WO2013073360A1 - ゴム材料のシミュレーション方法 - Google Patents

ゴム材料のシミュレーション方法 Download PDF

Info

Publication number
WO2013073360A1
WO2013073360A1 PCT/JP2012/077888 JP2012077888W WO2013073360A1 WO 2013073360 A1 WO2013073360 A1 WO 2013073360A1 JP 2012077888 W JP2012077888 W JP 2012077888W WO 2013073360 A1 WO2013073360 A1 WO 2013073360A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber material
rubber
filler
scattering
model
Prior art date
Application number
PCT/JP2012/077888
Other languages
English (en)
French (fr)
Inventor
岸本 浩通
正登 内藤
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP12848813.7A priority Critical patent/EP2778664A4/en
Priority to KR1020147015956A priority patent/KR20140084346A/ko
Priority to CN201280052317.9A priority patent/CN103890572A/zh
Priority to US14/356,331 priority patent/US20140324401A1/en
Publication of WO2013073360A1 publication Critical patent/WO2013073360A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/445Rubber
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the present invention relates to a rubber material simulation method, and more particularly, to a method useful for setting a rubber material model for simulation with high accuracy from an actual rubber material and obtaining accurate calculation results.
  • Rubber materials such as tires are blended with fillers such as carbon black and silica from the viewpoint of reinforcement. It has been found that the dispersibility of the filler in the rubber material largely affects the rubber strength and the like, but the details are not so clear. For this reason, it is important to accurately observe the three-dimensional dispersion state (aggregation structure) of the filler in the rubber material and perform a simulation using a model based on the dispersion state.
  • an electron beam transmission image of a rubber material is acquired using a 3D-TEM (scanning transmission electron microscope), and a three-dimensional structure of the rubber material is constructed from the image by a tomography method. It has been proposed to set the rubber material model based on the structure.
  • 3D-TEM can obtain only structural information of a local portion of the entire rubber, and there is a problem that there is little statisticality when performing a simulation. This leads to a decrease in simulation accuracy.
  • the present invention has been devised in view of the above-described problems, and uses a reverse Monte Carlo method based on scattering data in a specific scattering vector range obtained using X-rays and / or neutrons of rubber materials. It is an object of the present invention to provide a rubber material simulation method capable of solving the above-mentioned problems on the basis of determining a three-dimensional structure of a highly rubber material and setting a rubber material model based on the three-dimensional structure.
  • the present invention relates to a method for simulating a rubber material containing a filler, the measurement step of measuring X-ray and / or neutron scattering data of the rubber material, and the filling of the rubber material by a reverse Monte Carlo method from the scattering data
  • q 4 ⁇ ⁇ sin ⁇ / ⁇ (1)
  • wavelength of electromagnetic wave or particle beam
  • 1/2 of scattering angle
  • the beam size of the X-ray and / or neutron beam incident on the sample is preferably 60 ⁇ m or more and 30 mm or less.
  • the incident X-ray intensity of the measured X-ray scattering method is 10 10 (photons / s / mrad 2 / mm 2 /0.1%bw) or more and 10 23 (photons / s / mrad 2 / mm). 2 / 0.1% bw) or less.
  • a filler such as silica used for rubber has a primary particle diameter of about 10 to 100 nm, and a primary aggregate in which a plurality of these filler particles are aggregated is approximately 500 nm or less.
  • the scattering vector is related to the spatial resolution obtained by calculation in the reverse Monte Carlo method. For this reason, when a large scattering vector is used as compared with the primary particle diameter of the filler or the size of the primary aggregate, the calculation is performed with unnecessary spatial resolution, and the efficiency is poor. Conversely, when a small scattering vector is used, although it can be observed with a scanning electron microscope (SEM) or an optical microscope, it is not practical because it requires a lot of computer costs.
  • SEM scanning electron microscope
  • the actual three-dimensional structure of the actual rubber material can be accurately determined, and based on this, a more accurate rubber material model can be obtained. Therefore, in the present invention, an accurate simulation result can be obtained.
  • the analysis object is a rubber component a as a matrix rubber and a rubber material c containing a filler containing silica as a filler b. (Not shown).
  • Examples of the rubber component a include natural rubber (NR), isoprene rubber (IR), butyl rubber (IIR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), and ethylene propylene diene.
  • NR natural rubber
  • IIR isoprene rubber
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • ethylene propylene diene examples thereof include rubber (EPDM), chloroprene rubber (CR), and acrylonitrile butadiene rubber (NBR).
  • the filler b is not limited to silica, and examples thereof include carbon black, clay, talc, magnesium carbonate, and magnesium hydroxide.
  • the rubber material c may be appropriately mixed with various materials generally used in the rubber industry such as sulfur and vulcanization accelerators.
  • FIG. 2 shows a flowchart for carrying out the simulation method of the present embodiment.
  • a measurement process for measuring X-ray and / or neutron scattering data of the rubber material c is performed (step S1).
  • the measurement step is performed by, for example, a small angle scattering method.
  • the rubber material is irradiated with X-rays or neutrons.
  • the incident X-ray reflects the information of the electron density distribution in the substance (in this example, the distribution of the filler), and scattered X-rays (or scattered neutrons) are generated around the incident X-rays (or neutron rays). That is, if there are particles or non-uniform regions of density in the rubber material, scattering occurs regardless of whether it is crystalline or amorphous around the incident X-rays.
  • the scattered X-rays are exposed to a detector, and an X-ray latent image corresponding to the scattered data is formed inside the detector. By visualizing the X-ray latent image, the three-dimensional structure information of the filler can be obtained. Can do.
  • the measurement step is performed in a synchrotron radiation research facility such as SPring-8 or PF.
  • measurement was performed by the small angle X-ray scattering method at SPring-8 using two beam lines of BL20XU and BL40B2.
  • the detector an X-ray image intensifier + CCD detector (manufactured by Hamamatsu Photonics) and a solid-state semiconductor detector PILATUS 100K (manufactured by DECTRIS) were used.
