WO2012090699A1 - テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法 - Google Patents

テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法 Download PDF

Info

Publication number
WO2012090699A1
WO2012090699A1 PCT/JP2011/078801 JP2011078801W WO2012090699A1 WO 2012090699 A1 WO2012090699 A1 WO 2012090699A1 JP 2011078801 W JP2011078801 W JP 2011078801W WO 2012090699 A1 WO2012090699 A1 WO 2012090699A1
Authority
WO
WIPO (PCT)
Prior art keywords
taa
solution
exchange resin
tetraalkylammonium
ions
Prior art date
Application number
PCT/JP2011/078801
Other languages
English (en)
French (fr)
Inventor
昭子 村田
直幸 梅津
誠司 東野
浩昭 平
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201180041307.0A priority Critical patent/CN103080070B/zh
Priority to JP2012550813A priority patent/JP5887279B2/ja
Priority to KR1020137005702A priority patent/KR101879370B1/ko
Publication of WO2012090699A1 publication Critical patent/WO2012090699A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Definitions

  • the present invention relates to a novel method for producing a tetraalkylammonium salt using a cation exchange resin, and a method for producing a tetraalkylammonium hydroxide using the same as a raw material.
  • Tetraalkylammonium hydroxide (hereinafter abbreviated as TAAH) is a useful compound as a standard solution for bases in non-aqueous solution titration and organic alkaline agents in organic synthesis, including phase transfer catalysts. In addition, it is used as a processing agent for cleaning a semiconductor substrate, etching, developing a photoresist, etc. in the manufacture of integrated circuits and large scale integrated circuits. In particular, in semiconductor applications, high purity TAAH containing as little impurities as possible is required because the semiconductor substrate is contaminated.
  • waste liquid used for developing the photoresist as described above contains metal ions and TAAH in addition to the photoresist.
  • TAAH is recovered from the waste liquid and reused.
  • Photoresist development waste liquid waste liquid containing photoresist and TAAH
  • methods for treating photoresist developing waste liquid have mainly been concentrated by evaporation or reverse osmosis membrane method and disposed of (incinerated or collected by a contractor), and biodegraded by activated sludge and discharged. .
  • many attempts have been proposed to recover TAAH from the waste liquid and reuse it for environmental consideration.
  • TAA ions tetraalkylammonium ions
  • hydrochloric acid is passed through the cation exchange resin to collect the TAA salt, and perchloric acid is added to the resulting solution to obtain a tetraalkylammonium perchlorate (TAA perchlorate).
  • TAA perchlorate is purified by crystallization, and then the obtained perchlorate is contacted with an anion exchange resin to recover TAAH.
  • Patent Documents 5 and 6 a technique for producing TAAH by adsorbing TAA ions to an ion exchange resin, recovering TAA salt from a dilute developing waste solution, and electrolyzing it is disclosed.
  • Patent Documents 5 and 6 since the conditions for eluting the TAA salt from the ion exchange resin are not controlled, metal ions are mixed in the obtained TAA salt solution, and as a result, the metal ions are relatively contained in the TAAH solution after electrolysis. There was a problem of mixing in a high concentration.
  • TAA ions can be recovered with high yield, but according to the study by the present inventors, it has been found that there is room for improvement in the following points.
  • the concentration of TAA ions is measured, and since recovery is performed until the concentration of TAA ions is as low as 2000 ppm, the TAA ions are adsorbed on the cation exchange resin. Most TAA ions can be recovered. However, at the time of recovery, the concentration of TAA ions decreases and at the same time, a large amount of hydrochloric acid used for recovery is mixed, and metal ions adsorbed on the resin are also mixed. Therefore, the obtained TAA salt has a large amount of impurities. There was a problem of being included.
  • the present inventors have intensively studied to solve the above problems.
  • a solution containing metal ions and tetraalkylammonium hydroxide (TAAH) is passed through an adsorption tower packed with a cation exchange resin, and the tetraalkylammonium ions are adsorbed on the cation exchange resin.
  • TAAH tetraalkylammonium hydroxide
  • the pH and / or electric conductivity of the recovered liquid flowing out is adjusted.
  • a method for producing a tetraalkylammonium (TAA) salt characterized in that a recovery amount of a recovered liquid is determined by measurement.
  • a TAAH solution having a high purity can be obtained by bringing the TAA salt thus obtained into contact with an anion exchange resin that has been previously made OH type or by performing electrolysis.
  • TAAH tetraalkylammonium hydroxide
  • the recovery amount of the TAA salt solution recovered by a simple method such as pH measurement and / or electrical conductivity measurement is determined, a highly pure TAA salt can be obtained efficiently. Therefore, it is not necessary to provide a metal removal step using a chelate resin or the like in the previous and subsequent steps, the configuration of the apparatus is simplified, and the cost is reduced.
