WO2013067679A1 - 制备多亚甲基多苯基多氨基甲酸酯的方法 - Google Patents

制备多亚甲基多苯基多氨基甲酸酯的方法 Download PDF

Info

Publication number
WO2013067679A1
WO2013067679A1 PCT/CN2011/081909 CN2011081909W WO2013067679A1 WO 2013067679 A1 WO2013067679 A1 WO 2013067679A1 CN 2011081909 W CN2011081909 W CN 2011081909W WO 2013067679 A1 WO2013067679 A1 WO 2013067679A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
solution
reaction
phase
product
Prior art date
Application number
PCT/CN2011/081909
Other languages
English (en)
French (fr)
Inventor
李会泉
柳海涛
陈家强
张凯华
曹妍
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to HUE11875471A priority Critical patent/HUE040222T2/hu
Priority to PCT/CN2011/081909 priority patent/WO2013067679A1/zh
Priority to US14/356,656 priority patent/US9062161B2/en
Priority to JP2014540283A priority patent/JP5827756B2/ja
Priority to CN201180070707.4A priority patent/CN103534231B/zh
Priority to EP11875471.2A priority patent/EP2752405B1/en
Publication of WO2013067679A1 publication Critical patent/WO2013067679A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the invention relates to a preparation method of polymethylene polyphenylcarbamate, and belongs to the technical field of preparation of high molecular compounds.
  • Isocyanate products have a wide range of market applications, and their products are mainly divided into aliphatic isocyanates and aromatic isocyanates, which can produce a variety of polyurethane products through polymerization.
  • the most widely used in the market is aromatic isocyanates.
  • Aromatic polyisocyanates are very important raw materials and are widely used in the fields of synthetic leather, fiber, coatings and plastics. In recent years, with the increasing market demand in the domestic automotive, leather and construction industries, the demand for aromatic polyisocyanates is also rapidly increasing. expand.
  • the synthetic route of aromatic isocyanates can be achieved by a variety of technical routes.
  • the current method for industrial production is mainly the phosgene method. Because the phosgene process route is highly toxic and highly polluting due to the use of highly toxic phosgene raw materials, it is sensitive to the surrounding ecology and environment. There is a danger that high demands are placed on industrialized large-scale production, which severely limits the expansion of aromatic isocyanate production capacity and the widespread application of downstream products.
  • polymethylene polyphenylene aromatic carbamates In the clean process of synthesizing aromatic isocyanates, the efficient synthesis of polymethylene polyphenylene aromatic carbamates is one of the key determinants of process industrialization.
  • Polymethylene polyphenylene aromatic carbamates can be synthesized by a variety of technical routes. Among them, the most studied is the condensation of monophenylcyclocarbamate with a methylating agent to produce polymethylene polyphenyl polycarbamate.
  • condensation reaction of a monophenylcyclocarbamate with a methylating agent to prepare a polymethylene polyphenylpolycarbamate is a relatively complicated process, and the resulting polymethylene polyphenyl polycarbamate will In the presence of multiple isomers, the product is a mixture of a plurality of benzene ring number carbamates.
  • Conventional condensation reactions often require different solvents as the reaction medium depending on the needs of the reaction catalyst.
  • the chemical agent is mainly classified into a liquid protic acid
  • the liquid protic acid catalyst mainly includes a strong acid such as a mineral acid (sulfuric acid, hydrochloric acid, sulfuric acid, hydrofluoric acid, etc.) and an organic acid (formic acid, acetic acid, butyric acid, etc.).
  • the ester reaction gave the following results: when formaldehyde was used as the methylation reagent, the product yield was 89.47%; when the paraformaldehyde was used as the methylation reagent, the product yield was 75.81%.
  • the system was added on the basis of the sulfuric acid catalyst. Hydrochloride auxiliaries, the reaction of methyl phenyl carbamate with formaldehyde to prepare methyl benzoate dicarbamate was studied. The results showed that the conversion of methyl phenyl carbamate reached 96%, 4,4'-diphenylmethane. Methyl dicarbamate yield Up to 76.7%, but the introduction of chloride ions in the reaction system has an impact on the subsequent application performance of the product.
  • the carbamate condensation reaction is studied.
  • the production process can use cheap and easy-to-obtain formalin (formaldehyde aqueous solution) as a methylation reagent, and the cost is low; but there is corrosion equipment, the amount of acid is large, and the acid solution is produced in the process.
  • the technical problems associated with the post-treatment process such as the separation of the solid product polycyclic carbamate, and the removal of the acid solution entrained in the solid product are extremely difficult, which limits the amplification and application of the industrial process.
  • the research team introduced the co-solvent system of acetic acid and water in the patent CN 101440 048, which can improve the condensation of methyl phenyl carbamate with formaldehyde to some extent.
  • Product yield, and reduce the problem of solid product entrapment of liquid acid catalyst but it has not been revealed that the presence of an appropriate amount of solvent can be achieved in a homogeneous liquid phase system, and completely avoid the crystallization of solid products in the reaction process, fundamentally solving the product Technical problems of separation and recycling from acid catalysts.
  • the above synthetic polymethylene polyphenyl polycarbamate technical route reaction system has a large multi-phase complex process of aqueous phase, oil phase and solid phase product, and the solid phase product contains oil phase phenyl carbamate.
  • the present invention provides a process for preparing a polymethylene polyphenyl polycarbamate by phase transfer catalyzed condensation of a phenyl carbamate with a methylating agent in an acid catalyzed environment, which is simple, clean and efficient.
  • a synthesis method capable of producing a polymethylene polyphenyl polycarbamate with high selectivity and yield, and which can easily separate the product, and avoids the solid phase product entrainment of the oil phase phenylamino group Problems with acid ester feedstocks and catalysts.
  • the aqueous phase/organic phase two-phase system is introduced in the reaction of preparing a polymethylene polyphenyl polycarbamate by condensation of a phenyl carbamate with a methylating agent in an acidic catalyst environment, and homogenization is achieved by stirring.
  • the liquid phase synthesizes polymethylene polyphenyl polycarbamate.
  • the reaction formula of the method for preparing polymethylene polyphenyl polycarbamate by condensing phenyl carbamate with methylating agent by phase transfer acidic catalyst is as follows:
  • n may be an integer from 0 to 18, and R may be a hydrocarbon group having 1 to 20 carbon atoms, for example, a saturated terpene hydrocarbon group having 1 to 20 carbon atoms, preferably a C1-C4 alkyl group, an aromatic hydrocarbon group and an unsaturated alkenyl group.
  • the corresponding polymethylene polyphenyl polycarbamate has a number of benzene rings in the range of 2 20 , preferably in the range of 2 to 10, and includes polyalkylene polyphenyl polycarbamate , polymethylene polyphenyl polycarbamic acid aryl ester, polymethylene polyphenyl polycarbamic acid alkenyl ester, etc., and corresponding isomers, wherein the main product is a product of hydrazine or 1.
