WO2014208509A1 - 高濃度テトラアルキルアンモニウム塩溶液の製造方法 - Google Patents

高濃度テトラアルキルアンモニウム塩溶液の製造方法 Download PDF

Info

Publication number
WO2014208509A1
WO2014208509A1 PCT/JP2014/066592 JP2014066592W WO2014208509A1 WO 2014208509 A1 WO2014208509 A1 WO 2014208509A1 JP 2014066592 W JP2014066592 W JP 2014066592W WO 2014208509 A1 WO2014208509 A1 WO 2014208509A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
effluent
conductivity
recovered
concentration
Prior art date
Application number
PCT/JP2014/066592
Other languages
English (en)
French (fr)
Inventor
直幸 梅津
渡邉 淳
喜文 山下
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2014208509A1 publication Critical patent/WO2014208509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions

Definitions

  • the present invention relates to a novel production method for producing a solution containing a tetraalkylammonium salt using a cation exchange resin.
  • a negative or positive photoresist comprising a novolac resin, a polystyrene resin or the like on a metal layer formed on the substrate surface is used. Coating, exposing to this through a photomask for pattern formation, and developing mainly composed of tetraalkylammonium hydroxide (hereinafter also referred to as TAA hydroxide) for the uncured portion or the cured portion
  • TAA hydroxide tetraalkylammonium hydroxide
  • TAA hydroxide-containing development waste liquid After developing with the developer, cleaning with ultrapure water is performed to remove the developer remaining on the substrate, and after this cleaning process, the cleaning process waste liquid containing TAA hydroxide is discharged. Is done. These development waste liquid and washing process waste liquid are usually mixed and then discharged as TAA hydroxide-containing development waste liquid. In recent years, as the production amount of semiconductors and liquid crystals increases, the consumption of the developer increases, and the discharge amount of the TAA hydroxide-containing developer waste also increases. Recently, a method for recovering TAA hydroxide has been proposed in which TAA hydroxide is recovered from the TAA hydroxide-containing developer waste, purified, and reused.
  • the TAA hydroxide concentration in the TAA hydroxide-containing developer waste liquid, which is discharged by mixing the development process waste liquid and the washing process waste liquid, is usually as low as about 100 to 10,000 ppm.
  • concentration to increase the concentration of TAA hydroxide in the waste liquid is performed. Means are essential.
  • a TAA hydroxide in a developing waste solution may be abbreviated as “TAA ion” (hereinafter referred to as “TAA ion”. Is an abbreviation for “tetraalkylammonium”.) Is adsorbed on a cation exchange resin, and then the TAA ions are eluted from the resin by contacting the aqueous acid solution with the cation exchange resin to obtain an aqueous TAA salt solution.
  • a method has been proposed (see Patent Document 1).
  • the obtained TAA salt aqueous solution is further concentrated and converted into an aqueous solution of TAA hydroxide by electrolysis or the like.
  • the cation exchange resin As described above, by using the cation exchange resin, it is possible to recover the TAA salt aqueous solution containing TAA ions at a higher concentration than the development waste liquid. However, the recovered TAA salt aqueous solution is used in the next electrolysis step. In order to supply, further concentration is required. Generally, concentration is performed to 40 to 60% by mass by evaporation or the like. Therefore, it is desirable to further increase the concentration of the TAA salt aqueous solution obtained from the cation exchange resin from the viewpoint of improving production efficiency and reducing the concentration cost.
  • the inventors of the present invention contact TAA hydroxide in a developing waste solution with a cation exchange resin to adsorb the TAA ions to the cation exchange resin, and then contact the acid aqueous solution as an eluent with the cation exchange resin.
  • a cation exchange resin of a hydrogen ion type having a small volume swelling rate when all the hydrogen ions are replaced with TAA ions is used. It has been found that the acid concentration of the eluent in the packed column packed with ion exchange resin can be reduced, and as a result, the concentration of TAA ions in the effluent can be increased.
  • a high-concentration recovery liquid with a higher TAA ion concentration can be obtained.
  • High concentration recovery that is recovered by separating the mixed solution containing TAA ions and acid (acid mixed solution) that continues to flow out and collecting it before passing the acid aqueous solution as the eluent of the next batch. It has been found that the TAA ion concentration in the liquid can be further increased, and the present invention has been completed.
  • One aspect of the present invention is a method for producing a tetraalkylammonium salt solution, wherein a solution containing a tetraalkylammonium salt is obtained from a solution containing a tetraalkylammonium hydroxide, (1) A tetraalkyl hydroxide is placed in an adsorption tower packed with a hydrogen ion type cation exchange resin having a volume swelling ratio of 1.2 times or less when substantially all hydrogen ions are replaced with tetraalkylammonium ions.
  • An adsorption step in which a tetraalkylammonium ion in the solution is adsorbed on a cation exchange resin by passing a solution containing ammonium; (2) Cation exchange by passing an acid aqueous solution having a hydrogen ion concentration of 4 to 6 mol / L as an eluent through an adsorption tower packed with a cation exchange resin adsorbed with tetraalkylammonium ions.
  • An elution step of eluting tetraalkylammonium ions adsorbed on the resin as the acid salt and recovering the effluent flowing out of the adsorption tower A series of steps of performing the (2) elution step after the (1) adsorption step is repeated a plurality of times,
  • the (2) elution step is a method for producing a high-concentration tetraalkylammonium salt solution, comprising the step of fractionating and recovering the following high-concentration recovery solution (i) from the effluent.
  • the first threshold value and the second threshold value are a set of values arbitrarily selected from the range of 0.07 to 0.55 so that the second threshold value is larger than the first threshold value.
  • the first threshold is preferably a value arbitrarily selected from the range of 0.07 to 0.13
  • the second threshold is preferably a value arbitrarily selected from the range of 0.35 to 0.55. is there.
  • the “volume swelling ratio when substantially all of the hydrogen ions are replaced with tetraalkylammonium ions” of the cation exchange resin is determined by performing the following steps (a) to (j) in the following order. The value measured is applied.
  • volume swelling ratio (TAA type resin column height) / (H type resin column height) Calculated by
  • step (a) commercially available H-type cation exchange resins are usually provided in a wet state with a small amount of water, but the water content of the resin charged in step (a) is The value of the volume swelling rate calculated in the step (j) is not affected.
  • step (d) and (i) In measuring the height of the cation resin column in the steps (d) and (i), if the upper surface of the cation resin column is not flat, for example, a small amount of ultrapure water is added from the top of the resin column. The height of the cation resin column is measured after flattening the upper surface of the resin column by an operation such as applying vibration to the resin column.
  • the amount of TAAH in the effluent can be measured, for example, by neutralization titration, conductivity measurement, ion chromatography, or the like. Note that each of the steps (a) to (j) is performed at room temperature (25 ° C.).
  • the (2) elution step further includes the step of fractionating and collecting the following acid mixture (ii):
  • the acid mixture (ii) is recovered (2) In one or a plurality of (2) elution steps performed after the next elution step, substantially all of the acid mixture (ii) is adsorbed. It is preferable to pass through the adsorption tower as an eluent before passing the aqueous acid solution through the tower.
  • the acid mixture (ii) was recovered (2) one or more times (2) the elution step performed after the next elution step” was the case where the acid mixture (ii) was recovered.
  • the acid mixture (ii) is passed through the multiple (2) elution steps, and the acid mixture (ii) is passed through the multiple (2) elution steps. It means that the total is substantially the total amount of the acid mixture (ii).
  • the “substantial total amount” means the total amount excluding inevitable losses (for example, evaporation, adhesion to pipes or storage tank inner walls, etc.).
  • the mode in which the flow of the acid mixture (ii) recovered in a certain (2) elution step is divided into a plurality of subsequent (2) elution steps is performed, for example, by a plurality of (2) elution
  • the "substantially total amount" of the acid mixture (ii) recovered in one (2) elution step is passed through, so that the amount used over such multiple (2) elution steps is cumulative.
  • it is a concept including an aspect that asymptotically approaches the total amount excluding inevitable losses, and specifically means that 90% or more, preferably 95% or more of the total amount is supplied to the liquid.
  • the acid mixture (ii) is an eluate before the acid aqueous solution is passed through the adsorption tower in the (2) elution step following the (2) elution step in which the acid mixture (ii) is recovered. As a result, the entire amount can be passed through the adsorption tower.
  • the acid mixture (ii) is passed through the adsorption tower as follows: Adding an acid to the acid mixture (ii) to obtain an adjustment liquid in which the acid concentration is adjusted to 4 to 6 mol / L in terms of hydrogen ions; It is preferable to include a step of passing the adjusting solution through an adsorption tower as an eluent before passing the acid aqueous solution.
  • the (2) elution step further includes a step of fractionating and recovering the following recovered acid (iii): In the one or more (2) elution steps performed after the next time (2) the elution step in which the recovered acid (iii) is recovered, the concentration of the aqueous acid solution passed as an eluent through the adsorption tower is It is preferable to adjust using recovered acid (iii).
  • the recovered acid (iii) is the concentration of the aqueous acid solution passed through the adsorption tower as an eluent in the (2) elution step next to the (2) elution step in which the recovered acid (iii) was recovered. Can be used to adjust.
  • a TAA salt solution having an increased TAA ion concentration can be recovered.
  • the time and energy required in the step of concentrating the TAA salt solution to a concentration suitable for supplying the TAA salt solution to the electrolysis step can be reduced, thereby reducing cost.
  • the acid mixed liquid (ii) is separated and recovered and used as an eluent before the acid aqueous solution in the next batch and subsequent batches. It is possible to reduce acid consumption while recovering TAA ions more efficiently.
  • the high concentration recovery liquid it becomes possible to further increase the TAA ion concentration in (i).
  • the consumption of acid can be reduced, and the effluent after recovering the recovered acid (iii) Since it is a dilute acid aqueous solution containing almost no TAA salt, wastewater treatment is facilitated, and costs for wastewater treatment can be reduced.
  • TMACl tetramethylammonium chloride
  • the present invention relates to a method for producing a tetraalkylammonium salt (TAA salt) solution having a high concentration from a solution containing tetraalkylammonium hydroxide (TAAH), wherein the TAAH solution is contacted with a cation exchange resin to produce TAA ions.
  • the effluent with a high TAA ion concentration among the effluents from the adsorption tower is used as a high concentration recovery liquid (i).
  • the main feature is that it is separated and collected.
  • the solution containing tetraalkylammonium hydroxide is not particularly limited, but is preferably a photoresist developing waste solution generated in a semiconductor manufacturing process, a liquid crystal display manufacturing process, or the like.
  • waste liquids are waste liquids that are discharged when developing the exposed photoresist with an alkaline developer, and mainly contain photoresist, TAAH, and metal ions.
  • Such a waste liquid is usually an aqueous solution.
  • Photoresist developing waste liquid usually exhibits an alkalinity with a pH of 10 to 14.
  • acid groups such as carboxyl groups and phenolic hydroxyl groups are dissolved by acid dissociation.
  • main photoresist include indenecarboxylic acid produced by photolysis of the photosensitizing agent o-diazonaphthoquinone and phenols derived from novolac resin.
  • the composition of the waste liquid discharged in this development process is such that TAAH is about 0.01 to 1% by mass, photoresist is about 10 to 100 ppm, and surfactant is about 0 to several tens of ppm. It becomes.
  • waste liquids from other processes may be mixed, and the TAAH concentration may be further lowered within the above range. Specifically, it may be 0.05% by mass or less (about 0.01 to 0.05% by mass).
  • the photoresist developing waste liquid discharged from the liquid crystal display manufacturing process often has a TAAH concentration of 0.01 to 0.5% by mass, and the method of the present invention uses such a photoresist developing waste liquid from the TAA salt. It can employ
  • the photoresist developing waste liquid contains a plurality of metal ions.
  • metal ions for example, monovalent ions such as sodium and potassium, divalent ions such as calcium and zinc, and other polyvalent ions such as aluminum, nickel, copper, chromium and iron in the photoresist developing waste liquid. It is a metal that is typically contained in large quantities. Such metals are usually contained in the photoresist developing waste liquid by about 0.1 to 100 ppb.
  • TAAH in the photoresist development waste liquid is an alkali used in a photoresist developer used in the production of various electronic components.
  • Specific examples of TAAH include tetramethylammonium hydroxide (hereinafter sometimes abbreviated as “TMAH”), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, Trimethylethylammonium hydroxide, dimethyldiethylammonium hydroxide, trimethyl (2-hydroxyethyl) ammonium hydroxide, triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2 -Hydroxyethyl) ammonium, methyltri (2-hydroxyethyl) ammonium hydroxide, ethy
  • TAAH tetraalkylammonium hydroxide
  • the liquid is passed through an adsorption tower filled with a cation exchange resin of a type (hereinafter also referred to as “H type”), and TAA ions are adsorbed on the cation exchange resin.
  • TAA ions are cations, they are adsorbed on the resin by causing ion exchange with hydrogen ions of the cation exchange resin by contacting with the H-type cation exchange resin. Therefore, TAA ions can be efficiently recovered from the waste liquid by the H-type cation exchange resin. In particular, TAA ions can be recovered at low cost even in waste liquids where the concentration of TAAH is low.
  • the photoresist-derived organic components dissolved in the waste liquid are usually in the form of anions, and thus are hardly adsorbed by the cation exchange resin. Adsorb. Therefore, in the subsequent TAA salt recovery step, there is a possibility of being mixed into the TAA salt solution. The removal of such organic components will be described later.
  • the H-type cation exchange resin that adsorbs the TAA ions is a cation exchange resin having a volume swelling ratio of 1.2 times or less.
  • the volume swell rate is a volume swell rate when substantially all of the hydrogen ions of the cation exchange resin are replaced with tetraalkylammonium ions.
  • the value is based on the volume of the cation exchange resin (ie, 1 time).
  • the cation exchange resin swells more or less when TAA ions are adsorbed, and simultaneously takes in water.
  • TAA ions are eluted from the cation exchange resin and the cation exchange resin returns to the H-type, the cation exchange resin contracts to the volume before adsorbing the TAA ions, and at the same time releases the water held inside. .
  • a cation exchange resin having a large volume swelling ratio is used, the resulting TAA salt solution is significantly diluted by water released by the cation exchange resin when the cation exchange resin contracts during TAA ion elution. Therefore, the high concentration TAA salt solution intended by the present invention cannot be obtained.
  • the structure of the cation exchange resin may be a gel type or an MR type (macroporous type).
  • the shape of the resin may be any of powder, granule, film, fiber and the like.
  • Cation exchange resins are usually marketed in the state where the counter ion is hydrogen ion (H type) or sodium ion (Na type), but the viewpoint of preventing sodium ions from being mixed into the finally obtained TAAH solution
  • H type hydrogen ion
  • Na type sodium ion
  • an H-type cation exchange resin in which counter ions are hydrogen ions is used.
  • a cation exchange resin that is commercially available in Na type pass an acid such as hydrochloric acid or sulfuric acid through the cation exchange resin in advance and thoroughly wash it with water, so that the counter ion becomes a hydrogen ion. use.
  • water used for cleaning pure water or ultrapure water is used. In particular, by using ultrapure water, contamination of the cation exchange resin can be suppressed, and a higher purity TAA salt solution can be obtained. Therefore, ultrapure water can be preferably used for washing the cation exchange resin.
  • cation exchange resins that can be used in the present invention and are commercially available include Amberlite IR120B, Amberlite IR124, Amberlyst 15JWET, manufactured by Rohm and Haas, a strongly acidic cation exchange resin, Examples include Diaion SK1B, Diaion SK110, Diaion SK112, Diaion PK228, Duolite C255LFH, Sumitomo Chemtex Co., Ltd., Lancetes Lebatit Monoplus S100, and Purolite Purolite C160 manufactured by Mitsubishi Chemical Corporation.
  • Adsorption step Step of passing the solution through an adsorption tower packed with a cation exchange resin and adsorbing TAA ions to the cation exchange resin
  • TAA ions are adsorbed on the cation exchange resin by passing a solution containing TAAH through the adsorption tower packed with the above H-type cation exchange resin and bringing it into contact with the cation exchange resin.
  • a known method can be employed without any particular limitation, and details are determined according to the type and shape of the cation exchange resin. be able to.
  • an adsorption tower system in which the adsorption tower is filled with a cation exchange resin and the solution is continuously passed can be preferably employed.
  • the conditions may be appropriately determined according to the performance of the cation exchange resin, etc.
  • the content of TAAH is 0.01 to 1
  • the ratio (L / D) of the height (L) of the adsorption tower to the diameter (inner diameter D) of the adsorption tower is 0.5 to 30, and the space velocity (SV) of the solution Is preferably 1 to 200 h ⁇ 1 .
  • the amount of the solution to be passed is preferably an amount containing TAA ions equivalent to or more than the total exchange capacity of the cation exchange resin packed in the adsorption tower from the viewpoint that a high concentration TAA salt can be produced.
  • two adsorption towers filled with the same amount of cation exchange resin are installed in series, and a liquid containing TAA ions flowing out from the first tower is passed through the second tower, so that TAA ions are converted into the system. Processing can be performed without leaking outside.
  • TAA ions have flowed out (breakthrough) without being adsorbed when a solution containing an amount of cations larger than the exchange capacity of the cation exchange resin is passed. This can be confirmed by analyzing the TAA ion concentration in the liquid flowing out through the column by ion chromatography. More simply, it can be confirmed by measuring the pH of the passed liquid. If the TAA ions pass through the adsorption tower without being adsorbed, the pH of the liquid that has passed through becomes alkaline, so that it can also be confirmed by a pH meter.
  • TAA ions when TAA ions are contained in the liquid that has passed through the adsorption tower, the conductivity of the liquid rises, and therefore it is possible to confirm the presence or absence of breakthrough also by the conductivity. Further, it is possible to confirm the adsorption of TAA ions by the volume occupied by the cation exchange resin in the adsorption tower.
  • the volume of the cation exchange resin swells at a predetermined swelling rate according to the type of the cation exchange resin. Therefore, adsorption of TAA ions can be confirmed by the volume of the cation exchange resin used.
  • Elution process (Elution process for recovering tetraalkylammonium salt from cation exchange resin adsorbed tetraalkylammonium ions)
  • an acid aqueous solution is passed as an eluent through an adsorption tower packed with the cation exchange resin, and a recovered liquid flowing out from the adsorption tower is recovered.
  • a tetraalkylammonium salt is produced by Elution process.
  • the hydrogen ion concentration of the aqueous acid solution used as the eluent of the present invention is 4 to 6 mol / L, preferably 5 to 6 mol / L.
  • the acid aqueous solution is not particularly limited as long as the hydrogen ion concentration is within the above range, but from the viewpoint of recovering the TAA salt at a higher concentration, a strong acid having a large dissociation multiplier K is meant to efficiently replace the TAA ion. Is preferably used.
  • the TAA salt solution produced according to the present invention is converted into TAAH by subjecting it to an electrolysis step which is a subsequent step, it is difficult to cause adverse effects due to the mixing of organic components other than the TAA salt.
  • the acid aqueous solution used is preferably an inorganic acid. Specifically, hydrochloric acid, sulfuric acid and the like are preferably used.
  • the solvent constituting the acid aqueous solution used in the present invention is not particularly limited, but may be water in terms of ease of dissolution of the alkali metal salt, cost, and the like that do not adversely affect electrolysis for the production of TAAH. preferable.
  • water ion exchange water, pure water, ultrapure water, or the like can be used.
  • the flow rate of the aqueous acid solution as the eluent is not particularly limited, and can be appropriately selected according to the dimensions of the adsorption tower, the type and amount of the cation exchange resin, the hydrogen ion concentration of the aqueous acid solution, and the like.
  • the space velocity (SV) of the acid aqueous solution is preferably 1 to 50 h ⁇ 1 .
  • an adsorption tower system in which an adsorption tower is filled with the cation exchange resin and a solution containing TAAH and an acid aqueous solution are continuously passed through Is preferred.
  • the adsorption tower method the work can be carried out efficiently, so that the same adsorption tower is used, TAA ions are adsorbed on the cation exchange resin packed in the adsorption tower, and then the aqueous acid solution is passed. It is preferable to make it.
  • TAA ions are converted into TAA salts from one end of the adsorption tower using the anion of the acid used (for example, Cl ⁇ for hydrochloric acid, SO 4 2 ⁇ for sulfuric acid, etc.) as a counter ion. Since it flows out (elutes), the effluent is collected in a storage tank.
  • the anion of the acid used for example, Cl ⁇ for hydrochloric acid, SO 4 2 ⁇ for sulfuric acid, etc.
  • a major feature of the present invention is that the effluent containing a high concentration of TAA salt in the effluent is fractionated and recovered as a high concentration recovery liquid (i).
  • the conductivity of the effluent from the adsorption tower is measured using a conductivity meter, and the effluent is returned to the high-concentration recovery liquid recovery tank according to the conductivity value. Determine the start and end of collection.
  • the conductivity of the acid aqueous solution used as the eluent is measured in advance. And the conductivity value of the effluent is measured, and the ratio of the value to the conductivity value of the acid aqueous solution starts recovery to the high concentration recovery liquid recovery tank from the time when it reaches the first threshold, When the second threshold value is reached, the collection into the collection tank is stopped.
  • the first and second threshold values are a set of values arbitrarily selected from the range of 0.07 to 0.55 so that the second threshold value is larger than the first threshold value.
  • the first threshold value is preferably a value arbitrarily selected from the range of 0.07 to 0.13, and the second threshold value is 0.35 to A value arbitrarily selected from the range of 0.55 is preferable.
  • the residual liquid in the adsorption tower is first replaced with the eluent and flows out.
  • the residual liquid in the adsorption tower is replaced with the eluent, the TAA ions that have been replaced with the hydrogen ions in the eluent and started to flow out as a TAA salt solution begin to flow out.
  • the conductivity value of the effluent gradually increases when the residual liquid in the adsorption tower is replaced with the eluent, and approaches the conductivity of the eluent used as the replacement with hydrogen ions proceeds.
  • the degree of substitution with hydrogen ions can be known by measuring the electrical conductivity of.
  • the conductivity of the eluent to be used is measured in advance, and collection is started when the ratio of the conductivity of the effluent to the conductivity of the eluent reaches a first threshold selected from the above range, and the second By stopping the collection when the above threshold value is reached, a high concentration TAA salt solution can be collected.
  • the behavior of the TAA ion concentration and hydrogen ion concentration in the effluent is slightly different depending on various conditions such as the capacity and shape of the adsorption tower, the type and amount of ion exchange resin, the type of eluent, and the flow rate for supplying the eluent. . Therefore, in order to obtain a high-concentration recovery liquid (i) having a desired TAA salt concentration in the actually used adsorption tower, an electric conductivity ratio (first step) in which recovery to the high-concentration recovery liquid recovery tank is started within the above range by experiments in advance. 1 threshold) and the conductivity ratio to be stopped (second threshold) may be selected.
  • the range of the conductivity value of the effluent to be recovered should be as small as possible. From the viewpoint of recovery production efficiency, select the conductivity ratio (first threshold) to start recovery from the range of 0.07 to 0.13, and recover from the range of 0.35 to 0.55. It is preferable to select a conductivity ratio (second threshold value) that stops.
  • the effluent from the start of the eluent flow to the start of the recovery of the high concentration recovery liquid (i) can be treated as a waste liquid.
  • the continuous effluent after the high-concentration recovery liquid (i) is recovered in the high-concentration recovery liquid recovery tank is recovered as an acid mixed liquid (ii).
  • TAA The entire amount of the acid mixture (ii) is passed as an eluent before passing an acid aqueous solution having a hydrogen ion concentration of 4 to 6 mol / l through an adsorption tower packed with a cation exchange resin on which ions are adsorbed. can do.
  • the effluent after recovering the high concentration recovery liquid (i) still contains TAA salt to some extent, it is possible to recover the acid mixture (ii) and use it as the eluent of the next batch. This is an economically preferable aspect from the viewpoint of reducing the recovery loss of the TAA salt and suppressing the consumption of the aqueous acid solution used as the eluent.
  • the recovery of the acid mixture stops the recovery of the effluent into the high-concentration recovery liquid recovery tank and simultaneously starts the recovery into the acid mixture recovery tank.
  • the recovery is stopped when the ratio of the acid aqueous solution used as the ratio reaches the third threshold value arbitrarily selected from the range of 0.8 to 0.95.
  • the acid mixture (ii) can be used as an eluent in the (2) elution step of the next batch.
  • the TAA salt in the acid mixture liquid (ii) can be efficiently recovered in the high concentration TAA salt recovery liquid (i) in the next batch.
  • the point at which the recovery of the acid mixed solution (ii) is stopped is not particularly limited, but it is preferable that the TAA salt is contained at a certain concentration or more.
  • the TAA salt concentration in the effluent decreases. Therefore, by conducting an experiment in advance, a conductivity ratio (third threshold) is determined so that the TAA salt concentration in the acid mixed solution becomes a desired concentration, and the ratio of the conductivity of the effluent to the conductivity of the acid aqueous solution is What is necessary is just to stop the collection
  • the third threshold is preferably selected from the range of 0.8 to 0.95.
  • the third threshold value is greater than 0.95, the TAA salt concentration in the acid mixture (ii) decreases, so the TAA salt concentration in the high concentration recovery solution (i) recovered in the next batch increases. The contribution is reduced. Further, when the third threshold value is smaller than 0.8, the TAA salt recovery rate is lowered.
  • an acid can be added to the acid mixture (ii) to adjust the hydrogen ion concentration to 4 to 6 mol / L, and the adjustment liquid can be passed as an eluent.
  • the entire amount of the adjustment liquid is passed as an eluent before passing an acid aqueous solution having a hydrogen ion concentration of 4 to 6 mol / L through an adsorption tower packed with a cation exchange resin on which TAA ions are adsorbed.
  • the adsorbed TAA ions were eluted and recovered by passing an acid aqueous solution as an eluent through the adsorption tower or by passing the acid aqueous solution after passing through the entire acid mixture. Then, when recovery of the acid mixture (ii) is stopped, the eluent flow is stopped, and pure water is supplied until the effluent has a conductivity of 10 mS / cm or less to remove the acid in the adsorption tower. It is preferable to do.
  • the effluent after the recovery to the acid mixed solution recovery tank contains a low concentration TAA salt and an aqueous acid solution.
  • pure water is supplied instead of the eluent, and finally the effluent becomes water.
  • the continuous effluent after the recovery of the effluent into the acid mixture recovery tank is stopped as recovered acid (iii), separated from the other effluent, and recovered into the recovered acid recovery tank.
  • recovered acid (iii) can be used for adjusting the concentration of the aqueous acid solution that is passed as an eluent in the elution step.
  • the recovery of the effluent from the adsorption tower to the acid mixture recovery tank is stopped, the recovery of the recovered acid (iii) to the recovery acid recovery tank is started. Then, after the conductivity of the effluent measured using a conductivity meter starts to decrease (that is, the slope of the conductivity value becomes negative), the conductivity of the effluent is measured as an acid used as an eluent.
  • the recovery is stopped when the ratio of the aqueous solution to the electric conductivity reaches a fourth threshold value arbitrarily selected from the range of 0.5 to 0.95.
  • the fourth threshold value is smaller than 0.5, the acid concentration of the recovered acid (iii) decreases, so that it becomes difficult to use the entire amount of the recovered acid (iii) for adjusting the concentration of the acid aqueous solution in the next batch. .
  • the fourth threshold value from the above range, it is economical because the acid aqueous solution can be efficiently recovered and the acid consumption can be suppressed. Furthermore, the recovered acid (iii) containing some TAA salt is separated and recovered, so that the effluent after recovery of the recovered acid contains almost no TAA salt. For this reason, waste water treatment becomes simple and it is advantageous from the viewpoint of waste water treatment cost.
  • the method of measuring the conductivity of the effluent and separating and collecting each when the effluent conductivity reaches a threshold selected from a predetermined range is not particularly limited.
  • a flow path switching valve is provided in the immediate downstream of the device for measuring the effluent conductivity, and when the effluent conductivity reaches the threshold, the valve flow path is switched to flow into each recovery tank.
  • a method of introducing the liquid for example, introducing the liquid.
  • a conventionally known method can be employed without any particular limitation. Specifically, for example, a certain amount of effluent flowing out from the adsorption tower is sampled and measured using a conductivity meter, or an in-line type conductivity meter is installed in the middle of the pipe leading the effluent to the storage tank. Examples of the method include measurement. Above all, by using an in-line type conductivity meter, it is possible to stop the collection at the moment when the conductivity reaches the threshold without drawing out the liquid halfway, and it is possible to suppress the loss of the collected liquid, An inline conductivity meter can be preferably employed.
  • the time interval for measuring the conductivity is preferably changed mainly by the flow rate (flow velocity) of the effluent.
  • the flow rate flow velocity
  • the change in the conductivity of the effluent is steep, and therefore it is preferable to shorten the time interval for measuring the conductivity from the viewpoint of reliably obtaining a recovered liquid having a desired property.
  • TAAH Metal for producing tetraalkylammonium hydroxide from tetraalkylammonium salt
  • TAAH can be produced by subjecting the TAA salt contained in the solution recovered from the waste liquid by the above method to electrodialysis, electrolysis or the like.
  • the metal ion component in the TAA salt solution is obtained by bringing the TAA salt solution into contact with a cation exchange resin (however, the counter ion is previously substituted with a TAA ion) and / or a chelate resin.
  • a method of removing organic substances such as photoresist by bringing the TAA salt solution into contact with an adsorbent such as activated carbon or an anion exchange resin.
  • the TAA salt solution concentration method include a method of concentrating with an electrodialysis, an evaporator, and a reverse osmosis membrane. From the viewpoint of improving production efficiency, it is preferable to concentrate until the TAA concentration reaches about 60% by mass. Therefore, providing a TAA solution containing a higher concentration of TAA salt as a TAA salt solution before concentration by the method of the present invention is very significant in terms of production efficiency and economy.
  • TAA salt electrolysis process As an electrolysis process for obtaining TAAH by electrolyzing the obtained TAA salt, a known method can be used without particular limitation depending on the type of the recovered TAA salt.
  • the recovered TAA salt is a hydrochloride
  • the TAA salt can be preferably converted to TAAH by the electrolysis method described in Japanese Patent No. 3290183.
  • TMAH tetramethylammonium hydroxide discharged from a liquid crystal factory
  • TMA tetramethylammonium hydroxide discharged from a liquid crystal factory
  • the waste liquid was used as a sample liquid.
  • the conductivity was measured with an electrode-type conductivity meter (measuring device: SC72 (manufactured by Yokogawa Electric Corporation)).
  • TMACl tetraalkylammonium chloride
  • TMA 2 SO 4 sulfuric acid tetraalkyl ammonium
  • Example 1 A strongly acidic cation exchange resin DIAION SK112 (manufactured by Mitsubishi Chemical Corporation) (H type, 200 mL) having an exchange capacity of 2.1 mol / (L-resin) or more was packed into a cylindrical column having a diameter (inner diameter) of 26 mm.
  • the resin has a volume swelling ratio of 1.15 times when tetraalkylammonium ions are adsorbed.
  • the conductivity of switching the first fraction was 102 mS / cm, which was 0.12 times the conductivity of the eluent.
  • the first fraction solution contained 5.20% by mass (0.47 mol / L) of TMACl and was treated as a waste solution.
  • 80 mL from E to F was fractionated as a high concentration recovery liquid.
  • the switching conductivity of this high-concentration recovery liquid was 330 mS / cm, which was 0.38 times that of the eluent.
  • This high-concentration recovered liquid contained 27.85% by mass (2.54 mol / L) of TMACl and 3.03% by mass (0.84 mol / L) of HCl.
  • the concentration of the high concentration recovery liquid was 23.17% by mass in terms of TMAH, and was a desired high concentration recovery liquid.
  • 200 mL from G to K was fractionated as an acid mixture.
  • the conductivity of the acid mixture switching was 762 mS / cm, which was 0.88 times that of the eluent.
  • This acid mixture contained 10.40% by mass (0.95 mol / L) of TMACl and 15.66% by mass (4.61 mol / L) of HCl.
  • 240 mL of L to Q was fractionated as the recovered acid.
  • the conductivity of this recovered acid switching was 521 mS / cm, which was 0.60 times the conductivity of the eluent.
  • the recovered acid contained 17.32% by mass (5.14 mol / L) HCl.
  • the remaining 160 mL of R to U contained 0.14% by mass (0.04 mol / L) HCl and was treated as a waste liquid.
  • Example 2 (Adsorption process / water washing process) Under the same conditions as in Example 1, the sample solution was passed through and TMA ions were adsorbed to perform water washing.
  • TMACl concentration and HCl concentration of these fractions were measured, respectively.
  • the first 160 mL was used as the first fraction.
  • the conductivity of switching the first fraction was 78 mS / cm, which was 0.09 times the conductivity of the eluent.
  • This first fractionation liquid contained 3.13% by mass (0.29 mol / L) of TMACl and was treated as a waste liquid.
  • the next 160 mL was fractionated as a high concentration recovery liquid.
  • the conductivity of switching the high concentration recovery liquid was 338 mS / cm, which was 0.39 times that of the eluent.
  • This high-concentration recovery liquid contained 27.26% by mass (2.49 mol / L) of TMACl and 2.15% by mass (0.59 mol / L) of HCl.
  • the concentration of the high concentration recovery liquid was 22.68% by mass in terms of TMAH, and was a desired high concentration recovery liquid.
  • the next 240 mL was fractionated as an acid mixture.
  • the conductivity of switching the acid mixture was 725 mS / cm, which was 0.84 times the conductivity of the eluent.
  • This acid mixed solution contained 11.75% by mass (1.07 mol / L) of TMACl and 14.06% by mass (4.11 mol / L) of HCl.
  • the next 280 mL was fractionated as recovered acid.
  • the conductivity of this recovered acid switching was 776 mS / cm, which was 0.90 times the conductivity of the eluent.
  • the recovered acid contained 18.11% by mass (5.39 mol / L) HCl.
  • the remaining 160 mL contained 0.27 mass% (0.07 mol / L) HCl and was treated as a waste liquid.
  • Example 3 (Adsorption process / water washing process) Under the same conditions as in Example 1, the sample solution was passed through and TMA ions were adsorbed to perform water washing.
  • Example 4 (Adsorption process / water washing process) Under the same conditions as in Example 1, the sample solution was passed through and TMA ions were adsorbed to perform water washing.
  • Example 5 (Adsorption process / water washing process) Under the same conditions as in Example 1, the sample solution was passed through and TMA ions were adsorbed to perform water washing.
  • Example 6 (Adsorption process / water washing process) Under the same conditions as in Example 1, the sample solution was passed through and TMA ions were adsorbed to perform water washing.
  • Example 7 (Adsorption process / water washing process) Under the same conditions as in Example 1, the sample solution was passed through and TMA ions were adsorbed to perform water washing.
  • Example 8> (Adsorption process / water washing process) Under the same conditions as in Example 1, the sample solution was passed through and TMA ions were adsorbed to perform water washing.
  • Example 9 (Adsorption process / water washing process) Under the same conditions as in Example 1, the sample solution was passed through and TMA ions were adsorbed to perform water washing.
  • the conductivity of switching the high concentration recovery liquid was 328 mS / cm, which was 0.38 times the conductivity of the eluent.
  • This high-concentration recovery liquid contained 29.10% by mass (2.66 mol / L) of TMACl and 2.47% by mass (0.68 mol / L) of HCl.
  • the concentration of the high concentration recovery liquid was 24.21% by mass in terms of TMAH, and was a desired high concentration recovery liquid.
  • the next 200 mL was fractionated as an acid mixture.
  • the conductivity of the switching of the acid mixture was 734 mS / cm, which was 0.85 times the conductivity of the eluent.
  • This acid mixture contained 10.60% by mass (0.97 mol / L) of TMACl and 14.28% by mass (4.18 mol / L) of HCl.
  • the next 280 mL was fractionated as recovered acid.
  • the collected acid switching conductivity was 764 mS / cm, which was 0.88 times the eluent conductivity.
  • the recovered acid contained 18.28% by mass (5.45 mol / L) HCl.
  • the remaining 120 ml contained 0.47% by mass (0.13 mol / L) HCl and was treated as a waste liquid.
  • ⁇ Comparative example 2> The sample solution was passed under the same conditions as in Example 1 to adsorb TMA ions and washed with water.
  • HCl (conductivity: 730 mS / cm) having a hydrogen ion concentration of 3 mol / L was passed as an eluent, and the effluent was fractionated at the ratio shown in Table 2.
  • the obtained high-concentration recovery liquid contained 19.22% by mass (1.75 mol / L) of TMACl and 1.97% by mass (0.54 mol / L) of HCl. This high concentration recovered liquid was 15.99% by mass in terms of TMAH, and did not reach the desired TMACl concentration.
  • the first fraction solution contained 1.3% by mass (0.12 mol / L) of TMACl and was treated as a waste solution.
  • the next 200 mL was fractionated as a high concentration recovery solution.
  • the conductivity of switching the high concentration recovered liquid was 336 mS / cm, which was 0.39 times the conductivity of the eluent.
  • This high-concentration recovery liquid contained 18.35% by mass (1.67 mol / L) of TMACl and 1.77% by mass (0.49 mol / L) of HCl.
  • the concentration of the high-concentration recovered liquid was 15.26% by mass in terms of TMAH, and did not reach the desired TMACl concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

 (1)水素イオン型の陽イオン交換樹脂が充填された吸着塔に、水酸化テトラアルキルアンモニウムを含む溶液を通液させることにより、テトラアルキルアンモニウムイオンを陽イオン交換樹脂に吸着させる、吸着工程と、(2)吸着塔に、水素イオン濃度が4~6mol/Lである酸水溶液を溶離液として通液させることにより、陽イオン交換樹脂に吸着されたテトラアルキルアンモニウムイオンを当該酸の塩として溶離させ、吸着塔から流出する流出液を回収する、溶離工程とを含み;(1)吸着工程を行った後に(2)溶離工程を行う一連の工程が、複数回繰り返され;陽イオン交換樹脂の水素イオンを全てテトラアルキルアンモニウムイオンに置き換えたときの該陽イオン交換樹脂の体積膨潤率が1.2倍以下であり;(2)溶離工程は、流出液のうち高濃度回収液(i)を分別して回収する工程を含む、高濃度テトラアルキルアンモニウム塩溶液の製造方法。

Description

高濃度テトラアルキルアンモニウム塩溶液の製造方法
 本発明は、テトラアルキルアンモニウム塩を含有する溶液を陽イオン交換樹脂を用いて製造する新規な製造方法に関する。
 半導体、及び液晶製造工程において、ウエハー、ガラス等の基板上にパターンを形成する場合、基板表面に形成した金属層にノボラック樹脂、ポリスチレン樹脂等を含んでなる、ネガ型或いはポジ型のフォトレジストを塗布し、これに、該パターン形成用のフォトマスクを介して露光し、未硬化部分或いは硬化部分に対して、テトラアルキルアンモニウム水酸化物(以下TAA水酸化物ともいう)を主成分とする現像液を使用して現像した後、エッチングを行って上記金属層にパターンを形成する現像工程が行われており、該工程において、TAA水酸化物を含有する現像工程廃液が排出される。
 また、現像液による現像後には、基板上に残存する現像液を除去する為に超純水による洗浄が行われており、かかる洗浄工程後には、TAA水酸化物を含有する洗浄工程廃液が排出される。これら現像廃液及び洗浄工程廃液は、通常、それぞれ混合された後、TAA水酸化物含有現像廃液として排出されている。近年、半導体、及び液晶の生産量が増大するにつれて、上記現像液の消費量が増加しており、TAA水酸化物含有現像廃液の排出量も増加している。最近では、このTAA水酸化物含有現像廃液よりTAA水酸化物を回収、精製して再利用するTAA水酸化物の回収方法が提案されている。
 上記現像工程廃液と洗浄工程廃液とを混合して排出される、TAA水酸化物含有現像廃液中のTAA水酸化物濃度は、通常100~10,000ppm程度と低濃度である。
 従って、TAA水酸化物含有現像廃液から、効率良くTAA水酸化物を回収、精製して高濃度のTAA水酸化物含有溶液を得るためには、上記廃液中のTAA水酸化物濃度を高める濃縮手段が不可欠である。
 上記濃縮手段として、例えば、現像廃液中のTAA水酸化物を陽イオン交換樹脂等に接触させることによりテトラアルキルアンモニウムイオン(以下において「TAAイオン」と略記することがある。本出願において「TAA」とは「テトラアルキルアンモニウム」の略語である。)を陽イオン交換樹脂に吸着させ、次いで酸水溶液を陽イオン交換樹脂に接触させることによりTAAイオンを該樹脂より溶離させて、TAA塩水溶液を得る方法が提案されている(特許文献1参照)。
 TAA水酸化物を含むフォトレジスト廃液を、イオン交換樹脂を充填した複数の吸着槽に直列に通流させることによりTAAイオンをイオン交換樹脂に吸着させた後、上記複数の吸着槽に再生液を流通させることによりTAAイオンをイオン交換樹脂から溶離する方法も提案されている(特許文献2参照)。
 上記特許文献1及び2に記載の方法は、酸水溶液によるTAAイオンの溶離が、陽イオン交換樹脂に接触させた現像廃液よりも少量の酸水溶液で可能であるため、結果としてTAAイオンを現像廃液よりも高い濃度で含有するTAA塩水溶液を得ることが可能である。
 そして、得られたTAA塩水溶液は更に濃縮されて電気分解等によりTAA水酸化物の水溶液に変換される。
特開平6-142649号公報 特開2004-66102号公報
 以上のとおり、陽イオン交換樹脂を使用することで、TAAイオンを現像廃液よりも高い濃度で含有するTAA塩水溶液を回収することができるが、回収されたTAA塩水溶液を次の電気分解工程に供給するためには更なる濃縮が必要であり、一般には蒸発等により40~60質量%まで濃縮が行われている。従って、生産効率向上及び濃縮コスト削減の点からは、陽イオン交換樹脂より得られるTAA塩水溶液の濃度をさらに高めることが望ましい。
 本発明者らは、現像廃液中のTAA水酸化物を陽イオン交換樹脂等に接触させることによりTAAイオンを陽イオン交換樹脂に吸着させ、次いで溶離液としての酸水溶液を陽イオン交換樹脂に接触させることによりTAAイオンを該樹脂より溶離させてTAA塩水溶液を得る方法において、水素イオンを全てTAAイオンに置き換えた時の体積膨潤率が小さい水素イオン型の陽イオン交換樹脂を用いることにより、陽イオン交換樹脂が充填された充填塔内における溶離液の酸濃度の低下を低減することが可能となり、結果として、流出液中のTAAイオン濃度を高めることができることを見出した。
 更に、上記流出液のうち、TAAイオンが高濃度で含まれる流出液を分別して回収することにより、よりTAAイオン濃度の高い高濃度回収液が得られること、さらには、該高濃度回収液に続き流出するTAAイオン及び酸を含む混合溶液(酸混合溶液)を酸と分別して回収し、次バッチの溶離液として酸水溶液を通液する前に通液することにより、回収される高濃度回収液中のTAAイオン濃度を更に高めることができることを見出し、本発明の完成に至った。
 本発明の一の態様は、水酸化テトラアルキルアンモニウムを含む溶液から、テトラアルキルアンモニウム塩を含有する溶液を得る、テトラアルキルアンモニウム塩溶液の製造方法であって、
 (1)水素イオンを実質的に全てテトラアルキルアンモニウムイオンに置き換えたときの体積膨潤率が1.2倍以下である水素イオン型の陽イオン交換樹脂が充填された吸着塔に、水酸化テトラアルキルアンモニウムを含む溶液を通液させることにより、該溶液中のテトラアルキルアンモニウムイオンを陽イオン交換樹脂に吸着させる、吸着工程と、
 (2)テトラアルキルアンモニウムイオンが吸着された、陽イオン交換樹脂が充填された吸着塔に、水素イオン濃度が4~6mol/Lである酸水溶液を溶離液として通液させることにより、陽イオン交換樹脂に吸着されたテトラアルキルアンモニウムイオンを上記酸の塩として溶離させ、吸着塔から流出する流出液を回収する、溶離工程とを含み、
 上記(1)吸着工程を行った後に上記(2)溶離工程を行う一連の工程が、複数回繰り返され、
 上記(2)溶離工程は、流出液のうち下記の高濃度回収液(i)を分別して回収する工程を含むことを特徴とする、高濃度テトラアルキルアンモニウム塩溶液の製造方法である。
高濃度回収液(i):
上記吸着塔からの流出液のうち、導電率計を用いて測定される該流出液の導電率の、上記酸水溶液の導電率に対する比が、第1の閾値に到達した時点から、第2の閾値に到達する時点までの流出液が回収された液。ただし上記第1の閾値及び第2の閾値は、第2の閾値が第1の閾値よりも大きい値であるように0.07~0.55の範囲から任意に選ばれる値の組である。
 上記第1の閾値は好ましくは0.07~0.13の範囲から任意に選ばれる値であり、上記第2の閾値は好ましくは0.35~0.55の範囲から任意に選ばれる値である。
 本出願において、陽イオン交換樹脂の「水素イオンを実質的に全てテトラアルキルアンモニウムイオンに置き換えたときの体積膨潤率」には、次の(a)~(j)の工程を下記順に行うことにより測定される値が適用される。
 (a)内径(直径)26mmの円柱形状を有する充填塔に、未使用のH型の陽イオン交換樹脂を200mL充填し;
 (b)上記工程(a)で充填した陽イオン交換樹脂の総交換容量の2倍当量以上の2mol/L塩酸を空間速度5h-1で充填塔に通液し;
 (c)上記工程(b)で通液した2mol/L塩酸の体積以上の体積の超純水を空間速度5h-1で充填塔に通液することにより余剰の塩酸を洗浄除去し;
 (d)充填塔内における陽イオン交換樹脂柱の高さ(以下において「H型樹脂柱高さ」ということがある。)を測定し;
 (e)上記(1)吸着工程および(2)溶離工程で吸着および溶出させるTAAイオンと同一のTAAイオンに対応するTAAHの0.5質量%水溶液を、空間速度5h-1で充填塔に通液し、該通液における通液量は上記総交換容量の2倍当量であり、かつ該通液は充填塔からの流出液を回収しながら行い;
 (f)上記工程(e)で回収した流出液中に含まれるTAAHの量(mol)を測定し;当該測定値と、上記工程(e)で通液したTAAHの量(mol)との差をとることにより、陽イオン交換樹脂に吸着されたTAAイオンの量(mol)を算出し;該吸着されたTAAイオンの量の上記交換容量に対する割合を算出し;
 (g)上記工程(f)で算出された割合が95%未満である場合には、該割合が95%以上の値に到達するまで、上記工程(e)及び(f)を繰り返して行い(ただし当該割合は交換容量に対する累積的なTAAイオン吸着量の割合とする);
 (h)上記工程(f)で算出された割合が95%以上である場合には、上記工程(c)で通液した超純水と同一量の超純水を空間速度5h-1で充填塔に通液することにより余剰のTAAHを洗浄除去し;
 (i)充填塔内における陽イオン交換樹脂柱の高さ(以下において「TAA型樹脂柱高さ」ということがある。)を測定し;
 (j)上記工程(d)で測定されたH型樹脂柱高さ、及び、上記工程(i)で測定されたTAA型樹脂柱高さから、体積膨潤率を下記式:
体積膨潤率=(TAA型樹脂柱高さ)/(H型樹脂柱高さ)
により算出する。
 上記工程(a)に関して、商業的に入手可能なH型の陽イオン交換樹脂は通常、少量の水を含んだ湿潤状態で提供されるが、工程(a)において充填される樹脂の含水量は、上記工程(j)において算出される体積膨潤率の値には影響しない。
 上記工程(d)及び(i)において陽イオン樹脂柱の高さを測定するにあたり、陽イオン樹脂柱の上面が平坦でない場合には、例えば樹脂柱の上から少量の超純水を追加してから樹脂柱に振動を加える等の操作により樹脂柱の上面を平坦にした上で、陽イオン樹脂柱の高さを測定する。
 上記工程(f)における、流出液中のTAAH量の測定は、例えば中和滴定や、導電率測定、イオンクロマトグラフィー等により行うことができる。
 なお上記(a)~(j)の各工程はいずれも常温(25℃)で行うものとする。
 本発明において、上記(2)溶離工程が、下記の酸混合液(ii)を分別して回収する工程をさらに含み、
 当該酸混合液(ii)が回収された(2)溶離工程の次回以降に行われる1回又は複数回の(2)溶離工程において、当該酸混合液(ii)の実質的な全量が、吸着塔に酸水溶液を通液する前の溶離液として吸着塔に通液されることが好ましい。
酸混合液(ii):
上記高濃度回収液(i)を回収した後の連続した流出液のうち、高濃度回収液(i)の回収を停止した時点から、導電率計を用いて測定される該流出液の導電率の、上記酸水溶液の導電率に対する比が、0.8~0.95の範囲から任意に選ばれる第3の閾値に到達する時点までの流出液が回収された液。
 ここで「当該酸混合液(ii)が回収された(2)溶離工程の次回以降に行われる1回又は複数回の(2)溶離工程」は、当該酸混合液(ii)が回収された(2)溶離工程の次の回に行われる(2)溶離工程を含んでいても含んでいなくてもよく、当該酸混合液(ii)が回収された(2)溶離工程の次の回に行われる(2)溶離工程のみであってもよい。
 酸混合液(ii)の実質的な全量が「当該酸混合液(ii)が回収された(2)溶離工程の次回以降に行われる複数回の(2)溶離工程において」通液されるとは、当該酸混合液(ii)の通液が当該複数回の(2)溶離工程に分けて行われ、当該複数回の(2)溶離工程にわたる当該酸混合液(ii)の通液量の合計が、当該酸混合液(ii)の実質的な全量であることを意味する。
 「実質的な全量」とは、不可避的な損失(例えば蒸発や、配管または貯留槽内壁への付着等。)を除く全量を意味する。ある回の(2)溶離工程において回収された酸混合液(ii)の通液がその後の複数回の(2)溶離工程に分割して行われる態様は、例えば、複数回の(2)溶離工程にわたって回収された酸混合液(ii)が同一の貯留槽に集められて混合液を形成し、一回の(2)溶離工程につき当該貯留槽内の混合液のうち或る割合を占める量が通液に用いられる形態を包含する。そのような形態においては、一回の(2)溶離工程において回収された酸混合液(ii)が当該混合液中に残留している量は、その後の複数回の(2)溶離工程を経ることによって指数関数的にゼロに漸近する。一回の(2)溶離工程において回収された酸混合液(ii)の「実質的な全量」が通液されるとは、そのような複数回の(2)溶離工程にわたる使用量が累積的に、不可避的な損失を除く全量に漸近する態様を包含する概念であり、具体的には全量の90%以上、好ましくは95%以上が通液に供されることを意味する。
 上記酸混合液(ii)は、当該酸混合液(ii)が回収された(2)溶離工程の次の回の(2)溶離工程において、吸着塔に酸水溶液を通液する前の溶離液として、その全量を吸着塔に通液することもできる。
 上記酸混合液(ii)の吸着塔への通液は、
 当該酸混合液(ii)に酸を加えることにより、酸濃度を水素イオン濃度で4~6mol/Lに調整した調整液を得る工程と、
 該調整液を、上記酸水溶液を通液する前の溶離液として、吸着塔に通液する工程と
を含むことが好ましい。
 本発明において、上記(2)溶離工程が、下記の回収酸(iii)を分別して回収する工程をさらに含み、
 該回収酸(iii)が回収された(2)溶離工程の次回以降に行われる1回又は複数回の(2)溶離工程において、吸着塔に溶離液として通液する酸水溶液の濃度が、該回収酸(iii)を用いて調整されることが好ましい。
回収酸(iii):
上記酸混合液(ii)を回収した後の連続した流出液のうち、酸混合液(ii)の回収を停止した時点から、導電率計を用いて測定される該流出液の導電率が低下し始めた後に、該流出液の導電率の、上記酸水溶液の導電率に対する比が、0.5~0.95の範囲から任意に選ばれる第4の閾値に到達する時点までの流出液を回収した液。
 上記回収酸(iii)は、該回収酸(iii)が回収された(2)溶離工程の次の回の(2)溶離工程において、吸着塔に溶離液として通液する上記酸水溶液の濃度を調整するために用いることができる。
 本発明の方法によれば、高められたTAAイオン濃度を有するTAA塩溶液を回収することができる。その結果、TAA塩溶液を電気分解工程に供給するにあたり好適な濃度にまでTAA塩溶液を濃縮する工程において必要な時間及びエネルギーを低減できるので、費用の節減が可能である。
 TAAイオンが高濃度で含まれる上記高濃度回収液(i)に続き、酸混合液(ii)を分別して回収し、次回以降のバッチでの酸水溶液の前の溶離液として用いる形態によれば、TAAイオンをより効率的に回収しつつ、酸の消費量を低減することが可能になる。中でも酸混合液(ii)の酸濃度を水素イオン濃度で4~6mol/Lに調整した調整液を次回以降のバッチでの酸水溶液の前の溶離液として用いる形態によれば、高濃度回収液(i)中のTAAイオン濃度をさらに高めることが可能になる。
 また、さらに回収酸(iii)を分別して回収し、溶離液の酸濃度の調整に用いる形態によれば、酸の消費量を低減できるほか、回収酸(iii)を回収した後の流出液は、TAA塩を殆ど含有しない希薄な酸水溶液であるため、排水処理が容易となり、排水処理にかかる費用の節減も可能になる。
実施例1における分別液の塩化テトラメチルアンモニウム(TMACl)濃度およびHCl濃度および導電率比の推移を示すグラフである。 本発明の高濃度テトラアルキルアンモニウム塩溶液の製造方法のための設備の一形態を示す模式図である。
 本発明は、水酸化テトラアルキルアンモニウム(TAAH)を含む溶液から高濃度のテトラアルキルアンモニウム塩(TAA塩)溶液を製造する方法において、該TAAH溶液を陽イオン交換樹脂と接触させて、TAAイオンを該陽イオン交換樹脂に吸着させた後、該吸着塔に溶離液を通液して、吸着塔から流出する流出液を回収する方法であって、上記陽イオン交換樹脂として、水素イオンを全てテトラアルキルアンモニウムイオンに置き換えた時の体積膨潤率が小さい水素イオン型の陽イオン交換樹脂を用いて、吸着塔からの流出液のなかでもTAAイオン濃度が高い流出液を高濃度回収液(i)として分別して回収することを大きな特徴とする。
 (水酸化テトラアルキルアンモニウムを含む溶液)
 本発明において、水酸化テトラアルキルアンモニウム(TAAH)を含む溶液は、特に制限されるものではないが、半導体製造工程、液晶ディスプレイ製造工程等で発生するフォトレジスト現像廃液であることが好ましい。これら廃液は、露光後のフォトレジストをアルカリ現像液で現像する際に排出される廃液であり、フォトレジスト、TAAH、及び、金属イオンを主として含んでいる。なお、このような廃液は水溶液であるのが通常である。
 フォトレジスト現像廃液は、通常、pHが10~14のアルカリ性を呈しており、フォトレジストはアルカリ性の現像廃液中では、そのカルボキシル基、フェノール性水酸基等の酸基が酸解離して溶解している。フォトレジストの主なものとして、感光剤o-ジアゾナフトキノンの光分解により生成するインデンカルボン酸やノボラック樹脂由来のフェノール類が挙げられる。
 ここで、半導体製造、及び液晶ディスプレイ製造における現像工程から排出される代表的な廃液について詳細に説明する。現像工程では、通常、枚葉式の自動現像装置が多用されているが、この装置ではTAAHを含む現像液を使用する工程とその後の純水によるリンス(基板洗浄)が同じ槽内で行われ、この際にリンス工程では現像液の2~100倍の量の純水が使用される。そのため、現像工程で使用された現像液は、通常2~100倍に希釈された廃液となる。その結果、この現像工程で排出される廃液の組成は、TAAHが0.01~1質量%程度であり、フォトレジストが10~100ppm程度であり、また界面活性剤が0~数10ppm程度のものとなる。また、その他の工程の廃液が混入する場合もあり、TAAH濃度が、上記範囲の中でもさらに低くなることもある。具体的には、0.05質量%以下(0.01~0.05質量%程度)となる場合もある。特に、液晶ディスプレイ製造工程から排出されるフォトレジスト現像廃液は、TAAH濃度が0.01~0.5質量%となる場合が多く、本発明の方法は、このようなフォトレジスト現像廃液からTAA塩を製造するのに特に好適に採用できる。
 また、フォトレジスト現像廃液には、複数の金属イオンが含まれる。例えば、1価のイオンとしては、ナトリウム、カリウム等、2価のイオンとしては、カルシウム、亜鉛等、その他多価イオンとしては、アルミニウム、ニッケル、銅、クロム、鉄等がフォトレジスト現像廃液中に代表的に多く含まれる金属である。このような金属は、フォトレジスト現像廃液中に0.1~100ppb程度含まれているのが通常である。
 フォトレジスト現像廃液中のTAAHは、各種電子部品の製造等の際に使用するフォトレジストの現像液に用いられるアルカリである。TAAHの具体例としては、水酸化テトラメチルアンモニウム(以下において「TMAH」と略記することがある。)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム、水酸化トリエチル(2-ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2-ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2-ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化テトラ(2-ヒドロキシエチル)アンモニウム等を挙げることができる。中でも、TMAHが最も汎用的に使用されている。
 (陽イオン交換樹脂にテトラアルキルアンモニウムイオンを吸着させる工程)
 本発明においては、上記の如き水酸化テトラアルキルアンモニウム(TAAH)を含む溶液を、水素イオンを実質的に全てテトラアルキルアンモニウムイオンに置き換えた時の体積膨潤率が1.2倍以下である水素イオン型(以下「H型」とも称す)の陽イオン交換樹脂が充填された吸着塔に通液して、該陽イオン交換樹脂にTAAイオンを吸着させる。
 TAAイオンは陽イオンであるから、H型の陽イオン交換樹脂と接触させることにより、該陽イオン交換樹脂の有する水素イオンとイオン交換を起こして該樹脂に吸着される。従って、H型の陽イオン交換樹脂により効率よく廃液からTAAイオンを回収することができる。特にTAAHの濃度が低い場合の廃液においても、TAAイオンを低コストで回収することができる。
 一方、廃液中に溶解しているフォトレジスト由来の有機物成分は通常、陰イオンの形態であるため陽イオン交換樹脂には吸着され難く、大部分は除去されるものの、一部はイオン交換樹脂に吸着する。そのため、引き続き行うTAA塩の回収工程で、TAA塩溶液に混入する可能性がある。なおこのような有機成分の除去については後述する。
 (陽イオン交換樹脂)
 本発明において、上記TAAイオンを吸着させるH型の陽イオン交換樹脂は体積膨潤率が1.2倍以下の陽イオン交換樹脂である。本発明において上記体積膨潤率は、該陽イオン交換樹脂の水素イオンを実質的に全てテトラアルキルアンモニウムイオンに置き換えたときの体積膨潤率であって、水素イオンが吸着したときの(すなわちH型の)陽イオン交換樹脂の体積を基準(すなわち1倍)とした値である。
 陽イオン交換樹脂は、TAAイオンを吸着すると多かれ少なかれ膨潤し、同時に水を内部に取り込む。陽イオン交換樹脂からTAAイオンが溶離して陽イオン交換樹脂がH型に戻ると、陽イオン交換樹脂はTAAイオンを吸着する前の体積に収縮し、同時に内部に保持していた水を放出する。体積膨潤率が大きい陽イオン交換樹脂を用いた場合、TAAイオン溶離時の陽イオン交換樹脂の収縮の際に陽イオン交換樹脂が放出する水によって、得られるTAA塩溶液が大幅に希釈されてしまうため、本発明が目的とする高濃度のTAA塩溶液を得ることができない。
 上記陽イオン交換樹脂の構造はゲル型であってもMR型(マクロポーラス型)であってもよい。樹脂の形状も、粉状、粒状、膜状、繊維状等のいずれでもよい。
 陽イオン交換樹脂は、通常、対イオンが水素イオン(H型)かナトリウムイオン(Na型)である状態で市販されているが、最終的に得られるTAAH溶液へのナトリウムイオンの混入を防ぐ観点、及び、TAAイオンの吸着効率を向上させる観点から、対イオンを水素イオンとしたH型の陽イオン交換樹脂を使用する。Na型で市販されている陽イオン交換樹脂を使用する場合、使用に際して予め陽イオン交換樹脂に塩酸や硫酸等の酸を通液し、水で充分洗浄するなどして、対イオンを水素イオンとして使用する。洗浄に用いる水としては、純水または超純水が用いられる。特に超純水を用いることにより、陽イオン交換樹脂の汚染を抑制でき、より高純度のTAA塩溶液が得られるため、陽イオン交換樹脂の洗浄には超純水を好ましく用いることができる。
 本発明において使用可能な陽イオン交換樹脂であって商業的に入手可能なものの具体例としては、強酸性陽イオン交換樹脂のロームアンドハース社製のアンバーライトIR120B、アンバーライトIR124、アンバーリスト15JWET、三菱化学社製のダイヤイオンSK1B、ダイヤイオンSK110、ダイヤイオンSK112、ダイヤイオンPK228、住化ケムテックス社製デュオライトC255LFH、ランクセス社レバチットモノプラスS100、ピュロライト社ピュロライトC160などを挙げることができる。
(1)吸着工程
 (陽イオン交換樹脂を充填した吸着塔へ溶液を通液し、TAAイオンを陽イオン交換樹脂に吸着させる工程)
 本発明においては、上記のH型の陽イオン交換樹脂を充填した吸着塔へ、TAAHを含む溶液を通液させて陽イオン交換樹脂と接触させることによって、TAAイオンを陽イオン交換樹脂に吸着させる。
 TAAHを含む溶液を陽イオン交換樹脂を充填した吸着塔へと通液させる方法としては、公知の方法を特に制限なく採用することができ、詳細は陽イオン交換樹脂の種類や形状に応じて決めることができる。具体的には、例えば、吸着塔に陽イオン交換樹脂を充填して溶液を連続的に通過させる吸着塔方式を好ましく採用することができる。吸着塔方式を採用する場合、その条件は陽イオン交換樹脂の性能等に応じて適宜決定すればよいが、効率よくTAAイオンを吸着するためには、例えばTAAHの含有量が0.01~1質量%の溶液を通液する場合には、吸着塔の高さ(L)と吸着塔直径(内径D)との比(L/D)を0.5~30、溶液の空間速度(SV)を1~200h-1とすることが好ましい。
 なお通液する溶液量は、吸着塔に充填した陽イオン交換樹脂の総交換容量相当以上のTAAイオンを含む量とすることが、高濃度のTAA塩を製造できる点で好ましい。その場合、例えば同量の陽イオン交換樹脂を充填した吸着塔を2塔直列で設置し、1塔目から流出したTAAイオンを含む液を2塔目に通液することで、TAAイオンを系外に漏洩させることなく処理することができる。
 なお、陽イオン交換樹脂の交換容量以上の量の陽イオンが含まれている溶液の通液する際に、TAAイオンが吸着されずに流出(破過)してしまっているか否かは、吸着塔中を通過して流出してくる液中のTAAイオン濃度をイオンクロマトグラフィー法で分析することにより確認可能である。より簡便には、通過した液のpHを測定することにより確認可能である。TAAイオンが吸着されずに吸着塔中を通過すると、通過した液のpHがアルカリ性となるため、pHメーターによっても確認することが可能である。また、吸着塔中を通過した液にTAAイオンが含まれている場合、液の導電率が上昇するため、導電率によっても破過の有無を確認することが可能である。
 また、吸着塔中での陽イオン交換樹脂の占める体積によって、TAAイオンの吸着を確認することも可能である。陽イオン交換樹脂の対イオンが水素イオンからTAAイオンに置き換わると、陽イオン交換樹脂の種類に応じた所定の膨潤率で陽イオン交換樹脂の体積が膨潤する。従って、用いた陽イオン交換樹脂の体積により、TAAイオンの吸着を確認することができる。
(2)溶離工程
 (テトラアルキルアンモニウムイオンを吸着させた陽イオン交換樹脂からテトラアルキルアンモニウム塩を回収する溶離工程)
 本発明においては、TAAイオンを陽イオン交換樹脂に吸着させた後、該陽イオン交換樹脂を充填した吸着塔に溶離液として酸水溶液を通液して、吸着塔から流出する回収液を回収してテトラアルキルアンモニウム塩を製造する。
 酸水溶液を吸着塔の一端から吸着塔に導入し、他端から液を流出させながら通液することにより、該酸水溶液に含まれる大過剰の水素イオンとTAAイオンとの置換が進行し、TAAイオンが溶離液として用いた酸の塩として吸着塔から流出してくる。
 本発明の溶離液として用いられる酸水溶液の水素イオン濃度は4~6mol/Lであり、好ましくは5~6mol/Lである。酸水溶液はその水素イオン濃度が上記範囲内である限りにおいて特に制限されないが、TAA塩をより高濃度で回収する観点からは、効率よくTAAイオンと置換される意味で、解離乗数Kの大きい強酸を用いることが好ましい。また、本発明により製造されたTAA塩溶液を、後工程である電解工程に供してTAAHへと変換する際に、TAA塩以外の有機成分の混入等による悪影響が生じにくい点で、溶離液として用いる酸水溶液は無機酸であることが好ましい。具体的には、塩酸、硫酸等が好適に使用される。
 本発明において用いる上記酸水溶液を構成する溶媒は、特に限定されないが、アルカリ金属塩の溶解しやすさ、コスト及びTAAHの製造のための電解に際して悪影響を及ぼさない等の点で水であることが好ましい。当該水としてはイオン交換水、純水、超純水等が使用できる。
 また溶離液としての酸水溶液の通液速度は特に制限されるものではなく、吸着塔の寸法、陽イオン交換樹脂の種類や使用量、酸水溶液の水素イオン濃度等に応じて、適宜選択できる。ただし好ましくは、酸水溶液の空間速度(SV)として1~50h-1である。通液速度がこれより小さい場合、処理に時間がかかり生産効率が低下する傾向にある。
 酸水溶液とTAAイオンを対イオンとして有する陽イオン交換樹脂とを接触させる方法としては、吸着塔に該陽イオン交換樹脂を充填し、TAAHを含む溶液および酸水溶液を連続的に通過させる吸着塔方式が好ましい。吸着塔方式を採用する場合、作業が効率的に実施できることから、同一吸着塔を用い、該吸着塔内に充填された陽イオン交換樹脂にTAAイオンを吸着させた後、引き続いて酸水溶液を通過させることが好ましい。
 (流出液の回収)
 上述の酸水溶液の通液により、吸着塔の一端からTAAイオンが、用いた酸の陰イオン(例えば塩酸であればCl、硫酸であればSO 2-など)を対イオンとしてTAA塩として流出(溶離)してくるので、当該流出液を貯留槽に回収する。
 本発明の大きな特徴は、当該流出液の中でもTAA塩が高濃度で含まれる流出液を高濃度回収液(i)として分別して回収することにある。該高濃度回収液(i)を回収するにあたっては、導電率計を用いて上記吸着塔からの流出液の導電率を測定し、その導電率の値によって流出液の高濃度回収液回収槽への回収の開始および終了を決定する。
 以下、高濃度回収液(i)の回収方法について詳しく説明する。
 予め、溶離液として用いる酸水溶液の導電率を測定しておく。そして、流出液の導電率の値を測定し、その値の上記酸水溶液の導電率の値に対する比が、第1の閾値に到達した時点から高濃度回収液回収槽への回収を開始し、第2の閾値に到達した時点で該回収槽への回収を停止する。ここで上記第1及び第2の閾値は、第2の閾値が第1の閾値よりも大きい値であるように0.07~0.55の範囲から任意に選ばれる値の組である。TAA塩の回収濃度および回収効率を同時に高める観点からは、第1の閾値は0.07~0.13の範囲から任意に選ばれる値であることが好ましく、第2の閾値は0.35~0.55の範囲から任意に選ばれる値であることが好ましい。
 一般に、吸着塔に溶離液を供給すると、最初に吸着塔内の残留液が溶離液に置換されて流出する。次に、吸着塔内の残留液が溶離液で置換されると、溶離液中の水素イオンと置換されて溶離したTAAイオンがTAA塩溶液として流出し始める。そして、吸着されたTAAイオンの水素イオンによる置換が進むにつれ、置換に使用されなかった過剰分の酸(水素イオン)が流出し始めるため、流出液中の水素イオン濃度は徐々に増加し、吸着されたTAAイオンがすべて水素イオンに置換されると、溶出液である酸水溶液がそのまま流出する。
 従って、流出液の導電率の値は吸着塔内の残留液が溶離液で置換されると徐々に上昇し、水素イオンによる置換が進むにつれ用いた溶離液の導電率に近づくため、該流出液の導電率を測定することにより、水素イオンによる置換の程度を知ることができる。
 用いる溶離液の導電率を予め測定しておき、流出液の導電率の溶離液の導電率に対する比が、上記範囲から選ばれる第1の閾値に到達した時点から回収を開始し、また第2の閾値に到達した時点で回収を停止することにより、高濃度のTAA塩溶液を回収することが可能となる。
 なお、吸着塔の容量、形状、イオン交換樹脂の種類や充填量、溶離液の種類、溶離液を供給する流速等諸条件によって、流出液中のTAAイオン濃度、水素イオン濃度の挙動が若干異なる。従って、実際に用いる吸着塔において所望のTAA塩濃度の高濃度回収液(i)が得られるよう、予め実験により上記範囲内で高濃度回収液回収槽への回収を開始する導電率比(第1の閾値)、及び停止する導電率比(第2の閾値)を選択すればよい。逆に、上記条件が同一であれば、流出液中のTAAイオン濃度、水素イオン濃度の挙動も同一であるため、必ずしも毎回導電率をリアルタイムで測定する必要はない:例えば、溶離液の流量と導電率との関係が分かっている場合には、一定の量の溶離液を通液した時点で、流出液を導く回収槽を切り替える運転方法を採用することも可能である。
 流出液の導電率の値が上記回収を開始する導電率比(第1の閾値)の下限値に対応する導電率値よりも小さいうちから回収を開始すると、流出液中のTAA塩濃度の上昇が十分でない流出液が回収され、また、流出液の導電率の値が上記回収を停止する導電率比(第2の閾値)の上限値に対応する導電率値よりも高くなってから回収を停止すると、TAA塩濃度の低い流出液が回収される。いずれの場合も高濃度回収液(i)において所望のTAA濃度が保てなくなるため好ましくない。
 TAA塩をより高濃度で回収することだけを考慮するならば、回収する流出液の導電率の値の幅(第1の閾値と第2の閾値との差)をできるだけ小さくすればよいが、回収生産効率の観点からは、上記0.07~0.13の範囲内から回収を開始する導電率比(第1の閾値)を選択し、上記0.35~0.55の範囲内から回収を停止する導電率比(第2の閾値)を選択することが好ましい。
 この時、溶離液の通液開始から高濃度回収液(i)の回収開始までの流出液は、廃液として処理することができる。
 本発明において、上記高濃度回収液(i)を高濃度回収液回収槽に回収した後の連続した流出液を酸混合液(ii)として回収し、次バッチの(2)溶離工程において、TAAイオンが吸着された陽イオン交換樹脂が充填された吸着塔に、水素イオン濃度で4~6mol/lの酸水溶液を通液する前の溶離液として、当該酸混合液(ii)を全量通液することができる。
 高濃度回収液(i)を回収した後の流出液には、まだTAA塩がある程度含まれるため、上記酸混合液(ii)を回収して次バッチの溶離液としてこれを使用することは、TAA塩の回収ロスの低減および溶離液として使用する酸水溶液の消費抑制の点から、経済的に好ましい態様である。
 上記酸混合液(ii)の回収は、流出液の高濃度回収液回収槽への回収を停止すると同時に酸混合液回収槽への回収を開始し、流出液の導電率の値の、溶離液として用いる酸水溶液の導電率に対する比が、0.8~0.95の範囲から任意に選ばれる第3の閾値に到達した時点で回収を停止することにより行う。
 該酸混合液(ii)は、次バッチの(2)溶離工程において溶離液として使用することが可能である。特に、TAAイオンが吸着された陽イオン交換樹脂が充填された吸着塔に、水素イオン濃度で4~6mol/Lの酸水溶液を通液する前の溶離液として、全量通液することが好ましい。そのようにすることにより、酸混合液(ii)中のTAA塩を次バッチでの高濃度TAA塩回収液(i)中に効率よく回収することができる。
 上記酸混合溶液(ii)の回収を停止する点は特に限定されないが、TAA塩を一定濃度以上で含有する点であることが好ましい。流出液の導電率が酸水溶液の導電率に近づくにつれ、流出液中のTAA塩濃度は低下する。従って、予め実験により、酸混合溶液中のTAA塩濃度が所望の濃度となるような導電率比(第3の閾値)を決定し、流出液の導電率の酸水溶液の導電率に対する比が当該第3の閾値に達した時点で、該酸混合液回収槽への回収を停止すればよい。
 ここで第3の閾値は、0.8~0.95の範囲から選択することが好ましい。第3の閾値が0.95よりも大きい場合、酸混合液(ii)中のTAA塩濃度が低下するため、次バッチで回収される高濃度回収液(i)でのTAA塩濃度上昇への寄与が低下する。また、第3の閾値が0.8よりも小さい場合、TAA塩回収率が低下する。
 さらに、上記酸混合液(ii)に酸を加えて、水素イオン濃度が4~6mol/Lとなるよう調整し、当該調整液を溶離液として通液することができる。本発明において、TAAイオンが吸着された陽イオン交換樹脂が充填された吸着塔に水素イオン濃度が4~6mol/Lの酸水溶液を通液する前の溶離液として、当該調整液を全量通液することが最も好ましい態様である。そうすることにより、溶離液中の水素イオンに置換されて溶出するTAA塩に加え、上記調整液中に含有されるTAA塩が同時に流出してくるため、2バッチ以降において、より高濃度でTAA塩を高濃度回収液(i)中に回収することが可能になる。
 なお、(2)溶離工程において、吸着塔に溶離液として酸水溶液を通液し、もしくは、酸混合液を全量通液した後に酸水溶液を通液することにより、吸着したTAAイオンを溶離回収した後、酸混合液(ii)の回収が停止した時点で溶離液の通液を停止し、流出液の導電率が10mS/cm以下になるまで純水を供給し吸着塔内の酸を洗浄除去することが好ましい。これは次バッチの(1)吸着工程において、TAAHを含む溶液としてフォトレジスト現像廃液を用いた場合に、吸着塔内に酸が残存していると、該廃液中に含まれるフォトレジストが吸着塔内に析出し、析出したフォトレジストが陽イオン交換樹脂に吸着することにより、陽イオン交換樹脂の能力を低下させる虞があるからである。
 従って、上記純水を供給して吸着塔の酸の洗浄を行う場合、酸混合液回収槽への回収を停止した後の流出液には、低濃度のTAA塩および酸水溶液が含まれる。TAAイオンの置換が終了すると、溶離液に変えて純水が供給され、最終的に流出液は水になる。
 本発明において、流出液の酸混合液回収槽への回収を停止した後の連続した流出液を回収酸(iii)として、他の流出液と分別して回収酸回収槽へ回収し、次バッチの(2)溶離工程において溶離液として通液する酸水溶液の濃度調整用に当該回収酸(iii)を使用することができる。
 吸着塔からの流出液の酸混合液回収槽への回収を停止すると同時に、上記回収酸(iii)の回収酸回収槽への回収を開始する。そして、導電率計を用いて測定した該流出液の導電率が低下し始めた(すなわち、導電率の値の傾きがマイナスとなった)後、流出液の導電率の、溶離液として用いる酸水溶液の導電率に対する比が0.5~0.95の範囲から任意に選ばれる第4の閾値に到達した時点で回収を停止する。第4の閾値が0.5よりも小さい場合には回収酸(iii)の酸濃度が低下するので、次バッチの酸水溶液の濃度調整用に回収酸(iii)を全量使用することが難しくなる。
 上記範囲から第4の閾値を選択することにより、効率よく酸水溶液を回収することができ、且つ酸の消費量を抑制できるので経済的である。さらに、TAA塩を若干含有する上記回収酸(iii)を分別して回収することにより、該回収酸回収後の流出液にはTAA塩が殆ど含まれていない。このため、排水処理が簡便となり、排水処理コストの観点からも有利である。
 上述したように、流出液の導電率を測定し、流出液の導電率が所定の範囲から選択された閾値に達した時点で各々分別して回収する方法は特に限定されない。例えば、流出液の導電率を測定する装置の直近の下流に流路切り替えバルブを設けておき、流出液の導電率が閾値に達すると同時にバルブの流路を切り替えて、各々の回収槽へ流出液を導く方法などが挙げられる。
 流出液の導電率の測定方法としては、従来から知られている方法を特に制限なく採用することが出来る。具体的には、例えば吸着塔から流出する流出液を一定量サンプリングし、導電率計を用いて測定する方法や、流出液を貯留槽へ導く配管途中にインライン型の導電率計を設置して測定する方法等を挙げることができる。中でもインライン型の導電率計を用いることにより、液を途中で抜き出すことなく、導電率が閾値に達した瞬間に回収を停止することも可能であり、回収液のロスを抑えることができるため、インライン型の導電率計を好ましく採用できる。
 なお、導電率を測定する時間間隔は主として流出液の流量(流速)によって変更することが好ましい。高流速で溶液を流す場合、流出液の導電率の変化が急であるため、所望の性状の回収液を確実に得る観点からは導電率測定の時間間隔を短くすることが好ましい。
 (テトラアルキルアンモニウム塩から水酸化テトラアルキルアンモニウムを製造する方法)
 上記の方法にて廃液から回収した溶液に含まれるTAA塩を、電気透析、電解等に供することにより、TAAHを製造することが出来る。
 電気透析や電気分解に供する前に、得られたTAA塩溶液の精製や濃縮をさらに行う事も可能である。TAA塩溶液の精製方法としては、TAA塩溶液を陽イオン交換樹脂(但し、事前に対イオンをTAAイオンに置換したもの)及び/又はキレート樹脂に接触させることによりTAA塩溶液中の金属イオン成分を除去する方法や、TAA塩溶液を活性炭等の吸着剤或いは陰イオン交換樹脂に接触させることによりフォトレジスト等の有機物を除去する方法等を例示できる。
 また、TAA塩溶液の濃縮方法の具体例としては、電気透析、蒸発缶、逆浸透膜により濃縮する方法等を挙げることができる。生産効率を向上する観点からは、TAA濃度が60質量%程度になるまで濃縮することが好ましい。従って、本発明の方法により、濃縮前のTAA塩溶液として、TAA塩をより高濃度で含むTAA溶液を提供することは、生産効率、及び経済面において非常に有意義なことである。
 (TAAHの製造:TAA塩の電解工程)
 得られたTAA塩を電解することによりTAAHを得る電解工程としては、回収されたTAA塩の種類に応じて公知の方法を特に制限なく用いることができる。例えば、回収されたTAA塩が塩酸塩である場合には、特許第3290183号公報に記載の電気分解方法により好ましくTAA塩をTAAHに変換できる。
 本発明を具体的に説明するため以下実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
 以下の実施例および比較例においては、液晶工場より排出された水酸化テトラメチルアンモニウム(以下において「TMAH」と略記する。また「テトラメチルアンモニウム」を「TMA」と略記することがある。)含有廃液を試料液として使用した。
 導電率は電極式導電率計(測定装置:SC72(横川電機株式会社製))により測定した。
 TMACl(塩化テトラアルキルアンモニウム)濃度及びTMASO(硫酸テトラアルキルアンモニウム)濃度は、TMAイオン濃度をイオンクロマトグラフ法(測定装置:DX120(ダイオネクス社))により測定してそれぞれ換算した。
 HCl(塩酸)濃度はClイオン濃度を、HSO(硫酸)濃度はSO 2-イオン濃度をそれぞれイオンクロマトグラフ法(測定装置:DX320(ダイオネクス社))により測定して、TMAイオンと対となるClイオン及びSO 2-イオン以外の過剰なClイオン及びSO 2-イオンの濃度をそれぞれHCl濃度及びHSO濃度として換算した。
 なお、何れの値も25℃換算値を用いた。
 <実施例1>
 交換容量2.1mol/(L-樹脂)以上の強酸性陽イオン交換樹脂DIAION SK112(三菱化学社製)(H型、200mL)を直径(内径)26mmの円柱状カラムに充填した。該樹脂はテトラアルキルアンモニウムイオンを吸着した時の体積膨潤率が1.15倍である。
(吸着工程)
 上記充填塔に、12L(BV(通水倍量)=60(L/L-樹脂))の試料液(TMAH濃度:0.5質量%)を、SV(空間速度)=20h-1で通液し、TMAイオンの吸着を行った。
(水洗工程)
 次に、400mlの超純水を、SV=10h-1で通液し、カラムの水洗を行った。
(溶離工程)
 次に、溶離液として水素イオン濃度が6mol/Lの塩酸(導電率866mS/cm)を440mL通液し、水置換のため400mLの超純水をそれぞれSV=3h-1で通液して、吸着したTMAイオンをTMAClとして溶離させた。
 流出液は、40mL毎に順次分取して21区画に分別した。これらの分別液のTMACl濃度およびHCl濃度をそれぞれ測定した。その結果を表1及び図1に示した。
 A~Dまでの160mLを第1分別液とした。第1分別液の切り替えの導電率は102mS/cmであり、これは溶離液の導電率に対して0.12倍であった。
 第1分別液は、5.20質量%(0.47mol/L)のTMAClを含んでおり、廃液として処理した。
 次にE~Fまでの80mLを高濃度回収液として分別した。この高濃度回収液の切り替えの導電率は330mS/cmであり、これは溶離液の導電率に対して0.38倍であった。この高濃度回収液は、27.85質量%(2.54mol/L)のTMAClと3.03質量%(0.84mol/L)のHClを含んでいた。この高濃度回収液の濃度は、TMAH換算で23.17質量%であり、所望の高濃度回収液であった。
 次にG~Kまでの200mLを酸混合液として分別した。酸混合液の切り替えの導電率は762mS/cmであり、これは溶離液の導電率に対して0.88倍であった。この酸混合液は、10.40質量%(0.95mol/L)のTMAClと15.66質量%(4.61mol/L)のHClを含んでいた。
 次にL~Qの240mLを回収酸として分別した。この回収酸の切り替えの導電率は521mS/cmであり、これは溶離液の導電率に対して0.60倍であった。この回収酸は17.32質量%(5.14mol/L)のHClを含んでいた。
 残りのR~Uの160mLは0.14質量%(0.04mol/L)のHClを含んでおり、廃液として処理した。
 <実施例2>
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 溶離液として実施例1で回収した酸混合液200mLを通液した後、水素イオン濃度が6mol/Lの塩酸(導電率866mS/cm)を400mL通液し、水置換のため400mLの超純水をそれぞれSV=3h-1で通液して、吸着したTMAイオンをTMAClとして溶出させた。溶離液として用いる水素イオン濃度が6mol/Lの塩酸は、実施例1で回収した回収酸を用いて濃度調整を行ったものである。
 流出液は、40mL毎に順次分取して25区画に分別した。これらの分別液のTMACl濃度およびHCl濃度をそれぞれ測定した。
 はじめの160mLまでを第1分別液とした。この第1分別液の切り替えの導電率は78mS/cmであり、これは溶離液の導電率に対して0.09倍であった。この第1分別液は、3.13質量%(0.29mol/L)のTMAClを含んでおり、廃液として処理した。
 次の160mLは高濃度回収液として分別した。高濃度回収液の切り替えの導電率は338mS/cmであり、これは溶離液の導電率に対して0.39倍であった。この高濃度回収液は、27.26質量%(2.49mol/L)のTMAClと2.15質量%(0.59mol/L)のHClを含んでいた。この高濃度回収液の濃度は、TMAH換算で22.68質量%であり、所望の高濃度回収液であった。
 次の240mLは酸混合液として分別した。酸混合液の切り替えの導電率は725mS/cmであり、これは溶離液の導電率に対して0.84倍であった。この酸混合液は、11.75質量%(1.07mol/L)のTMAClと14.06質量%(4.11mol/L)のHClを含んでいた。
 次の280mLは回収酸として分別した。この回収酸の切り替えの導電率は776mS/cmであり、これは溶離液の導電率に対して0.90倍であった。この回収酸は18.11質量%(5.39mol/L)のHClを含んでいた。残りの160mLは0.27質量%(0.07mol/L)のHClを含んでおり、廃液として処理した。
 <実施例3>
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 溶離液として実施例2で回収した酸混合液(ii)を240mL通液した後、実施例2で回収した回収酸(iii)を用いて濃度調整された水素イオン濃度6mol/Lの塩酸(導電率866mS/cm)を320mL通液した以外は、実施例2と同様の操作により、吸着したTMAイオンをTMAClとして溶出させた。溶出液は実施例2と同様の操作により、表2に示した導電率比で分別を行い、表3に示す高濃度回収液を得た。
 <実施例4>
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 溶離液として実施例3で回収した酸混合液(ii)を240mL通液した後、実施例3で回収した回収酸(iii)を用いて濃度調整された水素イオン濃度6mol/Lの塩酸(導電率866mS/cm)を320mL通液した以外は、実施例2と同様の操作により、吸着したTMAイオンをTMAClとして溶出させた。溶出液は実施例2と同様の操作により、表2に示した導電率比で分別を行い、表3に示す高濃度回収液を得た。
 <実施例5>
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 溶離液として水素イオン濃度が4mol/Lの塩酸(導電率821mS/cm)を400mL通液した以外は実施例1と同様の操作により、吸着したTMAイオンをTMAClとして溶出させた。溶出液は実施例1と同様の操作により、表2に示した導電率比で分別を行い、表3に示す高濃度回収液を得た。
 <実施例6>
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 溶離液として実施例5で回収した酸混合液(ii)を200mL通液した後、実施例5で回収した回収酸(iii)を用いて濃度調整された水素イオン濃度4mol/Lの塩酸(導電率821mS/cm)を320mL通液した以外は、実施例2と同様の操作により、吸着したTMAイオンをTMAClとして溶出させた。溶出液は実施例2と同様の操作により、表2に示した導電率比で分別を行い、表3に示す高濃度回収液を得た。
 <実施例7>
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 溶離液として水素イオン濃度が6mol/Lの硫酸(導電率825mS/cm)を400mL通液した以外は実施例1と同様の操作により、吸着したTMAイオンをTMSOとして溶出させた。溶出液は実施例1と同様の操作により、表2に示した導電率比で分別を行い、表3に示す高濃度回収液を得た。
 <実施例8>
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 溶離液として実施例7で回収した酸混合液(ii)を200mL通液した後、実施例8で回収した回収酸(iii)を用いて濃度調整された水素イオン濃度6mol/Lの硫酸(導電率825mS/cm)を360mL通液した以外は、実施例2と同様の操作により、吸着したTMAイオンをTMASOとして溶出させた。溶出液は実施例2と同様の操作により、表2に示した導電率比で分別を行い、表3に示す高濃度回収液を得た。
 <実施例9>
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 実施例1で回収した酸混合液と同等の酸混合液から、濃度36質量%の塩酸を用いて、水素イオン濃度が6mol/Lに調整された酸混合液(導電率866mS/cm)を250mL調製した。該濃度調整された酸混合液は、8.33%(0.76mol/l)のTMAClを含有していた。
 溶離液として、該濃度調整された酸混合液を250mL通液した後、水素イオン濃度が6mol/Lの塩酸(導電率866mS/cm)を310mL通液した後、水置換のため400mLの超純水をそれぞれSV=3h-1で通液して、吸着したTMAイオンをTMAClとして溶出させた。流出液は、40mL毎に順次分取して24区画に分別した。これらの分別液のTMACl濃度およびHCl濃度をそれぞれ測定した。
 はじめの160mLまでを第1分別液とした。この第1分別液の切り替えの導電率は72mS/cmであり、これは溶離液の導電率に対して0.08倍であった。この第1分別液は、2.63質量%(0.24mol/L)のTMAClを含んでおり、廃液として処理した。
 次の160mLは高濃度回収液として分別した。高濃度回収液の切り替えの導電率は328mS/cmであり、これは溶離液の導電率に対して0.38倍であった。この高濃度回収液は、29.10質量%(2.66mol/L)のTMAClと2.47質量%(0.68mol/L)のHClを含んでいた。この高濃度回収液の濃度は、TMAH換算で24.21質量%であり、所望の高濃度回収液であった。
 次の200mLは酸混合液として分別した。酸混合液の切り替えの導電率は734mS/cmであり、これは溶離液の導電率に対して0.85倍であった。この酸混合液は、10.60質量%(0.97mol/L)のTMAClと14.28質量%(4.18mol/L)のHClを含んでいた。
 次の280mLは回収酸として分別した。この回収酸の切り替えの導電率は764mS/cmであり、これは溶離液の導電率に対して0.88倍であった。この回収酸は18.28質量%(5.45mol/L)のHClを含んでいた。
 残りの120mlは0.47質量%(0.13mol/L)のHClを含んでおり、廃液として処理した。
 <比較例1>
 実施例1の溶離工程の高濃度回収液の分別導電率の切り替えを変更して分別を行った。E~Hまでの120mlを高濃度回収液とした。切り替えの導電率は628mS/cmであり、これは溶離液の導電率に対して0.73倍であった。この高濃度回収液は、22.04質量%(2.16mol/L)のTMAClと7.63質量%(2.16mol/L)のHClを含んでいた。この高濃度回収液は、TMAH換算で18.34質量%であり、所望のTMACl濃度に達しなかった。
 <比較例2>
 実施例1と同様の条件にて試料液を通液しTMAイオンを吸着させて水洗を実施した。溶離液として水素イオン濃度が3mol/LのHCl(導電率730mS/cm)を通液し、表2に示した比率で流出液の分別を行った。得られた高濃度回収液は、19.22質量%(1.75mol/L)のTMAClと1.97質量%(0.54mol/L)のHClを含んでいた。この高濃度回収液は、TMAH換算で15.99質量%であり、所望のTMACl濃度に達しなかった。
 <比較例3>
 交換容量4.4mol/(L-樹脂)以上の弱酸性陽イオン交換樹脂DIAION WK-40L(三菱化学社製)(H形、200mL)を直径26mmのカラムに充填した。この樹脂はテトラアルキルアンモニウムイオンを吸着した時の体積膨潤率が2.5倍である。
(吸着工程・水洗工程)
 実施例1と同様の条件にて、試料液を通液しTMAイオンを吸着させて水洗を実施した。
(溶離工程)
 次に、溶離液として水素イオン濃度が6mol/LのHCl(導電率866mS/cm)を750mL通液し、水置換のため600mLの超純水をそれぞれSV=3h-1で通液して、吸着したTMAイオンをTMAClとして溶離させた。
 流出液は、50mL毎に順次分取して24区画に分別した。これらの分別液のTMACl濃度およびHCl濃度をそれぞれ測定した。
 はじめの350mLまでを第1分別液とした。第1分別液の切り替えの導電率は82mS/cmであり、これは溶離液の導電率に対して0.09倍であった。該第1分別液は、1.3質量%(0.12mol/L)のTMAClを含んでおり、廃液として処理した。
 次の200mLは高濃度回収液として分別した。高濃度回収液の切り替えの導電率は336mS/cmであり、これは溶離液の導電率に対して0.39倍であった。この高濃度回収液は、18.35質量%(1.67mol/L)のTMAClと1.77質量%(0.49mol/L)のHClを含んでいた。この高濃度回収液の濃度は、TMAH換算で15.26質量%であり、所望のTMACl濃度に達しなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  水酸化テトラアルキルアンモニウムを含む溶液から、テトラアルキルアンモニウム塩を含有する溶液を得る、テトラアルキルアンモニウム塩溶液の製造方法であって、
     (1)水素イオンを実質的に全てテトラアルキルアンモニウムイオンに置き換えたときの体積膨潤率が1.2倍以下である水素イオン型の陽イオン交換樹脂が充填された吸着塔に、水酸化テトラアルキルアンモニウムを含む溶液を通液させることにより、該溶液中のテトラアルキルアンモニウムイオンを前記陽イオン交換樹脂に吸着させる、吸着工程と、
     (2)前記テトラアルキルアンモニウムイオンが吸着された、前記陽イオン交換樹脂が充填された吸着塔に、水素イオン濃度が4~6mol/Lである酸水溶液を溶離液として通液させることにより、前記陽イオン交換樹脂に吸着されたテトラアルキルアンモニウムイオンを前記酸の塩として溶離させ、前記吸着塔から流出する流出液を回収する、溶離工程とを含み、
     前記(1)吸着工程を行った後に前記(2)溶離工程を行う一連の工程が、複数回繰り返され、
     前記(2)溶離工程は、前記流出液のうち高濃度回収液(i)を分別して回収する工程を含み、
     前記高濃度回収液(i)は、前記吸着塔からの流出液のうち、導電率計を用いて測定される該流出液の導電率の、前記酸水溶液の導電率に対する比が、第1の閾値に到達した時点から、第2の閾値に到達する時点までの流出液が回収された液であり、前記第1の閾値及び前記第2の閾値は、前記第2の閾値が前記第1の閾値よりも大きい値であるように0.07~0.55の範囲から任意に選ばれる値の組である、
    高濃度テトラアルキルアンモニウム塩溶液の製造方法。
  2.  前記第1の閾値が、0.07~0.13の範囲から任意に選ばれる値であり、
     前記第2の閾値が、0.35~0.55の範囲から任意に選ばれる値である、
    請求項1に記載の高濃度テトラアルキルアンモニウム塩溶液の製造方法。
  3.  前記(2)溶離工程が、酸混合液(ii)を分別して回収する工程をさらに含み、
     該酸混合液(ii)が回収された前記(2)溶離工程の次回以降に行われる1回又は複数回の前記(2)溶離工程において、該酸混合液(ii)の実質的な全量が、前記吸着塔に前記酸水溶液を通液する前の溶離液として前記吸着塔に通液され、
     前記酸混合液(ii)は、前記高濃度回収液(i)を回収した後の連続した流出液のうち、前記高濃度回収液(i)の回収を停止した時点から、導電率計を用いて測定される該流出液の導電率の、前記酸水溶液の導電率に対する比が、0.8~0.95の範囲から任意に選ばれる第3の閾値に到達する時点までの流出液が回収された液である、
    請求項1又は2に記載の高濃度テトラアルキルアンモニウム塩溶液の製造方法。
  4.  前記(2)溶離工程が、酸混合液(ii)を分別して回収する工程をさらに含み、
     該酸混合液(ii)が回収された前記(2)溶離工程の次の回の前記(2)溶離工程において、前記吸着塔に前記酸水溶液を通液する前の溶離液として、前記酸混合液(ii)の全量が前記吸着塔に通液され、
     前記酸混合液(ii)は、前記高濃度回収液(i)を回収した後の連続した流出液のうち、前記高濃度回収液(i)の回収を停止した時点から、導電率計を用いて測定される該流出液の導電率の、前記酸水溶液の導電率に対する比が、0.8~0.95の範囲から任意に選ばれる第3の閾値に到達する時点までの流出液が回収された液である、
    請求項1又は2に記載の高濃度テトラアルキルアンモニウム塩溶液の製造方法。
  5.  前記酸混合液(ii)の前記吸着塔への通液が、
     前記酸混合液(ii)に酸を加えることにより、酸濃度を水素イオン濃度で4~6mol/Lに調整した調整液を得る工程と、
     該調整液を、前記酸水溶液を通液する前の溶離液として、前記吸着塔に通液する工程と
    を含む、
    請求項3又は4に記載の高濃度テトラアルキルアンモニウム塩溶液の製造方法。
  6.  前記(2)溶離工程が、回収酸(iii)を分別して回収する工程をさらに含み、
     該回収酸(iii)が回収された前記(2)溶離工程の次回以降に行われる1回又は複数回の前記(2)溶離工程において、前記吸着塔に溶離液として通液する前記酸水溶液の濃度が該回収酸(iii)を用いて調整され、
     前記回収酸(iii)は、前記酸混合液(ii)を回収した後の連続した流出液のうち、前記酸混合液(ii)の回収を停止した時点から、導電率計を用いて測定される該流出液の導電率が低下し始めた後に、該流出液の導電率の、前記酸水溶液の導電率に対する比が、0.5~0.95の範囲から任意に選ばれる第4の閾値に到達する時点までの流出液を回収した液である、
    請求項1~5のいずれかに記載の高濃度テトラアルキルアンモニウム塩溶液の製造方法。
  7.  前記(2)溶離工程が、回収酸(iii)を分別して回収する工程をさらに含み、
     該回収酸(iii)が回収された前記(2)溶離工程の次の回の前記(2)溶離工程において、前記吸着塔に溶離液として通液する前記酸水溶液の濃度が該回収酸(iii)を用いて調整され、
     前記回収酸(iii)は、前記酸混合液(ii)を回収した後の連続した流出液のうち、前記酸混合液(ii)の回収を停止した時点から、導電率計を用いて測定される該流出液の導電率が低下し始めた後に、該流出液の導電率の、前記酸水溶液の導電率に対する比が、0.5~0.95の範囲から任意に選ばれる第4の閾値に到達する時点までの流出液を回収した液である、
    請求項1~5のいずれかに記載の高濃度テトラアルキルアンモニウム塩溶液の製造方法。
PCT/JP2014/066592 2013-06-24 2014-06-23 高濃度テトラアルキルアンモニウム塩溶液の製造方法 WO2014208509A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-131521 2013-06-24
JP2013131521A JP2016153373A (ja) 2013-06-24 2013-06-24 高濃度テトラアルキルアンモニウム塩溶液の製造方法

Publications (1)

Publication Number Publication Date
WO2014208509A1 true WO2014208509A1 (ja) 2014-12-31

Family

ID=52141843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066592 WO2014208509A1 (ja) 2013-06-24 2014-06-23 高濃度テトラアルキルアンモニウム塩溶液の製造方法

Country Status (3)

Country Link
JP (1) JP2016153373A (ja)
TW (1) TWI583658B (ja)
WO (1) WO2014208509A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348117A (zh) * 2015-12-23 2016-02-24 山西翔宇化工有限公司 一种回收四甲基氢氧化铵的方法及装置
CN113200869A (zh) * 2021-04-28 2021-08-03 南京长江江宇环保科技有限公司 一种从半导体显影废水中回收四甲基氯化铵的方法
JP7456027B1 (ja) 2023-01-18 2024-03-26 三福化工股▲分▼有限公司 現像廃液中の水酸化テトラメチルアンモニウムを回収して含窒素化合物を除去する方法及びその装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167160A (ja) * 1989-11-22 1991-07-19 Sumitomo Chem Co Ltd 水酸化第四級アンモニウム水溶液の精製方法
JPH06154749A (ja) * 1992-11-26 1994-06-03 Tama Kagaku Kogyo Kk 廃液から水酸化有機第四アンモニウムを回収する方法
JP2000319233A (ja) * 1999-05-10 2000-11-21 Lion Akzo Kk ハロゲン化第四級アンモニウム塩溶液の精製方法
JP2011012044A (ja) * 2009-06-03 2011-01-20 Tokuyama Corp 水酸化テトラアルキルアンモニウムの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508940B1 (en) * 2000-10-20 2003-01-21 Sachem, Inc. Process for recovering onium hydroxides from solutions containing onium compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167160A (ja) * 1989-11-22 1991-07-19 Sumitomo Chem Co Ltd 水酸化第四級アンモニウム水溶液の精製方法
JPH06154749A (ja) * 1992-11-26 1994-06-03 Tama Kagaku Kogyo Kk 廃液から水酸化有機第四アンモニウムを回収する方法
JP2000319233A (ja) * 1999-05-10 2000-11-21 Lion Akzo Kk ハロゲン化第四級アンモニウム塩溶液の精製方法
JP2011012044A (ja) * 2009-06-03 2011-01-20 Tokuyama Corp 水酸化テトラアルキルアンモニウムの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348117A (zh) * 2015-12-23 2016-02-24 山西翔宇化工有限公司 一种回收四甲基氢氧化铵的方法及装置
CN113200869A (zh) * 2021-04-28 2021-08-03 南京长江江宇环保科技有限公司 一种从半导体显影废水中回收四甲基氯化铵的方法
CN113200869B (zh) * 2021-04-28 2023-06-23 南京长江江宇环保科技股份有限公司 一种从半导体显影废水中回收四甲基氯化铵的方法
JP7456027B1 (ja) 2023-01-18 2024-03-26 三福化工股▲分▼有限公司 現像廃液中の水酸化テトラメチルアンモニウムを回収して含窒素化合物を除去する方法及びその装置

Also Published As

Publication number Publication date
TW201509885A (zh) 2015-03-16
JP2016153373A (ja) 2016-08-25
TWI583658B (zh) 2017-05-21

Similar Documents

Publication Publication Date Title
JP5887279B2 (ja) テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法
JP5717997B2 (ja) テトラアルキルアンモニウム塩水溶液の製造方法
WO2011036942A1 (ja) 水酸化テトラアルキルアンモニウムの製造方法
EP1337470B1 (en) Process for recovering onium hydroxides from solutions containing onium compounds
WO2014208509A1 (ja) 高濃度テトラアルキルアンモニウム塩溶液の製造方法
JP7195649B2 (ja) 酸性液の再生装置および再生方法
WO2013062100A1 (ja) テトラアルキルアンモニウム塩溶液の製造方法
JP2013119487A (ja) ケイフッ化水素酸含有液の処理方法
JPWO2008133322A1 (ja) テトラアルキルアンモニウムイオン含有現像廃液の処理方法
WO2015016230A1 (ja) テトラアルキルアンモニウム塩水溶液の製造方法
WO2011074495A1 (ja) テトラアルキルアンモニウムイオン除去廃液の再利用方法
WO2022102263A1 (ja) テトラアルキルアンモニウムイオンを含有する被処理液の精製方法および精製装置
JP4561967B2 (ja) テトラアルキルアンモニウムイオン含有排水から水を回収する方法及び装置
WO2023166999A1 (ja) 精製第4級アンモニウム化合物水溶液の製造方法
JP2003275604A (ja) イオン交換体の性能回復方法および性能回復装置
JP2013132581A (ja) アニオン交換樹脂のコンディショニング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14817006

Country of ref document: EP

Kind code of ref document: A1