WO2015152261A1 - 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法 - Google Patents

圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法 Download PDF

Info

Publication number
WO2015152261A1
WO2015152261A1 PCT/JP2015/060175 JP2015060175W WO2015152261A1 WO 2015152261 A1 WO2015152261 A1 WO 2015152261A1 JP 2015060175 W JP2015060175 W JP 2015060175W WO 2015152261 A1 WO2015152261 A1 WO 2015152261A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
rolled copper
rolled
rolling
heat treatment
Prior art date
Application number
PCT/JP2015/060175
Other languages
English (en)
French (fr)
Inventor
亮佑 松尾
賢悟 水戸瀬
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to EP15774113.3A priority Critical patent/EP3128036B1/en
Priority to JP2016511943A priority patent/JP6696895B2/ja
Priority to KR1020167024924A priority patent/KR101893280B1/ko
Priority to CN201580010014.4A priority patent/CN106029929B/zh
Publication of WO2015152261A1 publication Critical patent/WO2015152261A1/ja
Priority to US15/279,821 priority patent/US10522268B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/02Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0003Apparatus or processes specially adapted for manufacturing conductors or cables for feeding conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables

Definitions

  • the present invention relates to a rolled copper foil obtained by rolling a round wire made of copper or a copper alloy, a method for producing the rolled copper foil, a flexible flat cable, and a method for producing the rolled copper foil.
  • the present invention relates to a rolled copper foil used for a flat cable or the like and a method for producing the same.
  • a flexible flat cable has a high degree of freedom in mounting form on an electronic device or the like because of its thin thickness and excellent flexibility, and is used in various applications.
  • steering roll connectors SRC
  • SRC steering roll connectors
  • movable parts such as digital cameras and printer heads
  • HDD Hard Disk Drive
  • DVD Digital Versatile
  • Blu-ray registered trademark
  • CD Compact Disc
  • a rolled copper foil is generally used for the conductor portion of such a flexible flat cable.
  • the integrated intensity of (200) plane obtained by X-ray diffraction of copper foil is I
  • the integrated intensity of (200) plane obtained by X-ray diffraction of fine powder copper is I (0).
  • Patent Document 1 a rolled copper foil having a cubic texture satisfying I / I (0)> 20 is disclosed (Patent Document 1).
  • a long life can be realized by using a copper foil having a texture excellent in bending resistance, and a flexible printed circuit board (FPC) can be miniaturized and enhanced in function.
  • Patent Document 2 a rolled copper foil that is manufactured by rolling a round wire rod and defines the crystal average grain size with respect to the foil thickness is disclosed (Patent Document 2).
  • the bending resistance is improved by making the surface layer crystal where fracture due to fatigue starts to be finer.
  • JP 2006-326684 A Japanese Patent No. 5342712
  • Patent Document 1 since a copper foil is manufactured by rolling a plate material, when FFC is manufactured using a copper foil, it is premised on slitting the copper foil, which increases the cost. Cause. In recent years, there has been an increasing demand for narrowing the FFC, but it has been difficult to sufficiently narrow the width of the copper foil by the slit processing method. Patent Document 1 does not disclose a technique for producing a copper foil based on a round wire. On the other hand, in the technique of Patent Document 2, a copper wire is manufactured by rolling a round wire, and it is disclosed that the bending resistance is high, but texture control is not performed, and in recent years, For example, further improvements in characteristics have been sought for the high flex resistance requirement required by the SRC.
  • the object of the present invention is to provide a rolled copper foil that is excellent in bending resistance, and can be easily processed and reduced in cost, even when a narrow-width copper foil is produced. It is to provide a flat cable and a manufacturing method thereof.
  • a crystal grain having a Cube orientation ⁇ 001 ⁇ ⁇ 100> is formed as a texture of a copper foil when a round wire having a circular cross section is rolled. It can be controlled, and an industrially excellent control method is found. Further, when the crystal grains are accumulated in an area ratio of 6% or more, it has excellent bending resistance, and buckling occurs when applied to FFC. It has been found that rolled copper foil that is difficult to be manufactured can be produced at low cost.
  • the present invention produces copper foil by a round wire rolling process, when the width is narrowed to several millimeters or less, the conventional slit process greatly increases the processing difficulty, while the round wire is rolled. It has been found that easy workability can be realized by producing a copper foil.
  • the above-mentioned (1) characterized in that in both end regions corresponding to 10% width in the width direction, crystal grains oriented within 13 ° of deviation angle from the Cube orientation have an area ratio of 15% or more.
  • a total of one or more elements selected from Mg, Zn, Sn, Ag, P, Cr, Si, Zr, Ti, and Fe is 0.005% by mass or more and 1.0% by mass or less.
  • a flexible flat cable comprising an insulating film disposed on both surfaces of the rolled copper foil.
  • the insulating film is made of a resin that can be laminated at a temperature lower than the recrystallization temperature of the rolled copper foil. .
  • a rolled copper foil manufacturing method comprising: a second rolling treatment step. (10) The method for producing a rolled copper foil according to (9), further comprising a third heat treatment step for subjecting the foil material to strain relief annealing after the second rolling treatment step.
  • a method for producing a flexible flat cable characterized by: (12) The method for producing a flexible flat cable according to (11) above, wherein an insulating film is formed on the side surface adjacent to the rolled surface of the rolled copper foil without slitting.
  • the rolled copper foil of the present embodiment is not only SRC with FFC mounted, but also mobile phone bending parts, digital camera, movable parts such as a printer head, HDD, DVD, Blu-ray (registered trademark) Disc, CD For example, it can be used for wiring of movable parts of disk-related equipment.
  • FIG. 1 It is a perspective view (partial sectional view) of a rolled copper foil according to an embodiment of the present invention. It is an electron microscope image of the rolled copper foil which concerns on embodiment of this invention, (a) is sectional drawing of a TD direction, (b) is an expanded sectional view of the edge part, (c) is slit-processing a board
  • the rolled copper foil which becomes one Embodiment of this invention is a rolled copper foil obtained by rolling the round wire which consists of copper or a copper alloy. As shown in FIG. 1, the rolled copper foil 1 has a rolled surface 1 ⁇ / b> A and a side surface 1 ⁇ / b> B composed of a non-sheared surface adjacent thereto.
  • the rolled copper foil 1 has a rolled surface 1 ⁇ / b> A and a side surface 1 ⁇ / b> B composed of a non-sheared surface adjacent thereto.
  • the XYZ axis is an orthogonal coordinate system
  • RD being the X axis indicates the rolling direction
  • ND being the Z axis indicates the rolling normal direction perpendicular to the rolling surface 1A
  • Y TD which is an axis
  • shaft is a rolling width direction
  • Reference numeral 1C denotes a cross section perpendicular to the rolling direction RD, which is also referred to as an RD plane.
  • reference numerals 1Ca and 1Cb are rectangular area regions (both end regions) each corresponding to a width of 10% on both sides, and are hereinafter simply referred to as both end portions 1Ca and 1Cb.
  • non-sheared surface means that a sheared surface produced by slitting with a slitter does not occur, and characterizes the rolled copper foil 1 manufactured from a round wire.
  • FIG. 2A The whole cross-sectional photograph of the RD surface in the rolled copper foil 1 of this embodiment is shown in FIG. 2A, and an enlarged view (also RD surface) in the vicinity of the side surface 1B, which is a non-sheared surface, is shown in FIG. .
  • Side surfaces 1B located on both sides in the width direction of the rolled copper foil 1 are formed as non-sheared surfaces, and the non-sheared surfaces are curved surfaces having a predetermined curvature. No burr or sag (shear breakage) is formed at the corners of the non-sheared surface and the rolled surface.
  • FIG. 2A The whole cross-sectional photograph of the RD surface in the rolled copper foil 1 of this embodiment is shown in FIG. 2A, and an enlarged view (also RD surface) in the vicinity of the side surface 1B, which is a non-sheared surface, is shown in FIG.
  • side surfaces located on both sides in the width direction are formed by shearing surfaces, and the shearing surfaces are formed on the rolling surface.
  • the plane is almost perpendicular to the plane. Further, burrs and sagging are formed at the corners of the sheared surface and the rolled surface.
  • the width and thickness of the rolled copper foil 1 are not particularly limited and can be appropriately determined depending on the application, but the width is 0.300 to 2.000 mm and the thickness is 0.010 to 0.200 mm. preferable.
  • the rolled copper foil 1 of the present embodiment is a rolled copper foil obtained by rolling a round wire, it can be made narrower than a conventional case where the rolled foil is simply slit and manufactured.
  • the copper or copper alloy used for the rolled copper foil 1 is tough pitch copper (TPC), oxygen-free copper (OFC: Oxygen-Free Copper), or a dilute copper alloy obtained by adding a trace element to them.
  • TPC tough pitch copper
  • OFC oxygen-free copper
  • dilute copper alloy defines the accumulation rate and strength of the texture in a predetermined direction of the rolled sheet. Therefore, the copper or copper alloy used in the present invention only needs to have the above-described integration rate and strength as a material, and the final shape after processing does not necessarily have to be a thin plate shape.
  • 1 type or 2 types selected from pure copper such as tough pitch copper and an oxygen free copper, Mg, Zn, Sn, Ag, P, Cr, Si, Zr, Ti, and Fe.
  • a dilute copper alloy containing 1.0% by mass or less of the above elements and the balance of copper and inevitable impurities is used.
  • the addition of the above elements is intended to increase the strength and heat resistance while not excessively reducing the conductivity, and the total addition amount is preferably 1.0% by mass or less.
  • the lower limit value of the addition amount is not particularly specified, but when it is positively added, it is set to 0.005% by mass or more.
  • the conductivity of such a dilute copper alloy is desirably 90% or more when the conductivity of standard soft copper is 100%.
  • the additive elements are not limited to those described above as long as the above-described main purpose can be achieved.
  • the area ratio of crystal grains oriented within a deviation angle of 13 ° from the Cube orientation is 6% or more
  • the area ratio of the crystal grains in which the deviation angle from the Cube orientation ⁇ 001 ⁇ ⁇ 100> is within 13 ° is 6% or more.
  • the Cube orientation is the crystal orientation of the copper or copper alloy matrix in the material (in the rolled copper foil). This orientation is a crystal in which the ⁇ 001 ⁇ plane of a copper or copper alloy matrix crystal (face-centered cubic lattice) is parallel to the rolling surface and the ⁇ 100> direction is parallel to the rolling direction (RD direction). It is an azimuth.
  • the rolled copper foil of the present embodiment includes not only crystal grains strictly oriented in the Cube orientation, but also crystal grains oriented in a three-dimensionally rotated orientation within plus or minus 13 ° from the Cube orientation. In addition, these crystal grains are present at an area occupation ratio (area ratio) of 6% or more when observed on the RD plane.
  • the direction including a deviation angle within 13 ° from the Cube direction may be simply referred to as a Cube direction.
  • the area ratio of the crystal grains oriented in the Cube orientation is less than 6%, the mechanical strength is satisfied, but the bending resistance is insufficient. Therefore, in the rolling surface of the rolled copper foil of the present embodiment, the area ratio of the crystal grains oriented in the Cube orientation is 6% or more, preferably 10% or more.
  • the metal material is usually a polycrystal, but the rolled copper foil is manufactured by repeating rolling a plurality of times, so that the crystals in the foil accumulate in a specific orientation.
  • a texture Such a state of a metal structure accumulated in a certain direction is called a texture.
  • a coordinate system is required to define the crystal orientation. Therefore, in the present specification, according to a general texture notation method, the rolling direction (RD) in which the rolled copper foil is rolled and proceeding is the X axis, the width direction (TD) of the rolled copper foil is the Y axis, and the rolling is performed.
  • the normal direction (ND) of the rolling surface perpendicular to the rolling surface of the copper foil is taken as a Z-axis orthogonal coordinate system (see FIG. 1).
  • the orientation of one crystal grain present in the rolled copper foil 1 is expressed by the Miller index (hkl) of the crystal plane perpendicular to the Z axis (parallel to the rolled surface) and the index [uvw] of the crystal direction parallel to the X axis. ]
  • (hkl) [uvw] In the form of (hkl) [uvw].
  • (132) [6-43] and (231) [3-46] are shown.
  • (132) plane of the crystal constituting the crystal grain is perpendicular to ND, and the [6-43] direction of the crystal constituting the crystal grain is parallel to RD.
  • (132) [6-43] and (231) [3-46] are equivalent from the symmetry of the face-centered cubic lattice.
  • An orientation group having such an equivalent orientation uses parentheses ( ⁇ or ⁇ >) to represent the family, and is represented as ⁇ 132 ⁇ ⁇ 643>.
  • the crystal orientation (hkl) [uvw] itself uniquely determines the orientation of the crystal and does not depend on the observation direction. That is, the crystal orientation can be specified by measuring from the rolling direction (RD) or from the rolling surface normal direction (ND).
  • RD rolling direction
  • ND rolling surface normal direction
  • crystal grains are observed on the RD surface 1C, and the area ratio on this observation surface is measured. More specifically, in the entire RD surface 1C, an azimuth whose deviation angle from the Cube azimuth is within 13 ° is measured, and the area is calculated by image analysis. It is obtained by dividing by the total area of the surface 1C.
  • EBSD is an abbreviation for Electron BackScatter Diffraction (Electron Backscattering Diffraction).
  • Reflected electron Kikuchi line diffraction (Kikuchi pattern) that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • This is the crystal orientation analysis technology used.
  • the entire RD surface of the sample is scanned in steps of 0.5 ⁇ m in each of ND and TD, and using the analysis software (EDAX TSL, trade name “Orientation Imaging Microscopy v5”), the crystal orientation Is analyzed.
  • EDAX TSL trade name “Orientation Imaging Microscopy v5”
  • the cross section is polished by CP (cross section polisher).
  • the rolled copper foil 1 of the present embodiment includes crystal grains oriented in a Cube orientation (an orientation in which the deviation angle from the Cube orientation is within 13 °) at both ends 1Ca and 1Cb of the RD surface 1C.
