WO2013069800A1 - 圧延銅箔 - Google Patents
圧延銅箔 Download PDFInfo
- Publication number
- WO2013069800A1 WO2013069800A1 PCT/JP2012/079300 JP2012079300W WO2013069800A1 WO 2013069800 A1 WO2013069800 A1 WO 2013069800A1 JP 2012079300 W JP2012079300 W JP 2012079300W WO 2013069800 A1 WO2013069800 A1 WO 2013069800A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- rolled copper
- average particle
- particle diameter
- less
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 139
- 239000011889 copper foil Substances 0.000 title claims abstract description 101
- 239000002245 particle Substances 0.000 claims abstract description 72
- 239000013078 crystal Substances 0.000 claims abstract description 46
- 239000010949 copper Substances 0.000 claims abstract description 21
- 229910052802 copper Inorganic materials 0.000 claims abstract description 19
- 238000001887 electron backscatter diffraction Methods 0.000 claims abstract description 18
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 8
- 238000010191 image analysis Methods 0.000 claims abstract description 8
- 238000005096 rolling process Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 9
- 239000011888 foil Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 description 33
- 238000000034 method Methods 0.000 description 31
- 238000005452 bending Methods 0.000 description 27
- 238000000137 annealing Methods 0.000 description 23
- 238000012360 testing method Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 11
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 8
- 239000004020 conductor Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000984 pole figure measurement Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/40—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/005—Copper or its alloys
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1105—Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1121—Cooling, e.g. specific areas of a PCB being cooled during reflow soldering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12431—Foil or filament smaller than 6 mils
Definitions
- the present invention relates to a rolled copper foil composed of copper or copper alloy crystal particles, and more particularly to a rolled copper foil used for a flexible flat cable or the like in which bending motion is repeatedly performed in automotive parts and the like.
- a flexible flat cable has a high degree of freedom in mounting form on an electronic device or the like because of its thin thickness and excellent flexibility, and is used for various applications.
- steering roll connectors SRC
- SRC steering roll connectors
- movable parts such as digital cameras and printer heads
- HDD Hard Disk Drive
- DVD Digital Versatile
- HDD Hard Disk Drive
- DVD Digital Versatile
- rolled copper foil has been widely used for the conductor portion of the flexible flat cable.
- JP 2009-048819 A discloses a rectangular conductor in which the conductor is made of pure copper having a conductivity of 95% or more and a Cu concentration of 99.9% or more, and the tensile strength is in the range of 350 MPa to 400 MPa. Has been.
- This flat conductor is used in an automobile or the like that can be in a high temperature environment of 85 ° C. or higher, and the price can be reduced and the conductor strength can be maintained.
- Japanese Patent Laid-Open No. 2010-150578 discloses a rolled copper foil after the final cold rolling process and before recrystallization annealing, and the copper crystal ⁇ 220 by X-ray diffraction pole figure measurement based on the rolled surface.
- ⁇ As a result of the positive electrode dot diagram of Cu plane diffraction, there is a diffraction peak caused by a group of crystal grains presenting at least 90 ⁇ 5 ° of the ⁇ angle and exhibiting 4-fold symmetry in the range of ⁇ angle of 40-50 °. Further, there is disclosed a rolled copper foil in which there is a diffraction peak due to another crystal grain group that exists every 90 ⁇ 10 ° of the ⁇ angle and exhibits 4-fold symmetry.
- Japanese Patent Application Laid-Open No. 2010-150578 provides a rolled copper foil having excellent bending characteristics in order to meet the demand for higher bending characteristics for flexible wiring members such as flexible printed wiring boards.
- JP-A-2001-262296 after hot rolling a tough pitch copper or oxygen-free copper ingot, cold rolling and annealing are repeated, and finally the thickness is finished to 0.0050 mm or less by cold rolling.
- a rolled copper foil (1) cold rolling with a workability of 90% or more, (2) recrystallization annealing at a furnace temperature of 150 to 250 ° C. for 1 to 10 hours, or a furnace temperature of 500 to 800 ° C.
- This Japanese Patent Application Laid-Open No. 2001-262296 also provides a copper foil suitable for use as a flexible wiring member such as a flexible printed circuit board.
- Japanese Patent Application Laid-Open No. 2009-048819 has a problem that it easily breaks at the time of bending fatigue in a high temperature environment because a slight processing strain is added in crystal grains.
- Japanese Patent Application Laid-Open No. 2010-150578 is manufactured by continuously rolling a strip until a final flat conductor is obtained, which is higher in cost than a method of rolling a drawn round wire at the final stage. Have a problem.
- Japanese Patent Laid-Open No. 2001-262296 discloses high cost by strip rolling, high cost by repeating cold working and annealing, and the average particle size is 5 to 30 ⁇ m and the particle size is too large. However, there is a problem that the required strength and bending properties are not satisfied.
- the present invention has been made in view of the above-described facts, and an object of the present invention is to provide a rolled copper foil in which the occurrence of cracks is suppressed even when repeated bending deformation is applied.
- a rolled copper foil composed of crystal grains of copper or a copper alloy, wherein the crystal grains constituting the outermost surface have an average particle diameter of 0.2 ⁇ m or more and 6 ⁇ m or less, and the crystals constituting the outermost surface
- the ratio of the average particle diameter of the particles is 1% or more and 6% or less with respect to the thickness of the rolled copper foil, and the following is an EBSD (electron backscatter diffraction) analysis of a cross section perpendicular to the longitudinal direction of the rolled copper foil.
