WO2013069470A1 - 固体電子装置 - Google Patents
固体電子装置 Download PDFInfo
- Publication number
- WO2013069470A1 WO2013069470A1 PCT/JP2012/077623 JP2012077623W WO2013069470A1 WO 2013069470 A1 WO2013069470 A1 WO 2013069470A1 JP 2012077623 W JP2012077623 W JP 2012077623W WO 2013069470 A1 WO2013069470 A1 WO 2013069470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- precursor
- oxide layer
- electrode layer
- electronic device
- Prior art date
Links
- 239000002243 precursor Substances 0.000 claims abstract description 201
- 239000010955 niobium Substances 0.000 claims abstract description 95
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 42
- 239000012298 atmosphere Substances 0.000 claims abstract description 41
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 40
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 40
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 40
- 239000001301 oxygen Substances 0.000 claims abstract description 40
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 127
- 239000003990 capacitor Substances 0.000 claims description 95
- 238000004049 embossing Methods 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 6
- 239000007858 starting material Substances 0.000 abstract description 5
- 239000013078 crystal Substances 0.000 description 85
- 239000010409 thin film Substances 0.000 description 84
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 49
- 238000004519 manufacturing process Methods 0.000 description 46
- 239000000758 substrate Substances 0.000 description 44
- 238000010304 firing Methods 0.000 description 37
- 230000015572 biosynthetic process Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 26
- 239000000203 mixture Substances 0.000 description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 20
- 229910052746 lanthanum Inorganic materials 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 17
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 17
- 229910052759 nickel Inorganic materials 0.000 description 17
- 238000004544 sputter deposition Methods 0.000 description 16
- 238000004528 spin coating Methods 0.000 description 13
- 238000004627 transmission electron microscopy Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- -1 bismuth alkoxides Chemical class 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000010894 electron beam technology Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000002003 electron diffraction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- PHVIFTYONCSQLN-UHFFFAOYSA-N COC([O-])C.[Sb+3].COC([O-])C.COC([O-])C Chemical compound COC([O-])C.[Sb+3].COC([O-])C.COC([O-])C PHVIFTYONCSQLN-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- JLRJWBUSTKIQQH-UHFFFAOYSA-K lanthanum(3+);triacetate Chemical compound [La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JLRJWBUSTKIQQH-UHFFFAOYSA-K 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- YGBFTDQFAKDXBZ-UHFFFAOYSA-N tributyl stiborite Chemical compound [Sb+3].CCCC[O-].CCCC[O-].CCCC[O-] YGBFTDQFAKDXBZ-UHFFFAOYSA-N 0.000 description 2
- JGOJQVLHSPGMOC-UHFFFAOYSA-N triethyl stiborite Chemical compound [Sb+3].CC[O-].CC[O-].CC[O-] JGOJQVLHSPGMOC-UHFFFAOYSA-N 0.000 description 2
- HYPTXUAFIRUIRD-UHFFFAOYSA-N tripropan-2-yl stiborite Chemical compound [Sb+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] HYPTXUAFIRUIRD-UHFFFAOYSA-N 0.000 description 2
- YVLANCSGKKUNMP-UHFFFAOYSA-N 1-methoxyethanolate nickel(2+) Chemical compound COC([O-])C.[Ni+2].COC([O-])C YVLANCSGKKUNMP-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- MVUPUQUTJREYSZ-UHFFFAOYSA-N COC([O-])C.[Nb+5].COC([O-])C.COC([O-])C.COC([O-])C.COC([O-])C Chemical compound COC([O-])C.[Nb+5].COC([O-])C.COC([O-])C.COC([O-])C.COC([O-])C MVUPUQUTJREYSZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 1
- JRLDUDBQNVFTCA-UHFFFAOYSA-N antimony(3+);trinitrate Chemical compound [Sb+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JRLDUDBQNVFTCA-UHFFFAOYSA-N 0.000 description 1
- ABSOIFOFGYREAB-UHFFFAOYSA-N bismuth 1-methoxyethanolate Chemical compound COC([O-])C.[Bi+3].COC([O-])C.COC([O-])C ABSOIFOFGYREAB-UHFFFAOYSA-N 0.000 description 1
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 1
- NYPANIKZEAZXAE-UHFFFAOYSA-N butan-1-olate;lanthanum(3+) Chemical compound [La+3].CCCC[O-].CCCC[O-].CCCC[O-] NYPANIKZEAZXAE-UHFFFAOYSA-N 0.000 description 1
- KYKVJPXYMPRNFK-UHFFFAOYSA-N butan-1-olate;nickel(2+) Chemical compound CCCCO[Ni]OCCCC KYKVJPXYMPRNFK-UHFFFAOYSA-N 0.000 description 1
- DINQVNXOZUORJS-UHFFFAOYSA-N butan-1-olate;niobium(5+) Chemical compound [Nb+5].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] DINQVNXOZUORJS-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- VBXWCGWXDOBUQZ-UHFFFAOYSA-K diacetyloxyindiganyl acetate Chemical compound [In+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VBXWCGWXDOBUQZ-UHFFFAOYSA-K 0.000 description 1
- JVLRYPRBKSMEBF-UHFFFAOYSA-K diacetyloxystibanyl acetate Chemical compound [Sb+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JVLRYPRBKSMEBF-UHFFFAOYSA-K 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- NPAJGHOZGYPSTK-UHFFFAOYSA-N ethanolate;lanthanum(3+) Chemical compound [La+3].CC[O-].CC[O-].CC[O-] NPAJGHOZGYPSTK-UHFFFAOYSA-N 0.000 description 1
- RPTHSTHUXCCDTE-UHFFFAOYSA-N ethanolate;nickel(2+) Chemical compound CCO[Ni]OCC RPTHSTHUXCCDTE-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- BYNFTNXKOKWSLS-UHFFFAOYSA-N indium(3+) nickel(2+) propan-2-olate Chemical compound [Ni++].[In+3].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] BYNFTNXKOKWSLS-UHFFFAOYSA-N 0.000 description 1
- JXZRZVJOBWBSLG-UHFFFAOYSA-N indium(3+);2-methoxyethanolate Chemical compound [In+3].COCC[O-].COCC[O-].COCC[O-] JXZRZVJOBWBSLG-UHFFFAOYSA-N 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- UHDUMRBTZQQTHV-UHFFFAOYSA-N lanthanum(3+);1-methoxyethanolate Chemical compound [La+3].COC(C)[O-].COC(C)[O-].COC(C)[O-] UHDUMRBTZQQTHV-UHFFFAOYSA-N 0.000 description 1
- SORGMJIXNUWMMR-UHFFFAOYSA-N lanthanum(3+);propan-2-olate Chemical compound [La+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SORGMJIXNUWMMR-UHFFFAOYSA-N 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- KUJRRRAEVBRSIW-UHFFFAOYSA-N niobium(5+) pentanitrate Chemical compound [Nb+5].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O KUJRRRAEVBRSIW-UHFFFAOYSA-N 0.000 description 1
- LZRGWUCHXWALGY-UHFFFAOYSA-N niobium(5+);propan-2-olate Chemical compound [Nb+5].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] LZRGWUCHXWALGY-UHFFFAOYSA-N 0.000 description 1
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- KNPRLIQQQKEOJN-UHFFFAOYSA-N tri(propan-2-yloxy)bismuthane Chemical compound [Bi+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] KNPRLIQQQKEOJN-UHFFFAOYSA-N 0.000 description 1
- OVZUSPADPSOQQN-UHFFFAOYSA-N tri(propan-2-yloxy)indigane Chemical compound [In+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] OVZUSPADPSOQQN-UHFFFAOYSA-N 0.000 description 1
- YJGJRYWNNHUESM-UHFFFAOYSA-J triacetyloxystannyl acetate Chemical compound [Sn+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O YJGJRYWNNHUESM-UHFFFAOYSA-J 0.000 description 1
- YARYADVWFXCHJI-UHFFFAOYSA-N tributoxybismuthane Chemical compound [Bi+3].CCCC[O-].CCCC[O-].CCCC[O-] YARYADVWFXCHJI-UHFFFAOYSA-N 0.000 description 1
- JWRQFDQQDBJDHD-UHFFFAOYSA-N tributoxyindigane Chemical compound CCCCO[In](OCCCC)OCCCC JWRQFDQQDBJDHD-UHFFFAOYSA-N 0.000 description 1
- MCXZOLDSEPCWRB-UHFFFAOYSA-N triethoxyindigane Chemical compound [In+3].CC[O-].CC[O-].CC[O-] MCXZOLDSEPCWRB-UHFFFAOYSA-N 0.000 description 1
- YQMWDQQWGKVOSQ-UHFFFAOYSA-N trinitrooxystannyl nitrate Chemical compound [Sn+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YQMWDQQWGKVOSQ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1254—Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/01—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
- H01L27/016—Thin-film circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1254—Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
- H01G4/1263—Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates containing also zirconium oxides or zirconates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
- H01G4/306—Stacked capacitors made by thin film techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
- H01L21/02288—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31691—Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76817—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics using printing or stamping techniques
Definitions
- the present invention relates to a solid-state electronic device.
- a thin film capacitor which is an example of a solid-state electronic device
- a thin film capacitor including a ferroelectric thin film that can be expected to operate at high speed has been developed.
- a dielectric material used for a capacitor a metal oxide is currently being actively studied, and a sputtering method is widely used as a method for forming the ferroelectric film (Patent Document 1).
- selecting a material having high characteristics as an insulating layer of a solid electronic device obtained by a manufacturing method excellent in industriality or mass productivity is also a technical problem to be solved for improving the performance of the solid electronic device. It is one of.
- the present invention realizes simplification and energy saving of the manufacturing process of the solid-state electronic device by solving the above-mentioned problems. As a result, the present invention greatly contributes to the provision of a solid-state electronic device excellent in industrial and mass productivity.
- the inventors of the present application have earnestly studied oxides that can be applied to solid-state electronic devices such as capacitors and thin film capacitors and that can be formed even by using an inexpensive and simple method. As a result of many trials and errors, the inventors have found that a specific oxide material replacing the conventionally widely used oxide is relatively inexpensive and has a simpler manufacturing process and relatively high insulation. It has been found that it has the characteristics and relative dielectric constant, and that the oxide can be applied to a solid-state electronic device. In addition, the inventors have also found that the oxide can be patterned by an inexpensive and simple method using a “embossing” processing method called “nanoimprint”.
- the inventors provided the oxide layer, and thus the oxide layer, by a process that can be greatly simplified or energy-saving compared to the prior art and can be easily increased in area. It was found that a solid-state electronic device can be manufactured.
- the present invention was created based on the above viewpoint.
- a precursor layer starting from a precursor solution containing a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as a solute is contained in an oxygen-containing atmosphere.
- a heating temperature for forming the oxide layer, which is formed by heating, includes an oxide layer (which may include inevitable impurities) composed of the bismuth (Bi) and the niobium (Nb), is 520 ° C. or more It is 650 degrees C or less.
- the oxide layer has a carbon content of 1.5 atm% or less.
- the precursor layer before forming the oxide layer, is subjected to an embossing process in a state where the precursor layer is heated at 80 ° C. to 300 ° C. in an oxygen-containing atmosphere. A layer embossing structure is formed.
- the embossing process is performed at a pressure in the range of 1 MPa to 20 MPa.
- the solid electronic device according to the fifth aspect is embossed using a mold heated in advance to a temperature in the range of 80 ° C. or higher and 300 ° C. or lower.
- the solid state electronic device is a capacitor.
- the solid state electronic device according to the seventh aspect is a semiconductor device.
- the solid state electronic device according to the eighth aspect is a MEMS device.
- the oxide layer is formed by a relatively simple process that does not use the photolithography method (for example, an ink jet method, a screen printing method, an intaglio / letter printing method, or a nanoimprint method). Can be done. Thereby, a process using a relatively long time and / or expensive equipment such as a vacuum process, a process using a photolithography method, or an ultraviolet irradiation process becomes unnecessary.
