WO2013069685A1 - ブラシレスモータ - Google Patents

ブラシレスモータ Download PDF

Info

Publication number
WO2013069685A1
WO2013069685A1 PCT/JP2012/078847 JP2012078847W WO2013069685A1 WO 2013069685 A1 WO2013069685 A1 WO 2013069685A1 JP 2012078847 W JP2012078847 W JP 2012078847W WO 2013069685 A1 WO2013069685 A1 WO 2013069685A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless motor
rotor
bracket
bearing
axis
Prior art date
Application number
PCT/JP2012/078847
Other languages
English (en)
French (fr)
Inventor
雄太 小澤
匠 荒尾
雅樹 田中
直人 松岡
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to CN201280055491.9A priority Critical patent/CN103988401A/zh
Priority to US14/357,068 priority patent/US20150162798A1/en
Priority to JP2013543005A priority patent/JP6060905B2/ja
Publication of WO2013069685A1 publication Critical patent/WO2013069685A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1735Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a brushless motor including a stator core and a rotor that rotates within the stator core.
  • Patent Document 1 Conventionally, a brushless motor having no control brush and having excellent control performance is known, and an example of the brushless motor is described in Patent Document 1.
  • the motor (brushless motor) described in Patent Document 1 is applied to an electric power steering unit used as an assist when operating the steering of a vehicle.
  • the main part of the motor described in Patent Document 1 is housed in a cylindrical motor case, and the inner space of the motor case is almost sealed.
  • the rotor accommodated in the motor case has a rotor shaft. A magnet and a rotor core are attached to the rotor shaft.
  • the stator accommodated in the motor case is press-fitted into the inner peripheral surface of the motor case. This stator faces the outer peripheral surface of the rotor.
  • the stator has a structure in which an insulator is inserted into the stator core.
  • a stator coil is wound around the insulator. And it is comprised so that a rotor may rotate by raise
  • the end of the rotor shaft protrudes from one end surface of the motor case.
  • the rotor shaft is supported by two bearings provided at the left and right ends, and the first bearing is supported by the bottom of the motor case.
  • a bracket is attached to the opening of the motor case, and the bracket is provided with a flange. The flange is configured to be connected and fixed to a gear box unit that is a transmission unit.
  • the second bearing is provided on the inner periphery of the bracket. Specifically, the second bearing is disposed between the bracket and the rotor core in the direction along the axis of the rotor shaft.
  • a resolver is provided between the bracket and the rotor shaft. The resolver has a resolver rotor attached to the rotor shaft and a resolver stator attached to the terminal block. The terminal block is fixed to the bracket using screws.
  • An object of the present invention is to provide a brushless motor capable of reducing a moment generated when a rotor vibrates.
  • the brushless motor of the present invention includes a stator having a coil to which electric power is supplied, a rotor disposed inside the stator and rotated by a rotating magnetic field generated when electric power is supplied to the coil, and at least one end.
  • a brushless motor having a motor case in which the stator is fixed and a bracket that covers the opening of the motor case and is attached to the housing, and is between the rotor and the motor case. And a first bearing that rotatably supports the rotor, and a second bearing that is provided between the rotor and the bracket and rotatably supports the rotor.
  • the first bearing and the second bearing are arranged at different positions in a direction along an axis that is a rotation center of the rotor, and the shaft In the direction along the, inside side of the skeleton than the mounting position of the bracket relative to the skeleton, wherein the second bearing is arranged.
  • the second bearing is arranged such that the center in the direction along the axis is closer to the housing than the virtual plane of the mounting position of the bracket with respect to the housing.
  • the brushless motor of the present invention further includes a resolver that detects a rotation angle of the rotor, and an annular holding member is fixed to the bracket, and the resolver includes a fixed-side member attached to the holding member, A rotating side member that is attached to the rotor and forms a magnetic flux with the fixed side member, and the second bearing is held by the holding member. .
  • the holding member has a large-diameter portion and a small-diameter portion having an inner diameter smaller than the large-diameter portion arranged in a direction along the axis, and the second bearing is It is characterized by being held in the small diameter part.
  • the brushless motor of the present invention is characterized in that the fixed side member is attached to the large diameter portion.
  • the brushless motor according to the present invention is characterized in that the fixed side member is press-fitted and attached to an inner peripheral side of the large diameter portion to a substantially intermediate portion in a direction along the axis.
  • the brushless motor of the present invention is characterized in that a flange portion is provided on one end side in the direction along the axis of the holding member, and the flange portion is fixed to the bracket by insert molding. To do.
  • the brushless motor of the present invention is a drive source for a vehicle braking device.
  • the second bearing is arranged on the inner side of the housing from the mounting position of the bracket to the housing in the direction along the axis serving as the rotation center of the rotor. For this reason, when the rotor vibrates in the radial direction centering on the axis, the apparent moment arm length becomes relatively short from the support position of the rotor in the housing to the free end of the rotor. Therefore, the vibration of the rotor can be reduced.
  • the holding member attached to the bracket has both a function of holding the fixed side member of the resolver and a function of holding the second bearing. Therefore, an increase in the number of parts can be suppressed.
  • the brassless motor of the present invention since the brassless motor of the present invention is used as a drive source for a vehicle brake device, it can be applied to a vehicle brake device that requires noise reduction and vibration resistance.
  • the brushless motor 10 includes a stator (stator) 11 and a rotor (rotor) 12 arranged on the same axis A.
  • the brushless motor 10 according to the present embodiment is an inner rotor type motor in which a rotor 12 is disposed in an inner space of a stator 11.
  • the stator 11 includes a stator core (stator core) 11a formed by laminating steel plates (not shown) made of a magnetic material, an insulating insulator 11b attached to the stator core 11a, and a coil 11c wound around the insulator 11b. And have.
  • the coil 11c will be described as being wound around three phases, specifically, the U phase, the V phase, and the W phase. Further, in the direction along the axis A, a part of the insulator 11b and a part of the coil 11c are arranged on both ends of the stator core 11a.
  • the brushless motor 10 has a motor case 13 that accommodates the stator 11, the rotor 12, and other components.
  • the motor case 13 is formed by pressing a metal material such as iron or aluminum. Further, the outer surface of the motor case 13 is painted black to improve its thermal emissivity.
  • the motor case 13 has a bottomed cylindrical shape that opens at one end side having a first cylindrical portion 13 a, a second cylindrical portion 13 b, a bottom portion 13 c, a tapered portion 13 d, and a flange 13 e. .
  • the first cylindrical portion 13a is disposed around the axis A, and a bottom portion 13c is continuously formed at one end in the direction along the axis A in the first cylindrical portion 13a.
  • a tapered portion 13d is formed at the end of the first cylindrical portion 13a opposite to the bottom portion 13c, and a second cylindrical portion 13b is formed at the end of the tapered portion 13d opposite to the first cylindrical portion 13a.
  • the inner diameter of the first cylindrical portion 13a is set smaller than the inner diameter of the second cylindrical portion 13b.
  • the tapered portion 13d has an inclination in which the inner diameter increases as the first cylindrical portion 13a approaches the second cylindrical portion 13b.
  • the bottom portion 13c is formed with a folded portion 13f bent in a U shape or a V shape toward the inner side of the motor case 13.
  • the folded portion 13f is formed over the entire circumference around the axis A. Further, in the radial direction with the axis A as the center, a folded portion 13f is disposed inside the insulator 11b and the coil 11c. Furthermore, in the direction along the axis A, a part of the insulator 11b and a part of the coil 11c are partially overlapped with a part of the folded portion 13f.
  • the rotor 12 has a rotating shaft 12a that can rotate around the axis A. In the direction along the axis A, about half of the rotating shaft 12 a is located inside the motor case 13 and the other half is located outside the motor case 13.
  • the rotor core 12b is attached to the outer periphery of the part located in the motor case 13 among the rotating shafts 12a, more specifically, the part located inside the stator core 11a.
  • a permanent magnet 12c that generates a magnetic field is fixed to the outer peripheral portion of the rotor core 12b by a fixing means such as a magnet holder or a magnet cover. Further, the end of the rotating shaft 12a on the bottom 13c side is disposed inside the folded portion 13f.
  • the bearing 14 as a 1st bearing is provided inside the folding
  • the bearing 14 is a radial bearing that receives a load in the radial direction about the axis A. Furthermore, in the direction along the axis A, a partial arrangement region of the insulator 11b and the coil 11c and a placement region of the bearing 14 partially overlap each other.
  • a gear 12d is fixed to a portion of the rotating shaft 12a located outside the motor case 13. More specifically, the motor case 13 is attached to a gear box 15 described later with a bracket 16 described later interposed therebetween. Further, a cylindrical member 19 described later is fixed to the bracket 16 by insert molding. And the gear 12d is being fixed to the part located in the exterior of the through-hole 19d of the cylindrical member 19 in the rotating shaft 12a.
  • the gear box 15 is made of a metal material such as aluminum.
  • the brushless motor 10 includes a bracket 16 that is attached to cover the opening of the motor case 13.
  • the bracket 16 is interposed between the motor case 13 and the gear box 15.
  • the bracket 16 is integrally formed of a material having a lower thermal conductivity than the metal material constituting the motor case 13, for example, a resin material.
  • the bracket 16 includes a main body portion 16a configured in an annular shape, and a flange 16b that protrudes inward in the radial direction from the main body portion 16a.
  • the flange 16b is provided in an arc shape along the circumferential direction as shown in FIG.
  • the bracket 16 has a first inlay portion 16c extending toward the stator 11 in the direction along the axis A from the main body portion 16a, and the motor case 13 in a direction along the axis A from the main body portion 16a. It has the 2nd spigot part 16d as a fitting part extended in the opposite direction to the 1st spigot part 16c which is a direction to do.
  • the first spigot portion 16c has a cylindrical shape centered on the axis A, and the first spigot portion 16c is fitted in the second cylindrical portion 13b of the motor case 13. That is, the bracket 16 is attached to the opening of the motor case 13. Further, the flange 13e of the motor case 13 is in contact with the end face 16f of the main body portion 16a, and holes 13g and 13h are provided through the flange 13e in the thickness direction. The screw member 17 is inserted into the hole 13h. A plurality of female screws 16e are formed in the main body portion 16a, and a screw member 17 is screwed into the female screw 16e so that the motor case 13 is fastened and fixed to the bracket 16.
  • a mounting groove 16g is formed at a boundary portion between the end surface 16f of the main body portion 16a and the first spigot portion 16c.
  • the mounting groove 16g is formed in an annular shape about the axis A.
  • the attachment groove 16g has a depth in the direction along the axis A, and an annular O-ring 18 is attached to the attachment groove 16g as a sealing device.
  • the O-ring 18 is a known one made of a rubber-like elastic body.
  • the O-ring 18 prevents foreign matters existing outside the brushless motor 10 such as oil and dust from entering the brushless motor 10 via the contact portion between the motor case 13 and the bracket 16. It is an element for.
  • the O-ring 18 is in contact with the bottom surface of the mounting groove 16g, the outer peripheral surface of the first spigot part 16c, and the end surface of the flange 13e to form a seal surface.
  • a cylindrical member 19 is fixed to the inner periphery of the flange 16b.
  • the cylindrical member 19 is obtained by pressing a metal material.
  • the cylindrical member 19 is provided with an outer edge portion (flange portion) 19c that protrudes outward in the radial direction.
  • the outer edge portion 19c is embedded in the portion of the flange 16b of the bracket 16 and integrated with the bracket 16 by insert molding during resin molding. The insert molding will be described later.
  • the cylindrical member 19 has a large diameter portion 19a and a small diameter portion 19b having an inner diameter smaller than that of the large diameter portion 19a.
  • the large diameter portion 19a and the small diameter portion 19b are arranged side by side in the direction along the axis A. .
  • a flange 19e that protrudes inward in the radial direction is formed at the end of the small diameter portion 19b opposite to the large diameter portion 19a.
  • a through hole 19d is formed inside the flange 19e, and the rotary shaft 12a is inserted into the through hole 19d.
  • the large diameter portion 19a is provided at a position closer to the stator 11 than the small diameter portion 19b.
  • the outer edge portion 19c is formed by bending the opening end portion on the stator 11 side of the large diameter portion 19a outward, and the outer edge portion 19c is fixed to the inner periphery of the flange 16b.
  • the cylindrical member 19 having the large-diameter portion 19a, the small-diameter portion 19b, the outer edge portion 19c, and the flange 19e is integrally formed by pressing a metal plate material.
  • the small diameter portion 19b is disposed between the large diameter portion 19a and the gear 12d.
  • the outer ring of the bearing 20 as the second bearing is held immovably in the radial direction and the axial direction by the small diameter portion 19b and the flange 19e. Further, the inner ring of the bearing 20 is fitted and fixed to the rotary shaft 12a.
  • the bearing 20 is a radial bearing that receives a load in the radial direction around the axis A, and the other end of the rotary shaft 12a is rotatably supported by the bearing 20.
  • the rotor 12 is pivotally supported around the axis A by the two bearings 14 and 20 described above.
  • the bearing 20 is disposed on the inner side of the gear box 15 than the mounting position of the bracket 16 with respect to the gear box 15.
  • the mounting position of the bracket 16 with respect to the gear box 15 means a contact portion between the gear box 15 and the bracket 16.