- the rolled copper foil whose intragranular distortion rate calculated
- Intragranular strain rate (%) (A) / (B) ⁇ 100 (In the above formula (1), (A) represents the area of the region identified as an orientation difference of 1 to 15 degrees by image analysis, and (B) represents an orientation difference of 0 to 15 degrees by image analysis. (Represents the area of the identified region.)
- ⁇ 2> The rolled copper foil according to ⁇ 1>, wherein the ratio of the average particle diameter of the crystal particles constituting the outermost surface to the thickness of the rolled copper foil is 1% or more and 2% or less.
- ⁇ 5> The rolled copper foil according to any one of ⁇ 1> to ⁇ 4>, which is produced by rolling a round wire copper material into a foil shape.
- ⁇ 6> The rolled copper foil according to any one of ⁇ 1> to ⁇ 5>, wherein the rolled copper foil has a thickness of 0.02 mm to 0.1 mm.
- a rolled copper foil in which the occurrence of cracks is suppressed even when repeated bending deformation is applied.
- the rolled copper foil which concerns on this invention is comprised with the crystal grain of copper or a copper alloy, and satisfy
- the average particle diameter of the crystal particles constituting the outermost surface is 0.2 ⁇ m or more and 6 ⁇ m or less.
- the ratio of the average particle diameter of the crystal particles constituting the outermost surface is 1% or more and 6% with respect to the thickness of the rolled copper foil.
- the intragranular strain rate obtained by the following formula (1) when the cross section perpendicular to the longitudinal direction of the rolled copper foil is analyzed by EBSD (electron backscatter diffraction) is 0.5% or more and 10% or less.
- the rolled copper foil according to the present invention has an intragranular strain rate of 0.5% to 10%.
- This intragranular strain rate is the ratio of the area of the region having an orientation difference of 1 to 15 degrees to the area of the region having an orientation difference of 0 to 15 degrees, as shown in the formula (1). Recognize that most of the recognized orientation difference is 0 degree or more and 15 degrees or less and that the orientation difference is 0 degree or more and less than 1 degree occupies the majority, and the ratio of orientation difference is 1 degree or more and 15 degrees or less is very small. ing. That is, it represents that the crystals constituting the rolled copper foil have almost no intragranular distortion.
- the average particle diameter of the crystal particles constituting the outermost surface is 0.2 ⁇ m or more and 6 ⁇ m or less, and the average particle diameter of the crystal particles constituting the outermost surface is 1% or more in terms of the ratio to the thickness of the rolled copper foil It is 6% or less, and the particle diameter of the outermost crystal particles is very small.
- the occurrence of cracks is suppressed even when bending deformation is repeatedly applied, and as a result, a longer life is achieved.
- required by said Formula (1) at the time of carrying out EBSD (electron backscatter diffraction) analysis of the cross section orthogonal to the longitudinal direction of a rolled copper foil is 0.5% or more and 10% or less.
- EBSD electron backscatter diffraction
- the intragranular strain rate is measured by the following method.
- the rolled copper foil is cut in a direction orthogonal to the longitudinal direction, and the cross section is subjected to EBSD (electron backscatter diffraction) analysis.
- EBSD electron backscatter diffraction
- a portion where the orientation difference between adjacent measurement regions exceeds 15 degrees is identified as a crystal grain boundary, and a case where the orientation difference is up to 15 degrees is recognized as intragranular strain.
- an orientation difference measured as 0 degree or more and less than 1 degree is regarded as an intragranular strain that does not cause a problem. The reason for this is that strain in this range usually does not disappear even when annealing is performed. Therefore, the strain state of the rolled copper foil is evaluated by calculating a region of 1 degree or more and 15 degrees or less among regions having an orientation difference of 0 degree to 15 degrees.
- the portion where the orientation difference is 0 degree to 15 degrees is extracted, and the area of the orientation difference of 1 degree to 15 degrees and the area of the orientation difference of 0 degree to 15 degrees in the cross section are measured. Then, the intragranular strain rate is obtained by the above equation (1). It can be said that the smaller the value of the intragranular strain rate, the smaller the intragranular strain present in the rolled copper foil.
- FIG. 1 shows an example of the azimuth difference between adjacent measurement regions and the existence ratio thereof.
- the region I has an existence ratio with an orientation difference of 0 ° or more and less than 1 °
- the region II has an existence ratio with an orientation difference of 1 to 15 degrees. Therefore, in the relationship with the above formula (1), (A) corresponds to the region II, and (B) corresponds to the region obtained by adding the region I and the region II. That is, it is understood that the smaller the region II shown in FIG. FIG. 2 also shows an example of the azimuth difference between adjacent measurement regions and the existence ratio thereof.
- the region II is wider than the example of FIG. That is, the rolled copper foil in such a state has a higher intragranular strain rate than the example of FIG.
- the average particle diameter of the crystal particles constituting the outermost surface is 0.2 ⁇ m or more and 6 ⁇ m or less, and the ratio of the average particle diameter of the crystal particles constituting the outermost surface to the thickness of the rolled copper foil is 1%. It is 6% or less.
- the average particle diameter exceeds 6 ⁇ m or the average particle diameter ratio exceeds 6%, the occurrence of cracks becomes a problem when bending deformation is repeatedly applied.