- the oxide layer is formed by heat treatment at a relatively low temperature without requiring the above-described processes, the industrial property and the mass productivity are excellent.
- the solid state electronic device According to the solid state electronic device according to the second aspect, it is possible to reduce the leakage current.
- the solid-state electronic device According to the solid-state electronic device according to the third aspect, it is possible to prevent with high accuracy that the plastic deformation ability of each precursor layer is lowered during the embossing process. Can be formed with higher accuracy.
- the solid state electronic device it is possible to form a desired embossed structure with high accuracy.
- the pressure applied when the stamping process is performed is a low pressure range of 1 MPa or more and 20 MPa or less, the mold is difficult to be damaged when the stamping process is performed, and also the area is increased. It will be advantageous.
- the solid state electronic device According to the solid state electronic device according to the sixth aspect, it is possible to provide a capacitor excellent in industrial property or mass productivity.
- the solid state electronic device According to the solid state electronic device according to the seventh aspect, it is possible to provide a semiconductor device excellent in industrial property or mass productivity.
- the solid-state electronic device According to the solid-state electronic device according to the eighth aspect, it is possible to provide a MEMS device that is excellent in industrial property or mass productivity.
- FIG. 1 shows the whole structure of the thin film capacitor which is an example of the solid-state electronic device in the 1st Embodiment of this invention. It is a cross-sectional schematic diagram which shows one process of the manufacturing method of the thin film capacitor in the 1st Embodiment of this invention. It is a cross-sectional schematic diagram which shows one process of the manufacturing method of the thin film capacitor in the 1st Embodiment of this invention. It is a cross-sectional schematic diagram which shows one process of the manufacturing method of the thin film capacitor in the 1st Embodiment of this invention. It is a cross-sectional schematic diagram which shows one process of the manufacturing method of the thin film capacitor in the 1st Embodiment of this invention.
- FIG. 1 It is a figure which shows the whole structure of the thin film capacitor which is an example of the solid-state electronic device in the 3rd Embodiment of this invention. It is a cross-sectional schematic diagram which shows one process of the manufacturing method of the thin film capacitor in the 3rd Embodiment of this invention. It is a cross-sectional schematic diagram which shows one process of the manufacturing method of the thin film capacitor in the 3rd Embodiment of this invention. It is a cross-sectional schematic diagram which shows one process of the manufacturing method of the thin film capacitor in the 3rd Embodiment of this invention. It is a cross-sectional schematic diagram which shows one process of the manufacturing method of the thin film capacitor in the 3rd Embodiment of this invention.
- FIG. 1 is a diagram showing an overall configuration of a thin film capacitor 100 that is an example of a solid-state electronic device according to the present embodiment.
- the thin film capacitor 100 includes a lower electrode layer 20 from the substrate 10 side, an oxide layer 30 that is an insulating layer made of a dielectric, and an upper electrode layer 40 on the substrate 10.
- the substrate 10 is, for example, a high heat resistant glass, a SiO 2 / Si substrate, an alumina (Al 2 O 3 ) substrate, an STO (SrTiO) substrate, an STO (SrTiO) layer on the surface of the Si substrate via an SiO 2 layer and a Ti layer.
- Various insulating base materials can be used including a semiconductor substrate (eg, Si substrate, SiC substrate, Ge substrate, etc.).
- a metal material such as a refractory metal such as platinum, gold, silver, copper, aluminum, molybdenum, palladium, ruthenium, iridium, tungsten, or an alloy thereof is used. .
- the insulating layer composed of a dielectric is a precursor layer starting from a precursor solution containing a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as a solute, It is formed by heating in an oxygen-containing atmosphere (hereinafter, the production method according to this step is also referred to as a solution method).
- the production method according to this step is also referred to as a solution method.
- an oxide layer 30 composed of bismuth (Bi) and niobium (Nb) (which may include inevitable impurities) is obtained.
- the present embodiment is characterized in that the heating temperature for forming the oxide layer (the temperature for the main baking) is set to 520 ° C. or more and 650 ° C. or less.
- the oxide layer formed of bismuth (Bi) and niobium (Nb) is also referred to as a BNO layer.
- FIG. 2 are cross-sectional schematic views showing one process of the method of manufacturing the thin film capacitor 100, respectively.
- the lower electrode layer 20 is formed on the substrate 10.
- the oxide layer 30 is formed on the lower electrode layer 20, and then the upper electrode layer 40 is formed on the oxide layer 30.
- FIG. 2 is a diagram illustrating a process for forming the lower electrode layer 20.
- the lower electrode layer 20 of the thin film capacitor 100 is formed of platinum (Pt)
- Pt platinum
- the oxide layer 30 is formed on the lower electrode layer 20.
- the oxide layer 30 is formed in the order of (a) formation of a precursor layer and preliminary baking, and (b) main baking.
- 3 and 4 are diagrams showing a process of forming the oxide layer 30.
- a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) are formed on the lower electrode layer 20 by a known spin coating method.
- a precursor layer 30a is formed using a precursor solution as a solute (referred to as a precursor solution, hereinafter the same for a precursor solution) as a starting material.
- the precursor containing bismuth (Bi) for the oxide layer 30 include bismuth octylate, bismuth chloride, bismuth nitrate, or various bismuth alkoxides (for example, bismuth isopropoxide, bismuth butoxide, bismuth ethoxy).
- niobium (Nb) for the oxide layer 30 in this embodiment examples include niobium octylate, niobium chloride, niobium nitrate, and various niobium alkoxides (for example, niobium isopropoxide, niobium butoxide).
- niobium ethoxide, niobium methoxyethoxide examples include Niobium ethoxide, niobium methoxyethoxide.
- the solvent of the precursor solution is one alcohol solvent selected from the group consisting of ethanol, propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol, or acetic acid, propionic acid, and octylic acid.
- a solvent that is one carboxylic acid selected from the group is preferred.
- pre-baking is performed as pre-baking in an oxygen atmosphere or in the air (generally also referred to as “oxygen-containing atmosphere”) for a predetermined time in a temperature range of 80 ° C. to 250 ° C.
- oxygen-containing atmosphere oxygen-containing atmosphere
- the solvent in the precursor layer 30a is sufficiently evaporated, and in order to develop characteristics that enable future plastic deformation (preferably in a gel state (before thermal decomposition, the organic chain remains). Is considered).
- the pre-baking temperature is preferably 80 ° C. or higher and 250 ° C. or lower.
- the desired thickness of the oxide layer 30 can be obtained by repeating the formation and preliminary baking of the precursor layer 30a by the above-described spin coating method a plurality of times.
- the heating temperature for forming the oxide layer is 520 ° C. or higher and 650 ° C. or lower, but the upper limit is not limited.
- the heating temperature exceeds 650 ° C., it is more preferable to set the heating temperature to 650 ° C. or less because crystallization of the oxide layer proceeds and the amount of leakage current tends to increase remarkably.
- the heating temperature is less than 520 ° C., the solvent in the precursor solution and the carbon in the solute remain, and the amount of leakage current increases remarkably, so the heating temperature is 520 ° C. or more and 650 ° C. or less. It is preferable to do.
- the thickness range of the oxide layer 30 is preferably 30 nm or more. If the thickness of the oxide layer 30 is less than 30 nm, it is not preferable to apply it to a solid-state electronic device due to an increase in leakage current and dielectric loss accompanying a decrease in the thickness.
- Table 1 shows the results of measuring the relationship between the atomic composition ratio of bismuth (Bi) and niobium (Nb) in the oxide layer 30, the relative dielectric constant at 1 KHz, and the leakage current value when 0.5 MV / cm is applied. .
- FIG. 5 is a diagram illustrating a process of forming the upper electrode layer 40.
- the upper electrode layer 40 of the thin film capacitor 100 is formed of platinum (Pt)
- the upper electrode layer 40 is formed of a layer made of platinum (Pt) on the oxide layer 30 by a known sputtering method.
- the precursor layer starting from a precursor solution containing a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as a solute is heated in an oxygen-containing atmosphere.
- a formed oxide layer made of bismuth (Bi) and niobium (Nb) is provided, and a heating temperature for forming the oxide layer is set to be 520 ° C. or higher and 650 ° C. or lower.
- the lower electrode layer and the upper electrode layer of a thin film capacitor which is an example of a solid-state electronic device are conductive oxides (including inevitable impurities) made of a metal oxide. It consists of The overall configuration of a thin film capacitor 200, which is an example of a solid-state electronic device in the present embodiment, is shown in FIG.
- This embodiment is the same as the first embodiment except that the lower electrode layer and the upper electrode layer are made of a conductive oxide made of a metal oxide. Accordingly, regarding the configuration of the present embodiment, the same reference numerals are assigned to the configurations corresponding to those in FIG.
- the thin film capacitor 200 includes a substrate 10. On the substrate 10, a lower electrode layer 220 from the substrate 10 side, an oxide layer 30 that is an insulating layer made of a dielectric, and an upper electrode Layer 240 is provided.
- Examples of the lower electrode layer 220 and the upper electrode layer 240 include an oxide layer made of lanthanum (La) and nickel (Ni), an oxide layer made of antimony (Sb) and tin (Sn), and indium (In). And an oxide layer made of tin (Sn) (however, inevitable impurities may be included; the same shall apply hereinafter).
- FIGS. 6 and 7 are cross-sectional schematic views showing one process of the method of manufacturing the thin film capacitor 200, respectively.
- the lower electrode layer 220 is formed on the substrate 10.
- the oxide layer 30 is formed on the lower electrode layer 220, and then the upper electrode layer 240 is formed.
- the description which overlaps with 1st Embodiment is abbreviate
- FIGS. 6 and 7 are diagrams showing a process for forming the lower electrode layer 220.
- the lower electrode layer 220 of the thin film capacitor 200 is formed of a conductive oxide layer made of lanthanum (La) and nickel (Ni).
- the lower electrode layer 220 is formed in the order of (a) a precursor layer formation and preliminary firing step, and (b) a main firing step.
- a precursor containing lanthanum (La) and a precursor containing nickel (Ni) are formed on a substrate 10 by a known spin coating method as a solute.
- the lower electrode layer precursor layer 220a starting from the precursor solution (referred to as the lower electrode layer precursor solution, hereinafter the same as the lower electrode layer precursor solution) is formed.
- an example of a precursor containing lanthanum (La) for the lower electrode layer 220 is lanthanum acetate.
- lanthanum nitrate, lanthanum chloride, or various lanthanum alkoxides may be employed.
- An example of a precursor containing nickel (Ni) for the lower electrode layer precursor layer 220a is nickel acetate.
- nickel nitrate, nickel chloride, or various nickel alkoxides for example, nickel indium isopropoxide, nickel butoxide, nickel ethoxide, nickel methoxyethoxide
- examples of the precursor for the lower electrode layer containing antimony (Sb) include antimony acetate, antimony nitrate, Antimony chloride or various antimony alkoxides (for example, antimony isopropoxide, antimony butoxide, antimony ethoxide, antimony methoxyethoxide) may be employed.
- precursors containing tin (Sn) include tin acetate, tin nitrate, tin chloride, or various tin alkoxides (for example, antimony isopropoxide, antimony butoxide, antimony ethoxide, antimony methoxyethoxide). Can be done. Further, when a conductive oxide composed of indium (In) and tin (Sn) is employed as the lower electrode layer, examples of the precursor containing indium (In) include indium acetate, indium nitrate, indium chloride, and various types.
- Indium alkoxides eg, indium isopropoxide, indium butoxide, indium ethoxide, indium methoxyethoxide
- indium alkoxides eg, indium isopropoxide, indium butoxide, indium ethoxide, indium methoxyethoxide
- Sn tin
- the desired thickness of the lower electrode layer 220 can be obtained by repeating the formation and preliminary baking of the lower electrode layer precursor layer 220a by the spin coating method described above a plurality of times.
