WO2013073002A1 - 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材 - Google Patents

超電導線材用基板、超電導線材用基板の製造方法及び超電導線材 Download PDF

Info

Publication number
WO2013073002A1
WO2013073002A1 PCT/JP2011/076255 JP2011076255W WO2013073002A1 WO 2013073002 A1 WO2013073002 A1 WO 2013073002A1 JP 2011076255 W JP2011076255 W JP 2011076255W WO 2013073002 A1 WO2013073002 A1 WO 2013073002A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting wire
substrate
surface roughness
rolling
superconducting
Prior art date
Application number
PCT/JP2011/076255
Other languages
English (en)
French (fr)
Inventor
義則 長洲
樋口 優
久樹 坂本
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201180033016.7A priority Critical patent/CN103282975B/zh
Priority to JP2013501466A priority patent/JP5950900B2/ja
Priority to PCT/JP2011/076255 priority patent/WO2013073002A1/ja
Priority to US13/816,619 priority patent/US9378869B2/en
Priority to EP11870510.2A priority patent/EP2626867B1/en
Publication of WO2013073002A1 publication Critical patent/WO2013073002A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a substrate for a superconducting wire, a method of manufacturing a substrate for a superconducting wire, and a superconducting wire.
  • a superconducting wire in which an intermediate layer is formed on a tape-like substrate made of Hastelloy by the IBAD (Ion Beam Assisted Deposition) method, and an oxide superconducting layer is oriented on the intermediate layer.
  • IBAD Ion Beam Assisted Deposition
  • an oxide superconducting layer is oriented on the intermediate layer.
  • a superconducting wire in which an epitaxially grown intermediate layer is formed on a biaxially oriented substrate, and an oxide superconducting layer is formed on the intermediate layer in an oriented manner (see, for example, Patent Document 2) ).
  • the metal substrate used as a superconducting wire material is called "the board
  • a substrate having an intermediate layer formed by IBAD on a substrate for a superconducting wire is generally called "IBAD substrate".
  • the surface of the substrate for a superconducting wire is finished to have a surface roughness Ra of several nm class through each process such as a cold rolling process and a high precision polishing process (see, for example, Patent Documents 3 to 9).
  • Surface roughness Ra is an arithmetic average roughness defined in JIS B-0601-2001 (based on ISO 4287: 1997).
  • the degree of crystal orientation of the IBAD substrate is high, and epitaxial growth of an oxide layer such as CeO 2 is required as an intermediate layer of the IBAD substrate.
  • an oxide layer such as CeO 2
  • the crystal growth to the superconducting layer is inhibited, local defects exist, and the critical current value characteristic is lowered.
  • the same problem occurs in a superconducting wire using an epitaxially grown intermediate layer on a biaxially oriented substrate.
  • An object of the present invention is to provide a high-performance long superconducting wire substrate, a method of manufacturing a high-performance long superconducting wire substrate, and a superconducting wire using the high-performance superconducting wire substrate.
  • one surface roughness Ra of both surfaces of the substrate for a superconducting wire is 10 nm or less, and the other surface roughness Ra is larger than the one surface roughness Ra and is 8 nm or more.
  • a substrate for a superconducting wire characterized in that it is less than 15 nm is provided.
  • the orientation of the intermediate layer formed on the substrate surface is lowered, which is not preferable.
  • the other surface roughness Ra is less than 8 nm, when an intermediate layer is subsequently formed on the substrate surface, the substrate is easily damaged when the back surface of the substrate contacts the susceptor, which is not preferable.
  • the other surface roughness Ra is 15 nm or more, it is not preferable because the back side of the substrate is rough when the substrate is wound on a reel and the back side of the substrate damages the front side.
  • Cold rolling the metal body Heat treating the cold rolled metal body;
  • a method of manufacturing a substrate for a superconducting wire including: In the step of cold rolling, there is provided a method of manufacturing a substrate for a superconducting wire rod characterized by using a pair of upper and lower rolling rolls having different surface roughness Ra.
  • one surface roughness Ra is 10 nm or less, and the other surface roughness Ra is larger than the one surface roughness Ra, and
  • An intermediate layer is formed on the one surface of the substrate for a superconducting wire having a thickness of 8 nm or more and less than 15 nm, and a superconducting layer is formed on the intermediate layer.
  • the present invention it is possible to provide a high-performance long superconducting wire substrate, a method of manufacturing a high-performance long superconducting wire substrate, and a superconducting wire using the high-performance superconducting wire substrate.
  • a substrate for a superconducting wire, a method of manufacturing a substrate for a superconducting wire, and a superconducting wire in the present embodiment will be described in detail with reference to the drawings.
  • this embodiment is an example and this invention is not limited to this.
  • FIG. 1 shows a schematic cross-sectional view of a superconducting wire 10.
  • the superconducting wire 10 comprises a substrate 1 for superconducting wire, an intermediate layer 2 and a superconducting layer 3.
  • the intermediate layer 2 and the superconducting layer 3 are sequentially stacked on the substrate 1 for a superconducting wire.
  • a Ni-based alloy such as Hastelloy (registered trademark) or Inconel (registered trademark) or an Fe-based alloy such as stainless steel can be used as a material of the substrate 1 for a superconducting wire, and BA (bright annealing) subjected to bright annealing treatment Materials are preferred.
  • a metal body to be a substrate 1 for a superconducting wire is polished (step S1).
  • a polishing method mechanical polishing, chemical polishing, electrolytic polishing, or a combination of these is employed.
  • polishing it is not necessary to necessarily perform various grinding
  • abrasive particles In mechanical polishing, diamond particles, oxide particles, etc. are used as abrasive particles.
  • a polishing solution water, surfactants, oils, organic solvents, a mixture thereof, a solution obtained by mixing water and an acid such as formic acid, acetic acid, nitric acid or a solution obtained by mixing an alkali such as water and sodium hydroxide Use one of them.
  • an acid such as formic acid, acetic acid, nitric acid or a solution obtained by mixing an alkali such as water and sodium hydroxide
  • aluminum oxide, cerium oxide, zirconium oxide, iron oxide and the like are preferable as the abrasive particles
  • soap water is particularly preferable as the polishing solution.
  • a chemical solution chemically reacting with the surface of the substrate 1 for superconducting wire is used as a polishing solution.
  • the chemical solution include liquids such as nitric acid, sulfuric acid, formic acid, acetic acid, chlorine, fluorine, chromium hydrogen peroxide, oxalic acid, tetraphosphoric acid, glacial acetic acid, or a mixture thereof.
  • a mixture of these mixed solutions with a promoter such as a saturated alcohol or a sulfonic acid is desirable.
  • abrasive particles similar to the abrasive particles used in the above mechanical polishing are used as abrasive particles.
  • a polishing solution used in the above-mentioned chemical polishing is used as a polishing solution.
  • the substrate 1 for a superconducting wire is immersed in an electrolytic solution, and the substrate 1 for a superconducting wire is used as an anode, and the substrate surface is polished by an electrolytic reaction.
  • the electrolyte may be an acid or an alkali, and in particular, nitric acid, phosphoric acid, chromic acid, hydrogen peroxide, potassium hydroxide, potassium cyanide and the like are desirable.
  • step S2 the polished metal body is cold rolled (steps S2 to S4).
  • each rolling process of a plain rolling process (step S2), an intermediate rolling (step S3), and a finish rolling (step S4) is performed.
  • cold rolling is performed at a rolling reduction ratio of 40% to 99%.
  • the rolling with the same rolling of the surface roughness Ra and the rolling with the rolling roll with different surface roughness Ra are performed at least once or more. Details of each rolling process will be described later (see Samples 1-1 to 1-4).
  • step S5 the cold-rolled metal body is heat treated.
  • the TA (tension annealing) heat treatment for planarity recovery is performed by using a substrate for a superconducting wire as argon gas and 0.5 to 5 vol. % In a mixed gas atmosphere, held at 850 ° C. or less for 10 seconds or longer, and under tension application.
  • step S6 the heat-treated metal body is finished.
  • slitting is performed to a desired size.
  • step S7 polishing is performed by the mechanical polishing, the chemical polishing, the electrolytic polishing, or the polishing method combining them described in step S1. Note that step S7 is not necessarily required, and the process may end in step S6 as long as the surface roughness Ra of the substrate 1 can be set to a desired value at the time of step S5.
  • Sample 1-1 (Manufacturing process of substrate for superconducting wire]
  • Sample 1-1 describes a manufacturing process of a substrate 1 for a superconducting wire characterized in that rolling rolls different in surface roughness Ra are used in the finish rolling process (see step S4).
  • a BA material (Hastelloy C-276) having a surface roughness Ra of 50 nm, a thickness of 0.3 mm, a width of 75 mm, and a depth of 350 m was used.
  • the material is not limited to Hastelloy, and Inconel or stainless steel may be used.
  • the BA material was polished to set the surface roughness Ra to about 50 nm to 30 nm.
  • the BA material is rolled using a 12-step rolling roll having the same surface roughness Ra at the top and bottom and a roll diameter of 20 20 mm, and a thickness of 0.15 mm , A width of 75 mm, and a depth of 690 m.
  • the surface roughness Ra of the rolling roll used during elementary rolling was 66 nm
  • the surface roughness Ra of the rolling roll used during intermediate rolling was 40 nm.
  • the intermediate rolled material having a thickness of 0.15 mm was rolled to a thickness of 0.107 mm using upper and lower surface roughness Ra of 7 nm.
  • the surface roughness Ra of the intermediate rolled material at this time was 7 nm to 9 nm.
  • the intermediate rolled material having a surface roughness Ra of 7 nm to 9 nm is rolled using a rolling roll having a surface roughness Ra of 3 nm and a rolling roll having a surface roughness Ra of 10 nm.
  • a rolled material was manufactured.
  • a rolling roll having a surface roughness Ra of 3 nm was used for the upper (front side) rolling roll, and a rolling roll having a surface roughness Ra of 10 nm was used for the lower (back side) rolling roll.
  • the roll surface roughness used for rolling was determined by measuring the surface roughness of a stylus type according to JIS B 0651-2001.
  • the surface roughness Ra of the lower rolling roll is preferably about 10 nm at maximum. When the surface roughness Ra is larger than 10 nm, the surface roughness Ra in the longitudinal direction of the long rolled material may exceed 15 nm. In addition, scratch marks on the front and back of the long rolled material coiled in a coil form on the surface layer on the high gloss side (surface), leaving surface defects.
  • the upper rolling rolls may have a surface roughness Ra of 3 nm over the entire width, or may have a surface roughness Ra of 3 nm limited to a width slightly narrower than the width of the intermediate rolled material. In the latter case, the surface roughness Ra of the upper and lower rolling roll ends may be about 10 nm.
  • a tension of 5 kgf / mm 2 is applied to the long rolled material under holding conditions at 790 ° C. ⁇ 20 seconds, and the long rolled material is Heat treatment was performed in an atmosphere of a mixed gas of argon gas and hydrogen.
  • step S6 the long rolled material was slit processed at a desired finished size, and six substrates 1 for a superconducting wire having a thickness of 0.10 mm, a width of 10 mm and a depth of 1030 m were manufactured.
  • the processing rate of the rolling process secured 60% or more.
  • Example 2-1 With respect to the substrate 1 for a superconducting wire after the finishing process obtained in Sample 1-1, in the finishing and polishing process (see step S7), the front and side surfaces of the substrate 1 for a superconducting wire are mechanically polished to obtain surface roughness Ra It was 0.9 nm.
  • the polishing method may be any of mechanical polishing, chemical polishing, or electrolytic polishing.
  • the surface layer of the substrate 1 for a superconducting wire immediately before the finishing and polishing process has uniform quality, it is possible to reduce the polishing cost for the finishing and polishing process.
  • the intermediate layer 2 was formed on the front side surface of the substrate 1 for a superconducting wire manufactured in Sample 2-1 using the IBAD method.
  • a Gd-Zr oxide intermediate layer (GZO) of about 1 ⁇ m is formed on the substrate 1 for a superconducting wire, and a CeO 2 oxide intermediate layer with a thickness of about 450 nm is further formed thereon by PLD.
  • the superconducting layer 3 was formed on the intermediate layer 2 using a pulse laser deposition method.
  • the superconducting layer 3 is formed by depositing about 1 ⁇ m of YBCO superconductor on the intermediate layer 2. Further, on the superconducting layer 3, silver was deposited to a thickness of about 10 ⁇ m using a high frequency sputtering apparatus to form a protective layer. Furthermore, oxygen annealing was performed at 550 ° C. in flowing oxygen gas to manufacture the superconducting wire 10. In the surface layer of the superconducting wire 10, a stabilization layer having copper is formed.
  • the critical current of the manufactured superconducting wire 10 was measured using the four-terminal method in the state where 200 m of the superconducting wire 10 was immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal was set to 1.2 m. The conduction characteristic of the superconducting wire 10 was defined at 1 ⁇ V / cm, and at least 307 A was confirmed at all measurement positions of the critical current value, and the minimum-maximum difference was 8 A.
  • Sample 1-2 describes a manufacturing process of a substrate 1 for a superconducting wire characterized in that rolling rolls different in surface roughness Ra are used in the intermediate rolling process and the finish rolling process (see steps S3 and S4).
  • a BA material (Hastelloy C-276) having a surface roughness Ra of 50 nm, a thickness of 0.3 mm, a width of 75 mm, and a depth of 350 m was used. Not only Hastelloy but Inconel and stainless steel may be used.
  • the BA material was polished to set the surface roughness Ra to about 50 nm to 30 nm.
  • the BA material is rolled using a 12-step rolling roll having the same surface roughness Ra (45 nm) at the top and bottom and a roll diameter of 20 20 mm, thickness 0.15 mm, width 75 mm , 690m deep rolled material was manufactured.
  • the surface roughness Ra of the base rolled material at this time was about 15 nm to 25 nm.
  • the sheet material is rolled using a rolling roll having a surface roughness Ra of 6 nm and a rolling roll having a surface roughness Ra of 10 nm to a thickness of 0.107 mm, width 75 mm, depth
  • An intermediate rolled material of 960 m was produced.
  • a rolling roll having a surface roughness Ra of 6 nm was used as the upper rolling roll, and a rolling roll having a surface roughness Ra of 10 nm was used as the lower rolling roll.
  • the intermediate rolled material was rolled using a rolling roll having a surface roughness Ra of 3 nm and a rolling roll having a surface roughness Ra of 9 nm to produce a long rolled material.