  • a high-purity TAAH solution can be obtained by bringing the TAA salt into contact with an anion exchange resin or by performing electrolysis.
  • the present invention relates to a method for producing a tetraalkylammonium salt (TAA salt) from a solution containing metal ions and tetraalkylammonium hydroxide (TAAH), wherein the TAAH solution is contacted with a cation exchange resin, and TAA After the ions are adsorbed on the cation exchange resin, the acid solution is passed through the adsorption tower and the pH and / or electrical conductivity of the recovered liquid flowing out from the adsorption tower is measured to stop recovery of the recovered liquid. This is a method for determining the timing and obtaining the TAA salt.
  • TAA salt tetraalkylammonium salt
  • the solution containing metal ions and tetraalkylammonium hydroxide is not particularly limited as long as it contains these components (hereinafter also referred to as “raw material solution”). Since these components are contained and are generated in a large amount in the semiconductor manufacturing process, the liquid crystal display manufacturing process, and the like, the photoresist developing waste liquid discharged from the process is preferable.
  • waste liquids are waste liquids that are discharged when developing the exposed photoresist with an alkaline developer, and mainly contain photoresist, TAAH, and metal ions.
  • Photoresist developing waste liquid usually exhibits an alkalinity with a pH of 10 to 14.
  • acid groups such as carboxyl groups and phenolic hydroxyl groups are dissolved by acid dissociation.
  • main photoresist include indenecarboxylic acid produced by photolysis of the photosensitizing agent o-diazonaphthoquinone and phenols derived from novolac resin.
  • eliminated a part or all of the said photoresist component previously can also be made into object.
  • the composition of the waste liquid discharged in this development step is such that TAAH is about 0.001 to 1% by mass, resist is about 10 to 100 ppm, and surfactant is about 0 to several tens of ppm. Become.
  • waste liquids from other processes may be mixed, and the TAAH concentration may be further lowered within the above range. Specifically, it may be 0.05% by mass or less (about 0.001 to 0.05% by mass).
  • the photoresist developing waste liquid discharged from the liquid crystal display manufacturing process often has a TAAH concentration of 0.001 to 0.5% by mass, and the method of the present invention uses such a photoresist developing waste liquid from the TAA salt. It can employ
  • the photoresist developing waste liquid contains a plurality of metal ions.
  • metal ions for example, monovalent ions such as sodium and potassium, divalent ions such as calcium and zinc, and other polyvalent ions such as aluminum, nickel, copper, chromium and iron in the photoresist developing waste liquid. It is a metal that is typically contained in large quantities.
  • TAAH in the photoresist development waste liquid is an alkali used in a photoresist developer used in the production of various electronic components.
  • Specific examples of TAAH include tetramethylammonium hydroxide (hereinafter abbreviated as TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethylethylammonium hydroxide, water Dimethyldiethylammonium oxide, trimethyl (2-hydroxyethyl) ammonium hydroxide, triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide, water Examples include methyl tri (2-hydroxyethyl) ammonium oxide, ethyl tri (2-
  • Step of adsorbing tetraalkylammonium ions to cation exchange resin the raw material solution as described above is passed through an adsorption tower packed with a cation exchange resin of hydrogen ion type (hereinafter also referred to as “H type”) to adsorb TAA to the cation exchange resin. .
  • H type hydrogen ion type
  • TAA ions are cations, they are adsorbed on the resin by causing ion exchange with hydrogen ions of the cation exchange resin by contacting with the H-type cation exchange resin. Therefore, TAA ions can be efficiently recovered from the waste liquid. In particular, TAA ions can be recovered at a low cost even in a waste liquid when the concentration of TAAH is low.
  • metal ions and TAA ions that have been adsorbed on such a cation exchange resin are efficiently separated. Even metal ions are difficult to be adsorbed by cation exchange resins when the ion species containing the metal itself is an anion due to a chemical equilibrium reaction such as complex formation in the raw material solution. Discharged from the tower.
  • the raw material solution is a photoresist waste solution
  • the dissolved organic component derived from the photoresist is usually in the form of an anion, it is hardly adsorbed by the cation exchange resin and most of it is removed. Even when nonionic components are present, most of the components can be removed because they are discharged (outflow) without being adsorbed by the cation exchange resin in this step.
  • the resist remaining slightly on the cation exchange resin may be washed by flowing it with ultrapure water or a highly pure TAAH solution.