- (B) Main baking Thereafter, as the main baking, the lower electrode layer precursor layer 220a is heated to 550 ° C. in an oxygen atmosphere for about 20 minutes. As a result, as shown in FIG. 7, a lower electrode layer 220 made of lanthanum (La) and nickel (Ni) (however, inevitable impurities may be included. The same applies hereinafter) is formed on the substrate 10.
- the heating temperature for forming the conductive oxide layer is preferably 520 ° C. or higher and 650 ° C. or lower for the same reason as the oxide layer of the first embodiment.
- the conductive oxide layer made of lanthanum (La) and nickel (Ni) is also called an LNO layer.
- the oxide layer 30 is formed on the lower electrode layer 220.
- the oxide layer 30 of this embodiment is formed in the order of (a) formation of a precursor layer and preliminary baking, and (b) main baking.
- FIG. 8 is a diagram illustrating a state in which the oxide layer 30 is formed on the lower electrode layer 220.
- the thickness range of the oxide layer 30 is preferably 30 nm or more.
- the upper electrode layer 240 is formed on the oxide layer 30.
- the upper electrode layer 240 of the thin film capacitor 200 is formed of a conductive oxide layer made of lanthanum (La) and nickel (Ni), like the lower electrode layer 220. Similar to the lower electrode layer 220, the upper electrode layer 240 is formed in the order of (a) formation of a precursor layer and preliminary firing, and (b) main firing.
- the lower electrode layer precursor layer 240a formed on the oxide layer 30 is shown in FIG. 9, and the upper electrode layer 240 formed on the oxide layer 30 is shown in FIG.
- a precursor layer starting from a precursor solution containing a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as a solute is heated in an oxygen-containing atmosphere.
- the oxide layer made of bismuth (Bi) and niobium (Nb) is provided, and the heating temperature for forming the oxide layer is 520 ° C. or higher and 650 ° C. or lower.
- the lower electrode layer, the oxide layer serving as an insulating layer, and the upper electrode layer are all made of a metal oxide, all steps can be performed in an oxygen-containing atmosphere without using a vacuum process. Compared with the sputtering method, the area can be easily increased, and the industrial property or mass productivity can be remarkably improved.
- the thin film capacitor 300 includes a substrate 10. On the substrate 10, a lower electrode layer 320 from the substrate 10 side, an oxide layer 330 that is an insulating layer made of a dielectric, an upper electrode Layer 340 is provided.
- FIGS. 12 to 21 are cross-sectional schematic views showing one process of the method of manufacturing the thin film capacitor 300.
- a lower electrode layer 320 that is embossed is formed on the substrate 10.
- an oxide layer 330 that has been embossed is formed on the lower electrode layer 320.
- the upper electrode layer 340 is formed on the oxide layer 330.
- the description which overlaps with 2nd Embodiment is abbreviate
- the lower electrode layer 320 of the thin film capacitor 300 is formed of a conductive oxide layer made of lanthanum (La) and nickel (Ni)
- the lower electrode layer 320 is formed in the order of (a) formation of a precursor layer and preliminary baking, (b) stamping process, and (c) main baking process.
- a lower electrode using a precursor solution for a lower electrode layer having a precursor containing lanthanum (La) and a precursor containing nickel (Ni) as a solute on a substrate 10 by a known spin coating method.
- a layer precursor layer 320a is formed.
- the lower electrode layer precursor layer 320a is heated in a temperature range of 80 ° C. or more and 250 ° C. or less for a predetermined time in an oxygen-containing atmosphere.
- the desired thickness of the lower electrode layer 320 can be obtained by repeating the formation and preliminary baking of the lower electrode layer precursor layer 320a by the spin coating method described above a plurality of times.
- embossing is performed at a pressure of 1 MPa or more and 20 MPa or less.
- the heating method in the embossing process include a method of bringing the substrate into a predetermined temperature atmosphere by using a chamber, an oven, or the like, a method of heating the base on which the substrate is mounted from the lower part with a heater, The following is a method in which stamping is performed using a heated mold. In this case, it is more preferable in terms of workability to use a method in which the base is heated from below by a heater and a mold heated in advance to 80 ° C. or more and 300 ° C. or less.
- the reason why the heating temperature of the mold is set to 80 ° C. or more and 300 ° C. or less is as follows.
- the heating temperature during the embossing process is lower than 80 ° C.
- the plastic deformation ability of the lower electrode layer precursor layer 320a is reduced due to the lower temperature of the lower electrode layer precursor layer 320a. Therefore, the feasibility of molding at the time of molding the embossed structure, or the reliability or stability after molding becomes poor.
- the heating temperature during the stamping process exceeds 300 ° C., the decomposition (oxidative thermal decomposition) of the organic chain, which is the source of the plastic deformability, proceeds, so that the plastic deformability decreases.
- the precursor layer 320a for the lower electrode layer is heated within a range of 100 ° C. or more and 250 ° C. or less during the embossing process.
- the pressure in the stamping process is a pressure in the range of 1 MPa or more and 20 MPa or less
- the lower electrode layer precursor layer 320a is deformed following the surface shape of the mold, and a desired stamping structure is obtained. Can be formed with high accuracy.
- the pressure applied when embossing is performed is set to a low pressure range of 1 MPa to 20 MPa. As a result, it is difficult for the mold to be damaged when the stamping process is performed, and it is advantageous for increasing the area.
- the entire lower electrode layer precursor layer 320a is etched. As a result, as shown in FIG. 13, the lower electrode layer precursor layer 320a is completely removed from the region other than the region corresponding to the lower electrode layer (etching process for the entire surface of the lower electrode layer precursor layer 320a).
- a mold release treatment for the surface of each precursor layer that will be brought into contact with the stamping surface and / or a mold release treatment for the die pressing surface of the mold is performed. It is preferable that an embossing process is performed on each precursor layer. Such processing is performed. As a result, since the frictional force between each precursor layer and the mold can be reduced, the stamping process can be performed on each precursor layer with higher accuracy.
- the release agent that can be used for the release treatment include surfactants (for example, fluorine surfactants, silicon surfactants, nonionic surfactants, etc.), fluorine-containing diamond-like carbon, and the like. can do.
- (C) Main baking Next, main baking is performed with respect to the precursor layer 320a for lower electrode layers. As a result, as shown in FIG. 14, a lower electrode layer 320 (however, inevitable impurities may be included. The same applies hereinafter) made of lanthanum (La) and nickel (Ni) is formed on the substrate 10.
- a lower electrode layer 320 (however, inevitable impurities may be included. The same applies hereinafter) made of lanthanum (La) and nickel (Ni) is formed on the substrate 10.
- an oxide layer 330 serving as an insulating layer is formed on the lower electrode layer 320.
- the oxide layer 330 is formed in the order of (a) precursor layer formation and preliminary firing step, (b) stamping step, and (c) main firing step.
- 15 to 18 are diagrams showing a process for forming the oxide layer 330.
- A) Formation of Precursor Layer and Pre-Firing As shown in FIG. 15, on the substrate 10 and the patterned lower electrode layer 320, a precursor containing bismuth (Bi) and niobium (as in the second embodiment) A precursor layer 330a starting from a precursor solution having a precursor containing Nb) as a solute is formed. Thereafter, preliminary firing is performed in an oxygen-containing atmosphere while being heated to 80 ° C. or higher and 250 ° C. or lower.
- embossing process is performed with respect to the precursor layer 330a which performed only preliminary baking. Specifically, in order to perform patterning of the oxide layer, embossing is performed at a pressure of 1 MPa or more and 20 MPa or less using the insulating layer mold M2 while being heated to 80 ° C. or more and 300 ° C. or less.
- the entire surface of the precursor layer 330a is etched.
- the precursor layer 330a is completely removed from a region other than the region corresponding to the oxide layer 330 (etching process for the entire surface of the precursor layer 330a).
- the etching process of the precursor layer 330a of this embodiment was performed using the wet etching technique which does not use a vacuum process, it does not prevent etching using what is called dry etching technique using plasma.
- an oxide layer 330 (however, it may contain unavoidable impurities; the same applies hereinafter) is formed on the lower electrode layer 320 as an insulating layer.
- the precursor layer 330a is heated in an oxygen atmosphere in a temperature range of 520 ° C. or more and 650 ° C. or less for a predetermined time.
- the etching process for the entire surface of the precursor layer 330a can be performed after the main baking, as described above, the precursor layer is entirely etched between the embossing process and the main baking process. It is a more preferable aspect that the process is included. This is because unnecessary regions can be removed more easily than etching after each precursor layer is finally fired.
- a precursor containing lanthanum (La) and a precursor containing nickel (Ni) are formed on the oxide layer 330 in the same manner as the lower electrode layer 320 by a known spin coating method.
- a precursor layer 340a for the upper electrode layer is formed using a precursor solution as a solute as a starting material.
- preliminary firing is performed by heating the precursor layer 340a for the upper electrode layer in an oxygen-containing atmosphere in a temperature range of 80 ° C. to 250 ° C.
- the precursor layer 340 a for the upper electrode layer is heated to 80 ° C. or more and 300 ° C. or less. Then, using the upper electrode layer mold M3, the upper electrode layer precursor layer 340a is embossed at a pressure of 1 MPa to 20 MPa. Then, as shown in FIG. 20, the upper electrode layer precursor layer 340a is completely removed from the region other than the region corresponding to the upper electrode layer 340 by etching the entire surface of the upper electrode layer precursor layer 340a.
- the main electrode precursor layer 340a is heated to 530 ° C. to 600 ° C. for a predetermined time in the oxygen atmosphere as the main firing, thereby being formed on the oxide layer 330.
- a precursor layer starting from a precursor solution containing a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as a solute is heated in an oxygen-containing atmosphere.
- the oxide layer made of bismuth (Bi) and niobium (Nb) is provided, and the heating temperature for forming the oxide layer is 520 ° C. or higher and 650 ° C. or lower.
- the substrate 10 is provided with the lower electrode layer 320, the oxide layer 330 as an insulating layer, and the upper electrode layer 340 from the substrate 10 side, and a stamping structure is formed by stamping. Is done.
- a process using a relatively long time and / or expensive equipment such as a vacuum process, a process using a photolithography method, or an ultraviolet irradiation process becomes unnecessary.
- the thin film capacitor 300 of this embodiment is extremely excellent in industrial property or mass productivity.
- embossing is performed in the formation process of all layers of a thin film capacitor which is an example of a solid-state electronic device.
- the overall configuration of a thin film capacitor 400 which is an example of a solid-state electronic device in the present embodiment, is shown in FIG.
- the lower electrode layer, the oxide layer, and the upper electrode layer are pre-fired after the precursor layers are stacked. All precursor layers that have been pre-fired are subjected to embossing and then subjected to main firing. Therefore, regarding the configuration of the present embodiment, the same reference numerals are assigned to the configurations corresponding to those in FIG.
- the thin film capacitor 400 includes a substrate 10, and on the substrate 10, a lower electrode layer 420 from the substrate 10 side, an oxide layer 430 that is an insulating layer made of a dielectric, and an upper electrode. Layer 440 is provided.
- FIG. 22 to 24 are schematic cross-sectional views showing one process of the method for manufacturing the thin film capacitor 400.
- a lower electrode layer precursor layer 420 a that is a precursor layer of the lower electrode layer 420
- a precursor layer 430 a that is a precursor layer of the oxide layer 430
- an upper electrode layer 440 are formed on the substrate 10.
- a laminate of the upper electrode layer precursor layer 440a which is the precursor layer, is formed.
- this laminated body is embossed and subjected to main firing.
- the description overlapping with that of the third embodiment is omitted.
- a precursor layer for a lower electrode layer 420a which is a precursor layer for the lower electrode layer 420, and a precursor for an oxide layer 430 are formed on the substrate 10.
- the lower electrode layer 420 and the upper electrode layer 440 of the thin film capacitor 400 are formed of a conductive oxide layer made of lanthanum (La) and nickel (Ni) and insulated.