- the average particle diameter is less than 0.2 ⁇ m or when the ratio of the average particle diameter is less than 1%, the rolled copper foil is inferior in flexibility and cannot be easily routed.
- the order of the following ranges in which the ratio of the above average particle diameter is smaller ( 1% or more and 2% or less, more than 2%, less than 3%, 3% or more and 6% or less.
- the ratio of the average particle diameter is larger in the following order (from 3% to 6%, 2% to less than 3% and 1% to 2%).
- the average particle diameter and the ratio of the average particle diameter are measured by the following method.
- the rolled copper foil is cut in a direction perpendicular to the longitudinal direction, and EBSD analysis is performed on the cross section.
- EBSD analysis a portion where the orientation difference exceeds 15 degrees is identified as a grain boundary, and an image of crystal grains is obtained.
- the number (K) of crystal grains constituting the outermost surface within a specific width direction length (H) (at least 40 ⁇ m or more) is determined, and the width direction length (H) is calculated as the number of crystal grains ( By dividing by K), the average particle diameter of crystal grains constituting the outermost surface is obtained.
- the ratio of the average particle diameter of the crystal particle which comprises the outermost surface with respect to the thickness of rolled copper foil is calculated
- a round wire type copper material is formed into a predetermined copper foil shape by rolling (rolling process), and then heat treatment (annealing) and cooling (annealing process) are performed. Can be produced.
- the said rolling may be performed in multiple steps, and you may shape
- the copper material a material made of a copper alloy in addition to a material made of copper can be used.
- examples of copper in the material made of copper and the material made of copper alloy include tough pitch copper, oxygen-free copper, copper alloy to which a small amount of silver (Ag), tin (Sn), or the like is added.
- the heating temperature and heating time during annealing are important here.
- the ratio of the average particle diameter of the crystal grains constituting the outermost surface to the thickness of the rolled copper foil and the intragranular strain rate are in the above-mentioned range.
- Examples of the method for controlling the intragranular strain rate in the above range include a method of adjusting the heating temperature and the heating time in the annealing step. By increasing the heating temperature or increasing the heating time, intragranular strain can be further removed, that is, the intragranular strain rate tends to be reduced.
- the heating temperature is too high or the heating time is too long, the grain size of the crystal particles becomes larger than desired and adversely affects the flexibility, so the refining of the input wire diameter before rolling, the wire diameter, It is necessary to set appropriate conditions according to the sheet thickness after rolling.
- a method for controlling the ratio of the average particle diameter of the crystal particles to the thickness of the rolled copper foil within the above range for example, a method of adjusting the heating temperature and the heating time in the annealing step can be mentioned.
- the average particle diameter of the crystal particles can be kept small, that is, the ratio of the average particle diameter of the crystal particles to the thickness of the rolled copper foil tends to be within the above range.
- the heating temperature is too low or the heating time is too short, intragranular strain remains and adversely affects the flexibility, so the tempered input wire diameter before rolling, the wire diameter, the plate after rolling It is necessary to set appropriate conditions according to the thickness.
- FIG. 3 is a schematic view for explaining a method for producing a rolled copper foil according to the present invention.
- the shape of the rolled copper foil in the middle of manufacture is shown typically. Therefore, the shape is not limited to the illustrated shape.
- the hard copper wire or soft copper wire which has a predetermined
- the ⁇ 0.30 mm hard copper wire can be formed by drawing an annealed copper wire having a larger diameter (for example, ⁇ 2.6 mm).
- the annealed copper wire of ⁇ 0.30 mm can be formed by drawing a annealed copper wire having a larger diameter (for example, ⁇ 2.6 mm) and then performing a heat treatment (for example, 300 ° C. for 2 hours).
- the hard copper wire or soft copper wire having the predetermined diameter is rolled to form a final copper foil (for example, thickness 0.080 mm ⁇ A foil shape having a width of 0.8 mm).
- the rolling method include a method of processing by passing the copper wire between two or a plurality of rotating rolls.
- the diameter of the roll, the number of passes, the presence or absence of a lubricant, and the like are appropriately adjusted. Note that rolling for forming a final copper foil may be performed in two or more stages, and heat treatment may be performed between the two or more stages of rolling.
- the conditions for the heat treatment are preferably a heating temperature range of 200 ° C. to 1000 ° C. and a heating time range of 0.01 seconds to 100 seconds (for example, the heating temperature is 400 ° C. and the heating time is 5 seconds).
- Examples of a method for performing heat treatment (annealing) include heat treatment using a salt bath, heat treatment using a batch furnace, and other methods such as current annealing in an in-line. However, the heat treatment method is not limited to the above method.
- the rolled copper foil 2 as shown in FIG. 4 is produced by cooling (process (d)).
- a cooling method a rapid cooling method such as water cooling is preferable. By performing rapid cooling such as water cooling, coarsening of the crystal grain size can be prevented.
- the thickness of the rolled copper foil according to the present invention is not particularly limited, but a range of 0.02 mm to 0.1 mm is preferable.
- the rolled copper foil which concerns on this invention is excellent in flexibility and excellent in bending resistance, the freedom degree in the mounting form to an electronic device etc. is high, and is used suitably as a flexible flat cable (FFC).
- FFC flexible flat cable
- it is suitably used as a steering roll connector (SRC), a roof harness, a door harness, a floor harness, etc., which are components of an airbag system in an automobile.