  • the two beam lines can be scattering vector represented by the following formula (1) obtains the scattered data in the range of smaller than atmospheric and 10 nm -1 than 10 -4 nm -1 .
  • two-dimensional small-angle X-ray scattering data in the range of 1.2 ⁇ 10 ⁇ 3 nm ⁇ 1 ⁇ q ⁇ 2 nm ⁇ 1 is acquired for the scattering vector q.
  • the filler (reinforcing filler) used for the rubber preferably has a primary particle diameter of about 10 to 100 nm, and the primary aggregate obtained by agglomerating a plurality of these filler particles is preferably about 500 nm or less.
  • the scattering vector q is related to the spatial resolution obtained by calculation in the reverse Monte Carlo method. Therefore, when a large scattering vector is used as compared with the primary particle size of the filler or the size of the primary aggregate, the calculation is performed with unnecessary spatial resolution, which is inefficient.
  • SEM scanning electron microscope
  • optical microscope it is not practical because it requires a lot of computer costs.
  • the range of the scattering vector q is limited to the above-described range, so that there is an advantage that the shape of the primary aggregate and the arrangement of the primary particles can be determined efficiently and accurately.
  • the range of the scattering vector q more preferably from 10 -4 nm -1 ⁇ q ⁇ 1nm -1, more preferably desirably 10 -3 nm -1 ⁇ q ⁇ 0.7nm -1.
  • the beam size of the X-ray and / or neutron beam incident on the rubber material is preferably in the range of 60 ⁇ m to 30 mm. Since the structure information obtained from X-ray or neutron scattering provides average information within the beam size of X-rays or neutrons incident on the sample, data with higher statistics than 3D-TEM can be obtained.
  • 10 -4 nm -1 ⁇ To calculate the scatter data of the scattering vector q of q ⁇ 10 nm -1 it is desirable to irradiate 60 ⁇ m or more beam size on the sample.
  • the beam size is less than 60 ⁇ m, the statistical amount of the scattered data is smaller than the desired structure size, so that the spatial arrangement of the filler may not be determined with high accuracy.
  • synchrotron radiation X-ray is used as an incident X-ray light source, if the beam size is less than 60 ⁇ m, a speckle-like scattering pattern is generated due to the spatial coherence of X-rays, which becomes a noise component. , It is not preferable in performing the reverse Monte Carlo method.
  • the beam size is larger than 30 mm, it is difficult to form an optimum optical system, and the scattering pattern may be smeared (the image is blurred).
  • the incident X-ray intensity measured by the X-ray scattering method is 10 10 (photons / s / mrad 2 / mm 2 /0.1% bw) or more and 10 23 (photons / s / mrad 2 / mm 2). /0.1%bw) or less is desirable.
  • Incident X-ray luminance is greatly related to the S / N ratio of X-ray scattering data.
  • the incident X-ray brightness is less than 10 10 (photon / s / mrad 2 / mm 2 /0.1 bw)
  • the signal intensity tends to be weaker than the statistical error of X-rays.
  • the incident X-ray luminance is larger than 10 23 (photon / s / mrad 2 / mm 2 /0.1 bw)
  • the sample may be damaged due to radiation damage and cannot be measured.
  • the incident X-ray intensity is more preferably 10 21 (photon / s / mrad 2 / mm 2 /0.1 bw) or less, more preferably 10 20 (photon / s / mrad 2 / mm 2). /0.1 bw) or less is preferable.
  • a visualization process is performed in which the three-dimensional structure of the filler in the rubber material is identified by the reverse Monte Carlo method from the scattering data obtained in the measurement process (step S2).
  • the reverse Monte Carlo method has been studied as a method for determining the atomic and molecular structure of an amorphous material such as a liquid metal.
  • the scattering intensity I (q) obtained from X-rays and / or neutron rays is represented by the following formula (2).
  • I (q) S (q) ⁇ F (q) (2)
  • F (q) is a function indicating the shape of the scatterer in the substance, and in this embodiment, the primary particles of the filler in the rubber are set as F (q).
  • S (q) is related to the spatial arrangement of the primary particles when F (q) is the shape factor of the primary particles of the filler.
  • a spherical scattering function is used for F (q).
  • the scattering function is represented by the following formula (3).
  • Equation (3) R: radius of sphere, ⁇ : difference in electron density, V: volume of sphere, q: scattering vector.
  • FIG. 3 shows the three-dimensional structure of the filler in the rubber determined by the reverse Monte Carlo method. This three-dimensional structure is stored on a computer as numerical data.
  • a step of acquiring a slice image of the rubber material c from the three-dimensional structure is performed (step S3). Since such a slice image has already obtained a three-dimensional structure related to the filler of the rubber material c, it can be easily output from the computer by designating the position of the cross section.
  • a step of setting an initial rubber material model from the slice image of the rubber material c is performed (step S4).
  • This step includes a step of performing image processing on the slice image to divide all regions of the slice image into at least a rubber component and a filler.
  • image processing is already known, and by setting a threshold value for information such as brightness and luminance of the image in advance, the computer converts each area of the slice image into a rubber part and a filler part. Identify automatically.
  • this slice image is divided into basic elements of the same shape that are divided by a regular lattice. Is set.
  • FIG. 4 (a) shows a part of the initial rubber material model 5a of this embodiment visualized.
  • FIG. 4B shows a partially enlarged view thereof.
  • the regular lattice is composed of a lattice GD of vertical lines L1 and horizontal lines L2 arranged at the same pitch P on the x-axis and the y-axis.
  • Each square divided by the vertical line L1 and the horizontal line L2 constitutes one basic element eb. More specifically, the basic element eb is a square element (a quadrilateral element) having nodes n at four corners arranged at the intersections of the vertical line L1 and the horizontal line L2.
  • the initial rubber material model 5a of the present embodiment includes a rubber model 21 simulating the rubber component a and a filler model 22 simulating the filler b.
  • the filler model 22 is colored and displayed in FIG. 4A for easy understanding.
  • the filler model 22 is set by discretizing the filler b using a finite number of basic elements eb.
  • the rubber model 21 is set by discretizing the rubber component a of the rubber material c with a finite number of basic elements eb.