- the oxide layer 430 to be a layer is formed of an oxide layer made of bismuth (Bi) and niobium (Nb)
- a lower electrode using a precursor solution for a lower electrode layer having a precursor containing lanthanum (La) and a precursor containing nickel (Ni) as a solute on a substrate 10 by a known spin coating method.
- a layer precursor layer 420a is formed.
- the lower electrode layer precursor layer 420a is heated in a temperature range of 80 ° C. or higher and 250 ° C. or lower in an oxygen-containing atmosphere for a predetermined time.
- the desired thickness of the lower electrode layer 420 can be obtained by repeating the formation and preliminary baking of the lower electrode layer precursor layer 420a by the spin coating method described above a plurality of times.
- a precursor layer 430a is formed on the precursor layer 420a for the lower electrode layer that has been pre-fired.
- a precursor layer 430a is formed using a precursor solution containing a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as a solute.
- the precursor layer 430a is heated in a temperature range of 80 ° C. or higher and 250 ° C. or lower for a predetermined time in an oxygen-containing atmosphere.
- a precursor containing lanthanum (La) and nickel (Ni) are contained on the precursor layer 430a that has been pre-fired by a known spin coating method in the same manner as the precursor layer 420a for the lower electrode layer.
- a precursor layer 440a for the upper electrode layer is formed using a precursor solution having the precursor as a solute as a starting material.
- preliminary firing is performed by heating the precursor layer 440a for the upper electrode layer in an oxygen-containing atmosphere in a temperature range of 80 ° C. to 250 ° C.
- the entire stack of the precursor layers (420a, 430a, 440a) is etched.
- the stacked body (420a, 430a, 440a) of each precursor layer is completely removed from regions other than the region corresponding to the lower electrode layer, the oxide layer, and the upper electrode layer ( Etching step for the entire surface of each precursor layer (420a, 430a, 440a).
- a precursor layer starting from a precursor solution containing a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as a solute is heated in an oxygen-containing atmosphere.
- the oxide layer made of bismuth (Bi) and niobium (Nb) is provided, and the heating temperature for forming the oxide layer is 520 ° C. or higher and 650 ° C. or lower.
- the main baking is performed after the stamping process is performed on the precursor layers of all the oxide layers that have been subjected to the preliminary baking. Therefore, it is possible to shorten the process when forming the embossing structure.
- the following method measured the physical property of the solid-state electronic device, and implemented the composition analysis of the BNO oxide layer.
- Electrical characteristics (1) Leakage current A voltage of 0.25 MV / cm was applied between the lower electrode layer and the upper electrode layer to measure the current. For this measurement, Model 4156C manufactured by Agilent Technologies was used.
- Dielectric loss (tan ⁇ ) The dielectric loss of the examples and comparative examples was measured as follows. At room temperature, a dielectric loss was measured by applying a voltage of 0.1 V and an AC voltage of 1 KHz between the lower electrode layer and the upper electrode layer. For this measurement, a 1260-SYS type broadband dielectric constant measurement system manufactured by Toyo Corporation was used.
- the relative permittivity of the examples and comparative examples was measured as follows.
- the relative dielectric constant was measured by applying a voltage of 0.1 V and an AC voltage of 1 KHz between the lower electrode layer and the upper electrode layer.
- a 1260-SYS type broadband dielectric constant measurement system manufactured by Toyo Corporation was used.
- Example 1 a thin film capacitor was created based on the manufacturing method of the embodiment of the present embodiment. First, a lower electrode layer is formed on a substrate, and then an oxide layer is formed. Thereafter, an upper electrode layer is formed on the oxide layer. High heat-resistant glass was used as the substrate. As the lower electrode layer, a layer made of platinum (Pt) was formed on a substrate by a known sputtering method. The film thickness of the lower electrode layer at this time was 200 nm.
- the precursor containing bismuth (Bi) for the oxide layer to be an insulating layer was bismuth octylate, and niobium octylate was used as the precursor containing niobium (Nb).
- pre-baking it was heated to 250 ° C. for 5 minutes, and the formation of the precursor layer by spin coating and pre-baking were repeated 5 times.
- the precursor layer was heated to 520 ° C. for about 20 minutes in an oxygen atmosphere.
- the thickness of the oxide layer 30 was about 170 nm.
- the film thickness of each layer was determined by measuring the level difference between each layer and the substrate using a stylus method.
- the atomic composition ratio between bismuth (Bi) and niobium (Nb) in the oxide layer was 1 when bismuth (Bi) was 1, and niobium (Nb) was 1.
- As the upper electrode layer a layer made of platinum (Pt) was formed on the oxide layer by a known sputtering method.
- the size of the upper electrode layer at this time was 100 ⁇ m ⁇ 100 ⁇ m, and the film thickness was 150 nm.
- the electrical characteristics were a leakage current value of 3.0 ⁇ 10 ⁇ 4 A / cm 2 , a dielectric loss of 0.025, and a relative dielectric constant of 62.
- the composition of the crystal phase of the BNO oxide layer both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained. More specifically, the pyrochlore type crystal structure is a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure or (Bi 1.5 Zn 0). .5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure was found to be substantially the same or approximate.
- Example 2 a thin film capacitor was produced under the same conditions as Example 1 except that the precursor layer was heated to 520 ° C. for 1 hour in an oxygen atmosphere as the main firing.
- the electrical characteristics were a leakage current value of 3.0 ⁇ 10 ⁇ 8 A / cm 2 , a dielectric loss of 0.01, and a relative dielectric constant of 70.
- As the composition of the crystal phase of the BNO oxide layer both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained.
- the pyrochlore type crystal structure is a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure or (Bi 1.5 Zn 0). .5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure was found to be substantially the same or approximate. Further, the carbon content was 1.5 atm% or less and a small value below the detection limit, and the hydrogen content was 1.6 atm%.
- Example 3 a thin film capacitor was produced under the same conditions as in Example 1 except that the precursor layer was heated to 530 ° C. for 20 minutes in an oxygen atmosphere as the main firing.
- the electrical characteristics were a leakage current value of 3.0 ⁇ 10 ⁇ 6 A / cm 2 , a dielectric loss of 0.01, and a relative dielectric constant of 110.
- As the composition of the crystal phase of the BNO oxide layer both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained.
- the pyrochlore type crystal structure is a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure or (Bi 1.5 Zn 0). .5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure was found to be substantially the same or approximate.
- Example 4 a thin film capacitor was produced under the same conditions as Example 1 except that the precursor layer was heated to 530 ° C. for 2 hours in an oxygen atmosphere as the main firing.
- the leakage current value was 8.8 ⁇ 10 ⁇ 8 A / cm 2
- the dielectric loss was 0.018
- the relative dielectric constant was 170.
- the composition of the crystal phase of the BNO oxide layer both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained.
- the pyrochlore type crystal structure is a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure or (Bi 1.5 Zn 0). .5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure was found to be substantially the same or approximate. Further, the carbon content was 1.5 atm% or less and a small value below the detection limit, and the hydrogen content was 1.4 atm%.
- Example 5 a thin film capacitor was prepared under the same conditions as in Example 1 except that the precursor layer was heated to 550 ° C. for 1 minute in an oxygen atmosphere as the main firing.
- the electrical characteristics were a leakage current value of 5.0 ⁇ 10 ⁇ 7 A / cm 2 , a dielectric loss of 0.01, and a relative dielectric constant of 100.
- As the composition of the crystal phase of the BNO oxide layer both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained.
- the pyrochlore type crystal structure is a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure or (Bi 1.5 Zn 0). .5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure was found to be substantially the same or approximate.
- Example 6 a thin film capacitor was produced under the same conditions as in Example 1 except that the precursor layer was heated to 550 ° C. for 20 minutes in an oxygen atmosphere as the main firing.
- the leakage current value was 1.0 ⁇ 10 ⁇ 6 A / cm 2
- the dielectric loss was 0.001
- the relative dielectric constant was 180.
- the composition of the crystal phase of the BNO oxide layer both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained.
- the pyrochlore type crystal structure is a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure or (Bi 1.5 Zn 0). .5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure was found to be substantially the same or approximate. Further, the carbon content was 1.5 atm% or less and the hydrogen content was 1.0 atm% or less, both values being smaller than the detection limit.
- Example 7 a thin film capacitor was produced under the same conditions as Example 1 except that the precursor layer was heated to 550 ° C. for 12 hours in an oxygen atmosphere as the main firing.
- the electrical characteristics were a leakage current value of 2.0 ⁇ 10 ⁇ 5 A / cm 2 , a dielectric loss of 0.004, and a relative dielectric constant of 100.
- As the composition of the crystal phase of the BNO oxide layer both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained.
- the pyrochlore type crystal structure is a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure or (Bi 1.5 Zn 0). .5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure was found to be substantially the same or approximate.
- Example 8 a thin film capacitor was produced under the same conditions as in Example 1 except that the precursor layer was heated to 600 ° C. for 20 minutes in an oxygen atmosphere as the main firing.
- the leakage current value was 7.0 ⁇ 10 ⁇ 6 A / cm 2
- the dielectric loss was 0.001
- the relative dielectric constant was 80.
- the composition of the crystal phase of the BNO oxide layer a crystal phase having a ⁇ -BiNbO 4 type crystal structure could be obtained.
- Example 9 a thin film capacitor was produced under the same conditions as in Example 1 except that the precursor layer was heated to 650 ° C. for 20 minutes in an oxygen atmosphere as the main firing.
- the leakage current value was 5.0 ⁇ 10 ⁇ 3 A / cm 2
- the dielectric loss was 0.001
- the relative dielectric constant was 95.
- the composition of the crystal phase of the BNO oxide layer a crystal phase having a ⁇ -BiNbO 4 type crystal structure could be obtained.
- Example 10 a thin film capacitor was created based on the manufacturing method of the fourth embodiment of the present embodiment.
- High heat-resistant glass was used as the substrate 10.
- an oxide layer made of lanthanum (La) and nickel (Ni) was formed.
- Lanthanum acetate was used as a precursor containing lanthanum (La) for the lower electrode layer and the upper electrode layer.
- an oxide layer made of bismuth (Bi) and niobium (Nb) was formed as the oxide layer serving as an insulating layer.
- the precursor containing bismuth (Bi) for the oxide layer was bismuth octylate, and the precursor containing niobium (Nb) was niobium octylate.
- a precursor layer of a lower electrode layer was formed on a substrate and pre-baked. As pre-baking, heating was performed at 250 ° C. for about 5 minutes, and formation of the precursor layer by spin coating and pre-baking were repeated five times.
- a precursor layer of an oxide layer to be an insulating layer was formed on the precursor layer of the lower electrode layer, and heated to 250 ° C. for about 5 minutes as pre-baking.
- the precursor layer of the upper part electrode layer was formed on the precursor layer of the oxide layer used as an insulating layer on the conditions similar to the precursor layer of a lower electrode layer.
- pre-baking it was heated to 150 ° C. for about 5 minutes, and the formation of the precursor layer by spin coating and pre-baking were repeated five times.
- the laminate of these precursor layers was heated to 650 ° C. for 20 minutes in an oxygen-containing atmosphere as main firing.
- the thickness of the oxide layer serving as the insulating layer was about 170 nm.
- the atomic composition ratio of bismuth (Bi) and niobium (Nb) in the oxide layer serving as the insulating layer was set to 1 when bismuth (Bi) was 1.
- the thickness of the upper electrode layer and the lower electrode layer was about 60 nm.
- the size of the upper electrode layer at this time was 100 ⁇ m ⁇ 100 ⁇ m.
- the leakage current value was 2.4 ⁇ 10 ⁇ 5 A / cm 2
- the dielectric loss was 0.015
- the relative dielectric constant was 120.
- As the composition of the crystal phase of the BNO oxide layer a crystal phase having a ⁇ -BiNbO 4 type crystal structure could be obtained.
- Comparative Example 1 In Comparative Example 1, a thin film capacitor was produced under the same conditions as in Example 1 except that the precursor layer was heated to 500 ° C. for 20 minutes in an oxygen atmosphere as the main firing. As for electrical characteristics, the leak current value was as large as 1.0 ⁇ 10 ⁇ 2 A / cm 2 , the dielectric loss was 0.001, and the relative dielectric constant was 100. As the composition of the crystal phase of the BNO oxide layer, both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained.
- Comparative Example 2 In Comparative Example 2, a thin film capacitor was formed under the same conditions as in Example 1 except that the precursor layer was heated to 500 ° C. for 2 hours in an oxygen atmosphere as the main firing. As for electrical characteristics, the leak current value was as large as 1.0 ⁇ 10 ⁇ 1 A / cm 2 , the dielectric loss was 0.007, and the relative dielectric constant was 180. As the composition of the crystal phase of the BNO oxide layer, both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure could be obtained. The carbon content was 6.5 atm%, and the hydrogen content was 7.8 atm%.
- Comparative Example 3 In Comparative Example 3, a BNO oxide layer serving as an insulating layer was formed on the lower electrode layer at room temperature by a known sputtering method, and then heat-treated at 550 ° C. for 20 minutes. About the others, the thin film capacitor was created on the conditions similar to Example 1.
- FIG. As for electrical characteristics, the leakage current value was 1.0 ⁇ 10 ⁇ 7 A / cm 2 , the dielectric loss was 0.005, and the relative dielectric constant was 50.
- the composition of the crystalline phase of the BNO oxide layer a microcrystalline phase of Bi 3 NbO 7 type crystal structure could be obtained. Further, the carbon content was 1.5 atm% or less and the hydrogen content was 1.0 atm% or less, both values being smaller than the detection limit.
- Table 1 shows the structure of the thin layer capacitor and the oxide layer deposition conditions, the obtained electrical characteristics, the carbon and hydrogen content of the BNO oxide layer, and the crystal structure in Examples 1 to 10 and Comparative Examples 1 to 3. 2 and Table 3.
- the “crystal phase composition” in Tables 2 and 3 includes a crystal phase and a microcrystalline phase.
- BiNbO 4 represents ⁇ -BiNbO 4 .
- Dielectric loss (tan ⁇ ) As shown in Tables 2 and 3, in the examples, the dielectric loss was 0.03 or less at 1 KHz, and sufficient characteristics as a capacitor could be obtained.
- the oxide layers in these examples are formed by firing a precursor solution containing a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as a solute.
- the method of forming an oxide layer and other oxide layers by firing a precursor solution as a starting material is also referred to as a “solution method” for convenience.
- the oxide layer formed by this solution method is a preferable insulating layer from the viewpoint of low dielectric loss.
- the oxide layer according to the example obtained the same result as the BNO layer formed by the sputtering method in Comparative Example 3.
- Comparative Example 2 when the firing temperature is as low as 500 ° C., it is considered that the solvent in the precursor solution and carbon in the solute remain, and the carbon content is as large as 6.5 atm%. showed that. As a result, it is considered that the leakage current was as large as 1.0 ⁇ 10 ⁇ 1 A / cm 2 .
- the hydrogen content of the BNO oxide layer is 1.6 atm% or less, which is a good result. Met.
- the measurement lower limit of the hydrogen content by this measurement method is about 1.0 atm%, the actual concentration in Example 6 is considered to be less than or equal to this measurement lower limit.
- the hydrogen content was found to be at the same level as the BNO oxide layer formed by the sputtering method of Comparative Example 3.
- FIG. 26 is a cross-sectional TEM photograph and an electron beam diffraction image showing the crystal structure of the BNO oxide layer in Example 6.
- FIG. 26A is a cross-sectional TEM photograph of the BNO oxide layer in Example 6.
- FIG. 26B is an electron diffraction image in region X of the cross-sectional TEM photograph of the BNO oxide layer shown in FIG. 27 shows a cross-sectional TEM photograph and an electron beam diffraction image showing the crystal structure of the oxide layer serving as the insulating layer in Comparative Example 3.
- FIG. 27A is a cross-sectional TEM photograph showing the crystal structure of the BNO oxide layer in Comparative Example 3.
- FIG. 27B is an electron beam diffraction image in a region Y of the cross-sectional TEM photograph of the BNO oxide layer shown in FIG. As shown in FIG. 26, it was confirmed from the results of the cross-sectional TEM photograph and the electron diffraction pattern that the BNO oxide layer of this example includes a crystalline phase and an amorphous phase. If it sees in detail, it turned out that the BNO oxide layer contains the crystalline phase, the microcrystalline phase, and the amorphous phase.
- the term “microcrystalline phase” refers to a crystalline phase that is not a crystalline phase that has grown uniformly from the upper end to the lower end in the film thickness direction when a layered material is formed. Means.
- the BNO oxide layer is converted to A 2 B 2 O 7 (where A is a metal element, B is a transition metal element, It was shown to have at least one of a microcrystalline phase of a pyrochlore type crystal structure represented by the same general formula and a crystal phase of a triclinic ⁇ -BiNbO 4 type crystal structure.
- the appearance of the microcrystalline phase of the pyrochlore type crystal structure and the crystalline phase of the ⁇ -BiNbO 4 type crystal structure differ depending on the main firing temperature of the precursor layer of the oxide layer to be the insulating layer. As shown in Examples 8, 9, and 10, when the firing temperature was 600 ° C. and 650 ° C., a crystal phase of ⁇ -BiNbO 4 type crystal structure could be obtained. Further, as shown in Examples 1 to 7, when the main baking temperatures are 520 ° C., 530 ° C., and 550 ° C., the microcrystalline phase of the pyrochlore type crystal structure and the crystalline phase of the ⁇ -BiNbO 4 type crystal structure I was able to get both.
- the pyrochlore type crystal structure is a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure or (Bi 1.5 Zn 0). .5 ) (Zn 0.5 Nb 1.5 ) O 7 type structure is substantially the same or approximate, and the pyrochlore type crystal structure of this structure can provide good electrical characteristics as an insulating layer of a thin layer capacitor It has been found.
- the oxide layer serving as an insulating layer has both a microcrystalline phase having a pyrochlore crystal structure and a crystal phase having a ⁇ -BiNbO 4 crystal structure, so that a solid-state electronic device is obtained. It was found that a good dielectric constant can be obtained as the insulating layer.
- the solid-state electronic device in each of the above-described embodiments is prepared by a solution method, and a BNO oxide having a heating temperature (main baking temperature) for forming an oxide layer of 520 ° C. or more and 650 ° C. or less.
- a heating temperature main baking temperature
- the layer it is possible to obtain good electrical characteristics such as high dielectric constant and low dielectric loss.
- it since it is formed by a simple method in a relatively short time without requiring complicated and expensive equipment such as a vacuum device, it greatly contributes to the provision of a solid-state electronic device excellent in industrial and mass productivity. .
- the solid-state electronic device in each of the embodiments described above is suitable for a solid-state electronic device that controls a large current with a low driving voltage.
- a capacitor such as a multilayer thin film capacitor and a variable capacitance thin film capacitor, a metal oxide semiconductor junction field effect transistor (MOSFET), and a nonvolatile memory
- MOSFET metal oxide semiconductor junction field effect transistor
- the present invention can also be applied as a semiconductor device such as a micro TAS (Total Analysis System), a microchemical chip, a MEMS chip such as a DNA chip.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
20,220,320.420 下部電極層
220a,320a,420a 下部電極層用前駆体層
30,230,330.430 酸化物層
30a,230a,330a.430a 酸化物層用前駆体層
40,240,340.440 上部電極層
240a,340a,440a 上部電極層用前駆体層
100,200,300,400 固体電子装置の一例である薄層キャパシタ
M1 下部電極層用型
M2 絶縁層用型
M3 上部電極層用型
M4 積層体用型
1.本実施形態の薄膜キャパシタの全体構成
図1は、本実施形態における固体電子装置の一例である薄膜キャパシタ100の全体構成を示す図である。図1に示すように、薄膜キャパシタ100は、基板10上に、基板10の側から下部電極層20、誘電体から構成される絶縁層である酸化物層30及び上部電極層40を備える。
次に薄膜キャパシタ100の製造方法を説明する。なお、本出願における温度の表示は、ヒーターの設定温度を表している。図2乃至図5は、それぞれ、薄膜キャパシタ100の製造方法の一過程を示す断面模式図である。図2に示すように、まず、基板10上に下部電極層20が形成される。次に、下部電極層20上に酸化物層30が形成されて、その後、酸化物層30上に上部電極層40が形成される。
図2は、下部電極層20の形成工程を示す図である。本実施形態においては、薄膜キャパシタ100の下部電極層20が、白金(Pt)によって形成される例を説明する。下部電極層20は、公知のスパッタリング法により基板10上に白金(Pt)よりなる層が形成される。
次に、下部電極層20上に酸化物層30が形成される。酸化物層30は、(a)前駆体層の形成及び予備焼成の工程、(b)本焼成の工程の順で形成される。図3及び図4は、酸化物層30の形成工程を示す図である。本実施形態においては、薄膜キャパシタ100の製造工程の酸化物層30が、ビスマス(Bi)とニオブ(Nb)とからなる酸化物よって形成される例を説明する。
図3に示すように、下部電極層20上に、公知のスピンコーティング法により、ビスマス(Bi)を含む前駆体及びニオブ(Nb)を含む前駆体を溶質とする前駆体溶液(前駆体溶液という。以下、前駆体の溶液に対して同じ。)を出発材とする前駆体層30aが形成される。ここで、酸化物層30のためのビスマス(Bi)を含む前駆体の例は、オクチル酸ビスマス、塩化ビスマス、硝酸ビスマス、又は各種のビスマスアルコキシド(例えば、ビスマスイソプロポキシド、ビスマスブトキシド、ビスマスエトキシド、ビスマスメトキシエトキシド)が採用され得る。また、本実施形態における酸化物層30のためのニオブ(Nb)を含む前駆体の例は、オクチル酸ニオブ、塩化ニオブ、硝酸ニオブ、又は各種のニオブアルコキシド(例えば、ニオブイソプロポキシド、ニオブブトキシド、ニオブエトキシド、ニオブメトキシエトキシド)が採用され得る。また、前駆体溶液の溶媒は、エタノール、プロパノール、ブタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノールの群から選択される1種のアルコール溶媒、又は酢酸、プロピオン酸、オクチル酸の群から選択される1種のカルボン酸である溶媒であることが好ましい。
その後、本焼成として、前駆体層30aを、酸素雰囲気中(例えば100体積%であるが、これに限定されない)で、所定の時間、520℃以上650℃以下の範囲の温度で加熱する。その結果、図4に示すように、電極層上に、ビスマス(Bi)とニオブ(Nb)とからなる酸化物層30(不可避不純物を含み得る。以下、同じ。)が形成される。ここで、溶液法における本焼成として、酸化物層を形成するための加熱温度は、520℃以上650℃以下であるが、上限を限定するものではない。しかし、加熱温度が、650℃を超える場合は、酸化物層の結晶化が進み、リーク電流量が顕著に増大してしまう傾向にある点から、加熱温度を650℃以下とすることがより好ましい。一方、加熱温度が、520℃未満の場合は、前駆体溶液の溶媒及び溶質中の炭素が残存し、リーク電流量が顕著に増大してしまうので、加熱温度は、520℃以上650℃以下とすることが好ましい。
次に、酸化物層30上に上部電極層40が形成される。図5は、上部電極層40の形成工程を示す図である。本実施形態においては、薄膜キャパシタ100の上部電極層40が、白金(Pt)によって形成される例を説明する。上部電極層40は、下部電極層20と同様、公知のスパッタリング法により酸化物層30上に白金(Pt)よりなる層が形成される。
1.本実施形態の薄膜キャパシタの全体構成
本実施形態においては、固体電子装置の一例である薄膜キャパシタの下部電極層及び上部電極層が、金属酸化物からなる導電性酸化物(不可避不純物を含みうる)で構成されている。本実施形態における固体電子装置の一例である薄膜キャパシタ200の全体構成は、図10に示されている。本実施形態は、下部電極層及び上部電極層が、金属酸化物からなる導電性酸化物で構成されている以外は第1実施形態と同じである。従って、本実施の形態の構成については、前述の図1と対応する構成には同一の参照符号を付して説明を省略し、異なる構成について説明する。図10に示すように、薄膜キャパシタ200は、基板10を有し、基板10上に、基板10の側から下部電極層220、誘電体から構成される絶縁層である酸化物層30、上部電極層240を備える。
次に薄膜キャパシタ200の製造方法を説明する。図6乃至図9は、それぞれ、薄膜キャパシタ200の製造方法の一過程を示す断面模式図である。図6及び図7に示すようにまず、基板10上に下部電極層220が形成される。次に、下部電極層220上に酸化物層30が形成されて、その後、上部電極層240が形成される。なお、薄膜キャパシタ200の製造工程においては、第1実施形態と重複する説明は省略する。
図6及び図7は、下部電極層220の形成工程を示す図である。本実施形態においては、薄膜キャパシタ200の下部電極層220が、ランタン(La)とニッケル(Ni)とからなる導電用酸化物層によって形成される例を説明する。下部電極層220は、(a)前駆体層の形成及び予備焼成の工程、(b)本焼成の工程の順で形成される。
図6に示すように、基板10上に、公知のスピンコーティング法により、ランタン(La)を含む前駆体及びニッケル(Ni)を含む前駆体を溶質とする前駆体溶液(下部電極層用前駆体溶液という。以下、下部電極層用前駆体の溶液に対して同じ。)を出発材とする下部電極層用前駆体層220aが形成される。ここで、下部電極層220のためのランタン(La)を含む前駆体の例は、酢酸ランタンである。その他の例として、硝酸ランタン、塩化ランタン、又は各種のランタンアルコキシド(例えば、ランタンイソプロポキシド、ランタンブトキシド、ランタンエトキシド、ランタンメトキシエトキシド)が採用され得る。また、下部電極層用前駆体層220aのためのニッケル(Ni)を含む前駆体の例は、酢酸ニッケルである。その他の例として、硝酸ニッケル、塩化ニッケル、又は各種のニッケルアルコキシド(例えば、ニッケルインジウムイソプロポキシド、ニッケルブトキシド、ニッケルエトキシド、ニッケルメトキシエトキシド)が採用され得る。
その後、本焼成として、下部電極層用前駆体層220aを、酸素雰囲気中、約20分間、550℃に加熱する。その結果、図7に示すように、基板10上に、ランタン(La)とニッケル(Ni)とからなる下部電極層220(但し、不可避不純物を含み得る。以下、同じ。)が形成される。ここで、溶液法における本焼成として、導電用酸化物層を形成するための加熱温度は、第1実施形態の酸化物層と同様の理由により、520℃以上650℃以下が好ましい。なお、ランタン(La)とニッケル(Ni)とからなるとからなる導電用酸化物層は、LNO層とも呼ばれる。
次に、下部電極層220上に酸化物層30を形成する。本実施形態の酸化物層30は、第1実施形態と同様、(a)前駆体層の形成及び予備焼成の工程、(b)本焼成の工程の順で形成される。図8は、下部電極層220上に酸化物層30が形成された状態を示す図である。第1実施形態と同様、酸化物層30の膜厚の範囲は30nm以上が好ましい。
次に、図9及び図10に示すように、上部電極層240を酸化物層30上に形成する。本実施形態においては、薄膜キャパシタ200の上部電極層240が、下部電極層220と同様に、ランタン(La)とニッケル(Ni)とからなる導電用酸化物層によって形成される例を説明する。上部電極層240は、下部電極層220と同様、(a)前駆体層の形成及び予備焼成の工程、(b)本焼成の工程の順で形成される。酸化物層30上に形成された下部電極層用前駆体層240aが、図9に示され、酸化物層30上に形成された上部電極層240が、図10に示されている。
1.本実施形態の薄膜キャパシタの全体構成
本実施形態においては、固体電子装置の一例である薄膜キャパシタの全ての層の形成過程において型押し加工が施されている。本実施形態における固体電子装置の一例である薄膜キャパシタ300の全体構成は、図11に示されている。本実施形態では、下部電極層及び酸化物層が、型押し加工を施されている以外は第2実施形態と同じである。従って、本実施の形態の構成については、前述の図10と対応する構成には同一の参照符号を付して説明を省略し、異なる構成について説明する。図11に示すように、薄膜キャパシタ300は、基板10を有し、基板10上に、基板10の側から下部電極層320、誘電体から構成される絶縁層である酸化物層330、上部電極層340を備える。
次に薄膜キャパシタ300の製造方法を説明する。図12乃至図21は、それぞれ、薄膜キャパシタ300の製造方法の一過程を示す断面模式図である。薄膜キャパシタ300は、まず基板10上に型押し加工が施された下部電極層320が形成される。次に、下部電極層320上に型押し加工が施された酸化物層330が形成される。その後、酸化物層330上に上部電極層340が形成される。薄膜キャパシタ300の製造工程においても第2実施形態と重複する説明は省略する。
本実施形態においては、薄膜キャパシタ300の下部電極層320が、ランタン(La)とニッケル(Ni)とからなる導電用酸化物層によって形成される例を説明する。下部電極層320は、(a)前駆体層の形成及び予備焼成の工程、(b)型押し加工の工程、(c)本焼成の工程の順で形成される。初めに、基板10上に、公知のスピンコーティング法により、ランタン(La)を含む前駆体及びニッケル(Ni)を含む前駆体を溶質とする下部電極層用前駆体溶液を出発材とする下部電極層用前駆体層320aが形成される。
次に、下部電極層用前駆体層320aのパターニングを行うために、図12に示すように、80℃以上300℃以下の範囲内で加熱した状態で、下部電極層用型M1を用いて、1MPa以上20MPa以下の圧力で型押し加工が施される。型押し加工における加熱方法の例としては、チャンバー、オーブン等により、所定の温度雰囲気の状態にする方法、基板を搭載する基台を下部からヒーターにより加熱する方法、また、予め80℃以上300℃以下に加熱した型を用いて型押し加工が施される方法等がある。この場合、基台を下部からヒーターにより加熱する方法と予め80℃以上300℃以下に加熱した型を併用することが加工性の面でより好ましい。
次に、下部電極層用前駆体層320aに対して本焼成を行う。その結果、図14に示すように、基板10上に、ランタン(La)とニッケル(Ni)とからなる下部電極層320(但し、不可避不純物を含み得る。以下、同じ。)が形成される。
次に、下部電極層320上に絶縁層となる酸化物層330を形成する。酸化物層330は、(a)前駆体層の形成及び予備焼成の工程、(b)型押し加工の工程、(c)本焼成の工程の順で形成される。図15乃至図18は、酸化物層330の形成工程を示す図である。
(a)前駆体層の形成及び予備焼成
図15に示すように、基板10及びパターニングされた下部電極層320上に、第2実施形態と同様に、ビスマス(Bi)を含む前駆体及びニオブ(Nb)を含む前駆体を溶質とする前駆体溶液を出発材とする前駆体層330aを形成する。その後、酸素含有雰囲気中で、80℃以上250℃以下に加熱した状態で予備焼成を行う。
本実施形態では、図16に示すように、予備焼成のみを行った前駆体層330aに対して、型押し加工が施される。具体的には、酸化物層のパターニングを行うため、80℃以上300℃以下に加熱した状態で、絶縁層用型M2を用いて、1MPa以上20MPa以下の圧力で型押し加工が施される。
その後、第2実施形態と同様に、前駆体層330aを本焼成する。その結果、図18に示すように、下部電極層320上に、絶縁層となる酸化物層330(但し、不可避不純物を含み得る。以下、同じ。)が形成される。本焼成として、前駆体層330aを、酸素雰囲気中で、所定時間520℃以上650℃以下の温度範囲で加熱する。
その後、酸化物層330上に、下部電極層320と同様に、公知のスピンコーティング法により、ランタン(La)を含む前駆体及びニッケル(Ni)を含む前駆体を溶質とする前駆体溶液を出発材とする上部電極層用前駆体層340aが形成される。その後、上部電極層用前駆体層340aに対して酸素含有雰囲気中において80℃以上250℃以下の温度範囲で加熱して予備焼成を行う。
1.本実施形態の薄膜キャパシタの全体構成
本実施形態においても、固体電子装置の一例である薄膜キャパシタの全ての層の形成過程において型押し加工が施されている。本実施形態における固体電子装置の一例である薄膜キャパシタ400の全体構成は、図25に示されている。本実施形態では、下部電極層、酸化物層、及び上部電極層は、各々の前駆体層を積層した後に予備焼成が行なわれる。そして、予備焼成が行なわれた全ての前駆体層は、型押し加工を施された後に本焼成が行われる。従って、本実施の形態の構成については、前述の図11と対応する構成には同一の参照符号を付して説明を省略し、異なる構成について説明する。図25に示すように、薄膜キャパシタ400は、基板10を有し、基板10上に、基板10の側から下部電極層420、誘電体から構成される絶縁層である酸化物層430、上部電極層440を備える。
次に薄膜キャパシタ400の製造方法を説明する。図22乃至図24は、それぞれ、薄膜キャパシタ400の製造方法の一過程を示す断面模式図である。薄膜キャパシタ400は、まず基板10上に、下部電極層420の前駆体層である下部電極層用前駆体層420a、酸化物層430の前駆体層である前駆体層430a、上部電極層440の前駆体層である上部電極層用前駆体層440aの積層体が形成される。次に、この積層体に型押し加工が施され、本焼成が行われる。薄膜キャパシタ400の製造工程においては、第3実施形態と重複する説明は省略する。
図22に示すように、まず基板10上に、下部電極層420の前駆体層である下部電極層用前駆体層420a、酸化物層430の前駆体層である前駆体層430a、上部電極層440の前駆体層である上部電極層用前駆体層440aの積層体が形成される。本実施形態においては、第3実施形態と同様、薄膜キャパシタ400の下部電極層420及び上部電極層440が、ランタン(La)とニッケル(Ni)とからなる導電用酸化物層によって形成され、絶縁層となる酸化物層430がビスマス(Bi)及びニオブ(Nb)とからなる酸化物層によって形成される例を説明する。初めに、基板10上に、公知のスピンコーティング法により、ランタン(La)を含む前駆体及びニッケル(Ni)を含む前駆体を溶質とする下部電極層用前駆体溶液を出発材とする下部電極層用前駆体層420aが形成される。その後、予備焼成として、酸素含有雰囲気中で所定の時間、下部電極層用前駆体層420aを80℃以上250℃以下の温度範囲で加熱する。また、前述のスピンコーティング法による下部電極層用前駆体層420aの形成及び予備焼成を複数回繰り返すことによって、下部電極層420の所望の厚みを得ることができる。
次に、各前駆体層の積層体(420a,430a,440a)のパターニングを行うために、図23に示すように、80℃以上300℃以下の範囲内で加熱した状態で、積層体用型M4を用いて、1MPa以上20MPa以下の圧力で型押し加工が施される。
次に、各前駆体層の積層体(420a,430a,440a)に対して本焼成を行う。その結果、図25に示すように、基板10上に、下部電極層420、酸化物層430、上部電極層440が形成される。
以下、本発明をより詳細に説明するために、実施例及び比較例をあげて説明するが、本発明はこれらの例によって限定されるものではない。
1.電気特性
(1)リーク電流
下部電極層と上部電極層の間に0.25MV/cmの電圧を印加して電流を測定した。この測定にはアジレントテクノロジー社製、4156C型を用いた。
実施例及び比較例の誘電損失は以下のようにして測定した。室温において、下部電極層と上部電極層の間に0.1Vの電圧、1KHzの交流電圧を印加して誘電損失を測定した。この測定には東陽テクニカ社製、1260-SYS型広帯域誘電率測定システムを用いた。
実施例及び比較例の比誘電率は以下のようにして測定した。下部電極層と上部電極層の間に0.1Vの電圧、1KHzの交流電圧を印加して比誘電率を測定した。この測定には東陽テクニカ社製、1260-SYS型広帯域誘電率測定システムを用いた。
National Electrostatics Corporation 製 Pelletron 3SDHを用いて、ラザフォード後方散乱分光法(Rutherford Backscattering Spectrometry:RBS分析法)、水素前方散乱分析法(Hydrogen Forward scattering Spectrometry:HFS分析法)、及び核反応解析法((Nuclear Reaction Analysis:NRA分析法)により元素分析を行い、実施例及び比較例におけるBNO酸化物層の炭素及び水素の含有率を求めた。
実施例及び比較例におけるBNO酸化物層について断面TEM(Transmission Electron Microscopy)写真及び電子線回析像による観察を行った。また、実施例及び比較例におけるBNO酸化物層の電子線回析像を用いて、ミラー指数及び原子間距離を求め、既知の結晶構造モデルとフィッティングを行うことにより構造解析を行った。既知の結晶構造モデルとして、(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7,β-BiNbO4、及びBi3NbO7を用いた。
実施例1においては、本実施形態の実施形態の製造方法に基づき、薄膜キャパシタを作成した。まず、基板の上に下部電極層を形成し、次に、酸化物層を形成する。その後、酸化物層上に上部電極層を形成する。基板として、高耐熱ガラスを用いた。下部電極層は、公知のスパッタリング法により基板上に白金(Pt)よりなる層を形成した。このときの下部電極層の膜厚は200nmであった。絶縁層となる酸化物層のためのビスマス(Bi)を含む前駆体は、オクチル酸ビスマスを用い、ニオブ(Nb)を含む前駆体は、オクチル酸ニオブを用いた。予備焼成として、5分間、250℃に加熱し、スピンコーティング法による前駆体層の形成と予備焼成を5回繰り返した。本焼成として、前駆体層を、酸素雰囲気中で、約20分間、520℃に加熱した。酸化物層30の厚みを約170nmとした。各層の膜厚は、各層と基板の段差を触針法により求めた。酸化物層におけるビスマス(Bi)とニオブ(Nb)との原子組成比は、ビスマス(Bi)が1としたときにニオブ(Nb)が1であった。上部電極層は、公知のスパッタリング法により酸化物層上に白金(Pt)よりなる層を形成した。このときの上部電極層のサイズを100μm×100μmとし、膜厚を150nmとした。また、電気特性は、リーク電流値が、3.0×10-4A/cm2、誘電損失が、0.025、比誘電率が62であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。また、さらに具体的には、パイロクロア型結晶構造は、(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造であるか、あるいは(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造と略同一ないし近似していることが判明した。
実施例2においては、本焼成として、前駆体層を、酸素雰囲気中で、1時間、520℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。また、電気特性は、リーク電流値が、3.0×10-8A/cm2、誘電損失が、0.01、比誘電率が70であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。また、さらに具体的には、パイロクロア型結晶構造は、(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造であるか、あるいは(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造と略同一ないし近似していることが判明した。また、炭素含有率が1.5atm%以下と検出限界以下の小さな値となり、水素含有率が1.6atm%であった。
実施例3においては、本焼成として、前駆体層を、酸素雰囲気中で、20分、530℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、3.0×10-6A/cm2、誘電損失が、0.01、比誘電率が110であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。また、さらに具体的には、パイロクロア型結晶構造は、(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造であるか、あるいは(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造と略同一ないし近似していることが判明した。
実施例4においては、本焼成として、前駆体層を、酸素雰囲気中で、2時間、530℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、8.8×10-8A/cm2、誘電損失が、0.018、比誘電率が170であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。また、さらに具体的には、パイロクロア型結晶構造は、(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造であるか、あるいは(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造と略同一ないし近似していることが判明した。また、炭素含有率が1.5atm%以下と検出限界以下の小さな値となり、水素含有率が1.4atm%であった。
実施例5においては、本焼成として、前駆体層を、酸素雰囲気中で、1分、550℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、5.0×10-7A/cm2、誘電損失が、0.01、比誘電率が100であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。また、さらに具体的には、パイロクロア型結晶構造は、(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造であるか、あるいは(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造と略同一ないし近似していることが判明した。
実施例6においては、本焼成として、前駆体層を、酸素雰囲気中で、20分、550℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、1.0×10-6A/cm2、誘電損失が、0.001、比誘電率が180であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。また、さらに具体的には、パイロクロア型結晶構造は、(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造であるか、あるいは(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造と略同一ないし近似していることが判明した。また、炭素含有率が1.5atm%以下、水素含有率が1.0atm%以下と双方検出限界以下の小さな値となった。
実施例7においては、本焼成として、前駆体層を、酸素雰囲気中で、12時間、550℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、2.0×10-5A/cm2、誘電損失が、0.004、比誘電率が100であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。また、さらに具体的には、パイロクロア型結晶構造は、(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造であるか、あるいは(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7型構造と略同一ないし近似していることが判明した。
実施例8においては、本焼成として、前駆体層を、酸素雰囲気中で、20分、600℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、7.0×10-6A/cm2、誘電損失が、0.001、比誘電率が80であった。BNO酸化物層の結晶相の組成は、β-BiNbO4型結晶構造の結晶相を得ることができた。
実施例9においては、本焼成として、前駆体層を、酸素雰囲気中で、20分、650℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、5.0×10-3A/cm2、誘電損失が、0.001、比誘電率が95であった。BNO酸化物層の結晶相の組成は、β-BiNbO4型結晶構造の結晶相を得ることができた。
実施例10においては、本実施形態の第4実施形態の製造方法に基づき、薄膜キャパシタを作成した。基板10として、高耐熱ガラスを用いた。下部電極層及び上部電極層は、ランタン(La)とニッケル(Ni)とからなる酸化物層を形成した。下部電極層及び上部電極層のためのランタン(La)を含む前駆体は、酢酸ランタンを用いた。また、絶縁層となる酸化物層は、ビスマス(Bi)とニオブ(Nb)とからなる酸化物層を形成した。酸化物層のためのビスマス(Bi)を含む前駆体は、オクチル酸ビスマスを用い、ニオブ(Nb)を含む前駆体は、オクチル酸ニオブを用いた。まず、基板の上に下部電極層の前駆体層を形成して予備焼成した。予備焼成として、約5分間、250℃に加熱し、スピンコーティング法による前駆体層の形成と予備焼成を5回繰り返した。次に、下部電極層の前駆体層の上に、絶縁層となる酸化物層の前駆体層を形成し、予備焼成として、約5分間、250℃に加熱した。その後、絶縁層となる酸化物層の前駆体層の上に、下部電極層の前駆体層と同様の条件で上部部電極層の前駆体層を形成した。次に予備焼成として、約5分間、150℃に加熱し、スピンコーティング法による前駆体層の形成と予備焼成を5回繰り返した。その後、これら前駆体層の積層体を本焼成として、酸素含有雰囲気中で、20分間、650℃に加熱した。絶縁層となる酸化物層の厚みは約170nmであった。絶縁層となる酸化物層におけるビスマス(Bi)とニオブ(Nb)との原子組成比は、ビスマス(Bi)が1としたときにニオブ(Nb)を1とした。上部電極層及び下部電極層の厚みは約60nmであった。このときの上部電極層のサイズを100μm×100μmとした。電気特性は、リーク電流値が、2.4×10-5A/cm2、誘電損失が、0.015、比誘電率が120であった。BNO酸化物層の結晶相の組成は、β-BiNbO4型結晶構造の結晶相を得ることができた。
比較例1においては、本焼成として、前駆体層を、酸素雰囲気中で、20分、500℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、1.0×10-2A/cm2と大きく、誘電損失が、0.001、比誘電率が100であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。
比較例2においては、本焼成として、前駆体層を、酸素雰囲気中で、2時間、500℃に加熱した以外は実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、1.0×10-1A/cm2と大きく、誘電損失が、0.007、比誘電率が180であった。BNO酸化物層の結晶相の組成は、パイロクロア型結晶構造の微結晶相及びβ-BiNbO4型結晶構造の結晶相の双方を得ることができた。炭素含有率が6.5atm%、水素含有率が7.8atm%と大きい値となった。
比較例3においては、下部電極層上に絶縁層となるBNO酸化物層を、公知のスパッタリング法により室温にて形成し、この後550℃で20分熱処理を行った。その他については、実施例1と同様の条件で薄膜キャパシタを作成した。電気特性は、リーク電流値が、1.0×10-7A/cm2、誘電損失が、0.005となり、比誘電率が50であった。BNO酸化物層の結晶相の組成は、Bi3NbO7型結晶構造の微結晶相を得ることができた。また、炭素含有率が1.5atm%以下、水素含有率が1.0atm%以下と双方検出限界以下の小さな値となった。
(1)リーク電流
表2及び表3に示すように、実施例においては、0.25MV/cm印加時のリーク電流値が、5.0×10-3A/cm2以下となり、キャパシタとしての十分な特性を得ることができた。実施例は、比較例1,2と比較してリーク電流が低い値となり、酸化物層を形成するための加熱温度が、520℃以上650℃以下とすることによって、良好な値が得られることが確認された。また、比較例3のスパッタリング法によるBNO層と同等の結果が得られた。
表2及び表3に示すように、実施例においては、誘電損失が1KHzにおいて、0.03以下となり、キャパシタとしての十分な特性を得ることができた。これらの実施例における酸化物層は、ビスマス(Bi)を含む前駆体及びニオブ(Nb)を含む前駆体を溶質とする前駆体溶液を焼成することによって形成されている。本出願では、前述のように、前駆体溶液を出発材とし、それを焼成することによって酸化物層やその他の酸化物層を形成する方法を、便宜上、「溶液法」とも呼ぶ。この溶液法によって形成された酸化物層は、誘電損失が小さい点ても好ましい絶縁層である。さらに組成は同じであっても、実施例による酸化物層は、比較例3におけるスパッタリング法によるBNO層と同等の結果が得られた。
比誘電率については、表2及び表3に示すように、実施例においては、1KHzにおける比誘電率が60以上となり、キャパシタとしての十分な特性を得ることができた。一方、比較例3のBi3NbO7型結晶構造のBNO層は、比誘電率が50と低い結果が得られた。
本焼成の温度が520℃~650℃の範囲である実施例2,4,6については、BNO酸化物層の炭素含有率が1.5atm%以下と良好な結果であった。ここで、本測定法による炭素含有率の測定下限値は、およそ1.5atm%であるため、実際の濃度は、この測定下限値以下であると考えられる。また、これらの実施例においては、炭素含有率が比較例3のスパッタ法によるBNO酸化物層と同様のレベルであることが判明した。一方、比較例2に示すように、本焼成の温度が500℃と低い場合には、前駆体溶液の溶媒及び溶質中の炭素が残存すると考えられ、炭素含有率が6.5atm%と大きな値を示した。その結果、リーク電流1.0×10-1A/cm2と大きい値になったものと考えられる。
図26は、実施例6におけるBNO酸化物層の結晶構造を示す断面TEM写真及び電子線回析像である。図26(a)は、実施例6におけるBNO酸化物層の断面TEM写真である。図26(b)は、図26(a)に示したBNO酸化物層の断面TEM写真の領域Xにおける電子線回析像である。また、図27は、比較例3における絶縁層となる酸化物層の結晶構造を示す断面TEM写真及び電子線回析像である。図27(a)は、比較例3におけるBNO酸化物層の結晶構造を示す断面TEM写真である。図27(b)は、図27(a)に示したBNO酸化物層の断面TEM写真の領域Yにおける電子線回析像である。図26に示すように、断面TEM写真及び電子線回析像の結果から、本実施例のBNO酸化物層は、結晶相及びアモルファス相を含んでいることが確認された。より詳細に見れば、BNO酸化物層は、結晶相、微結晶相、及びアモルファス相を含んでいることが分かった。なお、本出願において、「微結晶相」とは、ある層状の材料が形成されている場合に、その層の膜厚方向の上端から下端に至るまで一様に成長した結晶相ではない結晶相を意味する。さらに、ミラー指数及び原子間距離から、既知の結晶構造モデルとフィッティングを行うことによって、BNO酸化物層は、A2B2O7(但し、Aは金属元素、Bは遷移金属元素、以下、同じ)の一般式で示されるパイロクロア型結晶構造の微結晶相及び三斜晶(triclinic)のβ-BiNbO4型結晶構造の結晶相のうちの少なくとも一方を有していることが示された。
以上、この発明の実施形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。
Claims (8)
- ビスマス(Bi)を含む前駆体及びニオブ(Nb)を含む前駆体を溶質とする前駆体溶液を出発材とする前駆体層を、酸素含有雰囲気中において加熱することにより形成される、前記ビスマス(Bi)と前記ニオブ(Nb)からなる酸化物層(不可避不純物を含み得る)を備え、
前記酸化物層を形成するための加熱温度が、520℃以上650℃以下である、
固体電子装置。 - 前記酸化物層は、炭素含有率が1.5atm%以下である、
請求項1に記載の固体電子装置。 - 前記酸化物層を形成する前に、酸素含有雰囲気中において80℃以上300℃以下で前記前駆体層を加熱した状態で型押し加工を施すことによって、前記前駆体層の型押し構造が形成されている、
