WO2022102263A1 - テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置 - Google Patents

テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置 Download PDF

Info

Publication number
WO2022102263A1
WO2022102263A1 PCT/JP2021/035325 JP2021035325W WO2022102263A1 WO 2022102263 A1 WO2022102263 A1 WO 2022102263A1 JP 2021035325 W JP2021035325 W JP 2021035325W WO 2022102263 A1 WO2022102263 A1 WO 2022102263A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cation exchange
exchange resin
treated
tetraalkylammonium
Prior art date
Application number
PCT/JP2021/035325
Other languages
English (en)
French (fr)
Inventor
智子 ▲高▼田
郁 貫井
治雄 横田
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN202180072898.1A priority Critical patent/CN116419798A/zh
Priority to US18/036,043 priority patent/US20240018020A1/en
Priority to JP2022561314A priority patent/JP7477641B2/ja
Publication of WO2022102263A1 publication Critical patent/WO2022102263A1/ja
Priority to JP2024025345A priority patent/JP2024051018A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/016Modification or after-treatment of ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/06Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/60Cleaning or rinsing ion-exchange beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/40Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture or use of photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for purifying a liquid to be treated and a purification apparatus for reducing the content of metal impurities in the liquid to be treated containing tetraalkylammonium ions and metal impurities.
  • the present invention also relates to a method and an apparatus for recovering a tetraalkylammonium salt aqueous solution from a liquid to be treated, which reduces the content of metal impurities in the liquid to be treated, which contains tetraalkylammonium ions and metal impurities.
  • a photoresist film is formed on a substrate such as a wafer, light is irradiated through a pattern mask, and then unnecessary photoresist is removed with a developing solution. Dissolve and develop. Further, after performing a treatment such as etching, the insoluble photoresist film on the substrate is peeled off.
  • a positive type in which the exposed portion is soluble and a negative type in which the exposed portion is insoluble there are two types of photoresists, a positive type in which the exposed portion is soluble and a negative type in which the exposed portion is insoluble
  • an alkaline developer is mainly used as the developer of the positive type photoresist. Further, as the developer of the negative photoresist, an organic solvent-based developer is the mainstream, but an alkaline developer may also be used.
  • TAAH tetraalkylammonium hydroxide
  • Patent Document 1 describes a method in which TAA ions are adsorbed on a cation exchange resin and then eluted with an acid solution as a tetraalkylammonium salt (hereinafter, also referred to as "TAA salt") for recovery. It has been disclosed.
  • TAA salt tetraalkylammonium salt
  • the pH and / or electrical conductivity of the effluent is measured, and the recovery is stopped when they change by a predetermined amount, thereby reducing the metal ion concentration.
  • a TAA salt solution was obtained.
  • TAAH is produced using the TAA salt solution as a raw material.
  • a method for reducing the amount of metal impurities a method of adsorbing metal impurities with a strongly acidic cation exchange resin is generally effectively used.
  • the strongly acidic cation exchange resin is in the tetraalkylammonium ion form, the water content in the resin increases and the resin swells as compared with the case of the hydrogen ion form. Therefore, when the conversion between the hydrogen ion type and the tetraalkylammonium ion type is repeated, there is a problem that cracks are generated due to repeated shrinkage and swelling, and the resin is cracked.
  • the present invention reduces the content of metal impurities in the liquid to be treated containing tetraalkylammonium ions, which can suppress cracking of the resin even when a strongly acidic cation exchange resin is used. It is an object of the present invention to provide a purification method and a purification apparatus for a liquid to be treated. Further, the present invention recovers a tetraalkylammonium salt aqueous solution from a liquid to be treated containing tetraalkylammonium ions, which can suppress cracking of the resin even when a strongly acidic cation exchange resin is used. It is an object of the present invention to provide a method and a recovery device.
  • a liquid to be treated containing a tetraalkylammonium ion and a metal impurity is passed through a container filled with a hydrogen ion type or a tetraalkylammonium ion type cation exchange resin, and the liquid to be treated is passed.
  • a method for purifying a liquid to be treated which comprises an impurity removing step of reducing the content of the metal impurities in the liquid, characterized in that the degree of cross-linking of the cation exchange resin is 16 to 24%. It is a purification method of.
  • a liquid to be treated containing a tetraalkylammonium ion and a metal impurity is passed through a container filled with a hydrogen ion type or a tetraalkylammonium ion type cation exchange resin, and the liquid to be treated is passed.
  • a device for purifying a liquid to be treated having an impurity removing means for reducing the content of the metal impurities in the liquid to be treated, wherein the cation exchange resin has a degree of cross-linking of 16 to 24%. Purification equipment.
  • a liquid to be treated containing a tetraalkylammonium ion and a metal impurity is passed through a container filled with a hydrogen ion type or a tetraalkylammonium ion type cation exchange resin, and the liquid to be treated is passed.
  • a method for recovering a tetraalkylammonium salt aqueous solution from a liquid to be treated which comprises an impurity removing step for reducing the content of the metal impurities in the cation exchange resin, and the degree of cross-linking of the cation exchange resin is 16 to 24%. This is a method for recovering a tetraalkylammonium salt aqueous solution from a liquid to be treated.
  • a liquid to be treated containing tetraalkylammonium ions and metal impurities is passed through a container filled with a hydrogen ion type or tetraalkylammonium ion type cation exchange resin to be treated.
  • the present invention by using a highly crosslinked strongly acidic cation exchange resin, the content of metal impurities in the liquid to be treated containing tetraalkylammonium ions, which can suppress cracking of the resin, is reduced.
  • a method for purifying a liquid to be treated and a purifying apparatus can be provided.
  • a tetraalkylammonium salt aqueous solution from a liquid to be treated containing tetraalkylammonium ions, which can suppress cracking of the resin by using a strongly crosslinked strongly acidic cation exchange resin A recovery method and a recovery device can be provided.
  • a container filled with a hydrogen ion type (hereinafter, also referred to as “H type”) or a tetraalkylammonium ion type (hereinafter, also referred to as “TAA type”) cation exchange resin is filled with tetra. It has an impurity removing step of passing a liquid to be treated containing alkylammonium ions and metal impurities to reduce the content of the metal impurities in the liquid to be treated. Further, the purification method according to the present invention is characterized in that the degree of cross-linking of the cation exchange resin is 16 to 24%.
  • the purification method according to the present invention will be described in detail.
  • a liquid to be treated containing tetraalkylammonium ions and metal impurities is passed through a container filled with an H-type or TAA-type cation exchange resin, and the metal impurities in the liquid to be treated are passed. It is a step of reducing the content of.
  • the liquid to be treated containing the tetraalkylammonium ion and the metal impurity is not particularly limited as long as it contains at least the tetraalkylammonium ion and the metal impurity.
  • the liquid to be treated is a solution derived from the photoresist development waste liquid discharged in the process. Is preferable.
  • the photoresist development waste liquid is a waste liquid discharged when the photoresist after exposure is developed with an alkaline developer, and is usually an alkaline solution having a pH of 10 to 14.
  • the photoresist development waste liquid is a solution mainly containing photoresist, TAA ions and metal impurities.
  • the liquid to be treated according to the present invention is recovered as a TAA salt by, for example, adsorbing TAA ions in the photoresist development waste liquid on a cation exchange resin and then elution of TAA ions with an acid such as hydrochloric acid. It is a solution that has been prepared.
  • the photoresist development waste liquid is passed through a container filled with an H-type cation exchange resin, and TAA ions are adsorbed on the cation exchange resin.
  • TAA ions are adsorbed on the cation exchange resin by this liquid passage.
  • the ion species containing the metal itself becomes an anion due to a chemical equilibrium reaction such as complex formation in the waste liquid, it will not be adsorbed by the cation exchange resin and the container. Is discharged from.
  • the photoresist-derived organic component dissolved in the resist development waste liquid is usually in the form of anions, it is difficult to be adsorbed by the cation exchange resin, and most of it is removed. Further, even if a nonionic component is present, most of it can be removed because it is discharged (outflowed) without being adsorbed by the cation exchange resin at this stage. Even if the photoresist development waste liquid is passed through a cation exchange resin and then the photoresist component and other impurities slightly remaining in the resin are washed with ultrapure water or a high-purity TAAH aqueous solution or the like. good.
  • the liquid to be treated according to the present invention can be obtained.
  • the liquid to be treated thus obtained is a solution containing tetraalkylammonium ions and metal impurities
  • the purification method according to the present invention is a purification method for reducing the content of metal impurities in the liquid to be treated. be.
  • the step of recovering TAAH in the photoresist development waste liquid as a liquid to be treated containing a TAA salt is known as described in, for example, Patent Document 1, and the container and cation exchange resin used in the step are known.
  • the type or amount of the acid used the method of passing the acid, and the like, known methods can be appropriately selected and used.
  • the (viaducted) cation exchange resin used in the step it is also possible to use a strongly acidic cation exchange resin having a degree of cross-linking of 16% to 24% according to the present invention. In that case, even in this step, it is possible to prevent the resin from cracking due to repeated use. Further, the same resin can be used from the step of recovering the liquid to be treated to the ion exchange step and the impurity removing step described later, which is preferable from the viewpoint of operability.
  • the liquid to be treated used in the present invention is a solution obtained by eluting TAA ions (TAAH) as TAA salts from the photoresist development waste liquid and recovering them.
  • TAA ions in the liquid to be treated include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and methyl hydroxide as alkalis used in the developing solution of the photoresist.
  • Triethylammonium trimethylethylammonium hydroxide, dimethyldiethylammonium hydroxide, trimethyl (2-hydroxyethyl) ammonium hydroxide, triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, hydroxylated Derived from tetraalkylammonium hydroxide such as diethyldi (2-hydroxyethyl) ammonium, methyltri (2-hydroxyethyl) ammonium hydroxide, ethyltri (2-hydroxyethyl) ammonium hydroxide, and tetra (2-hydroxyethyl) ammonium hydroxide.
  • Ions can be mentioned.
  • tetramethylammonium hydroxide and tetrabutylammonium ion derived from tetramethylammonium hydroxide and tetrabutylammonium hydroxide which are most commonly used, are preferably used in the present invention, and tetramethylammonium hydroxide is used.
  • Tetramethylammonium ion derived from is particularly preferably used.
  • the liquid to be treated in the present invention is a solution obtained by recovering the tetraalkylammonium ion as, for example, a chloride salt, and is preferably a tetraalkylammonium chloride aqueous solution such as tetramethylammonium chloride or tetrabutylammonium chloride, preferably tetramethyl.
  • a ammonium chloride aqueous solution is more preferable.
  • the tetraalkylammonium ion contained in the liquid to be treated according to the present invention is preferably a tetraalkylammonium ion derived from a tetraalkylammonium chloride such as tetramethylammonium chloride or tetrabutylammonium chloride, preferably tetramethylammonium chloride. It is more preferable that it is a tetraalkylammonium ion derived from.
  • a typical photoresist development waste liquid discharged from the development process in semiconductor manufacturing and liquid crystal display manufacturing will be described.
  • a single-wafer automatic developing apparatus is usually often used.
  • the process of using a developer containing TAAH and the subsequent rinsing with pure water (substrate cleaning) are performed in the same tank, and in the rinsing process, 5 to 1000 times as much pure water as the developer is used. Will be done. Therefore, the developer used in the developing step is usually a waste liquid diluted 5 to 10 times.
  • the composition of the photoresist development waste liquid discharged in this developing step is such that TAAH is about 0.001 to 2.5% by mass, the resist is about 10 to 100 ppm, and the surfactant is 0 to several. It will be about 10 ppm.
  • waste liquids from other processes may be mixed in, and the TAAH concentration may be low even within the above range.
  • the TAA ion concentration of the liquid to be treated obtained from the photoresist development waste liquid having a TAAH concentration of, for example, 0.001 to 2.5% by mass is 0.001 to 2.5% by mass.
  • the liquid to be treated obtained from the photoresist development waste liquid may be used after adjusting the TAA ion concentration by appropriately concentrating the liquid.
  • the photoresist development waste liquid contains a plurality of metal ions as metal impurities, the liquid to be treated also contains these metal ions.
  • the metal ion include monovalent ions such as sodium and potassium, divalent ions such as magnesium, calcium and zinc, and polyvalent ions such as aluminum, nickel, copper, chromium and iron. These metal ions are usually contained in the photoresist development waste liquid (processed liquid) in an amount of about 0.1 to 1000 ppb.
  • the counter ion of the tetraalkylammonium ion in the photoresist development waste liquid is usually a hydroxide ion, but depending on the factory, or when neutralized, fluoride ion or chloride is used.
  • Inorganic anions such as substance ion, bromide ion, carbonate ion, hydrogen carbonate ion, sulfate ion, hydrogen sulfate ion, nitrate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, and formate ion, acetate ion.
  • At least one selected from organic anions such as oxalate ion is generally at least a part of the counter ion of tetraalkylammonium ion. However, since most of these anions are removed at the stage of preparing the liquid to be treated from the photoresist development waste liquid, it is considered that they are hardly contained in the liquid to be treated.
  • (Cation exchange resin) in the present invention, as the H-type or TAA-type cation exchange resin, a strongly acidic cation exchange resin having a degree of cross-linking of 16% to 24% is used.
  • the viaduct resin having a degree of cross-linking in the above range has high strength because the cross-linked structure is densely present inside the resin.
  • a cation exchange resin having a degree of cross-linking of less than 16% is used, the strength of the resin becomes insufficient, and the possibility of cracking of the resin during purification increases.
  • a cation exchange resin having a degree of cross-linking of more than 24% when a cation exchange resin having a degree of cross-linking of more than 24% is used, the ion exchange rate becomes slow or the resin regeneration rate becomes slow.
  • the viaduct cation exchange resin is preferable in that it has a large exchange capacity and can introduce a large number of functional groups.
  • H-type cation exchange resin any resin can be used as long as the degree of cross-linking is 16% to 24%.
  • H-type cation exchange resins include Amberjet (registered trademark) 1060H, 1600H (trademark, manufactured by Organo Co., Ltd.), AMBERLITE (registered trademark) IRN99H, 200C, 200CT (trademark, manufactured by DuPont). ), AMBEREX 210 (trademark, manufactured by DuPont), Diaion (registered trademark) SK116 (trademark, manufactured by Mitsubishi Chemical Co., Ltd.), Purolite (registered trademark) C100X16MBH (trademark, manufactured by Purorite Co., Ltd.), etc. can.
  • the purification method according to the present invention has the following ion exchange step before the impurity removing step.
  • a regenerator containing tetraalkylammonium ions is passed through a container filled with a hydrogen ion type cation exchange resin, and the hydrogen ion type cation exchange resin is exchanged with a tetraalkylammonium ion type cation exchange. Ion exchange process to convert to resin.
  • the TAA type cation exchange resin obtained in the ion exchange step can be used in the impurity removal step. The ion exchange process will be described later.
  • the particle size of the cation exchange resin is preferably 200 ⁇ m to 720 ⁇ m.
  • the particle size is 720 ⁇ m or less, it is within the particle size range of a general ion exchange resin, so that it is easy to divert or operate existing equipment.
  • a cation exchange resin having a particle size of 200 ⁇ m or more has a general surface area and can sufficiently remove metal impurities.
  • the cation exchange resin has a particle size of 200 ⁇ m or more, it is possible to suppress an increase in the differential pressure between the resin outlet and the resin inlet.
  • the particle size of the cation exchange resin is more preferably 500 ⁇ m to 560 ⁇ m in the H type.
  • a small particle size cation exchange resin having a particle size in the above range has a large surface area of the resin and can easily convert the resin from the H type to the TAA type. Therefore, the amount of H-type resin remaining when the resin is converted to TAA type is reduced, and the initial pH fluctuation when passing the liquid to be treated can be further suppressed. Further, since the cation exchange resin having a small particle size has a large surface area of the resin, it is also excellent in the ability to remove metal impurities.
  • the particle size means the harmonic mean diameter.
  • H-type cation exchange resin When using H-type cation exchange resin, a liquid to be treated containing TAA ions and metal impurities is passed through a container filled with an H-shaped cation exchange resin, hydrogen ions in the resin and TAA ions in the liquid to be treated undergo ion exchange. Thereby, the H-type cation exchange resin is converted into the TAA-type cation exchange resin. Further, since the metal impurities which are cations in the liquid to be treated are also adsorbed by the cation exchange resin, the content of the metal impurities in the liquid to be treated can be reduced.
  • an H-type cation exchange resin when used, it is a target to be purified without separately performing an ion exchange step described later in order to convert the cation exchange resin from the H type to the TAA type.
  • the liquid can be used to convert the cation exchange resin from H form to TAA form.
  • the cation exchange resin converted into the TAA form in this way can be continuously used in the impurity removing step.
  • the ion type of the cation exchange resin after the implementation of this step the TAA type and the metal ion type are in a mixed state. If unreacted exchange groups remain, hydrogen ion type cation exchange resins are also mixed.
  • the content of metal impurities in the liquid to be treated can be reduced by passing the liquid to be treated once, but in order to improve the purification efficiency, the first time.
  • the liquid to be treated may be passed again to the cation exchange resin converted into TAA type (and metal ion type) by passing the liquid to be treated. That is, the impurity removing step may be repeated a plurality of times.
  • the liquid to be treated is passed through the cation exchange resin converted into TAA type (and metal ion type) again, the TAA ions adsorbed on the resin and the metal ions remaining in the liquid to be treated are ionized.
  • the content of metal impurities in the liquid to be treated can be further reduced.
  • the purification method according to the present invention may have a neutralization step of neutralizing the effluent obtained in the impurity removing step.
  • the impurity removing step is repeated a plurality of times, for example, after performing the first impurity removing step, the neutralization step of the outflowing treatment liquid is carried out, and the pH-adjusted treatment liquid after the neutralization step is carried out. It can also be used to carry out a second impurity removal step.
  • the neutralization step can be performed using a known method.
  • the effluent can be stored in a container such as a storage tank and the pH can be adjusted with an alkali such as TAAH.
  • an alkali such as TAAH.
  • TAAH alkali
  • the alkali used for neutralization include tetramethylammonium hydroxide and ammonium hydroxide.
  • TAA type cation exchange resin When using TAA type cation exchange resin, a liquid to be treated containing TAA ions and metal impurities is passed through a container filled with a TAA-type cation exchange resin, the TAA ions in the resin and the metal ions in the liquid to be treated exchange ions. Then, metal ions are adsorbed on the resin. This makes it possible to reduce the content of metal impurities in the liquid to be treated. If unreacted exchange groups (hydrogen ions) remain in the cation exchange resin in the ion exchange step, the hydrogen ions are also exchanged with the metal ions in the liquid to be treated in this step. ..
  • the container can be filled with an ion exchange resin such as a "tower” or “tank” such as an adsorption tower, and the liquid to be treated is purified (either water is passed or a batch is used). It is meant to include, but is not limited to, everything that is possible.
  • a method in which a column having an inflow hole at the upper part and an outflow hole at the lower end is filled with a cation exchange resin and the liquid to be treated is continuously passed through using a pump.
  • Method or a method (batch method) in which the liquid to be treated is passed through a container filled with a cation exchange resin and contacted for an appropriate time to remove the supernatant liquid.
  • the size of the column may be appropriately determined according to the performance of the cation exchange resin and the like.
  • the ratio (L / D) of the height (L) to the diameter (D) of the column is 0.5 to 30, and the space velocity (SV) of the liquid to be treated is 1 (1). / Hour) or more, preferably 150 (1 / hour) or less.
  • the effluent having a reduced content of metal impurities flows out from one end of the container due to the passage of the liquid to be treated containing tetraalkylammonium ions and metal impurities.
  • the effluent is collected in a storage tank or the like.
  • the obtained purified liquid to be treated is a tetraalkylammonium salt aqueous solution.
  • the content of metal impurities can be measured using, for example, Agilent 8900 triple quadrupole ICP-MS (trade name, manufactured by Agilent Technologies, Inc.).
  • an H-type cation exchange resin is converted into a TAA-type cation exchange resin, that is, a TAA-type cation exchange resin used in the impurity removal step is prepared. It is a process to do.
  • the ion exchange step is performed by passing a regenerating agent containing TAA ions through a container filled with an H-shaped cation exchange resin.
  • the H-type cation exchange resin is as described above.
  • the regenerating agent containing TAA ions may be any aqueous solution containing TAA ions and is not particularly limited. Specific examples of the regenerating agent containing TAA ion include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethylethylammonium hydroxide, and water.
  • Dimethyldimethylammonium oxide trimethyl (2-hydroxyethyl) ammonium hydroxide, triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide, water Examples thereof include aqueous solutions of methyltri (2-hydroxyethyl) ammonium oxide, ethyltri (2-hydroxyethyl) hydroxide, and tetra (2-hydroxyethyl) ammonium hydroxide.
  • aqueous solution of tetramethylammonium hydroxide and aqueous solution of tetrabutylammonium hydroxide are preferably used in the present invention, and the aqueous solution of tetramethylammonium hydroxide is particularly preferably used.
  • the content of TAA ions in the regenerating agent can be, for example, 0.1% by mass to 25% by mass.
  • Transportation of regenerating agent As a method for passing a regenerating agent containing TAA ions through a container filled with a cation exchange resin, a conventionally known method can be appropriately adopted depending on the type and shape of the cation exchange resin. Specifically, for example, a column having an inflow hole at the upper part and an outflow hole at the lower end is filled with a cation exchange resin, and a solution containing tetraalkylammonium ions is continuously dispensed using a pump. Examples thereof include a method of passing the solution (column method) and a method of passing the solution through a container filled with a cation exchange resin and contacting the solution for an appropriate time to remove the supernatant liquid (batch method).
  • the size of the column may be appropriately determined according to the performance of the cation exchange resin and the like.
  • the amount of the regenerating agent to be passed through can be appropriately set in consideration of the exchange capacity of the cation exchange resin filled in the container. Whether or not TAA ions have flowed out (broken) without being adsorbed by passing a solution containing cations in an amount larger than the exchange capacity of the cation exchange resin passes through the container. It can be confirmed by analyzing the TAA ion concentration in the liquid flowing out by an ion chromatography method. More simply, the height occupied by the cation exchange resin in the container may be measured. When the counterion of the cation exchange resin changes from hydrogen ion to TAA ion, the volume swells about twice, depending on the type of cation exchange resin.
  • the adsorption of TAA ions can be confirmed by measuring the volume of the cation exchange resin.
  • the pH of the regenerating agent to be passed is alkaline of 10 or more
  • the pH of the passed liquid becomes alkaline, so that it can be confirmed by a pH meter. Is.
  • the electric conductivity of the liquid increases, so that it can be confirmed by an electric conductivity meter.
  • the purification method according to the present invention may include a regeneration step of regenerating the cation exchange resin in contact with the liquid to be treated in the impurity removing step.
  • impurities such as metal ions can be removed and the resin can be converted from the TAA ion form to the H form by contacting the resin with an acid using a known method.
  • the obtained H-type cation exchange resin can be reused in the impurity removal step.
  • the acid used in the regeneration step is not particularly limited as long as it produces hydrogen ions in the state of an aqueous solution, and examples thereof include mineral acid aqueous solutions such as hydrochloric acid and sulfuric acid.
  • hydrochloric acid is preferable because it can be obtained at a low cost industrially and the concentration can be easily adjusted.
  • concentration and amount of hydrochloric acid used are not particularly limited as long as they are sufficient in concentration and amount for conversion to H-form and removal of impurities such as metal ions.
  • the resin can be converted from the TAA ion form to the H form by contacting the cation exchange resin with 1 to 10% by mass of hydrochloric acid in an amount of 3 to 20 (L / L-resin).
  • cleaning with ultrapure water or pure water may be performed as appropriate.
  • a liquid to be treated containing tetraalkylammonium ions and metal impurities is passed through a container filled with a hydrogen ion type or tetraalkylammonium ion type cation exchange resin, and the subject is covered. It has an impurity removing means for reducing the content of the metal impurity in the treatment liquid. Further, the purification apparatus according to the present invention is characterized in that the degree of cross-linking of the cation exchange resin is 16 to 24%. The details of the impurity removing means are the same as the description of the impurity removing step in the purification method according to the present invention described above.
  • the purification apparatus may have the following ion exchange means.
  • a regenerator containing tetraalkylammonium ions is passed through a container filled with a hydrogen ion type cation exchange resin, and the hydrogen ion type cation exchange resin is exchanged with a tetraalkylammonium ion type cation exchange.
  • Ion exchange means to convert to resin.
  • the TAA-type cation exchange resin obtained by the ion exchange means can be used as the cation exchange resin in the impurity removing means.
  • the details of the ion exchange means are the same as the description of the ion exchange step in the purification method according to the present invention described above.
  • the purification apparatus may have a neutralizing means for neutralizing the effluent obtained by the impurity removing means.
  • the details of the neutralization means are the same as the description of the neutralization step in the purification method according to the present invention described above.
  • the purification apparatus according to the present invention may have a regeneration means for regenerating the cation exchange resin in contact with the liquid to be treated in the impurity removing means.
  • the details of the regeneration means are the same as the description of the regeneration step in the purification method according to the present invention described above.
  • FIG. 1 is a schematic view showing an example of a purification device for purifying a liquid to be treated using a cation exchange resin adjusted to a TAA shape with a TAAH aqueous solution.
  • FIG. 1 shows an example in which an adsorption tower is used as a container for filling the cation exchange resin, but the container is not limited to the adsorption tower.
  • a regenerating agent containing TAA ions for example, a TAAH aqueous solution
  • a regenerating agent containing TAA ions for example, a TAAH aqueous solution
  • a liquid to be treated containing TAA ions and metal impurities was passed through the adsorption tower 1 from the storage tank 2, and the content of the metal impurities in the liquid to be treated was reduced.
  • the liquid is collected in the storage tank 5.
  • the solutions in the storage tank 2, the storage tank 3, and the storage tank 4 may be sent to the adsorption tower 1 by the pump 6 for each solution, and one by switching with a valve.
  • the liquid may be sent to the adsorption tower 1 using a pump.
  • the resin in the adsorption tower 1 after being used for purification can be reused by washing and regenerating as follows.
  • Ultrapure water or pure water
  • an acid such as hydrogen is passed through the storage tank 4 to pass the resin.
  • Metal impurities and TAA ions adsorbed on the water are removed, and the resin is made H-shaped.
  • a regenerating agent containing TAA ions for example, a TAAH aqueous solution
  • the storage tank 3 corresponding to an ion exchange means
  • the regenerated TAA-type cation exchange resin can be reused as a TAA-type cation exchange resin used for the impurity removing means.
  • ultrapure water or pure water
  • the resin in the adsorption tower 1 after being used for purification is washed, and then used as it is as an impurity removing means.
  • It can be reused as a TAA type cation exchange resin.
  • the resin is reused as it is as an impurity removing means without passing hydrochloric acid, metal impurities that cannot be completely eluted by TAAH remain in the resin. Therefore, it is preferable to periodically combine the former regeneration method of passing hydrochloric acid.
  • the waste liquid used for cleaning is discharged for each type of waste liquid according to the values of the pH meter 8 and the electric conductivity meter 9.
  • FIG. 2 is a schematic view showing an example of a purification device for purifying a liquid to be treated using an H-type cation exchange resin.
  • FIG. 2 shows an example in which an adsorption tower is used as a container for filling the cation exchange resin, but the container is not limited to the adsorption tower.
  • the adsorption tower 11 filled with the H-shaped cation exchange resin is passed from the storage tank 12 with a liquid to be treated containing TAA ions and metal impurities, and the effluent is stored in the storage tank. Collect at 14. Since the obtained effluent becomes strongly acidic, the effluent may be neutralized if necessary.
  • an aqueous solution containing an alkali (for example, TAAH) is passed from the storage tank 13 to the storage tank 14 for neutralization.
  • an alkali for example, TAAH
  • TAAH an alkali
  • hydrogen ions in the H-type cation exchange resin are ion-exchanged with TAA ions and metal ions, and the pH of the effluent drops sharply. Therefore, it is not preferable to mix the strong acid solution that flows out at the initial stage of passing the liquid together with the outflow liquid that flows out in the storage tank 14 because the amount of alkali required for neutralization increases.
  • a pH meter 17 installed in front of the effluent line 19, and discharge the strongly acidic effluent from the effluent line 19 in front of the storage tank 14. Further, in order to adjust the pH of the liquid to be treated that has finally flowed out, a pH meter 17 is also installed in the storage tank 14. When the impurity removal step is repeated, after that, the outflowed liquid to be treated (neutralized if necessary) is passed through the storage tank 14 through the adsorption tower 11, and the outflow liquid is again stored in the storage tank. Collect at 14.
  • the resin in the adsorption tower 11 after being used for purification can be reused by washing and regenerating as follows. After ultrapure water (or pure water) is passed from the ultrapure water (or pure water) line 16 to clean the resin in the adsorption tower 11, the effluent recovered in the storage tank 14 is passed through the adsorption tower 11. By doing so, it is regenerated as a TAA type cation exchange resin. Alternatively, the resin in the adsorption tower 11 is washed by passing ultrapure water (or pure water) from the ultrapure water (or pure water) line 16, and then the TAAH aqueous solution is passed through the storage tank 13. It is regenerated as a TAA type cation exchange resin.
  • the TAA-type cation exchange resin regenerated in this way can be reused as the TAA-type cation exchange resin used for the impurity removing means.
  • the former method the amount of the chemical solution used can be reduced, but considering the pH of the effluent, it is inefficient in converting the resin to the TAA form. Therefore, the latter method is preferable from the viewpoint of the efficiency of converting the resin to the TAA form.
  • a regeneration method of passing hydrochloric acid (not shown) is periodically combined. Is preferable.
  • the purification apparatus according to the present invention can also be used in combination with an anion exchange resin and a fine particle removing filter.
  • the container filled with the anion exchange resin may be installed before or after the container filled with the cation exchange resin, or both ion exchange resins may be mixed and filled in the same container.
  • the container filled with the anion exchange resin is preferably installed in front of the storage tank 5 or the storage tank 14.
  • the fine particle removal filter is provided between the container filled with the cation exchange resin and / or the anion exchange resin and the storage tank 5 or the storage tank 14.
  • the anion exchange resin and the fine particle removing filter known ones can be appropriately selected and used, but the anion exchange resin is preferably converted into Cl form.
  • the purification method according to the present invention is a method for purifying a liquid to be treated, which reduces the content of metal impurities in the liquid to be treated, which contains tetraalkylammonium ions and metal impurities. It can also be said that this is a method of recovering a purified tetraalkylammonium salt aqueous solution from the liquid to be treated by reducing the content of metal impurities in the liquid to be treated containing alkylammonium ions and metal impurities. ..
  • the liquid to be treated purified by the purification method according to the present invention is the recovered tetraalkylammonium salt aqueous solution.
  • the TAAH solution having high purity can be obtained by contacting the tetraalkylammonium salt aqueous solution with, for example, an anion exchange resin or electrolyzing it.
  • a liquid to be treated containing tetraalkylammonium ions and metal impurities is passed through a container filled with a hydrogen ion type or tetraalkylammonium ion type cation exchange resin.
  • a method for recovering a tetraalkylammonium salt aqueous solution from a liquid to be treated which comprises an impurity removing step of reducing the content of the metal impurities in the liquid to be treated, wherein the degree of cross-linking of the cation exchange resin is high. Is 16 to 24%.
  • the details of the method for recovering the tetraalkylammonium salt aqueous solution according to the present invention are the same as those described above for the purification method according to the present invention, and the description thereof will be omitted.
  • the purification apparatus is a purification apparatus for a liquid to be treated that reduces the content of metal impurities in the liquid to be treated containing tetraalkylammonium ions and metal impurities. It can also be said that the device recovers the purified tetraalkylammonium salt aqueous solution from the liquid to be treated by reducing the content of metal impurities in the liquid to be treated containing alkylammonium ions and metal impurities. ..
  • the liquid to be treated purified by the purification apparatus according to the present invention is the recovered tetraalkylammonium salt aqueous solution. Then, the TAAH solution having high purity can be obtained by contacting the tetraalkylammonium salt aqueous solution with the anion exchange resin or electrolyzing the solution as described above.
  • a liquid to be treated containing tetraalkylammonium ions and metal impurities is passed through a container filled with a hydrogen ion type or tetraalkylammonium ion type cation exchange resin.
  • a device for recovering a tetraalkylammonium salt aqueous solution from a liquid to be treated which has an impurity removing means for reducing the content of the metal impurities in the liquid to be treated, and has a degree of cross-linking of the cation exchange resin. Is 16 to 24%.
  • the details of the tetraalkylammonium salt aqueous solution recovery device according to the present invention are the same as those described above for the purification device according to the present invention, and the description thereof will be omitted.
  • Na, Mg, K and Ca as metal impurities are added to 1000 ml of a 10 mass% tetramethylammonium chloride (TMA) aqueous solution, and an appropriate amount of a 25 mass% tetramethylammonium hydroxide (TMAH) aqueous solution is added to pH 8 to 10.
  • TMA tetramethylammonium chloride
  • TMAH tetramethylammonium hydroxide
  • Example 1 (Ion exchange process) This example was tested by the batch method. 10 ml of AMBERJET (registered trademark) 1060H (trade name, manufactured by Organo Corporation, degree of cross-linking: 16%) was put into a 200 ml beaker manufactured by PFA as an H-type strong acid cation exchange resin. As a regenerating agent containing tetraalkylammonium ion, 100 ml of a 2.4 mass% TMAH aqueous solution was poured therein, and the mixture was stirred while turning the beaker once every 15 minutes, and the resin was immersed for a total of 1 hour to allow the resin to flow out. The supernatant was removed to the extent that it did not occur. After repeating this operation twice, the operation of adding 100 ml of ultrapure water (UPW) and stirring lightly to remove the supernatant liquid was repeated three times, and the remaining TMAH was removed by washing.
  • UPW ultrapure water
  • Example 2 Similar to Example 1, the ion exchange step and impurity removal were performed, except that AMBERLITE (registered trademark) IRN99H (trade name, manufactured by DuPont, cross-linking degree: 16%) was used as the H-type strongly acidic cation exchange resin. The step was carried out and the pH and the metal concentration were measured in the same manner as in Example 1. The results are shown in Table 1.
  • AMBERLITE registered trademark
  • IRN99H trade name, manufactured by DuPont, cross-linking degree: 16%
  • Example 1 the same volume of cation exchange resin having the same degree of cross-linking was used and the same amount of regenerating agent was tested.
  • Table 1 the pH of the purified liquid to be treated was determined.
  • Example 1 showed a strong acidity of 1
  • Example 2 showed a weak acidity of 4.
  • the AMBERLITE IRN99H used in Example 2 has a smaller particle size and a larger surface area than the AMBERJET 1060H used in Example 1. That is, in the ion exchange step, the former is more likely to be converted to the TMA form, and as a result of the remaining H-form resin being reduced, the pH fluctuation at the initial stage of liquid passage due to the outflow of hydrogen ions is suppressed in the impurity removal step. Is considered to be. It was also found that the removal performance of metal impurities was higher in Example 2 using a resin having a smaller particle size than in Example 1.
  • Example 3 This example was tested by the column method (see FIG. 1).
  • As an H-type strong acid cation exchange resin 36 ml of AMBERLITE (registered trademark) IRN99H (trade name, manufactured by DuPont, cross-linking degree: 16%) was charged into an adsorption tower ( ⁇ 19 mm, length 300 mm PFA column).
  • the resin was converted into the TMA form with a 2.5 mass% TMAH aqueous solution (ion exchange step).
  • the liquid to be treated used in Example 1 was passed through 30 BV to the resin converted into the TMA form at a rate of passing 5 times the volume of the resin in 1 hour (impurity removal step).
  • BV Bed volume
  • the pH and metal concentration of the obtained effluent were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 4 This example was tested by the column method (see FIG. 2).
  • H-type strongly acidic cation exchange resin AMBERLITE (registered trademark) IRN99H (trade name, manufactured by DuPont, degree of cross-linking: 16%) was used as in Example 3.
  • 36 ml of the H-type resin which has not been converted to the TMA type is put into the same adsorption tower as in Example 3, and the liquid to be treated used in Example 1 is passed in an amount of 5 times the resin volume per hour. 30 BV of liquid was passed at the same speed (impurity removal step).
  • the pH and metal concentration of the obtained effluent were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 in both Example 3 in which the TMA type cation exchange resin was used as the cation exchange resin and Example 4 in which the H type cation exchange resin was used in the impurity removal step.
  • the content of metal impurities could be significantly reduced.
  • Example 3 in which the resin was converted into the TMA form in advance in the ion exchange step and then the liquid to be treated was passed through the solution, the pH fluctuated little because the metal impurities and the TMA exchanged ions in the impurity removing step.
  • the Na removal performance of Example 3 was better than that of Example 4. Comparing the results of Examples 1 and 2 with the results of Examples 3 and 4, the latter has higher metal impurity removal performance and smaller pH fluctuation, but this is generally the case. This is because the purification efficiency of the column method is higher than that of the batch method.
  • This step corresponds to the ion exchange step of the present invention, and was performed for the purpose of confirming the presence or absence of cracking of the resin under the condition that the concentration of TMAH is higher than usual.
  • Examples 5 and 6 using the strongly acidic cation exchange resin of the viaduct showed a high complete spherical ratio. That is, it was found that these resins are less likely to crack or crack even in a TMAH aqueous solution having a high TMA ion concentration, and are less likely to crack even when repeatedly used in an ion exchange step, an impurity removal step, or the like. ..
  • the complete spherical ratio was 91 to 98%. It was found that these resins were more easily cracked by repeated use and the like, and the ion exchange resin base was more easily damaged than the resins used in the examples.
  • Adsorption tower 2 Storage tank (liquid to be treated) 3: Storage tank (TAAH) 4: Storage tank (acid) 5: Storage tank (outflow) 6: Pump 7: Ultrapure water line 8: pH meter 9: Electric conductivity meter 10: Waste liquid line 11: Adsorption tower 12: Storage tank (processed liquid) 13: Storage tank (TAAH) 14: Storage tank (outflow) 15: Pump 16: Ultrapure water line 17: pH meter 18: Electrical conductivity meter 19: Waste liquid line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

強酸性陽イオン交換樹脂を使用した場合であっても、樹脂の割れを抑制することができる、テトラアルキルアンモニウムイオンを含有する被処理液中の金属不純物の含有量を低減する被処理液の精製方法を提供する。水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去工程を有し、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする被処理液の精製方法。

Description

テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置
 本発明は、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液中の金属不純物の含有量を低減する被処理液の精製方法および精製装置に関する。また、本発明は、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液中の金属不純物の含有量を低減する、被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法および回収装置に関する。
 半導体デバイス、液晶ディスプレイ、プリント基板等の電子部品等の製造においては、ウェハー等の基板上にフォトレジストの皮膜を形成し、パターンマスクを通して光等を照射し、次いで現像液により不要のフォトレジストを溶解して現像する。さらに、エッチング等の処理を行った後、基板上の不溶性のフォトレジスト膜を剥離する。フォトレジストには、露光部分が可溶性となるポジ型と、露光部分が不溶性となるネガ型があり、ポジ型フォトレジストの現像液としては、アルカリ現像液が主に用いられる。また、ネガ型フォトレジストの現像液としては、有機溶剤系現像液が主流であるが、アルカリ現像液が用いられる場合もある。
 アルカリ現像液としては、通常、水酸化テトラアルキルアンモニウム(以下、「TAAH」とも称する)の水溶液が用いられる。したがって、フォトレジストの現像工程において排出される廃液(以下、「フォトレジスト現像廃液」とも称する)には、フォトレジストの他、金属イオン(金属不純物)、およびテトラアルキルアンモニウムイオン(以下、「TAAイオン」とも称する)が含有されている。
 従来、フォトレジスト現像廃液を処理する方法としては、蒸発法や逆浸透膜法により濃縮し、廃棄処分(焼却または業者引取り)する方法や、活性汚泥により生物分解処理し、放流する方法が主流であった。しかしながら、環境負荷を低減する観点から、フォトレジスト現像廃液からTAAHを回収し、再利用する試みも提案されている。
 特許文献1には、TAAイオンを陽イオン交換樹脂に吸着させた後、酸溶液を用いて該TAAイオンをテトラアルキルアンモニウム塩(以下、「TAA塩」とも称する)として溶離させて回収する方法が開示されている。特許文献1では、TAA塩溶液を回収する工程において、流出液のpHおよび/または電気伝導度を測定し、それらが所定の量だけ変化した時点で回収を停止することにより、金属イオン濃度が低減したTAA塩溶液を得ている。そして、該TAA塩溶液を原料として、TAAHを製造している。
国際公開第2012/090699号
 しかしながら、特許文献1に記載の方法においては、最終的に、回収したTAA塩溶液を蒸発濃縮した後、電気分解を行うことによりTAAHを得ており、該濃縮工程において、TAA塩溶液中に残存する金属イオンがスケールの原因となるという問題がある。
 一方で、金属不純物の量を低減する方法としては、一般的に、強酸性陽イオン交換樹脂により金属不純物を吸着する方法が効果的に用いられる。しかしながら、強酸性陽イオン交換樹脂は、テトラアルキルアンモニウムイオン形にすると、水素イオン形の場合に比べて樹脂中の水分が多くなり膨潤する。そのため、水素イオン形とテトラアルキルアンモニウムイオン形の変換を繰り返すと、収縮と膨潤の繰り返しにより、クラックが発生し、樹脂が割れてしまうという問題があった。
 したがって、本発明は、強酸性陽イオン交換樹脂を使用した場合であっても、樹脂の割れを抑制することができる、テトラアルキルアンモニウムイオンを含有する被処理液中の金属不純物の含有量を低減する被処理液の精製方法および精製装置を提供することを目的とする。また、本発明は、強酸性陽イオン交換樹脂を使用した場合であっても、樹脂の割れを抑制することができる、テトラアルキルアンモニウムイオンを含有する被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法および回収装置を提供することを目的とする。
 上記問題に鑑みて、本発明者らが鋭意検討した結果、架橋度の高い強酸性陽イオン交換樹脂を用いることにより、樹脂の割れを抑制し、かつ、テトラアルキルアンモニウムイオンを含有する被処理液中の金属不純物の含有量を低減できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去工程を有する被処理液の精製方法であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする、被処理液の精製方法である。
 また、本発明は、水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去手段を有する被処理液の精製装置であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする、被処理液の精製装置である。
 さらに、本発明は、水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去工程を有する、被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする、被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法である。
 さらにまた、本発明は、水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去手段を有する、被処理液からのテトラアルキルアンモニウム塩水溶液の回収装置であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする、被処理液からのテトラアルキルアンモニウム塩水溶液の回収装置である。
 本発明によれば、高架橋の強酸性陽イオン交換樹脂を用いることにより、樹脂の割れを抑制することが可能な、テトラアルキルアンモニウムイオンを含有する被処理液中の金属不純物の含有量を低減する被処理液の精製方法および精製装置を提供することができる。また、本発明によれば、高架橋の強酸性陽イオン交換樹脂を用いることにより、樹脂の割れを抑制することが可能な、テトラアルキルアンモニウムイオンを含有する被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法および回収装置を提供することができる。なお、高架橋かつ小粒径の強酸性陽イオン交換樹脂を用いた場合には、上記に加え、通液初期のpH変動が少ない被処理液の精製方法および精製装置、ならびに被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法および回収装置を提供することができる。
本発明の一実施形態に係る精製装置の構成を示す概略図である。 本発明の一実施形態に係る精製装置の構成を示す概略図である。
 <被処理液の精製方法>
 本発明に係る精製方法は、水素イオン形(以下、「H形」とも称する)またはテトラアルキルアンモニウムイオン形(以下、「TAA形」とも称する)の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去工程を有する。さらに、本発明に係る精製方法は、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする。以下、本発明に係る精製方法について、詳細に説明する。
 [不純物除去工程]
 不純物除去工程は、H形またはTAA形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する工程である。
 (被処理液)
 本発明において、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液は、少なくとも、テトラアルキルアンモニウムイオンと、金属不純物と、を含むものであればよく、特に制限されるものではない。ただし、これらの成分を含有し、かつ、半導体製造工程や液晶ディスプレイ製造工程等で多量に発生することから、該被処理液は、該工程において排出されるフォトレジスト現像廃液に由来する溶液であることが好ましい。フォトレジスト現像廃液は、露光後のフォトレジストをアルカリ現像液で現像する際に排出される廃液であり、通常は、pHが10~14のアルカリ性を呈する水溶液である。そのため、フォトレジスト現像廃液中において、フォトレジストは、そのカルボキシル基、フェノール性水酸基等の酸性基が解離して、TAAHに由来するTAAイオンと塩の形で溶解している。したがって、フォトレジスト現像廃液は、フォトレジスト、TAAイオンおよび金属不純物を主として含有する溶液である。本発明に係る被処理液は、例えば、該フォトレジスト現像廃液中のTAAイオンを陽イオン交換樹脂に吸着させた後、塩酸等の酸を用いてTAAイオンを溶離させることにより、TAA塩として回収した溶液である。
 すなわち、まず、フォトレジスト現像廃液を、H形の陽イオン交換樹脂が充填された容器に通液して、該陽イオン交換樹脂に、TAAイオンを吸着する。ここで、該廃液中に含まれる通常の金属イオンもまた陽イオンであるため、この通液により、陽イオン交換樹脂に吸着される。なお、金属イオンであっても、廃液中で、錯形成などの化学平衡反応により、金属を含むイオン種自体が陰イオンとなっている場合には、陽イオン交換樹脂には吸着されず、容器から排出される。一方、レジスト現像廃液中に溶解しているフォトレジスト由来の有機物成分は、通常、陰イオンの形態であるため、陽イオン交換樹脂には吸着されにくく、大部分は除去される。また、非イオン性の成分が存在している場合も、この段階で陽イオン交換樹脂には吸着されずに排出される(流出する)ため、大部分は除去することができる。なお、フォトレジスト現像廃液を陽イオン交換樹脂に通液した後、該樹脂に若干残存するフォトレジスト成分やその他不純物等を、超純水または純度の高いTAAH水溶液等で流すことにより洗浄してもよい。
 その後、TAA形に変換された陽イオン交換樹脂が充填された容器に、塩酸、硫酸等の鉱酸水溶液を通液することにより、該鉱酸水溶液に含まれる水素イオンが、吸着されているTAAイオンと順次置換されて、TAAイオンが、用いた鉱酸の酸塩(TAA塩)として容器から流出してくる。さらに、得られたTAA塩を含む溶液を(高架橋の)陽イオン交換樹脂(好ましくは、小粒径のもの)で処理することにより、本発明に係る被処理液を得ることができる。このようにして得られる被処理液は、テトラアルキルアンモニウムイオンおよび金属不純物を含有する溶液であり、本発明に係る精製方法は、該被処理液中の金属不純物の含有量を低減する精製方法である。
 なお、フォトレジスト現像廃液中のTAAHを、TAA塩を含む被処理液として回収する工程については、例えば特許文献1に記載されるように公知であり、該工程で用いる容器や陽イオン交換樹脂、酸の種類または使用量、酸の通液方法等については、公知の方法を適宜選択して用いることができる。ここで、該工程で用いられる(高架橋の)陽イオン交換樹脂として、本発明に係る架橋度が16%~24%の強酸性陽イオン交換樹脂を用いることも可能である。その場合には、該工程においても、繰り返し使用による樹脂の割れを防ぐことができる。また、被処理液を回収する工程から、後述するイオン交換工程および不純物除去工程まで、同じ樹脂を使用することができ、操作性の観点からも好ましい。
 (テトラアルキルアンモニウムイオン)
 上述したように、本発明において用いる被処理液は、フォトレジスト現像廃液からTAAイオン(TAAH)をTAA塩として溶出させ、回収した溶液である。被処理液中のTAAイオンの具体例としては、フォトレジストの現像液に用いられるアルカリとしての水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム、水酸化トリエチル(2-ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2-ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2-ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化テトラ(2-ヒドロキシエチル)アンモニウム等の水酸化テトラアルキルアンモニウムに由来するイオンを挙げることができる。これらの中でも、最も汎用的に使用されている水酸化テトラメチルアンモニウムおよび水酸化テトラブチルアンモニウムに由来するテトラメチルアンモニウムイオンおよびテトラブチルアンモニウムイオンが、本発明において好適に用いられ、水酸化テトラメチルアンモニウムに由来するテトラメチルアンモニウムイオンが特に好ましく用いられる。本発明において用いる被処理液は、上記テトラアルキルアンモニウムイオンを、例えばクロリド塩として回収した溶液であり、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド等のテトラアルキルアンモニウムクロリド水溶液であることが好ましく、テトラメチルアンモニウムクロリド水溶液であることがより好ましい。すなわち、本発明に係る被処理液が含有するテトラアルキルアンモニウムイオンは、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド等のテトラアルキルアンモニウムクロリドに由来するテトラアルキルアンモニウムイオンであることが好ましく、テトラメチルアンモニウムクロリドに由来するテトラアルキルアンモニウムイオンであることがより好ましい。
 ここで、半導体製造および液晶ディスプレイ製造における現像工程から排出される代表的なフォトレジスト現像廃液について説明する。現像工程では、通常、枚葉式の自動現像装置が多用されている。この装置では、TAAHを含む現像液を使用する工程とその後の純水によるリンス(基板洗浄)が同じ槽内で行われ、リンス工程では、現像液の5~1000倍の量の純水が使用される。そのため、現像工程で使用された現像液は、通常5~10倍に希釈された廃液となる。その結果、この現像工程で排出されるフォトレジスト現像廃液の組成は、TAAHが0.001~2.5質量%程度であり、レジストが10~100ppm程度であり、また界面活性剤が0~数10ppm程度のものとなる。また、その他の工程の廃液が混入する場合もあり、TAAH濃度が、上記範囲の中でも低くなることもある。TAAH濃度が、例えば0.001~2.5質量%であるフォトレジスト現像廃液から得られる被処理液のTAAイオン濃度は、0.001~2.5質量%である。なお、フォトレジスト現像廃液から得られる被処理液は、適宜、濃縮等を行うことにより、TAAイオン濃度を調整してから用いてもよい。
 (金属不純物)
 フォトレジスト現像廃液中には、金属不純物として複数の金属イオンが含まれているため、被処理液も、それら金属イオンを含有している。金属イオンとしては、例えば、ナトリウム、カリウム等の1価イオン、マグネシウム、カルシウム、亜鉛等の2価イオン、アルミニウム、ニッケル、銅、クロム、鉄等の多価イオンが挙げられる。これらの金属イオンは、フォトレジスト現像廃液(被処理液)中に、0.1~1000ppb程度含まれているのが通常である。なお、フォトレジスト現像廃液中のテトラアルキルアンモニウムイオンの対イオンは、水酸化物イオンであるのが通常であるが、工場によっては、また、中和を行った場合には、フッ化物イオン、塩化物イオン、臭化物イオン、炭酸イオン、炭酸水素イオン、硫酸イオン、硫酸水素イオン、硝酸イオン、リン酸イオン、リン酸水素イオン、リン酸二水素イオン等の無機陰イオン、および、ギ酸イオン、酢酸イオン、シュウ酸イオン等の有機陰イオンから選ばれる少なくとも一種がテトラアルキルアンモニウムイオンの対イオンの少なくとも一部となるのが一般的である。ただし、これらの陰イオンは、フォトレジスト現像廃液から被処理液を調製する段階で大部分が除去されるため、被処理液中にはほとんど含まれていないと考えられる。
 (陽イオン交換樹脂)
 本発明において、H形またはTAA形の陽イオン交換樹脂としては、架橋度が16%~24%である強酸性陽イオン交換樹脂を用いる。上記範囲の架橋度を有する高架橋の樹脂は、樹脂内部に密に架橋構造が存在するため、高い強度を有する。架橋度が16%未満である陽イオン交換樹脂を用いた場合は、樹脂の強度が不十分となり、精製時において樹脂の割れが生じる可能性が高くなる。また、架橋度が24%を超える陽イオン交換樹脂を用いた場合は、イオン交換速度が遅くなったり、樹脂の再生速度が遅くなったりする。このように、本発明においては、架橋度が16%~24%と高い強酸性陽イオン交換樹脂を用いることにより、精製時における樹脂の割れを抑制することができることを見出した。また、高架橋の陽イオン交換樹脂は、交換容量が大きく、官能基を多く導入することができる点においても好ましい。
 H形の陽イオン交換樹脂としては、架橋度が16%~24%であればいずれの樹脂も用いることができる。そのようなH形の陽イオン交換樹脂としては、例えば、Amberjet(登録商標) 1060H、1600H(商品名、オルガノ株式会社製)、AMBERLITE(登録商標) IRN99H、200C、200CT(商品名、デュポン社製)、AMBEREX 210(商品名、デュポン社製)、Diaion(登録商標) SK116(商品名、三菱ケミカル株式会社製)、Purolite(登録商標) C100X16MBH(商品名、ピュロライト株式会社製)等を挙げることができる。
 TAA形の陽イオン交換樹脂としては、上記H形の陽イオン交換樹脂として例示した樹脂を、あらかじめTAA形にイオン交換した樹脂を用いることができる。すなわち、不純物除去工程において、TAA形の陽イオン交換樹脂を用いて被処理液の精製を行う場合、本発明に係る精製方法は、不純物除去工程の前に、以下のイオン交換工程を有していてもよい。
 水素イオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンを含有する再生剤を通液して、該水素イオン形の陽イオン交換樹脂を、テトラアルキルアンモニウムイオン形の陽イオン交換樹脂に変換するイオン交換工程。
 そして、該イオン交換工程で得られるTAA形の陽イオン交換樹脂を、不純物除去工程において用いることができる。イオン交換工程については、後述する。
 陽イオン交換樹脂の粒径は、200μm~720μmであることが好ましい。粒径が720μm以下であれば、一般的なイオン交換樹脂の粒径範囲であるため、既存の設備の転用や運用がしやすい。また、粒径が200μm以上の陽イオン交換樹脂であれば、一般的な表面積を有し、金属不純物を十分に除去することができる。また、粒径が200μm以上の陽イオン交換樹脂であれば、樹脂出口と樹脂入口との差圧の上昇を抑制することができる。さらに、陽イオン交換樹脂の粒径は、H形において500μm~560μmであることがより好ましい。該範囲の粒径を有する小粒径の陽イオン交換樹脂は、樹脂の表面積が大きく、樹脂をH形からTAA形に変換しやすい。そのため、樹脂をTAA形に変換する際に残存するH形の樹脂が少なくなり、被処理液を通液する際の初期のpH変動を、さらに抑制することができる。また、小粒径の陽イオン交換樹脂は、樹脂の表面積が大きいため、金属不純物の除去性能にも優れる。なお、本発明において、粒径は、調和平均径を意味する。
 (H形の陽イオン交換樹脂を用いる場合)
 H形の陽イオン交換樹脂が充填された容器に、TAAイオンおよび金属不純物を含有する被処理液を通液すると、樹脂中の水素イオンと、該被処理液中のTAAイオンとがイオン交換することにより、H形の陽イオン交換樹脂はTAA形の陽イオン交換樹脂に変換される。また、被処理液中の、陽イオンである金属不純物も陽イオン交換樹脂に吸着されるため、被処理液中の金属不純物の含有量を低減することができる。すなわち、H形の陽イオン交換樹脂を用いる場合は、陽イオン交換樹脂をH形からTAA形に変換するために、別途、後述するイオン交換工程を実施することなく、精製する対象である被処理液を用いて、陽イオン交換樹脂をH形からTAA形に変換することができる。このようにして、TAA形に変換された陽イオン交換樹脂は、引き続き、不純物除去工程に用いることができる。本工程実施後の陽イオン交換樹脂のイオン形としては、TAA形と金属イオン形とが混在する状態となる。なお、未反応の交換基が残存する場合は、さらに水素イオン形の陽イオン交換樹脂も混在する。
 H形の陽イオン交換樹脂を用いる場合、被処理液を1回通液することによって、被処理液中の金属不純物の含有量を低減することができるが、精製効率を高めるため、1回目の被処理液の通液によりTAA形(および金属イオン形)に変換された陽イオン交換樹脂へ、再度、通液後の被処理液を通液してもよい。すなわち、不純物除去工程を、複数回繰り返し行ってもよい。TAA形(および金属イオン形)に変換された陽イオン交換樹脂に、再度、被処理液を通液すると、樹脂に吸着されているTAAイオンと、被処理液中に残存する金属イオンとがイオン交換して、金属イオンが樹脂に吸着されることにより、被処理液中の金属不純物の含有量をさらに低減することができる。
 また、H形の陽イオン交換樹脂を用いて被処理液を通液する場合、陽イオン交換樹脂から流出される水素イオンの影響により、容器から流出する流出液のpHは強酸性となる。そのため、この場合において、本発明に係る精製方法は、不純物除去工程で得られた流出液を中和する中和工程を有していてもよい。不純物除去工程を複数回繰り返し行う場合には、例えば、1回目の不純物除去工程を行った後、流出した被処理液の中和工程を実施し、中和工程後のpH調整した被処理液を用いて、2回目の不純物除去工程を実施することもできる。中和工程は、公知の方法を用いて行うことができる。具体的には、例えば、流出液を貯留槽等の容器に溜めて、TAAH等のアルカリを用いてpH調整することにより行うことができる。なお、pH変動の激しい通液初期に流出した被処理液のみを別の貯留槽等の容器に溜めてpH調整を行った後、後から流出した残りの被処理液と混合してもよい。また、pH変動の激しい通液初期に流出した被処理液を廃棄してもよい。中和に用いるアルカリとしては、水酸化テトラメチルアンモニウム、水酸化アンモニウム等を挙げることができる。
 (TAA形の陽イオン交換樹脂を用いる場合)
 TAA形の陽イオン交換樹脂が充填された容器に、TAAイオンおよび金属不純物を含有する被処理液を通液すると、樹脂中のTAAイオンと、該被処理液中の金属イオンとがイオン交換して、金属イオンが樹脂に吸着される。これにより、被処理液中の金属不純物の含有量を低減することができる。なお、イオン交換工程において、陽イオン交換樹脂中に未反応の交換基(水素イオン)が残存していた場合には、本工程において、該水素イオンも被処理液中の金属イオンと交換される。あらかじめH形からTAA形に変換した陽イオン交換樹脂を用いることにより、被処理液を通液する際に、水素イオンではなく樹脂に吸着されたTAAイオンと、被処理液中の金属イオンとが交換されることとなる。そのため、被処理液のTAAイオン濃度の変動や通液初期のpH変動を抑制することができる。このように、通液初期のpH変動を抑制する観点や、金属不純物の除去効率の観点から、不純物除去工程においては、TAA形の陽イオン交換樹脂を用いることが好ましい。
 (被処理液の通液)
 陽イオン交換樹脂が充填された容器に被処理液を通液する方法としては、陽イオン交換樹脂の種類や形状によって、従来知られている方法を適宜採用することができる。ここで、本発明において、容器とは、吸着塔のような「塔」や「槽」等のイオン交換樹脂を充填可能であり、被処理液を精製(通水またはバッチのいずれでもよい)することが可能なものをすべて含む意味であり、限定されるものではない。具体的には、例えば、上部に流入孔を有し、下端部に流出孔を有するカラムに陽イオン交換樹脂を充填し、被処理液を、ポンプを利用して連続的に通過させる方式(カラム方式)や、陽イオン交換樹脂を充填した容器に被処理液を通液して、適当な時間接触させ、上澄み液を除去する方式(バッチ方式)が挙げられる。カラム方式を採用する場合、カラムの大きさは、陽イオン交換樹脂の性能等に応じて適宜決定すればよい。効率よく精製を行う観点から、例えば、カラムの高さ(L)と直径(D)との比(L/D)を0.5~30、被処理液の空間速度(SV)を1(1/時間)以上150(1/時間)以下とすることが好ましい。
 (流出液の回収)
 カラム方式で通液を行う場合、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液の通液により、容器の一端から、金属不純物の含有量が低減された流出液が流出してくるため、該流出液を貯留槽等に回収する。なお、得られた精製された被処理液は、テトラアルキルアンモニウム塩水溶液である。なお、金属不純物の含有量は、例えば、Agilent 8900 トリプル四重極ICP-MS(商品名、アジレント・テクノロジー株式会社製)を用いて測定することができる。
 [イオン交換工程]
 イオン交換工程は、上述した不純物除去工程に先立ち、H形の陽イオン交換樹脂を、TAA形の陽イオン交換樹脂に変換する工程、すなわち、不純物除去工程で用いるTAA形の陽イオン交換樹脂を準備する工程である。イオン交換工程は、H形の陽イオン交換樹脂が充填された容器に、TAAイオンを含有する再生剤を通液することにより行う。H形の陽イオン交換樹脂としては、上述したとおりである。H形の陽イオン交換樹脂に、TAAイオンを含有する再生剤を通液すると、陽イオン交換樹脂が有する水素イオンと再生剤に含まれるTAAイオンとがイオン交換を起こし、TAAイオンが陽イオン交換樹脂に吸着される。その結果、H形の陽イオン交換樹脂が、TAA形の陽イオン交換樹脂に変換される。
 (テトラアルキルアンモニウムイオンを含有する再生剤)
 TAAイオンを含有する再生剤は、TAAイオンを含む水溶液であればよく、特に制限されるものではない。TAAイオンを含有する再生剤としては、具体的に、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム、水酸化トリエチル(2-ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2-ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2-ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化テトラ(2-ヒドロキシエチル)アンモニウム等の水溶液を挙げることができる。これらの中でも、最も汎用的に使用されている水酸化テトラメチルアンモニウム水溶液および水酸化テトラブチルアンモニウム水溶液が本発明において好適に用いられ、水酸化テトラメチルアンモニウム水溶液が特に好ましく用いられる。
 再生剤中のTAAイオンの含有量は、例えば、0.1質量%~25質量%とすることができる。
 (再生剤の通液)
 TAAイオンを含有する再生剤を、陽イオン交換樹脂を充填した容器に通液する方法については、陽イオン交換樹脂の種類や形状によって、従来知られている方法を適宜採用することができる。具体的には、例えば、上部に流入孔を有し、下端部に流出孔を有するカラムに陽イオン交換樹脂を充填し、テトラアルキルアンモニウムイオンを含有する溶液を、ポンプを利用して連続的に通過させる方式(カラム方式)や、陽イオン交換樹脂を充填した容器に溶液を通液して、適当な時間接触させ、上澄み液を除去する方式(バッチ方式)が挙げられる。カラム方式を採用する場合、カラムの大きさは、陽イオン交換樹脂の性能等に応じて適宜決定すればよい。効率よくTAAイオンを吸着するためには、例えば、TAAイオンの含有量が0.1~25質量%である溶液であれば、カラムの高さ(L)と直径(D)との比(L/D)が0.5~30、該溶液の空間速度(SV)を1(1/時間)以上150(1/時間)以下とすることが好ましい。
 通液する再生剤の量は、容器に充填した陽イオン交換樹脂の交換容量を考慮して、適宜設定することができる。なお、陽イオン交換樹脂の交換容量以上の量の陽イオンが含まれている溶液の通液により、吸着されずにTAAイオンが流出(破過)してしまっているかどうかは、容器を通過して流出してくる液中のTAAイオン濃度をイオンクロマトグラフィー法で分析することにより確認することができる。より簡便には、容器中での陽イオン交換樹脂の占める高さを測定すればよい。陽イオン交換樹脂の対イオンが水素イオンからTAAイオンになると、陽イオン交換樹脂の種類にもよるが、体積が2倍程度に膨潤する。したがって、陽イオン交換樹脂の体積を測定することにより、TAAイオンの吸着を確認することができる。また、通液する再生剤のpHが10以上のアルカリ性である場合、TAAイオンが吸着されずに容器を通過すると、通過した液のpHがアルカリ性となるため、pH計によっても確認することが可能である。また、通常は、容器を通過して流出した液中にTAAイオンが含まれている場合、液の電気伝導度が上昇するため、電気伝導度計によっても確認することが可能である。
 (流出液の回収)
 カラム方式で通液を行う場合、テトラアルキルアンモニウムイオンを含有する再生剤の通液により、容器の一端から、TAAイオンとイオン交換された水素イオンが、用いた再生剤(塩)に応じた陰イオンを対イオンとして流出してくるため、流出液を貯留槽等に回収する。
 [陽イオン交換樹脂の再生工程]
 本発明に係る精製方法は、前記不純物除去工程において被処理液と接触した陽イオン交換樹脂を再生する再生工程を有していてもよい。樹脂の再生は、公知の方法を用いて、該樹脂に酸を接触することにより、金属イオン等の不純物を除去するとともに、樹脂をTAAイオン形からH形に変換することができる。得られたH形の陽イオン交換樹脂は、不純物除去工程において再利用することができる。再生工程で用いる酸としては、水溶液の状態で水素イオンが生成するものであれば特に限定されず、例えば、塩酸、硫酸等の鉱酸水溶液を挙げることができる。これらの中でも、工業的に安価で入手可能な点、および濃度調整が容易な点から、塩酸が好ましい。塩酸の濃度および使用量については、H形への変換、および金属イオン等の不純物を除去するために十分な濃度および量であれば特に限定されない。通常は、上記陽イオン交換樹脂に対して、1~10質量%の塩酸を3~20(L/L-樹脂)接触させることにより、樹脂をTAAイオン形からH形に変換することができる。再生工程では、上記鉱酸を用いた洗浄に加え、適宜、超純水または純水を用いた洗浄を行ってもよい。
 <被処理液の精製装置>
 本発明に係る精製装置は、水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去手段を有する。さらに、本発明に係る精製装置は、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする。なお、不純物除去手段の詳細は、上述した本発明に係る精製方法における不純物除去工程についての説明と同様である。
 TAA形の陽イオン交換樹脂を用いる場合、本発明に係る精製装置は、以下のイオン交換手段を有していてもよい。
 水素イオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンを含有する再生剤を通液して、該水素イオン形の陽イオン交換樹脂を、テトラアルキルアンモニウムイオン形の陽イオン交換樹脂に変換するイオン交換手段。
 そして、該イオン交換手段によって得られるTAA形の陽イオン交換樹脂を、不純物除去手段における陽イオン交換樹脂として用いることができる。なお、イオン交換手段の詳細は、上述した本発明に係る精製方法におけるイオン交換工程についての説明と同様である。
 H形の陽イオン交換樹脂を用いる場合、本発明に係る精製装置は、不純物除去手段において得られる流出液を中和する中和手段を有していてもよい。該中和手段の詳細は、上述した本発明に係る精製方法における中和工程についての説明と同様である。
 また、本発明に係る精製装置は、不純物除去手段において被処理液と接触した陽イオン交換樹脂を再生する再生手段を有していてもよい。該再生手段の詳細は、上述した本発明に係る精製方法における再生工程についての説明と同様である。
 図1は、TAAH水溶液によりTAA形に調整した陽イオン交換樹脂を用いて、被処理液を精製する精製装置の一例を示す概略図である。なお、図1には、陽イオン交換樹脂を充填する容器として吸着塔を用いた例を示すが、容器は、吸着塔に限定されるものではない。まず、イオン交換手段として、H形の陽イオン交換樹脂が充填された吸着塔1に、貯留槽3から、TAAイオンを含有する再生剤(例えばTAAH水溶液)を通液して、流出液を廃液ライン10から回収する。その後、不純物除去手段として、前記吸着塔1に、貯留槽2から、TAAイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の金属不純物の含有量が低減した流出液を貯留槽5に回収する。ここで、貯留槽2、貯留槽3および貯留槽4内の溶液は、図1に示すように、溶液ごとにポンプ6により吸着塔1に送液してもよく、弁で切り替えることにより1つのポンプを使用して吸着塔1に送液してもよい。
 精製に使用した後の吸着塔1内の樹脂は、以下のように洗浄・再生することにより、再利用することができる。超純水(または純水)ライン7から超純水(または純水)を通液して吸着塔1内の樹脂を洗浄した後、貯留槽4から塩酸等の酸を通液して、樹脂に吸着された金属不純物やTAAイオンを除去し、樹脂をH形とする。続いて、貯留槽3から、TAAイオンを含有する再生剤(例えばTAAH水溶液)を通液する(イオン交換手段に相当する)ことにより、TAA形の陽イオン交換樹脂として再生される。再生されたTAA形の陽イオン交換樹脂は、不純物除去手段に用いるTAA形の陽イオン交換樹脂として再利用することができる。あるいは、超純水(または純水)ライン7から超純水(または純水)を通液して、精製に使用した後の吸着塔1内の樹脂を洗浄した後、そのまま不純物除去手段に用いるTAA形の陽イオン交換樹脂として再利用することができる。ただし、後者のように、塩酸通液をすることなく、そのまま樹脂を不純物除去手段に再利用する場合、TAAHによっては溶離しきれない金属不純物が樹脂中に残留してしまう。そのため、塩酸通液を行う前者の再生方法を定期的に組み合わせることが好ましい。なお、洗浄に用いた廃液は、pH計8や電気伝導度計9の値に応じて廃液の種類ごとに排出する。
 図2は、H形の陽イオン交換樹脂を用いて、被処理液を精製する精製装置の一例を示す概略図である。なお、図2には、陽イオン交換樹脂を充填する容器として吸着塔を用いた例を示すが、容器は、吸着塔に限定されるものではない。まず、不純物除去手段として、H形の陽イオン交換樹脂が充填された吸着塔11に、貯留槽12から、TAAイオンおよび金属不純物を含有する被処理液を通液して、流出液を貯留槽14に回収する。得られた流出液は強酸性となるため、必要に応じて該流出液を中和してもよい。具体的には、貯留槽13から、アルカリ(例えばTAAH)を含む水溶液を貯留槽14へ通液し、中和を行う。ここで、不純物除去工程における被処理液の通液初期には、H形の陽イオン交換樹脂中の水素イオンがTAAイオンや金属イオンとイオン交換され、流出液のpHが急激に低下する。そのため、通液初期に流出する強酸性溶液を、その後に流出する流出液と共に貯留槽14で混合すると、中和に必要となるアルカリの量が増加するため好ましくない。したがって、通液初期の流出液のpHを廃液ライン19の手前に設置したpH計17により確認し、強酸性の流出液を貯留槽14手前の廃液ライン19から排出することが好ましい。また、最終的に流出した被処理液のpH調整を行うため、貯留槽14にもpH計17を設置する。不純物除去工程を繰り返し行う場合は、その後、前記吸着塔11に、前記流出した被処理液(必要に応じて中和したもの)を貯留槽14から通液して、再度、流出液を貯留槽14に回収する。
 精製に使用した後の吸着塔11内の樹脂は、以下のように洗浄・再生することにより、再利用することができる。超純水(または純水)ライン16から超純水(または純水)を通液して吸着塔11内の樹脂を洗浄した後、貯留槽14に回収した流出液を吸着塔11に通液することにより、TAA形の陽イオン交換樹脂として再生される。あるいは、超純水(または純水)ライン16から超純水(または純水)を通液して吸着塔11内の樹脂を洗浄した後、貯留槽13からTAAH水溶液を通液することにより、TAA形の陽イオン交換樹脂として再生される。このようにして再生されたTAA形の陽イオン交換樹脂は、不純物除去手段に用いるTAA形の陽イオン交換樹脂として再利用することができる。なお、前者の方法によれば、薬液の使用量を削減することができるが、流出液のpHを考慮すると、樹脂のTAA形への変換においては非効率である。そのため、樹脂のTAA形への変換効率の観点から、後者の方法が好ましい。また、TAAHによっては溶離しきれない金属不純物が樹脂中に残留してしまうため、図1に係る精製装置に関して説明したように、塩酸(不図示)通液を行う再生方法を定期的に組み合わせることが好ましい。
 本発明に係る精製装置は、陰イオン交換樹脂や微粒子除去フィルターを組み合わせて用いることもできる。それらを組み合わせる場合、陰イオン交換樹脂を充填した容器は、陽イオン交換樹脂を充填した容器の前後に設置するか、または、両方のイオン交換樹脂を混合して同じ容器に充填してもよい。さらに、陰イオン交換樹脂を充填した容器は、貯留槽5または貯留槽14の前段に設置することが好ましい。また、微粒子除去フィルターは、陽イオン交換樹脂および/または陰イオン交換樹脂を充填した容器と、貯留槽5または貯留槽14との間に備えることが好ましい。なお、陰イオン交換樹脂および微粒子除去フィルターとしては、公知のものを適宜選択して用いることができるが、陰イオン交換樹脂は、Cl形に変換されたものが好ましい。
 <テトラアルキルアンモニウム塩水溶液の回収方法>
 本発明に係る精製方法は、上記のとおり、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液中の金属不純物の含有量を低減する被処理液の精製方法であるが、本発明は、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液中の金属不純物の含有量を低減することにより、該被処理液から、精製されたテトラアルキルアンモニウム塩水溶液を回収する方法であると言うこともできる。すなわち、本発明に係る精製方法によって精製された被処理液は、回収されたテトラアルキルアンモニウム塩水溶液である。そして、該テトラアルキルアンモニウム塩水溶液を、例えば陰イオン交換樹脂に接触させるか又は、電気分解することによって、純度の高いTAAH溶液を得ることができる。
 本発明に係るテトラアルキルアンモニウム塩水溶液の回収方法は、水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去工程を有する、被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする。本発明に係るテトラアルキルアンモニウム塩水溶液の回収方法についての詳細は、本発明に係る精製方法について上述した内容と同一であり、説明は省略する。
 <テトラアルキルアンモニウム塩水溶液の回収装置>
 本発明に係る精製装置は、上記のとおり、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液中の金属不純物の含有量を低減する被処理液の精製装置であるが、本発明は、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液中の金属不純物の含有量を低減することにより、該被処理液から、精製されたテトラアルキルアンモニウム塩水溶液を回収する装置であると言うこともできる。すなわち、本発明に係る精製装置によって精製された被処理液は、回収されたテトラアルキルアンモニウム塩水溶液である。そして、該テトラアルキルアンモニウム塩水溶液を、上記のとおり陰イオン交換樹脂に接触させるか又は、電気分解することによって、純度の高いTAAH溶液を得ることができる。
 本発明に係るテトラアルキルアンモニウム塩水溶液の回収装置は、水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去手段を有する、被処理液からのテトラアルキルアンモニウム塩水溶液の回収装置であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする。本発明に係るテトラアルキルアンモニウム塩水溶液の回収装置についての詳細は、本発明に係る精製装置について上述した内容と同一であり、説明は省略する。
 以下、実施例により、本発明を具体的に説明する。
 10質量%テトラメチルアンモニウムクロリド(TMAC)水溶液1000mlに、金属不純物としてNa、Mg、KおよびCaを添加し、さらに25質量%水酸化テトラメチルアンモニウム(TMAH)水溶液を適量加えて、pH8~10の被処理液を調製した。なお、各金属不純物の添加量は、実際のフォトレジスト現像廃液に含まれる金属不純物の量と同程度とした。
[実施例1]
 (イオン交換工程)
 本実施例は、バッチ法にて試験を行った。PFA製の200mlビーカーに、H形の強酸性陽イオン交換樹脂として、AMBERJET(登録商標) 1060H(商品名、オルガノ株式会社製、架橋度:16%)を10ml投入した。そこへ、テトラアルキルアンモニウムイオンを含有する再生剤として、2.4質量%TMAH水溶液を100ml注加し、15分に1回ビーカーを回しながら攪拌し、合計1時間樹脂を浸漬し、樹脂が流出しない程度まで上澄み液を取り除いた。この操作を2回繰り返した後、超純水(UPW)100mlを注加して軽く攪拌して上澄み液を除去する操作を3回繰り返し行い、残存するTMAHを洗浄により除去した。
 (不純物除去工程)
 前記イオン交換工程において洗浄に使用した超純水を樹脂面ぎりぎりまで取り除いた後、上記で調製した被処理液を100ml注加して、15分に1回ビーカーを回しながら攪拌し、合計30分間樹脂を浸漬した。
 (金属濃度およびpHの測定)
 浸漬後の上澄み液を採取し、pHおよび金属濃度を測定した。なお、pHは、ポータブルマルチ水質計(商品名:MM42-DP、東亜DKK株式会社製)を用いて測定した。金属濃度は、Agilent 8900 トリプル四重極ICP-MS(商品名、アジレント・テクノロジー株式会社製)を用いて測定した。表1に、精製前の被処理液の各金属不純物濃度に対する精製後の被処理液の各金属不純物濃度の低減割合(%)および精製後の被処理液のpH値を示す。なお、表1中、陽イオン交換樹脂の特性値は、製造元のカタログ値である。
[実施例2]
 H形の強酸性陽イオン交換樹脂として、AMBERLITE(登録商標) IRN99H(商品名、デュポン社製、架橋度:16%)を用いた以外は、実施例1と同様に、イオン交換工程および不純物除去工程を実施し、実施例1と同様にpHおよび金属濃度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1および実施例2では、架橋度が同じ陽イオン交換樹脂を同体積用いて、同じ再生剤量で試験したが、表1に示すように、精製後の被処理液のpHは、実施例1では1と強酸性を示し、実施例2では4と弱酸性を示した。これは、実施例2で用いたAMBERLITE IRN99Hが、実施例1で用いたAMBERJET 1060Hと比較して、粒径がより小さく表面積が大きいためである。すなわち、イオン交換工程において、前者の方がTMA形に変換されやすく、残存するH形の樹脂が少なくなった結果、不純物除去工程において、水素イオンの流出による通液初期のpH変動が抑制されたためであると考えられる。また、金属不純物の除去性能についても、より小粒径である樹脂を用いた実施例2の方が実施例1と比較して高いことがわかった。
[実施例3]
 本実施例は、カラム法にて試験を行った(図1参照)。H形の強酸性陽イオン交換樹脂として、AMBERLITE(登録商標) IRN99H(商品名、デュポン社製、架橋度:16%)36mlを吸着塔(φ19mm、長さ300mmのPFA製カラム)に投入し、2.5質量%TMAH水溶液により樹脂をTMA形に変換した(イオン交換工程)。続いて、実施例1で用いた被処理液を、TMA形に変換した樹脂へ、1時間に樹脂体積の5倍量を通液する速度で30BV通液した(不純物除去工程)。なお、BV(Bed volume)は、樹脂量に対し通液する流量倍数を表す。得られた流出液のpHおよび金属濃度を、実施例1と同様に測定した。結果を表2に示す。
[実施例4]
 本実施例は、カラム法にて試験を行った(図2参照)。H形の強酸性陽イオン交換樹脂として、実施例3と同様、AMBERLITE(登録商標) IRN99H(商品名、デュポン社製、架橋度:16%)を用いた。TMA形に変換していない、前記H形の樹脂36mlを実施例3と同様の吸着塔に投入し、実施例1で用いた被処理液を、1時間に樹脂体積の5倍量を通液する速度で30BV通液した(不純物除去工程)。得られた流出液のpHおよび金属濃度を、実施例1と同様に測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、不純物除去工程において、陽イオン交換樹脂としてTMA形の陽イオン交換樹脂を用いた実施例3、および、H形の陽イオン交換樹脂を用いた実施例4のいずれにおいても、金属不純物の含有量を大幅に低減することができた。特に、イオン交換工程において樹脂をあらかじめTMA形に変換してから被処理液を通液した実施例3は、不純物除去工程において、金属不純物とTMAがイオン交換するため、pHの変動が少なかった。また、Naの除去性能についても、実施例3の方が実施例4よりも良い結果を示した。
 なお、実施例1および2の結果と、実施例3および4の結果とを比較すると、後者の方が金属不純物の除去性能が高く、pH変動も小さくなっているが、これは、一般的に、バッチ法よりもカラム法の方が、精製効率が高くなることによるものである。
[実施例5~6、比較例1~2]
 (完全球形率の測定)
 PFA製の200mlビーカーに、表3に示すH形の陽イオン交換樹脂をそれぞれ5ml投入した。そこへ、テトラアルキルアンモニウムイオンを含有する再生剤として、25質量%TMAH水溶液50mlを注加し、混合して、2時間浸漬した。その後、上澄み液を除去し、ビーカー内の樹脂を超純水で3回(計150ml)洗浄した。なお、この工程は、本発明のイオン交換工程に相当するものであり、通常よりも、TMAHの濃度が高い条件で樹脂の割れの有無を確認することを目的として行った。得られた樹脂の完全球形率を以下の方法により測定した。
 顕微鏡(商品名:デジタルマイクロスコープ、株式会社キーエンス製)を用いて、500個の樹脂を観察し、観察した全固体に対する完全球形固体の割合(完全球形率)を下式より求めた。
   完全球形率(%)=((500-ヒビや欠けがある固体の数)/500)×100
 結果を、架橋度と併せて表3に示す。なお、表3中、比較例1で用いたAMBERLYST(登録商標) 16WET(商品名)、および比較例2で用いたAMBERLITE(登録商標) IRN97H(商品名)は、いずれもデュポン社製である。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、高架橋の強酸性陽イオン交換樹脂を用いた実施例5および6は、高い完全球形率を示した。すなわち、これらの樹脂は、TMAイオン濃度が高いTMAH水溶液中においても、樹脂にヒビやクラックが入り難く、イオン交換工程や不純物除去工程等において繰り返し使用した場合にも樹脂が割れにくいことが分かった。
 一方で、架橋度が本発明で規定する範囲よりも低い樹脂を用いた比較例1および2は、完全球形率が91~98%であった。これらの樹脂は、実施例で用いた樹脂に比べて、繰り返し使用等により樹脂が割れやすく、イオン交換樹脂母体の破損が進みやすいことがわかった。
1:吸着塔
2:貯留槽(被処理液)
3:貯留槽(TAAH)
4:貯留槽(酸)
5:貯留槽(流出液)
6:ポンプ
7:超純水ライン
8:pH計
9:電気伝導度計
10:廃液ライン
11:吸着塔
12:貯留槽(被処理液)
13:貯留槽(TAAH)
14:貯留槽(流出液)
15:ポンプ
16:超純水ライン
17:pH計
18:電気伝導度計
19:廃液ライン
 

Claims (10)

  1.  水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去工程を有する被処理液の精製方法であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする、被処理液の精製方法。
  2.  前記陽イオン交換樹脂がテトラアルキルアンモニウムイオン形であり、前記精製方法が、さらに、前記不純物除去工程の前に、水素イオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンを含有する再生剤を通液して、該水素イオン形の陽イオン交換樹脂を、テトラアルキルアンモニウムイオン形の陽イオン交換樹脂に変換するイオン交換工程を有し、該イオン交換工程で得られるテトラアルキルアンモニウムイオン形の陽イオン交換樹脂を、前記不純物除去工程に用いる、請求項1に記載の被処理液の精製方法。
  3.  前記陽イオン交換樹脂の粒径(調和平均径)が水素イオン形において500~560μmである、請求項1または2に記載の被処理液の精製方法。
  4.  さらに、前記不純物除去工程において前記被処理液と接触した前記陽イオン交換樹脂を再生する再生工程を有する、請求項1~3のいずれか1項に記載の被処理液の精製方法。
  5.  前記被処理液が、フォトレジストの現像工程において排出される廃液に由来する溶液である、請求項1~4のいずれか1項に記載の被処理液の精製方法。
  6.  水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去手段を有する被処理液の精製装置であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする、被処理液の精製装置。
  7.  前記陽イオン交換樹脂がテトラアルキルアンモニウムイオン形であり、前記精製装置が、さらに、水素イオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンを含有する再生剤を通液して、該水素イオン形の陽イオン交換樹脂を、テトラアルキルアンモニウムイオン形の陽イオン交換樹脂に変換するイオン交換手段を有し、該イオン交換手段によって得られるテトラアルキルアンモニウムイオン形の陽イオン交換樹脂を、前記不純物除去手段に用いる、請求項6に記載の被処理液の精製装置。
  8.  前記陽イオン交換樹脂の粒径(調和平均径)が水素イオン形において500~560μmである、請求項6または7に記載の被処理液の精製装置。
  9.  水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去工程を有する、被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする、被処理液からのテトラアルキルアンモニウム塩水溶液の回収方法。
  10.  水素イオン形またはテトラアルキルアンモニウムイオン形の陽イオン交換樹脂が充填された容器に、テトラアルキルアンモニウムイオンおよび金属不純物を含有する被処理液を通液して、該被処理液中の該金属不純物の含有量を低減する不純物除去手段を有する、被処理液からのテトラアルキルアンモニウム塩水溶液の回収装置であって、前記陽イオン交換樹脂の架橋度が16~24%であることを特徴とする、被処理液からのテトラアルキルアンモニウム塩水溶液の回収装置。
     
PCT/JP2021/035325 2020-11-10 2021-09-27 テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置 WO2022102263A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180072898.1A CN116419798A (zh) 2020-11-10 2021-09-27 含有四烷基铵离子的被处理液的精制方法以及精制装置
US18/036,043 US20240018020A1 (en) 2020-11-10 2021-09-27 Purification method and purification apparatus for liquid to be processed containing tetraalkylammonium ions
JP2022561314A JP7477641B2 (ja) 2020-11-10 2021-09-27 テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置
JP2024025345A JP2024051018A (ja) 2020-11-10 2024-02-22 テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-187291 2020-11-10
JP2020187291 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102263A1 true WO2022102263A1 (ja) 2022-05-19

Family

ID=81601127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035325 WO2022102263A1 (ja) 2020-11-10 2021-09-27 テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置

Country Status (5)

Country Link
US (1) US20240018020A1 (ja)
JP (2) JP7477641B2 (ja)
CN (1) CN116419798A (ja)
TW (1) TW202229176A (ja)
WO (1) WO2022102263A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190907A (ja) * 1996-11-21 1999-07-13 Japan Organo Co Ltd フォトレジスト現像廃液の再生処理方法
JP2000126766A (ja) * 1998-10-26 2000-05-09 Japan Organo Co Ltd テトラアルキルアンモニウムイオン含有液の処理方法
JP2000319233A (ja) * 1999-05-10 2000-11-21 Lion Akzo Kk ハロゲン化第四級アンモニウム塩溶液の精製方法
JP2007181833A (ja) * 2007-04-05 2007-07-19 Japan Organo Co Ltd テトラアルキルアンモニウムイオン含有液の処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190907A (ja) * 1996-11-21 1999-07-13 Japan Organo Co Ltd フォトレジスト現像廃液の再生処理方法
JP2000126766A (ja) * 1998-10-26 2000-05-09 Japan Organo Co Ltd テトラアルキルアンモニウムイオン含有液の処理方法
JP2000319233A (ja) * 1999-05-10 2000-11-21 Lion Akzo Kk ハロゲン化第四級アンモニウム塩溶液の精製方法
JP2007181833A (ja) * 2007-04-05 2007-07-19 Japan Organo Co Ltd テトラアルキルアンモニウムイオン含有液の処理方法

Also Published As

Publication number Publication date
JP7477641B2 (ja) 2024-05-01
JPWO2022102263A1 (ja) 2022-05-19
TW202229176A (zh) 2022-08-01
CN116419798A (zh) 2023-07-11
JP2024051018A (ja) 2024-04-10
US20240018020A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
JP3671644B2 (ja) フォトレジスト現像廃液の再生処理方法及び装置
JP4085987B2 (ja) フォトレジスト現像廃液の再生処理方法
KR100264643B1 (ko) 수산화유기사급암모늄을 함유하는 폐액의 처리방법
JP5717997B2 (ja) テトラアルキルアンモニウム塩水溶液の製造方法
JP5887279B2 (ja) テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法
EP1337470B1 (en) Process for recovering onium hydroxides from solutions containing onium compounds
JP5167253B2 (ja) テトラアルキルアンモニウムイオン含有現像廃液の処理方法
WO2022102263A1 (ja) テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置
WO2013062100A1 (ja) テトラアルキルアンモニウム塩溶液の製造方法
WO2014208509A1 (ja) 高濃度テトラアルキルアンモニウム塩溶液の製造方法
JP2730610B2 (ja) 水酸化有機第四アンモニウム含有廃液の処理方法
JP2011012044A (ja) 水酸化テトラアルキルアンモニウムの製造方法
WO2015016230A1 (ja) テトラアルキルアンモニウム塩水溶液の製造方法
JP4561967B2 (ja) テトラアルキルアンモニウムイオン含有排水から水を回収する方法及び装置
JP2011125770A (ja) 処理廃液の再利用方法
JPH06154749A (ja) 廃液から水酸化有機第四アンモニウムを回収する方法
JP2015174079A (ja) イオン交換装置及びイオン交換処理方法
JPH1085741A (ja) フォトレジスト現像廃液の処理方法
JP2000153165A (ja) 酸除去方法、酸除去装置および排水回収装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561314

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18036043

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891511

Country of ref document: EP

Kind code of ref document: A1