  • a regular lattice is set on the slice image that has been subjected to image processing, and either the rubber component a or the filler b is larger for each basic element eb. It is calculated whether it occupies the area. Based on the calculation result, it is determined whether each basic element eb belongs to the rubber model 21 or the filler model 22.
  • the initial analysis model can be created in a short time by using only the basic element eb divided by the regular lattice, and the slice image of the three-dimensional structure of the rubber material 5 photographed with high accuracy is used. Are set as being very close to the object to be analyzed.
  • the basic element eb defines information necessary for numerical analysis by simulation.
  • the numerical analysis means a numerical analysis method such as a finite element method.
  • the information necessary for the analysis includes at least the number of the node n constituting each basic element eb and the coordinate value of the node n.
  • each basic element eb defines a material characteristic (physical property value) of a portion represented by each element. That is, material constants corresponding to the physical properties of the filler and rubber are defined in the basic elements eb of the rubber model 21 and the filler model 22, respectively. These pieces of information are all input and stored in the computer.
  • a subdivision area 23 for further dividing the basic element eb is set in a part of the initial rubber material model 5a (step S5).
  • the subdivided region 23 is a portion composed of elements smaller than the basic element eb in the rubber material model 5a. Therefore, in the subdivided region 23, the deformation behavior can be examined in more detail, and high calculation accuracy can be obtained. Therefore, it is desirable to set the subdivided area 23 in a portion that meets such requirements.
  • the rubber part sandwiched between the filler models 22 and 22 is set as the subdivided region 23 so as to include the rubber part a1 at least in part.
  • the range of the subdivided area 23 may be designated by the user using an input means such as a keyboard or a mouse. Predetermined information is added to the elements of the area designated as the subdivided area 23 and input to the computer.
  • the subdivided area 23 may be determined by other methods. For example, first, a deformation simulation is performed using the initial rubber material model 5a and based on predetermined deformation conditions. Then, from the result of the deformation simulation, a large deformation region including the largest stress or strain portion of the initial rubber material model 5a is specified, and a region including at least a part of the large deformation region is determined as the subdivided region 23. May be.
  • subdivision is performed to divide each basic element of the subdivision area 5 into two or more (step S6).
  • the subdivision step S6 can be performed, for example, by reducing the pitch P of the vertical lines L1 and / or the horizontal lines L2 of the regular lattice passing through the subdivision area 23 to reduce the basic element eb.
  • the pitch P is reduced to 1 ⁇ 2 of the pitch P determined at the time.
  • the basic element eb of the rubber part sandwiched between the filler models 22 and 22 is divided into two equal parts in the y direction. That is, each basic element eb of the subdivision area 23 is divided into small rectangular elements es having the same x dimension and the y dimension of 1/2 as the original basic element eb.
  • the analysis model 5b that has undergone the subdivision step S6 it is possible to improve the calculation accuracy of the rubber portion (subdivision region 23) between the filler models 22 and 22. Further, the deformation behavior of the rubber part can be examined in more detail.
  • the change of the pitch at the time of subdividing is not limited to the above 1/2, and can be set to various values. Further, the subdivision step S3 may be repeated a plurality of times until a necessary element resolution is obtained.
  • the two-dimensional rubber material model 5a has been described as an example.
  • the present invention can be applied to a three-dimensional rubber material model 5c. It goes without saying that it can be done with. In this case, modeling can be performed directly from the three-dimensional structure of the rubber material c without using a slice image.
  • the basic element eb divided by the regular lattice is a rectangular parallelepiped element.
  • the step of subdividing the three-dimensional rubber material model 5c includes, for example, a basic element eb similar to the basic element eb inside the cubic basic element eb as shown in the upper diagram of FIG.
  • One cubic small element es smaller than eb is set so that the centers of gravity are aligned with each other.
  • each node ns of the small element eb is assigned to the corresponding node of the basic element eb.
  • Each nb is connected with a side s.
  • the basic element eb can be divided into one cubic small element es and six hexahedral elements ea surrounding it.
  • a slab sheet having a thickness of 1 mm was cut out from the vulcanized rubber as a sample. If the thickness of the sample is larger than this, multiple scattering may occur inside the rubber material, and accurate measurement may not be possible.
  • the scattering data was measured by the small angle X-ray scattering method at SPring-8 using the BL20XU and BL40B2 beam lines according to the specifications shown in Table 1.
  • an X-ray image intensifier + CCD detector manufactured by Hamamatsu Photonics
  • a solid-state semiconductor detector PILATUS 100K manufactured by DECTRIS
  • a rubber material model having a side of 700 nm was set, and a finite element method was used to simulate deformation by pulling the model 100%.
  • the 10% modulus of the rubber material was calculated.
  • the actual vulcanized rubber was also subjected to a 10% modulus tensile test under the same conditions (comparative example).
  • Table 1 shows the test results.
  • the 10% modulus in Table 1 describes a value with a comparative example being 100, and the closer the value is to 100, the closer to actual measurement.
  • Example has high correlation with actual vulcanized rubber.
  • Comparative Example 1 since a scattering vector q smaller than the particle diameter of silica was used, a convergent solution could not be obtained in the reverse Monte Carlo method calculation. Further, in Comparative Example 2, since the scattering vector q is in a range smaller than the range of the present invention, the calculation scale becomes too large to calculate the reverse Monte Carlo method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 実際のゴム材料から精度良くシミュレーション用のゴム材料モデルを設定して精度の良い計算結果を得るのに役立つ方法を提供する。充填剤を含有するゴム材料のシミュレーション方法であって、前記ゴム材料のX線及び/又は中性子の散乱データを測定する測定工程S1と、前記散乱データからリバースモンテカルロ法によりゴム中の充填材の三次元構造を特定する可視化工程S2と、前記充填材の三次元構造に基づいてゴム材料モデルを設定するモデル設定工程S3乃至S6と、前記ゴム材料モデルに基づいて変形シミュレーションを行う工程とを含み、前記測定工程において、散乱ベクトルqが10-4nm-1よりも大かつ10nm-1よりも小の範囲の散乱データを得ることを特徴とする。