  • a rolling roll having a surface roughness Ra of 3 nm was used as the upper rolling roll, and a rolling roll having a surface roughness Ra of 9 nm was used as the lower rolling roll.
  • the surface roughness Ra of the lower rolling roll is preferably about 10 nm at maximum.
  • the surface roughness Ra in the longitudinal direction of the long rolled material may exceed 15 nm.
  • the surface roughness Ra of the back surface (surface with large surface roughness Ra) of the long rolled material exceeds 30 nm, the scratch on the front and back of the long rolled material wound in a coil form has high gloss. It occurs in the surface layer on the side (surface) and leaves surface defects.
  • a tension of 5 kgf / mm 2 is applied to the long rolled material under holding conditions at 790 ° C. ⁇ 20 seconds, and the long rolled material is Heat treatment was performed in an atmosphere of a mixed gas of argon gas and hydrogen.
  • the long rolled material was slit processed at a desired finished size, and six substrates 1 for a superconducting wire having a thickness of 0.10 mm, a width of 10 mm and a depth of 1020 m were manufactured.
  • the processing rate of the rolling process secured 60% or more.
  • the 0.2% proof stress was 1.5 GPa.
  • the substrate 1 for a superconducting wire material having high strength and high performance can be manufactured.
  • the front side surface of the substrate 1 for a superconducting wire is mechanically polished with respect to the substrate 1 for a superconducting wire after the finishing process obtained in the sample 1-2 to obtain a surface roughness Ra It was 0.8 nm.
  • the polishing method may be any of mechanical polishing, chemical polishing, or electrolytic polishing. Moreover, since the surface layer of the substrate 1 for a superconducting wire immediately before the finish polishing process is uniform, the polishing cost can be reduced.
  • An intermediate layer 2 was formed on the front side surface of the substrate 1 for a superconducting wire manufactured in Sample 2-2 using the IBAD method.
  • a Gd-Zr oxide intermediate layer (GZO) of about 1 ⁇ m is formed on the substrate 1 for a superconducting wire, and a CeO 2 oxide intermediate layer with a thickness of about 500 nm is further formed thereon by PLD.
  • the superconducting layer 3 was formed on the intermediate layer 2 using a pulse laser deposition method.
  • the superconducting layer 3 is formed by depositing about 1 ⁇ m of YBCO superconductor on the intermediate layer 2. Further, on the superconducting layer 3, silver was deposited to a thickness of about 10 ⁇ m using a high frequency sputtering apparatus to form a protective layer. Furthermore, oxygen annealing was performed at 550 ° C. in flowing oxygen gas to manufacture the superconducting wire 10. In the surface layer of the superconducting wire 10, a stabilization layer having copper is formed.
  • the critical current of the manufactured superconducting wire 10 was measured using the four-terminal method in the state where 200 m of the superconducting wire 10 was immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal was set to 1.2 m. The conduction characteristic of the superconducting wire 10 was defined at 1 ⁇ V / cm, and 326A or more was confirmed at all measurement positions of the critical current value, and the minimum-maximum difference became 9A.
  • sample 1-3 Manufacturing process of substrate for superconducting wire
  • a manufacturing process of the substrate 1 for a superconducting wire characterized by using rolling rolls having different surface roughness Ra in the intermediate rolling process and the finish rolling process (see steps S3 and S4) will be described.
  • a BA material (Hastelloy C-276) having a surface roughness Ra of 50 nm, a thickness of 0.3 mm, a width of 75 mm, and a depth of 350 m was used. Not only Hastelloy but Inconel and stainless steel may be used.
  • the BA material was polished to set the surface roughness Ra to about 50 nm to 30 nm.
  • the BA material is rolled using a 12-step rolling roll having the same surface roughness Ra (45 nm) at the top and bottom and a roll diameter of 20 20 mm, thickness 0.15 mm, width 75 mm , 690m deep rolled material was manufactured.
  • the surface roughness Ra of the base rolled material at this time was about 15 nm to 25 nm.
  • the sheet material is rolled using a rolling roll having a surface roughness Ra of 6 nm and a rolling roll having a surface roughness Ra of 12 nm to a thickness of 0.107 mm, width 75 mm, depth
  • An intermediate rolled material of 960 m was produced.
  • a rolling roll having a surface roughness Ra of 6 nm was used as the upper rolling roll, and a rolling roll having a surface roughness Ra of 12 nm was used as the lower rolling roll.
  • the intermediate rolled material was rolled using a rolling roll having a surface roughness Ra of 4 nm and a rolling roll having a surface roughness Ra of 9 nm to produce a long rolled material.
  • a rolling roll having a surface roughness Ra of 4 nm was used as the upper rolling roll, and a rolling roll having a surface roughness Ra of 9 nm was used as the lower rolling roll.
  • a tension of 5 kgf / mm 2 is applied to the long rolled material under holding conditions at 790 ° C. ⁇ 20 seconds, and the long rolled material is Heat treatment was performed in an atmosphere of a mixed gas of argon gas and hydrogen.
  • the long rolled material was slit processed at a desired finished size, and six substrates 1 for a superconducting wire having a thickness of 0.10 mm, a width of 10 mm and a depth of 1020 m were manufactured.
  • the processing rate of the rolling process secured 60% or more.
  • the front side surface of the substrate 1 for a superconducting wire is mechanically polished with respect to the substrate 1 for a superconducting wire after the finishing process obtained in the sample 1-3 to obtain a surface roughness Ra It was 1.2 nm.
  • the polishing method may be any of mechanical polishing, chemical polishing, or electrolytic polishing. Moreover, since the surface layer of the substrate 1 for a superconducting wire immediately before the finish polishing step is uniform in quality, the polishing cost in the finish polishing step can be reduced.
  • the intermediate layer 2 was formed on the superconducting wire substrate 1 manufactured in Sample 2-3 using the IBAD method.
  • a Gd-Zr oxide intermediate layer (GZO) of about 1 ⁇ m is formed on the substrate 1 for a superconducting wire, and a CeO 2 oxide intermediate layer with a thickness of about 500 nm is further formed thereon by PLD.
  • the superconducting layer 3 was formed on the intermediate layer 2 using a pulse laser deposition method.
  • the superconducting layer 3 is formed by depositing about 1 ⁇ m of YBCO superconductor on the intermediate layer 2. Further, on the superconducting layer 3, silver was deposited to a thickness of about 10 ⁇ m using a high frequency sputtering apparatus to form a protective layer. Furthermore, oxygen annealing was performed at 550 ° C. in flowing oxygen gas to manufacture the superconducting wire 10. In the surface layer of the superconducting wire 10, a stabilization layer having copper is formed.
  • the critical current of the manufactured superconducting wire 10 was measured using the four-terminal method in the state where 200 m of the superconducting wire 10 was immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal was set to 1.2 m. The conduction characteristic of the superconducting wire 10 was defined at 1 ⁇ V / cm, and at least 295 A was confirmed at all measurement positions of the critical current value, and the minimum-maximum difference was 8 A.
  • Sample 1-4 (2-4) [Manufacturing process of substrate for superconducting wire]
  • Sample 1-4 (2-4) is characterized in that rolling rolls different in surface roughness Ra are used in the finish rolling step (see step S4), and the finish polishing step is not performed. The manufacturing process of 1 will be described.
  • Hastelloy BA material (hastelloy C-276) having a surface roughness Ra of 50 nm, a thickness of 0.3 mm, a width of 75 mm and a depth of 350 m was used. Not only Hastelloy but Inconel and stainless steel may be used.
  • the BA material was polished to set the surface roughness Ra to about 50 nm to 30 nm.
  • the BA material is rolled using a 12-step rolling roll having the same surface roughness Ra at the top and bottom and a roll diameter of 20 20 mm, and a thickness of 0.15 mm , A width of 75 mm, and a depth of 690 m.
  • the surface roughness Ra of the rolling roll used during elementary rolling was 66 nm
  • the surface roughness Ra of the rolling roll used during intermediate rolling was 40 nm.
  • the intermediate rolled material having a thickness of 0.15 mm was rolled to a thickness of 0.107 mm using upper and lower surface roughness Ra of 7 nm.
  • the surface roughness Ra of the intermediate rolled material at this time was 7 nm to 9 nm.
  • the intermediate rolled material having a surface roughness Ra of 7 nm to 9 nm is rolled using a rolling roll having a surface roughness Ra of 2 nm and a rolling roll having a surface roughness Ra of 10 nm.
  • a rolled material was manufactured.
  • a rolling roll with a surface roughness Ra of 2 nm was used as the upper rolling roll, and a rolling roll with a surface roughness Ra of 10 nm was used as the lower rolling roll.
  • the surface roughness Ra of the lower rolling roll is preferably about 10 nm at maximum.
  • the surface roughness Ra in the longitudinal direction of the long rolled material may exceed 15 nm.
  • a scratch on the front and back of the long rolled material wound in a coil form is generated on the surface layer on the high gloss side (surface), and a surface defect is left.
  • the upper rolling rolls may have a surface roughness Ra of 3 nm over the entire width, or may have a surface roughness Ra of 3 nm limited to a width slightly narrower than the width of the intermediate rolled material. In the latter case, the surface roughness Ra of the upper and lower rolling roll ends may be about 10 nm.
  • a tension of 5 kgf / mm 2 is applied to the long rolled material under holding conditions at 790 ° C. ⁇ 20 seconds, and the long rolled material is Heat treatment was performed in an atmosphere of a mixed gas of argon gas and hydrogen.
  • step S6 the long rolled material was slit processed at a desired finished size, and six substrates 1 for a superconducting wire having a thickness of 0.10 mm, a width of 10 mm and a depth of 1030 m were manufactured.
  • the processing rate of the rolling process secured 60% or more.
  • the finish polishing step (see step S7) was omitted. By omitting the finish polishing process, the cost can be significantly reduced.
  • the intermediate layer 2 was formed on the front side surface of the substrate 1 for a superconducting wire manufactured in Samples 1-4 (2-4) using the IBAD method.
  • the intermediate layer 2 is formed by depositing a Gd-Zr oxide intermediate layer (GZO) to about 1 ⁇ m on the substrate 1 for a superconducting wire, and further forming a CeO 2 oxide intermediate layer having a thickness of about 480 nm by PLD.
  • GZO Gd-Zr oxide intermediate layer
  • the superconducting layer 3 was formed on the intermediate layer 2 using a pulse laser deposition method.
  • the superconducting layer 3 is formed by depositing about 1 ⁇ m of YBCO superconductor on the intermediate layer 2. Further, on the superconducting layer 3, silver was deposited to a thickness of about 10 ⁇ m using a high frequency sputtering apparatus to form a protective layer. Furthermore, oxygen annealing was performed at 550 ° C. in flowing oxygen gas to manufacture the superconducting wire 10. In the surface layer of the superconducting wire 10, a stabilization layer having copper is formed.
  • the critical current of the manufactured superconducting wire 10 was measured using the four-terminal method in the state where 200 m of the superconducting wire 10 was immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal was set to 1.2 m. The conduction characteristics of the superconducting wire 10 were defined at 1 ⁇ V / cm, and at least 261 A was confirmed at all measurement positions of the critical current value, and the minimum-maximum difference was 12 A.
  • Sample 1-5 Manufacturing process of substrate for superconducting wire
  • manufacturing steps of the substrate 1 for a superconducting wire characterized in that rolling rolls different in surface roughness Ra are used in the finish rolling step (see step S4) will be described.
  • a BA material (Hastelloy C-276) having a surface roughness Ra of 50 nm, a thickness of 0.3 mm, a width of 75 mm, and a depth of 350 m was used.
  • the BA material was polished to set the surface roughness Ra to about 50 nm to 30 nm.
  • the BA material is rolled using a 12-step rolling roll having the same surface roughness Ra at the top and bottom and a roll diameter of 20 20 mm, and the thickness is 0.107 mm , An intermediate rolled material 75 mm wide and 970 m deep.
  • the surface roughness Ra of the rolling roll used during elementary rolling was 40 nm, and the surface roughness Ra of the rolling roll used during intermediate rolling was 13 nm.
  • the intermediate rolled material was rolled using a rolling roll having a surface roughness Ra of 3 nm and a rolling roll having a surface roughness Ra of 13 nm to produce a long rolled material.
  • a rolling roll having a surface roughness Ra of 3 nm was used as the upper rolling roll, and a rolling roll having a surface roughness Ra of 13 nm was used as the lower rolling roll.
  • TA heat treatment step (see step S5), a tension of 5 kgf / mm 2 is applied to hastelloy under holding conditions at 790 ° C. for 20 seconds to improve the flatness of long rolled material, and hastelloy with argon gas and hydrogen. Heat treatment was performed in a mixed gas atmosphere.
  • step S6 the long rolled material was slit processed at a desired finished size, and six substrates for a superconducting wire having a thickness of 0.10 mm, a width of 10 mm and a depth of 1030 m were manufactured.
  • the processing rate of the rolling process secured 60% or more.
  • the front side surface of the superconducting wire substrate is mechanically polished to a surface roughness Ra of 2 with respect to the substrate 1 for a superconducting wire after the finishing step obtained in Samples 1-5. .4 nm.
  • the polishing method may be any of mechanical polishing, chemical polishing, or electrolytic polishing.
  • An intermediate layer was formed on the superconducting wire substrate manufactured in Sample 2-5 using the IBAD method.
  • the intermediate layer is formed by depositing a Gd-Zr oxide intermediate layer (GZO) of about 1 ⁇ m on a substrate for a superconducting wire, and further forming a CeO 2 oxide intermediate layer with a thickness of about 480 nm by PLD. Ru.
  • GZO Gd-Zr oxide intermediate layer
  • the superconducting layer was formed on the intermediate layer using a pulse laser deposition method.
  • the superconducting layer is formed by depositing about 1 ⁇ m of YBCO superconductor on the intermediate layer. Further, silver was deposited to a thickness of about 10 ⁇ m on the superconducting layer using a high frequency sputtering apparatus to form a protective layer. Furthermore, oxygen annealing was performed at 550 ° C. in flowing oxygen gas to manufacture a superconducting wire. In the surface layer of the superconducting wire 10, a stabilization layer having copper is formed.
  • the critical current of the manufactured superconducting wire was measured using the four-terminal method in the state where 200 m of the superconducting wire was immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal was set to 1.2 m. The conduction characteristics of the superconducting wire were defined at 1 ⁇ V / cm, and 268 A or more was confirmed at all measurement positions of the critical current value, and the minimum-maximum difference was 37 A.
  • sample 1-6 Manufacturing process of substrate for superconducting wire