  • the present invention provides a process for preparing a polymethylene polyphenyl polycarbamate, which is carried out by catalyzing the condensation of a phenyl carbamate with a methylating agent by a phase transfer acidic catalyst,
  • the method includes the following steps:
  • reaction system is reacted at a reaction temperature of from 30 ° C to 200 ° C and a reaction pressure of from 0.05 to 5 MPa to prepare a polymethylene polybenzene dissolved in the organic phase.
  • a reaction temperature of from 30 ° C to 200 ° C and a reaction pressure of from 0.05 to 5 MPa to prepare a polymethylene polybenzene dissolved in the organic phase.
  • the polymethylene polyphenyl polycarbamate mixed product is separated by standing layering the organic phase with the aqueous phase.
  • the method further comprises the steps of: f. cooling and crystallizing the polymethylene polyphenyl polycarbamate mixed product to Diphenylmethane dicarbamate.
  • the oil-water phase separation can be achieved by the oil-water separator, and the oil phase is recycled with the unreacted methylation reagent and the acid-catalyzed aqueous solution after cooling and crystallizing the product; the obtained solid polymethylene polyphenyl polycarbamic acid
  • the ester product can be purified by a solvent such as washing, recrystallization, etc. according to the specific use requirements, and can also be directly used.
  • the washing solvent includes a lower alcohol (C1-C6), acetone, chlorobenzene, dichlorobenzene, etc. A solvent in which the polymethylene polyphenyl polycarbamate is less soluble.
  • the organic solvent in step a is selected from the group consisting of a linear alkane (e.g., n-pentane, etc.), a cycloalkane (e.g., cyclohexanyl, decalin, etc.), a naphthenic oil, a halogenated hydrocarbon.
  • a linear alkane e.g., n-pentane, etc.
  • a cycloalkane e.g., cyclohexanyl, decalin, etc.
  • a naphthenic oil e.g., a halogenated hydrocarbon.
  • aromatic hydrocarbons eg, benzene, toluene, xylene, o-diethylbenzene, o-xylene, chlorobenzene, o-dichlorobenzene, p-dichlorobenzene, monochlorobiphenyl, diphenyl) Methane, etc.
  • diisooctyl sebacate phthalic acid esters such as dialkyl terephthalate, diethyl phthalate, and the like, and combinations thereof.
  • the mass concentration of the phenyl carbamate in solution A is from 1 to 90%.
  • a preferred range is 20-50%.
  • the aqueous acid catalyst solution in step b may be a liquid mineral acid (for example, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid), a liquid organic acid (such as formic acid, acetic acid, butyric acid) or a mixture of them.
  • a liquid mineral acid for example, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid
  • a liquid organic acid such as formic acid, acetic acid, butyric acid
  • the mass fraction of the acid catalyst in the aqueous acid catalyst solution is in the range of from 5 to 80%, preferably from 20 to 60%.
  • the cocatalyst is added to the aqueous acid catalyst solution in step b.
  • the cocatalyst may be a cocatalyst which may be one or a combination of two or more of the metal salts of Group IB, IIB, IIIA, VA, or an inorganic chloride such as sodium chloride. 01-20% ⁇ 2-8% ⁇
  • the copper chloride, an oxide such as dibutyltin oxide or nano-zinc oxide, and the concentration of the cocatalyst in the aqueous acid catalyst is 0. 01-20%, preferably 2-8%.
  • the methylating agent in step c is selected from the group consisting of formaldehyde, paraformaldehyde (eg, paraformaldehyde), and combinations thereof, and the methylating agent may also be trioxane, dioxane. Heterocyclic methane, dioxetane, dithiazide, oxathiocyclohexanide.
  • the reaction in step d is selected from the group consisting of the following One or a combination of the two is carried out: a tubular reactor, a tower reactor, a tank reactor, a jet reactor, a moving bed reactor, and a supergravity reactor.
  • the volume ratio of the organic phase to the aqueous phase in the two-phase reaction system is between 0.1 to 100, preferably in the interval of 0. 5-10.
  • the molar ratio of the methylation agent to the phenyl carbamate in the two-phase reaction system is 0. 05-10. 0, preferably 0. 25-2.
  • the reaction temperature is preferably from 60 to 120 ° C, and the reaction pressure is preferably from 0.1 MPa to 0.1 MPa.
  • the reaction temperature and pressure are mainly dependent on the kind of the solvent.
  • the reaction time is from 1 min to 480 min, and the preferred time range is from 30 min to 120 min.
  • the cooling crystallization temperature is from 20 ° C to 100 ° C, and the preferred temperature range is from 50 ° C to 80 ° C.
  • the reaction temperature of the crystallization separation depends mainly on the solubility and crystallization of the product in the solvent. Operating pressure of the device.
  • the polymethylene polyphenyl polyurethane mixed product has a mass concentration in the organic phase of from 1% to 80%, preferably from 5% to 40%.
  • the method of the invention has the unique synthetic route design and simple operation, and can effectively improve the utilization rate of the phenylaminomethyl ester while reducing the process energy consumption.
  • the present invention achieves the above-described reaction high-efficiency phase transfer catalytic synthesis by introducing an aqueous phase/organic phase two-phase system, and the reaction process is completed in a homogeneous liquid phase system composed of two phases of oil and water. Available under optimized reaction conditions
  • Simple changes in process conditions can efficiently control the product composition of polymethylene polyphenyl polycarbamate; (2), synthetic polymethylene polyphenyl polycarbamate products can be quickly transferred to the organic phase, The reaction equilibrium is moved forward, thereby increasing the product yield of the reaction process; (3) overcoming the unfavorable factors of the mass transfer of the polymethylene polyphenyl polycarbamate in the synthesis process in the aqueous phase, Avoid polymethylene polyphenyl polycarbamic acid
  • the poly-methylene polyphenyl polyurethane product can be obtained by separating the oil-water phase by the oil-water separator, and the separated oil phase can be further purified by cooling and crystallization to obtain high purity.
  • the present invention solves the problems of the prior art, has a high yield, is close to 100%, and is obtained by separation to obtain a very pure diphenylmethane dicarbamate having a purity of 95% or more.
  • the new process is based on the phase transfer catalyzed condensation of phenyl carbamate with a methylating agent in the presence of an acid catalyst to prepare a polymethylene polyphenyl polycarbamate.
  • the selectivity of the product is improved over conventional methods. 40%, and all reactants and solvents are recyclable, and the conversion of the benzene carbamate in the process cycle is greater than 98%.
  • the new process is a clean, efficient, low-energy process route.
  • the acid catalyst used in the present invention is simple in separation from the oil phase and has good recycling properties.
  • methyl phenyl carbamate 100 g was dissolved in 500 ml of toluene, and thoroughly mixed in a 1 L flask; 1000 ml of a 30% aqueous hydrochloric acid solution was prepared in a 1 L beaker, and thoroughly mixed with 30 g of the trioxane methylation reagent; The solution was mixed in a 2 L three-beat beaker under stirring, placed in an oil bath and heated to 90 ° C, and reacted under normal pressure for 8 hours.
  • methyl polybenzylidene polyphenyl polycarbamate is 98.0%, wherein the selectivity of methyl diphenylmethane dicarbamate is 80.6%, methyl trimethylene polyphenyl polycarbamate Selectivity is 1% ⁇ The selectivity of the selectivity of the methyl methacrylate polymethyl polycarbamate was 1.1%.
  • the oil phase product is cooled to 40 ° C, and 94% of methyl dimethyl polyphenyl polycarbamate (ie, methyl diphenylmethane dicarbamate) is separated in a crystalline form, and the desired product is obtained by filtration, and the purity thereof is above 95.
  • methyl dimethyl polyphenyl polycarbamate ie, methyl diphenylmethane dicarbamate
  • the final conversion of butyl carbamate is 98.1%. 1% ⁇ to the polybutylene polyphenyl polycarbamic acid, the selectivity of the polybutylene polyphenyl polycarbamic acid butyl ester is 95.0%, wherein the selectivity of butyl benzoate dicarbamate is 72.1%, trimethylene polyphenyl polycarbamic acid 1% ⁇
  • the selectivity of the butyl ester was 2. 4%, tetramethylene polyphenyl polycarbamic acid butyl ester 2. 1%.
  • the oil phase product is cooled to 60 Torr, and most of dimethyl dimethyl polyphenyl polycarbamate (i.e., butyl diphenylmethane dicarbamate) is isolated in a crystalline form, and the desired product is obtained by filtration.
  • dimethyl dimethyl polyphenyl polycarbamate i.e., butyl diphenylmethane dicarbamate
  • ethyl benzoate dissolved in 10L of diisooctyl sebacate, and then poured into a 20L premixed kettle for mixing; then in another 20L premixed kettle to prepare 15L of 40% concentration
  • the hydration method is a mixture of the above-mentioned solution and a solution of the above-mentioned solution, and the solution is continuously mixed with a volume of 30 L in a super-gravity reactor for 4 hours, the reaction temperature is 100 ° C, the pressure is 0. 15 MPa, heating method Heat the heat transfer oil.
  • the selectivity of the polymethylene polyphenyl polycarbamate is 92.6%, wherein the selectivity of the diphenylmethane dicarbamate is 58.2%, the trimethylene polyphenyl polycarbamate 2% ⁇
  • the selectivity of the ester was 4. 2%, the selectivity of tetramethylene polyphenyl polycarbamate was 4.2%.
  • the oil phase product is cooled to 20 ° C, 26% dimethylene polyphenyl polycarbamate (ie diphenylmethane dicarbamic acid) Ethyl ester is isolated in crystalline form and filtered to give the desired product.
  • the oil and water are separated by hot water, and a certain mass of the sample is taken in the oil phase and the water phase, and analyzed by high performance liquid chromatography, and finally the conversion of phenyl urethane is 2% ⁇
  • the selectivity of the selectivity of the diphenylmethane dicarbamate is 54.2%.
  • the oil phase product was cooled to 100 ° C, and 29% of dimethylene polyphenyl polycarbamate (i.e., diphenylmethane dicarbamate) was separated in the form of crystals, and the desired product was obtained by filtration.
  • the final conversion of phenyl carbamate is 58. 8% ⁇
  • the selectivity of 5%, polymethylene polyphenyl polycarbamate is 90.6%, wherein the selectivity of propyl diphenylmethane dicarbamate is 79.8%, trimethylene polyphenyl polyamino 2% ⁇
  • the selectivity of the propyl methacrylate was 9.2%, the selectivity of tetramethylene polyphenyl polycarbamate was 0.2%.
  • the oil phase product was cooled to 50 ° C, and most of the dimethyl dimethyl polyphenyl polycarbamate (i.e., propyl diphenylmethane dicarbamate) was isolated in the form of crystals, and the desired product was obtained by filtration.
  • the oil and water are separated by heating, and a certain mass of the sample is taken in the oil phase and the water phase, and analyzed by high performance liquid chromatography, and finally the conversion of propyl carbamate is 60%.
  • the selectivity of the propylene group of the methylene polyphenyl polycarbamate is 97.6%, wherein the selectivity of the propyl diphenylmethane dicarbamate is 90.0%, the propyl trimethylene polyphenyl polycarbamate The selectivity was 7.6%.
  • the oil phase product was cooled to 20 ° C, and 97% of dimethyl dimethylpolyphenyl polycarbamate (i.e., propyl benzoate dicarbamate) was isolated in the form of crystals, and the desired product was obtained by filtration.
  • dimethyl dimethylpolyphenyl polycarbamate i.e., propyl benzoate dicarbamate
  • the stirring is stopped and the stratification is carried out, and the oil-water separation is carried out in the hot water, and then a certain amount of the sample is taken in the oil phase and the water phase, and analyzed by high performance liquid chromatography, and finally the conversion of propyl carbamate is 25.34%.
  • the selectivity of the polymethylene polyphenyl polycarbamate is 99.2%, wherein the selectivity of the diphenylmethane dicarbamate is 96.8%, the trimethylene polyphenyl polycarbamate 4% ⁇
  • the ester selectivity was 2. 4%.
  • the oil phase product was cooled to 40 ° C, and 20% of diphenylmethane dicarbamate was separated in a crystalline form, and the desired product was obtained by filtration.
  • the oil and water are separated by heat, and a certain mass of the sample is taken in the oil phase and the water phase, and analyzed by high performance liquid chromatography, and finally the conversion of propyl carbamate is carried out.
  • the 8%, the selectivity of the poly(methylene polyphenylene carbamic acid propyl ester) is 90.4%, wherein the selectivity of the diphenylmethane dicarbamate is 56.8%, the trimethylene polybenzene
  • the selectivity of the propyl polycarbamate is 29.3%, and the selectivity of the tetramethylene polyphenyl polycarbamate is
  • the stirring was stopped and the stratification was carried out, and the oil and water were separated by hot water, and then a certain amount of the sample was taken in the oil phase and the water phase, and analyzed by high performance liquid chromatography, and finally the conversion of propyl carbamate was 73.7%.
  • the selectivity of the polymethylene polyphenyl polycarbamate is 96.4%, wherein the selectivity of the diphenylmethane dicarbamate is 92.8%, the trimethylene polyphenyl polycarbamate 5% ⁇
  • the ester selectivity was 3.5%.
  • the oil phase product was cooled to 40 Torr, and 97% of diphenylmethane dicarbamate was separated in a crystalline form, and the desired product was obtained by filtration.
  • the stirring is stopped, the stratification is carried out, the oil and water are separated, and the oil phase and the aqueous phase are each taken to obtain a sample of a certain mass, and analyzed by high performance liquid chromatography.
  • the final conversion of phenyl carbamate is 74. 35%.
  • the selectivity of the polymethylene polyphenyl polycarbamate is 96.2%, wherein the selectivity of the diphenylmethane dicarbamate is 94.7%, the trimethylene polyphenyl polycarbamate 4% ⁇
  • the ester selectivity was 3. 4%.
  • the oil phase product is cooled to 40 ° C, 97% diphenylmethane dicarbamate is separated in crystalline form, and the objective is obtained by filtration.
  • the polymethylene polyphenyl polycarbamic acid propyl ester has a selectivity of 97.2%, wherein the selectivity of the benzophenone dicarbamic acid propyl ester is 94.1%, trimethylene polyphenyl polycarbamic acid. The selectivity to propyl ester is 3%.
  • the oil phase product is cooled to 40 ° C, and most of the diphenylmethane dicarbamate is separated in crystalline form, and the desired product is obtained by filtration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供一种制备多亚甲基多苯基多氨基甲酸酯的方法,所述方法通过相转移酸性催化剂催化苯氨基甲酸酯与甲基化试剂的缩合而进行,所述方法包括:将苯氨基甲酸酯溶解于与水不互溶的有机溶剂中,以形成溶液A;配制酸催化剂水溶液,以形成溶液B;通过首先将甲基化试剂加入到溶液B中并且随后混合溶液A与溶液B,或者通过在将溶液A与溶液B混合的同时或之后加入甲基化试剂,形成包含有机相和水相的反应体系;在搅拌的同时,将反应体系在30°C-200°C的反应温度和0.05MPa-5MPa的反应压力下进行反应;通过将所述有机相与所述水相静置分层,分离多亚甲基多苯基多氨基甲酸酯混合产物。该方法能够实现产物的高选择性和收率和容易的产物分离。

Description

制备多亚甲基多苯基多氨基甲酸酯的方法
技术领域
本发明涉及一种多亚甲基多苯基氨基甲酸酯的制备方法, 属于高分 子化合物制备技术领域。
背景技术
异氰酸酯产品具有广泛的市场应用价值, 其产品主要分为脂肪族异氰 酸酯和芳香族异氰酸酯, 均可通过聚合过程生产多品种的聚氨酯产品。 其 中市场应用量最大的是芳香族异氰酸酯。 芳香族多异氰酸酯是非常重要原 料, 广泛应用于合成皮革、 纤维、 涂料和塑料等领域, 近几年来随着国内 汽车、 制皮和建筑行业的市场需求量增加, 芳香族多异氰酸酯的需要也在 迅速扩大。
芳香族异氰酸酯的合成途径可通过多种技术路线实现。但就过程的经 济性原因, 目前用于工业生产的方法主要是光气法, 由于光气法工艺路线 因使用剧毒光气原料, 具有高毒性和严重污染性, 对周围的生态和环境都 存在着危险, 对工业化大规模生产提出了极高的要求, 这严重限制芳香族 异氰酸酯产能的扩大和下游产品的大范围推广应用。 因此, 迫切需要一条 清洁工艺路线生产芳香族异氰酸酯产品, 其中多亚甲基多苯环芳香族氨基 甲酸酯热解生产芳香族多异氰酸酯的方法是最可能实现工业化, 有望替代 光气法生产芳香族多异氰酸酯。
清洁工艺合成芳香族异氰酸酯过程中, 多亚甲基多苯环芳香族氨基甲 酸酯的高效合成是实现过程工业化的关键决定因素之一。 多亚甲基多苯环 芳香族氨基甲酸酯可通过多种技术路线合成。其中研究最多的是单苯环氨 基甲酸酯与甲基化试剂缩合生产多亚甲基多苯基多氨基甲酸酯。通常单苯 环氨基甲酸酯与甲基化试剂缩合反应制备多亚甲基多苯基多氨基甲酸酯 是一个相对复杂的过程, 生成的多亚甲基多苯基多氨基甲酸酯会以多种同 分异构体存在, 产物为多种苯环数氨基甲酸酯的混合物。 传统的縮合反应 过程根据反应催化剂的需要, 往往需要不同的溶剂作为反应介质。 所用催 化剂主要分为液体质子酸, 其中液体质子酸催化剂主要有包括无机酸(硫 酸、 盐酸、 硫酸、 氢氟酸等) 和有机酸 (甲酸、 乙酸、 丁酸等) 等强酸。
Takeuchi等在专利 US 4307029 ( 1981 ) 中报道了 Lewis酸和质子酸催 化条件下在有机溶剂中苯氨基甲酸酯与甲醛或其衍生物縮合反应合成多 亚甲基多氨基甲酸酯的技术路线, 后经热解生成相应的多异氰酸酯混合 物, 但由于缩聚产物成分复杂、 热解温度较高最终产物成分更复杂, 放大 过程中后续分离过程及其负载, 为其产业化带来了困难。 Takeshita等在专 利 JP 01135758中报道了用硫酸催化苯氨基甲酸乙酯与甲醛的缩合反应合 成二苯甲烷二氨基甲酸乙酯的技术路线, 可获得 98.4%苯氨基甲酸乙酯的 转化率, 产品收率为 73%。 Jungnickel在专利 DD206669-A中以 20%的盐 酸作为催化剂和溶剂, 研究了苯氨基甲酸甲酯与甲醛縮合制备二苯甲烷二 氨基甲酸甲酯的反应, 4,4'-二苯甲垸二氨基甲酸甲酯的选择性为 72%, 2,4'- 二苯甲垸二氨基甲酸甲酯的选择性为 7%。 Muzakami在专利 JP 04202172 提出将 HC02H, ¾P( ^B H2S04的等强酸配成混合酸水溶液, 作为氨基甲 酸酯与甲醛縮合反应的催化剂和溶剂, 氨基甲酸酯的转化率为 92%, 产物 选择性为 88%。 我国中科院成都有机所的王公应教授先后报道了 (天然气 化工, 2004, 29(2): 33-36, 工业催化, 2006, 14(8): 44-47)混合酸和硫酸体系 中的缩合反应合成二苯甲烷二氨基甲酸甲酯。其中 30%的混合酸催化剂对 苯氨基甲酸甲酯和甲醛溶液(或三聚甲醛)缩合制备二苯甲烷二氨基甲酸 甲酯的反应, 结果得到: 以甲醛为甲基化试剂时, 产品收率为 89.47% ; 以三聚甲醛为甲基化试剂时, 产品产率为 75.81%。在硫酸催化剂基础上在 体系中添加盐酸盐助剂, 研究了苯氨基甲酸甲酯与甲醛缩合制备二苯甲垸 二氨基甲酸甲酯的反应, 结果发现苯氨基甲酸甲酯转化率达 96%, 4,4'-二 苯甲烷二氨基甲酸甲酯产率可达 76.7%, 但该反应体系中引入了氯离子, 对产品的后续应用性能造成影响。 王延吉教授等报道了质子酸酸化的 1- 乙基 ·3-甲基咪唑四氟硼酸 ([emim]BF4)离子液体(高校化学工程学报, 2007, 21(3): 467-470) 和磺酸功能化的离子液体 ( Chinese Journal of Chemical Engineering, 2009, 17(05): 756-760. ) 体系中苯氨基甲酸甲酯与甲醛催化合 成二苯甲烷二氨基甲酸甲酯反应, 但产品收率小于 75%。
上述专利报道中主要选用液体酸、 固体酸催化剂在水相体系中对苯氨 基甲酸酯缩合反应进行研究, 生产过程可以使用廉价易得的福尔马林(甲 醛水溶液) 作为甲基化试剂, 成本较低; 但存在腐蚀设备, 酸液用量大, 产生过程存在酸液与固体产品多环氨基甲酸酯分离等后处理过程复杂的 技术问题, 而且固体产品中夹带的酸液清洗去除极其困难, 限制了其工业 过程的放大及应用。
Monica Distaso等 (JP 58062151、 JP 56167656和 US 1981-05- 19) 以 Sc(OTf)3和 La(OTf)3 (OTf = 03SCF3)为催化剂研究了以碳酸苯甲酯作为芳 香二胺的羰基化试剂的反应。 在有机溶剂四氢呋喃溶剂中, 显著提高了 MDA和碳酸苯甲酯的甲氧羰基化反应,总的氨基甲酸酯的收率接近 80%, 选择性高达 94%, 但上述催化剂的稳定性、 分离与循环利用在工业上存在 技术问题, 限制了其进一步工业应用, 本研究团队在专利 CN 101440 048 中通过引入乙酸和水的共溶剂体系, 可以一定程度上提高苯氨基甲酸甲酯 与甲醛缩合的产品收率, 并减少了固体产品包夹液体酸催化剂的问题, 但 尚未揭示适量溶剂存在可实现反应在均一液相体系中进行, 并完全避免固 体产品在反应过程中结晶, 从根本上解决产物与酸催化剂分离、 循环利用 的技术难题。
上述合成多亚甲基多苯基多氨基甲酸酯技术路线反应体系同时存在 水相、 油相和固相产品大的多相态复杂过程, 且固相产品包夹油相苯氨基 甲酸酯原料和催化剂, 引发复杂的后续产品分离提纯的技术难题。
发明内容
为解决上述问题, 本发明提出一种用相转移催化苯氨基甲酸酯与甲 基化试剂在酸催化环境下缩合制备多亚甲基多苯基多氨基甲酸酯的过程 简单、 清洁、 高效合成方法, 所述方法能够以高选择性和收率制备多亚 甲基多苯基多氨基甲酸酯, 并且可以容易地实现产物的分离, 并且避免 了固相产品包夹油相苯氨基甲酸酯原料和催化剂的问题。具体是在用苯氨 基甲酸酯与甲基化试剂在酸性催化剂的环境下缩合制备多亚甲基多苯 基多氨基甲酸酯反应中引入水相 /有机相两相体系, 通过搅拌实现均一 液相合成多亚甲基多苯基多氨基甲酸酯。 通过相转移酸性催化剂催化苯氨基甲酸酯与甲基化试剂缩合制备多 亚甲基多苯基多氨基甲酸酯的方法的反应式如下:
Figure imgf000005_0001
其中 n可以为 0-18的整数, R可以为含 1-20个碳原子的烃基,例如含 1 - 20 个碳原子的饱和垸烃基, 优选 C1-C4烷基, 芳香烃基和不饱和烯基等, 相 应的多亚甲基多苯基多氨基甲酸酯具有在 2 20范围之内, 优选为 2-10范 围的苯环数目, 并且包括多亚甲基多苯基多氨基甲酸烷基酯, 多亚甲基多 苯基多氨基甲酸芳基酯, 多亚甲基多苯基多氨基甲酸烯基酯等, 还包括相 应的同分异构体, 其中主要产物是 ΓΡΟ或者 1的产物。
具体地, 本发明提供一种制备多亚甲基多苯基多氨基甲酸酯的方法, 所述方法通过相转移酸性催化剂催化苯氨基甲酸酯与甲基化试剂的縮合 而进行, 所述方法包括以下步骤:
a.将苯氨基甲酸酯溶解于与水不互溶的有机溶剂中, 以形成溶液
A;
b.配制酸催化剂水溶液, 以形成溶液 B;
c.通过首先将甲基化试剂加入到溶液 B中并且随后混合溶液 A与 溶液 B, 或者通过在将溶液 A与溶液 B混合的同时或之后加入甲基化试 剂, 形成包含有机相和水相的反应体系, 其中所述有机相包含苯氨基甲 酸酯, 并且所述水相包含酸催化剂和甲基化试剂;
d.在搅拌的同时, 将反应体系在 30 °C - 200 °C的反应温度和 0. 05MPa-5MPa的反应压力下进行反应, 以制备溶解于所述有机相中的多 亚甲基多苯基多氨基甲酸酯混合产物;
e.通过将所述有机相与所述水相静置分层,分离多亚甲基多苯基多 氨基甲酸酯混合产物。
在本发明方法的一个实施方案中, 所述方法还包括以下步骤: f. 将多亚甲基多苯基多氨基甲酸酯混合产物降温结晶, 以从中分 离二苯甲烷二氨基甲酸酯。
通过油水分离器即可实现油水相的分离, 并且在降温结晶分离产 品后油相与未反应的甲基化试剂、 酸催化水溶液循环利用; 得到的固体 多亚甲基多苯基多氨基甲酸酯产品根据具体使用要求用溶剂进行洗涤、 重结晶等提纯处理方法获得高纯度的产品, 也可直接利用, 洗涤溶剂包 括低碳醇(C1-C6), 丙酮、 氯苯、 二氯苯等对多亚甲基多苯基多氨基甲酸 酯溶解度较小的溶剂。
在本发明方法的一个实施方案中, 步骤 a中的有机溶剂选自直链烷 烃 (例如正戊烷等)、 环烷烃 (例如环己垸, 十氢化萘等)、 环烷油、 卤代烃 (例如二氯乙烷等)、 芳香烃 (例如, 苯、 甲苯、 二甲苯、 邻二乙苯、 邻二 甲苯、 氯苯、 邻二氯苯、 对二氯苯、 一氯联苯、 二苯基甲烷等)、 酉旨 (例如 癸二酸二异辛酯、 苯二甲酸酯, 例如对苯二甲酸二烷基酯, 邻苯二甲酸二 乙酯等)以及它们的组合。
在本发明方法的一个实施方案中, 在步骤 a中, 苯氨基甲酸酯在溶 液 A中的质量浓度为 1-90%。 优选范围为 20-50%。
在本发明方法的一个实施方案中, 在步骤 b中的酸催化剂水溶液可 以为液体无机酸 (例如, 硫酸、 硝酸、 盐酸、 磷酸、硼酸), 液体有机酸 (例 如甲酸、 乙酸、 丁酸)或者它们的混合物。
在本发明方法的一个实施方案中, 其中酸催化剂在酸催化剂水溶液 中的质量分数为为 5-80%, 优选为 20- 60%范围。
在本发明方法的一个实施方案中, 在步骤 b中将助催化剂加入到酸 催化剂水溶液中。
在本发明方法的一个实施方案中,助催化剂为助催化剂可以为第 IB、 IIB、 IIIA、 VA族金属盐类的一种或两种以上的组合, 也可以为无机氯化 物, 例如氯化钠, 氯化铜, 氧化物例如二丁基氧化锡或纳米氧化锌, 并 且助催化剂在酸催化剂水溶液中的质量浓度为 0. 01-20%, 优选 2-8%。
在本发明方法的一个实施方案中, 在步骤 c 中的甲基化试剂选自甲 醛、 多聚甲醛 (例如三聚甲醛) 和它们的组合, 甲基化试剂还可以是三噁 垸、 二氧杂环噁烷、 二氧杂环乙垸、 二噻垸、 氧硫杂环己垸。
在本发明方法的一个实施方案中, 步骤 d 中的反应在选自以下反应 器的一种或两种的组合中进行: 管式反应器、 塔式反应器、 釜式反应器、 喷射反应器、 移动床反应器和超重力反应器。
在本发明方法的一个实施方案中, 在两相反应体系中的有机相与水 相的体积比在 0. 1至 100之间, 优选区间为 0. 5-10。
在本发明方法的一个实施方案中, 在两相反应体系中的甲基化试剂 与苯氨基甲酸酯的摩尔比为 0. 05-10. 0, 优选为 0. 25-2. 0。
在本发明方法的一个实施方案中, 反应温度优选为 60- 120°C, 反应 压力优选为 0. lMPa-1. OMPa, 反应温度和压力主要取决于溶剂的种类。
在本发明方法的一个实施方案中, 反应时间为 lmin- 480min,优选的 时间范围为 30min- 120min。
在本发明方法的一个实施方案中, 降温结晶温度为 20°C- 100°C, 优 选的温度范围 50°C- 80°C, 结晶分离的反应温度主要取决于产品在溶剂中 的溶解度及结晶器的操作压力。
在本发明方法的一个实施方案中, 多亚甲基多苯基多氨基甲酸酯混 合产物在有机相中的质量浓度为 1%-80%, 优选为 5%-40%。
本发明的有益效果:
本发明的方法具有合成路线设计独特, 操作简单, 在有效提高了苯 氨基甲酯的利用率同时, 可降低了过程能耗。 具体地, 本发明通过引入 水相 /有机相两相体系中实现了上述反应高效相转移催化合成, 反应过 程在油水两相组成的均一液相体系中完成。 在优化反应条件下可获得
95%以上的多亚甲基多苯环芳香族氨基甲酸酯产品收率。 反应结束后可简 单通过油水两相分离实现油相中产物与水相中甲基化试剂和催化剂的 高效分离。 新路线的优点有: (1 )、 原料苯氨基甲酸酯溶解在有机相中, 甲基化试剂溶解在水相中, 可以通过控制两相配比和反应时间来灵活控 制反应的进行, 通过合成工艺条件的简单变化可高效调控多亚甲基多苯 基多氨基甲酸酯的产品组成; (2 )、 合成多亚甲基多苯基多氨基甲酸酯 产品能迅速转移到有机相中, 使反应平衡正向移动, 从而提高反应过程 的产品收率; (3 )、 克服了水相中合成过程中多亚甲基多苯基多氨基甲 酸酯以固体析出影响传质的不利因素, 避免多亚甲基多苯基多氨基甲酸 酯合成过程中的固液分离的技术难题, 通过油水分离器分离油水相即可 获得多亚甲基多苯基多氨基甲酸酯产品, 并且分离的油相进一步通过降 温结晶即可获得高纯度的二苯甲垸二氨基甲酸酯。 (4 )、 未反应的甲基 化试剂和酸性催化剂反应结束后均进入水相, 通过简单的油水两相分离 即可实现产物与原料、 催化剂的高效分离, 分离的水相酸性催化剂与未 反应的甲基化试剂可直接循环利用; (5 )、 合成技术路线具有工艺简单、 操作条件温和、 产物控制高效、 易于连续化生产的技术优势。
本发明解决了现有技术的问题, 有很高的收率, 接近 100%, 另外通 过分离得到很纯二苯甲烷二氨基甲酸酯, 纯度 95%以上。 新工艺在用相 转移催化苯氨基甲酸酯与甲基化试剂在酸催化剂的环境下缩合制备多 亚甲基多苯基多氨基甲酸酯方法中目的产品较传统方法的选择性提高 15-40%, 且所有的反应物和溶剂都可循环利用, 过程循环累积苯氨基甲 酸酯的转化率大于 98%。 整体来看, 新工艺过程是一条清洁、 高效、 低 能耗的工艺路线。此外, 本发明除了有很高选择性和收率外, 使用的酸催 化剂与油相分离简单, 有很好的循环利用性。
具体实施方式
下面举例进一步说明本发明所提供的方法的实施例, 但本发明并不 因此而受到任何限制。
实施例 1
称取 100. 0g苯氨基甲酸甲酯溶解于 500ml的甲苯, 在 1L烧瓶中充 分混合; 在 1L烧杯中配制 1000ml浓度为 30%盐酸水溶液, 与 30g三聚 甲醛甲基化试剂充分混合; 将上述溶液在搅拌条件下在 2L三口烧杯中 混合, 放到油浴中加热至 90 °C, 常压下反应 8小时。 反应结束后停止搅 拌, 静置分层, 进行油水分离, 再在油相和水相各取一定质量的样品, 用高效液相色谱分析, 最后苯氨基甲酸甲酯转化率为 61. 1%, 多亚甲基 多苯基多氨基甲酸甲酯的选择性为 98. 0%, 其中二苯甲烷二氨基甲酸甲 酯的选择性为 80. 6%, 三亚甲基多苯基多氨基甲酸甲酯的选择性为 16. 2%, 四亚甲基多苯基多氨基甲酸甲酯的选择性为 1. 1%。 油相产物降 温到 40°C, 94%的二甲基多苯基多氨基甲酸甲酯(即二苯甲烷二氨基甲酸 甲酯)以结晶形式分离出来,经过滤即得到目的产品,其纯度为 95%以上。
实施例 2
称取 30. 2g的苯氨基甲酸丁酯溶解于 100ml 的氯苯 (110g), 再倒 入 500ml的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 40%的磷酸, 接着放到油浴中加热至 80°C, 最后一次加入 8. 2g甲醛 (38%), 在搅拌 速率为 360r/min下常压反应 6个小时。 反应结束后停止搅拌静置分层, 趁热进行油水分离, 再在油相和水相各取一定质量的样品, 用高效液相 色谱分析, 最后苯氨基甲酸丁酯转化率为 98. 1%, 多亚甲基多苯基多氨 基甲酸丁酯的选择性为 95. 0%, 其中二苯甲垸二氨基甲酸丁酯的选择性 为 72. 1%, 三亚甲基多苯基多氨基甲酸丁酯的选择性为 20. 4%, 四亚甲 基多苯基多氨基甲酸丁酯 2. 1%。 油相产物降温到 60Ό , 多数二甲基多 苯基多氨基甲酸丁酯(即二苯甲烷二氨基甲酸丁酯)以结晶形式分离出 来, 经过滤即得到目的产品。
实施例 3
称取 500. 0g的苯氨基甲酸乙酯溶解于 10L的癸二酸二异辛酯中, 再倒入 20L的预混釜中混合;然后在另一 20L预混釜配制 15L浓度为 40% 的磷酸水溶液, 并与 200g 甲醛溶液充分混合; 将上述溶液通过进料泵 连续输送到体积为 30L的超重力反应器中循环反应 4小时, 反应温度为 100°C, 压力为 0. 15MPa, 加热方式为导热油加热。 反应结束后停止搅拌 静置分层, 趁热进行油水分离, 再在油相和水相各取一定质量的样品, 用高效液相色谱分析, 最后苯氨基甲酸乙酯转化率为 99. 5%, 多亚甲基 多苯基多氨基甲酸乙酯的选择性为 92. 6%, 其中二苯甲烷二氨基甲酸乙 酯的选择性为 58. 2% , 三亚甲基多苯基多氨基甲酸乙酯的选择性为 30. 6%, 四亚甲基多苯基多氨基甲酸乙酯的选择性为 4. 2%。 油相产物降 温到 20°C, 26%二亚甲基多苯基多氨基甲酸乙酯(即二苯甲烷二氨基甲酸 乙酯)以结晶形式分离出来, 经过滤即得到目的产品。
实施例 4
称取 1000. 0g的苯氨基甲酸乙酯溶解于 50L的环烷油中充分混合; 将 50L浓度为 60%的硫酸水溶液与 200g多聚甲醛 (混合多聚体) 固体 充分混合; 将上述溶液通过进料泵连续输送到直径为 50mm 的管式反应 器中循环反应 4小时, 反应温度为 180°C, 压力约 3. 50MPa, 加热方式 为导热油加热。 反应结束后收集液相产品混合物, 静置分层, 趁热进行 油水分离,再在油相和水相各取一定质量的样品,用高效液相色谱分析, 最后苯氨基甲酸乙酯转化率为 98. 5%, 多亚甲基多苯基多氨基甲酸乙酯 的选择性为 91. 6%, 其中二苯甲烷二氨基甲酸乙酯的选择性为 54. 2%。 油相产物降温到 100°C, 29%二亚甲基多苯基多氨基甲酸乙酯(即二苯甲 烷二氨基甲酸乙酯)以结晶形式分离出来, 经过滤即得到目的产品。
实施例 5
称取 20. 2g 的苯氨基甲酸丙酯溶解于 100ml 的邻二氯苯, 再倒入 500ml 的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 20%的硫酸, 接 着放到油浴中加热至 90°C, 最后以匀速滴加入 20g甲醛(10%), 在搅拌 速率为 360r/min下常压反应两个小时。 反应结束后停止搅拌静置分层, 趁热进行油水分离, 再在油相和水相各取一定质量的样品, 用高效液相 色谱分析, 最后苯氨基甲酸丙酯转化率为 58. 3. 5%, 多亚甲基多苯基多 氨基甲酸丙酯的选择性为 90. 6%, 其中二苯甲烷二氨基甲酸丙酯的选择 性为 79. 8%, 三亚甲基多苯基多氨基甲酸丙酯的选择性为 9. 4%, 四亚甲 基多苯基多氨基甲酸丙酯的选择性为 0. 2%。 油相产物降温到 50°C, 多 数二亚甲基多苯基多氨基甲酸丙酯(即二苯甲烷二氨基甲酸丙酯)以结 晶形式分离出来, 经过滤即得到目的产品。
实施例 6
称取 9. 57g的苯氨基甲酸丙酯溶解于 100ml的氯苯, 再倒入 500ml 的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 60%的甲酸, 接着放到 油浴中加热至 90°C, 最后以一次加入 10g 甲醛 (38%) , 在搅拌速率为 600r/min, 0. 15MPa压力条件下反应 180min。 反应结束后停止搅拌静置 分层, 趁热进行油水分离, 再在油相和水相各取一定质量的样品, 用高 效液相色谱分析, 最后苯氨基甲酸丙酯转化率为 60%, 多亚甲基多苯基 多氨基甲酸丙酯的选择性为 97. 6%, 其中二苯甲烷二氨基甲酸丙酯的选 择性为 90. 0%, 三亚甲基多苯基多氨基甲酸丙酯的选择性为 7. 6%。 油相 产物降温到 20°C, 97%二亚甲基多苯基多氨基甲酸丙酯(即二苯甲垸二氨 基甲酸丙酯)以结晶形式分离出来, 经过滤即得到目的产品。
实施例 7
称取 10. 5g的苯氨基甲酸丙酯溶解于 100ml的正戊烷,再倒入 500ml 的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 40%的硫酸, 接着放到 油浴中加热至 60 °C, 最后以一次加入 3g 三聚甲醛, 在搅拌速率为 600r/min, 常压下反应 120min。 反应结束后停止搅拌静置分层, 趁热进 行油水分离, 再在油相和水相各取一定质量的样品, 用高效液相色谱分 析, 最后苯氨基甲酸丙酯转化率为 25. 34%, 多亚甲基多苯基多氨基甲酸 丙酯的选择性为 99. 2%, 其中二苯甲烷二氨基甲酸丙酯的选择性为 96. 8%, 三亚甲基多苯基多氨基甲酸丙酯的选择性为 2. 4%。 油相产物降 温到 40°C, 20%二苯甲烷二氨基甲酸丙酯以结晶形式分离出来, 经过滤 即得到目的产品。
实施例 8
称取 10. 02g的苯氨基甲酸丙酯溶解于 100ml的环己垸,再倒入 500ml 的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 40%的硫酸与占质量分 数 2%纳米氧化锌为助催化剂, 一次加入 10. 8g甲醛(38%), 接着放到油 浴中加热至 1.40Ό,在搅拌速率为 600r/min压力约 2. OMPa下反应 10min。 反应结束后停止搅拌静置分层, 趁热进行油水分离, 再在油相和水相各 取一定质量的样品, 用高效液相色谱分析, 最后苯氨基甲酸丙酯转化率 为 98. 8%, 多亚甲基多苯基多氨基甲酸丙酯的选择性为 90. 4%, 其中二 苯甲烷二氨基甲酸丙酯的选择性为 56. 8%, 三亚甲基多苯基多氨基甲酸 丙酯的选择性为 29. 3%, 四亚甲基多苯基多氨基甲酸丙酯的选择性为
°C, 少量二苯甲垸二氨基甲酸丙酯以结晶形式
Figure imgf000012_0001
实施例 9
称取 20. 02g 的苯氨基甲酸丙酯溶解于 100ml 的邻二甲苯, 再倒入 500ml 的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 40%的硫酸, 接 着放到油浴中加热至 90°C, 最后以一次加入 5. 5g甲醛 (38%), 在搅拌 速率为 360r/min, 0. 15MPa反应压力条件下反应 120min。 反应结束后停 止搅拌静置分层, 趁热进行油水分离, 再在油相和水相各取一定质量的 样品, 用高效液相色谱分析, 最后苯氨基甲酸丙酯转化率为 73. 7%, 多 亚甲基多苯基多氨基甲酸丙酯的选择性为 96. 4%, 其中二苯甲烷二氨基 甲酸丙酯的选择性为 92. 8%, 三亚甲基多苯基多氨基甲酸丙酯的选择性 为 3. 5%。 油相产物降温到 40Ό, 97%二苯甲烷二氨基甲酸丙酯以结晶形 式分离出来, 经过滤即得到目的产品。
实施例 10
称取 20. 02g 的苯氨基甲酸丙酯溶解于 100ml 的邻二乙苯, 再倒入 500ml 的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 40%的硫酸, 接 着放到油浴中加热至 90°C, 最后以一次加入 5. 5g甲醛(38%)与占质量 分数 5%二丁基氧化锡为助催化剂, 在搅拌速率为 360r/min, 为常压反 应条件下反应 120min。 反应结束后停止搅拌静置分层, 趁热进行油水分 离, 再在油相和水相各取一定质量的样品, 用高效液相色谱分析, 最后 苯氨基甲酸丙酯转化率为 74. 35%,多亚甲基多苯基多氨基甲酸丙酯的选 择性为 96. 2%, 其中二苯甲烷二氨基甲酸丙酯的选择性为 94. 7%, 三亚 甲基多苯基多氨基甲酸丙酯的选择性为 3. 4%。 油相产物降温到 40°C, 97%二苯甲烷二氨基甲酸丙酯以结晶形式分离出来, 经过滤即得到目的 P
BR
实施例 11
称取 20. 02g 的苯氨基甲酸丙酯溶解于 100ml 的二氯乙烷, 再倒入 500ml 的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 30%的盐酸与占 质量分数 10%氯化铜为助催化剂, 接着放到油浴中加热至 80°C, 最后以 均匀滴加加入 5. 5g 甲醛 (38%), 在搅拌速率为 360r/min 下常压反应 120mino 反应结束后停止搅拌静置分层, 趁热进行油水分离, 再在油相 和水相各取一定质量的样品, 用高效液相色谱分析, 最后苯氨基甲酸丙 酯转化率为 82. 8%, 多亚甲基多苯基多氨基甲酸丙酯的选择性为 98. 2%, 其中二苯甲烷二氨基甲酸丙酯的选择性为 90. 08%,三亚甲基多苯基多氨 基甲酸丙酯的选择性为 7. 9%。 油相产物降温到 40°C, 多数二苯甲烷二 氨基甲酸丙酯以结晶形式分离出来, 经过滤即得到目的产品。
实施例 12
称取 20. 02g的苯氨基甲酸丙酯溶解于 100ml的氯苯, 再倒入 500ml 的三口烧瓶中, 然后再往三口烧瓶中加入 200ml 40%的硫酸 (260g), 再 加入大约 1质量%的氯化钠 (助剂), 接着放到油浴中加热至 90°C, 最后 以均匀滴加入 20g甲醛(10%), 在搅拌速率为 360r/min下, 0. 20MPa下 反应 120min。 反应结束后停止搅拌静置分层, 趁热进行油水分离, 再在 油相和水相各取一定质量的样品, 用高效液相色谱分析, 最后苯氨基甲 酸丙酯转化率为 71. 35%, 多亚甲基多苯基多氨基甲酸丙酯的选择性为 97. 2%, 其中二苯甲垸二氨基甲酸丙酯的选择性为 94. 1%, 三亚甲基多苯 基多氨基甲酸丙酯的选择性为 3%。 油相产物降温到 40°C, 多数二苯甲 烷二氨基甲酸丙酯以结晶形式分离出来, 经过滤即得到目的产品。

Claims

溶剂酸
权 利 要 求
1. 一种制备多亚甲基多苯基多氨基甲酸酯的方法, 所述方法通过相 转移酸性催化剂催化苯氨基甲酸酯与甲基化试剂的缩合而进行, 所述方法 包括以下步骤:
a.将苯氨基甲酸酯溶解于与水不互溶的有机溶剂中, 以形成溶液
A;
b.配制酸催化剂水溶液, 以形成溶液 B;
c.通过首先将甲基化试剂加入到溶液 B中并且随后混合溶液 A与 B, 或者通过在将溶液 A与溶液 B混合的同时或之后加入甲基化试 形成包含有机相和水相的反应体系, 其中所述有机相包含苯氨基甲 :旨, 并且所述水相包含酸催化剂和甲基化试剂;
d.在搅拌的同时, 将反应体系在 30 °C -200 °C的反应温度和 0. 05MPa-5MPa的反应压力下进行反应, 以制备溶解于所述有机相中的多 亚甲基多苯基多氨基甲酸酯混合产物;
e.通过将所述有机相与所述水相静置分层,分离多亚甲基多苯基多 氨基甲酸酯混合产物。
2. 根据权利要求 1所述的方法, 其中所述方法还包括以下步骤: f. 将多亚甲基多苯基多氨基甲酸酯混合产物降温结晶, 以从中分 离二苯甲烷二氨基甲酸酯。
3. 根据权利要求 1或 2所述的方法, 其中步骤 a中的有机溶剂选自 直链烷烃、 环烷烃、 环烷油、 卤代烃、 芳香烃、 酯以及它们的组合。
4.根据权利要求 1或 2所述的方法, 其中在步骤 a中, 苯氨基甲酸 酯在溶液 A中的质量浓度为 1-90%。
5.根据权利要求 1或 2所述的方法, 其中在步骤 b中的酸催化剂水 溶液为硫酸、 硝酸、 盐酸、 磷酸、 硼酸、 甲酸、 乙酸、 丁酸或者它们的混 合物。
6.根据权利要求 1或 2所述的方法, 其中酸催化剂在酸催化剂水溶 入到酸催化剂水溶液中。
8. 根据权利要求 7所述的方法, 其中助催化剂为氯化钠, 氯化铜, 二丁基氧化锡或纳米氧化锌, 并且助催化剂在酸催化剂水溶液中的质量 浓度为 0. 01-20%。
9. 根据权利要求 1或 2所述的方法, 其中在步骤 c中的甲基化试剂 选自甲醛、 多聚甲醛和它们的组合。
10. 根据权利要求 1或 2所述的方法, 其中步骤 d中的反应在选自 以下反应器的一种或两种的组合中进行: 管式反应器、 塔式反应器、 釜式 反应器、 喷射反应器、 移动床反应器和超重力反应器。
11. 根据权利要求 1或 2所述的方法, 其中在两相反应体系中的有 机相与水相的体积比在 0. 1至 100之间。
12. 根据权利要求 1或 2所述的方法, 其中在两相反应体系中的甲 基化试剂与苯氨基甲酸酯的摩尔比为 0. 05-10. 0。
13. 根据权利要求 1或 2所述的方法, 其中反应温度为 60- 120°C。
14. 根据权利要求 1 或 2 所述的方法, 其中反应压力为 0. lMPa-1. 0MPa。
15. 根据权利要求 1或 2所述的方法, 其中反应时间为 1分钟- 480 分钟。
16. 根据权利要求 2所述的方法, 其中降温结晶温度为 20°C 100°C。
17. 根据权利要求 1所述的方法, 其中多亚甲基多苯基多氨基甲酸 酯混合产物在有机相中的质量浓度为 1%- 80%。
PCT/CN2011/081909 2011-11-08 2011-11-08 制备多亚甲基多苯基多氨基甲酸酯的方法 WO2013067679A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
HUE11875471A HUE040222T2 (hu) 2011-11-08 2011-11-08 Eljárás polimetilén-polifenil-poliamino-formiát elõállítására
PCT/CN2011/081909 WO2013067679A1 (zh) 2011-11-08 2011-11-08 制备多亚甲基多苯基多氨基甲酸酯的方法
US14/356,656 US9062161B2 (en) 2011-11-08 2011-11-08 Method for preparing polymethylene polyphenyl polycarbamate
JP2014540283A JP5827756B2 (ja) 2011-11-08 2011-11-08 ポリメチレンポリフェニルポリカーバメートを製造する方法
CN201180070707.4A CN103534231B (zh) 2011-11-08 2011-11-08 制备多亚甲基多苯基多氨基甲酸酯的方法
EP11875471.2A EP2752405B1 (en) 2011-11-08 2011-11-08 Method for preparing polymethylene polyphenyl polyamino formate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/081909 WO2013067679A1 (zh) 2011-11-08 2011-11-08 制备多亚甲基多苯基多氨基甲酸酯的方法

Publications (1)

Publication Number Publication Date
WO2013067679A1 true WO2013067679A1 (zh) 2013-05-16

Family

ID=48288442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081909 WO2013067679A1 (zh) 2011-11-08 2011-11-08 制备多亚甲基多苯基多氨基甲酸酯的方法

Country Status (6)

Country Link
US (1) US9062161B2 (zh)
EP (1) EP2752405B1 (zh)
JP (1) JP5827756B2 (zh)
CN (1) CN103534231B (zh)
HU (1) HUE040222T2 (zh)
WO (1) WO2013067679A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175718A (zh) * 2014-05-29 2015-12-23 陶氏环球技术有限责任公司 控制脲的氨甲酰化的mw分布和副产物的水馈入方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926403A (zh) * 2020-06-29 2022-01-14 中国科学院过程工程研究所 一种二苯甲烷二氨基甲酸酯的制备装置及方法
CN116617993A (zh) * 2023-07-26 2023-08-22 中国科学院过程工程研究所 一种制备多亚甲基多苯基多氨基甲酸甲酯的装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307029A (en) 1979-12-04 1981-12-22 Mitsui Toatsu Chemicals, Incorporated Process for preparing polymethylene-polyphenyl polyisocyanates
JPS56167656A (en) 1980-05-30 1981-12-23 Mitsubishi Chem Ind Ltd Preparation of methylenedicarbanilate
JPS5862151A (ja) 1981-10-12 1983-04-13 Asahi Chem Ind Co Ltd N−フエニルカルバミン酸エステルの縮合方法
DD206669A3 (de) 1981-11-26 1984-02-01 Schwarzheide Synthesewerk Veb Verfahren zur herstellung von polymethylenpolyphenylenpolycarbamaten
JPH01135758A (ja) 1987-11-20 1989-05-29 Sumitomo Metal Ind Ltd 芳香族ポリカーバメートの製造法
JPH04202172A (ja) 1990-11-29 1992-07-22 Babcock Hitachi Kk ジフェニルメタンジカルバミン酸エステルの製造方法
US5384424A (en) * 1991-06-26 1995-01-24 Lucky Limited Process for the selective preparation of 4,4-methylene-bis-(N-phenylalkylcarbamate)
CN101440048A (zh) 2007-11-22 2009-05-27 中国科学院过程工程研究所 在复合溶剂体系中制备二苯甲烷二氨基甲酸酯的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946768A (en) * 1957-08-12 1960-07-26 Bayer Ag Condensation products of carbamic acid esters
JPS5612357A (en) * 1979-07-09 1981-02-06 Mitsui Toatsu Chem Inc Production of polymethylenepolyphenylpolycarbamate
DE2931554A1 (de) * 1979-08-03 1981-02-26 Basf Ag Verfahren zur herstellung von methylen-bis-phenyl-carbaminsaeureestern und polymethylen-polyphenylcarbaminsaeureestern
JPS57154159A (en) * 1981-03-16 1982-09-22 Asahi Chem Ind Co Ltd Introduction of methylene group to n-phenylcarbamic acid ester
JPS5929651A (ja) * 1982-08-11 1984-02-16 Asahi Chem Ind Co Ltd ポリメチレンポリフエニルカルバメ−ト類の製造方法
JPS59172451A (ja) * 1983-03-18 1984-09-29 Asahi Chem Ind Co Ltd ポリイソシアナ−ト類の製造方法
JPH02108658A (ja) * 1988-10-17 1990-04-20 Sumitomo Metal Ind Ltd 芳香族ポリカーバメートの製造方法
JPH0399051A (ja) * 1989-09-11 1991-04-24 Babcock Hitachi Kk ジフェニルメタンジカルバミン酸エステルの製造方法
JPH0543537A (ja) * 1990-07-20 1993-02-23 Nkk Corp 4,4′−メチレンジフエニルカルバメート類とポリメチレンポリフエニルカルバメート類の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307029A (en) 1979-12-04 1981-12-22 Mitsui Toatsu Chemicals, Incorporated Process for preparing polymethylene-polyphenyl polyisocyanates
JPS56167656A (en) 1980-05-30 1981-12-23 Mitsubishi Chem Ind Ltd Preparation of methylenedicarbanilate
JPS5862151A (ja) 1981-10-12 1983-04-13 Asahi Chem Ind Co Ltd N−フエニルカルバミン酸エステルの縮合方法
DD206669A3 (de) 1981-11-26 1984-02-01 Schwarzheide Synthesewerk Veb Verfahren zur herstellung von polymethylenpolyphenylenpolycarbamaten
JPH01135758A (ja) 1987-11-20 1989-05-29 Sumitomo Metal Ind Ltd 芳香族ポリカーバメートの製造法
JPH04202172A (ja) 1990-11-29 1992-07-22 Babcock Hitachi Kk ジフェニルメタンジカルバミン酸エステルの製造方法
US5384424A (en) * 1991-06-26 1995-01-24 Lucky Limited Process for the selective preparation of 4,4-methylene-bis-(N-phenylalkylcarbamate)
CN101440048A (zh) 2007-11-22 2009-05-27 中国科学院过程工程研究所 在复合溶剂体系中制备二苯甲烷二氨基甲酸酯的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ENGINEERING OF NATURAL GAS, vol. 29, no. 2, 2004, pages 33 - 36
CHINESE JOURNAL OF CHEMICAL ENGINEERING, vol. 17, no. 05, 2009, pages 756 - 760
INDUSTRIAL CATALYSIS, vol. 14, no. 8, 2006, pages 44 - 47
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES, vol. 21, no. 3, 2007, pages 467 - 470
See also references of EP2752405A4
WANG, FUQIANG ET AL.: "Synthesis of methyl methylene di(phenyl carbamate)catalyzed by sulfuric acid with chloride as the promoter", INDUSTRIAL CATALYSIS, vol. 14, no. 8, August 2006 (2006-08-01), pages 44 - 47, XP008173614 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175718A (zh) * 2014-05-29 2015-12-23 陶氏环球技术有限责任公司 控制脲的氨甲酰化的mw分布和副产物的水馈入方法
CN105175718B (zh) * 2014-05-29 2019-07-19 陶氏环球技术有限责任公司 控制脲的氨甲酰化的mw分布和副产物的水馈入方法

Also Published As

Publication number Publication date
JP5827756B2 (ja) 2015-12-02
CN103534231A (zh) 2014-01-22
EP2752405B1 (en) 2018-08-22
EP2752405A4 (en) 2015-05-27
EP2752405A1 (en) 2014-07-09
HUE040222T2 (hu) 2019-02-28
JP2014532731A (ja) 2014-12-08
US20140316100A1 (en) 2014-10-23
CN103534231B (zh) 2016-04-06
US9062161B2 (en) 2015-06-23

Similar Documents

Publication Publication Date Title
WO2022041502A1 (zh) 一种1,5-戊二异氰酸酯的制备方法
KR101661531B1 (ko) 방향족 알코올 또는 복소환식 방향족 알코올의 제조방법
CN1935783B (zh) 一种3,3'-二甲基-4,4'-联苯二异氰酸酯的合成方法
JP2013518811A (ja) 芳香族ホルムアミドの製造方法
WO2013067679A1 (zh) 制备多亚甲基多苯基多氨基甲酸酯的方法
CN102627582A (zh) 一种合成hdi的方法
JP2011093905A (ja) アミノ酸型イオン液体からアミド生成物を分離する方法
CN1687022A (zh) 对苯二异氰酸酯的合成方法
CN1840521B (zh) 二苯基甲烷系列的二胺和多胺的制备方法
CN107118125B (zh) 一种环己酮肟的制备方法
CN102701936A (zh) 芴氧化生产9-芴酮的方法
CA2478501C (en) Process for the production of diaminodiphenylmethane and its higher homologues
CN104496908A (zh) 一种羰基二咪唑的制备方法
JP5615263B2 (ja) ジアミノジフェニルアルカンの製造方法
CN111848443A (zh) 一种水杨腈的制备方法
CN106565545A (zh) 连续催化制备4,4’-二苯甲烷二氨基甲酸甲酯的方法
CN114349686B (zh) 1,4-二氢吡啶类手性杂合氢化试剂及其制备方法和应用
CN1211357C (zh) 合成芳族尿烷的连续化方法
JP5936352B2 (ja) ジアミノジフェニルアルカンの製造方法
CN108191678B (zh) 一种由间苯二酚一锅法制备4,6-二氨基间苯二酚盐酸盐的方法
CN110090644B (zh) 一种合成o-甲基己内酰亚胺的催化剂及应用方法
CN105218381A (zh) 一种4,4-二氨基3,3-二叔丁基二苯甲烷合成方法
Nica et al. Functionalized 1, 5, 7-triazabicyclo [4.4. 0] dec-5-ene (TBD) as novel organocatalyst for efficient depolymerization of polyethylene terephthalate (PET) wastes
CN111807967B (zh) 甲基环己三胺及甲基环己烷三异(硫)氰酸酯的制备方法
CN114149366B (zh) 一种橡胶防老剂tmq的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180070707.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14356656

Country of ref document: US