  • the cation exchange resin is not particularly limited, and known ones can be used. Specifically, both a strongly acidic cation exchange resin whose ion exchange group is a sulfonic acid group and a weakly acidic cation exchange resin whose ion exchange group is a carboxyl group can be used. Among them, it is preferable to use a weakly acidic cation exchange resin because many of them have a large ion exchange capacity and can reduce the amount of resin used. Further, in the case of a weakly acidic cation exchange resin, elution of TAA ions described later is easy.
  • the resin structure may be a gel type or an MR type (macroporous type).
  • the shape of the resin may be any of powder, granule, film, fiber and the like. In view of processing efficiency, operability, economy and the like, it is preferable to use granular styrene-based or acrylic-based cation exchange resins.
  • the counter ion of the cation exchange resin is usually marketed as a hydrogen ion (H type) or sodium ion (Na type), but it prevents the final mixing of the TAAH solution with sodium ions, and TAA In order to improve the adsorption efficiency of ions, the H type in which counter ions are hydrogen ions is preferable.
  • H type hydrogen ion
  • Na type sodium ion
  • the H type in which counter ions are hydrogen ions is preferable.
  • an acid such as hydrochloric acid or sulfuric acid through the cation exchange resin and thoroughly wash with ultrapure water before use. Are used as hydrogen ions.
  • strongly acidic cation exchange resins include Amberlite IR120B and Amberlite IR124 manufactured by Rohm and Haas, Diaion SK1B, Diaion PK228 manufactured by Mitsubishi Chemical, Duolite C255LFH manufactured by Sumika Chemtex, and LANXESS Examples include Lebatit Monoplus S100, Purolite Purolite C160, and the like.
  • Specific examples of the weakly acidic cation exchange resin include Amberlite IRC76 manufactured by Rohm and Haas, Diaion WK40L manufactured by Mitsubishi Chemical, Duolite C433LF, Duolite C476 manufactured by Sumika Chemtex, and Lebanchit CNP80WS manufactured by LANXESS. And Purolite Purolite C104.
  • the TAA ions are adsorbed on the cation exchange resin by passing the raw material solution through the adsorption tower packed with the H-type cation exchange resin and bringing it into contact with the cation exchange resin.
  • a method of passing the raw material solution through an adsorption tower filled with a cation exchange resin a conventionally known method can be appropriately employed depending on the type and shape of the cation exchange resin.
  • a cylindrical adsorption tower having an inflow hole in the upper part and an outflow hole in the lower end part is used.
  • the adsorption tower is filled with a cation exchange resin, and the raw material solution is continuously applied using gravity.
  • the method of letting it pass through is preferable.
  • the size of the adsorption tower may be appropriately determined according to the performance of the cation exchange resin.
  • the photoresist waste liquid has a TAAH content of 0.001 to 1% by mass
  • the amount of the raw material liquid to be passed is an amount that does not allow the cation exchange resin packed in the adsorption tower to break through, so that the TAA salt can be produced efficiently.
  • TAA ions flow out (breakthrough) without being adsorbed by passing a raw material solution containing an amount of cation more than the exchange capacity of the cation exchange resin.
  • This can be confirmed by analyzing the TAA ion concentration in the liquid flowing out through the ion chromatography method. More simply, the height occupied by the cation exchange resin in the adsorption tower may be measured.
  • the counter ion of the cation exchange resin is changed from a hydrogen ion to a TAA ion, the volume swells to about 2 times depending on the kind of the cation exchange resin. Therefore, the adsorption of TAA ions can be confirmed by measuring the volume of the cation exchange resin.
  • the pH of the raw material solution is 10 or more
  • the pH of the liquid that has passed through becomes alkaline, so it can also be confirmed by a pH meter.
  • the electric conductivity of the liquid is increased, so that it can also be confirmed by the electric conductivity.
  • Step of recovering tetraalkylammonium salt from cation exchange resin adsorbed tetraalkylammonium ion In the present invention, after the TAA ions are adsorbed on the cation exchange resin by the above method, the acid solution is passed through the adsorption tower filled with the cation exchange resin, and the recovered liquid flowing out from the adsorption tower is recovered. To produce a tetraalkylammonium salt.
  • the acid solution is preferably an aqueous solution in consideration of cost and the like.
  • the acid that can be used include hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, acetic acid, and the like, but strong acid such as hydrochloric acid, sulfuric acid, Nitric acid is preferred.
  • hydrochloric acid is most preferable in that it is easy to remove excess acid by concentration under reduced pressure, and has a low oxidizing power and is not easily damaged.
  • the concentration of the acid solution can be appropriately selected in the range of 0.1N to 10N, but the range of 0.5N to 4N is easy in that high-concentration TAA salt flows out and prevents metal impurities from being mixed. Particularly preferred.