  • the area ratio is measured in the same manner as described above and is 15% or more, preferably 20% or more, it is possible to suppress the occurrence of fatigue failure at the end in the width direction of the rolled copper foil 1. , Better bending resistance can be realized.
  • the rolled copper foil 1 of the present embodiment preferably has a flex life of 500,000 times or more in a flex resistance test.
  • the flex life is 500,000 times or more, the product durability of FFC is particularly excellent. Therefore, the flex life of the rolled copper foil 1 of this embodiment is 500,000 times or more. Preferably, it is 700,000 times or more.
  • the rolled copper foil of this embodiment is hard copper, for example.
  • hard copper is a so-called work-hardened material in which strain is accumulated in the material by plastic working, whereas hard copper is finished in an annealing process accompanied by recrystallization. Become a cold worked material.
  • the rolled copper foil of the present embodiment is not limited to hard copper, and may be soft copper.
  • the rolled copper foil of the present embodiment includes [1] a first wire drawing process, [2] a first heat treatment process, [3] a second wire drawing process, and [4] a first wire drawing process. It can be manufactured through each step of 1 rolling treatment step, [5] second heat treatment step, [6] second rolling treatment step, and [7] third heat treatment step. [6] If the characteristics of the present invention are satisfied after completion of the second rolling treatment step, [7] the third heat treatment step may be omitted. The steps [1] to [7] will be described below.
  • First wire drawing treatment process A round wire 2 (or bar) made of copper or copper alloy cast with an outer diameter of ⁇ 8.0 mm or more is subjected to a first wire drawing treatment to obtain ⁇ 0.400- Process until it reaches 4.000 mm.
  • the second wire drawing treatment is performed on the round wire 3 having a diameter of ⁇ 0.400 to 4.000 mm to process to ⁇ 0.100 to 0.400 mm. (High wire drawing processing).
  • the outer diameter of the round wire after the second wire drawing treatment has a great influence on the sheet width control after the rolling treatment, which will be described later, and is determined according to the desired dimensions of the final product.
  • the area reduction rate needs to be 75% or more.
  • the area reduction rate in the second wire drawing process is preferably 85%, more preferably 90%.
  • the reason for increasing the area reduction rate in this step is to increase the integration of the Cube orientation after the second heat treatment step (recrystallization treatment).
  • the dimensions of the plate-like wire 5 formed by the first rolling process are unambiguous because they are determined by many factors such as wire type, lubrication, roll-to-wire diameter ratio, rolling reduction, number of passes, and tension. Rather, the dimensions are arbitrary within a controllable range, but the area reduction rate is preferably 4% or more.
  • the thickness reduction rate Z in the second rolling process is 50% or less, preferably 15 to 50% (high rolling process).
  • the thickness reduction rate is high, the number of Cube orientation crystal grains decreases.
  • the foil material 6 is annealed to remove strain. This step may be omitted.
  • the heat treatment conditions in this step are, for example, 150 to 300 ° C. and 10 seconds to 2 hours.
  • the third heat treatment is intended to further increase the bending by rearrangement of dislocations by low-temperature heat treatment, and does not affect the size of crystal grains.
  • the rolled copper foil 1 is manufactured by performing a series of processes from the first wire drawing process to the third heat treatment.
  • the foil material 6 becomes the rolled copper foil 1 as it is.
  • a rolled copper foil having excellent bending resistance and excellent buckling resistance when applied to FFC is obtained.
  • a process is easy and it becomes possible to reduce manufacturing cost.
  • the copper foil itself has mechanical strength, the copper does not soften even if it is heated during the subsequent laminating process, and it is not necessary to perform low-temperature heat treatment as a post-treatment. The degree of adhesion between the film and the copper foil does not decrease. Therefore, a highly reliable FFC can be provided, and thus a highly reliable SRC can be provided.
  • a flexible flat cable As shown in FIG. 5, a flexible flat cable (FFC) according to an embodiment of the present invention includes a plurality of rolled copper foils 21-1 to 21-6 and an adhesive layer 22 in which the plurality of rolled copper foils are embedded. And insulating films 23 and 24 disposed on both sides of the adhesive layer.
  • the rolled copper foils 21-1 to 21-6 are arranged side by side so that the in-plane directions of the rolled surfaces are substantially the same, and the insulating film 23 and the other rolled surface are provided on one rolled surface side of these rolled copper foils.
  • An insulating film 24 is provided on the side.
  • the adhesive layer 22 has a thickness sufficient to embed a plurality of rolled copper foils 21-1 to 21-6, and is sandwiched between insulating films 23 and 24.
  • the adhesive layer 22 is made of a known adhesive that matches the insulating films 23 and 24.
  • the insulating films 23 and 24 are made of a resin that can be laminated at a temperature lower than the recrystallization temperature of the rolled copper foil, and the resin that can be laminated is made of copper or copper alloy constituting the rolled copper foil. A resin that can exhibit good adhesion to an adhesive layer or a rolled copper foil at a temperature lower than the recrystallization temperature.
  • the insulating films 23 and 24 are made of, for example, polyethylene terephthalate (PET) resin, preferably polyethylene terephthalate.
  • an insulating film is disposed on both sides of the rolled copper foil, and laminating is performed at a temperature lower than the recrystallization temperature of the rolled copper foil, for example, 100 to 200 ° C. Under such temperature conditions, the rolled copper foil is formed inside the FFC while maintaining the above-described properties as hard copper. Therefore, compared with the case where it becomes soft copper, mechanical strength can be maintained higher, and it becomes difficult to buckle even if it is FFC of narrower width.
  • the rolled copper foil used for the said manufacturing process is manufactured with the desired width
  • Insulating films used in the manufacturing process each have a width of 10 mm to 20 mm and a thickness of 0.01 mm to 0.1 mm. Therefore, the FFC has a width of 10 mm to 20 mm and a thickness of 0.03 to 0.4 mm.
  • the rolled copper foil of this embodiment it is possible to narrow the FFC.
  • an insulating film that can be laminated at a temperature lower than the recrystallization temperature of the rolled copper foil can be selected, a low-cost film can be used, and the cost of FFC can be reduced.
  • Patent Document 1 (Contrast with Patent Document 1 and Patent Document 2)
  • the recrystallization heat treatment is usually performed when an insulating film is laminated on a copper foil. Becomes a copper foil corresponding to annealed copper having a recrystallized structure. For this reason, the mechanical strength of the copper foil in the final product is low.
  • the FFC is buckled unless an auxiliary roller is attached, and does not play its role.
  • the Cube orientation has a predetermined area ratio, so that the desired mechanical strength can be improved, and even when the FFC is narrowed, it is appropriate. By processing by laminating, FFC buckling can be prevented.
  • the rolled copper foil of the said patent document 1 is described as a rolled copper foil suitable for FPC, and if the final rolling rate is considered, the strip rolling process and the slit process which cut
  • the slitting process is more expensive than the round wire rolling process, and the processing difficulty increases when manufacturing narrow materials with a width of less than 0.8 mm. High cost is unavoidable.
  • or FFC of this embodiment were manufactured from the round wire as above-mentioned, it can manufacture at low cost.
  • Patent Document 2 is intended only for soft copper that has been recrystallized, and plastic processing before recrystallization corresponding to the wire drawing step before recrystallization defined in the scope of the present invention is optional. It can be determined that no assumption has been made about the crystal orientation control.
  • the mechanical strength of the rolled copper foil is ensured by having a predetermined area ratio in the Cube orientation, so that the bending resistance can be improved, FFC buckling can be prevented by performing an appropriate laminating process.
  • a round wire rod (TPC) with a diameter of 9.000 mm was drawn to form a round wire with a diameter of 0.600 to 4.000 mm, and then heat-treated at 200 to 600 ° C. for 10 seconds to 2 hours.
  • TS tensile strength
  • the round wire after the heat treatment was drawn at a surface reduction ratio of 75% or more to form a round wire having a diameter of 0.230 mm.
  • a round wire having a diameter of 0.230 mm was subjected to a rolling process to form a plate-like wire having a thickness of 0.035 to 0.050 mm.
  • the plate wire was again heat-treated at 200 to 600 ° C. for 10 seconds to 2 hours.
  • the sheet wire after the heat treatment was further subjected to a rolling treatment to produce a foil material having a thickness of 0.035 mm.
  • a final product was obtained by applying a strain relief annealing at 150 to 300 ° C. for 10 seconds to 2 hours.
  • the final copper foil had a width of 0.800 mm and a thickness of 0.035 tmm.
  • a round wire rod having a diameter of ⁇ 0.900 to 2.600 mm was formed by subjecting a round wire rod (TPC) having a diameter of 9.000 mm to heat treatment at 200 to 600 ° C. for 10 seconds to 2 hours.
  • TS tensile strength
  • the round wire after the heat treatment was subjected to a drawing process at a surface reduction ratio of 75% or more to form a round wire having a diameter of 0.170 mm.
  • the round wire was subjected to a rolling process to form a plate wire having a thickness of 0.045 mm. Thereafter, the plate wire was again heat-treated at 200 to 600 ° C.
  • Comparative Examples 5 to 8 Comparative methods 1 to 4, respectively, except that the wire diameter before the first rolling treatment was ⁇ 0.170 mm in order to obtain a foil material having a width of 0.500 to 1.400 mm and a thickness of 0.035 mm as a final product. A rolled copper foil was obtained.
  • Comparative Examples 9-12 Comparative methods 1 to 4 except that the wire diameter before the first rolling treatment was ⁇ 0.260 mm in order to obtain a foil material having a width of 0.500 to 1.400 mm and a thickness of 0.035 mm as a final product. A rolled copper foil was obtained.
  • Comparative Examples 13 to 16 Comparative methods 1 to 4 except that the wire diameter before the first rolling treatment was ⁇ 0.300 mm in order to obtain a foil material having a width of 0.500 to 1.400 mm and a thickness of 0.035 mm as a final product. A rolled copper foil was obtained.
  • the area reduction rate in the second wire drawing process is divided into a cross-sectional area (substantially circular) of the round wire immediately before the second wire drawing process and a cross-sectional area (substantially circular) of the round wire immediately after the second wire drawing process. Based on the calculation. Further, the area reduction rate in the first rolling process is calculated based on the cross-sectional area of the round wire just before the first rolling process and the cross-sectional area (substantially rectangular) of the plate-like wire just after the first rolling process. Furthermore, the reduction ratio in the second rolling process was calculated based on the cross-sectional area of the plate wire immediately before the second rolling process and the cross-sectional area (substantially rectangular) of the foil material immediately after the second rolling process. .
  • the area ratio (area ratio A) of crystal grains in which the deviation angle from the Cube orientation is within 13 ° on the RD surface 1C was measured.
  • difference angle from Cube direction is within 13 degrees was measured in both ends 1Ca and 1Cb. The measurement was performed in a measurement area of about 500 ⁇ m square under a scan step of 0.5 ⁇ m. The measurement area was adjusted based on the inclusion of 200 or more crystal grains.
  • the rotation angle was calculated centering on a common rotating shaft, and it was set as the shift
  • the evaluation criteria are “Yes” for passing over 500,000 times when the life is judged to be sufficient as the product specifications, and “No” for over 400,000 times and less than 500,000 times where the life may not meet the product specifications. “A failure was evaluated as“ x ”when the product life was less than 400,000 times that did not meet the product specifications.
  • the area ratio (area ratio A) of the crystal grains oriented in the orientation in which the deviation angle from the Cube orientation is within 13 ° on the rolled surface of the rolled copper foil is 6 %, The number of flexing lives was 500,000 times or more, and it was found that the flex resistance was good.
  • the area ratio (area ratio B) of the crystal grains oriented in the orientation in which the deviation angle from the Cube orientation at both ends 1Ca and 1Cb is within 13 ° is 15% or more, and the bending resistance The properties were found to be good.
  • the area ratio (area ratio A) of the crystal grains oriented in an orientation whose deviation angle from the Cube orientation is within 13 ° is outside the scope of the present invention.
  • the area ratio (area ratio B) of the crystal grains oriented in the orientation in which the deviation angle from the Cube orientation at both ends 1Ca and 1Cb is within 13 ° is out of the range of the present invention, and the bending resistance is insufficient.
  • the area ratio (area ratio A) of the crystal grains oriented in the orientation whose deviation angle from the Cube orientation is within 13 ° is 6% or more, and the number of flexing lives It became 500,000 times or more, and it turned out that bending resistance is favorable.
  • the area ratio (area ratio B) of crystal grains oriented in an orientation in which the deviation angle from the Cube orientation at both ends 1Ca and 1Cb is within 13 ° is 15% or more, It was found that the bending resistance was good.
  • the area ratio (area ratio A) of the crystal grains oriented in the orientation whose deviation angle from the Cube orientation is within 13 ° is outside the scope of the present invention.
  • the area ratio (area ratio B) of the crystal grains oriented in the orientation in which the deviation angle from the Cube orientation at both ends 1Ca and 1Cb is within 13 ° is outside the scope of the present invention, and the bending resistance was insufficient.
  • the desired crystal orientation area ratio was obtained, the lifespan varied greatly and did not necessarily reach 500,000 times. This is because the slit narrow width material has a reduced dimensional accuracy and has an adverse effect on the flexibility.
  • the rolled copper foil 1 of the present embodiment is suitably used as a flexible flat cable (FFC) because it is excellent in flexibility and excellent in bending resistance.
  • FFC flexible flat cable
  • automobile parts such as a steering roll connector (SRC), a roof harness, a door harness, and a floor harness that are components of an airbag system in an automobile.
  • SRC steering roll connector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metal Rolling (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 狭巾の銅箔を製造する場合であっても耐屈曲性に優れると共に、加工容易性と低コスト化を実現することができる圧延銅箔およびその製造方法を提供する。 本実施形態の圧延銅箔1は、銅または銅合金からなる丸線材を圧延して得られる圧延銅箔であって、前記圧延銅箔の圧延面において、Cube方位からのずれ角度が13°以内に配向する結晶粒が6%以上の面積率を有する。