Description

ゴム材料のシミュレーション方法
 本発明は、ゴム材料のシミュレーション方法に関し、詳しくは実際のゴム材料から精度良くシミュレーション用のゴム材料モデルを設定して精度の良い計算結果を得るのに役立つ方法に関する。
 タイヤなどのゴム材料には、補強性の観点より、カーボンブラックやシリカなどの充填剤(フィラー)が配合されている。ゴム材料中の充填剤の分散性は、大まかに、ゴム強度などに大きく影響することが判明しているが、その詳細はあまり明らかにされていない。このため、ゴム材料中の充填剤の三次元の分散状態(凝集構造)を正確に観察し、その分散状態に基づいたモデルを用いてシミュレーションを行うことは重要である。
 近年の技術発展に伴い、3D-TEM(走査型透過電子顕微鏡)を用いてゴム材料の電子線透過画像を取得し、この画像からトモグラフィー法によりゴム材料の三次元構造を構築し、該三次元構造に基づいてゴム材料モデルを設定することが提案されている。
 しかしながら、3D-TEMは、ゴム全体のうち局所的な部分の構造情報しか得ることができず、シミュレーションを実施する上で統計性が少ないという課題がある。これは、シミュレーション精度の低下につながる。
 本発明は、以上のような問題点に鑑み案出なされたもので、ゴム材料のX線及び/又は中性子を用いて取得した特定の散乱ベクトルの範囲の散乱データからリバースモンテカルロ法を用いて統計性の高いゴム材料の三次元構造を決定し、これに基づいてゴム材料モデルを設定することを基本として、前記課題を解決しうるゴム材料のシミュレーション方法を提供することを目的とする。
 本発明は、充填剤を含有するゴム材料のシミュレーション方法であって、前記ゴム材料のX線及び/又は中性子の散乱データを測定する測定工程と、前記散乱データからリバースモンテカルロ法によりゴム中の充填材の三次元構造を特定する可視化工程と、前記充填材の三次元構造に基づいてゴム材料モデルを設定するモデル設定工程と、前記ゴム材料モデルに基づいて変形シミュレーションを行う工程とを含み、前記測定工程において、式(1)に示す散乱ベクトルqが10-4 nm-1よりも大かつ10nm-1よりも小の範囲の散乱データを得ることを特徴とする。
   q=4π・sinθ/λ …(1)
    λ:電磁波又は粒子線の波長
    θ:散乱角の1/2
 また、前記測定工程において、試料に入射するX線及び/又は中性子線のビームサイズが60μm以上30mm以下であることが望ましい。
 また、前記測定工程は、計測されるX線散乱法の入射X線強度が1010 (photons/s/mrad2/mm2/0.1%bw)以上かつ1023(photons/s/mrad2/mm2/0.1%bw)以下であることが望ましい。
 本発明のゴム材料のシミュレーション方法では、ゴム材料のX線及び/又は中性子の散乱データを測定する測定工程と、前記散乱データからリバースモンテカルロ法によりゴム中の充填材の三次元構造を特定する可視化工程と、前記充填材の三次元構造に基づいてゴム材料モデルを設定するモデル設定工程と、前記ゴム材料モデルに基づいて変形シミュレーションを行う工程とを含み、前記測定工程において、下式で表される散乱ベクトルqが10-4 nm-1よりも大かつ10nm-1よりも小の範囲の散乱データを得ることを特徴としている。
   q=4π・sinθ/λ
    λ:電磁波又は粒子線の波長
    θ:散乱角の1/2
 一般に、ゴムに使われるシリカ等の充填材(補強性フィラー)は、一次粒子径が約10~100nm程度、また、これらの充填剤の粒子が複数凝集した一次凝集体は、概ね500nm以下である。一方、前記散乱ベクトルは、リバースモンテカルロ法における計算によって得られる空間分解能と関係する。このため、充填材の一次粒子径又は一次凝集体の大きさに比して、大きい散乱ベクトルが用いられた場合、不必要な空間分解能で計算することになり効率が悪い。逆に、小さい散乱ベクトルが用いられた場合、走査電子顕微鏡(SEM)や光学顕微鏡でも観察可能であるのに関わらず、多くの計算機コストをかけるため実用的ではない。本発明では、散乱ベクトルqを上述の範囲に限定することにより、充填材の一次凝集体の形状や一次粒子の配置を効率良くかつ精度良く決定することができる。
 従って、上記工程によれば、実際のゴム材料が実際に有する三次元構造を正確に決定することができ、これに基づいて、より正確なゴム材料モデルを得ることができる。よって、本発明では、正確なシミュレーション結果を得ることができる。
本実施形態のゴム材料の概略的な部分拡大断面図である。 本実施形態の処理手順を説明するフローチャートである。 本実施形態の方法で試料から得られたゴム材料の三次元像である。 (a)は二次元のゴム材料モデルの部分拡大図、(b)はさらにその要部拡大図である。 (a)は二次元のゴム材料モデルの部分拡大図、(b)はさらにその要部拡大図である。 三次元のゴム材料モデルの一部分を模式的な拡大図である。 立方体の要素の細分化を説明する要素の拡大図である。
 以下、本発明の実施の一形態が図面に基づき説明される。
 本実施形態では、解析対象物が、図1に示されるように、マトリックスゴムとしてのゴム成分aと、充填剤bとしてシリカを含む充填剤入りのゴム材料cであり、その変形計算がコンピュータ(図示省略)を用いてシミュレートされる。
 前記ゴム成分aとしては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブチルゴム(IIR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)又はアクリロニトリルブタジエンゴム(NBR)などが挙げられる。
 前記充填剤bとしては、シリカに限定されることなく、例えば、カーボンブラック、クレー、タルク、炭酸マグネシウム又は水酸化マグネシウム等が挙げられる。また、上記ゴム材料cには、硫黄、加硫促進剤などゴム業界において一般的に用いられている各種材料が適宜配合されてもよい。
 図2には、本実施形態のシミュレーション方法を実施するためのフローチャートが示される。先ず、本実施形態では、前記ゴム材料cのX線及び/又は中性子の散乱データを測定する測定工程が行われる(ステップS1)。
 前記測定工程は、例えば小角散乱法にて行われる。小角散乱法では、ゴム材料にX線又は中性子が照射される。入射X線が物質内の電子密度分布(この例では充填材の分布)の情報を反映し、該入射X線(又は中性子線)の周囲に散乱X線(又は散乱中性子)が発生する。即ち、ゴム材料中に粒子や密度の不均一な領域が存在すると、入射X線の周囲に結晶や非晶質に拘わらず散乱が発生する。この散乱X線は、例えば検出器を露光させ、その内部に散乱データに対応したX線潜像が形成され、このX線潜像を可視化することにより、充填材の三次元構造情報を得ることができる。
 前記測定工程は、例えば、SPring-8やPFといった放射光研究施設で行われる。本実施形態では、SPring-8において、BL20XU及びBL40B2の2種のビームラインを用いて小角X線散乱法にて測定が行われた。検出器には、X線イメージインテンシファイア+CCD検出器(浜松ホトニクス製)及び固体半導体検出器PILATUS 100K(DECTRIS製)が用いられた。前記2つのビームラインを用いることにより、下記式(1)で表される散乱ベクトルが、10-4 nm-1よりも大かつ10nm-1よりも小の範囲の散乱データを取得することができる。本実施形態では、散乱ベクトルqについて、1.2x10-3 nm-1<q<2nm-1の範囲の二次元小角X線散乱データが取得された。
     q=4π・sinθ/λ  … (1)
           λ:電磁波又は粒子線の波長