  • the flow rate of the acid solution can be appropriately set according to the size of the adsorption tower, the type and amount of the cation exchange resin, the concentration of the acid solution, etc., but preferably the acid space velocity is 1 or more and 50. It is as follows. If it is smaller than this, processing takes time.
  • TAA ions flow out (elute) from one end of the adsorption tower as a TAA salt using an acid radical (for example, Cl 2 ⁇ ) corresponding to the acid used as a counter ion. Is recovered in a storage tank, and the recovered liquid is subjected to electrolysis described later.
  • an acid radical for example, Cl 2 ⁇
  • the feature of the present invention is that the pH and / or electrical conductivity of the effluent is measured, and the recovery to the storage tank is stopped when a predetermined measured value is reached.
  • the cation exchange resin in the adsorption tower adsorbs metal ions in addition to TAA ions as described above, but the time point when the pH of the effluent reaches a predetermined value and / or the electrical conductivity is specified. By stopping recovery before the width changes, the amount of mixed metal ions can be kept low.
  • the effluent from the adsorption tower may be stopped, but the flow path such as a switching valve may be changed. It is preferable that a means is provided, and when the predetermined value is reached, it is recovered to a storage tank or the like different from the storage tank.
  • the predetermined pH value varies depending on the type of acid used. For example, when hydrochloric acid, which is a strong acid, is used as acid, TAA chloride (hereinafter referred to as “TAAC”), which is an outflowing salt, is neutral. Therefore, in the state where TAA ions are sufficiently present in the adsorption tower, outflow The liquid is almost neutral (in the case of a strong acid cation exchange resin) or weakly basic to neutral (in the case of a weak acid cation exchange resin), but gradually begins to become acidic as the TAA ion decreases.
  • TAA chloride which is an outflowing salt
  • TAA ions In the equilibrium state, even if the effluent is weakly acidic, TAA ions (TAAC) are contained in the effluent, but it gradually decreases. On the other hand, as the acid flowing through the adsorption tower becomes more acidic. The elution amount of metal ions that are strongly adsorbed on the cation exchange resin gradually increases.
  • the pH of the recovered liquid flowing out from the adsorption tower is measured, and the recovery is stopped when the pH reaches a predetermined value in the range of 3 to 8.
  • a liquid having a low concentration of metal ions contained in the prepared TAA salt solution can be obtained.
  • the predetermined value is preferably set to pH 5 or more.
  • the strong acid means an acid dissociation constant pKa at 25 ° C. of 3 or less.
  • the acid to be used is a weak acid such as acetic acid or carbonic acid
  • the resulting TAA salt solution exhibits weak alkalinity, and therefore the preferred pH range for reducing the amount of metal ion contamination is 4-9.
  • the weak acid means an acid dissociation constant pKa at 25 ° C. higher than 3.
  • a conventionally known method can be appropriately employed. Specifically, for example, a certain amount of the effluent flowing out from the adsorption tower is sampled and the pH is measured using a pH test paper or an electrode-type pH meter, or in-line in the middle of the piping that leads the effluent to storage or the like. There is a method of measuring by installing a type pH meter. If an in-line type pH meter is used, the recovery can be stopped at the moment when the pH is out of the specified value without taking out the liquid halfway, and the loss of the recovered liquid can be suppressed, which is preferable.
  • the pH measurement means measuring the pH of the fluid in-line using a general glass electrode type pH meter, due to its characteristics and non-uniformity of the resin packed state in the adsorption tower, etc. Depending on the factor, blurring often occurs at about ⁇ 0.2.
  • the pH value indicated by the pH meter is statistically processed, and recovery of the effluent into the storage tank may be stopped when the statistical value reaches a predetermined value.
  • a known processing method may be adopted as appropriate. For example, a value is obtained every predetermined time (for example, 0.1 seconds), and an arithmetic average of the predetermined time (for example, 2 seconds) is obtained. Alternatively, if the geometric average value is a predetermined value, a predetermined pH value may be used. Some commercially available pH meters are equipped with such statistical processing means and have a function of displaying the pH after statistical processing. In the present invention, such a pH meter can be used as it is.
  • the time interval for statistical processing must be changed mainly by the flow rate (flow velocity) of the effluent.
  • flow rate flow velocity
  • the pH of the effluent changes rapidly, so that it is necessary to shorten the measurement interval in order to obtain a liquid having a desired property (metal ion concentration).
  • the rate of change in electrical conductivity varies depending on the type of acid used as well as pH, and also varies depending on the concentration of acid flowing through the adsorption tower. That is, the TAA salt concentration contained in the effluent from the adsorption tower is high when the acid concentration is high, and thin when it is thin.
  • concentration maintenance state When sufficient TAA ions are present in the adsorption tower, the concentration state is maintained (if the outflow rate is kept constant) and the outflow is performed (hereinafter also referred to as “concentration maintenance state”).