  • a manufacturing process of a substrate for a superconducting wire material using rolling rolls having the same surface roughness Ra at the top and bottom at all of the rolling steps will be described.
  • a BA material (Hastelloy C-276) having a surface roughness Ra of 50 nm, a thickness of 0.3 mm, a width of 75 mm, and a depth of 350 m was used.
  • the BA material was polished to set the surface roughness Ra to about 50 nm to 30 nm.
  • the BA material is rolled using a 12-step rolling roll having the same surface roughness Ra at the top and bottom and a roll diameter of 20 20 mm, and the thickness is 0.107 mm , An intermediate rolled material 75 mm wide and 970 m deep.
  • the surface roughness Ra of the rolling roll used during elementary rolling was 40 nm, and the surface roughness Ra of the rolling roll used during intermediate rolling was 13 nm.
  • step S4 the intermediate rolled material was rolled using the same upper and lower rolling rolls with a surface roughness Ra of 7 nm to produce a long rolled material.
  • the influence of material slippage at the time of rolling became large, and the long rolled material had an end-extending shape with poor flatness.
  • TA heat treatment step (see step S5), a tension of 5 kgf / mm 2 is applied to hastelloy under holding conditions at 790 ° C. for 20 seconds to improve the flatness of long rolled material, and hastelloy with argon gas and hydrogen. Heat treatment was performed in a mixed gas atmosphere.
  • the long rolled material was slit processed at a desired finished size, and six substrates for a superconducting wire having a thickness of 100 ⁇ m, a width of 10 mm and a depth of 1030 m were produced.
  • the processing rate of the rolling process secured 60% or more.
  • two of the substrates had discontinuous changes in flatness and had a shape quality unsuitable for film formation of the intermediate layer.
  • the front surface side of the substrate for superconducting wire is mechanically polished to a surface roughness Ra of 2 with respect to the substrate 1 for a superconducting wire after the finishing process obtained in the sample 1-6. .9 nm.
  • the polishing method may be any of mechanical polishing, chemical polishing, or electrolytic polishing.
  • An intermediate layer was formed on the front side surface of the substrate for a superconducting wire manufactured in Sample 2-6 using the IBAD method.
  • the intermediate layer is formed by depositing a Gd-Zr oxide intermediate layer (GZO) of about 1 ⁇ m on a substrate for a superconducting wire, and further forming a CeO 2 oxide intermediate layer with a thickness of about 480 nm by PLD. Ru.
  • GZO Gd-Zr oxide intermediate layer
  • the superconducting layer was formed on the intermediate layer using a pulse laser deposition method.
  • the superconducting layer is formed by depositing about 1 ⁇ m of YBCO superconductor on the intermediate layer. Further, silver was deposited to a thickness of about 10 ⁇ m on the superconducting layer using a high frequency sputtering apparatus to form a protective layer. Furthermore, oxygen annealing was performed at 550 ° C. in flowing oxygen gas to manufacture a superconducting wire. In the surface layer of the superconducting wire 10, a stabilization layer having copper is formed.
  • the critical current of the manufactured superconducting wire was measured using the four-terminal method in the state where 200 m of the superconducting wire was immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal was set to 1.2 m. The conduction characteristics of the superconducting wire were defined at 1 ⁇ V / cm, and 240 A or more was confirmed at all measurement positions of the critical current value, and the minimum-maximum difference was 28 A.
  • Samples 1-7 to 1-13 In Samples 1-7 to 1-13, as in Sample 1-1, a manufacturing process of a substrate 1 for a superconducting wire characterized by using rolling rolls having different surface roughness Ra in the finish rolling process (see step S4). Did.
  • the surface roughness Ra of the upper (front) and lower (back) rolling rolls of the finish rolling step (step S4) used in each sample is as shown in Table 1.
  • Table 1 shows the characteristics of the substrates for superconducting wire materials of Samples 1-1 to 1-13 described above and the surface roughness Ra of the upper (front) and lower (back) rolling rolls of the finish rolling process and the finish rolling process The thing which put together surface roughness Ra of the back and front surface of a board
  • substrate after is shown.
  • the shape defect rate in Table 1 is a substrate of a quality which does not conform to the shape (0.1 mm in thickness, 10 mm in width, 200 m in depth unit) suitable for film formation of the intermediate layer among the manufactured substrates for a superconducting wire. Indicates the percentage of The smaller the shape defect rate, the longer the substrate for superconducting wire material can be manufactured.
  • Samples 1 to 5 and 1-7 to 1-13 show cases where the surface roughness Ra of the upper (front) and lower (back) rolling rolls in the finish rolling process is different, and samples 1-6 are upper and lower.
  • the surface roughness Ra of the side rolling rolls is the same.
  • the shape defect rate of the obtained substrate for a superconducting wire was high. This is because, in the sample 1-6, the surface roughness Ra of the upper and lower rolling rolls is the same, so the substrate for the superconducting wire slips during rolling, and the flatness of the shape fluctuates discontinuously. It is thought that it has From this, it can be seen that the surface roughness Ra of the upper (front) and lower (back) rolling rolls must be different.
  • sample 1-7 although the surface roughness Ra of the upper (front) rolling roll was less than 3 nm, the shape defect rate of the substrate for a superconducting wire obtained in the same manner as sample 1-6 was high. This is because the substrate for the superconducting wire slips during rolling because the surface roughness Ra on the upper side is too small and the surface roughness Ra on the lower side (back side) of the rolling roll is as low as 7 nm. It is considered that the same phenomenon as -6 has occurred. On the other hand, in sample 1-13, the surface roughness Ra of the upper (front) rolling roll was 70 nm or more, but the shape defect rate of the obtained substrate for a superconducting wire was high.
  • step S5 It is thought that the distortion occurred in the From the above, it is required that the surface roughness Ra is 3 nm or more and less than 70 nm among the rolling rolls, in which the surface roughness Ra is smaller. Further, as in sample 1-12, among the rolling rolls, the smaller one of the surface roughness Ra has a surface roughness Ra of 60 nm or more, and the surface roughness Ra of sample 1-13 is 70 nm or less. Although the shape defect rate is reduced, it is preferably less than 60 nm because the shape defect rate does not reach 0%.
  • the difference in surface roughness Ra between the upper side (front side) and the lower side (back side) of the rolling roll was 10 nm or more.
  • the surface roughness Ra on the lower side (back side) is rougher than the upper side (front side) of the rolling roll, so when winding the tape-like substrate for superconducting wire material on a reel It is thought that the rough backside damaged the surface layer on the front side.
  • the surface roughness Ra on the upper side (front side) of the substrate be as small as possible, and furthermore, it is desirable that the surface roughness Ra on the lower side (back side) not be extremely rough.
  • the surface roughness Ra of the lower (back) rolling roll in the finish rolling step is preferably less than 15 nm, and more preferably 10 nm or less.
  • the surface roughness Ra of the finished rolling of the substrate and the surface roughness Ra after precision polishing largely deviate, Rz which means the maximum height of the substrate surface after polishing is large, and the surface texture in the depth direction It becomes difficult to reduce scratching and rolling scratches. Therefore, the surface roughness Ra of the rolling finish of the substrate is preferably several nm.
  • Samples 2-7 to 2-13 using the substrate 1 for a superconducting wire obtained after the finishing process or after the polishing process, an intermediate layer is formed on the front side surface of the substrate 1 for a superconducting wire using the IBAD method. 2 was formed.
  • a Gd-Zr oxide intermediate layer (GZO) of about 1 ⁇ m is formed on the substrate 1 for a superconducting wire, and a CeO 2 oxide intermediate layer with a thickness of about 450 nm is further formed thereon by PLD.
  • GZO Gd-Zr oxide intermediate layer
  • the superconducting layer 3 was formed on the intermediate layer 2 using a pulse laser deposition method.
  • the superconducting layer 3 is formed by depositing about 1 ⁇ m of YBCO superconductor on the intermediate layer 2. Further, on the superconducting layer 3, silver was deposited to a thickness of about 10 ⁇ m using a high frequency sputtering apparatus to form a protective layer. Furthermore, oxygen annealing was performed at 550 ° C. in flowing oxygen gas to manufacture the superconducting wire 10. In the surface layer of the superconducting wire 10, a stabilization layer having copper is formed.
  • the critical current of the manufactured superconducting wire 10 was measured using the four-terminal method in the state where 200 m of the superconducting wire 10 was immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal was set to 1.2 m.
  • the surface roughness Ra of the front and back of the substrate 1 for a superconducting wire used at this time is as shown in Table 2.
  • Table 2 shows the surface roughness Ra of the front and back of the substrate for the superconducting wire of the samples 2-1 to 2-13 described above and the characteristics of the obtained superconducting wire.
  • the substrate surface on which the intermediate layer was stacked was observed visually with a CCD camera inspection device and it was confirmed whether or not defects such as color unevenness and linear scratches existed.
  • A means that no defect exists
  • B means that uneven color or point-like defect exists
  • C means that linear defects exist.
  • the critical current characteristics are the results of measuring the critical current using the four-terminal method in the state of immersing in 200 m minutes in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal was set to 1.2 m.
  • the conduction characteristics of the superconducting wire 10 were determined at 1 ⁇ V / cm.
  • the adhesion state was evaluated for the adhesion state between the backside surface layer of the substrate and the stabilization layer (including the protective layer). The adhesion state at this time was confirmed by a bending test method.
  • A indicates a good adhesion state in which no peeling portion was detected in the back surface layer of the substrate
  • B indicates a state in which even a slight peeling portion was detected in the back surface layer of the substrate
  • C indicates the substrate It shows a state in which it is detected that the peeled part is present in the width direction of the superconducting wire at least a half in the backside surface layer.
  • the surface roughness Ra on the front side is 10 nm or less
  • the surface roughness Ra on the back side is 8 nm or more and less than 15 nm.
  • Samples 2-11 to 2-13 have a backside surface roughness Ra of less than 8 nm
  • Samples 2-9 and 2-10 have a backside surface roughness Ra of 15 nm or more.
  • the surface roughness Ra on the front side is small, and a line formed on the surface of the back side because the back surface has been abraded against the front surface when the substrate is wound on a reel because of the smooth state. It is considered that the shape defect has been transferred to the front surface.
  • the critical current was lowered due to the formation of linear defects on the front surface of the substrate.
  • the adhesion between the stabilization layer formed on the back surface and the substrate was poor. This is considered to be due to the uneven linear defects caused by the contact between the susceptor and the substrate attached to the back surface of the substrate and the minute metal powder. From the above, it is preferable that the surface roughness Ra on the back side is 8 nm or more as in Samples 2-1 to 2-10.
  • the surface roughness Ra of the back side was set to 15 nm or more.
  • the back side surface condition of the substrate was improved as compared with Samples 2-11 to 2-13, a slight point defect was generated in the front side surface condition of the substrate.
  • the surface roughness Ra on the front side has a low Ra value (3 nm or less) aiming at high orientation, so the unevenness formed on the surface on the back side by the high Ra value on the back side is on the surface on the front side It is thought that it is because it has been transferred.
  • the surface roughness Ra on the back side is preferably 8 nm or more and less than 15 nm.
  • the surface roughness Ra on the front side of the substrate is preferably 6 nm or less. It is.
  • the surface roughness Ra on the front side was 3 nm or less as in Samples 2-1 to 2-5, the orientation of the intermediate layer was improved, and the critical current value also became a high value of 260 A or more.
  • the surface roughness on the front side exceeds 3 nm, so the critical current value is slightly lower than that of sample 2-5 and the like.
  • sample 2-6 and sample 2-8 are affected by thermal instability locally due to the poor adhesion of the stabilization layer on the back side, and the critical current value is also lower than that of the other samples. It is considered to be a little lower value. This can be clearly understood as compared with the samples 2-1 and 2-4 having the same surface roughness Ra.
  • the finish polishing process was not performed for the sample 2-4, and the finish polishing process was performed for the samples 2-1 to 2-3, 2-5, and 2-6.
  • This finishing and polishing step is not only for controlling the surface roughness Ra on the front side, but also for removing fine metal particles pressed in the rolling step, fixing on the surface, removing the oil component sewed, and the uneven layer on the surface. There is also a purpose to improve surface cleanliness such as removal. For this reason, it is preferable to carry out a final polishing process.
  • the surface layer defects generated in the upper process of the material from the casting process to the rough rolling process It has the effect of reducing defects that have been generated and defects that have been generated due to component fluctuations locally. For this reason, it is preferable to carry out a polishing process during the process of manufacturing a substrate for a superconducting wire, and it is more preferable to carry out a plurality of polishing processes.
  • the present embodiment can be applied to an oriented substrate in which at least the substrate surface is oriented.
  • the characteristics of the superconducting wire are improved by reducing the surface roughness Ra of the substrate for the superconducting wire, but in the case where the surface roughness Ra of the back side is reduced according to the front side. This is not preferable because a defect is likely to be formed on the back side of the substrate for superconducting wire as in Samples 2-11 to 2-13.
  • Patent Document 4 when the finish rolling is performed using a mirror surface roll, the surface roughness Ra of the back side is not controlled, and rolling is performed similarly to the front side to be polished in the subsequent polishing.
  • the present invention is configured as described above, it can be used for a substrate for a superconducting wire, a method for manufacturing a substrate for a superconducting wire, and a superconducting wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 安価で高性能な超電導線材用基板、安価で高性能な超電導線材用基板の製造方法及び安価で高性能な超電導線材用基板を用いた超電導線材、を提供する。 超電導線材用基板1の両面のうち、一方の表面粗度Raが10nm以下であって、他方の表面粗度Raが前記一方の表面粗度Raよりも大きく、前記他方の表面粗度Raが8nm以上15nm未満であることを特徴とする超電導線材用基板1。

Description

超電導線材用基板、超電導線材用基板の製造方法及び超電導線材
 本発明は、超電導線材用基板、超電導線材用基板の製造方法及び超電導線材に関する。
 従来、ハステロイからなるテープ状の基板上にIBAD(Ion Beam Assisted Deposition)法により中間層が形成され、この中間層上に酸化物超電導層が配向形成されて構成される超電導線材が知られている(例えば、特許文献1参照)。また、2軸配向した基板上に、エピタキシャル成長させた中間層が形成され、この中間層上に酸化物超電導層が配向形成されて構成される超電導線材が知られている(例えば、特許文献2参照)。
 なお、超電導線材として用いられる金属基板をここでは「超電導線材用基板」と呼ぶ。また、超電導線材用基板上にIBAD法による中間層が形成された基板は、一般に「IBAD基板」と呼ばれる。
 超電導線材用基板の表面は、冷間圧延工程や高精密研磨工程等の各工程を経て、数nm級の表面粗度Raに仕上げられる(例えば、特許文献3~9参照)。
 「表面粗度Ra」とは、JISB-0601-2001(ISO4287:1997に準拠)にて規定される算術平均粗さである。
特開平4-329867号公報 特開2007-311234号公報 特開2008-200773号公報 特開2008-200775号公報 特開2007-200870号公報 特開2008-254044号公報 特開平4-110454号公報 特開2008-49451号公報 特開2008-36724号公報
 ここで、IBAD基板を用いた超電導特性の高い超電導線を製造するには、IBAD基板の結晶配向度が高く、IBAD基板の中間層としてCeO等の酸化物層のエピタキシャル成長が要求される。このとき、基板表層に点在する欠陥、表面粗度の分布変動等が点在すると超電導層までの結晶成長が阻害され局部的な欠陥点が存在し、臨界電流値特性が低下する問題が生じる。これは、2軸配向した基板上に、エピタキシャル成長させた中間層を用いた超電導線でも同様の問題が生じる。そこで、超電導線が高い超電導特性を得るためには、機械研磨及び化学研磨等により、基板の圧延肌を表面粗度Raで数nm~1nm以下の高性能に改めて改質する必要がある。しかし、基板の裏側の表面粗度Raが表面粗度Raと同じ程度の数nmである場合、基板表面に中間層を成膜する際に、基板裏面とサセプタの接触の際に傷がつきやすくなり、長尺製造には好ましくない。
 上述した特許文献3~9については、基板の表側の表面粗度Raについては制御を行っているが、裏側の表面粗度Raの制御は行われておらず、かつ、その後の中間層成膜の際に用いられる基板の裏側の表面粗度Raについては何ら記載がなされていない。
 本発明の課題は、高性能な長尺超電導線材用基板、高性能な長尺超電導線材用基板の製造方法及び高性能な超電導線材用基板を用いた超電導線材を提供することである。
 本発明によれば、超電導線材用基板の両面のうち、一方の表面粗度Raが10nm以下であって、他方の表面粗度Raが前記一方の表面粗度Raよりも大きく、かつ、8nm以上15nm未満であることを特徴とする超電導線材用基板が提供される。
 このとき、一方の表面粗度が10nmを超えると、基板表面に形成する中間層の配向性が低下してしまうため、好ましくない。また、他方の表面粗度Raが8nm未満の場合には、その後基板表面に中間層を成膜する際に、基板の裏面とサセプタの接触の際に、傷がつきやすくなるため、好ましくない。また、他方の表面粗度Raが15nm以上の場合には、基板をリールに巻き取る際に基板の表層が粗い裏側が表側の表層を傷つけるために好ましくない。
 また、本発明によれば、
 金属体を冷間圧延する工程と、
 前記冷間圧延された金属体を熱処理する工程と、
 を含む超電導線材用基板の製造方法であって、
 前記冷間圧延する工程では、表面粗度Raが異なる上下一対の圧延ロールを用いることを特徴とする超電導線材用基板の製造方法が提供される。
 また、本発明によれば、超電導線材用基板の両面のうち、一方の表面粗度Raが10nm以下であって、他方の表面粗度Raが前記一方の表面粗度Raよりも大きく、かつ、8nm以上15nm未満である超電導線材用基板の前記一方の面上に中間層が形成され、該中間層上に超電導層が形成されて構成されることを特徴とする超電導線材が提供される。
 本発明によれば、高性能な長尺超電導線材用基板、高性能な長尺超電導線材用基板の製造方法及び高性能な超電導線材用基板を用いた超電導線材を提供することができる。
超電導線材用基板の概略断面図である。 超電導線材用基板の製造工程を示すフロー図である。
 本実施形態における超電導線材用基板、超電導線材用基板の製造方法及び超電導線材について、図面を用いて詳細に説明する。なお、本実施形態は一例であり、本発明はこれに限定されるものではない。
 図1に、超電導線材10の概略断面図を示す。
 超電導線材10は、超電導線材用基板1、中間層2、超電導層3を備えて構成される。また、超電導線材10は、超電導線材用基板1上に中間層2、超電導層3が順次積層される。
 超電導線材用基板1の素材として、ハステロイ(登録商標)、インコネル(登録商標)等のNi基合金又は、ステンレス鋼等のFe基合金を用いることができ、光輝焼鈍処理されたBA(ブライトアニール)材が好ましい。
 図2を参照して、超電導線材用基板1の製造工程について説明する。
 まず、超電導線材用基板1となる金属体を研磨する(ステップS1)。
 研磨方法としては、機械研磨、化学研磨若しくは電解研磨又はこれらの組み合わせによる研磨を採用する。なお、必ずしも各種研磨を行う必要はなく、各種研磨を行わずにステップS2に移行してもよい。
 機械研磨では、研磨粒としてダイヤモンド粒、酸化物粒等を用いる。また、研磨液として水、界面活性剤、油類、有機溶剤、これらの混合物、水と蟻酸、酢酸、硝酸等の酸を混合した溶液、水と水酸化ナトリウム等のアルカリを混合した溶液、の何れかを用いる。なお、研磨粒としては特に酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化鉄等が望ましく、研磨液としては特に石鹸水が望ましい。
 化学研磨では、研磨液として超電導線材用基板1表面と化学反応する化学溶液を用いる。化学溶液には、例えば硝酸、硫酸、蟻酸、酢酸、塩素、フッ素、クロム過酸化水素、シュウ酸、テトラリン酸、氷酢酸等の液体、又はこれらの混合液がある。研磨液としては特にこれらの混合液に飽和アルコールやスルホン酸類などの促進剤を混合した溶液が望ましい。
 化学機械研磨では、研磨粒として上記機械研磨で用いられる研磨粒と同様の研磨粒を用いる。また、研磨液として上記化学研磨で用いられる研磨液を用いる。
 電解研磨では、超電導線材用基板1を電解液に浸し、超電導線材用基板1を陽極として通電して電解反応により基板表面を研磨する。電解液は、酸やアルカリで良く、特に硝酸、リン酸、クロム酸、過酸化水素、水酸化カリウム、シアン化カリウム等が望ましい。
 次に、研磨された金属体を冷間圧延する(ステップS2~4)。
 圧延工程では、素圧延工程(ステップS2)、中間圧延(ステップS3)、仕上げ圧延(ステップS4)の各圧延工程を行う。圧延工程では、圧延加工率40%~99%の範囲で冷間圧延する。また、表面粗度Raが同一の圧延ロールによる圧延及び表面粗度Raが異なる圧延ロールによる圧延をそれぞれ少なくとも1回以上行う。各圧延工程の詳細については後述する(サンプル1-1~1-4参照)。
 次に、冷間圧延された金属体を熱処理する(ステップS5)。
 平坦性回復のためのTA(テンションアニール)熱処理は、超電導線材用基板をアルゴンガスと0.5~5Vol.%の水素との混合ガス雰囲気下、850℃以下で10秒以上保持し、張力印加状態で行う。
 次に、熱処理された金属体を仕上げ加工する(ステップS6)。
 仕上げ加工では、所望のサイズにスリット加工する。
 最後に、仕上げ加工された金属体を仕上げ研磨する(ステップS7)。
 仕上げ研磨では、ステップS1で述べた機械研磨、化学研磨若しくは電解研磨又はこれらを組合せた研磨方法により研磨する。
 なお、ステップS7は必ずしも必要ではなく、ステップS5の時点で基板1の表面粗度Raが所望の値とすることができれば、ステップS6で終了してもよい。
〔サンプル1-1〕
〔超電導線材用基板の製造工程〕
 サンプル1-1では、仕上げ圧延工程(ステップS4参照)で表面粗度Raの異なる圧延ロールを用いることを特徴とする超電導線材用基板1の製造工程について説明する。
 超電導線材用基板1を製造するために、表面粗度Ra50nm、厚さ0.3mm、幅75mm、奥行350mのBA材(ハステロイC-276)を用いた。なお、材質については、ハステロイに限らず、インコネル、ステンレス鋼を用いてもよい。
 研磨工程において(ステップS1参照)、BA材を研磨し、表面粗度Raを50nmから30nm程度にした。
 素圧延工程及び中間圧延工程において(ステップS2及びS3参照)、表面粗度Raが上下同一であって、ロール径Φ20mmの12段圧延ロールを用いて、BA材を圧延し、厚さ0.15mm、幅75mm、奥行690mの中間圧延材を製造した。素圧延時に用いた圧延ロールの表面粗度Raは66nmであり、中間圧延時に用いた圧延ロールの表面粗度Raは40nmであった。
 更に、厚さ0.15mmの中間圧延材を上下の表面粗度Raが7nmの圧延ロールを用いて、厚さを0.107mmまで圧延した。このときの中間圧延材の表面粗度Raは7nm~9nmであった。
 仕上げ圧延工程において(ステップS4参照)、表面粗度Raが3nmの圧延ロール及び表面粗度Raが10nmの圧延ロールを用いて、表面粗度Raが7nm~9nmの中間圧延材を圧延し、長尺圧延材を製造した。上側(表側)の圧延ロールには表面粗度Raが3nmの圧延ロールを用い、下側(裏側)の圧延ロールには表面粗度Raが10nmの圧延ロールを用いた。
 圧延に使用されるロール表面粗度はJIS B 0651―2001 触針式表面粗さ測定で求めた。
 なお、下側の圧延ロールの表面粗度Raは最大10nm程度が望ましい。表面粗度Raが10nmより大きいと、長尺圧延材の長手方向の表面粗度Raが15nmを超える場合がある。また、コイル状に巻き込まれた長尺圧延材の表裏の擦り合わせ傷が高光沢側(表面)の表層に生じ、表面欠陥を残すことになる。
 また、上側の圧延ロールの表面粗度Raが3nmで、下側の圧延ロールの表面粗度Raとの差が3nm未満の場合、圧延時材料滑りの影響が大きくなり、形状制御が困難となる。
 また、上側の圧延ロールは、全幅にわたって表面粗度Raが3nmであっても、中間圧延材の幅よりもわずかに狭い幅範囲に限定して表面粗度Raが3nmであってもよい。後者の場合、上側及び下側の圧延ロール端部の表面粗度Raは10nm程度であってもよい。
 TA熱処理工程において(ステップS5参照)、長尺圧延材の平坦性改善のため、790℃×20秒保持条件下で5kgf/mmの張力を長尺圧延材に印加し、長尺圧延材をアルゴンガスと水素との混合気体の雰囲気で熱処理した。
 仕上げ加工工程において(ステップS6参照)、長尺圧延材を所望の仕上がりサイズにてスリット加工し、厚さ0.10mm、幅10mm、奥行1030mの超電導線材用基板1を6つ製造した。圧延工程の加工率は60%以上を確保した。
 超電導線材用基板1の両端部からサンプルを採取し、原子間力顕微鏡(AFM)により10μm角の表面粗度Raを測定した。測定した結果、表側面の両端部それぞれ10箇所平均の表面粗度Raは3.2nm及び3.8nmであり、全ての測定点の表面粗度RaはRa<4nmであった。また、裏側面の両端部それぞれ10箇所平均の表面粗度Raは10.2nm及び10.6nmであった。
 仕上げ加工工程後の超電導線材用基板1について、室温にて引っ張り試験を行ったところ、0.2%耐力は1.6GPaであった。
 以上より、サンプル1-1による製造方法によれば、高強度、高性能な超電導線材用基板1を製造することができる。
〔サンプル2-1〕
 サンプル1-1で得られた仕上げ加工工程後の超電導線材用基板1に対して、仕上げ研磨工程において(ステップS7参照)、超電導線材用基板1の表側面を機械研磨し、表面粗度Raを0.9nmとした。なお、研磨方法は機械研磨、化学研磨又は電解研磨のいずれであってもよい。また、仕上げ研磨工程直前の超電導線材用基板1の表層は一様な品質のため、仕上げ研磨工程にかかる研磨コストを低減することができる。
〔超電導線材の製造工程〕
 サンプル2-1にて製造した超電導線材用基板1の表側面上に、IBAD法を用いて中間層2を形成した。中間層2は、超電導線材用基板1上にGd-Zr酸化中間層(GZO)が約1μm成膜され、更にその上にPLDにて厚さ約450nmのCeO酸化物中間層が形成されて構成される。
 中間層2上に、パルスレーザーデポジション法を用いて超電導層3を形成した。超電導層3は、中間層2上にYBCO超電導体が約1μm堆積して構成される。
 更に、超電導層3上に高周波スパッター装置を用いて厚さ約10μmの銀を蒸着して保護層を形成した。更に、酸素流気中、550℃で酸素アニールを行い、超電導線材10を製造した。なお、超電導線材10の表層には銅を有する安定化層が形成されている。
 製造された超電導線材10について、200m分を液体窒素に浸漬した状態で四端子法を用いて臨界電流を測定した。測定は1mピッチとし、電圧端子は1.2mとした。超電導線材10の通電特性は1μV/cm定義で、臨界電流値の全測定位置で307A以上を確認し、最小-最大差が8Aとなった。
〔サンプル1-2〕
〔超電導線材用基板の製造工程〕
 サンプル1-2では、中間圧延工程及び仕上げ圧延工程(ステップS3及びS4参照)で表面粗度Raの異なる圧延ロールを用いることを特徴とする超電導線材用基板1の製造工程について説明する。
 超電導線材用基板1を製造するために、表面粗度Ra50nm、厚さ0.3mm、幅75mm、奥行350mのBA材(ハステロイC-276)を用いた。なお、ハステロイに限らず、インコネル、ステンレス鋼を用いてもよい。
 研磨工程において(ステップS1参照)、BA材を研磨し、表面粗度Raを50nmから30nm程度にした。
 素圧延工程において(ステップS2参照)、表面粗度Ra(45nm)が上下同一であって、ロール径Φ20mmの12段圧延ロールを用いて、BA材を圧延し、厚さ0.15mm、幅75mm、奥行690mの素圧延材を製造した。このときの素圧延材の表面粗度Raを15nm~25nm程度にした。
 中間圧延工程において(ステップS3参照)、表面粗度Raが6nmの圧延ロール及び表面粗度Raが10nmの圧延ロールを用いて、素圧延材を圧延し、厚さ0.107mm、幅75mm、奥行960mの中間圧延材を製造した。上側の圧延ロールには表面粗度Raが6nmの圧延ロールを用い、下側の圧延ロールには表面粗度Raが10nmの圧延ロールを用いた。
 仕上げ圧延工程において(ステップS4参照)、表面粗度Raが3nmの圧延ロール及び表面粗度Raが9nmの圧延ロールを用いて、中間圧延材を圧延し、長尺圧延材を製造した。上側の圧延ロールには表面粗度Raが3nmの圧延ロールを用い、下側の圧延ロールには表面粗度Raが9nmの圧延ロールを用いた。
 なお、下側の圧延ロールの表面粗度Raは最大10nm程度が望ましい。表面粗度Raが10nmより大きいと、長尺圧延材の長手方向の表面粗度Raが15nmを超える場合がある。また、長尺圧延材の裏面(表面粗度Raが大きい面)の表面粗度Raが30nmを超えた場合には、コイル状に巻き込まれた長尺圧延材の表裏の擦り合わせ傷が高光沢側(表面)の表層に生じ、表面欠陥を残すことになる。
 また、上側の圧延ロールの表面粗度Raが3nmで、下側の圧延ロールの表面粗度Raとの差が3nm未満の場合、圧延時材料滑りの影響が大きくなり、形状制御が困難となる。
 TA熱処理工程において(ステップS5参照)、長尺圧延材の平坦性改善のため、790℃×20秒保持条件下で5kgf/mmの張力を長尺圧延材に印加し、長尺圧延材をアルゴンガスと水素との混合気体の雰囲気で熱処理した。
 仕上げ加工工程において(ステップS6参照)、長尺圧延材を所望の仕上がりサイズにてスリット加工し、厚さ0.10mm、幅10mm、奥行1020mの超電導線材用基板1を6つ製造した。圧延工程の加工率は60%以上を確保した。
 超電導線材用基板1の両端部からサンプルを採取し、原子間力顕微鏡(AFM)により10μm角の表面粗度Raを測定した。測定した結果、表側面の両端部それぞれ10箇所平均の表面粗度Raは3.0nm及び3.5nmであり、全ての測定点の表面粗度RaはRa<4nmであった。また、裏側面の両端部それぞれ10箇所平均の表面粗度Raは8.8nm及び9.5nmであった。
 仕上げ加工工程後の超電導線材用基板1について、室温にて引っ張り試験を行ったところ、0.2%耐力は1.5GPaであった。
 以上より、サンプル1-2による製造方法によれば、高強度、高性能な超電導線材用基板1を製造することができる。
〔サンプル2-2〕
 サンプル1-2で得られた仕上げ加工工程後の超電導線材用基板1に対して、仕上げ研磨工程において(ステップS7参照)、超電導線材用基板1の表側面を機械研磨し、表面粗度Raを0.8nmとした。なお、研磨方法は機械研磨、化学研磨又は電解研磨のいずれであってもよい。また、仕上げ研磨工程直前の超電導線材用基板1の表層は一様のため、研磨コストを低減することができる。
〔超電導線材の製造工程〕
 サンプル2-2にて製造した超電導線材用基板1の表側面上に、IBAD法を用いて中間層2を形成した。中間層2は、超電導線材用基板1上にGd-Zr酸化中間層(GZO)が約1μm成膜され、更にその上にPLDにて厚さ約500nmのCeO酸化物中間層が形成されて構成される。
 中間層2上に、パルスレーザーデポジション法を用いて超電導層3を形成した。超電導層3は、中間層2上にYBCO超電導体が約1μm堆積して構成される。
 更に、超電導層3上に高周波スパッター装置を用いて厚さ約10μmの銀を蒸着して保護層を形成した。更に、酸素流気中、550℃で酸素アニールを行い、超電導線材10を製造した。なお、超電導線材10の表層には銅を有する安定化層が形成されている。
 製造された超電導線材10について、200m分を液体窒素に浸漬した状態で四端子法を用いて臨界電流を測定した。測定は1mピッチとし、電圧端子は1.2mとした。超電導線材10の通電特性は1μV/cm定義で、臨界電流値の全測定位置で326A以上を確認し、最小-最大差が9Aとなった。
〔サンプル1-3〕
〔超電導線材用基板の製造工程〕
 サンプル1-3では、中間圧延工程及び仕上げ圧延工程(ステップS3及びS4参照)で表面粗度Raの異なる圧延ロールを用いることを特徴とする超電導線材用基板1の製造工程について説明する。
 超電導線材用基板1を製造するために、表面粗度Ra50nm、厚さ0.3mm、幅75mm、奥行350mのBA材(ハステロイC-276)を用いた。なお、ハステロイに限らず、インコネル、ステンレス鋼を用いてもよい。
 研磨工程において(ステップS1参照)、BA材を研磨し、表面粗度Raを50nmから30nm程度にした。
 素圧延工程において(ステップS2参照)、表面粗度Ra(45nm)が上下同一であって、ロール径Φ20mmの12段圧延ロールを用いて、BA材を圧延し、厚さ0.15mm、幅75mm、奥行690mの素圧延材を製造した。このときの素圧延材の表面粗度Raを15nm~25nm程度にした。
 中間圧延工程において(ステップS3参照)、表面粗度Raが6nmの圧延ロール及び表面粗度Raが12nmの圧延ロールを用いて、素圧延材を圧延し、厚さ0.107mm、幅75mm、奥行960mの中間圧延材を製造した。上側の圧延ロールには表面粗度Raが6nmの圧延ロールを用い、下側の圧延ロールには表面粗度Raが12nmの圧延ロールを用いた。
 仕上げ圧延工程において(ステップS4参照)、表面粗度Raが4nmの圧延ロール及び表面粗度Raが9nmの圧延ロールを用いて、中間圧延材を圧延し、長尺圧延材を製造した。上側の圧延ロールには表面粗度Raが4nmの圧延ロールを用い、下側の圧延ロールには表面粗度Raが9nmの圧延ロールを用いた。
 TA熱処理工程において(ステップS5参照)、長尺圧延材の平坦性改善のため、790℃×20秒保持条件下で5kgf/mmの張力を長尺圧延材に印加し、長尺圧延材をアルゴンガスと水素との混合気体の雰囲気で熱処理した。
 仕上げ加工工程において(ステップS6参照)、長尺圧延材を所望の仕上がりサイズにてスリット加工し、厚さ0.10mm、幅10mm、奥行1020mの超電導線材用基板1を6つ製造した。圧延工程の加工率は60%以上を確保した。
 超電導線材用基板1の両端部からサンプルを採取し、原子間力顕微鏡(AFM)により10μm角の表面粗度Raを測定した。測定した結果、表側面の両端部それぞれ10箇所平均の表面粗度Raは4.1nm及び4.3nmであり、全ての測定点の表面粗度RaはRa<5nmであった。また、裏側面の両端部それぞれ10箇所平均の表面粗度Raは9.7nm及び8.9nmであった。
 仕上げ加工工程後の超電導線材用基板1について、室温にて引っ張り試験を行ったところ、0.2%耐力は1.6GPaであった。
 以上より、サンプル1-3による製造方法によれば、高強度、高性能な超電導線材用基板1を製造することができる。
〔サンプル2-3〕
 サンプル1-3で得られた仕上げ加工工程後の超電導線材用基板1に対して、仕上げ研磨工程において(ステップS7参照)、超電導線材用基板1の表側面を機械研磨し、表面粗度Raを1.2nmとした。なお、研磨方法は機械研磨、化学研磨又は電解研磨のいずれであってもよい。また、仕上げ研磨工程直前の超電導線材用基板1の表層は品質が一様のため、仕上げ研磨工程における研磨コストを低減することができる。
〔超電導線材の製造工程〕
 サンプル2-3にて製造した超電導線材用基板1上に、IBAD法を用いて中間層2を形成した。中間層2は、超電導線材用基板1上にGd-Zr酸化中間層(GZO)が約1μm成膜され、更にその上にPLDにて厚さ約500nmのCeO酸化物中間層が形成されて構成される。
 中間層2上に、パルスレーザーデポジション法を用いて超電導層3を形成した。超電導層3は、中間層2上にYBCO超電導体が約1μm堆積して構成される。
 更に、超電導層3上に高周波スパッター装置を用いて厚さ約10μmの銀を蒸着して保護層を形成した。更に、酸素流気中、550℃で酸素アニールを行い、超電導線材10を製造した。なお、超電導線材10の表層には銅を有する安定化層が形成されている。
 製造された超電導線材10について、200m分を液体窒素に浸漬した状態で四端子法を用いて臨界電流を測定した。測定は1mピッチとし、電圧端子は1.2mとした。超電導線材10の通電特性は1μV/cm定義で、臨界電流値の全測定位置で295A以上を確認し、最小-最大差が8Aとなった。
〔サンプル1-4(2-4)〕
〔超電導線材用基板の製造工程〕
 サンプル1-4(2-4)では、仕上げ圧延工程(ステップS4参照)で表面粗度Raの異なる圧延ロールを用いることを特徴とし、仕上げ研磨工程を行わないことを特徴とする超電導線材用基板1の製造工程について説明する。
 超電導線材用基板1を製造するために、表面粗度Ra50nm、厚さ0.3mm、幅75mm、奥行350mのハステロイBA材(ハステロイC-276)を用いた。なお、ハステロイに限らず、インコネル、ステンレス鋼を用いてもよい。
 研磨工程において(ステップS1参照)、BA材を研磨し、表面粗度Raを50nmから30nm程度にした。
 素圧延工程及び中間圧延工程において(ステップS2及びS3参照)、表面粗度Raが上下同一であって、ロール径Φ20mmの12段圧延ロールを用いて、BA材を圧延し、厚さ0.15mm、幅75mm、奥行690mの中間圧延材を製造した。素圧延時に用いた圧延ロールの表面粗度Raは66nmであり、中間圧延時に用いた圧延ロールの表面粗度Raは40nmであった。
 更に、厚さ0.15mmの中間圧延材を上下の表面粗度Raが7nmの圧延ロールを用いて、厚さを0.107mmまで圧延した。このときの中間圧延材の表面粗度Raは7nm~9nmであった。
 仕上げ圧延工程において(ステップS4参照)、表面粗度Raが2nmの圧延ロール及び表面粗度Raが10nmの圧延ロールを用いて、表面粗度Raが7nm~9nmの中間圧延材を圧延し、長尺圧延材を製造した。上側の圧延ロールには表面粗度Raが2nmの圧延ロールを用い、下側の圧延ロールには表面粗度Raが10nmの圧延ロールを用いた。
 なお、下側の圧延ロールの表面粗度Raは最大10nm程度が望ましい。表面粗度Raが10nmより大きいと、長尺圧延材の長手方向の表面粗度Raが15nmを超える場合がある。また、コイル状に巻き込まれた長尺圧延材表裏の擦り合わせ傷が高光沢側(表面)の表層に生じ、表面欠陥を残すことになる。
 また、上側の圧延ロールの表面粗度Raが3nmで、下側の圧延ロールの表面粗度Raとの差が3nm未満の場合、圧延時材料滑りの影響が大きくなり、形状制御が困難となる。
 また、上側の圧延ロールは、全幅にわたって表面粗度Raが3nmであっても、中間圧延材の幅よりもわずかに狭い幅範囲に限定して表面粗度Raが3nmであってもよい。後者の場合、上側及び下側の圧延ロール端部の表面粗度Raは10nm程度であってもよい。
 TA熱処理工程において(ステップS5参照)、長尺圧延材の平坦性改善のため、790℃×20秒保持条件下で5kgf/mmの張力を長尺圧延材に印加し、長尺圧延材をアルゴンガスと水素との混合気体の雰囲気で熱処理した。
 仕上げ加工工程において(ステップS6参照)、長尺圧延材を所望の仕上がりサイズにてスリット加工し、厚さ0.10mm、幅10mm、奥行1030mの超電導線材用基板1を6つ製造した。圧延工程の加工率は60%以上を確保した。
 超電導線材用基板1の両端部からサンプルを採取し、原子間力顕微鏡(AFM)により10μm角の表面粗度Raを測定した。測定した結果、表側面の両端部それぞれ10箇所平均の表面粗度Raは2.4nm及び2.8nmであり、全ての測定点の表面粗度RaはRa<3nmであった。また、裏側面の両端部それぞれ10箇所平均の表面粗度Raは9.8nm及び10.8nmであった。
 仕上げ研磨工程(ステップS7参照)は省略した。仕上げ研磨工程を省略することにより、コストを大幅に低減することができる。
 仕上げ加工工程後の超電導線材用基板1について、室温にて引っ張り試験を行ったところ、0.2%耐力は1.5GPaであった。
 以上より、サンプル1-4による製造方法によれば、高強度、高性能、安価な超電導線材用基板1を製造することができる。
〔超電導線材の製造工程〕
 サンプル1-4(2-4)にて製造した超電導線材用基板1の表側面上に、IBAD法を用いて中間層2を形成した。中間層2は、超電導線材用基板1上にGd-Zr酸化中間層(GZO)が約1μm成膜され、更にその上にPLDにて厚さ約480nmのCeO酸化物中間層が形成されて構成される。
 中間層2上に、パルスレーザーデポジション法を用いて超電導層3を形成した。超電導層3は、中間層2上にYBCO超電導体が約1μm堆積して構成される。
 更に、超電導層3上に高周波スパッター装置を用いて厚さ約10μmの銀を蒸着して保護層を形成した。更に、酸素流気中、550℃で酸素アニールを行い、超電導線材10を製造した。なお、超電導線材10の表層には銅を有する安定化層が形成されている。
 製造された超電導線材10について、200m分を液体窒素に浸漬した状態で四端子法を用いて臨界電流を測定した。測定は1mピッチとし、電圧端子は1.2mとした。超電導線材10の通電特性は1μV/cm定義で、臨界電流値の全測定位置で261A以上を確認し、最小-最大差が12Aとなった。
〔サンプル1-5〕
〔超電導線材用基板の製造工程〕
 サンプル1-5では、仕上げ圧延工程(ステップS4参照)で表面粗度Raの異なる圧延ロールを用いることを特徴とする超電導線材用基板1の製造工程について説明する。
 超電導線材用基板を製造するために、表面粗度Ra50nm、厚さ0.3mm、幅75mm、奥行350mのBA材(ハステロイC-276)を用いた。
 研磨工程において(ステップS1参照)、BA材を研磨し、表面粗度Raを50nmから30nm程度にした。
 素圧延工程及び中間圧延工程において(ステップS2及びS3参照)、表面粗度Raが上下同一であって、ロール径Φ20mmの12段圧延ロールを用いて、BA材を圧延し、厚さ0.107mm、幅75mm、奥行970mの中間圧延材を製造した。素圧延時に用いた圧延ロールの表面粗度Raは40nmであり、中間圧延時に用いた圧延ロールの表面粗度Raは13nmであった。
 仕上げ圧延工程において(ステップS4参照)、表面粗度Raが3nmの圧延ロール及び表面粗度Raが13nmの圧延ロールを用いて、中間圧延材を圧延し、長尺圧延材を製造した。上側の圧延ロールには表面粗度Raが3nmの圧延ロールを用い、下側の圧延ロールには表面粗度Raが13nmの圧延ロールを用いた。
 TA熱処理工程において(ステップS5参照)、長尺圧延材の平坦性改善のため、790℃×20秒保持条件下で5kgf/mmの張力をハステロイに印加し、ハステロイをアルゴンガスと水素との混合気体の雰囲気で熱処理した。
 仕上げ加工工程において(ステップS6参照)、長尺圧延材を所望の仕上がりサイズにてスリット加工し、厚さ0.10mm、幅10mm、奥行1030mの超電導線材用基板を6つ製造した。圧延工程の加工率は60%以上を確保した。
 超電導線材用基板の両端部からサンプルを採取し、原子間力顕微鏡(AFM)により10μm角の表面粗度Raを測定した。測定した結果、表側面の両端部それぞれ10箇所平均の表面粗度Raは3.7nm及び3.9nmであり、また、裏側面の両端部それぞれ10箇所平均の表面粗度Raは13.3nm及び13.6nmであった。
 仕上げ加工工程後の超電導線材用基板について、室温にて引っ張り試験を行ったところ、0.2%耐力は1.6GPaであった。
〔サンプル2-5〕
 サンプル1-5で得られた仕上げ加工工程後の超電導線材用基板1に対して、仕上げ研磨工程において(ステップS7参照)、超電導線材用基板の表側面を機械研磨し、表面粗度Raを2.4nmとした。なお、研磨方法は機械研磨、化学研磨又は電解研磨のいずれであってもよい。
〔超電導線材の製造工程〕
 サンプル2-5にて製造した超電導線材用基板上に、IBAD法を用いて中間層を形成した。中間層は、超電導線材用基板上にGd-Zr酸化中間層(GZO)が約1μm成膜され、更にその上にPLDにて厚さ約480nmのCeO酸化物中間層が形成されて構成される。
 中間層上に、パルスレーザーデポジション法を用いて超電導層を形成した。超電導層は、中間層上にYBCO超電導体が約1μm堆積して構成される。
 更に、超電導層上に高周波スパッター装置を用いて厚さ約10μmの銀を蒸着して保護層を形成した。更に、酸素流気中、550℃で酸素アニールを行い、超電導線材を製造した。なお、超電導線材10の表層には銅を有する安定化層が形成されている。
 製造された超電導線材について、200m分を液体窒素に浸漬した状態で四端子法を用いて臨界電流を測定した。測定は1mピッチとし、電圧端子は1.2mとした。超電導線材の通電特性は1μV/cm定義で、臨界電流値の全測定位置で268A以上を確認し、最小-最大差が37Aとなった。
〔サンプル1-6〕
〔超電導線材用基板の製造工程〕
 サンプル1-6では、圧延工程(ステップS2~4参照)の全てで表面粗度Raが上下同一の圧延ロールを用いる超電導線材用基板の製造工程について説明する。
 超電導線材用基板を製造するために、表面粗度Ra50nm、厚さ0.3mm、幅75mm、奥行350mのBA材(ハステロイC-276)を用いた。
 研磨工程において(ステップS1参照)、BA材を研磨し、表面粗度Raを50nmから30nm程度にした。
 素圧延工程及び中間圧延工程において(ステップS2及びS3参照)、表面粗度Raが上下同一であって、ロール径Φ20mmの12段圧延ロールを用いて、BA材を圧延し、厚さ0.107mm、幅75mm、奥行970mの中間圧延材を製造した。素圧延時に用いた圧延ロールの表面粗度Raは40nmであり、中間圧延時に用いた圧延ロールの表面粗度Raは13nmであった。
 仕上げ圧延工程において(ステップS4参照)、表面粗度Raが7nmの上下同一の圧延ロールを用いて中間圧延材を圧延し、長尺圧延材を製造した。
 このとき、圧延時材料滑りの影響が大きくなり、長尺圧延材は平坦性に劣る端延び形状となった。
 TA熱処理工程において(ステップS5参照)、長尺圧延材の平坦性改善のため、790℃×20秒保持条件下で5kgf/mmの張力をハステロイに印加し、ハステロイをアルゴンガスと水素との混合気体の雰囲気で熱処理した。
 仕上げ加工工程において(ステップS6参照)、長尺圧延材を所望の仕上がりサイズにてスリット加工し、厚さ100μm、幅10mm、奥行1030mの超電導線材用基板を6つ製造した。圧延工程の加工率は60%以上を確保した。なお、製造された6つの超電導線材用基板のうち、2つは平坦性の変動が不連続的にあり、中間層の成膜に適さない形状品質であった。
 超電導線材用基板の両端部からサンプルを採取し、原子間力顕微鏡(AFM)により10μm角の表面粗度Raを測定した。測定した結果、表側面の両端部それぞれ10箇所平均の表面粗度Raは7.2nm及び7.8nmであり、また、裏側面の両端部それぞれ10箇所平均の表面粗度Raは7.9nm及び8.2nmであった。
 仕上げ加工工程後の超電導線材用基板について、室温にて引っ張り試験を行ったところ、0.2%耐力は1.6GPaであった。
〔サンプル2-6〕
 サンプル1-6で得られた仕上げ加工工程後の超電導線材用基板1に対して、仕上げ研磨工程において(ステップS7参照)、超電導線材用基板の表側面を機械研磨し、表面粗度Raを2.9nmとした。なお、研磨方法は機械研磨、化学研磨又は電解研磨のいずれであってもよい。
〔超電導線材の製造工程〕
 サンプル2-6にて製造した超電導線材用基板の表側面上に、IBAD法を用いて中間層を形成した。中間層は、超電導線材用基板上にGd-Zr酸化中間層(GZO)が約1μm成膜され、更にその上にPLDにて厚さ約480nmのCeO酸化物中間層が形成されて構成される。
 中間層上に、パルスレーザーデポジション法を用いて超電導層を形成した。超電導層は、中間層上にYBCO超電導体が約1μm堆積して構成される。
 更に、超電導層上に高周波スパッター装置を用いて厚さ約10μmの銀を蒸着して保護層を形成した。更に、酸素流気中、550℃で酸素アニールを行い、超電導線材を製造した。なお、超電導線材10の表層には銅を有する安定化層が形成されている。
 製造された超電導線材について、200m分を液体窒素に浸漬した状態で四端子法を用いて臨界電流を測定した。測定は1mピッチとし、電圧端子は1.2mとした。超電導線材の通電特性は1μV/cm定義で、臨界電流値の全測定位置で240A以上を確認し、最小-最大差が28Aとなった。
[サンプル1-7~1-13]
 サンプル1-7~1-13では、サンプル1-1と同様に、仕上げ圧延工程(ステップS4参照)で表面粗度Raの異なる圧延ロールを用いることを特徴とする超電導線材用基板1の製造工程を行った。各サンプルで用いた仕上げ圧延工程(ステップS4)の上側(表側)と下側(裏側)の圧延ロールの表面粗度Raは表1に示す通りである。
 表1に、上記述べてきたサンプル1-1~1-13の超電導線材用基板の特性と仕上げ圧延工程の上側(表側)と下側(裏側)の圧延ロールの表面粗度Raと仕上げ圧延工程後の基板表裏の表面粗度Raをまとめたものを示す。
 なお、表1における形状不良率とは、製造された超電導線材用基板のうち、中間層の成膜に適した形状(厚さ0.1mm、幅10mm、奥行き200m単位)に適合しない品質の基板の割合を示す。この形状不良率が小さいほど、長尺な超電導線材用基板の製造が可能となる。
Figure JPOXMLDOC01-appb-T000001
 サンプル1~5、1-7~1-13では、仕上げ圧延工程における上側(表側)と下側(裏側)の圧延ロールの表面粗度Raが異なる場合であり、サンプル1-6は上側と下側の圧延ロールの表面粗度Raが同じ場合である。
 サンプル1-6では、得られた超電導線材用基板の形状不良率が高かった。これは、サンプル1-6においては上側と下側の圧延ロールの表面粗度Raが同じために、圧延の際に超電導線材用基板が滑ってしまい、不連続に形状の平坦性が変動してしまったと考えられる。このことから、上側(表側)と下側(裏側)の圧延ロールの表面粗度Raは異なることが必要であることが判る。
 サンプル1-7では、上側(表側)の圧延ロールの表面粗度Raを3nm未満としたが、サンプル1-6と同様に得られた超電導線材用基板の形状不良率が高かった。これは、上側の表面粗度Raが小さすぎ、さらに、下側(裏側)の圧延ロールの表面粗度Raが7nmと低いために、圧延の際に超電導線材用基板が滑ってしまい、サンプル1-6と同じ現象が生じてしまったと考えられる。
 一方、サンプル1-13では、上側(表側)の圧延ロールの表面粗度Raを70nm以上としたが、得られた超電導線材用基板の形状不良率が高かった。これは、表面粗度Raが大きい、粗い面で圧延を行ったために、超電導線材用基板に不均一な内部応力が分布したため、その後の熱処理工程(ステップS5)によって、得られた超電導線材用基板に歪みが生じてしまったためと考えられる。
 以上のことより、圧延ロールのうち表面粗度Raが小さい方の圧延ロールは、表面粗度Raが3nm以上、70nmより小さいことが求められる。
 また、サンプル1-12のように、圧延ロールのうち表面粗度Raが小さい方の圧延ロールは、表面粗度Raが60nm以上であり、サンプル1-13の表面粗度Raが70nmと比べると、形状不良率が低減されてはいるが、形状不良率が0%とはならないことから、60nm未満であることが好ましい。
 サンプル1-9では、圧延ロールの上側(表側)と下側(裏側)の表面粗度Raの差が10nm以上とした。得られた超電導線材用基板の表面を確認したところ、表面粗度Raが小さい上側の表層に擦り合わせ傷と思われる表面欠陥が形成されていた。これは、サンプル1-9では、圧延ロールの上側(表側)に比べて下側(裏側)の表面粗度Raが粗いため、テープ状の超電導線材用基板をリールに巻き取る際に基板の表層が粗い裏側が表側の表層を傷つけたためと考えられる。
 以上のことから、上下一対の圧延ロールには、表面粗度Raの差が2nmよりも大きく、10nmよりも小さい圧延ロールを用いることが好ましい。
 ここで、基板の上側(表側)の表面粗度Raは出来るだけ小さいことが望ましく、更に、下側(裏側)の表面粗度Raも極端に粗くないものが望ましいため、サンプル1-1~1-5、1-8のように、仕上げ圧延工程における下側(裏側)の圧延ロールの表面粗度Raは、15nm未満とすることが好ましく、10nm以下とすることがより好ましい。
 なお、基板の圧延仕上がりの表面粗度Raと精密研磨後の表面粗度Raとが大きく乖離している場合、研磨後の基板表面の最大高さを意味するRzが大きく、深さ方向の地肌傷の被りや圧延傷を低減することが困難となる。そのため、基板の圧延仕上がりの表面粗度Raは数nmであることが好ましい。
[サンプル2-7~2-13]
 サンプル2-7~2-13では、仕上げ加工工程後、又は仕上げ研磨工程後に得られた超電導線材用基板1を用いて、超電導線材用基板1の表側面上に、IBAD法を用いて中間層2を形成した。中間層2は、超電導線材用基板1上にGd-Zr酸化中間層(GZO)が約1μm成膜され、更にその上にPLDにて厚さ約450nmのCeO酸化物中間層が形成されて構成される。
 中間層2上に、パルスレーザーデポジション法を用いて超電導層3を形成した。超電導層3は、中間層2上にYBCO超電導体が約1μm堆積して構成される。
 更に、超電導層3上に高周波スパッター装置を用いて厚さ約10μmの銀を蒸着して保護層を形成した。更に、酸素流気中、550℃で酸素アニールを行い、超電導線材10を製造した。なお、超電導線材10の表層には銅を有する安定化層が形成されている。
 製造された超電導線材10について、200m分を液体窒素に浸漬した状態で四端子法を用いて臨界電流を測定した。測定は1mピッチとし、電圧端子は1.2mとした。このとき用いた超電導線材用基板1の表裏の表面粗度Raは表2に示す通りである。
 表2に、上記述べてきたサンプル2-1~2-13の超電導線材用基板の表裏の表面粗度Raと、得られた超電導線材の特性をまとめたものを示す。
 ここで、表面状態は中間層が積まれた基板表面をCCDカメラ検査装置と目視で観察し、色むらや線状傷等の欠陥が存在するかどうかを確認した。なお、表2において、Aは欠陥が存在しないことを、Bは色むら又は点状欠陥が存在することを、Cは線状欠陥が存在することを意味する。
 また、臨界電流特性は、200m分を液体窒素に浸漬した状態で四端子法を用いて臨界電流を測定した結果である。測定は1mピッチとし、電圧端子は1.2mとした。超電導線材10の通電特性は1μV/cm定義で行った。
 密着状態は、基板の裏側表層と安定化層(保護層を含む)との密着状態を評価した。このときの密着状態は、曲げ試験法で確認した。この曲げ試験では、安定化層まで形成された超電導線材(厚みt=0.2mm)に対し、円柱状物(直径φ=10mm)を用いて、超電導線材の長手方向を円柱状物の外周面の湾曲に沿うように、超電導線材の表裏の両方向に対して1回ずつ曲げひずみε=2%(ε=t/φ)を与えて、基板の裏側表層における剥離状態を評価した。この時の曲げ試験は、超電導線材に対して張力を印加しない無張力条件下で行った。なお、表2において、Aは基板の裏側表層において剥離部分が検出されなかった密着性良好状態を示し、Bは基板の裏側表層において剥離部分が僅かでも検出された状態を示し、Cは基板の裏側表層において剥離部分が超電導線材の幅方向に半分以上存在していることが検出された状態を示している。
Figure JPOXMLDOC01-appb-T000002
 サンプル2-1~2-8は、表側の表面粗度Raが10nm以下であって、裏側の表面粗度Raが8nm以上15nm未満である。
 一方、サンプル2-11~2-13は、裏側の表面粗度Raが8nm未満であり、サンプル2-9とサンプル2-10は裏側の表面粗度Raが15nm以上である。
 ここで、サンプル2-11~2-13の超電導線材用基板の裏側表面には、中間層等の成膜の際に形成されたと考えられる深さ0.1μm~0.5μm程度の凸凹状の線状欠陥が生じていた。これは、裏側面の表面粗度Raを小さくしたために、基板上に中間層を積むために走行させた際に、サセプタと基板の裏側表面が接した際に線状欠陥が生じてしまったためと考えられる。また、表側表面にも微細な線状欠陥が生じていた。これは、表側の表面粗度Raが小さく、滑らかな状態のために、基材をリールに巻いた際に表側表面に裏側表面が擦り合わせられてしまったために、裏側の表面に形成された線状欠陥が表側の表面に転写されてしまったと考えられる。
 サンプル2-11~2-13は、基板の表側表面に線状欠陥が形成されていることで、臨界電流が低下してしまった。
 また、サンプル2-11~2-13は、裏面に形成された安定化層と基板との密着性が悪かった。これは、基板の裏側表面に付着したサセプタと基板の接触で生じた凸凹状の線状欠陥と、微小な金属粉のためと考えられる。
 以上のことから、サンプル2-1~2-10のように、裏側の表面粗度Raは8nm以上であることが好ましい。
 一方、サンプル2-9、2-10の超電導線材用基板では、裏側の表面粗度Raを15nm以上とした。サンプル2-11~2-13と比して、基板の裏側表面状態は改善されているが、基板の表側表面状態にはわずかに点状欠陥が生じてしまった。これは、表側の表面粗度Raが高配向性を狙った低いRa値(3nm以下)を有しているために、裏側の高いRa値によって裏側の表面に形成された凹凸が表側の表面に転写されてしまったためと考えられる。
 このことから、サンプル2-1~2-8のように、裏側の表面粗度Raは、8nm以上15nm未満が好ましい。
 なお、基板表側の表面粗度Raは小さければ小さいほど、基板表側上に形成される中間層の配向性が向上し、臨界電流も向上するが、基板表側の表面粗度Raは好ましくは6nm以下である。特に、サンプル2-1~2-5のように、表側の表面粗度Raが3nm以下である場合には、中間層の配向性が向上し、臨界電流値も260A以上の高い値となった。一方、サンプル2-7は、表側の表面粗度が3nmを超えているため、サンプル2-5等と比べても臨界電流値が少し低い値となっている。
また、サンプル2-6とサンプル2-8では裏面での安定化層の密着性がよくないために、局部的に熱的不安定さの影響を受け、臨界電流値も他のサンプルに比べて少し低い値となっていると考えられる。これは、表面粗度Raが同等のサンプル2-1,2-4と比べるとよく判る。
 なお、サンプル2-4では仕上げ研磨工程を行わず、サンプル2-1~2-3、2-5、2-6では仕上げ研磨工程を行った。この仕上げ研磨工程は、表側の表面粗度Raを制御する目的だけではなく、圧延工程で押し込まれた微細な金属粒の除去、表層に固着、焼着した油分の除去、表層における不均一層の除去など、表層の清浄度改善を行う目的もある。このため、仕上げ研磨工程を実施することが好ましい。また、超電導線材用基板製造工程のフロー図に示す、研磨工程では(ステップS1参照)、鋳造工程から粗圧延工程の素材の上工程で生じる表層欠陥、例えば、基板の素材片や異材片が押し込まれて生じた欠陥や局部的に成分が変動して生じた欠陥、を軽減する効果がある。このため、超電導線材用基板の製造工程中においては、研磨工程を実施することが好ましく、更に複数回の研磨工程を実施することが、より好ましい。
 以上のサンプルでは、非配向基板を用いたが、少なくとも基板表面が配向した状態の配向基板にも本実施形態は適用することができる。
 なお、従来、超電導線材用基板の表面粗度Raを小さくすることで超電導線材の特性が向上することは知られているが、表側面に合わせて裏側面の表面粗度Raを小さくした場合には、サンプル2-11~2-13のように超電導線材用基板の裏側面に欠陥が形成されやすくなってしまい、好ましくない。
 例えば特許文献4に記載のあるように、鏡面ロールで仕上げ圧延を行った際に、裏側の表面粗度Raを制御せず、その後の研磨で研磨対象となる表側と同様に圧延を行うことで、kmオーダーを超える長尺な超電導線材用基板の均一な形状制御が困難という問題が生じてしまう。
 また、特許文献8に記載のあるように、裏側が鏡面ロールなどの仕上げ圧延前の状態の場合には、鏡面ロールでの仕上げ圧延後の表面状態と比べて、裏側の表面状態が急峻な凹凸となっている。このため、表側を研磨によって表面粗度Raを向上させた後、基板をリールに巻き取る際に基板の表面状態が粗い裏側が表側の表層を傷つけることとなる。
 以上のように、本実施形態によれば、高強度、高配向で超電導特性に優れた量産的に安価で長尺な超電導線材用基板を製造することができる。また、この超電導線材用基板を用いた超電導線材を製造することができる。
 本発明は、以上のように構成されていることから、超電導線材用基板および超電導線材用基板の製造方法、超電導線材に利用できる。
1  超電導線材用基板
2  中間層
3  超電導体層
10 超電層線材