Description

圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法
 本発明は、銅または銅合金からなる丸線材を圧延して得られる圧延銅箔およびその製造方法、並びにフレキシブルフラットケーブル及びその製造方法に関し、特に自動車用部品等において繰返して屈曲運動が行われるフレキシブルフラットケーブル等に用いられる圧延銅箔およびその製造方法に関する。
 従来、フレキシブルフラットケーブル(FFC)は、厚みが薄く可撓性に優れる特長から、電子機器等への実装形態における自由度が高く、様々な用途に用いられている。例えば、自動車におけるエアバックシステムの構成部品であるステアリング・ロール・コネクタ(SRC)、折り畳み式携帯電話の折り曲げ部、デジタルカメラ、プリンターヘッドなどの可動部、HDD(Hard Disk Drive)やDVD(Digital Versatile Disc)、Blu-ray(登録商標) Disc、CD(Compact Disc)など、ディスク関連機器の可動部の配線等に広く用いられている。このようなフレキシブルフラットケーブルの導体部分には、一般に圧延銅箔が用いられている。
 従来の圧延銅箔として、例えば、銅箔のX線回折で求めた(200)面の積分強度をI、微粉末銅のX線回折で求めた(200)面の積分強度をI(0)としたとき、I/I(0)>20となる立方体集合組織を有する圧延銅箔が開示されている(特許文献1)。この技術では、耐屈曲性に優れる集合組織を有する銅箔を用いることにより長寿命化を実現することができ、フレキシブルプリント基板(FPC)の小型化、高機能化を実現することが開示されている。
 また、他の従来の圧延銅箔として、丸線材の圧延によって製造され、箔厚に対する結晶平均粒径を規定した圧延銅箔が開示されている(特許文献2)。この技術では、疲労による破壊が開始する表層の結晶を微細粒化することで、その耐屈曲性を改善している。
特開2006-326684号公報 特許第5342712号公報
 しかしながら、特許文献1の技術では、板材を圧延加工して銅箔を製造しているため、銅箔を用いてFFCを製造する場合、当該銅箔をスリット加工することが前提となり、コストアップの原因となる。また近年FFCの狭巾化の要求が強まっているのに対し、スリット加工による方法では十分に銅箔の幅を狭くすることが難しかった。また、特許文献1には丸線をもとに銅箔を製造する技術については開示がない。
 一方、特許文献2の技術では、丸線を圧延加工して銅箔を製造しており、耐屈曲性が高いことが開示されているが、集合組織制御を行っているわけではなく、近年、例えば上記SRCで求められている高い耐屈曲性の要求に対して特性のさらなる改善がもとめられていた。
 上記課題に鑑み、本発明の目的は、狭巾の銅箔を製造する場合であっても、耐屈曲性に優れると共に、加工容易性と低コスト化を実現することができる圧延銅箔、フレキシブルフラットケーブル、およびそれらの製造方法を提供することにある。
 本発明者らは、FFCに適した銅合金について鋭意研究を重ねた結果、断面が円形状の丸線材を圧延する際における銅箔の集合組織としてCube方位{001}<100>の結晶粒を制御し得ること、さらにその工業的に優れた制御方法を見出し、さらにその結晶粒を面積率で6%以上集積させると、耐屈曲性に優れ、また、FFCに適用した際に座屈が発生しにくい圧延銅箔を低コストで製造し得ることを見出した。
 また本発明は、丸線の圧延工程によって銅箔を製造するため、巾を数mm以下にまで狭巾化していくと従来のスリット工程では加工難度が大幅に高まる一方、丸線を圧延して銅箔を製造することにより、容易な加工性を実現できることを見出した。
 すなわち、上記課題は以下の発明により達成される。
(1)銅または銅合金からなり、圧延面と、該圧延面に隣接する両側面がせん断加工面ではない非せん断加工面を有する圧延銅箔であって、
 Cube方位からのずれ角度が13°以内に配向する結晶粒が6%以上の面積率を有することを特徴とする、圧延銅箔。
(2)巾方向に関してそれぞれ10%幅に相当する両端領域において、Cube方位からのずれ角度が13°以内に配向する結晶粒が15%以上の面積率を有することを特徴とする、上記(1)記載の圧延銅箔。
(3)Mg、Zn、Sn、Ag、P、Cr、Si、Zr、Ti、Feの中から選ばれる1種または2種以上の元素を合計で0.005質量%以上1.0質量%以下含有し、残部が銅と不可避不純物からなる銅合金からなることを特徴とする、上記(1)または(2)記載の圧延銅箔。
(4)屈曲寿命回数が50万回以上であることを特徴とする、上記(1)~(3)のいずれかに記載の圧延銅箔。
(5)巾0.300mm~2.000mm、厚さ0.010mm~0.200mmで構成されていることを特徴とする、上記(1)~(4)のいずれかに記載の圧延銅箔。
(6)上記(1)~(5)のいずれかに記載の圧延銅箔と、
 該圧延銅箔の両面に配置された絶縁フィルムとを有することを特徴とする、フレキシブルフラットケーブル。
(7)前記絶縁フィルムは、前記圧延銅箔の再結晶温度よりも低い温度でラミネート処理し得る樹脂で構成されていることを特徴とする、上記(5)または(6)記載のフレキシブルフラットケーブル。
(8)前記絶縁フィルムは、ポリエチレンテレフタレート系樹脂で構成されていることを特徴とする、上記(7)記載のフレキシブルフラットケーブル。
(9)上記(1)~(4)のいずれかに記載の圧延銅箔の製造方法であって、
 銅または銅合金からなる丸線材に200~600℃、10秒~2時間の熱処理を施す第1熱処理工程と、
 前記第1熱処理工程後の丸線材を減面率75%以上で伸線する伸線処理工程と、
 前記伸線処理工程後の丸線材を圧延して板状線材を形成する第1圧延処理工程と、
 前記板状線材に200~600℃、10秒~2時間の熱処理を施す第2熱処理工程と、 前記第1熱処理工程後の板状線材を減面率50%以下で圧延して箔材を形成する第2圧延処理工程と、を有することを特徴とする圧延銅箔の製造方法。
(10)前記第2圧延処理工程の後、前記箔材に歪取焼鈍を施す第3熱処理工程を更に有することを特徴とする、上記(9)記載の圧延銅箔の製造方法。
(11)上記(9)または(10)記載の製造方法により得られた圧延銅箔の両面に、絶縁フィルムを、前記圧延銅箔の再結晶温度よりも低い温度でラミネート処理して形成することを特徴とする、フレキシブルフラットケーブルの製造方法。
(12)前記圧延銅箔の圧延面に隣接する側面にスリット加工を行うことなく、絶縁フィルムを形成することを特徴とする、上記(11)記載のフレキシブルフラットケーブルの製造方法。
 なお本発明における屈曲寿命回数とは、屈曲半径R=6.5mm、ストロークS=±13mm、環境温度85℃、回転速度900rpm、という試験条件のもとで行う屈曲試験において、圧延銅箔が破断したときの屈曲回数のことを言うものとする。
 本発明によれば、狭巾の銅箔を製造する場合であっても、耐屈曲性に優れ、また、FFCに適用した際に耐座屈性に優れた圧延銅箔が提供される。したがって、本実施形態の圧延銅箔は、FFCが搭載されたSRCはもとより、携帯電話の折り曲げ部、デジタルカメラ、プリンターヘッドなどの可動部、HDD、DVD、Blu-ray(登録商標) Disc、CDなどディスク関連機器の可動部の配線等に用いることができる。
本発明の実施形態に係る圧延銅箔の斜視図(一部断面図)である。 本発明の実施形態に係る圧延銅箔の電子顕微鏡画像であり、(a)はTD方向の断面図、(b)はその端部の拡大断面図、(c)は、板材をスリット加工して得られた圧延銅箔の端部の拡大断面図である。 本実施形態に係る圧延銅箔の製造方法を説明する図である。 本実施形態の圧延銅箔におけるCube方位の面積率の測定方法を説明する平面図である。 本実施形態に係る圧延銅箔を用いて作製されたフレキシブルフラットケーブルの断面図である。 本発明の実施例において、耐屈曲性試験で使用される屈曲試験機に圧延銅箔を固定した状態を概略的に示す側面図である。
 (圧延銅箔)
 本発明の一実施形態となる圧延銅箔は、銅または銅合金からなる丸線材を圧延して得られる圧延銅箔である。
 図1に示す通り、圧延銅箔1は、圧延面1Aと、それに隣接する、非せん断加工面からなる側面1Bを有する。なお図1中、X-Y-Z軸は直交座標系であり、X軸であるRDは圧延方向を示し、Z軸であるNDは、圧延面1Aに垂直な圧延法線方向を示し、Y軸であるTDは圧延巾方向であって、前記RDとTDの両方に垂直な方向を示す。また符号1Cで示すのは、圧延方向RDに垂直な断面であり、RD面とも称するものとする。またRD面1Cにおいて、符号1Ca、1Cbは、その両側それぞれ10%幅に相当する矩形の面積領域(両端領域)であり、以下、単に両端部1Ca,1Cbと称する。
 ここで上述した非せん断加工面とは、スリッターによるスリット加工によって生じるせん断加工面が生じていないことを意味しており、丸線から製造された圧延銅箔1を特徴づけるものである。
 本実施形態の圧延銅箔1におけるRD面の全体断面写真を図2(a)に示し、そのうち非せん断加工面である側面1B近傍の拡大図(同じくRD面)を図2(b)に示す。圧延銅箔1の幅方向両側に位置する側面1Bが非せん断加工面で形成されており、該非せん断加工面は所定曲率を有する曲面である。この非せん断加工面と圧延面との角隅部にはバリやダレ(せん断破損)が形成されていない。一方、箔材のスリット加工によって得られた圧延銅箔では、図2(c)に示すように、その幅方向両側に位置する側面がせん断加工面で形成され、該せん断加工面は圧延面に対してほぼ垂直な平面である。また、せん断加工面と圧延面との角隅部にはバリやダレが形成されている。
 圧延銅箔1は、その巾および厚さは特に制限はなく、用途に応じて適宜定めることができるが、巾0.300~2.000mm、厚さ0.010~0.200mmであるのが好ましい。特に、本実施形態の圧延銅箔1は、丸線材を圧延して得られる圧延銅箔なので、従来のように単に圧延箔をスリットして製造する場合よりも狭巾化することができる。
 圧延銅箔1に使用される銅または銅合金は、タフピッチ銅(TPC:Tough Pitch Copper)、無酸素銅(OFC:Oxygen-Free Copper)もしくはそれらに微量元素を添加した希薄銅合金である。このうち希薄銅合金は、圧延板の所定の方向における集合組織の集積率、強度を規定するものである。したがって、本発明で用いられる銅または銅合金は、材料として上記集積率や強度を有していればよく、加工後の最終形状は必ずしも薄板状でなくてもよい。
 また本実施形態の圧延銅箔1では、タフピッチ銅、無酸素銅などの純銅や、Mg、Zn、Sn、Ag、P、Cr、Si、Zr、Ti、Feから選択される1種または2種以上の元素を1.0質量%以下含み、残部が銅と不可避不純物からなる希薄銅合金が用いられる。上記元素の添加は、強度や耐熱性を上げつつも導電性を低下させ過ぎないことが目的であり、その合計の添加量は1.0質量%以下とするのが好ましい。なお、添加量が0%である場合は純銅とみなせるため、添加量の下限値は特に規定されないが、積極的に添加する場合は0.005質量%以上とする。このような希薄銅合金の導電率は、標準軟銅の導電率を100%としたときに、90%以上であることが望ましい。また上記主目的を達成することができれば、添加元素は上記のものに限定されない。
 次に本発明の各要素について詳細に説明する。
 (Cube方位からのずれ角度が13°以内に配向する結晶粒の面積率が6%以上であること)
 本実施形態の圧延銅箔1は、Cube方位{001}<100>からのずれ角度が13°以内に配向する結晶粒の面積率が6%以上である。Cube方位とは材料中(圧延銅箔中)の銅または銅合金母相の結晶の方位である。この方位は、銅または銅合金母相の結晶(面心立方格子)の{001}面が圧延面に対して平行であり、かつ<100>方向が圧延方向(RD方向)と平行である結晶方位である。ただし、理想的な結晶方位からのずれ角度が13°以内(0°以上13°以内)であればその理想方位と同等として扱うことができ得るので、Cube方位からのずれ角度が13°以内の方位についてもCube方位と同等とすることができる。そこで、本実施形態の圧延銅箔は、厳密にCube方位に配向している結晶粒のみならず、Cube方位からプラスマイナス13°以内で3次元的に回転した方位に配向している結晶粒を含め、これらの結晶粒が、RD面で観察したときに、面積占有率(面積率)6%以上で存在する。以下、Cube方位からのずれ角度が13°以内の方位も含めて、単にCube方位と称することもある。
 伸線処理や圧延処理を施すと、圧延材におけるCube方位の結晶粒が減少し、耐屈曲性が若干低下する一方、加工硬化により耐力が増加するため、機械的強度が向上する。また、再結晶化熱処理を施すことによりCube方位の結晶粒が発達し、耐屈曲性が向上する。よって本発明では、圧延銅箔におけるCube方位の結晶粒の面積率に着目し、該面積率の観点から、所定条件で伸線処理(高伸線処理)、圧延処理(高圧延処理)及び再結晶化処理を施し、上記面積率の数値範囲を6%以上とすることで、優れた耐屈曲性と機械的強度の両立を実現している。これに対し、Cube方位に配向する結晶粒の面積率が6%未満であると、機械的強度は満たすものの、耐屈曲性が不足する。したがって、本実施形態の圧延銅箔の圧延面において、Cube方位に配向する結晶粒の面積率は6%以上とし、好ましくは10%以上である。
 ここで、結晶方位について説明する。金属材料は通常多結晶体であるが、圧延銅箔は複数回もの圧延を繰り返して製造されることによって、箔中の結晶が特定の方位に集積する。このような一定の方位に集積した金属組織の状態を集合組織と呼ぶ。この集合組織の様相を議論するためには、結晶の方向を定義するための座標系が必要となる。そこで、本明細書では、一般的な集合組織の表記方法に従い、圧延銅箔が圧延されて進んでいく圧延方向(RD)をX軸、圧延銅箔の巾方向(TD)をY軸、圧延銅箔の圧延面に垂直な圧延面法線方向(ND)をZ軸の直角座標系を取る(図1参照)。圧延銅箔1中に存在するある1つの結晶粒の方位は、Z軸に垂直な(圧延面に平行な)結晶面のミラー指数(hkl)と、X軸に平行な結晶方向の指数[uvw]とを用いて、(hkl)[uvw]の形で示す。例えば、(132)[6-43]や(231)[3-46]などのように示す。これは即ち、その結晶粒を構成する結晶の(132)面がNDに垂直であり、その結晶粒を構成する結晶の[6-43]方向がRDと平行であることを示している。なお、(132)[6-43]と(231)[3-46]は面心立方格子の対称性から等価である。このような等価な配向を有する方位群は、そのファミリーを表すためにカッコ記号({}や<>)を使用し、{132}<643>と示す。
 なお、結晶方位(hkl)[uvw]自体は、結晶の向きを一意に定めるものであるので、観察方向に拠らない。つまり、圧延方向(RD)から測定しても、圧延面法線方向(ND)から測定しても結晶方位を特定することができる。ただし、本発明では圧延面上のCube方位に配向する結晶粒の面積率を規定するものであるので、圧延面について一定の観察視野が必要となる。そこで本発明では、RD面1Cで結晶粒を観察し、この観察面における面積率を測定するものとする。より具体的には、RD面1C全体において、Cube方位からのずれ角度が13°以内の方位を測定し、その面積を画像解析によって算出し、その面積率は、該方位を有する面積を、RD面1Cの全面積で除することで求める。
 本発明における結晶方位の画像解析はEBSD法を用いて行う。EBSDとは、Electron BackScatter Diffraction(電子後方散乱回折)の略で、走査型電子顕微鏡(SEM:Scanning Electron Microscope)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用した結晶方位解析技術のことである。本発明においては、試料のRD面の全体をNDとTDのそれぞれにおいて0.5μmのステップでスキャンし、解析用ソフトウェア(EDAX TSL社製、商品名「Orientation Imaging Microscopy v5」)を用い、結晶方位を解析する。なお、EBSD測定にあたっては、鮮明な菊池線回折像を得るために、測定面に付着した異物を取り除くと同時に、鏡面仕上げをする必要がある。本実施例ではCP(クロスセクションポリッシャ)加工にて断面の研磨加工を施しておく。
 (両端部1Ca、1Cbにおいて、Cube方位からのずれ角度が13°以内に配向する結晶粒の面積率が15%以上であること)
 本実施形態の圧延銅箔1は、図1に示すように、RD面1Cの両端部1Ca、1Cbにおいて、Cube方位(Cube方位からのずれ角度が13°以内の方位)に配向する結晶粒の面積率を、上述したものと同様に測定し、それぞれ15%以上、好ましくはそれぞれ20%以上である場合、圧延銅箔1の巾方向端部で疲労破壊が発生することを抑制することができ、より優れた耐屈曲性を実現できる。
 (耐屈曲性)
 本実施形態の圧延銅箔1は、耐屈曲性試験において、屈曲寿命回数が50万回以上であるのが好ましい。屈曲寿命回数が50万回以上であると、FFCの製品耐久性が特に優れる。よって本実施形態の圧延銅箔1の屈曲寿命回数は50万回以上とする。好ましくは、70万回以上である。
 (硬銅であること)
 本実施形態の圧延銅箔は、例えば硬銅である。ここで硬銅とは、塑性加工により歪が材料内に蓄積された、いわゆる加工硬化された材料であり、対比される軟銅が再結晶を伴う焼鈍工程で仕上げられることに対して、硬銅は、冷間加工仕上げされた材料になる。ただし、本実施形態の圧延銅箔は硬銅に限られず、軟銅であってもよい。
 (本発明に係る圧延銅箔の製造方法)
 本実施形態の圧延銅箔は、例えば、図3に示すように、[1]第1伸線処理工程、[2]第1熱処理工程、[3]第2伸線処理工程、[4]第1圧延処理工程、[5]第2熱処理工程、[6]第2圧延処理工程、[7]第3熱処理工程、の各工程を経て製造することができる。なお、[6]第2圧延処理工程終了後に本発明の特性を満たしていれば、[7]第3熱処理工程は行わなくてもよい。以下、[1]~[7]の工程について説明する。
 [1]第1伸線処理工程
 外径φ8.0mm以上で鋳造された銅または銅合金製の丸線材2(あるいは棒材)に対して、1回目の伸線処理を施し、φ0.400~4.000mmになるまで加工する。
 [2]第1熱処理工程
 上記[1]の伸線処理でφ0.400~4.000mmに加工された丸線材3を焼鈍する。本工程の熱処理条件は、200~600℃、10秒~2時間で行うのが好ましい。なお、軟化目安として、引張強度TSが250MPa程度となるようにするのが好ましい。
 [3]第2伸線処理工程
 上記[2]の熱処理後、φ0.400~4.000mmの丸線材3に対して2回目の伸線処理を施し、φ0.100~0.400mmまで加工する(高伸線加工処理)。第2伸線処理後の丸線材の外径は、後述する圧延処理後の板巾制御に対して大きな影響を与えるため、最終製品の所望寸法に応じて決定されるが、本伸線処理における減面率は75%以上である必要がある。第2伸線処理工程における減面率は、好ましくは85%、より好ましくは90%である。またこの工程で減面率を高くするのは、第2熱処理工程(再結晶処理)後のCube方位の高集積化のためである。なお、減面率Xは、加工前の丸線材3の長手方向に垂直な断面積をA1、加工後の丸線材4の長手方向に垂直な断面積をA2としたとき、X=(A1-A2)*100/A1で現される。ただし、断面積は丸線材の外径で決まるため、加工前の丸線材3の外径をR1、加工後の丸線材4の外径をR2としたとき、X=(R12-R22)*100/R12としても同一の値として計算できるものである。
 [4]第1圧延処理工程
 上記[3]の伸線処理後、丸線材4を圧延して板状線材5を形成する。最終製品で所望の巾、板厚を得るために、本圧延処理後の寸法には制限がある。例えば、最終製品の所望寸法が巾0.800mm、厚さ0.035mmである場合、本圧延処理で板巾0.770mmになるように圧延し、そのときの板厚は0.045mm程度が妥当である。その後、後述の仕上げ圧延処理(第2圧延処理)を施し、最終製品を形成する。本第1圧延処理にて形成される板状線材5の寸法は、線材種、潤滑状態、ロールと線の径比、圧下率、パス回数、張力など多くの因子によって決まるために一義的なものではなく、その寸法は制御可能な範囲で任意であるが、減面率が4%以上であるのが好ましい。ここでの減面率Yは、加工前の丸線材4の長手方向に垂直な断面積をA3、加工後の板状線材5の長手方向に垂直な断面積をA4としたとき、Y=(A3-A4)*100/A3で現される。また、後述する仕上げ圧延処理(第2圧延処理)にて減面率を指定しているため、該減面率に応じて本工程での減面率を設定する必要がある。
 [5]第2熱処理工程
 次に、上記[4]で圧延された板状線材5を焼鈍する。その際、平均結晶粒径の最小値は3μmであり、その最大値は板厚寸法と同じとする。本工程の熱処理条件は、200~600℃、10秒~2時間で行うのが好ましい。なお、軟化目安として、引張強度TSが250MPa程度となるようにするのが好ましい。
 [6]第2圧延処理工程
 上記[5]の熱処理後、最終製品の寸法(厚さ)を得るために、板状線材5に仕上げ圧延処理を施して箔材6を形成する。本第2圧延処理における厚さ減少率Zは、50%以下であり、好ましくは、15~50%である(高圧延加工処理)。厚さ減少率Zは、加工前の板状線材5の厚さをt1、加工後の箔材6の厚さをt2としたとき、Z=(t1-t2)*100/t1で表される。厚さ減少率が高いと、Cube方位の結晶粒が少なくなる。このように、本実施形態では上記高伸線加工処理と本高圧延加工処理の双方を行うことにより、その後に再結晶化熱処理を行う必要がなく、箔材6の機械的強度を維持することができる。なお、この板状線材5から箔材6を得る圧延加工のみ、減面率ではなく、厚さ減少率で計算するものとする。
 [7]第3熱処理工程
 次に、箔材6を焼鈍して、歪取りを行う。この工程は省略しても良い。本工程の熱処理条件は、例えば、150~300℃、10秒~2時間である。本第3熱処理は、低温熱処理による転位の再配列による更なる高屈曲化を目的としており、結晶粒のサイズに影響を及ぼさないものである。このように第1伸線処理から第3熱処理までの一連の処理を施すことにより、圧延銅箔1が製造される。なお、第3熱処理工程を省略する場合は、箔材6がそのまま圧延銅箔1となる。
 上述したように、本発明によれば、狭巾の銅箔を製造する場合であっても、耐屈曲性に優れ、また、FFCに適用した際に耐座屈性に優れた圧延銅箔が提供できる。また、スリット工程を含む製造方法に比べて、加工が容易であり、製造コストを低減することが可能となる。また、銅箔自体が機械的強度を有しているため、その後のラミネート処理時などに加熱されても銅が軟化することがなく、また、後処理として低温熱処理を施す必要がないため、絶縁フィルムと銅箔の密着度が低下することもない。したがって、信頼性の高いFFCを提供することができ、延いては信頼性の高いSRCを提供することができる。
 (フレキシブルフラットケーブル)
 本発明の一例となる実施形態のフレキシブルフラットケーブル(FFC)は、図5に示すように、複数の圧延銅箔21-1~21-6と、これら複数の圧延銅箔を埋設する接着層22と、該接着層の両面に配置された絶縁フィルム23,24とを備えている。圧延銅箔21-1~21-6は、圧延面の面内方向がほぼ同一となるように並べて配置されており、これら圧延銅箔の一方の圧延面側に絶縁フィルム23、他方の圧延面側に絶縁フィルム24が設けられている。
 接着層22は、複数の圧延銅箔21-1~21-6を埋設するのに十分な厚みを有しており、絶縁フィルム23,24によって挟持されている。接着剤層22は、絶縁フィルム23,24に適合する周知の接着剤で構成されている。
 絶縁フィルム23,24は、上記圧延銅箔の再結晶温度よりも低い温度でラミネート処理し得る樹脂で構成されており、ラミネート処理し得る樹脂とは、圧延銅箔を構成する銅又は銅合金の再結晶温度よりも低い温度で、接着層あるいは圧延銅箔との良好な密着性を発現することができる樹脂をいう。絶縁フィルム23,24は、例えばポリエチレンテレフタレート(PET)系樹脂、好ましくはポリエチレンテレフタレートで構成されている。
 (フレキシブルフラットケーブルの製造方法)
 本実施形態のFFCの製造方法では、上記圧延銅箔の両側に、例えば絶縁フィルムを配置し、前記圧延銅箔の再結晶温度よりも低い温度、例えば100~200℃でラミネート処理を行う。
 このような温度条件により、圧延銅箔は、前述した硬銅としての性質を維持したままFFCの内部に形成される。したがって軟銅になった場合に比較して、より機械的強度を高く維持することができ、より狭巾のFFCであっても座屈しにくくなる。
 なお、上記製造工程に供する圧延銅箔は、丸線から所望の巾で製造したものであるので、鋳隗からロール圧延を何度も繰り返して銅箔にする必要がなく、さらにスリット加工の必要もないため、製造工程の低コスト化が可能となる。
 また製造工程で使用する絶縁フィルムは、それぞれ、巾10mm~20mm、厚さ0.01mm~0.1mmである。よってFFCとしては、巾10mm~20mm、厚さ0.03~0.4mmとなる。このように本実施形態の圧延銅箔を使用することによって、FFCを狭巾化することが可能である。
 また絶縁フィルムは、前記圧延銅箔の再結晶温度よりも低い温度でラミネート処理し得るものを選定できるので、低コストなものを使用することができ、FFCの低コスト化を図ることができる。
 (特許文献1、特許文献2との対比)
 特許文献1の技術では、再結晶化熱処理することで立方体組織の発達を達成しているが、当該再結晶化熱処理は通常銅箔に絶縁フィルムをラミネートする際に行われており、ラミネート処理後は、再結晶組織を有する軟銅に相当する銅箔となる。そのため、最終製品における銅箔の機械的強度は低く、例えばUターン型のSRCでは、補助ローラをつけなければFFCは座屈してしまい、その役割を果たさない。また、近年進んでいるFFCの狭巾化に対しては、銅箔自体に機械的強度の向上が望まれており、軟銅あるいはそれに相当する導体よりも高い機械的強度を確保することが望まれている。
 これに対し、本実施形態の圧延銅箔では、上述してきた通りCube方位が所定の面積率を有することによって所望の機械的強度を向上することができ、FFCが狭巾化した際でも適正なラミネート加工で処理することでFFCの座屈を防止することができる。
 また、上記特許文献1の圧延銅箔は、FPCに好適な圧延銅箔として記載されており、またその最終圧延率を考慮すれば、条圧延工程と圧延後の材料を細長に切断するスリット工程とを経て製造されると考えられるが、スリット工程は丸線圧延工程に比べ高コストである上、巾0.8mm未満の狭巾材を製造する際には加工難度が高くなることから、更なる高コスト化は避けられない。
 これに対し、本実施形態の圧延銅箔ないしFFCは上述してきた通り、丸線から製造されたものであるので、低コストで製造できる。
 また、上記特許文献2の技術では、最終製品である銅箔を得るまでに熱処理工程を含んでいないため、圧延銅箔自体の機械的強度は比較的高いと想定される。しかしながら集合組織制御されたものではないため、機械的強度はまだ不足すると想定される。また特許文献2の銅箔の大部分は加工組織を有しており、ラミネート処理時の加熱により、方位制御されていない再結晶組織が最表層に現れ、圧延銅箔が軟化してしまい、FFCの座屈の問題が発生する可能性が高い。一方、この問題を解消するために低温熱処理を行うと、絶縁フィルムと銅箔の密着度が下がり、最終的に耐屈曲性の低下を招く懸念がある。また、特許文献2の銅箔は再結晶処理をした軟銅のみを対象としており、本発明の範囲に規定する再結晶前の伸線工程に相当する再結晶前の塑性加工は任意であるなど、結晶方位制御に対しての想定はなされていないと判断できる。
 これに対し、本実施形態のFFCでは、圧延銅箔の機械的強度はCube方位が所定の面積率を有していることにより確保されているため、耐屈曲性の向上を図ることができ、適正なラミネート加工で処理することでFFCの座屈を防止することができる。
 以上、上記実施形態に係る圧延銅箔、FFCおよびそれらの製造方法について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 本発明を以下の実施例に基づき詳細に説明する。なお本発明は、以下に示す実施例に限定されるものではない。
 (発明例1~6)
 φ9.000mmの丸線材(TPC)に伸線処理を施してφ0.600~4.000mmの丸線材を形成し、その後、200~600℃、10秒~2時間で熱処理を行った。このときの軟化目安は引張強度(TS)=250MPaとした。さらにこの熱処理後の丸線材に減面率75%以上で伸線処理を施して、φ0.230mmの丸線材を形成した。次いで、φ0.230mmの丸線材に圧延処理を施して厚さ0.035~0.050mmの板状線材を形成した。その後、この板状線材に再び200~600℃、10秒~2時間で熱処理を行った。そして、熱処理後の板状線材にさらに圧延処理を施して厚さ0.035mmの箔材を作製した。最後に必要に応じて150~300℃、10秒~2時間で歪取焼鈍処理を施して最終製品を得た。最終製品の銅箔は巾0.800mm、厚さ0.035tmmであった。このような第1伸線処理→第1熱処理→第2伸線処理→第1圧延処理→第2熱処理→第2圧延処理→(第3熱処理)の一連のフローを製造工程(I)とした。
 (発明例7)
 上記製造工程(I)に代えて、第1伸線処理(φ9.000mm→φ0.600mm)→第1熱処理(軟化目安:TS=250MPa)→第2伸線処理(φ0.600mm→φ0.230mm)→第1圧延処理(φ0.230mm→0.035mmt)→第2熱処理(再結晶化処理)の一連のフローからなる製造工程(I’)にて、最終製品を得た。
 (比較例1)
 上記製造工程(I)に代えて、第1伸線処理(φ9.000mm→φ0.230mm)→第1圧延処理(φ0.230mm→0.050mmt)→第2熱処理(軟化目安:TS=250MPa)→第2圧延処理(0.050mmt→0.035mmt)の一連のフローからなる製造工程(II)にて、最終製品を得た。
 (比較例2)
 上記製造工程(I)に代えて、第1伸線処理(φ9.000mm→φ0.400mm)→第1熱処理(軟化目安:TS=250MPa)→第2伸線処理(φ0.400mm→φ0.230mm)→第1圧延処理(φ0.230mm→0.0467mmt)→第2熱処理(軟化目安:TS=250MPa)→第2圧延処理(0.0467mmt→0.035mmt)の一連のフローからなる製造工程(III)にて、最終製品を得た。
 (比較例3)
 上記製造工程(I)に代えて、第1伸線処理(φ9.000mm→φ4.000mm)→第1熱処理(軟化目安:TS=250MPa)→第2伸線処理(φ4.000mm→φ0.230mm)→第1圧延処理(φ0.230mm→0.035mmt)→第3熱処理(歪取熱処理)の一連のフローからなる製造工程(IV)にて、最終製品を得た。この工程では、第1圧延処理によって最終的な箔厚を得ているため、第2圧延処理工程および第2熱処理工程は実施していない。
 (比較例4)
 上記製造工程(I)に代えて、第1伸線処理(φ9.000mm→φ0.600mm)→第1熱処理(軟化目安:TS=250MPa)→第2伸線処理(φ0.600mm→φ0.230mm)第1圧延処理(φ0.230mm→0.075mmt)→第2熱処理(軟化目安:TS=250MPa)→第2圧延処理(0.075mmt→0.035mmt)→第3熱処理(歪取熱処理)の一連のフローからなる製造工程(V)にて、最終製品を得た。
 (発明例8~13)
 φ9.000mmの丸線材(TPC)に伸線処理を施してφ0.900~2.600mmの丸線材を形成し、その後、200~600℃、10秒~2時間で熱処理を行った。このときの軟化目安は引張強度(TS)=250MPaとした。さらにこの熱処理後の丸線材に減面率75%以上で伸線処理を施して、φ0.170mmの丸線材を形成した。次いで、その丸線材に圧延処理を施して厚さ0.045mmの板状線材を形成した。その後、この板状線材に再び200~600℃、10秒~2時間で熱処理を行った。そして熱処理後の板状線材にさらに圧延処理を施して、厚さ0.035mmの箔材を作成した。最後に必要に応じて歪取焼鈍処理を施して最終製品を得た。最終製品の銅箔は、巾0.500~1.400mm、厚さ0.035mmであった。このような第1伸線処理→第1熱処理→第2伸線処理→第1圧延処理→第2熱処理→第2圧延処理→(第3熱処理)の一連のフローを製造工程(I)とした。
 (比較例5~8)
 最終製品として巾0.500~1.400mm、厚さ0.035mmの箔材を得るため第1圧延処理前の線径をφ0.170mmしたこと以外は、それぞれ比較例1~4と同様の方法にて圧延銅箔を得た。
 (比較例9~12)
 最終製品として巾0.500~1.400mm、厚さ0.035mmの箔材を得るため第1圧延処理前の線径をφ0.260mmしたこと以外は、それぞれ比較例1~4と同様の方法にて圧延銅箔を得た。
 (比較例13~16)
 最終製品として巾0.500~1.400mm、厚さ0.035mmの箔材を得るため第1圧延処理前の線径をφ0.300mmしたこと以外は、それぞれ比較例1~4と同様の方法にて圧延銅箔を得た。
 (参考例)
 スリット処理が用いられる例として、TPCからなる厚さ0.400mmの銅板に圧延処理を施して厚さ0.100mmの板材を作成し、次いで軟化目安を引張強度(TS)=250MPaとして再結晶化処理を行い、さらに、圧延処理を施して厚さ0.035mmの銅箔を形成し、最後に銅箔を細長く切断して、巾0.500及び0.800mm、厚さ0.035mmの銅箔を得た。このような第1圧延処理→熱処理→第2圧延処理→スリット処理の一連のフローを製造工程(VIII)とした。
 次に、上記のように作製した発明例1~13、比較例1~16および参考例について、以下の方法で評価を行った。
 (伸線処理および圧延処理での減面率)
 上記第2伸線処理での減面率を、該第2伸線処理直前の丸線材の断面積(略円形)と、第2伸線処理直後の丸線材の断面積(略円形)とに基づいて算出した。また、上記第1圧延処理での減面率を、該第1圧延処理直前の丸線材の断面積と、第1圧延処理直後の板状線材の断面積(略矩形)とに基づいて算出し、さらに、上記第2圧延処理での圧下率を、該第2圧延処理直前の板状線材の断面積と、第2圧延処理直後の箔材の断面積(略矩形)とに基づいて算出した。
 (Cube方位からのずれ角度が13°以内に配向する結晶粒の面積率)
上述したEBSD法に用い、RD面1Cにおいて、Cube方位からのずれ角度が13°以内に配向する結晶粒の面積率(面積率A)を測定した。また、各圧延銅箔について、両端部1Ca、1Cbにおいて、Cube方位からのずれ角度が13°以内に配向する結晶粒の面積率(面積率B)を測定した。測定は、約500μm四方の測定領域で、スキャンステップが0.5μmの条件で測定を行った。測定面積は結晶粒を200個以上含むことを基準として調整した。なお、ずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とした。また、あらゆる回転軸に関してCube方位との回転角度を計算した。回転軸は最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、Cube方位から13°以内の方位を持つ結晶粒の面積を全測定面積で除し、面積率を算出した。
 (耐屈曲性試験)
 図6に示すようなFPC屈曲試験機(上島製作所社製、装置名「FT-2130」)を用い、試料固定板11及び可動板12に圧延銅箔1を固定し、モータ部13により可動板12を可動させて屈曲試験を行った。本耐屈曲試験は圧延銅箔単体で行った。試験条件は、屈曲半径R=6.5mm、ストロークS=±13mm、環境温度85℃、回転速度900rpm、屈曲寿命回数は圧延銅箔1が破断状態になったときの回数とし、圧延銅箔1が破断状態に至るまで屈曲試験を繰返し、そのときの屈曲寿命回数を測定した。評価基準は、寿命が製品仕様として十分であると判断される50万回以上を合格「○」、寿命が製品仕様を満たさない可能性のある40万回以上50万回未満を不合格「△」、寿命が製品仕様を満たさない40万回未満を不合格「×」とした。
 上記の方法にて測定、評価した結果を表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 表1の結果から、発明例1~7のいずれも、圧延銅箔の圧延面において、Cube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率(面積率A)が6%以上、屈曲寿命回数が50万回以上となり、耐屈曲性が良好であることが分かった。また、発明例3~7のいずれも、両端部1Ca、1CbにおけるCube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率(面積率B)が15%以上となり、耐屈曲性が良好であることが分かった。
 一方、比較例1~4では、圧延銅箔の圧延面において、Cube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率(面積率A)が本発明の範囲外であり、また、両端部1Ca,1CbにおけるCube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率(面積率B)が本発明の範囲外となり、耐屈曲性が不足した。
 また、表2の結果から、発明例8~13のいずれも、Cube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率(面積率A)が6%以上、屈曲寿命回数が50万回以上となり、耐屈曲性が良好であることが分かった。また、発明例8~11,13のいずれも、両端部1Ca、1CbにおけるCube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率(面積率B)が15%以上となり、耐屈曲性が良好であることが分かった。
 一方、比較例5~16では、圧延銅箔の圧延面において、Cube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率(面積率A)が本発明の範囲外であり、また、両端部1Ca、1CbにおけるCube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率(面積率B)が本発明の範囲外であり、耐屈曲性が不足した。また、参考例では、所望の結晶方位面積率を有しているにも関わらず寿命が大きくバラつき、必ずしも50万回には達しなかった。スリット狭幅材は寸法精度が下がり、屈曲性に悪影響を与えたことが原因である。
 したがって、丸線材を圧延して巾0.500mm~1.400mmの狭巾銅箔を作製する際、圧延銅箔の圧延面において、Cube方位からのずれ角度が13°以内の方位に配向する結晶粒の面積率を6%以上とすることで、屈曲寿命回数が50万回以上となり、耐屈曲性に優れ、高寿命化を実現できることが分かった。なお、このことは、タフピッチ銅(TPC)に限らず、無酸素銅(OFC)や、Mg、Zn、Sn、Ag、P、Cr、Si、Zr、Ti、Feの中から選ばれる1種または2種以上の元素を合計で1.0質量%以下含有する銅合金についても同様に確認できた。
 本実施形態の圧延銅箔1は、可撓性に優れ且つ耐屈曲性に優れることから、フレキシブルフラットケーブル(FFC)として好適に用いられる。特に、自動車におけるエアバックシステムの構成部品であるステアリング・ロール・コネクタ(SRC)や、ルーフハーネス、ドアハーネス、フロアハーネス等の自動車用部品に好適に用いられる。
 1 圧延銅箔
 2 丸線材
 3 丸線材
 4 丸線材
 5 板状線材
 6 箔材
 7 圧延面
 8 圧延面の巾方向両端領域
 11 試料固定板
 12 可動板
 13 モータ部
 20 フレキシブルフラットケーブル
 21-1,21-2,21-3 圧延銅箔
 21-4,21-5,21-6 圧延銅箔
 22 接着層
 23 絶縁フィルム
 24 絶縁フィルム
 RD 圧延方向
 TD 巾方向
 ND 圧延面法線方向
 R 屈曲半径

Claims (12)

  1.  銅または銅合金からなり、圧延面と、該圧延面に隣接する両側面がせん断加工面ではない非せん断加工面を有する圧延銅箔であって、
     Cube方位からのずれ角度が13°以内に配向する結晶粒が6%以上の面積率を有することを特徴とする、圧延銅箔。
  2.  巾方向に関してそれぞれ10%幅に相当する両端領域において、Cube方位からのずれ角度が13°以内に配向する結晶粒が15%以上の面積率を有することを特徴とする、請求項1記載の圧延銅箔。
  3.  Mg、Zn、Sn、Ag、P、Cr、Si、Zr、Ti、Feの中から選ばれる1種または2種以上の元素を合計で0.005質量%以上1.0質量%以下含有し、残部が銅と不可避不純物からなる銅合金からなることを特徴とする、請求項1または2記載の圧延銅箔。
  4.  屈曲寿命回数が50万回以上であることを特徴とする、請求項1~3のいずれか1項に記載の圧延銅箔。
  5.  巾0.300mm~2.000mm、厚さ0.010mm~0.200mmで構成されていることを特徴とする、請求項1~4のいずれか1項に記載の圧延銅箔。
  6.  請求項1~5のいずれか1項に記載の圧延銅箔と、
     該圧延銅箔の両面に配置された絶縁フィルムとを有することを特徴とする、フレキシブルフラットケーブル。
  7.  前記絶縁フィルムは、前記圧延銅箔の再結晶温度よりも低い温度でラミネート処理し得る樹脂で構成されていることを特徴とする、請求項5または6記載のフレキシブルフラットケーブル。
  8.  前記絶縁フィルムは、ポリエチレンテレフタレート系樹脂で構成されていることを特徴とする、請求項7記載のフレキシブルフラットケーブル。
  9.  請求項1~4のいずれか1項に記載の圧延銅箔の製造方法であって、
     銅または銅合金からなる丸線材に200~600℃、10秒~2時間の熱処理を施す第1熱処理工程と、
     前記第1熱処理工程後の丸線材を減面率75%以上で伸線する伸線処理工程と、
     前記伸線処理工程後の丸線材を圧延して板状線材を形成する第1圧延処理工程と、
     前記板状線材に200~600℃、10秒~2時間の熱処理を施す第2熱処理工程と、 前記第1熱処理工程後の板状線材を減面率50%以下で圧延して箔材を形成する第2圧延処理工程と、を有することを特徴とする圧延銅箔の製造方法。
  10.  前記第2圧延処理工程の後、前記箔材に歪取焼鈍を施す第3熱処理工程を更に有することを特徴とする、請求項9に記載の圧延銅箔の製造方法。
  11.  請求項9または10記載の製造方法により得られた圧延銅箔の両面に、絶縁フィルムを、前記圧延銅箔の再結晶温度よりも低い温度でラミネート処理して形成することを特徴とする、フレキシブルフラットケーブルの製造方法。
  12.  前記圧延銅箔の圧延面に隣接する側面にスリット加工を行うことなく、絶縁フィルムを形成することを特徴とする、請求項11記載のフレキシブルフラットケーブルの製造方法。
PCT/JP2015/060175 2014-03-31 2015-03-31 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法 WO2015152261A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15774113.3A EP3128036B1 (en) 2014-03-31 2015-03-31 Rolled copper foil, method for producing rolled copper foil, flexible flat cable, and method for producing flexible flat cable
JP2016511943A JP6696895B2 (ja) 2014-03-31 2015-03-31 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法
KR1020167024924A KR101893280B1 (ko) 2014-03-31 2015-03-31 압연 구리박, 압연 구리박의 제조방법, 플렉서블 플랫 케이블, 플렉서블 플랫 케이블의 제조방법
CN201580010014.4A CN106029929B (zh) 2014-03-31 2015-03-31 轧制铜箔、轧制铜箔的制造方法、柔性带状电缆、柔性带状电缆的制造方法
US15/279,821 US10522268B2 (en) 2014-03-31 2016-09-29 Rolled copper foil, method of manufacturing a rolled copper foil, flexible flat cable, and method of manufacturing a flexible flat cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073379 2014-03-31
JP2014073379 2014-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/279,821 Continuation US10522268B2 (en) 2014-03-31 2016-09-29 Rolled copper foil, method of manufacturing a rolled copper foil, flexible flat cable, and method of manufacturing a flexible flat cable

Publications (1)

Publication Number Publication Date
WO2015152261A1 true WO2015152261A1 (ja) 2015-10-08

Family

ID=54240580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060175 WO2015152261A1 (ja) 2014-03-31 2015-03-31 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法

Country Status (6)

Country Link
US (1) US10522268B2 (ja)
EP (1) EP3128036B1 (ja)
JP (1) JP6696895B2 (ja)
KR (1) KR101893280B1 (ja)
CN (1) CN106029929B (ja)
WO (1) WO2015152261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166658A1 (zh) * 2016-03-30 2017-10-05 乐视控股(北京)有限公司 柔性扁平电缆
CN114822985A (zh) * 2022-03-30 2022-07-29 鹤山市合润电子科技有限公司 一种制造排线的方法以及排线

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6039540B2 (ja) * 2013-12-13 2016-12-07 三井金属鉱業株式会社 電解銅箔及びその製造方法
WO2018181505A1 (ja) * 2017-03-29 2018-10-04 古河電気工業株式会社 アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品
CN107570549A (zh) * 2017-07-27 2018-01-12 佛山市顺德区禾惠电子有限公司 一种ffc线材扁平铜线的加工工艺
EP3739599A4 (en) * 2018-01-10 2021-10-20 Essex Furukawa Magnet Wire Japan Co., Ltd. INSULATED WIRE
EP3778947A4 (en) * 2018-03-27 2022-03-09 Furukawa Electric Co., Ltd. ALUMINUM ALLOY MATERIAL AND CONDUCTIVE PART, BATTERY PART, FIXING PART, SPRING PART AND STRUCTURE PART WITH THE ALUMINUM ALLOY MATERIAL
US11236410B2 (en) * 2018-03-27 2022-02-01 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
CN110252972B (zh) * 2019-07-06 2021-11-30 湖北精益高精铜板带有限公司 高强高导微合金铜箔及其加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741873U (ja) * 1993-12-28 1995-07-21 ソニーケミカル株式会社 フラットケーブル
JPH09259649A (ja) * 1996-03-22 1997-10-03 Sumitomo Electric Ind Ltd フラットケーブル
WO2011019042A1 (ja) * 2009-08-10 2011-02-17 古河電気工業株式会社 電気電子部品用銅合金材料
JP2011117034A (ja) * 2009-12-02 2011-06-16 Furukawa Electric Co Ltd:The 銅合金材料
WO2011115305A1 (ja) * 2010-03-17 2011-09-22 新日本製鐵株式会社 金属テープ材料、及び太陽電池集電用インターコネクター
WO2012029717A1 (ja) * 2010-08-31 2012-03-08 古河電気工業株式会社 銅合金板材およびその製造方法
JP2012104376A (ja) * 2010-11-10 2012-05-31 Hitachi Cable Ltd 溶融はんだめっき線の製造方法
JP2014218730A (ja) * 2013-05-10 2014-11-20 古河電気工業株式会社 圧延銅箔および圧延銅箔の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838845B2 (ja) 1976-09-29 1983-08-25 オリンパス光学工業株式会社 小型テ−プレコ−ダ−における異常信号発生防止方法
US5064939A (en) * 1990-02-06 1991-11-12 The Salk Institute For Biological Studies Cyclic gnrh antagonists
JP4041452B2 (ja) * 2003-11-05 2008-01-30 株式会社神戸製鋼所 耐熱性に優れた銅合金の製法
JP4522972B2 (ja) 2005-04-28 2010-08-11 日鉱金属株式会社 銅張積層基板用高光沢圧延銅箔
JP2011115305A (ja) * 2009-12-02 2011-06-16 Oizumi Corp 遊技機
JP5961335B2 (ja) * 2010-04-05 2016-08-02 Dowaメタルテック株式会社 銅合金板材および電気・電子部品
CN103080347A (zh) * 2010-08-27 2013-05-01 古河电气工业株式会社 铜合金板材及其制造方法
EP2752498A4 (en) 2011-08-29 2015-04-08 Furukawa Electric Co Ltd COPPER ALLOY MATERIAL AND METHOD OF MANUFACTURING THEREOF
JP5694094B2 (ja) * 2011-09-01 2015-04-01 Jx日鉱日石金属株式会社 フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器
EP2765215B1 (en) 2011-11-11 2017-05-03 Furukawa Electric Co., Ltd. Rolled copper foil
EP3279346B1 (en) * 2015-04-01 2021-11-10 Furukawa Electric Co., Ltd. Use of a rectangular rolled copper foil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741873U (ja) * 1993-12-28 1995-07-21 ソニーケミカル株式会社 フラットケーブル
JPH09259649A (ja) * 1996-03-22 1997-10-03 Sumitomo Electric Ind Ltd フラットケーブル
WO2011019042A1 (ja) * 2009-08-10 2011-02-17 古河電気工業株式会社 電気電子部品用銅合金材料
JP2011117034A (ja) * 2009-12-02 2011-06-16 Furukawa Electric Co Ltd:The 銅合金材料
WO2011115305A1 (ja) * 2010-03-17 2011-09-22 新日本製鐵株式会社 金属テープ材料、及び太陽電池集電用インターコネクター
WO2012029717A1 (ja) * 2010-08-31 2012-03-08 古河電気工業株式会社 銅合金板材およびその製造方法
JP2012104376A (ja) * 2010-11-10 2012-05-31 Hitachi Cable Ltd 溶融はんだめっき線の製造方法
JP2014218730A (ja) * 2013-05-10 2014-11-20 古河電気工業株式会社 圧延銅箔および圧延銅箔の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128036A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166658A1 (zh) * 2016-03-30 2017-10-05 乐视控股(北京)有限公司 柔性扁平电缆
CN114822985A (zh) * 2022-03-30 2022-07-29 鹤山市合润电子科技有限公司 一种制造排线的方法以及排线
CN114822985B (zh) * 2022-03-30 2023-10-27 鹤山市合润电子科技有限公司 一种制造排线的方法以及排线

Also Published As

Publication number Publication date
EP3128036B1 (en) 2020-07-01
US10522268B2 (en) 2019-12-31
CN106029929B (zh) 2019-03-22
JPWO2015152261A1 (ja) 2017-04-13
EP3128036A1 (en) 2017-02-08
KR20160137998A (ko) 2016-12-02
EP3128036A4 (en) 2018-05-09
CN106029929A (zh) 2016-10-12
KR101893280B1 (ko) 2018-08-29
US20170018329A1 (en) 2017-01-19
JP6696895B2 (ja) 2020-05-20

Similar Documents

Publication Publication Date Title
WO2015152261A1 (ja) 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法
KR102270463B1 (ko) 평각 압연 동박, 플렉시블 플랫 케이블, 회전 커넥터 및 평각 압연 동박의 제조 방법
JP5158909B2 (ja) 銅合金板材及びその製造方法
JP5320638B2 (ja) 圧延銅箔およびその製造方法
JP4285526B2 (ja) 圧延銅箔およびその製造方法
JP4466688B2 (ja) 圧延銅箔
EP2747527A1 (en) Flexible circuit board and bend structure and device comprising the flexible circuit board
JP5752536B2 (ja) 圧延銅箔
JP5245813B2 (ja) 圧延銅箔
JP2010150597A (ja) 圧延銅箔
WO2015099098A1 (ja) 銅合金板材、コネクタ、及び銅合金板材の製造方法
JP5390852B2 (ja) 圧延銅箔
KR101948958B1 (ko) 압연 동박
JP2013104088A (ja) 圧延銅箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511943

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167024924

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015774113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015774113

Country of ref document: EP