  • the concentration of TAA salt contained in the effluent gradually decreases and the concentration of free acid and metal salt increases.
  • the timing at which the free acid and metal salt start to be mixed is detected by measuring the electrical conductivity. It becomes possible.
  • TAA tetramethylammonium
  • 2N hydrochloric acid is used as the acid
  • SV flow rate 1
  • the liquid flowing out from the column is tetramethylammonium chloride containing no hydrochloric acid.
  • TMAC tetramethylammonium
  • it is about 80 mS / cm, and rises up to about 500 mS / cm (2N hydrochloric acid) with mixing of hydrochloric acid.
  • the electrical conductivity indicated by the electrical conductivity meter is statistically processed, and when the statistical value becomes 5% or more larger than the electrical conductivity in the concentration maintaining state, What is necessary is just to stop collection
  • a known processing method may be adopted as appropriate. For example, a value is obtained every predetermined time (for example, 0.1 seconds), and an arithmetic average of the predetermined time (for example, 2 seconds) is obtained. Alternatively, the geometric average value may be used as electric conductivity.
  • Some commercially available electric conductivity meters are equipped with such statistical processing means and have a function of displaying the electric conductivity after statistical processing. In the present invention, such an electric conductivity meter is used as it is. Is also possible.
  • the time interval for statistical processing must be changed mainly by the flow rate (flow velocity) of the effluent.
  • flow rate flow velocity
  • the electrical conductivity of the effluent changes rapidly, so that it is necessary to shorten the measurement interval in order to obtain a liquid having a desired property (metal ion concentration).
  • TAAH can be produced by subjecting the TAA salt contained in the solution recovered from the waste liquid to electrolysis or contact with an anion exchange resin having hydroxide ions as a counter ion by the above method.
  • TAA salt electrolysis process The electrolysis process of electrolyzing the obtained TAA salt to make TAAH is not particularly limited, and a known method can be used. Among them, the anode, cathode, and cation exchange described in Patent No. 2059769 It is preferable to produce by electrolysis using a membrane.
  • TAAH contact process between TAA salt and anion exchange resin
  • a method for producing TAAH by bringing a TAA salt contained in a solution recovered from waste liquid into contact with an anion exchange resin methods described in JP-A-52-003009 and Japanese Patent Application No. 2009-197778 are employed.
  • the This method is a method for producing TAAH from TAAC by contacting an anion exchange resin (OH type anion exchange resin) having a hydroxide ion as a counter ion with a TAA salt.
  • an anion exchange resin OH type anion exchange resin having a hydroxide ion as a counter ion with a TAA salt.
  • high-purity TAAH can be easily produced from TAAC without electrodialysis or electrolysis.
  • a highly pure TAA salt can be obtained. Further, compared to the conventional method, a metal ion removing step such as a chelate resin is not necessary, so that the total cost for processing can be reduced. Further, when the TAA salt is recovered from the photoresist developing waste liquid, the amount of metal impurities can be reduced to 1/10 or less of the original amount. Further, when TAAH is produced by the above method using this, the obtained TAAH can be suitably used as a developer for a liquid crystal display.
  • TMAH Tetramethylammonium hydroxide
  • TMAC tetramethylammonium chloride
  • ICS2000 manufactured by Dionex is used, the column is ION-pac CS12A for cation analysis, ION-pac AS15 is used for anion analysis, and the eluent is methanesulfonic acid for cation analysis.
  • Anion analysis was performed using potassium hydroxide.
  • the metal ion concentration contained in the solution was determined by the high frequency inductively coupled plasma mass spectrometry (ICP-MS) method (measuring device: HP-4500 (manufactured by Agilent)) and the high frequency inductively coupled plasma emission analysis (ICP-OES) method ( Measuring apparatus: Measured with iCAP 6500 DUO (manufactured by Thermo Electron Co., Ltd.).
  • ICP-MS high frequency inductively coupled plasma mass spectrometry
  • ICP-OES high frequency inductively coupled plasma emission analysis
  • the pH of the solution was measured by a pH electrode method (measuring device: HM-30R, manufactured by Toa DKK Corporation).
  • the electrical conductivity was measured using an SC meter (model number: SC72-21JAA) manufactured by Yokogawa Electric.
  • Example 1 100 ml of weakly acidic cation exchange resin Diaion WK40L (manufactured by Mitsubishi Chemical Corporation) was packed in a glass column having a diameter of 22 mm ⁇ 750 mm, and the above regeneration treatment was performed.
  • TMAH waste solution photoresist development waste solution, photoresist content, COD conversion 42 ppm, metal ion concentration Na: 9.0 ppb, Al: 4.4 ppb, K: 1.1 ppb, Ca: 12.2. 9 ppb, Cr: 5.5 ppb, Fe: 16.4 ppb, Ni: 1.2 ppb, Cu: 0.14 ppb
  • SV space velocity
  • the metal ion concentration increased from F-3 whose pH was 7 or less.
  • the total concentration of metal ions from fractions B to F-2 was 10 ppb or less for all metals
  • the TMAC concentration was 7.8% by mass (0.71 mol / l)
  • no HCl was contained.
  • the TMAC recovery rate at this time was 90.0%.
  • Example 2 TMAC was obtained in the same manner as in Example 1 except that 2N hydrochloric acid was used as the acid used for elution and the operation of the contact step with hydrochloric acid was performed under the following conditions. The results are shown in Table 2.
  • Table 2 shows that the metal ion concentration increases when the pH is 7 or less.
  • Example 3 TMAC was obtained in the same manner as in Example 1 except that 4N hydrochloric acid was used as the acid used for elution and the operation of the contact step with hydrochloric acid was performed under the following conditions. The results are shown in Table 3.
  • Table 3 shows that the metal ion concentration increases when the pH is 7 or less.
  • Example 4 The TMAC obtained by the method of Example 1 was evaporated and concentrated to prepare a 27.5% by mass TMAC solution. The obtained concentrated TMAC solution was subjected to the following electrolysis step to produce TAAH.
  • a three-chamber type electrolytic cell in which one anion exchange membrane and one cation exchange membrane (both Nafion 90209 (manufactured by DuPont)) were arranged in order from the anode was used.
  • the effective membrane area of the ion exchange membrane was 2 dm 2 , and the Nafion membrane was placed with the surface having a carboxylic acid group facing the cathode side.
  • the anode was a titanium plate plated with platinum, and the cathode was SUS316.
  • 0.5N sulfuric acid was circulated in the anode chamber of the electrolytic cell, the TMA chloride solution was circulated between the anion exchange membrane and the cation exchange membrane on the cathode side, and pure water was circulated in the cathode chamber to obtain a current density of 18A.
  • Electrolysis was continuously performed while maintaining the temperature at 40 ° C./dm 2 .
  • the concentration of tetramethylammonium hydroxide in the cathode chamber was set to 18% by mass.
  • pure water was added when the concentration increased, and the components were added when the concentration decreased, so that the concentration of the liquid circulating in each chamber became constant.
  • Table 4 shows the analysis results of the TAAH solution obtained after the start of electrolysis, after 12 hours of operation (stable), and after 3 months of continuous operation.