           θ:散乱角の1/2
 ゴムに使われる充填材(補強性フィラー)は、一次粒子径が約10~100nm程度、また、これらの充填剤の粒子が複数凝集した一次凝集体は、概ね500nm以下のものが好適である。一方、前記散乱ベクトルqは、リバースモンテカルロ法における計算によって得られる空間分解能と関係する。従って、充填材の一次粒子径又は一次凝集体の大きさに比して、大きい散乱ベクトルが用いられた場合、不必要な空間分解能で計算することになり効率が悪い。逆に、小さい散乱ベクトルが用いられた場合、走査電子顕微鏡(SEM)や光学顕微鏡でも観察可能であるにも関わらず、多くの計算機コストをかけるため実用的ではない。本実施形態では、散乱ベクトルqの範囲を上述の範囲に限定されることにより、一次凝集体の形状や一次粒子の配置を効率良くかつ精度良く決定することができる利点がある。なお、前記散乱ベクトルqの範囲としては、より好ましくは10-4nm-1<q<1nm-1であり、さらに好ましくは10-3 nm-1<q< 0.7nm-1が望ましい。
 前記測定工程において、ゴム材料(試料)に入射されるX線及び/又は中性子線のビームサイズは、60μm以上30mm以下の範囲が望ましい。X線又は中性子の散乱から得られる構造情報は、試料に入射されたX線又は中性子のビームサイズ内の平均情報が得られるため、3D-TEMに比べ統計量の高いデータが得られる。
 また、リバースモンテカルロ法(後述)において、10-4nm-1<q<10nm-1の散乱ベクトルqの散乱データを計算するには、60μm以上のビームサイズを試料に照射することが望ましい。ビームサイズが60μm未満の場合、求めたい構造サイズに比し散乱データの統計量が少なくなるため、充填材の空間配置を精度良く決定することができないおそれがある。さらに、入射X線光源としてシンクロトロン放射光X線を用いた場合、ビームサイズを60μm未満にすると、X線の空間コヒーレンスの影響により、スペックル状の散乱パターンとなり、それがノイズ成分となるため、リバースモンテカルロ法を行う上で好ましくない。他方、ビームサイズが30mmよりも大になると、最適な光学系を形成することが困難となり、散乱パターンがスメアリング(像がぼける)するおそれがある。
 前記測定工程において、計測されるX線散乱法の入射X線強度は、1010 (photons/s/mrad2/mm2/0.1%bw)以上かつ1023(photons/s/mrad2/mm2/0.1%bw)以下の範囲が望ましい。入射X線輝度は、X線散乱データのS/N比に大きく関係する。入射X線の輝度が1010(photon/s/mrad2/mm2/0.1bw)未満の場合、X線の統計誤差よりもシグナル強度が弱くなる傾向にあり、計測時間を多くしても十分にS/N比の良いデータを得ることが困難になる。他方、入射X線輝度が1023(photon/s/mrad2/mm2/0.1bw)よりも大きい場合、試料が放射線ダメージを受けて損傷し計測できないおそれがある。このような観点より、入射X線強度は、より好ましくは1021(photon/s/mrad2/mm2/0.1bw)以下が好ましく、さらに好ましくは1020(photon/s/mrad2/mm2/0.1bw)以下が好ましい。
 次に、本実施形態では、前記測定工程にて得られた散乱データからリバースモンテカルロ法によりゴム材料中の充填材の三次元構造を特定する可視化工程が行われる(ステップS2)。
 リバースモンテカルロ法は、液体金属などアモルファス材料の原子や分子構造を決定する手法として研究がすすめられてきた方法である。一般に、X線及び/又は中性子線から得られる散乱強度I(q)は、下記式(2)で表される。
  I(q)=S(q)・F(q) …(2)
 ここで、F(q)は、物質中の散乱体の形状を示す関数であり、本実施形態ではゴム中の充填材の一次粒子をF(q)と置いている。また、S(q)は、F(q)を充填材の一次粒子の形状因子とした場合、一次粒子の空間配置に関係するものとなる。ここでは、F(q)に球の散乱関数を用いている。散乱関数は、下記式(3)で表される。なお、式(3)中、R:球の半径、Δρ:電子密度差、V:球の体積、q:散乱ベクトルである。
Figure JPOXMLDOC01-appb-M000001
 リバースモンテカルロ法では、コンピュータ内に複数の粒子を初期配置し、そのフーリエ変換から計算的に得られるScal(q)が、実測のSexp(q)に一致するまで、乱数等を利用して粒子の配置を変えて繰り返し計算する手法である。実際には、式(4)に示すχ2の計算が収束するまで繰り返し計算させて構造が決定される。なお、式(4)中、σ2 stdは、標準偏差である。
Figure JPOXMLDOC01-appb-M000002
 図3には、このようなリバースモンテカルロ法によって決定されたゴム中の充填材の三次元構造が示されている。この三次元構造は、数値データとして、コンピュータ上に記憶される。
 次に、本実施形態では、上記三次元構造からゴム材料cのスライス画像を取得する工程が行われる(ステップS3)。このようなスライス画像は、既にゴム材料cの充填材に関する三次元構造が得られているため、断面の位置を指定することによって、容易にコンピュータから出力することができる。
 次に、本実施形態では、上記ゴム材料cのスライス画像から、初期のゴム材料モデルを設定する工程が行われる(ステップS4)。この工程では、前記スライス画像に画像処理を行うことにより、前記スライス画像の全ての領域を、少なくともゴム成分と充填剤との2つに区分する工程を含む。このような画像処理は、既に公知であり、予め画像の明度や輝度などの情報に対して閾値を設定することで、前記コンピュータが、スライス画像の各領域を、ゴム部分と充填剤部分とに自動的に識別する。
 次に、画像処理にて、スライス画像が、ゴム部分及び充填剤部分に区分された後、このスライス画像が、規則格子で区分される同一形状の基本要素で分割することで初期のゴム材料モデルが設定される。
 図4(a)には、本実施形態の初期のゴム材料モデル5aの一部分が視覚化して示される。また、図4(b)には、その部分拡大図を示す。前記規則格子は、図4(b)に拡大して示されるように、x軸及びy軸に同一のピッチPで配された縦線L1及び横線L2の格子GDからなる。そして、該縦線L1及び横線L2で区分される正方形が、それぞれ一つの基本要素ebを構成する。より具体的には、基本要素ebは、縦線L1及び横線L2の各交点に配置される節点nを4隅に有する正方形要素(四辺形要素)である。
 本実施形態の初期のゴム材料モデル5aは、ゴム成分aを模しているゴムモデル21と、充填剤bを模している充填剤モデル22とを含んで構成される。
 前記充填剤モデル22は、理解しやすいように、図4(a)において着色されて表示される。該充填剤モデル22は、前記充填剤bを有限個の基本要素eb…を用いて離散化することにより設定されている。
 また、前記ゴムモデル21は、ゴム材料cのゴム成分aが有限個の基本要素ebで離散化されて設定される。
 このような要素分割は、例えば、前記コンピュータを用いて、画像処理が施されたスライス画像上に規則格子を設定し、基本要素eb毎に、ゴム成分a又は充填剤bのいずれがより多くの面積を占めているかが計算される。そして、その計算結果に基づいて、各基本要素ebが、ゴムモデル21又は充填剤モデル22のいずれに属するか決定される。このように、初期の解析モデルは、規則格子で区分される基本要素ebのみを用いることにより、短時間で作成できるとともに、精度良く撮影されたゴム材料5の3次元構造のスライス画像を用いるため、解析対象物に非常に近いものとして設定される。
 前記基本要素ebは、シミュレーションによる数値解析に必要な情報が定義される。数値解析とは、例えば有限要素法等の数値解析法を意味する。また、解析に必要な情報としては、各基本要素ebを構成する節点nの番号や該節点nの座標値が少なくとも含まれる。さらに、各基本要素ebには、各々が代表する部分の材料特性(物性値)などが定義される。即ち、ゴムモデル21及び充填剤モデル22の各基本要素ebには、それぞれ充填剤及びゴムの物性に応じた材料定数が定義される。そして、これらの情報は、いずれもコンピュータに入力されかつ記憶される。
 次に、本実施形態では、前記初期のゴム材料モデル5aの一部分に、前記基本要素ebをさらに分割する細分化領域23が設定される(ステップS5)。
 前記細分化領域23は、ゴム材料モデル5aのうち、基本要素ebより小さい要素で構成される部分である。従って、細分化領域23では、その変形挙動をより詳細に調べることが可能になる他、高い計算精度が得られる。従って、細分化領域23は、このような要求に合致した部分に設定されることが望ましい。
 充填剤が配合されたゴム材料cの場合、図1に示されるように、隣り合う充填剤b、b間のゴム部a1に大きな歪及び応力が生じ易い。従って、本実施形態では、前記ゴム部a1を少なくとも一部に含むように、充填剤モデル22、22で挟まれているゴム部が細分化領域23として設定される。
 前記細分化領域23は、例えば、ユーザーが、キーボードやマウス等の入力手段を用いて、その範囲が指定されても良い。そして、細分化領域23として指定された領域の要素には、所定の情報が付加されて前記コンピュータに入力される。
 また、細分化領域23は、他の方法で決定されても良い。例えば、先ず、初期のゴム材料モデル5aを使用し、かつ、予め定められた変形条件に基づいて変形シミュレーションを行う。そして、この変形シミュレーションの結果から、初期のゴム材料モデル5aの応力又は歪の最も大きい部分を含む大変形領域を特定し、該大変形領域を少なくとも一部に含む領域が細分化領域23として決定されても良い。
 次に、本実施形態では、細分化領域5の各基本要素を2以上に分割する細分化が行われる(ステップS6)。
 細分化のステップS6は、例えば、細分化領域23を通る規則格子の縦線L1及び/又は横線L2のピッチPを小さくして前記基本要素ebを小さくすることにより行うことができる。本実施形態では、図5(a)及びその部分拡大図である図5(b)に示されるように、細分化領域23を通る規則格子の横線L2のピッチのみが、初期のゴム材料モデル5aのときに定められたピッチPの例えば1/2に減じられる。これにより、充填剤モデル22、22で挟まれているゴム部分の基本要素ebはy方向に2等分される。即ち、細分化領域23の各基本要素ebは、元の基本要素ebとx寸法が同一かつy寸法が1/2をなす長方形の小型要素esに分割される。
 従って、細分化のステップS6を経た解析モデル5bを用いて変形シミュレーションを行うことにより、充填剤モデル22、22間のゴム部分(細分化領域23)の計算精度の向上を高めることができる。また、前記ゴム部分の変形挙動をより詳細に調べることができる。なお、細分化する際のピッチの変更は、上記1/2に限定されるものではなく、種々の値に設定することができる。また、細分化のステップS3は、必要な要素解像度が得られるまで、複数回繰り返されても良い。
 なお、上記の実施形態では、二次元のゴム材料モデル5aを例に挙げて説明したが、本発明は、図6に示されるように、三次元のゴム材料モデル5cであっても同様の手順で行うことができるのは言うまでもない。この場合、スライス画像を用いることなく、ゴム材料cの三次元構造から直接モデル化を行うことができる。また、三次元のモデル5cの場合、規則格子で区分される基本要素ebは、直方体の要素からなる。
 また、三次元のゴム材料モデル5cを細分化するステップは、例えば図7の上図に示されるように、立方体からなる基本要素ebの内部に、該基本要素ebと相似形をなしかつ基本要素ebよりも小さい1つの立方体の小型要素esが互いの重心を揃えて設定され、次に図7の下図に示されるように、小型要素ebの各節点nsを、対応する前記基本要素ebの節点nbにそれぞれ辺sでつなぐことが行われる。これにより、基本要素ebは、一つの立方体の小型要素esと、それを囲む6つの六面体の要素eaとに分割することができる。
 以上、本発明について詳述したが、本発明は上記の実施形態に限定されることなく種々の態様に変形して実施しうるのは言うまでもない。例えば、X線に代えて中性子線を用いて同様の測定工程を行うことができる。
 本発明の効果を確認するために、以下の実験が行われた。ただし、本発明はこれらの例に限定されるものではない。
 実験で使用された各種薬品及び装置は、次の通りである。即ち、下記に示す配合に従い、バンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を排出温度160℃の条件下で4分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、100℃の条件下で2分間練り込み、未加硫ゴム組成物を得た。さらに、得られた未加硫ゴム組成物を175℃で30分間加硫することにより、加硫ゴムを得た。
[ゴム配合](単位は質量部)
 SBR        100
 シリカ        50
 シランカップリング剤 4
 硫黄         2
 加硫促進剤A     1
[薬品]
 SBR:住友化学(株)製のSBR1502
 シリカ:ローディアジャパン(株)製の115Gr
 シランカップリング剤:デグッサ社製のSi69
 硫黄:鶴見化学(株)製の粉末硫黄
 加硫促進剤A:大内新興化学工業(株)製のノクセラーNS
 そして、加硫ゴムから、厚さ1mmのスラブシートを試料として切り出した。なお、試料の厚さがこれよりも大きくなると、ゴム材料の内部で多重散乱が発生し、正確な測定ができないおそれがある。
 次に、得られたサンプルについて、SPring-8にて、BL20XU及びBL40B2のビームラインを用い、小角X線散乱法にて散乱データの測定が表1の仕様にて行われた。検出器には、上述の通り、X線イメージインテンシファイア+CCD検出器(浜松ホトニクス製)及び固体半導体検出器PILATUS 100K(DECTRIS製)が用いられた。前記2つのビームラインを用いることにより、10-4nm-1よりも大かつ1nm-1よりも小の範囲の散乱データを取得することができた。得られた散乱データから、リバースモンテカルロ法にて、シリカの三次元構造を決定した。また、このシリカの三次元構造を元に、一辺が700nmのゴム材料モデルが設定され、有限要素法を用いて、前記モデルを100%引っ張る変形のシミュレーションが行われた。そして、評価として、ゴム材料の10%モジュラスが計算された。また、比較のために、上記実際の加硫ゴムについても、同様の条件で10%モジュラス引っ張り試験が行われた(比較例)。テストの結果等は、表1に示される。なお、表1中の10%モジュラスは、比較例を100とした値が記載されており、数値が100に近いほど、実測に近いことを示す。
Figure JPOXMLDOC01-appb-T000003
 実施例は、実際の加硫ゴムとの相関性が高い。これに対して、比較例1では、シリカの粒径よりも小さい散乱ベクトルqが用いられたため、リバースモンテカルロ法の計算において収束解を得ることができなかった。また、比較例2では、散乱ベクトルqが本発明の範囲よりも小さいレンジにあるため、計算規模が大きくなりすぎてリバースモンテカルロ法の計算ができなかった。
5a、5b、5c ゴム材料モデル
21 ゴムモデル
22 充填剤モデル

Claims (3)

  1.  充填剤を含有するゴム材料のシミュレーション方法であって、
     前記ゴム材料のX線及び/又は中性子の散乱データを測定する測定工程と、
     前記散乱データからリバースモンテカルロ法によりゴム中の充填材の三次元構造を特定する可視化工程と、
     前記充填材の三次元構造に基づいてゴム材料モデルを設定するモデル設定工程と、
     前記ゴム材料モデルに基づいて変形シミュレーションを行う工程とを含み、
     前記測定工程において、式(1)に示す散乱ベクトルqが10-4 nm-1よりも大かつ10nm-1よりも小の範囲の散乱データを得ることを特徴とするゴム材料シミュレーション方法。
       q=4π・sinθ/λ …(1)
        λ:電磁波又は粒子線の波長
        θ:散乱角の1/2
  2.  前記測定工程において、試料に入射するX線及び/又は中性子線のビームサイズが60μm以上30mm以下である請求項1に記載のゴム材料のシミュレーション方法。
  3.  前記測定工程は、計測されるX線散乱法の入射X線強度が1010 (photons/s/mrad2/mm2/0.1%bw)以上かつ1023(photons/s/mrad2/mm2/0.1%bw)以下である請求項1又は2記載のゴム材料のシミュレーション方法。
PCT/JP2012/077888 2011-11-18 2012-10-29 ゴム材料のシミュレーション方法 WO2013073360A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12848813.7A EP2778664A4 (en) 2011-11-18 2012-10-29 METHOD FOR SIMULATING RUBBER MATERIAL
KR1020147015956A KR20140084346A (ko) 2011-11-18 2012-10-29 고무 재료의 시뮬레이션 방법
CN201280052317.9A CN103890572A (zh) 2011-11-18 2012-10-29 模拟橡胶材料的方法
US14/356,331 US20140324401A1 (en) 2011-11-18 2012-10-29 Method for simulating rubber material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-252984 2011-11-18
JP2011252984A JP2013108800A (ja) 2011-11-18 2011-11-18 ゴム材料のシミュレーション方法

Publications (1)

Publication Number Publication Date
WO2013073360A1 true WO2013073360A1 (ja) 2013-05-23

Family

ID=48429428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077888 WO2013073360A1 (ja) 2011-11-18 2012-10-29 ゴム材料のシミュレーション方法

Country Status (6)