- SRC steering roll connector
- Example 1-1 As shown in FIG. 3, a hard copper wire (round wire type) having a diameter of 0.30 mm was prepared by drawing a soft copper wire having a diameter of 2.6 mm. This hard copper wire was rolled using a rolling mill (unlubricated) having a roll of ⁇ 100 mm, and formed into a foil shape having a thickness of 0.080 mm and a width of 0.8 mm. Next, the foil-like material was heat-treated (annealed) using a salt bath at 400 ° C. for 5 sec, and further quenched by water cooling after heat treatment (annealing) to obtain a rolled copper foil.
- a hard copper wire round wire type having a diameter of 0.30 mm was prepared by drawing a soft copper wire having a diameter of 2.6 mm. This hard copper wire was rolled using a rolling mill (unlubricated) having a roll of ⁇ 100 mm, and formed into a foil shape having a thickness of 0.080 mm and a width of 0.8 mm. Next
- Example 1-2 In Example 1-1, a ⁇ 2.6 mm annealed copper wire was drawn, and then heat treated at 300 ° C. for 2 hours to prepare a ⁇ 0.30 mm annealed copper wire (round wire type). A rolled copper foil was obtained by the method described in Example 1-1 except that the annealed copper wire was used in place of the copper wire (round wire type).
- Example 1-1 a rolled copper foil was obtained by the method described in Example 1-1 except that the temperature during heat treatment (annealing) using a salt bath was changed from 400 ° C. to 800 ° C.
- Example 1-2 A rolled copper foil was obtained by the method described in Example 1-1 except that heat treatment (annealing) using a salt bath and subsequent water cooling were not performed in Example 1-2.
- Bending resistance test- A rolled copper foil 2 is fixed to the sample fixing plate 4 and the working plate 6 using the Ueshima Seisakusho FPC bending test machine (FT-2130) shown in FIG. 5, and the working plate 6 is operated by the motor 8 to perform a bending test. It was. In addition, bending
- Example 2-1 As shown in FIG. 3, a hard copper wire (round wire type) having a diameter of 0.20 mm was prepared by drawing an annealed copper wire having a diameter of 2.6 mm.
- the hard copper wire was rolled using a rolling mill (unlubricated) having a roll of ⁇ 100 mm, and formed into a foil shape having a thickness of 0.035 mm and a width of 0.8 mm.
- the foil-like material was heat-treated (annealed) using a salt bath at 300 ° C. for 1 sec, and further quenched by water cooling after heat treatment (annealing) to obtain a rolled copper foil.
- Example 2-2 to [Example 2-4] A rolled copper foil was prepared by the method described in Example 2-1, except that the temperature and time during heat treatment (annealing) using a salt bath were changed to the conditions described in Table 2 in Example 2-1. Got.
- Example 2-1 A rolled copper foil was prepared by the method described in Example 2-1 except that heat treatment (annealing) using a salt bath and subsequent water cooling were not performed in Example 2-1 (ie, only intermediate annealing was performed). Got.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal Rolling (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Non-Insulated Conductors (AREA)
- Conductive Materials (AREA)
Abstract
Description
尚、フレキシブルフラットケーブルの導体部分には、従来から広く圧延銅箔が用いられている。
また、特開2010-150578号は、最終の平角導体を得るまでに、条を連続して圧延させて製造することから、線引き加工された丸線を最終段階で圧延する製法に比べて高コストとなる問題を抱えている。
さらに、特開2001-262296号は、条圧延による高コスト化、冷間加工と焼鈍を繰り返すことによる高コスト化のほか、平均粒径が5μm~30μmであり粒径が大きすぎて、FFC用として必要な強度ならびに屈曲特性を満足しないとの問題がある。
<1> 銅または銅合金の結晶粒子で構成された圧延銅箔であって、最表面を構成する前記結晶粒子の平均粒子径が0.2μm以上6μm以下であり、最表面を構成する前記結晶粒子の平均粒子径の比率が前記圧延銅箔の厚みに対して1%以上6%以下であり、且つ前記圧延銅箔の長手方向に直行する断面をEBSD(electron backscatter diffraction)解析した際における下記式(1)により求められる粒内歪み率が0.5%以上10%以下である圧延銅箔。
式(1) 粒内歪み率(%)=(A)/(B)×100
(上記式(1)において、(A)は、画像解析により方位差1度以上15度以下と識別される領域の面積を、(B)は、画像解析により方位差0度以上15度以下と識別される領域の面積を、表す。)
・最表面を構成する前記結晶粒子の平均粒子径が0.2μm以上6μm以下
・最表面を構成する前記結晶粒子の平均粒子径の比率が前記圧延銅箔の厚みに対して1%以上6%以下
・前記圧延銅箔の長手方向に直行する断面をEBSD(electron backscatter diffraction)解析した際における下記式(1)により求められる粒内歪み率が0.5%以上10%以下
式(1) 粒内歪み率(%)=(A)/(B)×100
(上記式(1)において、(A)は、画像解析により方位差1度以上15度以下と識別される領域の面積を、(B)は、画像解析により方位差0度以上15度以下と識別される領域の面積を、表す。)
また上記の通り、最表面を構成する結晶粒子の平均粒子径が0.2μm以上6μm以下であり、且つ最表面を構成する結晶粒子の平均粒子径が圧延銅箔の厚みに対する比率で1%以上6%以下であり、最表面の結晶粒子の粒子径が非常に小さい。
本発明においては、圧延銅箔の長手方向に直行する断面をEBSD(electron backscatter diffraction)解析した際における前記式(1)により求められる粒内歪み率が0.5%以上10%以下である。粒内歪み率が10%を超える場合、繰返して屈曲変形が加えられた際に結晶粒子の粗大化による早期破断が問題となる。一方、0.5%未満である場合、熱処理の制御が困難であるため生産性に劣る。
圧延銅箔を長手方向に直行する方向に切断しその断面についてEBSD(electron backscatter diffraction)解析を行う。EBSD解析によって、隣り合う測定領域の方位差が15度を超える部分は結晶粒界と識別し、且つ、方位差が15度までのものを粒内歪みと認定する。ただし、0度以上1度未満と測定される方位差については、問題とならない程度の粒内歪みと捉える。その理由は、この範囲の歪みは、通常、焼鈍処理等を行っても消失することが少ないためである。そこで、0度から15度までの方位差を有する領域のうち、1度以上15度以下の領域を計算することによって圧延銅箔の歪み状態を評価する。
本発明においては、最表面を構成する前記結晶粒子の平均粒子径が0.2μm以上6μm以下であり、且つ最表面を構成する結晶粒子の平均粒子径の圧延銅箔の厚みに対する比率が1%以上6%以下である。前記平均粒子径が6μmを超える場合や該平均粒子径の比率が6%を超える場合、繰返して屈曲変形が加えられた際にクラックの発生が問題となる。一方、前記平均粒子径が0.2μm未満の場合や前記平均粒子径の比率が1%未満である場合、圧延銅箔は柔軟性に劣り容易に配索できない問題が生じる。
一方、良好な柔軟性という視点では、前述の平均粒子径の比率が大きいほど耐力が低く柔軟であるという観点から、平均粒子径の比率が大きい以下の範囲の順(3%以上6%以下、2%を超え3%未満、1%以上2%以下)に優れる。
圧延銅箔を長手方向に直行する方向に切断しその断面についてEBSD解析を行う。EBSD解析によって、方位差が15度を超える部分を粒界と識別し、結晶粒子の画像を得る。この画像において、特定の幅方向長さ(H)(少なくとも40μm以上)内における最表面を構成する結晶粒子の数(K)を求め、前記幅方向長さ(H)を前記結晶粒子の数(K)で割ることで、最表面を構成する結晶粒子の平均粒子径を求める。更にこの平均粒子径の値を圧延銅箔の厚みで割ることで、圧延銅箔の厚みに対する最表面を構成する結晶粒子の平均粒子径の比率が求められる。
本発明に係る圧延銅箔の作製においては、まず丸線型の銅材を圧延によって所定の銅箔状に成形し(圧延工程)、その後、熱処理(焼鈍)および冷却を行う(焼鈍工程)ことで作製することができる。
尚、前記所定の銅箔状に成形するまでの工程では、前記圧延は多段階で行なってもよく、また圧延以外の方法を併用して成形を行なってもよい。また、前記所定の銅箔状に成形する前(最終的な形状に成形する前)の工程で熱処理を施してもよい。
本発明の圧延銅箔は、最表面を構成する前記結晶粒子の平均粒子径の圧延銅箔の厚みに対する比率、および粒内歪み率が前述の範囲である。上記粒内歪み率を前記範囲に制御する方法としては、例えば前記焼鈍工程での加熱温度および加熱時間を調整する方法が挙げられる。加熱温度を高くすることや、加熱時間を長くすることで粒内歪みをより除去することができ、つまり粒内歪み率を低減し得る傾向にある。但し、加熱温度が高すぎたり、加熱時間が長すぎる場合には、結晶粒子の粒子径が所望より大きくなりすぎ屈曲性に悪影響を及ぼすため、圧延前の投入線径の調質、線径、圧延後の板厚等に応じた適切な条件設定が必要である。
図3は、本発明に係る圧延銅箔の作製方法を説明するための概略図である。なお、製造途中の圧延銅箔の形状は、模式的に示したものである。従って、図示された形状に限定されるものではない。
図3の工程(a)に示すように、まず所定の径(例えばΦ0.30mm)を有する硬銅線または軟銅線(丸線型)を準備する。例えば上記Φ0.30mmの硬銅線は、それよりも径の大きい軟銅線(例えばΦ2.6mm)を伸線することで形成することができる。また上記Φ0.30mmの軟銅線は、それよりも径の大きい軟銅線(例えばΦ2.6mm)を伸線した後、更に熱処理を施す(例えば300℃2時間)ことで形成することができる。
圧延の方法としては、2つあるいは複数の回転するロールの間に前記銅線を通すことで加工する方法が挙げられる。尚、ロールの径や、パス数、潤滑剤の有無等は適宜調整される。