  • Example 5 was manufactured by electrolyzing TMAC obtained by the method of Example 2 by the method similar to Example 4.
  • FIG. The results are shown in Table 4.
  • Example 6 Regeneration treatment of cation exchange resin (H-type cation exchange resin)
  • a cation exchange resin 1000 ml is packed into a vinyl chloride column with a diameter of 50 mm ⁇ 2000 mm, and the space velocity SV when passing ultrapure water, 1N HCl (hydrochloric acid), etc. is 4 (l / hour).
  • a regeneration treatment was performed in the same manner as in Example 1 except that the amount of liquid used was changed to 5 L / L-resin.
  • the metal ion concentration increased from J-6 where the pH was 7 or less. Further, from the results in Table 6, the metal ion concentration of the combined liquid of fractionation liquids B to J-5 is 3.5 ppb or less for all metals, and the TMAC concentration is 7.7% by mass (0.71 mol / l). It was confirmed that HCl was not contained. The TMAC recovery rate at this time was 87.8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】 陽イオン交換樹脂を用いて現像廃液等からテトラアルキルアンモニウム(TAA)イオンを回収する際に、得られたTAA塩に金属イオンが混入するため、これを原料としてTAA水酸化物を得ようとしても、金属不純物が多いものしか得られない。 【解決手段】 フォトレジスト現像廃液等の金属イオンとTAAイオンとを含む溶液を、陽イオン交換樹脂とを接触させてTAAイオンを吸着させ、次いで該陽イオン交換樹脂に酸を通液してTAA塩を回収する際に、得られるTAA塩溶液のpHが規定値以下になる前および/または電気伝導度が規定幅以上変化する前に回収を停止することで、金属イオン濃度が低いTAA塩溶液が得られる。さらに、本発明は、こうして得られたTAA塩をあらかじめOH型にしておいた陰イオン交換樹脂に接触させるか又は、電気分解を行うことによって純度の高いTAAH溶液を得ることが出来る。

Description

テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法
 本発明は、陽イオン交換樹脂を用いたテトラアルキルアンモニウム塩の新規な製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法に関する。
 水酸化テトラアルキルアンモニウム(以下、TAAHと略す)は、一般に相間移動触媒をはじめとして非水溶液滴定における塩基の標液、あるいは有機合成における有機系アルカリ剤として有用な化合物である。また、集積回路や大規模集積回路の製造における半導体基板の洗浄、食刻、フォトレジストの現像などのための処理剤として使用されている。
特に、半導体向けの用途においては、半導体基板が汚染されるため、不純物を出来るだけ含有しない高純度のTAAHが要求されている。
 一方、上記のようなフォトレジストの現像に使用された廃液は、フォトレジストの他、金属イオン、及びTAAHを含んでおり、環境負荷を低減するため、該廃液からTAAHを回収し、再利用する技術が重要になってきている(以下、フォトレジスト、及びTAAHを含む廃液を「フォトレジスト現像廃液」とする場合もある)。従来、フォトレジスト現像廃液を処理する方法には、蒸発法や逆浸透膜法により濃縮し廃棄処分(焼却または業者引取り)する方法、活性汚泥により生物分解処理し放流する方法が主流であった。しかしながら、上記の通り、環境への配慮から該廃液からTAAHを回収し、再利用する試みが数多く提案されている。
 具体的には、濃縮した廃液、あるいは、もともとTAAH濃度が高い現像廃液については、中和処理してフォトレジスト成分を除去した後、電気透析、又は電気分解を行い、TAAHを回収する方法が知られている(例えば、特許文献1乃至3参照)。しかし、TAAHの濃度が低い廃液を処理する場合、電気透析、又は電気分解に供する濃度条件までTAAH廃液を濃縮する必要があるため、これらの方法に対し、電気透析、または電気分解を行わず、フォトレジスト現像廃液からTAAHを回収する方法(特許文献4参照)が提案されている。具体的な方法として、先ず、フォトレジスト現像廃液と陽イオン交換樹脂とを接触させることにより、テトラアルキルアンモニウムイオン(TAAイオン)を陽イオン交換樹脂に吸着させる。次いで、該陽イオン交換樹脂に塩酸を通液してTAA塩を回収し、得られた溶液に、過塩素酸を加えテトラアルキルアンモニウム過塩素酸塩(TAA過塩素酸塩)とする。その後、TAA過塩素酸塩を晶析により精製した後、得られた過塩素酸塩を陰イオン交換樹脂と接触させることにより、TAAHを回収する方法である。
 また、イオン交換樹脂にTAAイオンを吸着させて希薄な現像廃液からTAA塩を回収し、これを電解することでTAAHを製造する技術が開示されている(特許文献5および6)。しかし、イオン交換樹脂からTAA塩を溶離させる際の条件がコントロールできていないため、得られるTAA塩溶液に金属イオンが混入することとなり、結果として電解をした後のTAAH溶液に金属イオンが比較的高濃度に混入するという課題があった。
特開平04-228587号公報 特開平05-106074号公報 特許第3216998号公報 特開2004-66102号公報 特許2688009号公報 特表2002-509029号公報