Claims (12)

  1.  超電導線材用基板の両面のうち、一方の表面粗度Raが10nm以下であって、他方の表面粗度Raが前記一方の表面粗度Raよりも大きく、前記他方の表面粗度Raが8nm以上15nm未満であることを特徴とする超電導線材用基板。
  2.  前記他方の表面粗度Raが9nm以上15nm未満であることを特徴とする請求項1に記載の超電導線材用基板。
  3.  前記一方の表面粗度Raが6nm以下であることを特徴とする請求項1又は2に記載の超電導線材用基板。
  4.  前記一方の表面粗度Raが3nm以下であることを特徴とする請求項1又は2に記載の超電導線材用基板。
  5.  前記超電導線材用基板は、Ni基合金又はFe基合金を素材とした基板であることを特徴とする請求項1~4の何れか一項に記載の超電導線材用基板。
  6.  金属体を冷間圧延する工程と、
     前記冷間圧延された金属体を熱処理する工程と、
     を含む超電導線材用基板の製造方法であって、
     前記冷間圧延する工程では、表面粗度Raが異なる上下一対の圧延ロールを用いることを特徴とする超電導線材用基板の製造方法。
  7. 前記上下一対の圧延ロールのうち表面粗度Raが小さい方の圧延ロールは、表面粗度Raが3nm以上、70nmより小さいことを特徴とする請求項6に記載の超電導線材用基板の製造方法。
  8.  前記冷間圧延する工程では、表面粗度Raの差が2nmよりも大きく、10nmよりも小さい条件を満たす上下一対の圧延ロールを用いることを特徴とする請求項7に記載の超電導線材用基板の製造方法。
  9.  前記表面粗度Raが小さい方の圧延ロールにおける表面粗度Raが3nm以上、70nmより小さい部分が、材料幅の0.8倍以上の幅範囲であることを特徴とする請求項7に記載の超電導線材用基板の製造方法。
  10.  前記冷間圧延する工程では、圧延ロールの外径差が1.5μm以内である上下一対の圧延ロールを用いることを特徴とする請求項5~9の何れか一項に記載の超電導線材用基板の製造方法。
  11.  前記冷間圧延する工程において、
     前記表面粗度Raが異なる上下一対の圧延ロールを用いて圧延する工程及び表面粗度Raが同一の上下一対の圧延ロールを用いて圧延する工程が各々少なくとも1回以上含まれることを特徴とする請求項5~10の何れか一項に記載の超電導線材用基板の製造方法。
  12.  超電導線材用基板の両面のうち、一方の表面粗度Raが10nm以下であって、他方の表面粗度Raが前記一方の表面粗度Raよりも大きく、前記他方の表面粗度Raが8nm以上15nm未満である超電導線材用基板と、
     前記超電導線材用基板の前記一方の面上に形成された中間層と、
     前記中間層上に形成された超電導層とを有する超電導線材。
PCT/JP2011/076255 2011-11-15 2011-11-15 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材 WO2013073002A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180033016.7A CN103282975B (zh) 2011-11-15 2011-11-15 超导线材用基板、超导线材用基板的制造方法以及超导线材
JP2013501466A JP5950900B2 (ja) 2011-11-15 2011-11-15 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材
PCT/JP2011/076255 WO2013073002A1 (ja) 2011-11-15 2011-11-15 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材
US13/816,619 US9378869B2 (en) 2011-11-15 2011-11-15 Superconductive wire material substrate, manufacturing method thereof and superconductive wire material
EP11870510.2A EP2626867B1 (en) 2011-11-15 2011-11-15 Substrate for superconducting wire rod, method for manufacturing substrate for superconducting wire rod, and superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076255 WO2013073002A1 (ja) 2011-11-15 2011-11-15 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材

Publications (1)

Publication Number Publication Date
WO2013073002A1 true WO2013073002A1 (ja) 2013-05-23

Family

ID=48429115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076255 WO2013073002A1 (ja) 2011-11-15 2011-11-15 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材

Country Status (5)

Country Link
US (1) US9378869B2 (ja)
EP (1) EP2626867B1 (ja)
JP (1) JP5950900B2 (ja)
CN (1) CN103282975B (ja)
WO (1) WO2013073002A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103658172A (zh) * 2013-12-09 2014-03-26 北京工业大学 一种涂层导体用百米级Ni-5at.%W合金基带的轧制方法
JP2018206670A (ja) * 2017-06-07 2018-12-27 株式会社フジクラ 酸化物超電導線材、超電導コイル、および酸化物超電導線材の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102632410B1 (ko) * 2015-12-14 2024-02-05 한국전기연구원 금속기판 결함에 의해 자기 정렬된 초전도 스트립을 구비하는 초전도 선재의 제조 방법
WO2017105029A1 (ko) * 2015-12-14 2017-06-22 한국전기연구원 금속기판 결함에 의해 자기 정렬된 초전도 스트립을 구비하는 초전도 선재의 제조 방법
CN106816228B (zh) * 2016-12-16 2018-08-24 上海超导科技股份有限公司 第二代高温超导带材无织构金属薄带的制备方法
CN110797148B (zh) * 2019-10-08 2021-07-30 上海交通大学 适用于无绝缘线圈的超导带材、无绝缘线圈及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251301A (ja) * 1989-03-27 1990-10-09 Nippon Steel Corp 金属薄板の圧延方法
JPH04110454A (ja) 1990-08-31 1992-04-10 Nippon Stainless Steel Co Ltd 成形性に優れた高光沢チタン箔の製造方法
JPH04329867A (ja) 1991-04-30 1992-11-18 Fujikura Ltd 多結晶薄膜の製造装置
JP2007200870A (ja) 2006-01-26 2007-08-09 Ls Cable Ltd 超伝導ケーブル用基板の製造方法
JP2007311234A (ja) 2006-05-19 2007-11-29 Sumitomo Electric Ind Ltd 超電導薄膜材料およびその製造方法
JP2008036724A (ja) 2006-08-01 2008-02-21 Nihon Micro Coating Co Ltd 酸化物超伝導体用テープ基材の研磨方法並びに酸化物超伝導体及び酸化物超伝導体用基材
JP2008049451A (ja) 2006-08-25 2008-03-06 Nihon Micro Coating Co Ltd 酸化物超伝導体用テープ基材の研磨方法並びに酸化物超伝導体及び酸化物超伝導体用基材
JP2008200773A (ja) 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd 超電導体用テープ基材の製造方法及びテープ基材
JP2008200775A (ja) 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd 超電導体用テープ基材の製造方法及びテープ基材
JP2008254044A (ja) 2007-04-06 2008-10-23 Nippon Steel Corp 3ピース缶用鋼板とその製造方法及びその製造に用いる装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571274A (en) * 1982-10-28 1986-02-18 Kawasaki Steel Corporation Method for continuous annealing of a metal strip
US5746081A (en) * 1993-03-27 1998-05-05 Sms Schloemann-Siegmag Aktiengesellschaft Reversing compact installation for cold rolling strip-shaped rolling material
CN1191780A (zh) * 1997-02-25 1998-09-02 中国科学院力学研究所 普通冷轧机轧制薄金属板的异步轧制方法
JP3148159B2 (ja) 1997-08-28 2001-03-19 日鉱金属株式会社 ステンレス条のトヨ形成方法及びトヨ形成用圧延装置
WO2001060568A1 (en) * 2000-02-14 2001-08-23 Sadler Love & Associates, Inc. Method and apparatus for the descaling of metal
JP2005056754A (ja) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd 超電導線材およびその製造方法
DE102007024166B4 (de) 2007-05-24 2011-01-05 Zenergy Power Gmbh Verfahren zum Bearbeiten eines Metallsubstrats und Verwendung dessen für einen Hochtemperatur-Supraleiter
JP5448425B2 (ja) * 2008-11-21 2014-03-19 公益財団法人国際超電導産業技術研究センター 超電導膜成膜用基板、超電導線材及びそれらの製造方法
JP5435448B2 (ja) * 2008-12-24 2014-03-05 古河電気工業株式会社 超電導線材用テープ状基材、その製造方法、及び超電導線材
CN102140670B (zh) * 2011-03-11 2012-09-12 西北有色金属研究院 涂层导体用合金基带的连续电解抛光装置及方法
CN102230211A (zh) * 2011-06-16 2011-11-02 北京工业大学 一种用于改善Ni5at.%W合金基带表面质量的电解抛光液及其使用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251301A (ja) * 1989-03-27 1990-10-09 Nippon Steel Corp 金属薄板の圧延方法
JPH04110454A (ja) 1990-08-31 1992-04-10 Nippon Stainless Steel Co Ltd 成形性に優れた高光沢チタン箔の製造方法
JPH04329867A (ja) 1991-04-30 1992-11-18 Fujikura Ltd 多結晶薄膜の製造装置
JP2007200870A (ja) 2006-01-26 2007-08-09 Ls Cable Ltd 超伝導ケーブル用基板の製造方法
JP2007311234A (ja) 2006-05-19 2007-11-29 Sumitomo Electric Ind Ltd 超電導薄膜材料およびその製造方法
JP2008036724A (ja) 2006-08-01 2008-02-21 Nihon Micro Coating Co Ltd 酸化物超伝導体用テープ基材の研磨方法並びに酸化物超伝導体及び酸化物超伝導体用基材
JP2008049451A (ja) 2006-08-25 2008-03-06 Nihon Micro Coating Co Ltd 酸化物超伝導体用テープ基材の研磨方法並びに酸化物超伝導体及び酸化物超伝導体用基材
JP2008200773A (ja) 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd 超電導体用テープ基材の製造方法及びテープ基材
JP2008200775A (ja) 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd 超電導体用テープ基材の製造方法及びテープ基材
JP2008254044A (ja) 2007-04-06 2008-10-23 Nippon Steel Corp 3ピース缶用鋼板とその製造方法及びその製造に用いる装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626867A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103658172A (zh) * 2013-12-09 2014-03-26 北京工业大学 一种涂层导体用百米级Ni-5at.%W合金基带的轧制方法
CN103658172B (zh) * 2013-12-09 2015-05-13 北京工业大学 一种涂层导体用百米级Ni-5at.%W合金基带的轧制方法
JP2018206670A (ja) * 2017-06-07 2018-12-27 株式会社フジクラ 酸化物超電導線材、超電導コイル、および酸化物超電導線材の製造方法

Also Published As

Publication number Publication date
US9378869B2 (en) 2016-06-28
JP5950900B2 (ja) 2016-07-13
CN103282975B (zh) 2016-03-23
EP2626867A4 (en) 2015-03-25
CN103282975A (zh) 2013-09-04
EP2626867B1 (en) 2018-11-07
EP2626867A1 (en) 2013-08-14
US20130240246A1 (en) 2013-09-19
JPWO2013073002A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2013073002A1 (ja) 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材
JP5382911B2 (ja) 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材
US7927715B2 (en) Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
KR101589392B1 (ko) 그래핀 제조용 동박 및 그 제조 방법, 그리고 그래핀의 제조 방법
EP2455949B1 (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
RU2626052C2 (ru) Способ получения подложек для сверхпроводящих слоев
US9002424B2 (en) Superconducting film-forming substrate, superconducting wire, and superconducting wire manufacturing method
JP2008269852A (ja) エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP5435448B2 (ja) 超電導線材用テープ状基材、その製造方法、及び超電導線材
WO2011142449A1 (ja) 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材
JP2013007063A (ja) 電解Cu箔製造ドラム用チタン合金厚板とその製造方法
JP2008200773A (ja) 超電導体用テープ基材の製造方法及びテープ基材
JP4763273B2 (ja) 電解コンデンサ用電極材の製造方法
CN108138356B (zh) 外延生长用基板及其制造方法
JP2013235796A (ja) 超電導膜形成用圧延銅箔
JP4372675B2 (ja) 電解コンデンサ電極用アルミニウム材の製造方法
JPH0441656A (ja) チタン材の鏡面研磨方法
JP2009117358A (ja) 酸化物超電導線材用複合基板、その製造方法、及び超電導線材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033016.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013501466

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011870510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13816619

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE