WO2013062100A1 - テトラアルキルアンモニウム塩溶液の製造方法 - Google Patents

テトラアルキルアンモニウム塩溶液の製造方法 Download PDF

Info

Publication number
WO2013062100A1
WO2013062100A1 PCT/JP2012/077779 JP2012077779W WO2013062100A1 WO 2013062100 A1 WO2013062100 A1 WO 2013062100A1 JP 2012077779 W JP2012077779 W JP 2012077779W WO 2013062100 A1 WO2013062100 A1 WO 2013062100A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetraalkylammonium
solution
ion
exchange resin
cation exchange
Prior art date
Application number
PCT/JP2012/077779
Other languages
English (en)
French (fr)
Inventor
渡邉 淳
直幸 梅津
喜文 山下
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to KR1020147005045A priority Critical patent/KR101987409B1/ko
Priority to CN201280038087.0A priority patent/CN103732573B/zh
Publication of WO2013062100A1 publication Critical patent/WO2013062100A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/06Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/40Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture or use of photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen

Definitions

  • the present invention relates to a novel method for producing a solution containing a tetraalkylammonium salt using a cation exchange resin, and a method for producing tetraalkylammonium hydroxide using the same as a raw material.
  • Tetraalkylammonium hydroxide (hereinafter, abbreviated as TAAH) is a compound useful as a standard transfer solution for bases in non-aqueous solution titration or an organic alkaline agent in organic synthesis, including a phase transfer catalyst. In addition, it is used as a processing agent for cleaning, etching, development of a photoresist, etc. of a semiconductor substrate in the manufacture of integrated circuits and large scale integrated circuits. In particular, in applications for semiconductors, since semiconductor substrates are contaminated, high purity TAAH containing as little impurities as possible is required.
  • waste liquid used for developing the photoresist as described above contains metal ion impurities and TAAH in addition to the photoresist, and in order to reduce the environmental load, TAAH is recovered from the waste liquid and reused.
  • Photoresist development waste liquid waste liquid containing photoresist and TAAH
  • the method for treating photoresist development waste liquid is concentrated by evaporation method or reverse osmosis membrane method and disposed of ( The methods of incineration or collection with workers, and the methods of biodegrading with activated sludge and releasing it were the mainstream.
  • many attempts have been proposed to recover and reuse TAAH from the waste solution in consideration of the environment.
  • a tetraalkyl ammonium ion (TAA ion) is adsorbed to a cation exchange resin by bringing a photoresist development waste solution and a cation exchange resin into contact with each other.
  • hydrochloric acid is passed through the cation exchange resin to recover the TAA salt, and perchloric acid is added to the obtained solution to form tetraalkylammonium perchlorate (TAA perchlorate).
  • TAA perchlorate is purified by crystallization, and then the obtained perchlorate is brought into contact with an anion exchange resin to recover TAAH.
  • the process is complicated, and industrial production is difficult due to the use of perchlorate which may cause explosion.
  • Patent Documents 5 and 6 there is disclosed a technology of producing TAAH by adsorbing TAA ions to an ion exchange resin to recover a TAA salt from a dilute development waste liquid and electrolyzing the salt.
  • Patent Documents 5 and 6 since the conditions for eluting the TAA salt from the ion exchange resin are not controlled, metal ion impurities are mixed in the obtained TAA salt solution, and as a result, metal ion impurities are contained in the TAAH solution after electrolysis. There was a problem that it mixes in relatively high concentration.
  • Patent Document 7 discloses a technique for producing TAAH by using a metal hydroxide when eluting TAA ions from an ion exchange resin to which TAA ions are adsorbed.
  • a metal hydroxide when eluting TAA ions from an ion exchange resin to which TAA ions are adsorbed.
  • organic substances such as resist contained in the development waste liquid are mixed in TAAH.
  • TAA ions can be recovered from the development waste liquid with a high yield, but in the method, removal of the resist component becomes insufficient, and metal ion impurities are mixed. There was a problem that only dilute TAA salt solution could be obtained.
  • the present inventors diligently studied to solve the above problems. As a result, when contacting the photoresist development waste fluid with a cation exchange resin to cause the cation exchange resin to adsorb TAA ions, and then passing the salt solution through the cation exchange resin to recover a TAA salt. By stopping the recovery before the metal ion concentration of the resulting TAA salt solution reaches a predetermined concentration, it is possible to obtain a TAA salt having a low metal ion impurity concentration, which is treated by electrolysis to form a resist component. It has been found that TAAH which does not contain a resist component can be produced because it can be efficiently decomposed and removed, and the present invention has been completed.
  • the present invention is a method for producing a tetraalkylammonium salt solution, which obtains a solution containing a tetraalkylammonium salt having a reduced metal ion content ratio from a solution containing metal ions and tetraalkylammonium hydroxide, (1) A solution containing metal ions and tetraalkylammonium hydroxide is passed through an adsorption column packed with a cation exchange resin of hydrogen ion type to make the tetraalkylammonium ion in the solution a cation exchange resin.
  • Adsorption process to be adsorbed (2) A solution of an alkali metal salt is passed through an adsorption tower filled with a cation exchange resin to which a tetraalkylammonium ion is adsorbed in the adsorption step, and the tetraalkylammonium ion adsorbed on the resin is absorbed.
  • a recovery step in which the effluent flowing out of the adsorption tower is recovered in a storage tank, And measuring the alkali metal ion concentration in the effluent from the adsorption column, and before the alkali metal ion concentration rapidly increases, It is a method for producing a tetraalkylammonium salt solution characterized by stopping recovery of effluent.
  • Another invention comprises the same steps as the above (1) adsorption step and (2) recovery step, and in the recovery step, the concentration of the alkali metal ion in the effluent from the adsorption column is measured, Production of a tetraalkylammonium salt solution characterized in that collection of effluent to the storage tank is stopped when the alkali metal ion concentration reaches a predetermined concentration provided between 0.5 and 10 mg / L. It is a method.
  • a highly pure TAAH solution can be obtained by electrolyzing the TAA salt thus obtained.
  • the amount of metal ions in the TAA salt solution to be recovered can be reduced, a TAA salt with less metal ion impurities can be efficiently obtained from the photoresist waste liquid. Therefore, the load of the metal removal process by the chelate resin etc. of front and / or back processes can be reduced, and it leads to cost reduction.
  • FIG. 5 is a process chart showing a preferred embodiment when tetraalkyl ammonium salt (TAA salt) is recovered from a photoresist development waste liquid and tetraalkyl ammonium hydroxide (TAAH) is produced from the TAA salt.
  • TAA salt tetraalkyl ammonium salt
  • TAAH tetraalkyl ammonium hydroxide
  • the present invention provides a method for producing a metal ion-reduced tetraalkylammonium salt (TAA salt) solution from a solution containing metal ions and tetraalkylammonium hydroxide (TAAH), wherein the TAAH solution is cationic.
  • the catalyst is brought into contact with an exchange resin to adsorb TAA ions to the cation exchange resin, and then a salt solution is passed through the adsorption column to measure the metal ion concentration of the recovered liquid flowing out of the adsorption column to recover the recovered liquid. Determine the timing of recovery stop and obtain TAA salt.
  • the metal ion content ratio is reduced means that the amount relative to the TAA ion has been reduced.
  • the solution containing a metal ion impurities and tetraalkylammonium hydroxide is not particularly limited, but is preferably a photoresist development waste solution generated in a semiconductor manufacturing process, a liquid crystal display manufacturing process, and the like.
  • waste liquids are waste liquids discharged when developing the photoresist after exposure with an alkaline developer, and mainly contain photoresist, TAAH and metal ions.
  • Such waste liquid is usually an aqueous solution.
  • the photoresist developing solution usually exhibits alkalinity of pH 10 to 14, and in the photoresist, in the alkaline developing solution, acid groups such as carboxyl groups and phenolic hydroxyl groups are dissolved and dissolved.
  • Main examples of the photoresist include indene carboxylic acid generated by photolysis of a photosensitizer o-diazonaphthoquinone and phenols derived from novolac resin.
  • a single-wafer automatic developing apparatus is usually used in many cases, but in this apparatus, the step of using a developing solution containing TAAH and the subsequent rinsing with pure water (substrate cleaning) are performed in the same tank At this time, in the rinse step, pure water in an amount of 5 to 10 times that of the developer is used. For this reason, the developer used in the development step is usually a waste solution diluted 5-10 times.
  • the composition of the waste liquid discharged in this development step is such that the TAAH is about 0.001 to 1% by mass, the resist is about 10 to 100 ppm, and the surfactant is about 0 to several 10 ppm.
  • waste solution from other processes may be mixed, and the TAAH concentration may be further lowered in the above range. Specifically, it may be 0.05% by mass or less (about 0.001 to 0.05% by mass).
  • the photoresist development waste discharged from the liquid crystal display manufacturing process often has a TAAH concentration of 0.001 to 0.5% by mass in many cases, and the method of the present invention It can be employed particularly suitably for producing
  • the photoresist development waste liquid contains a plurality of metal ions.
  • metal ions For example, sodium, potassium and the like as monovalent ions, calcium, zinc and the like as divalent ions, aluminum, nickel, copper, chromium, iron and the like as polyvalent ions in the photoresist development waste solution It is a metal that is typically contained in large quantities. Such a metal is usually contained in the photoresist developing waste liquid at about 0.1 to 100 ppb.
  • TAAH in the photoresist development waste is an alkali used for a developer of a photoresist used in the production of various electronic parts.
  • Specific examples of TAAH include tetramethylammonium hydroxide (hereinafter abbreviated as TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethylethylammonium hydroxide, water Dimethyldiethylammonium oxide, trimethyl (2-hydroxyethyl) ammonium hydroxide, triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide, water Methyl tri (2-hydroxyethyl) ammonium oxide, ethyl tri
  • Step of adsorbing tetraalkyl ammonium ion to cation exchange resin a solution containing the above metal ion and tetraalkylammonium hydroxide is passed through an adsorption column filled with a cation exchange resin of hydrogen ion type (hereinafter also referred to as "H type") to The TAA ion is adsorbed to a cation exchange resin.
  • H type hydrogen ion type
  • TAA ion is a cation
  • it is ion-exchanged with the hydrogen ion of the cation exchange resin by being brought into contact with the H-type cation exchange resin, and is adsorbed to the resin. Therefore, TAA ions can be efficiently recovered from the waste solution. TAA ions can be recovered at low cost even in the case of waste liquid particularly when the concentration of TAAH is low.
  • metal ion impurities are also cations, they will be adsorbed to the cation exchange resin by this solution flow.
  • the present invention efficiently separates metal ion impurities and TAA ions adsorbed on such cation exchange resin by adopting the method described later. Even in the case of metal ion impurities, it is difficult to be adsorbed by the cation exchange resin when the ion species containing metal itself is an anion due to chemical equilibrium reaction such as complex formation in the development waste liquid. , Discharged from the adsorption tower.
  • the dissolved organic substance component derived from the photoresist is usually in the form of an anion, it is difficult to be adsorbed to the cation exchange resin and most of it is removed, but a part is adsorbed to the ion exchange resin Therefore, it is mixed in the TAA salt solution in the subsequent recovery step of the TAA salt (the removal of such organic components will be described later).
  • the cation exchange resin for adsorbing the above-mentioned TAA ion is not particularly limited, and known ones can be used. Specifically, any of a strongly acidic cation exchange resin in which the ion exchange group is a sulfonic acid group and a weakly acidic cation exchange resin in which the ion exchange group is a carboxyl group can be used. Among them, it is preferable to use a weakly acidic cation exchange resin because many of them have large ion exchange capacity and the amount of resin used can be reduced. Furthermore, in the case of a weakly acidic cation exchange resin, the elution of TAA ions described later is also easy.
  • the structure of the resin may be gel or MR (macroporous).
  • the shape of the resin may be any of powdery, granular, membranous, fibrous and the like. From the viewpoint of processing efficiency, operability, economy, etc., it is preferable to use styrene-type or granular-type cation exchange resins such as acrylic.
  • the counter ion of the cation exchange resin is usually marketed as hydrogen ion (H type) or sodium ion (Na type), preventing sodium ion from being mixed into the finally obtained TAAH solution, and TAA
  • the counter ion is H-type with hydrogen ions.
  • an acid such as hydrochloric acid or sulfuric acid is passed through the cation exchange resin in advance before use, and the counter ion is hydrogen by sufficiently washing with ultrapure water, etc. Use as an ion.
  • TAA ion alkali metal type such as Na
  • it is regenerated into H type by the same operation as described above and used.
  • the strongly acidic cation exchange resin examples include Amberlight IR120B manufactured by Rohm and Haas, Amberlight IR124, Diaion SK1B manufactured by Mitsubishi Chemical Corporation, Diaion PK228, Duolight C255LFH manufactured by Sumika Chemtex, and Lanxess There may be mentioned Levatit Mono Plus S100, Purolite C.
  • specific examples of the weakly acidic cation exchange resin include Amberlight IRC 76 made by Rohm and Haas, Diaion WK40L made by Mitsubishi Chemical, Duolight C433LF made by Sumika Chemtex, Duolight C476, and Lanxess Leverit CNP80WS. And Purolite Co., Ltd. Purolite C104 etc. can be mentioned.
  • a method of passing the solution into an adsorption column filled with a cation exchange resin conventionally known methods can be appropriately adopted depending on the type and shape of the cation exchange resin. Specifically, for example, a column system in which a column is packed with a cation exchange resin and the solution is continuously passed is preferable.
  • this column method it may be suitably determined in accordance with the performance of the cation exchange resin, etc., but in order to adsorb TAA ions efficiently, a solution having a content of TAAH of 0.001 to 1% by mass If the ratio (L / D) of the column height (L) to the column diameter (D) is 0.5 or more, the space velocity (SV) of the waste liquid is 1 (1 / hour) or more and 200 (1 / Hour) or less is preferable.
  • the amount of the solution to be passed is preferably an amount that does not cause breakthrough of the cation exchange resin packed in the adsorption column, in terms of efficient production of the TAA salt.
  • the TAA ions have flowed out (break through) without being adsorbed by passing of a solution containing an amount of cations larger than the exchange capacity of the cation exchange resin. It can be confirmed by analyzing the concentration of TAA ions in the liquid passing through and flowing out by ion chromatography. More simply, the height occupied by the cation exchange resin in the adsorption column may be measured. When the counter ion of the cation exchange resin changes from a hydrogen ion to a TAA ion, although depending on the type of cation exchange resin, the volume swells to about twice. The adsorption of TAA ions can be confirmed by measuring the volume of the cation exchange resin.
  • the pH of the solution is 10 or more
  • the pH of the passed solution becomes alkaline, so that it can be confirmed by a pH meter.
  • the electric conductivity of the liquid is increased, so that it can be confirmed by the electric conductivity.
  • Step of recovering tetraalkylammonium salt from cation exchange resin adsorbed with tetraalkylammonium ion In the present invention, after TAA ions are adsorbed to a cation exchange resin by the above method, a solution of an alkali metal salt is passed through an adsorption tower packed with the cation exchange resin, and the recovered liquid flows out from the adsorption tower Are recovered to produce a tetraalkyl ammonium salt.
  • a solution of an alkali metal salt is introduced into one of the adsorption columns from one end of the adsorption column, and the solution is allowed to flow out from the other end, thereby passing a large excess of alkali metal ions contained in the salt solution with TAA ions. It is sequentially substituted, and the TAA ion flows out of the adsorption tower as an acid salt of the used salt.
  • alkali metal sodium or potassium is preferable in terms of solubility and availability, and sodium is particularly preferable.
  • the alkali metal salt may be an inorganic acid salt or an organic acid salt.
  • salts of weak acids and salts of strong acids may be used.
  • a weak acid means an acid having a dissociation constant K at 25 ° C. of 10 ⁇ 3 or less.
  • the alkali metal salt is an inorganic acid salt in that the TAA salt produced by the method of the present invention is less likely to have an adverse effect such as mixing of organic components when it is subjected to the electrolysis step described later to convert to TAAH.
  • the inorganic acid include carbonic acid, nitrous acid, hydrofluoric acid and hypochlorous acid.
  • organic acids include carboxylic acids such as acetic acid, oxalic acid, formic acid and benzoic acid, phenols and cresols.
  • the alkali metal salts of carbonic acid which is a dibasic acid include carbonates (M 2 CO 3 : M represents alkali metals) and bicarbonates (MHCO 3 ), but the concentration of TAA ions in the recovery solution is higher. It is preferable to use carbonate as this can be achieved.
  • Particularly preferred alkali metal salts in the present invention include sodium carbonate, sodium hydrogen carbonate, potassium carbonate and potassium hydrogen carbonate, with sodium carbonate being most preferred.
  • the solute constituting the solution of the weak acid salt of an alkali metal used in the present invention is not particularly limited as long as it is a liquid capable of dissolving the alkali metal salt, but the solubility of the alkali metal salt, cost, and production of TAAH It is preferable that it is water from the point of not exerting a bad influence at the time of electrolysis for.
  • water ion exchange water, pure water, ultrapure water or the like can be used.
  • the concentration of the alkali metal salt solution can be appropriately selected in the range of 0.1 N to 10 N, but it is 0 in that it is easy to prevent the high concentration of TAA salt flowing out and mixing of metal ions.
  • the range of 5N to 4N is particularly preferred.
  • the flow rate of the alkali metal salt solution can be appropriately set according to the size of the adsorption tower, the type and amount of cation exchange resin used, the concentration of the salt solution, etc.
  • the space of the alkali metal salt solution is used.
  • the speed (SV) is 1 (1 / hour) or more and 50 (1 / hour) or less. If it is smaller than this, processing will take time.
  • the method of contacting an alkali metal salt solution with a cation exchange resin having a TAA ion as a counter ion is preferably a column method in which the column is filled with the cation exchange resin and the alkali metal salt solution is continuously passed.
  • a column system the work can be efficiently carried out, so that TAA ions are adsorbed to a cation exchange resin packed in the column using an identical column, and subsequently an alkali metal salt solution is allowed to pass through. Is preferred.
  • TAA ion flows out from one end of the adsorption column as a TAA salt with an anion (for example, CO 3 2- or the like in the case of carbonate) as a counter ion
  • an anion for example, CO 3 2- or the like in the case of carbonate
  • One of the features of the present invention is that the concentration of alkali metal ions in the effluent is measured, and recovery to the storage tank is stopped before the concentration of alkali metal ions rapidly increases.
  • the elution behavior of these metal ions has the same tendency as the elution behavior of the alkali metal ions introduced into the adsorption column at a high concentration, and starts the elution before and after the phase. If the elution behavior of the alkali metal ion is measured, and the effluent having a high concentration of the alkali metal ion is not mixed with the TAA ion-containing recovery solution containing almost no metal ion, the TAA ion can be obtained. It is possible to obtain a recovery solution which contains a high concentration and in which the concentration of various metal ions is significantly reduced.
  • the concentration of alkali metal ions in the effluent is extremely low at first. It is stable (usually less than 0.1 ppm), but when the exchange of TAA ions with alkali metal ions proceeds, the concentration of the alkali metal ion starts to rapidly increase and far exceeds 1 ppm, and is several tens to several hundreds. Also reaches ppm. Therefore, the portion immediately before the start of the rise is collected in the storage tank, and the effluent thereafter is separated to obtain a TAA salt with high recovery and high purity.
  • a criterion for determining whether the alkali metal ion concentration has started to rise rapidly when the measuring means for the alkali metal ion concentration has extremely high sensitivity, it is 10 to 10000 times the stable value, preferably 10 to 10,000.
  • the recovery to the storage tank may be stopped before, preferably immediately before, an arbitrary concentration (predetermined value) provided at 5000 times the point.
  • the initial stable value may be less than the measurement lower limit.
  • it can be substituted by stopping recovery to the storage tank before the alkali metal ion concentration reaches an arbitrary concentration (predetermined value) provided between 0.5 and 10 mg / L.
  • concentration predetermined value
  • the measurement limit of a general alkali metal ion electrode is often 1 mg / L, below the measurement lower limit, it is collected in the storage tank, and the effluent after showing a value of 1 mg / L is collected in the storage tank. It is mentioned that it stops.
  • the method for stopping the recovery of the effluent to the storage tank before the alkali metal ion concentration reaches a predetermined value as described above is not particularly limited.
  • an apparatus for measuring the alkali metal ion concentration A flow path switching valve is provided downstream of (the metal ion electrode), and the metal ion electrode senses that the alkali metal ion concentration in the effluent has risen to a predetermined value, and simultaneously switches the flow path of the valve, etc. Can be mentioned.
  • a method of measuring the metal ion concentration conventionally known methods can be appropriately adopted. Specifically, for example, a fixed amount of the effluent flowing out of the adsorption column is sampled, and a method of measuring metal ions using a metal ion electrode or the like, or an inline metal ion electrode in the middle of piping leading the effluent to a storage tank There is a method of installing and measuring. If an in-line type metal ion electrode is used, recovery can be stopped at the moment when the metal ion concentration reaches a predetermined value without extracting the solution halfway, and loss of the recovered solution can be suppressed, which is preferable.
  • TAAH Metal for producing tetraalkylammonium hydroxide from tetraalkylammonium salt
  • TAAH can be produced by subjecting the TAA salt contained in the solution recovered from the waste liquid to electrodialysis, electrolysis or the like by the above-mentioned method.
  • the TAA salt solution is brought into contact with a cation exchange resin (wherein the counter ion has been substituted with a TAA ion in advance) and / or a chelate resin to obtain metal ions in the TAA salt.
  • a cation exchange resin wherein the counter ion has been substituted with a TAA ion in advance
  • a chelate resin to obtain metal ions in the TAA salt.
  • a method of concentrating the TAA salt specifically, a method of concentration by electrodialysis, an evaporator, a reverse osmosis membrane, etc. may be mentioned.
  • TAAH electrolysis process of TAA salt
  • the step of electrolysis to electrolyze the obtained TAA salt into TAAH depending on the type of the recovered TAA salt (corresponding to the acid component constituting the used alkali metal salt).
  • the recovered TAA salt is a carbonate
  • the TAA is electrolyzed using the anode, the cathode, and the cation exchange membrane described in Japanese Patent No. 3109525 (2-chamber electrolysis: the raw material is supplied to the anode chamber).
  • the salt is TAAH.
  • the column uses ION-pac CS12A for cation analysis, ION-pac AS15 for anion analysis, and the eluent is methanesulfonic acid, for cation analysis,
  • the anion analysis was performed using potassium hydroxide.
  • the concentration of metal ions contained in the solution can be determined using the ion electrode (portable water quality meter) method (model number: IM-32P (made by Toa DKK)), high frequency inductively coupled plasma mass spectrometry (ICP-MS) method (measuring device: HP- Measured by the method of 4500 (Agilent) and high frequency inductively coupled plasma optical emission spectrometry (ICP-OES) method (measurement apparatus: iCAP 6500 DUO (manufactured by Thermo Electron Co., Ltd.). Unless otherwise indicated, each concentration is based on mass. is there.
  • Example 1 (TMA ion waste liquid adsorption process) A column having a diameter of 50 mm was filled with 1000 ml of a weakly acidic cation exchange resin Diaion WK40L (manufactured by Mitsubishi Chemical Corporation) to make the resin height 510 mm.
  • a weakly acidic cation exchange resin Diaion WK40L manufactured by Mitsubishi Chemical Corporation
  • TMAH waste solution photoresist development waste solution photoresist content COD conversion 10 ppm, metal ion concentration Na: 2.5 ppb, K: 5.4 ppb, Ca: 4.1 ppb, Al: 3.2 ppb , Ni: 2.0 ppb, Cu: 2.0 ppb, Cr: 2.5 ppb, Fe: 5.3 ppb
  • 1000 L at SV (space velocity) 100 (1 / hour) to adsorb TMA ions
  • Example 2 (TMA ion adsorption process) A column having a diameter of 50 mm was packed with 1000 ml of a weakly acidic cation exchange resin, Levatit CNP-80WS (manufactured by LANXESS Co., Ltd.) to make the resin height 510 mm.
  • a weakly acidic cation exchange resin Levatit CNP-80WS (manufactured by LANXESS Co., Ltd.)
  • TMAH waste solution photoresist development waste solution photoresist content COD conversion 10 ppm, metal ion concentration Na: 2.5 ppb, K: 5.4 ppb, Ca: 4.1 ppb, Al: 3.2 ppb , Ni: 2.0 ppb, Cu: 2.0 ppb, Cr: 2.5 ppb, Fe: 5.3 ppb
  • 1000 L at SV (space velocity) 100 (1 / hour) to adsorb TMA ions
  • the metal ion concentration increased from I at which the potassium ion concentration reached the lower limit value or more.
  • the total amount recovered when fraction C to H was recovered was 3000 ml, and the concentration of TMA carbonate was 9.1% by mass (0.44 mol / l).
  • Example 3 (TMA ion adsorption process) A column of 50 mm in diameter was filled with 1000 ml of weak acid cation exchange resin Duolite C 476 (manufactured by Sumika Chemtex Co., Ltd.) to make the resin height 510 mm.
  • TMAH waste solution photoresist development waste solution photoresist content COD conversion 10 ppm, metal ion concentration Na: 2.5 ppb, K: 5.4 ppb, Ca: 4.1 ppb, Al: 3.2 ppb , Ni: 2.0 ppb, Cu: 2.0 ppb, Cr: 2.5 ppb, Fe: 5.3 ppb
  • 1000 L at SV (space velocity) 100 (1 / hour) to adsorb TMA ions
  • the metal ion concentration increased from N where the sodium ion concentration is at or above the lower limit value.
  • the total amount of recovered liquid from the liquid fractions C to M was 5500 ml, and the concentration of TMA carbonate was 6.2% by mass (0.30 mol / l).
  • Example 4 (Purification process) A column (resin height 510 mm) 50 mm in diameter packed with 1000 ml of a chelate resin (Duolite C 747 manufactured by Rohm and Haas Co., Ltd.) regenerated by contact with hydrochloric acid and ultrapure water in advance and a cation exchange resin (Rome A column (resin height of 510 mm) with a diameter of 50 mm packed with 1000 ml of Amberlyst 15 J) manufactured by Andhers Inc. was prepared.
  • a chelate resin Duolite C 747 manufactured by Rohm and Haas Co., Ltd.
  • a cation exchange resin Rosin height of 510 mm
  • Example 1 The fractionated solutions C to H in Example 1 were passed through the above-mentioned chelate resin column to obtain a treatment solution A. Subsequently, the treatment liquid A was passed through a cation exchange resin column to obtain a treatment liquid B. Table 4 shows the results of analysis of the treatment solutions A and B.
  • Example 5 The treatment liquid B obtained from Example 4 was concentrated by an evaporation concentrator so that the TMA carbonate concentration would be 26.1% by mass. The obtained TMA carbonate was subjected to an electrolysis step to produce TMAH.
  • a two-chamber electrolytic cell in which an anode, a cation exchange membrane (Nafion 90209 (manufactured by DuPont)), and a cathode are disposed is used.
  • the effective membrane area of the above ion exchange membrane was 2 dm 2 , and the Nafion membrane was placed with the surface having carboxylic acid groups facing the cathode.
  • the anode used was a titanium plate subjected to platinum plating, and the cathode used SUS316.
  • Electrolysis was continuously carried out while circulating TMA carbonate in the anode chamber of the electrolytic cell and pure water in the cathode chamber, maintaining the current density at 18 A / dm 2 and the temperature at 40 ° C.
  • the TMAH concentration in the cathode chamber was 18% by mass.
  • Table 5 shows the results of analysis of TMAH obtained after 12 hours (at the time of stabilization) and when three months of continuous operation were performed after the start of electrolysis and the operation was stable.
  • Comparative Example 1 The measurement was conducted in the same manner as in Example 1 except that the measurement of conductivity and pH was performed without measuring the effluent at the metal ion electrode in Example 1.
  • the effluent was fractionated one by one every 500 ml and fractionated into 10 liquids (fractional liquids A to J).
  • the TMA carbonate concentration, metal ion concentration, conductivity and pH of these fractionated solutions were measured respectively. The results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

【課題】 レジスト現像廃液などの金属イオンとテトラアルキルアンモニウムイオンを含む溶液から、効率的に金属イオンを除去する。 【解決手段】 金属イオンとテトラアルキルアンモニウムイオンを含む溶液と、陽イオン交換樹脂を接触させてこれらイオンを該樹脂に吸着させ、次いで、アルカリ金属塩溶液により溶離させる。溶離液中の前記アルカリ金属イオン濃度をモニターし、該アルカリ金属イオン濃度が急上昇する前に回収経路を切り替えることにより、アルカリ金属イオンのみならず、前記他の金属イオンの濃度も低いテトラアルキルアンモニウム塩溶液を回収することができる。 回収したテトラアルキルアンモニウム塩は電解により水酸化テトラアルキルアンモニウムとすることができる。この電解の際の妨害物質となりがたいこと、及びコスト等の観点から、前記アルカリ金属塩溶液としては炭酸ナトリウム水溶液が最も好ましい。

Description

テトラアルキルアンモニウム塩溶液の製造方法
 本発明は、テトラアルキルアンモニウム塩を含有する溶液を陽イオン交換樹脂を用いて製造する新規な製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法に関する。
 水酸化テトラアルキルアンモニウム(以下、TAAHと略す)は、一般に相間移動触媒をはじめとして、非水溶液滴定における塩基の標液、あるいは有機合成における有機系アルカリ剤として有用な化合物である。また、集積回路や大規模集積回路の製造における半導体基板の洗浄、食刻、フォトレジストの現像などのための処理剤として使用されている。特に、半導体向けの用途においては、半導体基板が汚染されるため、不純物を出来るだけ含有しない高純度のTAAHが要求されている。
 一方、上記のようなフォトレジストの現像に使用された廃液は、フォトレジストの他、金属イオン不純物、及びTAAHを含んでおり、環境負荷を低減するため、該廃液からTAAHを回収し、再利用する技術が重要になってきている。(以下、フォトレジスト、及びTAAHを含む廃液を「フォトレジスト現像廃液」とする場合もある)従来、フォトレジスト現像廃液を処理する方法には、蒸発法や逆浸透膜法により濃縮し廃棄処分(焼却または業者引取り)する方法、活性汚泥により生物分解処理し放流する方法が主流であった。しかしながら、上記の通り、環境への配慮から該廃液からTAAHを回収し、再利用する試みが数多く提案されている。
 具体的には、濃縮した廃液、あるいは、もともとTAAH濃度が高い現像廃液については、中和処理してフォトレジスト成分を除去した後、電気透析、又は電気分解を行い、TAAHを回収する方法が知られている(例えば、特許文献1乃至3参照)。しかし、TAAHの濃度が低い廃液を処理する場合、電気透析、又は電気分解に供する濃度条件までTAAH廃液を濃縮する必要があるため、これらの方法に対し、電気透析、または電気分解を行わず、フォトレジスト現像廃液からTAAHを回収する方法(特許文献4参照)が提案されている。具体的な方法として、先ず、フォトレジスト現像廃液と陽イオン交換樹脂とを接触させることにより、テトラアルキルアンモニウムイオン(TAAイオン)を陽イオン交換樹脂に吸着させる。次いで、該陽イオン交換樹脂に塩酸を通液してTAA塩を回収し、得られた溶液に、過塩素酸を加えテトラアルキルアンモニウム過塩素酸塩(TAA過塩素酸塩)とする。その後、TAA過塩素酸塩を晶析により精製した後、得られた過塩素酸塩を陰イオン交換樹脂と接触させることにより、TAAHを回収する方法である。しかしこの場合、プロセスが煩雑となり、爆発する危険のある過塩素酸塩を使用するため工業的な製造は困難である。
 また、イオン交換樹脂にTAAイオンを吸着させて希薄な現像廃液からTAA塩を回収し、これを電解することでTAAHを製造する技術が開示されている(特許文献5および6)。しかし、イオン交換樹脂からTAA塩を溶離させる際の条件がコントロールできていないため、得られるTAA塩溶液に金属イオン不純物が混入することとなり、結果として電解をした後のTAAH溶液に金属イオン不純物が比較的高濃度に混入するという課題があった。また、特許文献5ではイオン交換樹脂から溶離する際に弱酸を使用する技術が開示されているが、溶離されるTAA塩溶液が希薄になる傾向があり、特に炭酸を使用した場合、この傾向が顕著である。また炭酸を使用した場合、液に気泡が発生することがあり、連続的な運転に支障をきたすおそれがある。
 また特許文献7では、TAAイオンを吸着させたイオン交換樹脂からTAAイオンを溶離する際に、金属水酸化物を使用することでTAAHを製造する技術が開示されている。しかし、この方法では現像廃液中に含まれるレジストなどの有機物がTAAHに混入するという問題がある。
特開平04-228587号公報 特開平05-106074号公報 特許第3216998号公報 特開2004-66102号公報 特許2688009号公報 特表2002-509029号公報 特表2004-512315号広報
 以上のとおり、陽イオン交換樹脂を使用することで、現像廃液から高い収率でTAAイオンが回収できるが、該方法においては、レジスト成分の除去が不十分になる、金属イオン不純物が混入する、希薄なTAA塩溶液しか得られない、といった問題があった。
 本発明者らは、上記課題を解決するため、鋭意検討を行った。その結果、フォトレジスト現像廃液と陽イオン交換樹脂とを接触させることにより該陽イオン交換樹脂にTAAイオンを吸着させ、次いで該陽イオン交換樹脂に塩溶液を通液してTAA塩を回収する際に、得られるTAA塩溶液の金属イオン濃度が所定の濃度になる前に回収を停止することにより、金属イオン不純物濃度が低いTAA塩を得ることができ、これを電解で処理することでレジスト成分を効率よく分解除去できるため、レジスト成分を含まないTAAHを製造可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、金属イオン及び水酸化テトラアルキルアンモニウムを含む溶液より、金属イオン含有割合の低減されたテトラアルキルアンモニウム塩を含有する溶液を得るテトラアルキルアンモニウム塩溶液の製造方法であって、
(1)水素イオン型の陽イオン交換樹脂が充填された吸着塔に、金属イオン及び水酸化テトラアルキルアンモニウムを含む溶液を通液させて、該溶液中のテトラアルキルアンモニウムイオンを、陽イオン交換樹脂に吸着させる吸着工程、
(2)前記吸着工程にて、テトラアルキルアンモニウムイオンが吸着された陽イオン交換樹脂が充填された吸着塔に、アルカリ金属塩の溶液を通液させて、該樹脂に吸着されたテトラアルキルアンモニウムイオンを前記塩として溶離させ、該吸着塔より流出する流出液を貯留槽に回収する回収工程、
の各工程を含んでなり、且つ、回収工程においては、吸着塔からの流出液中の前記アルカリ金属イオン濃度を測定し、該アルカリ金属イオン濃度が急激に上昇する前に、前記貯留槽への流出液の回収を停止することを特徴とするテトラアルキルアンモニウム塩溶液の製造方法である。
 他の発明は、上記(1)吸着工程及び(2)回収工程と同じ工程を含んでなり、且つ、回収工程においては、吸着塔からの流出液中の前記アルカリ金属イオン濃度を測定し、該アルカリ金属イオン濃度が0.5~10mg/Lの間に設けられた所定の濃度に到達した時点で前記貯留槽への流出液の回収を停止することを特徴とするテトラアルキルアンモニウム塩溶液の製造方法である。
 さらに、本発明によれば、こうして得られたTAA塩を電気分解することによって純度の高いTAAH溶液を得ることが出来る。
 本発明の方法によれば、回収するTAA塩溶液中の金属イオン量を低減できるため、フォトレジスト廃液から効率的に、金属イオン不純物の少ないTAA塩を得ることが出来る。そのため、前および/または後工程のキレート樹脂等による金属除去工程の負荷を減らすことができ、コストダウンにつながる。
 さらに、該TAA塩の電気分解を行うことによって、金属成分及びレジスト成分を含まない、高純度なTAAH溶液を得ることが出来る。
本発明のテトラアルキルアンモニウム塩の製造方法に係わる製造設備の一実施態様を示す模式図である。 フォトレジスト現像廃液からテトラアルキルアンモニウム塩(TAA塩)を回収し、該TAA塩から水酸化テトラアルキルアンモニウム(TAAH)を製造する際の好適な態様を示した工程図である。
 本発明は、金属イオン及び水酸化テトラアルキルアンモニウム(TAAH)を含む溶液から金属イオン含有割合の低減されたテトラアルキルアンモニウム塩(TAA塩)溶液を製造する方法であって、該TAAH溶液を陽イオン交換樹脂と接触させて、TAAイオンを該陽イオン交換樹脂に吸着させた後、該吸着塔に塩溶液を通液して、吸着塔から流出する回収液の金属イオン濃度を測定して回収液の回収停止のタイミングを決定し、TAA塩を得る。なお「金属イオン含有割合の低減された」とは、TAAイオンに対する相対的な量が低減されたことを意味する。
 (金属イオン不純物、及び水酸化テトラアルキルアンモニウムを含む溶液)
 本発明において、金属イオン及び水酸化テトラアルキルアンモニウムを含む溶液は、特に制限されるものではないが、半導体製造工程、液晶ディスプレイ製造工程等で発生するフォトレジスト現像廃液であることが好ましい。これら廃液は、露光後のフォトレジストをアルカリ現像液で現像する際に排出される廃液であり、フォトレジスト、TAAH、及び、金属イオンを主として含んでいる。なお、このような廃液は水溶液であるのが通常である。
 フォトレジスト現像廃液は、通常、pHが10~14のアルカリ性を呈しており、フォトレジストはアルカリ性の現像廃液中では、そのカルボキシル基、フェノール性水酸基等の酸基が酸解離して溶解している。フォトレジストの主なものとして、感光剤o-ジアゾナフトキノンの光分解により生成するインデンカルボン酸やノボラック樹脂由来のフェノール類が挙げられる。
 ここで、半導体製造、及び液晶ディスプレイ製造における現像工程から排出される代表的な廃液について詳細に説明する。現像工程では、通常、枚葉式の自動現像装置が多用されているが、この装置ではTAAHを含む現像液を使用する工程とその後の純水によるリンス(基板洗浄)が同じ槽内で行われ、この際にリンス工程では現像液の5~10倍の量の純水が使用される。そのため、現像工程で使用された現像液は、通常5~10倍に希釈された廃液となる。その結果、この現像工程で排出される廃液の組成は、TAAHが0.001~1質量%程度であり、レジストが10~100ppm程度であり、また界面活性剤が0~数10ppm程度のものとなる。また、その他の工程の廃液が混入する場合もあり、TAAH濃度が、上記範囲の中でもさらに低くなることもある。具体的には、0.05質量%以下(0.001~0.05質量%程度)となる場合もある。特に、液晶ディスプレイ製造工程から排出されるフォトレジスト現像廃液は、TAAH濃度が0.001~0.5質量%となる場合が多く、本発明の方法は、このようなフォトレジスト現像廃液からTAA塩を製造するのに特に好適に採用できる。
 また、フォトレジスト現像廃液には、複数の金属イオンが含まれる。例えば、1価のイオンとしては、ナトリウム、カリウム等、2価のイオンとしては、カルシウム、亜鉛等、その他多価イオンとしては、アルミニウム、ニッケル、銅、クロム、鉄等がフォトレジスト現像廃液中に代表的に多く含まれる金属である。このような金属は、フォトレジスト現像廃液中に0.1~100ppb程度含まれているのが通常である。
 フォトレジスト現像廃液中のTAAHは、各種電子部品の製造等の際に使用するフォトレジストの現像液に用いられるアルカリである。TAAHの具体例としては、水酸化テトラメチルアンモニウム(以下、TMAHと略す)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム、水酸化トリエチル(2-ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2-ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2-ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化テトラ(2-ヒドロキシエチル)アンモニウム等を挙げることができる。中でも、TMAHが最も汎用的に使用されている。
 (陽イオン交換樹脂にテトラアルキルアンモニウムイオンを吸着させる工程)
 本発明においては、上記の如き金属イオン及び水酸化テトラアルキルアンモニウムを含む溶液を水素イオン型(以下「H型」とも称す)の陽イオン交換樹脂が充填された吸着塔に通液して、該陽イオン交換樹脂にTAAイオンを吸着させる。
 即ち、TAAイオンは陽イオンであるから、H型の陽イオン交換樹脂と接触させることにより、該陽イオン交換樹脂の有する水素イオンとイオン交換を起こして該樹脂に吸着される。従って、効率よく廃液からTAAイオンを回収することができる。特にTAAHの濃度が低い場合の廃液でも、TAAイオンを低コストで回収することができる。
 ここで、通常の金属イオン不純物もまた陽イオンであるため、この通液により陽イオン交換樹脂に吸着されてしまう。本発明は、後述する方法を採用することにより、このような陽イオン交換樹脂に吸着されてしまった金属イオン不純物とTAAイオンとを効率よく分離するものである。なお金属イオン不純物であっても、該現像廃液中で錯形成などの化学平衡反応により、金属が含まれているイオン種自体が陰イオンである場合には、陽イオン交換樹脂には吸着され難く、吸着塔から排出される。
 一方、前記溶解しているフォトレジスト由来の有機物成分は通常、陰イオンの形態であるため、陽イオン交換樹脂には吸着され難く大部分は除去されるものの、一部はイオン交換樹脂に吸着するため、引き続き行うTAA塩の回収工程で、TAA塩溶液に混入する(このような有機成分の除去については後述する)。
 (陽イオン交換樹脂)
 本発明において、上記TAAイオンを吸着させる陽イオン交換樹脂は特に限定されず、公知のものを用いることができる。具体的には、イオン交換基がスルホン酸基である強酸性陽イオン交換樹脂、イオン交換基がカルボキシル基である弱酸性陽イオン交換樹脂のいずれも使用することができる。中でも、イオン交換容量が大きいものが多く、使用する樹脂量を低減できるという点から弱酸性陽イオン交換樹脂を使用することが好ましい。さらに、弱酸性陽イオン交換樹脂の場合、後述するTAAイオンの溶離も容易である。
 また、樹脂の構造もゲル型であってもMR型(マクロポーラス型)であってもよい。樹脂の形状も、粉状、粒状、膜状、繊維状等のいずれでもよい。処理効率、操作性、経済性などの点で粒状等のスチレン系やアクリル系等の陽イオン交換樹脂を用いるのが好ましい。
 陽イオン交換樹脂の対イオンは、通常、水素イオン(H型)かナトリウムイオン(Na型)で市販されているが、最終的に得られるTAAH溶液へのナトリウムイオンの混入を防ぐことと、TAAイオンの吸着効率を向上させるためには、対イオンを水素イオンとしたH型とする。Na型で市販されている陽イオン交換樹脂を使用する場合、使用に際して予め陽イオン交換樹脂に塩酸や硫酸等の酸を通液し、超純水で充分洗浄するなどして、対イオンを水素イオンとして使用する。また、後述する方法によりTAAイオンを溶離した後には、Na等のアルカリ金属型となっているため上記と同様の操作によりH型に再生して使用する。
 強酸性陽イオン交換樹脂の具体例としては、ロームアンドハース社製のアンバーライトIR120B、アンバーライトIR124、三菱化学社製のダイヤイオンSK1B、ダイヤイオンPK228、住化ケムテックス社製デュオライトC255LFH、ランクセス社レバチットモノプラスS100、ピュロライト社ピュロライトC160などを挙げることができる。また、弱酸性陽イオン交換樹脂の具体例としては、ロームアンドハース社製のアンバーライトIRC76、三菱化学社製のダイヤイオンWK40L、住化ケムテックス社製デュオライトC433LF、デュオライトC476、ランクセス社レバチットCNP80WS、ピュロライト社ピュロライトC104などを挙げることができる。
 (陽イオン交換樹脂を充填した吸着塔へ溶液を通液する方法)
 本発明においては、上記のH型の陽イオン交換樹脂を充填した吸着塔へ、金属イオン及びTAAHを含む溶液を通液させて陽イオン交換樹脂を接触させることによって、TAAイオンを陽イオン交換樹脂に吸着させる。
 また、該溶液を陽イオン交換樹脂を充填した吸着塔へと通液させる方法については、陽イオン交換樹脂の種類や形状によって、従来から知られている方法を適宜採用することができる。具体的には、例えば、カラムに陽イオン交換樹脂を充填して該溶液を連続的に通過させるカラム方式が好ましい。このカラム方式を採用する場合、陽イオン交換樹脂の性能等に応じて適宜決定すればよいが、効率よくTAAイオンを吸着するためには、TAAHの含有量が0.001~1質量%の溶液であれば、カラムの高さ(L)とカラム直径(D)との比(L/D)が0.5以上、該廃液の空間速度(SV)を1(1/時間)以上200(1/時間)以下とすることが好ましい。
 なお通液する溶液量は、吸着塔に充填した陽イオン交換樹脂が破過しない程度の量とすることが、効率よくTAA塩を製造できる点で好ましい。
 なお、陽イオン交換樹脂の交換容量以上の量の陽イオンが含まれている溶液の通液により、吸着されずにTAAイオンが流出(破過)してしまっているかどうかは、吸着塔中を通過して流出してくる液中のTAAイオン濃度をイオンクロマトグラフィー法で分析することにより確認可能である。より簡便には、吸着塔中での陽イオン交換樹脂の占める高さを測定すればよい。陽イオン交換樹脂の対イオンが水素イオンからTAAイオンになると、陽イオン交換樹脂の種類にもよるが、体積が2倍程度に膨潤する。陽イオン交換樹脂の体積を測定することにより、TAAイオンの吸着を確認することができる。
 また、該溶液のpHが10以上のアルカリ性の場合、TAAイオンが吸着されずに吸着塔中を通過すると、通過した液のpHがアルカリ性となるため、pHメーターによっても確認することが可能である。また、通常は、吸着塔中を通過した液にTAAイオンが含まれている場合、液の電気伝導度が上昇するため、電気伝導度によっても確認することが可能である。
 (テトラアルキルアンモニウムイオンを吸着させた陽イオン交換樹脂からテトラアルキルアンモニウム塩を回収する工程)
 本発明においては、上記方法によりTAAイオンを陽イオン交換樹脂に吸着させた後、該陽イオン交換樹脂を充填した吸着塔にアルカリ金属塩の溶液を通液して、吸着塔から流出する回収液を回収してテトラアルキルアンモニウム塩を製造する。
 即ち、アルカリ金属塩の溶液を吸着塔の一端から吸着塔に導入し、他端から液を流出させることによって通液することにより、該塩溶液に含まれる大過剰のアルカリ金属イオンがTAAイオンと順次置換されて行き、TAAイオンが用いた塩の酸塩として吸着塔から流出してくる。
 アルカリ金属としては、溶解度や入手の容易さなどの点からナトリウム又はカリウムが好ましく、特にナトリウムが好適である。
 本発明において、上記アルカリ金属塩は、無機酸塩でも有機酸塩でもよい。また弱酸の塩でも強酸の塩でも良い。なおここで、弱酸とは25℃での解離常数Kが10-3以下の酸を言う。
 本発明の方法で製造されるTAA塩を、後述する電解工程に供してTAAHへと変換する際に有機成分が混入するなどの悪影響を及ぼし難い点で、アルカリ金属塩としては無機酸塩であることが好ましい。当該無機酸としては炭酸、亜硝酸、フッ化水素酸、次亜塩素酸などが挙げられる。なお有機酸としては、酢酸、シュウ酸、ギ酸、安息香酸等のカルボン酸類や、フェノール、クレゾール類が挙げられる。
 無機酸塩のなかでも毒性や安定性、TAAHにする際の電解工程の容易さ等の観点から炭酸の塩が好ましい。2塩基酸である炭酸のアルカリ金属塩には、炭酸塩(MCO:Mはアルカリ金属を示す)及び重炭酸塩(MHCO)があるが、回収液中のTAAイオン濃度をより高くできることから炭酸塩とすることが好ましい。本発明における特に好ましいアルカリ金属塩を例示すると、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム及び炭酸水素カリウムが挙げられ、なかでも炭酸ナトリウムが最も好ましい。
 本発明において用いる上記アルカリ金属の弱酸塩の溶液を構成する溶質は、当該アルカリ金属塩を溶解可能な液体であれば特に限定されないが、アルカリ金属塩の溶解しやすさ、コスト及びTAAHの製造のための電解に際して悪影響を及ぼさない等の点で水であることが好ましい。当該水としてはイオン交換水、純水、超純水等が使用できる。
 本発明において、上記アルカリ金属塩溶液の濃度は0.1Nから10Nの範囲で適宜選定することができるが、高濃度のTAA塩が流出することと金属イオンの混入を防止しやすいという点で0.5N~4Nの範囲が特に好ましい。
 またアルカリ金属塩溶液の通液速度は、吸着塔の大きさ、陽イオン交換樹脂の種類や使用量、塩溶液の濃度等に応じて、適宜設定できるが、好ましくは、アルカリ金属塩溶液の空間速度(SV)が1(1/時間)以上50(1/時間)以下である。これより小さい場合、処理に時間がかかるようになる。
 アルカリ金属塩溶液とTAAイオンを対イオンとして有する陽イオン交換樹脂とを接触させる方法は、カラムに該陽イオン交換樹脂を充填し、アルカリ金属塩溶液を連続的に通過させるカラム方式が好ましい。カラム方式を採用する場合、作業が効率的に実施できることから、同一カラムを用い、該カラム内に充填された陽イオン交換樹脂にTAAイオンを吸着させた後、引き続いてアルカリ金属塩溶液を通過させることが好ましい。
 (流出液の回収)
 上述のアルカリ金属塩溶液の通液により、吸着塔の一端からTAAイオンが、用いた塩に応じた陰イオン(例えば炭酸塩であればCO 2-など)を対イオンとしてTAA塩として流出(溶離)してくるので、当該流出液を貯留槽に回収する。
 本発明における特徴のひとつは、当該流出液中のアルカリ金属イオン濃度を測定し、該アルカリ金属イオン濃度が急激に高くなるよりも前の時点で上記貯留槽への回収を停止する点にある。
 即ち、吸着塔中の陽イオン交換樹脂には、前述のとおりTAAイオンに加え、金属イオンが吸着しているが、アルカリ金属塩溶液を該吸着塔に通液させることにより、TAAイオンがアルカリ金属イオンと交換して優先的に流出(溶離)してくる。一方、他の金属イオンはイオン交換樹脂に保持されたままの状態となっている。アルカリ金属塩溶液を更に通液し続けると、元のTAA溶液中に共存していた金属イオン及び吸着塔に通液したアルカリ金属塩溶液を構成するアルカリ金属イオンが溶離を始める。元のTAA溶液中に共存していた金属イオンは元々の濃度が比較的薄いために、その流出開始を直接検知することは困難である。ここで本発明者等の検討によれば、これらの金属イオンの溶離挙動は高濃度で吸着塔に導入されたアルカリ金属イオンの溶離挙動と同様の傾向を示し相前後して溶離を開始するため、当該アルカリ金属イオンの溶離挙動を測定し、該アルカリ金属イオンが高濃度な流出液を、それ以前の金属イオンを殆ど含まないTAAイオン含有回収液とは混ざらないようにすれば、TAAイオンを高濃度で含み、且つ各種金属イオンの濃度が大幅に減じられた回収液を得ることができるものである。
 より具体的には、TAAイオンを吸着させた陽イオン交換樹脂を充填した吸着塔に、アルカリ金属塩溶液の通液を始めても、最初のうちは流出液中のアルカリ金属イオン濃度は極めて低濃度(通常0.1ppm未満)で安定しているが、TAAイオンのアルカリ金属イオンとの交換が進行すると、該アルカリ金属イオン濃度が急激に上昇を始め1ppmを遙かに超え、数十~数百ppmにも到達する。そこで、この上昇が始まる直前部分までを貯留槽に回収し、その後の流出液は別に分けることで高回収率且つ高純度でTAA塩を得ることができる。
 ここで、アルカリ金属イオン濃度が急激に上昇を始めたかどうかの判断基準としては、該アルカリ金属イオン濃度の測定手段が極めて高感度の場合には、安定値の10乃至10000倍、好ましくは10乃至5000倍の点に設けた任意の濃度(所定値)となる前、好ましくは直前に貯留槽への回収を停止すればよい。
 一方、イオン電極などの比較的低感度の測定手段を採用する場合には、初期安定値が測定下限未満の場合もある。このような場合には、アルカリ金属イオン濃度が0.5~10mg/Lの間に設けた任意の濃度(所定値)となる前に貯留槽への回収を停止することで代替できる。例えば一般的なアルカリ金属イオン電極の測定限界は1mg/Lの場合が多いため、測定下限以下では貯留槽に回収し、1mg/Lという値を示した以降の流出液は貯留槽への回収を停止することが挙げられる。
 上述したような所定値のアルカリ金属イオン濃度となる前に貯留槽への流出液の回収を停止する方法は特に限定されないが、例えば、図1に示すように、アルカリ金属イオン濃度を測定する装置(金属イオン電極)よりも下流に流路切り替えバルブを設けておき、該金属イオン電極が流出液中のアルカリ金属イオン濃度が所定値に上昇したことを感知すると同時にバルブの流路を切り替える方法などが挙げられる。
 なお当該流出液の金属イオン濃度が所定値となった時点より後の時点では、吸着塔から液を流出させること自体を停止してもよいが、陽イオン交換樹脂を再生し、再度用いることができるようにするために、前記切り替えバルブなどの流路変更手段で、上記貯留槽とは別の貯留槽等へ流出液を回収することが好ましい。
 金属イオン濃度の測定方法としては、従来より知られている方法を適宜採用することが出来る。具体的には、例えば吸着塔から流出する流出液を一定量サンプリングし、金属イオン電極などを用いて金属イオンを測定する方法や、流出液を貯留槽へ導く配管途中にインライン型の金属イオン電極を設置して測定する方法等がある。インライン型の金属イオン電極を用いれば、液を途中で抜き出すことなく金属イオン濃度が所定値になった瞬間に回収を停止することも出来、回収液のロスを抑えることが出来、好ましい。
 なお、測定する時間間隔は主として流出液の流量(流速)によって変更する必要がある。高流速で溶液を流す場合、流出液の金属イオン濃度の変化が急激に起こるため、所望の性状(金属イオン不純物の濃度)の液を得るためには測定の間隔を短くする必要がある。
 (テトラアルキルアンモニウム塩から水酸化テトラアルキルアンモニウムを製造する方法)
 本発明においては、上記の方法にて、廃液から回収した溶液に含まれるTAA塩を電気透析、電解等に供することによりTAAHを製造することが出来る。
 さらに、電気透析や電気分解に供する前に、得られたTAA塩の精製や濃縮を行う事も可能である。該TAA塩溶液の精製方法としては、該TAA塩溶液を陽イオン交換樹脂(但し、事前に対イオンをTAAイオンに置換したもの)及び/又はキレート樹脂に接触させて、TAA塩中の金属イオン成分を除去する方法、TAA塩を、活性炭等の吸着剤、或いは陰イオン交換樹脂に接触させて、フォトレジスト等の有機物を除去する方法等が挙げられる。
 また、TAA塩の濃縮方法としては、具体的には、電気透析、蒸発缶、逆浸透膜により濃縮する方法等が挙げられる。
 (TAAHの製造:TAA塩の電解工程)
 得られたTAA塩を電解してTAAHにする電解工程については、特に制限されるものではなく、回収されたTAA塩の種類(用いたアルカリ金属塩を構成する酸成分に相当する)に応じて公知の方法を用いることができる。例えば、回収されたTAA塩が炭酸塩である場合には、特許3109525号公報(2室電解:原料を陽極室に供給)に記載の陽極、陰極、陽イオン交換膜を使用した電気分解によりTAA塩をTAAHとすることが好ましい。
本発明をさらに具体的に説明するため以下実施例および比較例を挙げて説明するが、本発明はこれらに限定されるものではない。
(陽イオン交換樹脂の再生処理(H型陽イオン交換樹脂))
 用いた陽イオン交換樹脂は、使用に際して、ガラス塔に充填し、超純水、1N-HCl(塩酸)、及び超純水をこの順で通液させて、対イオンを水素イオンとした。各液は、空間速度SV=5(l/時間)で通液させ、各液の使用液量は、10L/L-樹脂とした。
(濃度測定)
 水酸化テトラメチルアンモニウム(TMAH)、テトラメチルアンモニウム塩(TMA塩)濃度はイオンクロマトグラフィー法より分析した。
 具体的には、ダイオネクス社製 ICS2000を使用し、カラムは陽イオン分析にはION-pac CS12A、陰イオン分析にはION-pac AS15を使用し、溶離液は陽イオン分析にはメタンスルホン酸、陰イオン分析には水酸化カリウムを用いて分析を行った。
 溶液中に含まれる金属イオン濃度は、イオン電極(ポータブル水質計)法(型番:IM-32P(東亜DKK社製))、高周波誘導結合プラズマ質量分析(ICP-MS)法(測定装置:HP-4500(Agilent社製))、及び高周波誘導結合プラズマ発光分析(ICP-OES)法(測定装置:iCAP 6500 DUO(サーモエレクトロン株式会社製)により測定した。なお特に断らない限り各濃度は質量基準である。
 実施例1
 (TMAイオン廃液吸着工程)
 弱酸性陽イオン交換樹脂ダイヤイオンWK40L(三菱化学社製)1000mlを直径50mmのカラムに充填し樹脂高さを510mmとした。
 上記カラムに、0.045質量%TMAH廃液(フォトレジスト現像廃液 フォトレジスト含有量 COD換算 10ppm、金属イオン濃度 Na:2.5ppb、K:5.4ppb、Ca:4.1ppb、Al:3.2ppb、Ni:2.0ppb、Cu:2.0ppb、Cr:2.5ppb、Fe:5.3ppb)1000LをSV(空間速度)=100(1/時間)で通液してTMAイオンの吸着を行なった。
 (TMAイオン溶離工程)
 次に、溶離液として5000mlの2N-炭酸ナトリウムをSV=4(1/時間)で通液し、吸着したTMAイオンをTMA炭酸塩として溶離させた。流出液は、500ml毎に順次、分取して10つの液に分別した(分別液A~J)。これらの分別液のTMA炭酸塩濃度、金属イオン濃度をそれぞれ測定した。その結果を表1に示す。
 表1の結果から明らかなように、ナトリウムイオン濃度が下限値以上となるIから金属イオン濃度が高くなった。分別液CからHまで回収したときの回収量は合計で3000mlであり、TMA炭酸塩の濃度は9.7質量%(0.46mol/l)であった。
Figure JPOXMLDOC01-appb-T000001
 実施例2
 (TMAイオン吸着工程)
 弱酸性陽イオン交換樹脂レバチットCNP-80WS(ランクセス社製)1000mlを直径50mmのカラムに充填し樹脂高さを510mmとした。
 上記カラムに、0.045質量%TMAH廃液(フォトレジスト現像廃液 フォトレジスト含有量 COD換算 10ppm、金属イオン濃度 Na:2.5ppb、K:5.4ppb、Ca:4.1ppb、Al:3.2ppb、Ni:2.0ppb、Cu:2.0ppb、Cr:2.5ppb、Fe:5.3ppb)1000LをSV(空間速度)=100(1/時間)で通液してTMAイオンの吸着を行なった。
 (TMAイオン溶離工程)
TMAイオン溶離工程の溶離液として5000mlの2N-炭酸カリウムをSV=5(1/時間)で通液し、吸着したTMAイオンをTMA炭酸塩として溶離させた。流出液は、500ml毎に順次、分取して10つの液に分別した(分別液A~J)。これらの分別液のTMA炭酸塩濃度、金属イオン濃度をそれぞれ測定した。その結果を表2に示す。
 表2の結果から明らかなように、カリウムイオン濃度が下限値以上となるIから金属イオン濃度が高くなった。分別液CからHまで回収したときの回収量は合計で3000mlであり、TMA炭酸塩の濃度は9.1質量%(0.44mol/l)であった。
Figure JPOXMLDOC01-appb-T000002
 実施例3
 (TMAイオン吸着工程)
 弱酸性陽イオン交換樹脂デュオライトC476(住化ケムテックス社製)1000mlを直径50mmのカラムに充填し樹脂高さを510mmとした。
 上記カラムに、0.045質量%TMAH廃液(フォトレジスト現像廃液 フォトレジスト含有量 COD換算 10ppm、金属イオン濃度 Na:2.5ppb、K:5.4ppb、Ca:4.1ppb、Al:3.2ppb、Ni:2.0ppb、Cu:2.0ppb、Cr:2.5ppb、Fe:5.3ppb)1000LをSV(空間速度)=100(1/時間)で通液してTMAイオンの吸着を行なった。
 (TMAイオン溶離工程)
 TMAイオン溶離工程の溶離液として8000mlの1N-炭酸ナトリウムをSV=3(1/時間)で通液し、吸着したTMAイオンをTMA炭酸塩として溶離させた。流出液は、500ml毎に順次、分取して16つの液に分別した(分別液A~P)。これらの分別液のTMA炭酸塩濃度、金属イオン濃度をそれぞれ測定した。その結果を表3に示す。
 表3の結果から明らかなように、ナトリウムイオン濃度が下限値以上となるNから金属イオン濃度が高くなった。分別液CからMまで回収したときの回収量は合計で5500mlであり、TMA炭酸塩の濃度は6.2質量%(0.30mol/l)であった。
 実施例4
 (精製工程)
 あらかじめ塩酸、超純水と接触させて再生処理をしたキレート樹脂(ロームアンドハース社製デュオライトC747)1000mlを充填した、直径50mmのカラム(樹脂高さ510mm)、および、陽イオン交換樹脂(ロームアンドハース社製アンバーリスト15J)1000mlを充填した、直径50mmのカラム(樹脂高さ510mm)を各々準備した。
 実施例1の分別液C~Hを、上記のキレート樹脂カラムに通し、処理液Aを得た。続いて、処理液Aを陽イオン交換樹脂カラムに通液し、処理液Bを得た。処理液A、Bについて液の分析を行った結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例5
 実施例4より得られた処理液Bを、蒸発濃縮装置によりTMA炭酸塩濃度が26.1質量%となるように濃縮した。得られたTMA炭酸塩を電解工程に付し、TMAHの製造を行った。
 なお電解工程では、陽極、陽イオン交換膜(ナフィオン90209(デュポン社製))、陰極を配置した、2室型の電解槽を用いた。上記イオン交換膜の有効膜面積は2dmとし、ナフィオン膜は、カルボン酸基を有する面を陰極側に向けて設置した。陽極はチタン板に白金めっきを施したものを用い、陰極はSUS316を使用した。上記の電解槽の陽極室にTMA炭酸塩を、陰極室に純水をそれぞれ循環させ、電流密度18A/dm、温度は40℃に維持しながら、連続的に電解を実施した。連続運転中は、陰極室のTMAH濃度が18質量%になるようにした。同じく各室を循環する液の濃度が一定になるように、濃度が濃くなったときは純水を、薄くなったときは、その成分を添加した。
 電解の開始後、運転状態が安定した、12時間後(安定時)、及び3ヶ月連続運転を行った時点で得られたTMAHの分析結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 比較例1
 実施例1における流出液の金属イオン電極での測定を行わず、導電率及びpHの測定を行ったこと以外は実施例1と同様に行った。TMAイオン溶離工程では、流出液を500ml毎に順次、分取して10つの液に分別した(分別液A~J)。これらの分別液のTMA炭酸塩濃度、金属イオン濃度、導電率及びpHをそれぞれ測定した。その結果を表6に示す。
 表6の結果から明らかなように、ナトリウムイオンが混入してくる分別液H、Iにおいて導電率やpHの値の変化率に差がないことがわかる。このことは、アルカリ金属塩を溶離液とした場合には、導電率やpHでは回収液中の金属イオン不純物の混入を制御するのは難しいことを示している。
Figure JPOXMLDOC01-appb-T000006

Claims (7)

  1.  金属イオン及び水酸化テトラアルキルアンモニウムを含む溶液より、金属イオン含有割合の低減されたテトラアルキルアンモニウム塩を含有する溶液を得るテトラアルキルアンモニウム塩溶液の製造方法であって、
    (1)水素イオン型の陽イオン交換樹脂が充填された吸着塔に、金属イオン及び水酸化テトラアルキルアンモニウムを含む溶液を通液させて、該溶液中のテトラアルキルアンモニウムイオンを、陽イオン交換樹脂に吸着させる吸着工程、
    (2)前記吸着工程にて、テトラアルキルアンモニウムイオンが吸着された陽イオン交換樹脂が充填された吸着塔に、アルカリ金属塩の溶液を通液させて、該樹脂に吸着されたテトラアルキルアンモニウムイオンを前記塩として溶離させ、該吸着塔より流出する流出液を貯留槽に回収する回収工程、
    の各工程を含んでなり、且つ、回収工程においては、吸着塔からの流出液中の前記アルカリ金属イオン濃度を測定し、該アルカリ金属イオン濃度が急激に上昇する前に、前記貯留槽への流出液の回収を停止することを特徴とするテトラアルキルアンモニウム塩溶液の製造方法。
  2.  金属イオン及び水酸化テトラアルキルアンモニウムを含む溶液より、金属イオン含有割合の低減されたテトラアルキルアンモニウム塩を含有する溶液を得るテトラアルキルアンモニウム塩溶液の製造方法であって、
    (1)水素イオン型の陽イオン交換樹脂が充填された吸着塔に、金属イオン及び水酸化テトラアルキルアンモニウムを含む溶液を通液させて、該溶液中のテトラアルキルアンモニウムイオンを、陽イオン交換樹脂に吸着させる吸着工程、
    (2)前記吸着工程にて、テトラアルキルアンモニウムイオンが吸着された陽イオン交換樹脂が充填された吸着塔に、アルカリ金属塩の溶液を通液させて、該樹脂に吸着されたテトラアルキルアンモニウムイオンを前記塩として溶離させ、該吸着塔より流出する流出液を貯留槽に回収する回収工程、
    の各工程を含んでなり、且つ、回収工程においては、吸着塔からの流出液中の前記アルカリ金属イオン濃度を測定し、該アルカリ金属イオン濃度が0.5~10mg/Lの間に設けられた所定の濃度に到達した時点で前記貯留槽への流出液の回収を停止することを特徴とするテトラアルキルアンモニウム塩溶液の製造方法。
  3.  アルカリ金属塩が、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム及び炭酸水素カリウムからなる群から選ばれるいずれか1種又は2種以上である請求項1又は2記載のテトラアルキルアンモニウム塩溶液の製造方法。
  4.  請求項1乃至3の何れかに記載の方法でテトラアルキルアンモニウム塩溶液を製造した後、得られたテトラアルキルアンモニウム塩を原料として、水酸化テトラアルキルアンモニウムを製造することを特徴とする水酸化テトラアルキルアンモニウムの製造方法。
  5.  請求項1乃至3の何れかに記載の方法でテトラアルキルアンモニウム塩溶液を製造した後、水酸化テトラアルキルアンモニウムを製造する前に、キレート樹脂及び/またはカチオン交換樹脂によりテトラアルキルアンモニウム塩に含まれる金属イオン不純物を除去することを特徴とする請求項4記載の水酸化テトラアルキルアンモニウムの製造方法。
  6.  請求項1乃至3の何れかに記載の方法でテトラアルキルアンモニウム塩溶液を製造した後、該溶液を濃縮する工程をさらに含むことを特徴とする請求項4又は5記載の水酸化テトラアルキルアンモニウムの製造方法。
  7.  水酸化テトラアルキルアンモニウム溶液からテトラアルキルアンモニウム塩溶液を製造するための製造装置であって、
     陽イオン交換樹脂が充填された吸着塔、該吸着塔より流出された流出液を回収する貯留槽、及び、該流出液の金属イオン濃度を測定するための金属イオン濃度測定手段を備えることを特徴とする前記製造装置。
PCT/JP2012/077779 2011-10-28 2012-10-26 テトラアルキルアンモニウム塩溶液の製造方法 WO2013062100A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147005045A KR101987409B1 (ko) 2011-10-28 2012-10-26 테트라알킬암모늄염 용액의 제조 방법
CN201280038087.0A CN103732573B (zh) 2011-10-28 2012-10-26 四烷基铵盐溶液的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011237128A JP5808221B2 (ja) 2011-10-28 2011-10-28 テトラアルキルアンモニウム塩溶液の製造方法
JP2011-237128 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013062100A1 true WO2013062100A1 (ja) 2013-05-02

Family

ID=48167924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077779 WO2013062100A1 (ja) 2011-10-28 2012-10-26 テトラアルキルアンモニウム塩溶液の製造方法

Country Status (5)

Country Link
JP (1) JP5808221B2 (ja)
KR (1) KR101987409B1 (ja)
CN (1) CN103732573B (ja)
TW (1) TWI549753B (ja)
WO (1) WO2013062100A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999694A (zh) * 2021-03-24 2021-06-22 沧州信联化工有限公司 一种四甲基氢氧化铵加工用原料精制装置及其使用方法
CN114920658A (zh) * 2022-06-28 2022-08-19 大连理工大学盘锦产业技术研究院 一种离子交换树脂纯化氢氧化胆碱的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623052A (zh) * 2017-03-22 2018-10-09 三福化工股份有限公司 显影废液的二次废液中四甲基氢氧化铵的回收方法
SG11202103130RA (en) * 2018-09-28 2021-04-29 Tokuyama Corp Method for producing organic solvent solution of quaternary ammonium hydroxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340449A (ja) * 2002-05-27 2003-12-02 Babcock Hitachi Kk テトラアルキルアンモニウムヒドロキシド含有廃水の処理方法
JP2004512315A (ja) * 2000-10-20 2004-04-22 サッチェム,インコーポレイテッド オニウム化合物を含む溶液からオニウム水酸化物を除去するためのプロセス
JP2011012044A (ja) * 2009-06-03 2011-01-20 Tokuyama Corp 水酸化テトラアルキルアンモニウムの製造方法
WO2011074495A1 (ja) * 2009-12-15 2011-06-23 株式会社トクヤマ テトラアルキルアンモニウムイオン除去廃液の再利用方法
WO2012090699A1 (ja) * 2010-12-28 2012-07-05 株式会社トクヤマ テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109525B2 (ja) 1990-12-27 2000-11-20 クロリンエンジニアズ株式会社 水酸化テトラアルキルアンモニムの再生方法
JP3110513B2 (ja) 1991-10-16 2000-11-20 クロリンエンジニアズ株式会社 水酸化テトラアルキルアンモニムの再生方法
US5439564A (en) * 1992-11-10 1995-08-08 Tama Chemicals Co. Ltd. Method of processing organic quaternary ammonium hydroxide-containing waste liquid
JP2688009B2 (ja) 1992-11-26 1997-12-08 多摩化学工業株式会社 廃液から水酸化有機第四アンモニウムを回収する方法
JP3216998B2 (ja) 1996-08-12 2001-10-09 昭和電工株式会社 現像廃液からの水酸化テトラアルキルアンモニウムの精製回収方法
US5968338A (en) 1998-01-20 1999-10-19 Sachem, Inc. Process for recovering onium hydroxides from solutions containing onium compounds
JP2004066102A (ja) 2002-08-06 2004-03-04 Babcock Hitachi Kk 廃液処理方法及び装置
JP4385407B2 (ja) 2007-04-05 2009-12-16 オルガノ株式会社 テトラアルキルアンモニウムイオン含有液の処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512315A (ja) * 2000-10-20 2004-04-22 サッチェム,インコーポレイテッド オニウム化合物を含む溶液からオニウム水酸化物を除去するためのプロセス
JP2003340449A (ja) * 2002-05-27 2003-12-02 Babcock Hitachi Kk テトラアルキルアンモニウムヒドロキシド含有廃水の処理方法
JP2011012044A (ja) * 2009-06-03 2011-01-20 Tokuyama Corp 水酸化テトラアルキルアンモニウムの製造方法
WO2011074495A1 (ja) * 2009-12-15 2011-06-23 株式会社トクヤマ テトラアルキルアンモニウムイオン除去廃液の再利用方法
WO2012090699A1 (ja) * 2010-12-28 2012-07-05 株式会社トクヤマ テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENJI SAKAI ET AL.: "Ion Kokan Jushi-ho ni yoru TMAH no Bunri, Kaishu Process no Kaihatsu", SHIGEN SOZAI 2004(MORIOKA), THE MINING AND MATERIALS PROCESSING INSTITUTE OF JAPAN, 2004, pages 217 - 218 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999694A (zh) * 2021-03-24 2021-06-22 沧州信联化工有限公司 一种四甲基氢氧化铵加工用原料精制装置及其使用方法
CN114920658A (zh) * 2022-06-28 2022-08-19 大连理工大学盘锦产业技术研究院 一种离子交换树脂纯化氢氧化胆碱的方法
CN114920658B (zh) * 2022-06-28 2024-05-03 大连理工大学盘锦产业技术研究院 一种离子交换树脂纯化氢氧化胆碱的方法

Also Published As

Publication number Publication date
KR101987409B1 (ko) 2019-06-10
JP5808221B2 (ja) 2015-11-10
KR20140079762A (ko) 2014-06-27
TW201323089A (zh) 2013-06-16
JP2013095673A (ja) 2013-05-20
CN103732573B (zh) 2016-05-18
TWI549753B (zh) 2016-09-21
CN103732573A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5887279B2 (ja) テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法
WO2011036942A1 (ja) 水酸化テトラアルキルアンモニウムの製造方法
JP5717997B2 (ja) テトラアルキルアンモニウム塩水溶液の製造方法
EP1337470B1 (en) Process for recovering onium hydroxides from solutions containing onium compounds
WO2013062100A1 (ja) テトラアルキルアンモニウム塩溶液の製造方法
JP5483958B2 (ja) 水酸化テトラアルキルアンモニウムの製造方法
TWI583658B (zh) 高濃度四烷基銨鹽水溶液之製造方法
JP2013119487A (ja) ケイフッ化水素酸含有液の処理方法
TWI423836B (zh) 自含氫氧化四烷基銨之廢液回收及純化其之方法
WO2011074495A1 (ja) テトラアルキルアンモニウムイオン除去廃液の再利用方法
WO2015016230A1 (ja) テトラアルキルアンモニウム塩水溶液の製造方法
WO2022102263A1 (ja) テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147005045

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844070

Country of ref document: EP

Kind code of ref document: A1