尚、最終的な銅箔状に成形するための圧延は2段階以上に分けて行なってもよく、更にこれら2段階以上の圧延と圧延との間に熱処理を施してもよい。
次いで図3の工程(c)に示すように、最終的な銅箔状に成形されたものに熱処理(焼鈍)を施す。熱処理の条件としては、加熱温度200℃以上1000℃以下の範囲で、加熱時間0.01秒以上100秒以下の範囲が好ましい(例えば、加熱温度400℃で加熱時間5秒の条件で行われる)。
尚、熱処理(焼鈍)を行う方法としては、ソルトバスを用いた熱処理や、バッチ炉による熱処理、その他インライン中の電流焼鈍等の方法が挙げられる。但し、熱処理の方法は上記の方法に限定されるものではない。
その後、冷却(工程(d))することで図4に示すような圧延銅箔2が作製される。尚、冷却の方法としては水冷等の急冷却の方法が好ましい。この水冷等の急冷却を施すことで、結晶粒径の粗大化を防ぐことができる。
本発明に係る圧延銅箔は、可撓性に優れ且つ耐屈曲性に優れることから、電子機器等への実装形態における自由度が高く、フレキシブルフラットケーブル(FFC)として好適に用いられる。例えば、自動車におけるエアバックシステムの構成部品であるステアリング・ロール・コネクタ(SRC)、ルーフハーネス、ドアハーネス、フロアハーネス等として好適に用いられる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
図3に示すように、Φ2.6mmの軟銅線を伸線することで、Φ0.30mmの硬銅線(丸線型)を準備した。この硬銅線に、Φ100mmのロールを有する圧延機(無潤滑)を用いて圧延を施して、厚さ0.080mm×幅0.8mmの箔状に成形した。次いで前記箔状のものに対し、ソルトバスを用いて400℃5secの条件で熱処理(焼鈍)を施し、更に熱処理(焼鈍)の後水冷によって急冷し、圧延銅箔を得た。
前記実施例1-1において、Φ2.6mmの軟銅線を伸線した後、更に300℃2hの熱処理を施すことでΦ0.30mmの軟銅線(丸線型)を準備し、前記Φ0.30mmの硬銅線(丸線型)に代えて前記軟銅線を用いたこと以外は、実施例1-1に記載の方法により圧延銅箔を得た。
前記実施例1-1において、ソルトバスを用いた熱処理(焼鈍)の際の温度を400℃から800℃に変更した以外は、実施例1-1に記載の方法により圧延銅箔を得た。
前記実施例1-2において、ソルトバスを用いた熱処理(焼鈍)およびその後の水冷を一切行わなかった以外は、実施例1-1に記載の方法により圧延銅箔を得た。
図5に示す上島製作所製FPC屈曲試験機(FT-2130)を用い、試料固定板4および稼動板6に圧延銅箔2を固定し、モーター8により稼動板6を稼働させて屈曲試験を行った。尚、屈曲R:12.5mm、ストロークS:±13mm、環境温度:85℃、回転速度:900rpm、断線定義:初期抵抗値+500Ωとし、断線が確認されるまで屈曲試験を繰返した。
500万回以上を評価:Aと、500万回未満を評価:Bとした。
圧延銅箔に引張試験を行い耐力を測定し、耐力が低いほうが柔軟性に優れる(評価:A)と判断し、耐力が高い場合を(評価:B)とした。下記表1に示す通り、実施例1-1,1-2,比較例1-1では、最表面を構成する結晶粒子の平均粒子径の圧延銅箔の厚みに対する比率が小さ過ぎず、柔軟性に優れる結果になったものと考えられる。
図3に示すように、Φ2.6mmの軟銅線を伸線することで、Φ0.20mmの硬銅線(丸線型)を準備した。この硬銅線に、Φ100mmのロールを有する圧延機(無潤滑)を用いて圧延を施して、厚さ0.035mm×幅0.8mmの箔状に成形した。次いで前記箔状のものに対し、ソルトバスを用いて300℃、1secの条件で熱処理(焼鈍)を施し、更に熱処理(焼鈍)の後水冷によって急冷し、圧延銅箔を得た。
前記実施例2-1において、ソルトバスを用いた熱処理(焼鈍)の際の温度および時間を表2に記載された条件に変更した以外は、実施例2-1に記載の方法により圧延銅箔を得た。
前記実施例2-1において、ソルトバスを用いた熱処理(焼鈍)およびその後の水冷を一切行わなかった(つまり中間焼鈍のみとした)以外は、実施例2-1に記載の方法により圧延銅箔を得た。
図5に示す上島製作所製FPC屈曲試験機(FT-2130)を用い、試料固定板4および稼動板6に圧延銅箔2を固定し、モーター8により稼動板6を稼働させて屈曲試験を行った。尚、屈曲R:7.5mm、ストロークS:±13mm、環境温度:条件1=85℃、条件2=20℃、回転速度:900rpm、断線定義:初期抵抗値+500Ωとし、断線が確認されるまで屈曲試験を繰返した。尚、条件1,条件2とは耐屈曲性試験を行う試験槽内の温度条件である。温度の高い条件1は加速試験であり、条件2は室温条件での試験を示す。
500万回以上を評価:Aと、500万回未満を評価:Bとした。
圧延銅箔に引張試験を行い耐力を測定し、耐力が低いほうが柔軟性に優れると判断し、耐力が200MPa以下を評価:Aと、200MPa超えを評価:Bとした。
下記表2に示す通り、実施例2-1~2-4では、最表面を構成する結晶粒子の平均粒子径の圧延銅箔の厚みに対する比率が小さ過ぎず、柔軟性に優れる結果になったものと考えられる。
圧延銅箔の引張試験で引張強度および伸びを測定した。
上記、耐力、引張強度、および伸びを測定した引張試験は、試験片に表2の平角導体を用い、試験方法はJIS-Z2241(1998年)に準拠して行った。
4 試料固定板
6 稼動板
8 モーター
Claims (6)
- 銅または銅合金の結晶粒子で構成された圧延銅箔であって、
最表面を構成する前記結晶粒子の平均粒子径が0.2μm以上6μm以下であり、
最表面を構成する前記結晶粒子の平均粒子径の比率が前記圧延銅箔の厚みに対して1%以上6%以下であり、
且つ前記圧延銅箔の長手方向に直行する断面をEBSD(electron backscatter diffraction)解析した際における下記式(1)により求められる粒内歪み率が0.5%以上10%以下である圧延銅箔。
式(1) 粒内歪み率(%)=(A)/(B)×100
(上記式(1)において、(A)は、画像解析により方位差1度以上15度以下と識別される領域の面積を、(B)は、画像解析により方位差0度以上15度以下と識別される領域の面積を、表す。) - 前記圧延銅箔の厚みに対する、最表面を構成する前記結晶粒子の平均粒子径の比率が1%以上2%以下である請求項1に記載の圧延銅箔。
- 前記圧延銅箔の厚みに対する、最表面を構成する前記結晶粒子の平均粒子径の比率が2%を超え3%未満である請求項1に記載の圧延銅箔。
- 前記圧延銅箔の厚みに対する、最表面を構成する前記結晶粒子の平均粒子径の比率が3%以上6%以下である請求項1に記載の圧延銅箔。
- 丸線型の銅材を圧延して箔状に成形することで作製された請求項1~請求項4の何れか1項に記載の圧延銅箔。
- 前記圧延銅箔の厚みが0.02mm以上0.1mm以下である請求項1~請求項5の何れか1項に記載の圧延銅箔。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013512694A JP5342712B1 (ja) | 2011-11-11 | 2012-11-12 | 圧延銅箔 |
CN201280055281.XA CN103917683B (zh) | 2011-11-11 | 2012-11-12 | 压延铜箔 |
EP12848008.4A EP2765215B1 (en) | 2011-11-11 | 2012-11-12 | Rolled copper foil |
KR1020147012377A KR101948958B1 (ko) | 2011-11-11 | 2012-11-12 | 압연 동박 |
US14/273,525 US9457389B2 (en) | 2011-11-11 | 2014-05-08 | Rolled copper foil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011248097 | 2011-11-11 | ||
JP2011-248097 | 2011-11-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/273,525 Continuation US9457389B2 (en) | 2011-11-11 | 2014-05-08 | Rolled copper foil |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069800A1 true WO2013069800A1 (ja) | 2013-05-16 |
Family
ID=48290165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079300 WO2013069800A1 (ja) | 2011-11-11 | 2012-11-12 | 圧延銅箔 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9457389B2 (ja) |
EP (1) | EP2765215B1 (ja) |
JP (1) | JP5342712B1 (ja) |
KR (1) | KR101948958B1 (ja) |
CN (1) | CN103917683B (ja) |
WO (1) | WO2013069800A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152261A1 (ja) | 2014-03-31 | 2015-10-08 | 古河電気工業株式会社 | 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法 |
WO2016093349A1 (ja) * | 2014-12-12 | 2016-06-16 | 新日鐵住金株式会社 | 配向銅板、銅張積層板、可撓性回路基板、及び電子機器 |
JP6851963B2 (ja) * | 2015-04-01 | 2021-03-31 | 古河電気工業株式会社 | 平角圧延銅箔、フレキシブルフラットケーブル、回転コネクタおよび平角圧延銅箔の製造方法 |
WO2018034098A1 (ja) * | 2016-08-16 | 2018-02-22 | 古河電気工業株式会社 | 回転コネクタ装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001262296A (ja) | 2000-03-17 | 2001-09-26 | Nippon Mining & Metals Co Ltd | 圧延銅箔およびその製造方法 |
JP2005211948A (ja) * | 2004-01-30 | 2005-08-11 | Nikko Metal Manufacturing Co Ltd | 圧延銅箔及びその製造方法、並びに積層基板 |
JP2009048819A (ja) | 2007-08-16 | 2009-03-05 | Hitachi Cable Ltd | 平角導体及びそれを用いたフラットケーブル |
WO2010001812A1 (ja) * | 2008-06-30 | 2010-01-07 | 新日鐵化学株式会社 | 可撓性回路基板及びその製造方法並びに可撓性回路基板の屈曲部構造 |
JP2010150578A (ja) | 2008-12-24 | 2010-07-08 | Hitachi Cable Ltd | 圧延銅箔 |
JP2011248097A (ja) | 2010-05-27 | 2011-12-08 | Furukawa Electric Co Ltd:The | 浸水検知用光ファイバ素線および光ファイバ着色心線 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940010455B1 (ko) * | 1992-09-24 | 1994-10-22 | 김영길 | 고강도, 우수한 전기전도도 및 열적안정성을 갖는 동(Cu)합금 및 그 제조방법 |
JP2898627B2 (ja) * | 1997-03-27 | 1999-06-02 | 日鉱金属株式会社 | 銅合金箔 |
JP3856582B2 (ja) * | 1998-11-17 | 2006-12-13 | 日鉱金属株式会社 | フレキシブルプリント回路基板用圧延銅箔およびその製造方法 |
JP3514180B2 (ja) * | 1999-08-24 | 2004-03-31 | 日立電線株式会社 | 圧延銅箔の製造方法 |
JP5170866B2 (ja) * | 2006-10-10 | 2013-03-27 | 古河電気工業株式会社 | 電気・電子部品用銅合金材およびその製造方法 |
US7789977B2 (en) * | 2006-10-26 | 2010-09-07 | Hitachi Cable, Ltd. | Rolled copper foil and manufacturing method thereof |
JP4466688B2 (ja) * | 2007-07-11 | 2010-05-26 | 日立電線株式会社 | 圧延銅箔 |
JP2009084593A (ja) * | 2007-09-27 | 2009-04-23 | Nikko Kinzoku Kk | Cu−Cr−Si系合金箔 |
US20090173414A1 (en) * | 2008-01-08 | 2009-07-09 | Takemi Muroga | Rolled Copper Foil and Manufacturing Method of Rolled Copper Foil |
JP4563495B1 (ja) * | 2009-04-27 | 2010-10-13 | Dowaメタルテック株式会社 | 銅合金板材およびその製造方法 |
JP4992940B2 (ja) * | 2009-06-22 | 2012-08-08 | 日立電線株式会社 | 圧延銅箔 |