請求項1又は請求項2に記載の固体電子装置。 - 1MPa以上20MPa以下の範囲内の圧力で前記型押し加工を施す、
請求項3に記載の固体電子装置。 - 予め、80℃以上300℃以下の範囲内の温度に加熱した型を用いて前記型押し加工を施す、
請求項3又は請求項4に記載の固体電子装置。 - 前記固体電子装置が、キャパシタである、
請求項1乃至請求項5のいずれか1項に記載の固体電子装置。 - 前記固体電子装置が、半導体装置である、
請求項1乃至請求項5のいずれか1項に記載の固体電子装置。 - 前記固体電子装置がMEMSデバイスである、
請求項1乃至請求項5のいずれか1項に記載の固体電子装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012551404A JP5293983B1 (ja) | 2011-11-09 | 2012-10-25 | 固体電子装置 |
US14/357,167 US9293257B2 (en) | 2011-11-09 | 2012-10-25 | Solid-state electronic device including dielectric bismuth niobate film formed from solution |
KR1020147013691A KR101911127B1 (ko) | 2011-11-09 | 2012-10-25 | 고체 전자 장치 |
CN201280058844.0A CN103999207B (zh) | 2011-11-09 | 2012-10-25 | 固体电子装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-245915 | 2011-11-09 | ||
JP2011245915 | 2011-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069470A1 true WO2013069470A1 (ja) | 2013-05-16 |
Family
ID=48289852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/077623 WO2013069470A1 (ja) | 2011-11-09 | 2012-10-25 | 固体電子装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9293257B2 (ja) |
JP (1) | JP5293983B1 (ja) |
KR (1) | KR101911127B1 (ja) |
CN (1) | CN103999207B (ja) |
TW (1) | TWI467612B (ja) |
WO (1) | WO2013069470A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136463A1 (ja) * | 2013-03-08 | 2014-09-12 | 独立行政法人科学技術振興機構 | 酸化物層及び酸化物層の製造方法、並びにその酸化物層を備えるキャパシタ、半導体装置、及び微小電気機械システム |
WO2016013416A1 (ja) * | 2014-07-25 | 2016-01-28 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法 |
WO2016103368A1 (ja) * | 2014-12-24 | 2016-06-30 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物誘電体及びその製造方法、酸化物誘電体の前駆体、並びに固体電子装置及びその製造方法 |
WO2017098852A1 (ja) * | 2015-12-11 | 2017-06-15 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法 |
US9876067B2 (en) | 2013-03-22 | 2018-01-23 | Japan Science And Technology Agency | Dielectric layer and manufacturing method of dielectric layer, and solid-state electronic device and manufacturing method of solid-state electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003509846A (ja) * | 1999-09-09 | 2003-03-11 | アライドシグナル インコーポレイテッド | 集積回路平坦化のための改良された装置及び方法 |
JP2005116421A (ja) * | 2003-10-10 | 2005-04-28 | Murata Mfg Co Ltd | 誘電体薄膜形成剤、誘電体薄膜形成剤の製造方法、誘電体薄膜および誘電体薄膜形成方法 |
JP2008147632A (ja) * | 2006-11-13 | 2008-06-26 | Seiko Epson Corp | 有機強誘電体膜の形成方法、記憶素子の製造方法、記憶装置、および電子機器 |
WO2011089748A1 (ja) * | 2010-01-21 | 2011-07-28 | 株式会社ユーテック | Pbnzt強誘電体膜、ゾルゲル溶液、成膜方法及び強誘電体膜の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10173140A (ja) | 1996-12-11 | 1998-06-26 | Texas Instr Japan Ltd | 強誘電体キャパシタの製造方法及び強誘電体メモリ装置の製造方法 |
US6388285B1 (en) * | 1999-06-04 | 2002-05-14 | International Business Machines Corporation | Feram cell with internal oxygen source and method of oxygen release |
US6589889B2 (en) | 1999-09-09 | 2003-07-08 | Alliedsignal Inc. | Contact planarization using nanoporous silica materials |
JP4178414B2 (ja) * | 2004-12-27 | 2008-11-12 | セイコーエプソン株式会社 | 強誘電体膜、強誘電体キャパシタおよび強誘電体メモリ |
US7786820B2 (en) * | 2005-03-21 | 2010-08-31 | Ngimat Co. | Tunable dielectric radio frequency microelectromechanical system capacitive switch |
JP2007051050A (ja) * | 2005-08-16 | 2007-03-01 | Korea Inst Of Science & Technology | 低温焼成用マイクロ波誘電体セラミックの製造方法及びそれから得られる低温焼成用マイクロ波誘電体セラミック |
US20080135900A1 (en) | 2006-11-13 | 2008-06-12 | Seiko Epson Corporation | Method of forming organic ferroelectric film, method of manufacturing memory element, memory device, and electronic apparatus |
KR100857590B1 (ko) * | 2007-02-12 | 2008-09-09 | 충남대학교산학협력단 | 연성 폴리머 기판 위에 상온 화학증착법 |
JP5455352B2 (ja) | 2008-10-28 | 2014-03-26 | 太陽誘電株式会社 | 薄膜mimキャパシタ及びその製造方法 |
-
2012
- 2012-10-25 WO PCT/JP2012/077623 patent/WO2013069470A1/ja active Application Filing
- 2012-10-25 US US14/357,167 patent/US9293257B2/en active Active
- 2012-10-25 JP JP2012551404A patent/JP5293983B1/ja active Active
- 2012-10-25 CN CN201280058844.0A patent/CN103999207B/zh active Active
- 2012-10-25 KR KR1020147013691A patent/KR101911127B1/ko active IP Right Grant
- 2012-11-08 TW TW101141473A patent/TWI467612B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003509846A (ja) * | 1999-09-09 | 2003-03-11 | アライドシグナル インコーポレイテッド | 集積回路平坦化のための改良された装置及び方法 |
JP2005116421A (ja) * | 2003-10-10 | 2005-04-28 | Murata Mfg Co Ltd | 誘電体薄膜形成剤、誘電体薄膜形成剤の製造方法、誘電体薄膜および誘電体薄膜形成方法 |
JP2008147632A (ja) * | 2006-11-13 | 2008-06-26 | Seiko Epson Corp | 有機強誘電体膜の形成方法、記憶素子の製造方法、記憶装置、および電子機器 |
WO2011089748A1 (ja) * | 2010-01-21 | 2011-07-28 | 株式会社ユーテック | Pbnzt強誘電体膜、ゾルゲル溶液、成膜方法及び強誘電体膜の製造方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136463A1 (ja) * | 2013-03-08 | 2014-09-12 | 独立行政法人科学技術振興機構 | 酸化物層及び酸化物層の製造方法、並びにその酸化物層を備えるキャパシタ、半導体装置、及び微小電気機械システム |
CN105027240A (zh) * | 2013-03-08 | 2015-11-04 | 国立研究开发法人科学技术振兴机构 | 氧化物层及氧化物层的制造方法、以及具备该氧化物层的电容器、半导体装置及微机电系统 |
US9876067B2 (en) | 2013-03-22 | 2018-01-23 | Japan Science And Technology Agency | Dielectric layer and manufacturing method of dielectric layer, and solid-state electronic device and manufacturing method of solid-state electronic device |
WO2016013416A1 (ja) * | 2014-07-25 | 2016-01-28 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法 |
JP5932163B1 (ja) * | 2014-07-25 | 2016-06-08 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法 |
CN106458631A (zh) * | 2014-07-25 | 2017-02-22 | 国立大学法人北陆先端科学技术大学院大学 | 氧化物介电体及其制造方法、以及固态电子装置及其制造方法 |
EP3173381A4 (en) * | 2014-07-25 | 2018-04-04 | Japan Advanced Institute of Science and Technology | Oxide dielectric and method for manufacturing same, and solid state electronic device and method for manufacturing same |
US10475580B2 (en) | 2014-07-25 | 2019-11-12 | Japan Advanced Institute Of Science And Technology | Oxide dielectric and method for manufacturing same, and solid state electronic device and method for manufacturing same |
WO2016103368A1 (ja) * | 2014-12-24 | 2016-06-30 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物誘電体及びその製造方法、酸化物誘電体の前駆体、並びに固体電子装置及びその製造方法 |
CN107004596A (zh) * | 2014-12-24 | 2017-08-01 | 国立大学法人北陆先端科学技术大学院大学 | 氧化物介电体及其制造方法、氧化物介电体的前体以及固体电子装置及其制造方法 |
WO2017098852A1 (ja) * | 2015-12-11 | 2017-06-15 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法 |
JPWO2017098852A1 (ja) * | 2015-12-11 | 2018-10-18 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103999207A (zh) | 2014-08-20 |
US20140319660A1 (en) | 2014-10-30 |
US9293257B2 (en) | 2016-03-22 |
KR20140097196A (ko) | 2014-08-06 |
TW201340151A (zh) | 2013-10-01 |
JP5293983B1 (ja) | 2013-09-18 |
KR101911127B1 (ko) | 2018-10-23 |
CN103999207B (zh) | 2017-07-28 |
TWI467612B (zh) | 2015-01-01 |
JPWO2013069470A1 (ja) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5278717B1 (ja) | 固体電子装置 | |
JP5999525B2 (ja) | 薄膜トランジスタ及び薄膜トランジスタの製造方法 | |
JP6247684B2 (ja) | 誘電体層及び誘電体層の製造方法、並びに固体電子装置及び固体電子装置の製造方法 | |
JP5293983B1 (ja) | 固体電子装置 | |
WO2014136463A1 (ja) | 酸化物層及び酸化物層の製造方法、並びにその酸化物層を備えるキャパシタ、半導体装置、及び微小電気機械システム | |
JP5615945B2 (ja) | 積層キャパシター及び積層キャパシターの製造方法 | |
JP5932163B1 (ja) | 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法 | |
JP6716602B2 (ja) | 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法 | |
JP6353644B2 (ja) | 酸化物誘電体及びその製造方法、酸化物誘電体の前駆体、並びに固体電子装置及びその製造方法 | |
TWI626741B (zh) | Oxide dielectric and manufacturing method thereof, oxide dielectric precursor, solid electronic device and method of manufacturing same | |
JP2015103749A (ja) | 導電体薄膜及びその製造方法、導電体の前駆体溶液、並びに薄膜トランジスタ、薄膜キャパシタ、及びそれらの製造方法 | |
JP2016167565A (ja) | 導電性材料、固体電子装置、及びエッチングマスク材料、並びに導電性材料の製造方法及びエッチングマスク材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012551404 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12847934 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 14357167 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147013691 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12847934 Country of ref document: EP Kind code of ref document: A1 |