  • a contact portion between the end surface 15a of the gear box 15 and the end surface 16h of the bracket 16 is grasped as an “attachment position (attachment surface)”.
  • Attachment position attachment surface
  • the center M of the bearing 20 in the direction along the axis A is arranged at a position closer to the inside of the gear box 15 than the extension line L (on the gear 12d side).
  • the extension line L represents a virtual plane perpendicular to the axis A.
  • the brushless motor 10 has a resolver 21 that detects the rotation angle of the rotor 12.
  • the resolver 21 is press-fitted and attached to the inner peripheral surface of the large diameter portion 19a.
  • the resolver 21 has a stator 21a and a rotor 21b.
  • the stator 21a has an annular stator core 21f, an annular portion 21j, a plurality of teeth 21g, and a plurality of coils 21h.
  • the plurality of teeth 21g are arranged along the circumferential direction on the inner circumferential surface of the stator core 21f.
  • the plurality of teeth 21g protrude inward in the radial direction of the stator core 21f.
  • the annular portion 21j is fixed to one end portion of the stator core 21f in the direction along the axis A.
  • a base portion 21k is provided on the outer periphery of the annular portion 21j.
  • the annular portion 21j and the base portion 21k are integrally formed of a resin material.
  • a plurality of insulators 21i are provided on the inner periphery of the annular portion 21j.
  • the plurality of insulators 21i are arranged along the circumferential direction of the annular portion 21j.
  • the number of the plurality of insulators 21i is the same as the number of the plurality of teeth 21g.
  • the plurality of insulators 21i and the plurality of teeth 21g are arranged at the same position in the circumferential direction of the stator core 21f.
  • the plurality of coils 21h are individually wound around the teeth 21g via the insulators 21i.
  • the rotor 21b is fixed to the outer periphery of the rotating shaft 12a.
  • a gap (air gap) in the radial direction of the stator 21a is formed between the rotor 21b and the stator 21a.
  • stator terminals 21 c are attached to the base portion 21 k of the stator 21 a with the central portion embedded therein.
  • a sensor terminal 21d is fixed to each stator terminal 21c by welding.
  • Each sensor terminal 21d is integrated with the main body 16a of the bracket 16 by insert molding.
  • Each stator terminal 21c has a sensor terminal connection portion 21m and a coil connection portion 21n provided at the end on the opposite side of the sensor terminal connection portion 21m.
  • a coil 21h is electrically connected to each coil connection portion 21n individually.
  • a sensor terminal 21d is connected to each sensor terminal connection portion 21m independently.
  • the insulator 21 i is integrated with the stator core 21 f together with the annular portion 21 j and the base 21 k by outsert molding.
  • the stator 21a is press-fitted to the substantially middle portion in the direction along the axis A on the inner peripheral side of the large diameter portion 19a.
  • the intermediate portion is an intermediate portion in the direction along the axis A of the stator core 21f of the stator 21a.
  • the outer peripheral surface of the stator core 21 f is fitted into the inner peripheral surface of the large-diameter portion 19 a, and the base 21 k is disposed outside the cylindrical member 19. Thereby, the base 21k does not interfere with the cylindrical member 19.
  • the outer edge portion 19c is also bent from the large-diameter portion 19a, the bending portion strengthens the bending portion in strength (work hardening).
  • the stress is concentrated on the small-diameter portion 19b by receiving the press-fitting load on the large-diameter portion 19a of the cylindrical member 19 at the bending portion between the large-diameter portion 19a and the outer edge portion 19c. Can be suppressed. Therefore, the positional accuracy of the bearing 20 in the direction along the axis A or the positional accuracy of the bearing 20 in the radial direction around the axis A can be maintained.
  • the flange 16b of the bracket 16 is provided with a first opening 16i between the outer edge 19c of the cylindrical member 19 and the flange 16b. Spaces located on both sides of the flange 16b in the direction along the axis A are communicated with each other by the first opening 16i.
  • the sensor terminal connection part 21m is formed in the edge part on the opposite side to the coil connection part 21n of the stator terminal 21c. The sensor terminal connection portion 21m is exposed from the base portion 21e. An electrical connection portion between the sensor terminal connection portion 21m and the sensor terminal 21d is disposed in the vicinity of the first opening portion 16i.
  • a sensor connector 22 that projects outward from the main body 16a of the bracket 16 in the radial direction is provided.
  • the sensor connector 22 is configured such that a power cord connector connected to an external power source (not shown) is detachable. The end of each sensor terminal 21 d is attached to the sensor connector 22.
  • the resolver 21 is connected to an electronic control device (not shown), and the detection signal of the resolver 21 is processed by the electronic control device.
  • the electronic control unit is configured to obtain the rotation angle of the rotor 12 based on a change in magnetic flux resistance (gap permeance) between the rotor 21b and the stator 21a.
  • a bus bar unit 23 is provided inside the motor case 13, specifically, between the insulator 11 b and the flange 16 b in the direction along the axis A.
  • the bus bar unit 23 is annularly disposed so as to surround the outer peripheral side of the rotating shaft 12a, and is attached to the insulator 11b.
  • the bus bar unit 23 is configured by embedding a bus bar in a resin mold body 23a.
  • the number of bus bars corresponding to the number of phases of the coils 11c of the stator 11 is provided. In the present embodiment, three bus bars are provided corresponding to the U phase, the V phase, and the W phase.
  • a bus bar terminal 23b is connected to each bus bar, and each bus bar terminal 23b extends in a direction along the axis. The end portion of the bus bar terminal 23b reaches the outside of the large diameter portion 19a.
  • the flange 16b of the bracket 16 is provided with a second opening 16j penetrating in the direction along the axis A.
  • the end of each bus bar terminal 23b is inserted into the second opening 16j, and the power terminal 24 is fixed to each bus bar terminal 23b by welding.
  • the intermediate portion of the power terminal 24 is insert-molded in the main body portion 16a of the bracket 16, and a power connector 25 is provided integrally with the main body portion 16a on the radially outer side of the main body portion 16a.
  • the ends of the three power terminals 24 are attached to the power connector 25.
  • the power connector 25 is configured so that a connector of a power cord connected to an external power source can be attached and detached.
  • the electric power supplied from the external power source to the brushless motor 10 is controlled based on a control signal from a controller (not shown), and the stop, rotation, rotation speed, rotation direction, and the like of the brushless motor 10 are controlled. ing.
  • a stopper 23c is provided in which a part of the resin mold body 23a is extended toward the stator 21a in the direction along the axis A.
  • the retainer 23c functions as a stopper for preventing the stator 21a of the resolver 21 from moving in the direction of coming out of the large diameter portion 19a.
  • the stopper 23c is provided on the same circumference as the stator 21a and over the entire circumference around the axis A. Further, in the state in which the motor case 13 and the bracket 16 are fixed, the stator 11 is fixed to the motor case 13, and the stator 21a of the resolver 21 is fixed to the large diameter portion 19a, the retainer 23c and the stator 21a. A predetermined gap is formed in the direction along the axis A. That is, the retainer 23c and the stator 21a are not in contact.
  • a mounting hole 16m is provided on the outer side in the radial direction from the second cylindrical portion 13b of the motor case 13.
  • the mounting hole 16m penetrates the main body portion 16a in the direction along the axis A.
  • a plurality of mounting holes 16m are provided at different positions in the circumferential direction about the axis A, and cylindrical collars 26 are fixed to the plurality of mounting holes 16m by insert molding, press fitting, or the like.
  • Each collar 26 is made of a metal material having a higher thermal conductivity than the resin material constituting the bracket 16, such as aluminum or iron.
  • an internal thread 27 is formed in the gear box 15.
  • a screw member 28 as a fastening member is inserted into the hole 13g of the flange 13e of the motor case 13, and the screw member 28 is screwed into the female screw 27 through the collar 26 and tightened, whereby the bracket 16 is connected to the gear box 15.
  • the brushless motor 10 is fixed to the gear box 15.
  • one end of the collar 26 in the direction along the axis A contacts the gear box 15, and the other end of the collar 26 in the direction along the axis A contacts the motor case 13. is doing.
  • the gear box 15 is provided with a mounting hole 15b centered on the axis A.
  • the second spigot portion 16d has a cylindrical shape centered on the axis A, and the bracket 16 is fixed to the gear box 15 in a state where the second spigot portion 16d is inserted into the mounting hole 15b of the gear box 15. ing.
  • a tip end portion 16q having a smaller diameter than the second spigot portion 16d is formed on the tip end side of the second spigot portion 16d via a step portion 16n.
  • the step portion 16n is formed in an annular shape about the axis A.
  • a cap 29 integrally formed of a resin material is attached to the opening end of the second spigot part 16d.
  • the cap 29 has a function of preventing foreign matters such as oil and dust from entering the brushless motor 10.
  • the cap 29 has a cylindrical portion 29a fitted to the inner periphery of the second spigot portion 16d, and an annular flange 29b projecting inward in the radial direction from the cylindrical portion 29a.
  • the cylindrical portion 29a is provided with a plurality of locking claws 29d at predetermined intervals along the circumferential direction. (In this embodiment, the latching claws 29d are provided at three places.) Each latching claw 29d extends in the direction along the axis A, and the latching claws 29d in the direction along the axis A.
  • the locking claws 29d are configured to be elastically deformable in the radial direction of the cap 29 with the end on the flange 29b side as a fixed end.
  • the flange 16b of the bracket 16 is provided with a plurality of locking holes 16p corresponding to the locking claws 29d at predetermined intervals along the circumferential direction.
  • the cap 29 is fixed to the bracket 16 by engaging the locking claw 29d with the locking hole 16p.
  • the flange 29b is disposed so as to surround the outside of the small diameter portion 19b.
  • the inner diameter of the flange 29b is set smaller than the outer diameter of the large diameter portion 19a and larger than the outer diameter of the small diameter portion 19b.
  • the end portion of the cylindrical portion 29a located outside the tip portion 16q of the second spigot portion 16d has a diameter larger than the outer diameter of the tip portion 16q toward the outside in the radial direction.
  • a flange 29c protruding so as to have the same outer diameter is provided, and a folded piece 29e formed so as to be folded in the direction along the axis A is provided on the outer edge portion of the flange 29c.
  • An annular mounting groove 30 is formed by the folded piece 29e, the step portion 16n of the second spigot portion 16d, and the tip portion 16q.
  • An O-ring 31 is attached to the attachment groove 30, and the O-ring 31 is in contact with the gear box 15 to form a seal surface.
  • the O-ring 31 is a sealing device for preventing foreign matter such as dust existing outside the gear box 15 from entering the inside of the gear box 15 through the gap between the gear box 15 and the bracket 16. is there.
  • a reduction mechanism 15 c is provided inside the gear box 15.
  • the speed reduction mechanism 15c has an idler gear 15d and an output gear 15e that are meshed with each other.
  • the idler gear 15d is meshed with the gear 12d.
  • the output gear 15e is configured to rotate integrally with the output shaft 15f.
  • the output shaft 15f is provided with a pinion gear (not shown).
  • the gear ratio is determined.
  • the cap 29 has both a function of preventing foreign matter from entering the brushless motor 10 and a function of forming a mounting groove 30 for attaching the O-ring 31.
  • a collar 26 is attached to the bracket 16, and the brushless motor 10 is fixed to the gear box 15 by a screw member 28 inserted into the collar 26.
  • the metal material constituting the collar 26 has a higher thermal conductivity than the resin material constituting the bracket 16. For this reason, when the stator 11 generates heat by energizing the coil 11 c, the heat is transmitted to the gear box 15 via the motor case 13 and the collar 26.
  • the metal collar 26 serves as a heat transfer path for transferring heat from the motor case 13 to the gear box 15. That is, the heat of the stator 11 can be prevented from being transmitted to the resolver 21 and the bearing 20 via the bracket 16.
  • the temperature rise of the resolver 21 is suppressed, and variation in the angle detection accuracy of the rotor 12 by the resolver 21 can be relatively reduced. Moreover, since it is difficult for heat to be transmitted to the bracket 16, the thermal expansion of the bracket 16 itself and the thermal expansion of the bearing 20 can be suppressed, and the positional accuracy of the bearing 20 can be maintained.
  • a part of the bearing 20 is disposed at a position closer to the inside of the gear box 15 than the contact surface between the gear box 15 and the bracket 16, and along the axis A of the bearing 20.
  • the center in the direction is the gear 12d side of the extension line L. Therefore, when the rotor 12 rotates and the rotor 12 vibrates in the radial direction, or when the vibration is transmitted from the gear box 15 side to the brushless motor 10 and the rotor 12 vibrates in the radial direction, it becomes a fulcrum.
  • the length from the position to the free end of the rotor 12, that is, the length of the arm of the moment can be apparently shortened. Therefore, the moment generated by the vibration of the rotor 12 can be reduced. As a result, it is possible to suppress a decrease in strength of the fixing portion between the bracket 16 and the gear box 15.
  • a collar 26 is attached to the bracket 16.
  • a screw member 28 inserted into the collar 26 fixes the brushless motor 10 to the gear box 15.
  • the metal material constituting the collar 26 has a higher thermal conductivity than the resin material constituting the bracket 16. For this reason, when the stator 11 generates heat by energizing the coil 11 c, the heat is transmitted to the gear box 15 via the motor case 13 and the collar 26.
  • the metal collar 26 serves as a heat transfer path for transferring heat from the motor case 13 to the gear box 15. That is, the heat of the stator 11 can be prevented from being transmitted to the resolver 21 and the bearing 20 via the bracket 16.
  • the temperature rise of the resolver 21 is suppressed, and the variation in the angle detection accuracy of the rotor 12 by the resolver 21 can be relatively reduced. Moreover, since it is difficult for heat to be transmitted to the bracket 16, the thermal expansion of the bracket 16 itself and the thermal expansion of the bearing 20 can be suppressed, and the positional accuracy of the bearing 20 can be maintained.
  • a part of the bearing 20 is disposed at a position closer to the inside of the gear box 15 than the contact surface between the gear box 15 and the bracket 16.
  • the center M of the bearing 20 in the direction along the axis A is disposed at a position closer to the gear 12d than the extension line L. Therefore, when the rotor 12 rotates and the rotor 12 vibrates in the radial direction, or when the vibration is transmitted from the gear box 15 side to the brushless motor 10 and the rotor 12 vibrates in the radial direction, it becomes a fulcrum.
  • the length from the position to the free end of the rotor 12, that is, the length of the arm of the moment can be apparently shortened. Therefore, the moment generated by the vibration of the rotor 12 can be reduced. As a result, it is possible to suppress a decrease in strength of the fixing portion between the bracket 16 and the gear box 15.
  • a retaining member 23c is located on the side of the stator 21a. For this reason, even if a force in a direction in which the stator 21a comes out of the cylindrical member 19 is applied, the stator 21a can be prevented from falling off the cylindrical member 19 by contacting the retaining member 23c.
  • the brushless motor 10 of the present embodiment has a black coating on the outside of the motor case 13, when the heat of the stator 11 is transmitted to the motor case 13, heat is transferred from the surface of the motor case 13 to the air. Improved heat dissipation for heat dissipation.
  • the arrangement region of the end portions of the insulator 11b and the coil 11c and the arrangement region of the bearing 14 partially overlap in the direction along the axis A. Therefore, the overall length of the brushless motor 10 in the direction along the axis A can be relatively shortened, and the brushless motor 10 can be made compact.
  • the cylindrical member 19 has both a function of holding the stator 21a of the resolver 21 and a function of holding the bearing 20. For this reason, it can suppress that the number of parts of the brushless motor 10 increases.
  • the motor case 13 is formed by pressing a metal material. For this reason, in the process of processing the motor case 13, there is a possibility that sagging due to the flow of the metal material may occur at the bent portion where the second cylindrical portion 13b and the flange 13e are continuous.
  • the bracket 16, the cylindrical member 19, the sensor terminal 21d, and the power terminal 24 are integrated by so-called insert molding. Specifically, the cylindrical member, the sensor terminal 21d, and the power terminal 24 are manufactured separately by processing a metal material, and the cylindrical member 19, the sensor terminal 21d, and the power terminal 24 are disposed in the cavity of the mold, and the mold is formed.
  • a resin material is injected into the cavity and solidified, and the cylindrical member 19, the sensor terminal 21 d and the power terminal 24 are integrated with the bracket 16.
  • the outer edge portion 19 c of the cylindrical member 19 is insert-molded into the flange 16 b of the bracket 16.
  • an intermediate portion in the longitudinal direction of the sensor terminal 21 d and an intermediate portion in the longitudinal direction of the power terminal 24 are insert-molded in the main body portion 16 a of the bracket 16.
  • a step portion 16n is formed on the outer periphery of the second spigot portion 16d of the bracket 16 during insert molding.
  • the mounting groove 30 for attaching the O-ring 31 shown in FIG. 1 is formed by the folded piece 29e of the flange 29c, the step portion 16n of the second spigot portion 16d, and the tip portion 16q. ing. That is, only a part of the wall constituting the attachment groove is provided on the second spigot part 16d side, and the outer shape of the second spigot part 16d in the plane including the axis A is simplified.
  • the bracket 16 can be formed even with a die having only upper and lower molds, and there is no need to form an attachment groove by cutting the outer periphery of the inlay portion of the bracket into an annular shape as in the prior art. Becomes easy.
  • the stator unit 32 and the motor subassembly 33 shown in FIG. 1 are assembled separately.
  • the stator unit 32 is an intermediate assembly in which the stator core 11 a, the insulator 11 b, the coil 11 c, and the bus bar unit 23 are attached inside the motor case 13.
  • the motor subassembly 33 is an intermediate assembly in which the integrated bracket 16 and cylindrical member 19, the rotor 12, the resolver 21, the bearing 20, and the O-ring 18 are assembled to each other.
  • the stator core 21 f of the resolver 21 is press-fitted into the inner peripheral surface of the large-diameter portion 19 a of the cylindrical member 19 to a substantially intermediate portion in the direction along the axis A.
  • the base part 21k does not interfere with the cylindrical member 19. Further, when the stator core 21f is press-fitted into the inner peripheral surface of the large-diameter portion 19a of the cylindrical member 19, the small-diameter portion 19b is received by receiving the press-fitting load at the bent portion between the large-diameter portion 19a and the outer edge portion 19c. It is possible to suppress the concentration of stress on the surface.
  • the stator 21a of the resolver 21 is attached to the inside of the cylindrical member 19. Then, as shown in FIG. 3, in the vicinity of the first opening 16i of the bracket 16, the end portion of the sensor terminal 21d and the sensor terminal connection portion 21m of the stator terminal 21c are brought close to each other. Therefore, before joining the motor subassembly 33 and the stator unit 32, the end of the sensor terminal 21d and the sensor terminal connection portion 21m of the stator terminal 21c are electrically welded and fixed.
  • the O-ring 18 is mounted in the mounting groove 16g of the bracket 16, and then the first inlay portion 16c is inserted into the second cylindrical portion 13b.
  • the screw member 17 is fastened and fixed.
  • the O-ring 18 is compressed by the bracket 16 and the flange 13e of the motor case 13, so that the O-ring 18 comes into contact with the bracket 16 at two places and comes into contact with the motor case 13 at one place.
  • the O-ring 18 forms sealing surfaces at a total of three locations, even if the motor case 13 has a variation in shape due to sagging, in the brushless motor 10 after completion of assembly, the O-ring 18 is provided between the motor case 13 and the bracket 16. Sealability can be secured.
  • FIG. 6 the edge part of the power terminal 24 and the edge part of the bus-bar terminal 23b are made to contact, and it hold
  • FIG. The fixed component 34 is made of pure copper and has two gripping portions 34a.
  • the gap amount between the two gripping portions 34a is set to be equal to or less than the thickness in which the power terminal 24 and the bus bar terminal 23b are overlapped. For this reason, when the power terminal 24 and the bus bar terminal 23b are sandwiched between the two gripping portions 34a, the two gripping portions 34a are elastically deformed in the direction in which they are widened, and both are strongly sandwiched by the elastic restoring force.
  • the bus bar terminal 23b are in close contact with each other without a gap. Thereafter, the power terminal 24 and the bus bar terminal 23b are joined together with the fixed component 34 by welding, for example, TIG welding. As described above, since welding is performed in a state where the power terminal 24 and the bus bar terminal 23b are reliably in contact with each other by the fixing component 34, the welding quality is improved.
  • the O-ring 31 is attached to the outer periphery of the second spigot part 16d.
  • the cap 29 is brought close to the bracket 16 and the locking claw 29d is engaged with the locking hole 16p, the cap 29 is fixed to the bracket 16 and the assembly of the brushless motor 10 is completed.
  • the locking claw 29d and the locking hole 16p constitute a snap-fit mechanism, and the cap 29 can be fixed to the bracket 16 by one operation of pressing the cap 29 against the bracket 16.
  • the cap 29 when the cap 29 is fixed to the bracket 16, the inner peripheral end of the flange 29b and the small diameter portion 19b of the cylindrical member 19 are brought close to each other through a minute gap. That is, when the cap 29 is fixed to the bracket 16, both the first opening 16 i and the second opening 16 j and the outside of the brushless motor 10 can be blocked by the cap 29. Therefore, the assembly man-hour of the brushless motor 10 can be reduced as compared with the case where the first opening 16i and the second opening 16j are separately blocked.
  • the assembled brushless motor 10 and the gear box 15 are brought close to each other, the second spigot portion 16d is inserted into the mounting hole 15b, and the end face 16h of the bracket 16 and the end face 15a of the gear box 15 are brought into contact with each other.
  • the screw member 28 is inserted into the collar 26 and tightened, the brushless motor 10 is fixed to the gear box 15 as shown in FIG.
  • the inside of the gear box 15 and the inside of the brushless motor 10 are blocked by the cap 29. Accordingly, it is possible to prevent foreign matters such as rainwater and dust from entering the brushless motor 10.
  • the brushless motor 10 in this embodiment is used in a vehicle braking device 40 as shown in FIG.
  • the braking device 40 is configured such that the pedaling force applied to the brake pedal 40a is transmitted to the master cylinder 40b.
  • an oil passage 42 for transmitting the hydraulic pressure in the hydraulic chamber 40c of the master cylinder 40b to the wheel cylinder 41a of the wheel 41 is provided.
  • the oil passage 42 is provided with an on-off valve 43 and a motor-type hydraulic control device 44.
  • the on-off valve 43 is constituted by a well-known solenoid valve or the like, and the port connected to the oil passage 42 is opened and closed by switching between energization and non-energization.
  • the motor-type hydraulic control device 44 includes a cylinder body 44a made of a metal material, a hydraulic chamber 44b formed in the cylinder body 44a, and a piston 44c provided movably on the cylinder body 44a.
  • the motor-type hydraulic control device 44 includes a spring 44d that presses the piston 44c in a predetermined direction, and a plunger 44e that presses the piston 44c in a direction opposite to the spring 44d. Further, the motor-type hydraulic control device 44 has a power transmission mechanism 44f provided with a known ball screw mechanism in order to convert the rotational movement of the output shaft 15f into the linear movement of the plunger 44e.
  • the hydraulic pressure in the hydraulic chamber 40c of the master cylinder 40b is transmitted to the wheel cylinder 41a, corresponding to the hydraulic pressure in the hydraulic chamber 40c of the master cylinder 40b.
  • a braking force is generated.
  • the hydraulic pressure in the hydraulic chamber 40c of the master cylinder 40b is not transmitted to the wheel cylinder 41a, and the hydraulic pressure in the hydraulic chamber 44b is transmitted to the wheel cylinder 41a.
  • the hydraulic pressure in the hydraulic chamber 44 b is adjusted by controlling the power supply to the coil 11 c of the brushless motor 10.
  • the brushless motor 10 of the present embodiment is a device that requires high controllability, that is, high rotational angle detection accuracy of the rotor, as an actuator such as a vehicle braking device that controls the braking force applied to the wheels 41. Can be used.
  • the stator 11 corresponds to the stator of the present invention
  • the rotor 12 corresponds to the rotor of the present invention
  • the gear box. 15 corresponds to the housing of the present invention.
  • the cylindrical member 19 corresponds to the holding member of the present invention
  • the stator 21a corresponds to the fixed side member of the present invention
  • the rotor 21b corresponds to the rotation side member of the present invention.
  • the bearing 14 corresponds to the first bearing of the present invention
  • the bearing 20 corresponds to the second bearing of the present invention.
  • the bus bar unit 23 corresponds to the power supply member of the present invention
  • the retaining member 23c corresponds to the drop-off preventing member of the present invention
  • the second spigot portion 16d corresponds to the fitting portion of the present invention
  • the mounting groove 30 corresponds to the mounting groove of the present invention
  • the mounting hole 15b corresponds to the mounting hole of the present invention
  • the O-ring 31 corresponds to the seal member of the present invention.
  • the brushless motor 10 corresponds to a drive source of the present invention.
  • the brushless motor of the present invention can also be used as an actuator of a vehicle power steering apparatus.
  • the entire bearing can be arranged on the inner side of the housing from the extended line.
  • the cylindrical member into which the screw member is inserted is not limited to a cylindrical member having a circular cross-sectional shape, and may be a square cylindrical member having a square cross-sectional shape.
  • the motor case 13 is not limited to a metal material, and may be a case integrally molded with a resin material together with the stator core 11a, for example.
  • a stat bolt may be provided on the housing.
  • the bracket can be fixed to the housing by inserting the stat bolt into the cylindrical member and attaching and tightening a nut to the male thread portion of the stat bolt.
  • the speed reduction mechanism 15c may be provided in the cylinder body 44a without providing the gear box 15, and the bracket 16 may be fixed to the outer wall of the cylinder body 44a. If comprised in this way, the cylinder main body 44a will correspond to the housing of this invention.
  • the stoppers 23c can be provided at predetermined intervals in the circumferential direction around the axis A.
  • the number of screw members 28 and the number of screw members 17 may be plural, and the number may be arbitrarily determined.
  • the operation member of the present invention includes a lever, a knob, and the like operated by a hand in addition to a brake pedal operated by a foot.
  • the housing of the present invention is to which a brushless motor that has been assembled is fixed, and the housing of the present invention includes a housing of an apparatus, a frame of a structure, and the like in addition to the gear box described above.
  • the rotating member of the present invention is an element that transmits the torque of the brushless motor to the power transmission mechanism.
  • the rotating member of the present invention includes various gears, pulleys, sprockets, and planetary gear mechanisms in addition to the rotating shaft described above. Carrier and the like.
  • the present invention can be used for a brushless motor including a stator core and a rotor that rotates within the stator core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 回転磁界を形成するステータ11と、回転磁界により回転するロータ12と、ステータ11が取り付けられたモータケース13と、モータケース13とギヤボックス15との間に介在されたブラケット16と、ロータ12の回転角度を検出するレゾルバ21とを有するブラシレスモータであって、ロータ12を回転可能に支持する第1の軸受14および第2の軸受20を有し、第1の軸受14および第2の軸受20は、ロータ12の回転中心となる軸線Aに沿った方向で異なる位置に配置されており、軸線Aに沿った方向で、ギヤボックス15に対するブラケット16の取り付け位置よりも、ギヤボックス15の内部側に第2の軸受20が配置されている。したがって、ロータ12の振動時に生じるモーメントを低減することができる。

Description

ブラシレスモータ
 本発明は、ステータコアとステータコア内で回転するロータを備えるブラシレスモータに関する。
 従来から、通電用のブラシを持たない制御性能に優れたブラシレスモータが知られており、そのブラシレスモータの一例が特許文献1に記載されている。この特許文献1に記載されたモータ(ブラシレスモータ)は、車両のステアリングを動作させる場合のアシストとして用いる電動パワーステアリングユニットに適用されるものである。特許文献1に記載されたモータは、その主要部品が円筒状のモータケースに収容され、モータケースの内部空間はほぼ密閉状態とされている。モータケース内に収容されたロータはロータ軸を有している。このロータ軸にはマグネットおよびロータコアが取り付けられている。また、モータケース内に収容されたステータはモータケースの内周面に圧入されている。このステータはロータの外周面と対向している。さらに、ステータは、ステータコアにインシュレータが挿入された構造を有している。そのインシュレータにはステータコイルが巻き付けられている。そして、ステータとロータとの間で磁界の変化を起こすことでロータが回転するように構成されている。
 一方、モータケースの一端面からはロータ軸の端部が突出されている。ロータ軸は左右端部に設けられた2個の軸受によって支持されており、第1の軸受はモータケースの底部により支持されている。また、モータケースの開口部にはブラケットが取り付けられており、そのブラケットにはフランジが設けられている。このフランジは、変速機部であるギヤボックスユニットに連結固定されるように構成されている。第2の軸受は、ブラケットの内周に設けられている。具体的には、ロータ軸の軸線に沿った方向において、ブラケットとロータコアとの間に第2の軸受が配置されている。さらに、ブラケットとロータ軸との間にはレゾルバが設けられている。レゾルバは、ロータ軸に取り付けられたレゾルバロータと、端子台に取り付けられたレゾルバステータとを有している。端子台はビスを用いてブラケットに固定されている。
特開2007-185047号公報(図1、図2)
 ところで、特許文献1に記載されたモータの適用対象である車両が上下方向に振動すると、その振動でロータが半径方向に振動する可能性がある。また、ロータ自体が回転するときに半径方向に振動する可能性もある。しかしながら、特許文献1に記載されたモータにおいては、ロータ軸を支持する2個の軸受が共に、ブラケットとギヤボックスユニットとの固定位置よりもモータケースの底部側に配置されている。このため、ロータの振動時に生じるモーメントが相対的に大きくなると作動音や振動が大きくなるという問題があった。
 本発明の目的は、ロータの振動時に生じるモーメントを低減することのできるブラシレスモータを提供することにある。
 本発明のブラシレスモータは、電力が供給されるコイルを有するステータと、このステータの内側に配置され、かつ、前記コイルに電力が供給された際に発生する回転磁界により回転するロータと、少なくとも一端が開口し、内部に前記ステータが固定されたモータケースと、このモータケースの開口部を覆い、かつ、躯体に取り付けられるブラケットとを有するブラシレスモータであって、前記ロータと前記モータケースとの間に設けられ、かつ、前記ロータを回転可能に支持する第1の軸受と、前記ロータと前記ブラケットとの間に設けられ、かつ、前記ロータを回転可能に支持する第2の軸受とを有し、前記第1の軸受および前記第2の軸受は、前記ロータの回転中心となる軸線に沿った方向で異なる位置に配置されており、前記軸線に沿った方向で、前記躯体に対する前記ブラケットの取り付け位置よりも前記躯体の内部側に、前記第2の軸受が配置されていることを特徴とする。
 本発明のブラシレスモータは、前記第2の軸受は、前記軸線に沿った方向の中心が、前記躯体に対する前記ブラケットの取り付け位置の仮想平面よりも前記躯体側となるよう配置されていることを特徴とする。
 本発明のブラシレスモータは、さらに、前記ロータの回転角度を検出するレゾルバを備え、前記ブラケットに環状の保持部材が固定されており、前記レゾルバは、前記保持部材に取り付けられた固定側部材と、前記ロータに取り付けられ、かつ、前記固定側部材との間に磁束が形成される回転側部材とを有しており、前記保持部材により前記第2の軸受が保持されていることを特徴とする。
 本発明のブラシレスモータは、前記保持部材は、大径部と、該大径部よりも内径が小さい小径部とが前記軸線に沿った方向に並べて配置されており、前記第2の軸受は前記小径部に保持されていることを特徴とする。
 本発明のブラシレスモータは、前記固定側部材は、前記大径部に取付けられていることを特徴とする。
 本発明のブラシレスモータは、前記固定側部材は、前記大径部の内周側に、前記軸線に沿った方向の略中間部位まで圧入して取付けられていることを特徴とする。
 本発明のブラシレスモータは、前記保持部材における前記軸線に沿った方向の一端側にフランジ部が設けられており、前記フランジ部は、前記ブラケットに対してインサート成形により固定されていることを特徴とする。
 本発明のブラシレスモータは、車両用制動装置の駆動源であることを特徴とする。
 本発明によれば、ロータの回転中心となる軸線に沿った方向で、躯体に対するブラケットの取り付け位置よりも躯体の内部側に、第2の軸受が配置されている。このため、ロータが軸線を中心とする半径方向に振動したとき、躯体におけるロータの支持位置からロータの自由端までにおいて、見かけ上のモーメントの腕の長さが相対的に短くなる。したがって、ロータの振動を低減することができる。
 本発明によれば、ブラケットに取り付けられた保持部材は、レゾルバの固定側部材を保持する機能と、第2の軸受を保持する機能とを兼備している。したがって、部品点数の増加を抑制できる。
 本発明によれば、本発明のブラスレスモータを車両用制動装置の駆動源として用いるので、静音化や耐振強度を要求される車両用制動装置にも対応可能となる。
本発明のブラシレスモータを示す断面図である。 本発明のブラシレスモータを構成する部品の分解斜視図である。 本発明のブラシレスモータにおいて、ブラケットにキャップを取り付ける前の状態を示す図である。 本発明のブラシレスモータを構成する部品の分解斜視図である。 本発明のブラシレスモータを用いた制動装置の模式図である。 本発明のブラシレスモータを構成する部品同士を溶接する工程を示す説明図である。 本発明のブラシレスモータを構成するレゾルバのステータの拡大図である。
 以下、本発明におけるブラシレスモータの実施形態を図面に基づいて説明する。図1に示すように、本実施形態におけるブラシレスモータ10は、同一の軸線A上に配置されたステータ(固定子)11およびロータ(回転子)12を有している。本実施形態のブラシレスモータ10は、ステータ11の内側空間にロータ12が配置されたインナロータ型のモータである。ステータ11は、磁性材料である鋼板(図示せず)を積層して形成されたステータコア(固定子鉄心)11aと、ステータコア11aに取り付けた絶縁性のインシュレータ11bと、インシュレータ11bに巻き付けられたコイル11cとを有している。本実施形態においては、コイル11cは3相、具体的には、U相、V相、W相に対応して巻き付けられているものとして説明する。また、軸線Aに沿った方向において、ステータコア11aの両端側に、インシュレータ11bの一部およびコイル11cの一部が配置されている。
 さらに、ブラシレスモータ10は、ステータ11およびロータ12、さらにその他の部品を収容するモータケース13を有している。モータケース13は、金属材料、例えば、鉄、アルミニウム等をプレス加工して成形したものである。また、モータケース13の外表面には黒色塗装を施すことにより、その熱放射率の向上が図られている。図1および図2に示すように、モータケース13は、第1円筒部13aおよび第2円筒部13bおよび底部13cおよびテーパ部13dおよびフランジ13eを有する一端側が開口する有底筒状となっている。
 第1円筒部13aは軸線Aを中心として配置されており、第1円筒部13aにおいて軸線Aに沿った方向の一端に底部13cが連続して形成されている。第1円筒部13aにおける底部13cとは反対側の端部にテーパ部13dが形成されており、そのテーパ部13dにおける第1円筒部13aとは反対側の端部に第2円筒部13bが形成されている。第1円筒部13aの内径は第2円筒部13bの内径よりも小さく設定されている。また、軸線Aを含む平面内において、テーパ部13dは第1円筒部13aから第2円筒部13bに近づくことに伴い内径が大きくなる向きの傾斜を有している。
 前記底部13cには、モータケース13の内部側に向けてU字形状もしくはV字形状に屈曲された折り返し部13fが形成されている。この折り返し部13fは、軸線Aを中心として全周に亘り形成されている。また、軸線Aを中心とする半径方向において、インシュレータ11bおよびコイル11cの内側に折り返し部13fが配置されている。さらに、軸線Aに沿った方向において、インシュレータ11bの一部およびコイル11cの一部の配置領域と、折り返し部13fの配置領域とが部分的に重なっている。
 一方、ロータ12は、軸線Aを中心として回転可能な回転軸12aを有している。そして、軸線Aに沿った方向において、回転軸12aの半分程度がモータケース13の内部に位置しており、残りの半分程度がモータケース13の外部に位置している。回転軸12aのうち、モータケース13の内部に位置している部分、より具体的には、ステータコア11aの内部に位置している部分の外周にロータコア12bが取り付けられている。このロータコア12bの外周部分には、磁界を発生させる永久磁石12cが磁石ホルダや磁石カバー等の固定手段により固定されている。また、回転軸12aにおける底部13c側の端部は折り返し部13fの内側に配置されている。
 そして、折り返し部13fの内側に第1の軸受としての軸受14が設けられており、軸受14により回転軸12aの一端が回転自在に軸支されている。この軸受14は、軸線Aを中心とする半径方向の荷重を受けるラジアル軸受である。さらに、軸線Aに沿った方向において、インシュレータ11bおよびコイル11cの一部の配置領域と、軸受14の配置領域とが、部分的に重なっている。なお、回転軸12aにおいてモータケース13の外部に位置している部分には、ギヤ12dが固定されている。より具体的に説明すると、モータケース13は、後述するブラケット16を介在させて、後述するギヤボックス15に取り付けられている。また、ブラケット16には、後述する円筒部材19がインサート成形により固定されている。そして、回転軸12aにおける円筒部材19の貫通孔19dの外部に位置している部分に、ギヤ12dが固定されている。
 次に、図1および図2を参照して、ブラシレスモータ10を躯体としてのギヤボックス15に固定するための構造を説明する。ギヤボックス15は金属材料、たとえば、アルミニウムなどにより構成されている。そして、ブラシレスモータ10は、モータケース13の開口を覆うよう取り付けられるブラケット16を備えている。このブラケット16はモータケース13とギヤボックス15との間に介在している。このブラケット16は、モータケース13を構成する金属材料よりも熱伝導率が低い材料、例えば樹脂材料により一体成形されている。ブラケット16は、環状に構成された本体部16aと、本体部16aから半径方向で内側に向けて突出したフランジ16bとを有する。フランジ16bは、図3のように円周方向に沿って円弧形状に設けられている。また、ブラケット16は、本体部16aから軸線Aに沿った方向でステータ11側に向けて延ばされた第1インロー部16cと、本体部16aから軸線Aに沿った方向でモータケース13と相反する方向である第1インロー部16cとは逆向きに延ばされた嵌め込み部としての第2インロー部16dとを有する。
 第1インロー部16cは軸線Aを中心とする円筒形状を有しており、その第1インロー部16cは、モータケース13の第2円筒部13b内に嵌合されている。つまり、ブラケット16はモータケース13の開口部に取り付けられている。また、モータケース13のフランジ13eは本体部16aの端面16fに接触しており、フランジ13eを厚さ方向に貫通する孔13g,13hが設けられている。そして、孔13hにねじ部材17が挿入されている。また、本体部16aには複数の雌ねじ16eが形成されており、ねじ部材17が雌ねじ16eにねじ込まれてモータケース13がブラケット16に締め付け固定されている。
 本体部16aの端面16fと第1インロー部16cとの境界部分には取付溝16gが形成されている。この取付溝16gは軸線Aを中心として環状に構成されている。取付溝16gは軸線Aに沿った方向の深さを有しており、取付溝16gには密封装置として環状のOリング18が取り付けられている。Oリング18はゴム状弾性体により構成された公知のものである。このOリング18は、ブラシレスモータ10の外部に存在する異物、例えば、オイル、ダストなどが、モータケース13とブラケット16との接触部分を経由して、ブラシレスモータ10内に侵入することを防止するための要素である。そして、Oリング18は、取付溝16gの底面、第1インロー部16cの外周面、フランジ13eの端面の3箇所に接触してシール面を形成している。
 一方、フランジ16bの内周には、円筒状の円筒部材19が固定されている。この円筒部材19は金属材料をプレス加工したものである。円筒部材19には、半径方向で外側にに向けて張り出した外縁部(フランジ部)19cが設けられている。外縁部19cは、樹脂成形時にインサート成形によってブラケット16のフランジ16bの部分に埋設されてブラケット16と一体化されている。なお、インサート成形については後述する。円筒部材19は、大径部19aと、大径部19aよりも内径が小さい小径部19bとを有し、大径部19aと小径部19bとが軸線Aに沿った方向に並べて配置されている。また、小径部19bにおける大径部19aとは反対側の端部には、半径方向で内側に向けて張り出したフランジ19eが形成されている。フランジ19eの内側には貫通孔19dが形成されており、回転軸12aは貫通孔19dに挿入されている。
 具体的には、軸線Aに沿った方向において、大径部19aは小径部19bよりもステータ11に近い位置に設けられている。また、外縁部19cは、大径部19aにおけるステータ11側の開口端部が外側に屈曲されて形成されており、その外縁部19cがフランジ16bの内周に固定されている。このように、大径部19a、小径部19b、外縁部19c、フランジ19eを有する円筒部材19は、金属板材をプレス加工することで一体的に成形されている。また、軸線Aに沿った方向において、小径部19bは大径部19aとギヤ12dとの間に配置されている。さらに、第2の軸受としての軸受20の外輪が、小径部19b及びフランジ19eにより、半径方向及び軸方向に移動不可に保持されている。さらに、軸受20の内輪が回転軸12aに嵌合固定されている。軸受20は、軸線Aを中心とする半径方向の荷重を受けるラジアル軸受であり、この軸受20によって回転軸12aの他端側が回転自在に支持されている。上記した2個の軸受14,20により、ロータ12は軸線Aを中心として回転自在に軸支されている。
 また、軸線Aに沿った方向において、ギヤボックス15に対するブラケット16の取り付け位置よりもギヤボックス15の内部側に軸受20が配置されている。ここで、ギヤボックス15に対するブラケット16の取り付け位置とは、ギヤボックス15とブラケット16との接触部分を意味している。本実施形態においては、ギヤボックス15の端面15aとブラケット16の端面16hとの接触部分を「取り付け位置(取り付け面)」として把握する。図1においては、取り付け位置を軸線Aに対して直角な方向に延長したとき、その延長線L上に軸受20の一部が配置されている。また、軸線Aに沿った方向における軸受20の中心Mが、延長線Lよりもギヤボックス15の内部に近い位置(ギヤ12d側)に配置された例が示されている。延長線Lは、軸線Aに対して垂直な仮想平面を表している。
 また、ブラシレスモータ10は、ロータ12の回転角度を検出するレゾルバ21を有している。このレゾルバ21は、大径部19aの内周面に圧入して取り付けられている。レゾルバ21は、ステータ21a及びロータ21bを有する。ステータ21aは、図7に示すように、環状のステータコア21fと、環状部21jと、複数のティース21gと、複数のコイル21hとを有する。複数のティース21gは、ステータコア21fの内周面に円周方向に沿って配置されている。複数のティース21gは、ステータコア21fの半径方向で内側に向けて突出されている。
 環状部21jは、軸線Aに沿った方向でステータコア21fの一方の端部に固定されている。環状部21jの外周にはベース部21kが設けられている。環状部21jとベース部21kは樹脂材料により一体成形されている。環状部21jの内周には、複数のインシュレータ21iが設けられている。複数のインシュレータ21iは、環状部21jの円周方向に沿って配置されている。複数のインシュレータ21iの数は、複数のティース21gの数と同じである。複数のインシュレータ21i及び複数のティース21gは、ステータコア21fの円周方向で同じ位置に配置されている。複数のコイル21hは、各インシュレータ21iを介して各ティース21gに対して、それぞれ単独で巻き付けられている。ロータ21bは、回転軸12aの外周に固定されている。ロータ21bとステータ21aとの間には、ステータ21aの半径方向の隙間(エアギャップ)が形成されている。
 ステータ21aのベース部21kには、図3および図7に示すように、6個のステータターミナル21cが、その中央部分が埋設されて取り付けられている。各ステータターミナル21cには、それぞれセンサターミナル21dが溶接固定されている。各センサターミナル21dは、インサート成形によりブラケット16の本体部16aに一体化されている。また、各ステータターミナル21cは、センサターミナル接続部21mと、センサターミナル接続部21mに連続して反対側の端部に設けられたコイル接続部21nとを有する。各コイル接続部21nに、コイル21hがそれぞれ単独で電気的に接続されている。さらに、各センサターミナル接続部21mには、センサターミナル21dがそれぞれ単独で接続されている。なお、本レゾルバ21においては、インシュレータ21iは、環状部21j及びベース21kと共に、ステータコア21fに対してアウトサート成形により一体化されている。
 そして、ステータ21aは、大径部19aの内周側に、軸線Aに沿った方向の略中間部位まで圧入されている。ここで、中間部位とは、ステータ21aのステータコア21fの軸線Aに沿った方向における中間部位である。また、大径部19aの内周面に嵌合されているのは、ステータコア21fの外周面であり、ベース21kは円筒部材19の外に配置されている。これにより、ベース21kが円筒部材19に干渉することがない。また、外縁部19cは大径部19aから屈曲加工されるものでもあるため、その屈曲加工により、この屈曲部位が強度的に強くなる(加工硬化)。そして、ステータ21aのステータコア21fを、円筒部材19の大径部19aに圧入荷重を、大径部19aと外縁部19cとの間の屈曲部位で受けることで、小径部19bに応力が集中することを抑制できる。したがって、軸線Aに沿った方向における軸受20の位置精度、または軸線Aを中心とする半径方向における軸受20位置精度を保つことができる。
 一方、ブラケット16のフランジ16bには、円筒部材19の外縁部19cとの間に第1開口部16iが設けられている。第1開口部16iにより、軸線Aに沿った方向でフランジ16bの両側に位置する空間同士が連通されている。そして、センサターミナル接続部21mは、ステータターミナル21cのコイル接続部21nと反対側の端部に形成されている。センサターミナル接続部21mは、ベース部21eから露出している。センサターミナル接続部21mとセンサターミナル21dとの電気的接続部分は、第1開口部16i付近に配置されている。また、ブラケット16の本体部16aから半径方向で外側に向けて張り出したセンサーコネクタ22が設けられている。センサーコネクタ22には、図示しない外部電源に接続された電源コードのコネクタが着脱されるように構成されている。そして、各センサターミナル21dの端部はセンサーコネクタ22に取り付けられている。
 さらに、外部電源から、センサターミナル21dおよびステータターミナル21cを介して、レゾルバ21のステータ21aに励磁電圧が印加されると、ステータ21aとロータ21bとの隙間に磁束が発生する。このレゾルバ21は電子制御装置(図示せず)に接続されており、レゾルバ21の検出信号が電子制御装置により処理される。そして、ロータ21bとステータ21aとの間における磁束抵抗(ギャップパーミアンス)の変化に基づいて、電子制御装置がロータ12の回転角度を求めるように構成されている。
 図1に示すように、モータケース13の内部、具体的には、軸線Aに沿った方向でインシュレータ11bとフランジ16bとの間にバスバーユニット23が設けられている。このバスバーユニット23は、回転軸12aの外周側を囲むように環状に配置されており、インシュレータ11bに取り付けられている。バスバーユニット23は、樹脂モールド体23aにバスバーが埋め込まれて構成されている。バスバーは、ステータ11のコイル11cの相数に対応する数が設けられている。本実施形態においては、U相、V相、W相に対応して3個のバスバーが設けられている。また、1つのバスバー毎にバスバーターミナル23bが接続されており、各バスバーターミナル23bは軸線に沿った方向に延ばされている。バスバーターミナル23bの端部は、大径部19aの外側まで到達している。
 さらに、図1および図2に示すように、ブラケット16のフランジ16bには、軸線Aに沿った方向に貫通する第2開口部16jが設けられている。各バスバーターミナル23bの端部は第2開口部16jに挿入されており、各バスバーターミナル23bにパワーターミナル24がそれぞれ溶接固定されている。一方、ブラケット16の本体部16aにはパワーターミナル24の中間部位がインサート成形されており、本体部16aの径方向外側にはパワーコネクタ25が本体部16aと一体的に設けられている。パワーコネクタ25に、3個のパワーターミナル24の端部が取り付けられている。パワーコネクタ25には、外部電源に接続された電源コードのコネクタが着脱されるように構成されている。そして、図示しないコントローラの制御信号に基づいて、外部電源からブラシレスモータ10に供給される電力が制御されて、ブラシレスモータ10の停止、回転、回転速度、回転方向等が制御されるように構成されている。
 一方、樹脂モールド体23aの一部を、軸線Aに沿った方向でステータ21aに向けて延ばした抜け止め23cが設けられている。この抜け止め23cは、レゾルバ21のステータ21aが大径部19aから抜け出す向きで移動することを防止するためのストッパとして機能するものである。抜け止め23cはステータ21aと同じ円周上に、かつ、軸線Aを中心として全周に亘って設けられている。また、モータケース13とブラケット16とが固定され、かつ、ステータ11がモータケース13に固定され、かつ、レゾルバ21のステータ21aが大径部19aに固定された状態において、抜け止め23cとステータ21aとの間には、軸線Aに沿った方向で所定の隙間が形成されている。つまり、抜け止め23cとステータ21aとは接触していない。
 さらに、本体部16aにおいて、モータケース13の第2円筒部13bよりも半径方向で外側には取付孔16mが設けられている。取付孔16mは、本体部16aを軸線Aに沿った方向に貫通している。取付孔16mは、軸線Aを中心とする円周方向で異なる位置に複数個設けられており、複数の取付孔16mには円筒形状のカラー26がそれぞれインサート成形や圧入等により固定されている。各カラー26は、ブラケット16を構成する樹脂材料よりも熱伝導率が高い金属材料、例えば、アルミニウム、鉄等により構成されている。一方、ギヤボックス15には雌ねじ27が形成されている。そして、モータケース13のフランジ13eの孔13gに締結部材としてのねじ部材28が挿入されており、そのねじ部材28がカラー26を通して雌ねじ27にねじ込まれて締め付けられることにより、ブラケット16がギヤボックス15に固定され、これにより、ブラシレスモータ10がギヤボックス15に固定されている。ブラケット16がギヤボックス15に固定された状態において、軸線Aに沿った方向におけるカラー26の一端がギヤボックス15に接触し、軸線Aに沿った方向におけるカラー26の他端がモータケース13に接触している。
 一方、ギヤボックス15には軸線Aを中心とする取付孔15bが設けられている。前記第2インロー部16dは軸線Aを中心とする円筒形状を有しており、第2インロー部16dがギヤボックス15の取付孔15bに挿入された状態で、ブラケット16がギヤボックス15に固定されている。図1および図4のように、第2インロー部16dの先端側には、段差部16nを介して第2インロー部16dより小径とされた先端部16qが形成されている。段差部16nは軸線Aを中心として環状に形成されている。また、第2インロー部16dの開口端には、樹脂材料により一体成形されたキャップ29が取り付けられている。キャップ29は、オイル、ダストなどの異物がブラシレスモータ10の内部に侵入することを防止する機能を有している。
 キャップ29は、第2インロー部16dの内周に嵌合された円筒部29aと、円筒部29aから半径方向で内側に向けて張り出された環状のフランジ29bとを有している。円筒部29aには円周方向に沿って所定間隔おきに複数の係止爪29dが設けられている。(本実施形態においては、係止爪29dは3箇所設けられている。)各係止爪29dは軸線Aに沿った方向に延ばされており、軸線Aに沿った方向で係止爪29dのフランジ29b側の端部を固定端として、キャップ29の半径方向に各係止爪29dが弾性変形できるように構成されている。
 一方、図3のように、ブラケット16のフランジ16bには円周方向に沿って所定間隔おきに複数の係止孔16pが係止爪29dに対応して設けられている。そして、係止爪29dが係止孔16pに係合することにより、キャップ29がブラケット16に固定されている。軸線Aに沿った方向において、フランジ29bは小径部19bの外側を取り囲むように配置されている。フランジ29bの内径は大径部19aの外径よりも小さく、かつ、小径部19bの外径よりも大きく設定されている。
 つまり、フランジ29bの内周端と、円筒部材19の小径部19bとが微小隙間を介して接近した状態にあり、キャップ29をブラケット16に固定すると、第1開口部16iおよび第2開口部16jの両方と、ブラシレスモータ10の外部とをキャップ29により遮断されている。
 さらに、円筒部29aにおいて第2インロー部16dの先端部16qの外に位置する端部には、径方向外側に向けて、先端部16qの外径よりも大径で、第2インロー部16dの外径と同じくなるよう張り出されたフランジ29cが設けられ、そのフランジ29cの外縁部には、軸線Aに沿った方向に折返すよう形成された折返し片29eが設けられている。この折返し片29eと第2インロー部16dの段差部16nと先端部16qとで環状の取付溝30が形成されている。取付溝30にはOリング31が取り付けられており、Oリング31がギヤボックス15に接触してシール面を形成している。Oリング31は、ギヤボックス15の外部に存在するダストなどの異物が、ギヤボックス15とブラケット16との隙間を経由して、ギヤボックス15の内部に侵入することを防止するための密封装置である。
 図5のように、ギヤボックス15の内部には減速機構15cが設けられている。減速機構15cは、相互に噛み合わされたアイドラギヤ15dおよび出力ギヤ15eを有している。アイドラギヤ15dはギヤ12dに噛み合わされている。出力ギヤ15eは出力軸15fと一体回転するように構成されている。出力軸15fにはピニオンギヤ(図示せず)が設けられている。このように構成された減速機構15cにおいて、ギヤ12dのトルクがアイドラギヤ15dを経由して出力ギヤ15eに伝達されたときに、ギヤ12dの回転速度よりも出力ギヤ15eの回転速度の方が低くなるように、変速比が決定されている。上記キャップ29は、異物がブラシレスモータ10の内部に侵入することを防止する機能と、Oリング31を取り付ける取付溝30を形成する機能とを兼備している。
 ブラシレスモータ10がギヤボックス15に固定された状態において、外部電源の電力が、パワーターミナル24、バスバーターミナル23bを経由してコイル11cに供給されると、ステータコア11aにより回転磁界が形成されてロータ12が回転する。ロータ12のトルクはギヤ12dを経由して減速機構15cに伝達される。また、ロータ12が回転すると、レゾルバ21のステータ21aとロータ21bとの隙間における磁束抵抗が変化し、ロータ12の回転角度が検出される。
 本実施形態のブラシレスモータ10は、ブラケット16にカラー26が取り付けられており、そのカラー26に挿入したねじ部材28により、ブラシレスモータ10がギヤボックス15に固定されている。また、ブラケット16を構成する樹脂材料よりも、カラー26を構成する金属材料の方が熱伝導率が高い。このため、コイル11cへの通電によりステータ11が発熱すると、その熱はモータケース13およびカラー26を経由してギヤボックス15に伝達される。このように、金属製のカラー26は、モータケース13からギヤボックス15に熱を伝達するための熱伝達経路としての役割をもつ。つまり、ステータ11の熱がブラケット16を経由してレゾルバ21や軸受20に伝達されることを防止できる。したがって、レゾルバ21の温度上昇が抑制されて、レゾルバ21によるロータ12の角度検出精度のバラツキが相対的に小さくすることができる。また、ブラケット16に熱が伝達し難い構造のため、ブラケット16自体の熱膨張や、軸受20の熱膨張も抑制でき、軸受20の位置精度を保つことができる。
 また、軸線Aに沿った方向において、ギヤボックス15とブラケット16との接触面よりもギヤボックス15の内部寄りの位置に、軸受20の一部が配置され、また、軸受20の軸線Aに沿った方向の中心が延長線Lよりもギヤ12d側とされている。このため、ロータ12が回転して、ロータ12が半径方向に振動する場合、または、ギヤボックス15側からブラシレスモータ10に振動が伝達されてロータ12が半径方向に振動する場合に、支点となる位置からロータ12の自由端までの長さ、即ちモーメントの腕の長さを、見かけ上で短縮することができる。したがって、ロータ12の振動により生じるモーメントを減らすことができる。その結果、ブラケット16とギヤボックス15との固定部分の強度が低下することを抑制できる。
 本実施形態のブラシレスモータ10は、ブラケット16にカラー26が取り付けられている。このカラー26に挿入したねじ部材28が、ブラシレスモータ10をギヤボックス15に固定している。また、カラー26を構成する金属材料の方が熱伝導率は、ブラケット16を構成する樹脂材料の熱伝導率よりも高い。このため、コイル11cへの通電によりステータ11が発熱すると、その熱はモータケース13およびカラー26を経由してギヤボックス15に伝達される。このように、金属製のカラー26は、モータケース13からギヤボックス15に熱を伝達するための熱伝達経路としての役割をもつ。つまり、ステータ11の熱がブラケット16を経由してレゾルバ21や軸受20に伝達されることを防止できる。したがって、レゾルバ21の温度上昇が抑制されて、レゾルバ21によるロータ12の角度検出精度のバラツキを相対的に小さくすることができる。また、ブラケット16に熱が伝達し難い構造のため、ブラケット16自体の熱膨張や、軸受20の熱膨張も抑制でき、軸受20の位置精度を保つことができるなる。
 また、軸線Aに沿った方向において、ギヤボックス15とブラケット16との接触面よりもギヤボックス15の内部に近い位置に、軸受20の一部が配置されている。さらに、軸線Aに沿った方向おける軸受20の中心Mは、延長線Lよりもギヤ12dに近い位置に配置されている。このため、ロータ12が回転して、ロータ12が半径方向に振動する場合、または、ギヤボックス15側からブラシレスモータ10に振動が伝達されてロータ12が半径方向に振動する場合に、支点となる位置からロータ12の自由端までの長さ、即ちモーメントの腕の長さを、見かけ上で短縮することができる。したがって、ロータ12の振動により生じるモーメントを減らすことができる。その結果、ブラケット16とギヤボックス15との固定部分の強度が低下することを抑制できる。
 また、図1に示す軸線Aに沿った方向において、ステータ21aの側方に抜け止め23cが位置している。このため、ステータ21aが円筒部材19から抜け出す向きの力が作用しても、ステータ21aが抜け止め23cに接触することで、ステータ21aが円筒部材19から脱落することを防止できる。
 さらに、本実施形態のブラシレスモータ10は、モータケース13の外側に黒色塗装が施されているため、ステータ11の熱がモータケース13に伝達されたときに、モータケース13の表面から熱を空気中に放熱する放熱性が向上する。
 さらに、本実施形態のブラシレスモータ10は、軸線Aに沿った方向で、インシュレータ11bおよびコイル11cの端部の配置領域と、軸受14の配置領域とが部分的に重なっている。したがって、軸線Aに沿った方向におけるブラシレスモータ10の全長を相対的に短くすることができ、ブラシレスモータ10のコンパクト化を図ることができる。
 さらに、本実施形態においては円筒部材19が、レゾルバ21のステータ21aを保持する機能と、軸受20を保持する機能とを兼備している。このため、ブラシレスモータ10の部品点数が増加することを抑制できる。
 次に、ブラシレスモータ10の部品を製造する工程の一部を説明する。モータケース13は金属材料をプレス加工して成形したものでる。このため、モータケース13の加工工程において、第2円筒部13bとフランジ13eとを連続する屈曲部分に、金属材料の流動によるダレが発生する可能性がある。一方、ブラケット16および円筒部材19およびセンサターミナル21dおよびパワーターミナル24は、いわゆるインサート成形により一体化されたものである。具体的には、金属材料を加工して円筒部材およびセンサターミナル21dおよびパワーターミナル24を別個に製造し、金型のキャビティに円筒部材19およびセンサターミナル21dおよびパワーターミナル24を配置して金型を閉じた後、キャビティ内に樹脂材料を注入して固化させ、ブラケット16に円筒部材19およびセンサターミナル21dおよびパワーターミナル24を一体化したものである。これにより、円筒部材19の外縁部19cがブラケット16のフランジ16b内にインサート成形される。また、センサターミナル21dの長手方向の中間部位、およびパワーターミナル24の長手方向の中間部位が、ブラケット16の本体部16a内にインサート成形される。また、インサート成形時にブラケット16の第2インロー部16dの外周に段差部16nが形成される。
 さらに、インサート成形をおこなうため、成形しようとするブラケット16の半径方向及び軸線A方向に分割される金型を用いることができる。本実施形態のブラシレスモータ10においては、図1に示すOリング31を取り付ける取付溝30が、フランジ29cの折返し片29eと、第2インロー部16dの段差部16nと、先端部16qとにより形成されている。つまり、第2インロー部16d側には取付溝を構成する壁の一部しか設けられておらず、軸線Aを含む平面内における第2インロー部16dの外側形状が簡略化されている。このため、上下型のみの金型でもブラケット16を成形することが可能となり、従来のように、ブラケットのインロー部外周を環状に切削加工して取付溝を形成する必要がなく、ブラケット16の加工が容易となる。
 次に、ブラシレスモータ10の組み立て工程について説明する。まず、図1に示すステータユニット32とモータサブアッセンブリ33とが別個に組み立てられる。ステータユニット32は、モータケース13の内部に、ステータコア11aとインシュレータ11bとコイル11cとバスバーユニット23とを取り付けた中間組立体である。モータサブアッセンブリ33は、一体化されたブラケット16および円筒部材19と、ロータ12とレゾルバ21と軸受20と、Oリング18とを、相互に組み付けた中間組立体である。ここで、レゾルバ21のステータコア21fは、円筒部材19の大径部19aの内周面に、軸線Aに沿った方向で略中間部まで圧入されている。これにより、ベース部21kが円筒部材19に干渉することがない。また、ステータコア21fを、円筒部材19の大径部19aの内周面に圧入した際に、その圧入荷重を大径部19aと外縁部19cとの間の屈曲部位で受けることで、小径部19bに応力が集中することを抑制できる。
 一方、モータサブアッセンブリ33の組立工程においては、円筒部材19の内部にレゾルバ21のステータ21aが取り付けられる。すると、図3のように、ブラケット16の第1開口部16i付近において、センサターミナル21dの端部と、ステータターミナル21cのセンサターミナル接続部21mとが接近した状態となる。そこで、モータサブアッセンブリ33とステータユニット32とを結合する前に、センサターミナル21dの端部と、ステータターミナル21cのセンサターミナル接続部21mとを電気的に溶接して固定する。
 そして、ステータユニット32とモータサブアッセンブリ33とを相互に組み付ける工程では、ブラケット16の取付溝16gにOリング18を装着し、次いで、第1インロー部16cを第2円筒部13b内に挿入して、ねじ部材17を締め付けて固定する。すると、Oリング18がブラケット16およびモータケース13のフランジ13eにより圧縮されて、Oリング18がブラケット16に2箇所で接触し、モータケース13には1箇所で接触する。つまり、Oリング18は合計3箇所にシール面を形成するため、モータケース13にダレによる形状のバラツキがあっても、組み立て完了後のブラシレスモータ10において、モータケース13とブラケット16との間におけるシール性を確保することができる。
 次に、ステータユニット32とモータサブアッセンブリ33とを相互に組み付けた後に、パワーターミナル24とバスバーターミナル23bとを溶接する作業を説明する。この時点では、図3のようにブラケット16にキャップ29は取り付けられていない。上記ステータユニット32とモータサブアッセンブリ33とを組み付けると、バスバーターミナル23bが第2開口部16jに挿入された状態となる。その後、第3開口部16kからパワーターミナル24をブラケット16内に挿入する。すると、パワーターミナル24とバスバーターミナル23bとが隣り合った状態となる。
 そして、図6に示すように、パワーターミナル24の端部とバスバーターミナル23bの端部とを接触させて、固定部品34により把持する(挟む)。固定部品34は純銅により構成されており、2個の把持部34aを有する。2個の把持部34a同士の隙間量は、パワーターミナル24およびバスバーターミナル23bを重ねた厚さ以下に設定されている。このため、2個の把持部34aによりパワーターミナル24およびバスバーターミナル23bを挟むと、2個の把持部34aが広げられる向きに弾性変形し、弾性復元力で両者を強く挟み付けるため、パワーターミナル24とバスバーターミナル23bとが隙間なく密着する。その後、パワーターミナル24およびバスバーターミナル23bを、固定部品34と共に溶接、例えば、ティグ溶接して接合する。このように、パワーターミナル24とバスバーターミナル23bとを固定部品34により確実に接触させた状態で溶接するため、溶接品質が向上する。
 上記のようにして、パワーターミナル24の端部とバスバーターミナル23bの端部とを溶接固定する工程が終わった後、第2インロー部16dの外周にOリング31を取り付ける。次いで、ブラケット16にキャップ29を近づけて、係止爪29dを係止孔16pに係合させると、キャップ29がブラケット16に固定されて、ブラシレスモータ10の組み立てが完了する。このように、係止爪29dと係止孔16pとによりスナップフィット機構が構成されており、キャップ29をブラケット16に向けて押し付けるという一動作により、キャップ29をブラケット16に固定することができる。
 また、キャップ29をブラケット16に固定すると、フランジ29bの内周端と、円筒部材19の小径部19bとが微小隙間を介して接近した状態となる。つまり、キャップ29をブラケット16に固定すると、第1開口部16iおよび第2開口部16jの両方と、ブラシレスモータ10の外部とをキャップ29により遮断することができる。したがって、第1開口部16iおよび第2開口部16jを別々に遮断する場合に比べブラシレスモータ10の組み立て工数を低減できる。
 さらに、組み立てられたブラシレスモータ10とギヤボックス15とを近づけ、第2インロー部16dを取付孔15bに挿入して、ブラケット16の端面16hとギヤボックス15の端面15aとを接触させる。次いで、ねじ部材28をカラー26内に挿入して締め付けると、図1に示すようにブラシレスモータ10がギヤボックス15に固定される。ブラシレスモータ10をギヤボックス15に固定すると、ギヤボックス15の内部と、ブラシレスモータ10の内部とが、キャップ29により遮断された状態となる。したがって、ブラシレスモータ10の内部に雨水や塵埃等の異物が侵入することを防止できる。
 本実施形態におけるブラシレスモータ10は、図5に示すような車両の制動装置40に用いられている。この制動装置40においては、ブレーキペダル40aに加えられた踏力がマスターシリンダ40bに伝達されるように構成されている。また、マスターシリンダ40bの油圧室40cの油圧を、車輪41のホイールシリンダ41aに伝達する油路42が設けられている。その油路42には、開閉弁43およびモータ式油圧制御装置44が設けられている。開閉弁43は周知のソレノイドバルブなどにより構成されており、通電・非通電を切り替えることにより、油路42に接続されたポートが開閉される。この開閉弁43のポートの開閉を制御する電子制御装置(図示せず)が設けられている。モータ式油圧制御装置44は、金属材料により構成されたシリンダ本体44aと、シリンダ本体44aに形成された油圧室44bと、シリンダ本体44aに移動可能に設けられたピストン44cとを有する。
 また、モータ式油圧制御装置44は、ピストン44cを所定方向に押圧するバネ44dと、ピストン44cをバネ44dとは逆向きに押圧するプランジャ44eとを有している。さらに、モータ式油圧制御装置44は、出力軸15fの回転運動をプランジャ44eの直線運動に変換するために、周知のボールねじ機構を備えた動力伝達機構44fを有している。
 上記のように構成された制動装置40において、開閉弁43のポートが開かれると、マスターシリンダ40bの油圧室40c油圧がホイールシリンダ41aに伝達され、マスターシリンダ40bの油圧室40cの油圧に応じた制動力が発生する。一方、開閉弁43のポートが閉じられると、マスターシリンダ40bの油圧室40cの油圧はホイールシリンダ41aに伝達されず、油圧室44bの油圧がホイールシリンダ41aに伝達される。この油圧室44bの油圧は、ブラシレスモータ10のコイル11cへの電力供給を制御することによって調整される。
 このように、本実施形態のブラシレスモータ10は、車輪41に与える制動力を制御する車両用制動装置のようなアクチュエータとして、高い制御性、つまり、ロータの高い回転角度検出精度の要求される装置に用いることができる。
 ここで、本実施形態において説明した構成と、本発明の構成との対応関係を説明すると、ステータ11が、本発明のステータに相当し、ロータ12が、本発明のロータに相当し、ギヤボックス15が、本発明の躯体に相当する。また、円筒部材19が、本発明の保持部材に相当し、ステータ21aが、本発明の固定側部材に相当し、ロータ21bが、本発明の回転側部材に相当する。また、軸受14が、本発明の第1の軸受に相当し、軸受20が、本発明の第2の軸受に相当する。さらに、バスバーユニット23が、本発明の電力供給部材に相当し、抜け止め23cが、本発明の脱落防止部材に相当し、第2インロー部16dが、本発明の嵌め込み部に相当し、取付溝30が、本発明の取付溝に相当し、取付孔15bが、本発明の取付孔に相当し、Oリング31が、本発明のシール部材に相当する。さらにまた、ブラシレスモータ10が、本発明の駆動源に相当する。
 また、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。本発明のブラシレスモータは、車両のパワーステアリング装置のアクチュエータとして用いることもできる。また、軸線に沿った方向における軸受の配置位置について、取り付け位置を軸線に向けて直角な方向に延長したとき、その延長線上よりも躯体の内部側に軸受の全部を配置することもできる。また、ねじ部材が挿入される筒部材は、断面形状が円形の円筒部材に限らず、断面形状が四角形の角筒部材であってもよい。さらに、モータケース13としては、金属材料製に限らず、例えば、ステータコア11aごと樹脂材料にて一体成形したケースであってもよい。
 さらに、前記ねじ部材28に代えて、躯体にスタットボルトを設けることもできる。このスタットボルトを筒部材内に挿入し、そのスタットボルトの雄ねじ部にナットを取り付けて締め付けることにより、ブラケットを躯体に固定できる。また、ギヤボックス15を設けずに、減速機構15cをシリンダ本体44a内に設け、ブラケット16をシリンダ本体44aの外壁に固定してもよい。このように構成すると、シリンダ本体44aが、本発明の躯体に相当する。さらに、抜け止め23cは、軸線Aを中心とする円周方向で所定間隔おきに設けることもできる。また、ねじ部材28の本数、ねじ部材17は複数であればよく、その本数は任意に決定すればよい。さらに、本発明の操作部材には、足で操作するブレーキペダルの他、手で操作するレバー、ノブ等が含まれる。さらに、本発明の躯体は、組み立てが完了したブラシレスモータが固定されるものであり、本発明の躯体には、前述したギヤボックスの他、機器のハウジング、構造体のフレーム等が含まれる。さらに、本発明の回転部材は、ブラシレスモータのトルクを動力伝達機構に伝達する要素であり、本発明の回転部材には、前述した回転軸の他、各種のギヤ、プーリ、スプロケット、遊星歯車機構のキャリヤ等が含まれる。
 本発明は、ステータコアとステータコア内で回転するロータを備えるブラシレスモータに利用可能である。

Claims (8)

  1.  電力が供給されるコイルを有するステータと、このステータの内側に配置され、かつ、前記コイルに電力が供給された際に発生する回転磁界により回転するロータと、少なくとも一端が開口し、内部に前記ステータが固定されたモータケースと、このモータケースの開口を覆い、かつ、躯体に取り付けられるブラケットとを有するブラシレスモータであって、
     前記ロータと前記モータケースとの間に設けられ、かつ、前記ロータを回転可能に支持する第1の軸受と、前記ロータと前記ブラケットとの間に設けられ、かつ、前記ロータを回転可能に支持する第2の軸受とを有し、前記第1の軸受および前記第2の軸受は、前記ロータの回転中心となる軸線に沿った方向で異なる位置に配置されており、
     前記軸線に沿った方向で、前記躯体に対する前記ブラケットの取り付け位置よりも前記躯体の内部側に、前記第2の軸受が配置されていることを特徴とするブラシレスモータ。
  2.  請求項1に記載のブラシレスモータにおいて、
     前記第2の軸受は、前記軸線に沿った方向の中心が、前記躯体に対する前記ブラケットの取り付け位置の仮想平面よりも前記躯体側となるよう配置されていることを特徴とするブラシレスモータ。
  3.  請求項1に記載のブラシレスモータにおいて、
     さらに、前記ロータの回転角度を検出するレゾルバを備え、
     前記ブラケットに環状の保持部材が固定されており、
     前記レゾルバは、前記保持部材に取り付けられた固定側部材と、前記ロータに取り付けられ、かつ、前記固定側部材との間に磁束が形成される回転側部材とを有しており、
     前記保持部材により前記第2の軸受が保持されていることを特徴とするブラシレスモータ。
  4.  請求項3に記載のブラシレスモータにおいて、
     前記保持部材は、大径部と、該大径部よりも内径が小さい小径部とが前記軸線に沿った方向に並べて配置されており、
     前記第2の軸受は前記小径部に保持されていることを特徴とするブラシレスモータ。
  5.  請求項4に記載のブラシレスモータにおいて、
     前記固定側部材は、前記大径部に取付けられていることを特徴とするブラシレスモータ。
  6.  請求項5に記載のブラシレスモータにおいて、
     前記固定側部材は、前記大径部の内周側に、前記軸線に沿った方向の略中間部位まで圧入して取付けられていることを特徴とするブラシレスモータ。
  7.  請求項3または4に記載のブラシレスモータにおいて、
     前記保持部材における前記軸線に沿った方向の一端側にフランジ部が設けられており、前記フランジ部は、前記ブラケットに対してインサート成形により固定されていることを特徴とするブラシレスモータ。
  8.  請求項1乃至7のうちいずれか一の請求項に記載のブラシレスモータにおいて、前記ブラシレスモータは、車両用制動装置の駆動源であることを特徴とするブラシレスモータ。
PCT/JP2012/078847 2011-11-11 2012-11-07 ブラシレスモータ WO2013069685A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280055491.9A CN103988401A (zh) 2011-11-11 2012-11-07 无刷电动机
US14/357,068 US20150162798A1 (en) 2011-11-11 2012-11-07 Brushless motor
JP2013543005A JP6060905B2 (ja) 2011-11-11 2012-11-07 ブラシレスモータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011247752 2011-11-11
JP2011-247752 2011-11-11

Publications (1)

Publication Number Publication Date
WO2013069685A1 true WO2013069685A1 (ja) 2013-05-16

Family

ID=48290059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078847 WO2013069685A1 (ja) 2011-11-11 2012-11-07 ブラシレスモータ

Country Status (4)

Country Link
US (1) US20150162798A1 (ja)
JP (1) JP6060905B2 (ja)
CN (1) CN103988401A (ja)
WO (1) WO2013069685A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573688A (zh) * 2014-08-14 2017-04-19 富朗控股公司 用于捆扎设备的驱动单元
US10090726B2 (en) 2013-07-03 2018-10-02 Mitsubishi Electric Corporation Motor and air-conditioning apparatus
JP2020005348A (ja) * 2018-06-26 2020-01-09 株式会社ミツバ ブラシレスモータ
JP2020010490A (ja) * 2018-07-06 2020-01-16 株式会社ミツバ ブラシレスモータ
CN113098186A (zh) * 2021-05-24 2021-07-09 台州立克科技有限公司 一种可调式减震电机

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176211B2 (ja) * 2014-08-29 2017-08-09 株式会社デンソー 回転電機
JP6498580B2 (ja) * 2015-09-30 2019-04-10 日本航空電子工業株式会社 ブラシレスレゾルバ及び回転角度検出装置
JP6985785B2 (ja) * 2016-07-20 2021-12-22 日本電産株式会社 モータ
US10172414B2 (en) 2016-08-02 2019-01-08 Superfeet Worldwide, Inc. Locking midsole and insole assembly
JP6551613B2 (ja) * 2016-10-19 2019-07-31 日本精工株式会社 センサの組付け構造体、電動モータ、及び電動パワーステアリング装置
CN109937522B (zh) * 2016-11-11 2020-11-06 三菱电机株式会社 旋转电机的定子及该定子的制造方法
DE112017005922T5 (de) * 2016-11-23 2019-08-29 Nidec Corporation Motor und elektrische servolenkvorrichtung
DE102017106311A1 (de) * 2017-03-23 2018-09-27 Atlanta Antriebssysteme E. Seidenspinner Gmbh & Co. Kg Wechselflansch mit Sensorik für ein Getriebe
JP6952241B2 (ja) * 2017-08-29 2021-10-20 パナソニックIpマネジメント株式会社 電動工具
JP6663943B2 (ja) * 2018-02-22 2020-03-13 本田技研工業株式会社 車両用駆動装置
US11355993B2 (en) * 2018-09-10 2022-06-07 Robert Bosch Mexico Sistemas Automotrices S. A. de C.V. Housing including snap-fit connection between housing components
US20220029504A1 (en) * 2018-12-25 2022-01-27 Nidec Corporation Motor
JP2020124015A (ja) * 2019-01-29 2020-08-13 本田技研工業株式会社 回転電機ユニット及びレゾルバステータ
JP2020124046A (ja) * 2019-01-30 2020-08-13 日本電産トーソク株式会社 電動アクチュエータ
DE102019125801A1 (de) * 2019-09-25 2021-03-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wälzlager mit Sensor und Antriebseinheit
JP6910414B2 (ja) * 2019-11-12 2021-07-28 三菱電機株式会社 回転電機
JP7387498B2 (ja) * 2020-03-12 2023-11-28 住友重機械工業株式会社 ギヤモータ
CN115149750A (zh) * 2021-03-31 2022-10-04 日本电产株式会社 马达及马达的组装方法
JP2023053535A (ja) * 2021-10-01 2023-04-13 ミネベアミツミ株式会社 モータ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226907A (ja) * 2009-03-25 2010-10-07 Mitsuba Corp ブラシレスモータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554140B2 (en) * 2000-12-19 2003-04-29 Fleetguard, Inc. Spin-on filter assembly
JP2009138578A (ja) * 2007-12-05 2009-06-25 E & E Kk 水平軸型風力発電装置のロータ支持構造
JP5397653B2 (ja) * 2008-02-12 2014-01-22 株式会社ジェイテクト 車両用操舵装置
EP2251243B1 (en) * 2008-02-12 2014-01-29 JTEKT Corporation Vehicle steering device
JP2009213197A (ja) * 2008-02-29 2009-09-17 Nsk Ltd ブラシレスモータ及びこれを使用した電動パワーステアリング装置
JP4479821B2 (ja) * 2008-04-07 2010-06-09 三菱電機株式会社 制御装置一体型電動パワーステアリング装置用モータおよび電動パワーステアリング装置
JP2010130879A (ja) * 2008-12-01 2010-06-10 Asmo Co Ltd ブラシレスモータ
JP2010280245A (ja) * 2009-06-02 2010-12-16 Jtekt Corp 車両用操舵装置
JP5224002B2 (ja) * 2010-06-08 2013-07-03 トヨタ自動車株式会社 車両の電動式ブレーキ装置
CN201961491U (zh) * 2010-12-30 2011-09-07 东莞易步机器人有限公司 一种减速电机驱动机构

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226907A (ja) * 2009-03-25 2010-10-07 Mitsuba Corp ブラシレスモータ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10090726B2 (en) 2013-07-03 2018-10-02 Mitsubishi Electric Corporation Motor and air-conditioning apparatus
CN106573688A (zh) * 2014-08-14 2017-04-19 富朗控股公司 用于捆扎设备的驱动单元
CN106573688B (zh) * 2014-08-14 2019-05-03 富朗控股公司 用于捆扎设备的驱动单元
JP2020005348A (ja) * 2018-06-26 2020-01-09 株式会社ミツバ ブラシレスモータ
JP2020010490A (ja) * 2018-07-06 2020-01-16 株式会社ミツバ ブラシレスモータ
JP7051621B2 (ja) 2018-07-06 2022-04-11 株式会社ミツバ ブラシレスモータ
CN113098186A (zh) * 2021-05-24 2021-07-09 台州立克科技有限公司 一种可调式减震电机
CN113098186B (zh) * 2021-05-24 2022-11-04 台州立克科技有限公司 一种可调式减震电机

Also Published As

Publication number Publication date
US20150162798A1 (en) 2015-06-11
JPWO2013069685A1 (ja) 2015-04-02
JP6060905B2 (ja) 2017-01-25
CN103988401A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
JP6060905B2 (ja) ブラシレスモータ
JP5901944B2 (ja) ブラシレスモータ
JP6425085B2 (ja) 回転電機及びその製造方法
JP4895704B2 (ja) 電動パワーステアリング用モータ及びレゾルバ装置
WO2016010021A1 (ja) ブラシレスワイパモータ
CN105827032A (zh) 旋转电机
WO2013038572A1 (ja) 電動式駆動装置
US20050183902A1 (en) Electric power steering apparatus
WO2009101779A9 (ja) 車両用操舵装置及びその製造方法
JP5907699B2 (ja) ブラシレスモータ
JP2010226907A (ja) ブラシレスモータ
JP2007318972A (ja) モータ及び電動パワーステアリング装置
JP3985815B2 (ja) 電動アクチュエータ
JP4685519B2 (ja) 電動パワーステアリング装置及び電動パワーステアリング装置のセンサ位置調整方法
WO2019202916A1 (ja) ロータ、モータ及びブラシレスワイパーモータ
US11563358B2 (en) Rotary actuator having resin molded body and connection terminals
US11519500B2 (en) Rotary actuator
JP2004007891A (ja) モータ
JP2013150385A (ja) 電動モータ及びその製造方法
JP2017171071A (ja) 電動パワーステアリング装置の製造方法及びトルク検出センサの調整方法
JP2011166845A (ja) 回転電機及び電動パワーステアリング装置
JP6552422B2 (ja) ブラシレスモータ
JP3889362B2 (ja) 動力車用のステアリングシステム
JP2008100642A (ja) 電動式パワーステアリング装置
JP2007318973A (ja) モータ及び電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848292

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013543005

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14357068

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848292

Country of ref document: EP

Kind code of ref document: A1