Country Link
US (1) US20140324401A1 (ja)
EP (1) EP2778664A4 (ja)
JP (1) JP2013108800A (ja)
KR (1) KR20140084346A (ja)
CN (1) CN103890572A (ja)
WO (1) WO2013073360A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274438B2 (en) * 2013-11-15 2019-04-30 Sumitomo Rubber Industries, Ltd. Method for observing deformation of elastic material and apparatus for capturing projection image of elastic material
JP6374355B2 (ja) * 2014-09-11 2018-08-15 住友ゴム工業株式会社 硫黄含有高分子複合材料における架橋密度の測定方法
US9874530B2 (en) * 2014-09-11 2018-01-23 Sumitomo Rubber Industries, Ltd. Method of measuring crosslink densities in sulfur-containing polymer composite material
JP6367758B2 (ja) * 2015-05-27 2018-08-01 住友ゴム工業株式会社 架橋ゴムの架橋疎密を評価する方法
JP6634777B2 (ja) * 2015-10-22 2020-01-22 住友ゴム工業株式会社 性能評価方法及び性能評価装置
JP6578200B2 (ja) * 2015-12-22 2019-09-18 Toyo Tire株式会社 高分子材料中の充填剤構造解析方法
JP6790415B2 (ja) * 2016-03-30 2020-11-25 横浜ゴム株式会社 不均質材料のシミュレーション方法、不均質材料のシミュレーション装置およびプログラム
JP2018123225A (ja) * 2017-01-31 2018-08-09 旭化成株式会社 ヒステリシスロスが改良されたゴム組成物、加硫物、及びゴム組成物の製造方法
CN107063872A (zh) * 2017-06-02 2017-08-18 中国工程物理研究院核物理与化学研究所 一种用于中子散射实验中金属铍的室温力学加载装置
CN109766669B (zh) * 2019-03-06 2022-09-27 四川大学 预测导电复合材料电阻及其响应的可视化数学模型方法
JP7221536B2 (ja) * 2019-12-27 2023-02-14 株式会社リガク 散乱測定解析方法、散乱測定解析装置、及び散乱測定解析プログラム
CN111307572B (zh) * 2020-04-03 2022-10-28 中国工程物理研究院核物理与化学研究所 一种基于小角中子散射的填充橡胶结构网络演化测定方法
CN113834833B (zh) * 2021-03-31 2023-06-06 中国工程物理研究院材料研究所 一种ods钢磁性粉末中纳米相的表征方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011613A (ja) * 1996-06-25 1998-01-16 Matsushita Electric Works Ltd 複合材料の微視的構造の3次元有限要素モデル作成方法
JP2005121535A (ja) * 2003-10-17 2005-05-12 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2006138810A (ja) * 2004-11-15 2006-06-01 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2008122154A (ja) * 2006-11-09 2008-05-29 Sumitomo Rubber Ind Ltd ゴム材料解析モデルの作成方法
JP2009003747A (ja) * 2007-06-22 2009-01-08 Yokohama Rubber Co Ltd:The 複合材料のシミュレーションモデルの作成方法およびシミュレーション方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313458A (ja) * 1995-05-17 1996-11-29 Rigaku Corp X線装置
GB0201773D0 (en) * 2002-01-25 2002-03-13 Isis Innovation X-ray diffraction method
EP1526468B1 (en) * 2003-10-17 2009-09-30 Sumitomo Rubber Industries Limited Method of simulating viscoelastic material
JP2005265840A (ja) * 2004-02-17 2005-09-29 Seiichi Hayashi 分析装置
JP4603082B2 (ja) * 2009-02-03 2010-12-22 株式会社ブリヂストン ゴム材料の変形挙動予測装置及びゴム材料の変形挙動予測方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011613A (ja) * 1996-06-25 1998-01-16 Matsushita Electric Works Ltd 複合材料の微視的構造の3次元有限要素モデル作成方法
JP2005121535A (ja) * 2003-10-17 2005-05-12 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2006138810A (ja) * 2004-11-15 2006-06-01 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2008122154A (ja) * 2006-11-09 2008-05-29 Sumitomo Rubber Ind Ltd ゴム材料解析モデルの作成方法
JP2009003747A (ja) * 2007-06-22 2009-01-08 Yokohama Rubber Co Ltd:The 複合材料のシミュレーションモデルの作成方法およびシミュレーション方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROMICHI KISHIMOTO: "Gum Fukugo Zairyo eno Hoshako no Oyo to Kaiseki", SENTAN SEN'I SOZAI KENKYU IINKAI KOENKAI YOSHISHU (AFMC), vol. 32, 2008, pages 35 - 40, XP008173815 *
YOSHIYUKI AMEMIYA ET AL.: "Choki Riyo Kadai Hokoku 2 Nijigen Kyokushokaku - Shokaku X-sen Sanranho o Mochiita Gum Chu Nano Ryushi Gyoshu Kozo no Kansatsu", SPRING-8 RIYOSHA JOHO, vol. 14, no. 2, 16 May 2009 (2009-05-16), pages 149 - 153, XP055154665 *
YUYA SHINOHARA ET AL.: "Small-angle X-ray scattering of filled rubber", FUNCTION & MATERIALS, vol. 27, no. 4, 5 March 2007 (2007-03-05), pages 83 - 90, XP008173561 *

Also Published As

Publication number Publication date
US20140324401A1 (en) 2014-10-30
KR20140084346A (ko) 2014-07-04
JP2013108800A (ja) 2013-06-06
EP2778664A4 (en) 2015-12-23
EP2778664A1 (en) 2014-09-17
CN103890572A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2013073360A1 (ja) ゴム材料のシミュレーション方法
Borbély et al. Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography
JP6578200B2 (ja) 高分子材料中の充填剤構造解析方法
JP6030501B2 (ja) 中性子散乱長密度の評価方法
US20130051656A1 (en) Method for analyzing rubber compound with filler particles
JP2021089195A (ja) 成型支援装置および成型支援方法
Haith et al. Radiographic modelling for NDE of subsea pipelines
JP6367758B2 (ja) 架橋ゴムの架橋疎密を評価する方法
US20130066607A1 (en) Method for simulating deformation of rubber compound with filler particles
JP2013054578A (ja) ゴム材料のシミュレーション方法
JP6613637B2 (ja) 高分子材料の内部構造の応答特性を評価する方法
Park et al. Quantified analysis of 2D dispersion of carbon nanotubes in hardened cement composite using confocal Raman microspectroscopy
Kobus et al. Radiative transfer simulations for in-situ particle size diagnostic in reactive, particle growing plasmas
Khallouqi et al. Comparing tissue-equivalent properties of polyester and epoxy resins with PMMA material using Gate/Geant4 simulation toolkit
JP2018179643A (ja) シリカアグリゲートの分散を評価する方法
US9097697B2 (en) Method for simulating deformation of rubber compound
JP5767541B2 (ja) ゴム材料のシミュレーション方法
JP6518939B2 (ja) コンクリート構造物の水分推定方法及びコンクリート構造物の水分推定システム
US20190124314A1 (en) Three-dimensional state estimation device, three-dimensional state estimation program, and three-dimensional state estimation method
Bunday Noise fidelity in SEM simulation
Johnsen et al. SEM image modeling using the modular Monte Carlo model MCSEM
Gou et al. Quantification of layered silicate dispersion in polymer nanocomposites
Hamada A Bayesian approach to multivariate measurement system assessment
Newbury et al. Simulating electron-excited energy dispersive X-ray spectra with the NIST DTSA-II open-source software platform
WO2024053458A1 (ja) 樹脂成形品中における充填材の配向状態の解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14356331

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012848813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012848813

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147015956

Country of ref document: KR

Kind code of ref document: A