JP4888586B2 (ja) * | 2010-06-18 | 2012-02-29 | 日立電線株式会社 | 圧延銅箔 |
-
2012
- 2012-11-12 EP EP12848008.4A patent/EP2765215B1/en active Active
- 2012-11-12 KR KR1020147012377A patent/KR101948958B1/ko active IP Right Grant
- 2012-11-12 WO PCT/JP2012/079300 patent/WO2013069800A1/ja active Application Filing
- 2012-11-12 CN CN201280055281.XA patent/CN103917683B/zh active Active
- 2012-11-12 JP JP2013512694A patent/JP5342712B1/ja active Active
-
2014
- 2014-05-08 US US14/273,525 patent/US9457389B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001262296A (ja) | 2000-03-17 | 2001-09-26 | Nippon Mining & Metals Co Ltd | 圧延銅箔およびその製造方法 |
JP2005211948A (ja) * | 2004-01-30 | 2005-08-11 | Nikko Metal Manufacturing Co Ltd | 圧延銅箔及びその製造方法、並びに積層基板 |
JP2009048819A (ja) | 2007-08-16 | 2009-03-05 | Hitachi Cable Ltd | 平角導体及びそれを用いたフラットケーブル |
WO2010001812A1 (ja) * | 2008-06-30 | 2010-01-07 | 新日鐵化学株式会社 | 可撓性回路基板及びその製造方法並びに可撓性回路基板の屈曲部構造 |
JP2010150578A (ja) | 2008-12-24 | 2010-07-08 | Hitachi Cable Ltd | 圧延銅箔 |
JP2011248097A (ja) | 2010-05-27 | 2011-12-08 | Furukawa Electric Co Ltd:The | 浸水検知用光ファイバ素線および光ファイバ着色心線 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2765215A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN103917683B (zh) | 2016-02-24 |
KR101948958B1 (ko) | 2019-02-15 |
US9457389B2 (en) | 2016-10-04 |
EP2765215A4 (en) | 2015-04-29 |
KR20140093675A (ko) | 2014-07-28 |
JP5342712B1 (ja) | 2013-11-13 |
CN103917683A (zh) | 2014-07-09 |
EP2765215A1 (en) | 2014-08-13 |
EP2765215B1 (en) | 2017-05-03 |
US20140335372A1 (en) | 2014-11-13 |
JPWO2013069800A1 (ja) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6851963B2 (ja) | 平角圧延銅箔、フレキシブルフラットケーブル、回転コネクタおよび平角圧延銅箔の製造方法 | |
WO2013031279A1 (ja) | Cu-Ni-Si系合金及びその製造方法 | |
JP5840310B1 (ja) | 銅合金板材、コネクタ、及び銅合金板材の製造方法 | |
JP6696769B2 (ja) | 銅合金板材及びコネクタ | |
WO2012004868A1 (ja) | 深絞り加工性に優れたCu-Ni-Si系銅合金板及びその製造方法 | |
JP2011162848A (ja) | 強度異方性が小さく曲げ加工性に優れた銅合金 | |
EP2333128A1 (en) | Copper alloy material for electrical/electronic component | |
WO2015152261A1 (ja) | 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法 | |
JP5342712B1 (ja) | 圧延銅箔 | |
JP6147077B2 (ja) | 圧延銅箔および圧延銅箔の製造方法 | |
JP6696770B2 (ja) | 銅合金板材及びコネクタ | |
JP2013095976A (ja) | Cu−Co−Si系合金及びその製造方法 | |
TWI621721B (zh) | Copper alloy sheet, connector, and method for manufacturing copper alloy sheet | |
JP2016199808A (ja) | Cu−Co−Si系合金及びその製造方法 | |
JP6246454B2 (ja) | Cu−Ni−Si系合金及びその製造方法 | |
JP7430502B2 (ja) | 銅合金線材及び電子機器部品 | |
JP5839950B2 (ja) | 圧延銅箔 | |
JP6310004B2 (ja) | 電子部品用Cu−Co−Ni−Si合金 | |
JP5437520B1 (ja) | Cu−Co−Si系銅合金条及びその製造方法 | |
JP2014019888A (ja) | 高強度銅合金材およびその製造方法 | |
JP4375125B2 (ja) | 軟質銅合金線又は板材並びに軟質銅合金線の製造方法 | |
JP2019077890A (ja) | 電子材料用銅合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280055281.X Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2013512694 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12848008 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012848008 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012848008 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147012377 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |