S2 to step S3, and the stroke rate in the first friction engagement element is calculated.
  • step S4 the stroke rate in the first friction engagement element exceeds the stroke threshold (here, zero). Therefore, the process proceeds from step S4 to step S5, and the throttle opening is detected.
  • the throttle opening is below the throttle threshold. Therefore, the process proceeds from step S6 to step S7, and the input torque to the automatic transmission 3 is estimated. And if the input torque estimated from the accelerator opening etc. is less than a torque threshold value at the time t7, it will progress to step S8-> step S9.
  • the stroke rate in the first frictional engagement element is not zero. For this reason, as shown by a two-dot chain line in FIG. 4, the stroke rate immediately increases and the piston stroke returns too much. For this reason, there is a risk that a fastening shock may occur due to sudden fastening when the precharge hydraulic pressure is supplied. Also, if the precharge time is shortened in anticipation that the stroke rate at the first frictional engagement element is not zero, or if the precharge hydraulic pressure is set to a low value, the rate of increase of the stroke rate becomes slow and the engagement is It is possible that the engine will blow up due to a delay.
  • the stroke rate in the first friction engagement element has reached the stroke threshold (here, zero) at time t8, so that step S3 is performed.
  • the stroke threshold here, zero
  • the first frictional engagement element that is engaged at the first speed and released at the second speed among the plurality of frictional engagement elements 6 is changed from the release control to the engagement control. Control changed.
  • a command hydraulic pressure for supplying a precharge hydraulic pressure for filling the first friction engagement element is output, and the actual pressure starts to increase in accordance with the command hydraulic pressure.
  • the stroke rate in the first frictional engagement element is zero at time t8, and the piston in the first frictional engagement element is completely released. Therefore, the engagement control of the first friction engagement element can be started from a state where the piston stroke is completely returned. That is, it is possible to prevent variations in the released state of the pistons and prevent the supply hydraulic pressure from being too large and causing a fastening shock, or being too small and causing a blow-up.
  • step S1 if the throttle opening Tvo exceeds the throttle threshold before the stroke rate exceeds the stroke threshold, step S1 ⁇ step S2 ⁇ It progresses to step S3-> step S4-> step S5-> step S6-> step S10.
  • step S3-> step S4-> step S5-> step S6-> step S10 if the throttle opening Tvo exceeds the throttle threshold before the stroke rate exceeds the stroke threshold, step S1 ⁇ step S2 ⁇ It progresses to step S3-> step S4-> step S5-> step S6-> step S10.
  • step S1 in the flowchart shown in FIG. Step S2 ⁇ Step S3 ⁇ Step S4 ⁇ Step S5 ⁇ Step S6 ⁇ Step S7 ⁇ Step S8 ⁇ Step S10
  • An automatic transmission control device including a first frictional engagement element that is engaged at a first speed and released at a second speed, Piston stroke return determination means (step S4) for detecting a released state of the piston pressing the friction plate of the first friction engagement element; After the shift from the first gear to the second gear is completed, the execution of the shift from the second gear to the first gear is limited until it is determined that the piston is in a predetermined release state. Shift start determining means (FIG. 4); It was set as the structure provided with. For this reason, it is possible to prevent the occurrence of shock and racing when executing a shift to return the shift stage after the shift control is completed.
  • step S8 for estimating the input torque to the automatic transmission 3;
  • the shift start determining means (FIG. 4) responds to a shift request from the second shift stage to the first shift stage in response to the first shift stage.
  • the shift from the second gear to the first gear is executed before determining that the piston is in the released state. For this reason, when it can be determined that the driver's required driving force is large, even if it is before it is determined that the first frictional engagement element is released, the shift control for returning the gear position is executed, thereby satisfying the driver's request. Shift control responding with good response can be performed.
  • the calculated stroke rate is used as a determination criterion, but the present invention is not limited to this.
  • a map of a stroke rate with respect to a time when a predetermined command oil pressure is supplied in advance may be provided, and the time and the command oil pressure may be used as determination criteria.
  • the automatic transmission 3 is mounted on the engine vehicle that uses the engine 1 as a travel drive source.
  • the present invention can also be applied to an electric vehicle that is a traveling drive source.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 本発明は、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備えた自動変速機の制御装置に関し、第1変速段から第2変速段への変速中に第2変速段から第1変速段への変速要求があったときに、ショックや吹け上がりの発生を防止する。第1変速段から第2変速段への変速終了後(S1)、第1摩擦締結要素の摩擦板を押圧するピストンのストローク率を算出し(S2)、所定のストローク閾値と比較する(S3)。ストローク閾値以下となったときに、第2変速段から第1変速段への変速制御を開始する。

Description

自動変速機の制御装置
 本発明は、変速制御により締結状態から解放状態へと制御される摩擦締結要素を備えた自動変速機の制御装置に関するものである。
 近年、自動変速機の多段化が進み、変速段数の増加に応じてクラッチやブレーキといった摩擦締結要素の数も増加している。また、変速段数の増加に伴い、シフトマップの変速線の間隔が非常に密となるため、若干の走行条件(例えばスロットル開度等)の変化によって変速が起こりやすくなっている。すなわち、変速頻度が増えることとなり、変速中であっても目標変速段の変更要求が発生するシーンが増加している。
 このような変速中に目標変速段の変更要求があった場合の制御に関する従来技術として、変速判断から実変速の開始、つまりイナーシャフェーズ開始までに走行条件(例えば、スロットル開度等)の変化によって目標変速段の変更要求があった場合には目標変速段の変更を許可するが、イナーシャフェーズ開始後は目標変速段の変更を禁止して、変速中の変速を完了するようにした自動変速機の制御装置が知られている(例えば、特許文献1参照)。
 しかしながら、上記従来の自動変速機の制御装置では、イナーシャフェーズが開始した後であれば、目標変速段の変更を禁止しているが、変速制御の終了後、どのタイミングで変速段を戻す変速制御の開始を許可するかが明確に示されていなかった。そのため、変速制御終了と同時に変速段を戻す変速制御を実行すると、先の変速制御において解放された摩擦締結要素の状態によっては、ショックやエンジンの吹け上がりが発生することがあった。
 すなわち、先の変速制御で解放された摩擦締結要素は、変速段を戻す変速制御を実行すると締結制御される。ここで、先の変速制御で解放された摩擦締結要素では、変速終了時のピストンの解放状態にばらつきある。そのため、変速制御終了と同時に変速段を戻す変速制御を実行すると、推定したピストン解放状態よりも実際の解放量が小さいとき(ピストンストロークが想定よりも戻っていないとき)には、がた詰めのためのプリチャージ油圧の供給時に急締結となって締結ショックが生じてしまう。また、推定したピストン解放状態よりも実際の解放量が大きいとき(ピストンストロークが想定以上に戻りすぎているとき)には、プリチャージ油圧が小さすぎて締結遅れになりエンジンの吹け上がりが発生してしまう。
特開平6-346959号公報
 本発明は、変速制御終了後に変速段を戻す変速を実行する際、ショックや吹け上がりの発生を防止することができる自動変速機の制御装置を提供することを目的とする。
 本発明は、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備えた自動変速機の制御装置であって、
 前記第1摩擦締結要素の摩擦板を押圧するピストンの解放状態を検出するピストンストローク戻り判定手段と、
 前記第1変速段から前記第2変速段への変速終了後、前記ピストンが所定の解放状態であると判定するまで、前記第2変速段から前記第1変速段への変速の実行を制限する変速開始判断手段と、
 を備える。
 本発明の自動変速機の制御装置にあっては、第1変速段から第2変速段への変速終了後、ピストンが所定の解放状態であると判定するまでは、第2変速段から第1変速段への変速の実行が制限される。
 すなわち、第1変速段から第2変速段への変速において、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素は、締結状態から解放状態へと制御される。一方、第2変速段から第1変速段への変速(つまり、変速段を元に戻す変速制御)では、第1摩擦締結要素は解放状態から締結状態へと制御される。
 しかしながら、第1変速段から第2変速段への変速終了時、第1摩擦締結要素の摩擦板を押圧するピストンの解放状態にはバラツキが生じている。そのため、ピストンが所定の解放状態であると判定してから、第2変速段から第1変速段への変速(つまり、変速段を元に戻す変速制御)を実行することで、先の変速終了時に生じているピストン解放状態のバラツキを解消してから次の変速を実行することができる。
 これにより、変速制御終了後に変速段を戻す変速を実行する際、第1摩擦締結要素のがた詰めのためのプリチャージ油圧の供給時に、供給油圧が大きすぎて締結ショックが発生したり、小さすぎて吹け上がりが発生したりする等を防止することができる。
実施例の自動変速機の制御装置が適用された車両のパワートレインの構成を示す全体システム図である。 実施例のATコントローラにて実行される変速開始判断処理の流れを示すフローチャートである。 指令油圧に対するピストンストローク速度を示す油圧-速度マップの一例を示す図である。 実施例の変速開始判断処理を実行したときの、目標ギヤ段・実ギヤ段・スロットル開度・推定ストローク率・第1摩擦締結要素における指令油圧と実圧の各特性を示す図である。
 以下、本発明の自動変速機の制御装置を、図面に示す実施例に基づいて説明する。
 実施例の自動変速機の制御装置の構成を、「全体システム構成」、「変速開始判断処理の構成」、に分けて説明する。
 [全体システム構成] 
 図1は、実施例の自動変速機の制御装置が適用された車両のパワートレインの構成を示す全体システム図である。
 実施例における車両のパワートレインは、図1に示すように、エンジン1と、トルクコンバータ2と、自動変速機3と、を有する。
 前記エンジン1は、ガソリンエンジンやディーゼルエンジンであり、運転者が操作するアクセルペダルに連動してその踏み込みにつれ全閉から全開に向けて開度が増大するスロットルバルブにより出力を加減される。このエンジン1のエンジン出力軸1aは、トルクコンバータ2を介して自動変速機3の入力軸4に接続している。
 前記自動変速機3は、有段式の自動変速機である。この自動変速機3は、同軸に配置された入力軸4と出力軸5上に配置されたフロントプラネタリギヤ組(図示せず)及びリヤプラネタリギヤ組(図示せず)と、複数の摩擦締結要素6と、バルブボディ7と、を有する。
 前記複数の摩擦締結要素6は、油圧により作動し、締結・解放の組み合わせにより動力伝達経路を切り換えて、所望の変速段を実現する。各摩擦締結要素6は、ATコントローラ9からの制御指令に基づきバルブボディ7により作り出された制御油圧により、締結・スリップ締結・解放が制御される。
 前記複数の摩擦締結要素6は、少なくとも第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備える。なお、「第1変速段」及び「第2変速段」とは任意の変速段であり、例えば1速段と2速段であったり、2速段と4速段であったり、2速段と1速段であったりする。
 そして、各摩擦締結要素6としては、例えば、比例ソレノイドで油流量および油圧を連続的に制御できるノーマルオープンの湿式多板クラッチや湿式多板ブレーキが用いられる。
 前記バルブボディ7内には、各摩擦締結要素6に油圧を供給する油路(図示せず)が形成されており、ATコントローラ9から入力される制御指令に基づいて駆動されるソレノイド8が、各油路に設けられた調圧弁(図示せず)を操作し、ATコントローラ9が設定した指令圧の油圧が所定の摩擦締結要素6に供給されるように制御される。また、車両の走行時には、所望の変速段を得るために必要な摩擦締結要素6のみに油圧を供給するように制御される。
 前記ATコントローラ9は、車速やアクセル開度、スロットル開度等から求められる走行状態に対応して、図示しない変速マップに基づいて自動的に設定される変速段への変速を実行する。すなわち、このATコントローラ9は、エンジン回転センサ10、スロットル開度センサ11、タービン回転センサ12、出力軸回転センサ13、インヒビタスイッチ14等の出力に基づいて、締結される摩擦締結要素6に供給する作動油圧の指令圧を決定する。そして、決定した指令圧の作動油圧が、締結される摩擦締結要素6に供給されるようにソレノイド8を駆動する指令を出力すると共に、解放される摩擦締結要素6から作動油を排出する排出指令を出力する。
 前記エンジン回転センサ10は、エンジン1の出力軸の回転を検出し、検出した出力軸の回転数(エンジン回転数Ne)を示す信号を、ATコントローラ9に出力する。
 前記スロットル開度センサ11は、エンジン1のスロットルバルブの開度を検出し、検出したスロットルバルブの開度(スロットル開度Tvo)を示す信号を、ATコントローラ9に出力する。
 前記タービン回転センサ12は、自動変速機3の入力軸4の回転を出力し、入力軸4の回転数(タービン回転数Nt)を示す信号を、ATコントローラ9に出力する。
 前記出力軸回転センサ13は、自動変速機3の出力軸5の回転を出力し、出力軸5の回転数(出力軸回転数No)を示す信号を、ATコントローラ9に出力する。
 前記インヒビタスイッチ14は、図示しないシフト選択機構の選択レンジを示す信号を、ATコントローラ9に出力する。
 さらに、このATコントローラ9では、ある変速制御中、又は、ある変速制御の完了後、目標変速段を元の変速段とする変速制御の要求があったときに、後者の変速制御の可否を判断する。
 つまり、このATコントローラ9は、第1変速段から前記第2変速段への変速終了後、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素の摩擦板を押圧するピストンが解放状態であると判定するまで、第2変速段から第1変速段への変速の実行を制限する。これにより、ピストンストロークが戻った状態になるまで、先の変速制御で変更した変速段を、元の変速段に戻す変速制御は実行されず、元の変速段とする変速制御の要求は保留される。
 すなわち、このATコントローラ9では、ピストンストロークが戻ったと判断できるまでは、変速段を元に戻す変速制御の開始タイミングを遅らせる。
 [変速開始判断処理の構成]
 図2は、実施例のATコントローラにて実行される変速開始判断処理の流れを示すフローチャートである。なお、この図2に示すフローチャートが、第1変速段から第2変速段への変速終了後、ピストンが解放状態であると判定するまで、第2変速段から第1変速段への変速の実行を制限する変速開始判断手段に相当する。以下、図2に示す各ステップについて説明する。
 ステップS1では、現在実行している第1変速段から第2変速段への変速制御(以下、「先の変速制御」という)が終了したか否かを判断する。YES(変速終了)の場合はステップS2へ移行し、NO(変速中)の場合はステップS1を繰り返す。
 ここで、先の変速制御の終了判断は、実ギヤ段が変速の目標ギヤ段と一致していれば変速終了と判断し、実ギヤ段が変速の目標ギヤ段と一致していなかったら変速中と判断する。
 ステップS2では、ステップS1での先の変速終了との判断に続き、第2変速段から第1変速段とする変速制御(つまり、目標変速段を先の変速制御の際の元の変速段に戻す変速制御、以下、「変速段を戻す変速制御」という)の実行要求があったか否かを判断する。YES(変速要求あり)の場合はステップS3へ移行し、NO(変速要求なし)の場合は、変速開始判断処理のルーチンを終了する。
 ステップS3では、ステップS2での変速要求ありとの判断に続き、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素の摩擦板を押圧するピストンのストローク率を算出し、ステップS4へ移行する。
 ここで、「ストローク率」は、ピストンのストローク可能距離において、ピストンが移動した距離の割合を示す値であり、百分率で示す。全開状態(完全解放状態)をゼロ%とし、全閉状態(完全締結状態)を100%とする。本実施例では、このストローク率がゼロのとき、ピストンのストロークが戻った状態であると判断する。
 そして、このストローク率を求めるには、予め、指令油圧ごとに決まるピストンストローク速度を示すマップ(油圧-速度マップ;図3参照)を作成する。この油圧-速度マップを作成するには、まず、ピストンのストローク可能距離を把握する。次に、第1摩擦締結要素への指令油圧ごとの完全解放時間を測定する。そして、ストローク可能距離と指令油圧ごとの完全解放時間とから解放方向へのピストンストローク速度を算出し、油圧-速度マップを作成する。
 そして、この油圧-速度マップと、指令油圧値と、指令時間とから、解放方向へピストンが移動した距離を算出する。最後に、ピストンのストローク可能距離に対する移動距離を百分率で算出し、ストローク率とする。
 ステップS4では、ステップS3でのストローク率の算出に続き、この算出したストローク率が、予め設定したストローク閾値より大きいか否かを判断する。YES(ストローク率>ストローク閾値)の場合はステップS5へ移行し、NO(ストローク率≦ストローク閾値)の場合はステップS10へ移行する。
 ここで、「ストローク閾値」とは、ピストンが解放状態であると判定できるストローク率であり、ピストンストロークが戻ったとする値である。予め任意の値に設定するが、ここではゼロとする。なお、このステップS3が、第1摩擦締結要素の摩擦板を押圧するピストンの解放状態を検出するピストンストローク戻り判定手段に相当する。
 ステップS5では、ステップS4でのストローク率>ストローク閾値との判断に続き、エンジン1のスロットルバルブの開度(スロットル開度Tvo)を検出し、ステップS6へ移行する。
 スロットル開度Tvoは、前述したように、スロットル開度センサ11により検出する。
 ステップS6では、ステップS5でのスロットル開度Tvoの検出に続き、この検出したスロットル開度Tvoがスロットル閾値未満であるか否かを判断する。YES(スロットル開度<スロットル閾値)の場合はステップS7へ移行し、NO(スロットル開度≧スロットル閾値)の場合はステップS10へ移行する。
 ここで、「スロットル閾値」は、運転者の要求駆動力が比較的高いと判断できる値であり、予め任意の値に設定する。
 ステップS7では、ステップS6でのスロットル開度<スロットル閾値との判断に続き、自動変速機3に入力される入力トルクを推定し、ステップS8へ移行する。
 ここで、「入力トルク」は、例えばアクセル開度やエンジン回転数、エンジン出力可能トルク等に基づいて推定する。なお、このステップS7が、自動変速機3への入力トルクを推定する入力トルク推定手段に相当する。
 ステップS8では、ステップS7での入力トルクの推定に続き、この推定した入力トルクがトルク閾値未満であるか否かを判断する。YES(入力トルク<トルク閾値)の場合はステップS9へ移行し、NO(入力トルク≧トルク閾値)の場合はステップS10へ移行する。
 ここで、「トルク閾値」は、運転者の要求駆動力が比較的高いと判断できる値であり、予め任意の値に設定する。
 ステップS9では、ステップS8での入力トルク<トルク閾値との判断に続き、ステップS1において判断した先の変速制御が終了したタイミングから所定時間経過したか否かを判断する。YES(所定時間経過)の場合はステップS10へ移行し、NO(所定時間未経過)の場合はステップS3へ戻る。
 ここで、「所定時間」とは、第1摩擦締結要素におけるピストンが確実に解放状態であると判定できる時間であり、予め任意の値に設定する。
 ステップS10では、ステップS4でのストローク率≦ストローク閾値との判断、又は、ステップS6でのスロットル開度≧スロットル閾値との判断、又は、ステップS8での入力トルク≧トルク閾値との判断、又は、ステップS9での所定時間経過との判断のいずれかに基づき、ステップS2において要求された変速段を戻す変速制御、つまり、第2変速段から第1変速段へとする変速制御を実行する。そして、ルーチンを終了する。
 次に、実施例の自動変速機の制御装置における「変速開始タイミング制限作用」を説明する。
 [変速開始タイミング制限作用]
 図4は、実施例の変速開始判断処理を実行したときの、目標ギヤ段・実ギヤ段・スロットル開度・第1摩擦締結要素におけるストローク率・第1摩擦締結要素における指令油圧と実圧の各特性を示す図である。
 ここで、実施例の自動変速機の制御装置において、ダウンシフトの終了直前にアップシフト要求があった場合について説明する。
 図4に示す時刻t1において、目標ギヤ段が第1変速段(例えば2速段)から第2変速段(例えば1速段)に変更し、ダウンシフト変速要求が出力される。これにより、複数の摩擦締結要素6のうち、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素は締結制御から解放制御へと制御変更される。
 時刻t2において、解放制御するため、第1摩擦締結要素への供給油圧を低下する指令油圧が出力され、この指令油圧に応じて実圧が低下する。なお、このとき第1摩擦締結要素におけるストローク率に変化はない。
 時刻t3において、スロットル開度Tvoが低減すると、第1摩擦締結要素への供給油圧をさらに低下する指令油圧が出力され、この指令油圧に応じて実圧がさらに低下する。なお、このとき第1摩擦締結要素におけるストローク率に変化はない。
 時刻t4において、第1摩擦締結要素への供給油圧の実圧が下げ止まり、時刻t5において、第1摩擦締結要素におけるストローク率が次第に低下し始める。
 時刻t6において、走行条件(例えばスロットル開度等)の変化が生じ、目標ギヤ段を第2変速段(例えば1速段)から第1変速段(例えば2速段)に変更するアップシフト変速要求、つまり変速段を戻す変速要求が出力される。このとき、先の変速制御(ダウンシフト変速)は実行中である。そのため、図2に示すフローチャートでは、ステップS1を繰り返し、このアップシフト変速要求は制限されて、アップシフト変速は実行されない。
 そして、時刻t7において、実ギヤ段が第1変速段(例えば2速段)から第2変速段(例えば1速段)へと変化し、先の変速制御(ダウンシフト変速)が終了すると、図2に示すフローチャートでステップS1→ステップS2へと進む。このとき、時刻t6時点で、すでに変速段を戻すアップシフト変速要求が出力されているので、ステップS2→ステップS3へと進み、第1摩擦締結要素におけるストローク率が算出される。
 ここで、時刻t7時点(先の変速制御の終了時点)では、図4に示すように、第1摩擦締結要素におけるストローク率は、ストローク閾値(ここでは、ゼロ)を上回っている。そのため、ステップS4→ステップS5へと進み、スロットル開度が検出される。ここで、時刻t7時点では、図4に示すように、スロットル開度はスロットル閾値を下回っている。そのため、ステップS6→ステップS7へと進み、自動変速機3への入力トルクが推定される。そして、時刻t7時点でアクセル開度等から推定された入力トルクが、トルク閾値を下回っていれば、ステップS8→ステップS9へと進む。そして、時刻t7時点では、先の変速制御(ダウンシフト変速)が終了したタイミングであるため、この先の変速制御(ダウンシフト変速)の終了から所定時間は経過していない。これにより、ステップS9→ステップS3へと戻り、変速段を戻すアップシフト変速の実行が制限される。すなわち、時刻t7時点では、先の変速制御(ダウンシフト変速)は終了しているが、次の変速段を戻すアップシフト変速の実行は保留され、変速段を戻す変速の実行開始のタイミングを先の変速制御終了のタイミングより遅らせる。
 一方、時刻t7時点の先の変速制御(ダウンシフト変速)の終了と同時に、次の変速段を戻すアップシフト変速を行った場合では、図4において二点鎖線で示すように、時刻t7において第1摩擦締結要素が締結制御となり、この第1摩擦締結要素のがた詰めのためのプリチャージ油圧を供給する指令油圧が出力される。
 このとき、第1摩擦締結要素におけるストローク率はゼロではない。このため、図4において二点鎖線で示すように、ストローク率がすぐに高くなって、ピストンストロークが戻りすぎてしまう。このため、プリチャージ油圧の供給時に急締結となって締結ショックが生じるおそれがある。
 また、第1摩擦締結要素におけるストローク率がゼロではないことを見込んでプリチャージ時間を短くしたり、又は、プリチャージ油圧を低い値に設定した場合では、ストローク率の上昇速度が遅くなって締結遅れになりエンジンの吹け上がりが発生してしまうことが考えられる。
 これに対し、実施例の自動変速機の制御装置では、実線で示すように、時刻t8において、第1摩擦締結要素におけるストローク率がストローク閾値(ここでは、ゼロ)に達したことで、ステップS3→ステップS10へと進む。これにより、時刻t8時点で、変速段を戻すアップシフト変速が実行される。
 そして、このアップシフト変速の実行に伴って、複数の摩擦締結要素6のうち、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素は解放制御から締結制御へと制御変更される。これにより、第1摩擦締結要素のがた詰めのためのプリチャージ油圧を供給する指令油圧が出力され、この指令油圧に応じて実圧が上昇し始める。
 このとき、時刻t8時点で第1摩擦締結要素におけるストローク率はゼロであり、第1摩擦締結要素におけるピストンが完全に解放した状態である。そのため、第1摩擦締結要素の締結制御は、ピストンストロークが完全に戻った状態から始めることができる。すなわち、ピストンの解放状態のバラツキがなくなり、供給油圧が大きすぎて締結ショックが発生したり、小さすぎて吹け上がりが発生したりする等を防止することができる。
 また、実施例の自動変速機の制御装置において、ストローク率がストローク閾値を上回る前に、スロットル開度Tvoがスロットル閾値を上回った場合には、図2に示すフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS10へと進む。これにより、第1摩擦締結要素のピストンストロークが戻り、第1摩擦締結要素が解放したと判定される前であっても、目標ギヤ段を第2変速段から第1変速段に変更する変速制御(変速段を戻す変速制御)が事項される。
 このため、スロットル開度Tvoが大きく、運転者の要求駆動力が高いと判断される場合には、レスポンスよく運転者の要求に応えることができる。
 さらに、実施例の自動変速機の制御装置において、ストローク率がストローク閾値を上回る前に、自動変速機3への入力トルクがトルク閾値を上回った場合には、図2に示すフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS10へと進む。これにより、第1摩擦締結要素のピストンストロークが戻り、第1摩擦締結要素が解放したと判定される前であっても、目標ギヤ段を第2変速段から第1変速段に変更する変速制御(変速段を戻す変速制御)が実行される。
 このため、自動変速機3への入力トルクが大きく、運転者の要求駆動力が高いと判断される場合には、レスポンスよく運転者の要求に応えることができる。
 次に、効果を説明する。
 実施例の自動変速機の制御装置にあっては、下記に列挙する効果を得ることができる。
 (1) 第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備えた自動変速機の制御装置であって、
 前記第1摩擦締結要素の摩擦板を押圧するピストンの解放状態を検出するピストンストローク戻り判定手段(ステップS4)と、
 前記第1変速段から前記第2変速段への変速終了後、前記ピストンが所定の解放状態であると判定するまで、前記第2変速段から前記第1変速段への変速の実行を制限する変速開始判断手段(図4)と、
 を備える構成とした。
 このため、変速制御終了後に変速段を戻す変速を実行する際、ショックや吹け上がりの発生を防止することができる。
 (2) 前記変速開始判断手段(図4)は、前記ピストンが所定の解放状態であると判定する前に、前記第2変速段から前記第1変速段への変速要求があったときには、
 前記ピストンが所定の解放状態であると判定したときに、前記第2変速段から前記第1変速段への変速を実行する構成とした。
 このため、変速制御終了後に変速段を戻す変速を実行する際、ショックや吹け上がりの発生を防止することができる。
 (3) 自動変速機3への入力トルクを推定する入力トルク推定手段(ステップS8)を備え、
 前記変速開始判断手段(図4)は、前記入力トルクが所定値(入力閾値)以上のときには、前記第2変速段から前記第1変速段への変速要求に応答して、前記第1変速段から前記第2変速段への変速終了後、前記ピストンが解放状態であると判定する前に、前記第2変速段から前記第1変速段への変速を実行する構成とした。
 このため、運転者の要求駆動力が大きいと判断できるときには、第1摩擦締結要素が解放したと判定される前であっても変速段を戻す変速制御を実行することで、運転者の要求にレスポンスよく応える変速制御を行うことができる。
 以上、本発明の自動変速機の制御装置を実施例に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例では、第1摩擦締結要素の解放状態を判定する際に、算出したストローク率を判定基準としているが、これに限らない。例えば、予め所定の指示油圧を供給した時間に対するストローク率のマップを有し、時間及び指示油圧を判定基準としてもよい。
 また、実施例では、エンジン1を走行駆動源とするエンジン車に自動変速機3を搭載した例を示したが、これに限らず、エンジンとモータを走行駆動源とするハイブリッド車やモータのみを走行駆動源とする電気自動車であっても適用することができる。

Claims (6)

  1.  第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備えた自動変速機の制御装置であって、
     前記第1摩擦締結要素の摩擦板を押圧するピストンの解放状態を検出するピストンストローク戻り判定手段と、
     前記第1変速段から前記第2変速段への変速終了後、前記ピストンが所定の解放状態であると判定するまで、前記第2変速段から前記第1変速段への変速の実行を制限する変速開始判断手段と、
     を備える自動変速機の制御手段。
  2.  請求項1に記載された自動変速機の制御手段において、
     前記変速開始判断手段は、前記ピストンが所定の解放状態であると判定する前に、前記第2変速段から前記第1変速段への変速要求があったときには、
     前記ピストンが所定の解放状態であると判定したときに、前記第2変速段から前記第1変速段への変速を実行する自動変速機の制御装置。
  3.  請求項1又は請求項2に記載された自動変速機の制御装置において、
     自動変速機への入力トルクを推定する入力トルク推定手段を備え、
     前記変速開始判断手段は、前記入力トルクが所定値以上のときには、前記第2変速段から前記第1変速段への変速要求に応答して、前記第1変速段から前記第2変速段への変速終了後、前記ピストンが解放状態であると判定する前に、前記第2変速段から前記第1変速段への変速を実行する自動変速機の制御装置。
  4.  請求項1又は請求項2に記載された自動変速機の制御装置において、
     エンジンのスロットル開度を検出するスロットル開度検出手段を備え、
     前記変速開始判断手段は、前記スロットル開度が所定値以上のときには、前記第2変速段から前記第1変速段への変速要求に応答して、前記第1変速段から前記第2変速段への変速終了後、前記ピストンが解放状態であると判定する前に、前記第2変速段から前記第1変速段への変速を実行する自動変速機の制御装置。
  5.  請求項1又は請求項2に記載された自動変速機の制御装置において、
     前記ピストンストローク戻り判定手段は、前記第1摩擦締結要素の解放制御における指令油圧値と指令時間とから前記ピストンのストローク率を求め、このストローク率に基づいて所定の解放状態であるか否かを判定する自動変速機の制御装置。
  6.  請求項5に記載された自動変速機の制御装置において、
     前記ピストンストローク戻り判定手段は、指令油圧とピストンストローク速度との関係を定めた油圧-速度マップを有し、この油圧-速度マップを用いて前記ストローク率を求める自動変速機の制御装置。
PCT/JP2012/078571 2011-11-18 2012-11-05 自動変速機の制御装置 WO2013073395A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013544213A JP5836391B2 (ja) 2011-11-18 2012-11-05 自動変速機の制御装置
EP12849227.9A EP2781799B1 (en) 2011-11-18 2012-11-05 Device for controlling automatic transmission
KR1020147016168A KR101602590B1 (ko) 2011-11-18 2012-11-05 자동 변속기의 제어 장치
CN201280056112.8A CN103946599B (zh) 2011-11-18 2012-11-05 自动变速器的控制装置
US14/358,622 US9347551B2 (en) 2011-11-18 2012-11-05 Device for controlling automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253030 2011-11-18
JP2011-253030 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073395A1 true WO2013073395A1 (ja) 2013-05-23

Family

ID=48429461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078571 WO2013073395A1 (ja) 2011-11-18 2012-11-05 自動変速機の制御装置

Country Status (6)

Country Link
US (1) US9347551B2 (ja)
EP (1) EP2781799B1 (ja)
JP (1) JP5836391B2 (ja)
KR (1) KR101602590B1 (ja)
CN (1) CN103946599B (ja)
WO (1) WO2013073395A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346959A (ja) 1986-08-12 1988-02-27 アルフレツド・テヴエス・ゲ−エムベ−ハ− 自動車のスリップ制御型ブレ−キ装置
JP2007170638A (ja) * 2005-12-26 2007-07-05 Jatco Ltd 自動変速機の制御装置
JP2008064240A (ja) * 2006-09-08 2008-03-21 Toyota Motor Corp 自動変速機の制御装置、制御方法およびその方法をコンピュータに実現させるプログラムならびにそのプログラムを記録した記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143564A (en) * 1977-06-06 1979-03-13 Hardinge Brothers, Inc. Apparatus for simultaneously forming selected circumferential and axial profiles on a workpiece
JP2962104B2 (ja) * 1993-06-03 1999-10-12 トヨタ自動車株式会社 車両用自動変速機の変速制御装置
JP2924711B2 (ja) * 1995-05-12 1999-07-26 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置
JP3476278B2 (ja) 1995-07-07 2003-12-10 三菱自動車工業株式会社 自動変速機の変速制御方法
DE19714852C1 (de) * 1997-04-10 1998-08-13 Zahnradfabrik Friedrichshafen Verfahren zur Erhöhung der Spontanität eines elektrohydraulisch gesteuerten Automatikgetriebes
DE19722954C1 (de) * 1997-05-31 1998-06-10 Zahnradfabrik Friedrichshafen Erhöhung der Spontanität eines Automatgetriebes
JP3938839B2 (ja) * 2000-09-18 2007-06-27 ジヤトコ株式会社 自動変速機のピストンストローク終了判断装置
KR100391435B1 (ko) * 2000-12-27 2003-07-12 현대자동차주식회사 자동 변속기의 마찰요소 필 타임 검출 방법 및 시스템
JP4522465B2 (ja) * 2008-06-11 2010-08-11 ジヤトコ株式会社 自動変速機の油圧制御装置
JP4787293B2 (ja) * 2008-06-19 2011-10-05 ジヤトコ株式会社 自動変速機の変速制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346959A (ja) 1986-08-12 1988-02-27 アルフレツド・テヴエス・ゲ−エムベ−ハ− 自動車のスリップ制御型ブレ−キ装置
JP2007170638A (ja) * 2005-12-26 2007-07-05 Jatco Ltd 自動変速機の制御装置
JP2008064240A (ja) * 2006-09-08 2008-03-21 Toyota Motor Corp 自動変速機の制御装置、制御方法およびその方法をコンピュータに実現させるプログラムならびにそのプログラムを記録した記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781799A4

Also Published As

Publication number Publication date
JP5836391B2 (ja) 2015-12-24
CN103946599A (zh) 2014-07-23
JPWO2013073395A1 (ja) 2015-04-02
KR20140085600A (ko) 2014-07-07
US20150006044A1 (en) 2015-01-01
EP2781799A1 (en) 2014-09-24
EP2781799B1 (en) 2018-01-10
EP2781799A4 (en) 2016-12-14
US9347551B2 (en) 2016-05-24
CN103946599B (zh) 2016-06-08
KR101602590B1 (ko) 2016-03-10

Similar Documents

Publication Publication Date Title
US8992382B2 (en) Automatic transmission control device
WO2013190653A1 (ja) 車両の制御装置
JP4972566B2 (ja) 自動変速機の制御方法及び制御装置
EP2546554B1 (en) Control device for transmission mechanism and control method for same
JP6142854B2 (ja) 車両制御装置及び車両制御方法
JP6936711B2 (ja) 車両の制御装置及び車両の制御方法
JP5771699B2 (ja) 自動変速機及びその発進時制御方法
JP5708650B2 (ja) 車両用エンジンの制御装置
JP5949938B2 (ja) 車両の変速制御装置
JP2015105748A (ja) 無段変速機の変速制御装置
JP5055424B2 (ja) 自動変速機の制御装置および制御方法
JP5735656B2 (ja) 自動変速機の制御装置
JP2010169162A (ja) 車両の制御装置
JP5836391B2 (ja) 自動変速機の制御装置
JP2005315084A (ja) 自動変速機の制御装置
JP2006226206A (ja) 自動変速機の制御装置および制御方法
US10723355B1 (en) Vehicle start control method
JP7064621B2 (ja) 車両の制御装置及び車両の制御方法
JP5407985B2 (ja) 自動変速機の制御装置
KR20160148823A (ko) 자동화 수동변속기 제어방법
JP2014137102A (ja) 車両の変速制御装置
KR20070121294A (ko) 자동변속기 파워오프 업시프트시 오더블유씨충격 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544213

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14358622

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147016168

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012849227

Country of ref document: EP