 前者の方法に従えば、高い収率でTAAイオンを回収できるが、本発明者等の検討によれば以下の点で改善の余地があることが分かった。上記方法は、TAAイオンを回収する際に、TAAイオンの濃度の計測を行っており、TAAイオンが2000ppmと非常に薄い濃度になるまで回収を行っているので、陽イオン交換樹脂に吸着されたほとんどのTAAイオンを回収することが出来る。しかし、回収の際、TAAイオンの濃度が下がると同時に回収に用いた塩酸が多量に混入し、さらには樹脂に吸着された金属イオンも混入してくるため、得られたTAA塩は不純物が多量に含まれるといった問題があった。
 本発明者らは、上記課題を解決するため、鋭意検討を行った。その結果、フォトレジスト現像廃液と陽イオン交換樹脂とを接触させることにより、TAAイオンを吸着させ、次いで該陽イオン交換樹脂に塩酸を通液してTAA塩を回収する際に、得られるTAA塩溶液のpHが規定値以下になる前および/または電気伝導度の変化率が規定値以上になる前に回収を停止することにより、金属イオン濃度が低い溶液が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、金属イオン、及び水酸化テトラアルキルアンモニウム(TAAH)を含む溶液を陽イオン交換樹脂が充填された吸着塔に通液して、該陽イオン交換樹脂にテトラアルキルアンモニウムイオンを吸着させた後、該吸着塔に酸溶液を通液して、吸着塔から流出する回収液を回収してテトラアルキルアンモニウム塩を製造する方法において、流出する回収液のpHおよび/または電気伝導度を測定して回収液の回収量を決定することを特徴とするテトラアルキルアンモニウム(TAA)塩の製造方法である。
 さらに、本発明は、こうして得られたTAA塩をあらかじめOH型にしておいた陰イオン交換樹脂に接触させるか又は、電気分解を行うことによって純度の高いTAAH溶液を得ることが出来る。
 また、上記本発明の方法により製造された水酸化テトラアルキルアンモニウム(TAAH)は液晶ディスプレイ製造用現像液として好適に使用することが出来る。
 本発明の方法によれば、pH測定および/または電気伝導度測定といった単純な方法で回収するTAA塩溶液の回収量を決定するため、効率的に、純度の高いTAA塩を得ることが出来る。そのため、前および後工程にキレート樹脂等による金属除去工程を設ける必要がなくなり、装置の構成が簡素化されコストダウンにつながる。
 さらに、該TAA塩を陰イオン交換樹脂に接触させるか又は、電気分解を行うことによって純度の高いTAAH溶液を得ることが出来る。
本発明のテトラアルキルアンモニウム塩の製造方法に係わる製造設備の一実施態様を示す模式図である。 本発明の実施例に関するグラフである。 本発明の実施例に関するグラフである。 本発明の実施例に関するグラフである。 本発明の実施例に関するグラフである。
 本発明は、金属イオン、及び水酸化テトラアルキルアンモニウム(TAAH)を含む溶液からテトラアルキルアンモニウム塩(TAA塩)を製造する方法であって、該TAAH溶液を陽イオン交換樹脂と接触させて、TAAイオンを該陽イオン交換樹脂に吸着させた後、該吸着塔に酸溶液を通液して、吸着塔から流出する回収液のpHおよび/または電気伝導度を測定して回収液の回収停止のタイミングを決定し、TAA塩を得る方法である。
(金属イオン、及び水酸化テトラアルキルアンモニウムを含む溶液)
 本発明において、金属イオン、及び水酸化テトラアルキルアンモニウムを含む溶液については、これら成分を含んでいるものであれば特に制限されるものではない(以下、「原料溶液」ともいう)。これら成分を含んでおり、かつ半導体製造工程、液晶ディスプレイ製造工程等で多量に発生することから、該工程から排出されるフォトレジスト現像廃液であることが好ましい。これら廃液は、露光後のフォトレジストをアルカリ現像液で現像する際に排出される廃液であり、フォトレジスト、TAAH、及び、金属イオンを主として含んでいる。
 フォトレジスト現像廃液は、通常、pHが10~14のアルカリ性を呈しており、フォトレジストはアルカリ性の現像廃液中では、そのカルボキシル基、フェノール性水酸基等の酸基が酸解離して溶解している。フォトレジストの主なものとして、感光剤o-ジアゾナフトキノンの光分解により生成するインデンカルボン酸やノボラック樹脂由来のフェノール類が挙げられる。なお、本発明においては、上記フォトレジスト成分を含むもの、予め上記フォトレジスト成分の一部または全部を除去したものを対象とすることもできる。
 ここで、半導体製造、及び液晶ディスプレイ製造における現像工程から排出される代表的な廃液について詳細に説明する。現像工程では、通常、枚葉式の自動現像装置が多用されているが、この装置ではTAAHを含む現像液を使用する工程とその後の純水によるリンス(基板洗浄)が同じ槽内で行われ、この際にリンス工程では現像液の5~1000倍の量の純水が使用される。そのため、現像工程で使用された現像液は、通常5~10倍に希釈された廃液となる。その結果、この現像工程で排出される廃液の組成は、TAAHが0.001~1質量%程度であり、レジストが10~100ppm程度であり、また界面活性剤が0~数10ppm程度のものとなる。また、その他の工程の廃液が混入する場合もあり、TAAH濃度が、上記範囲の中でもさらに低くなることもある。具体的には、0.05質量%以下(0.001~0.05質量%程度)となる場合もある。特に、液晶ディスプレイ製造工程から排出されるフォトレジスト現像廃液は、TAAH濃度が0.001~0.5質量%となる場合が多く、本発明の方法は、このようなフォトレジスト現像廃液からTAA塩を製造するのに特に好適に採用できる。
 また、フォトレジスト現像廃液には、複数の金属イオンが含まれる。例えば、1価のイオンとしては、ナトリウム、カリウム等、2価のイオンとしては、カルシウム、亜鉛等、その他多価イオンとしては、アルミニウム、ニッケル、銅、クロム、鉄等がフォトレジスト現像廃液中に代表的に多く含まれる金属である。
 フォトレジスト現像廃液中のTAAHは、各種電子部品の製造等の際に使用するフォトレジストの現像液に用いられるアルカリである。TAAHの具体例としては、水酸化テトラメチルアンモニウム(以下、TMAHと略す)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム、水酸化トリエチル(2-ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2-ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2-ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化テトラ(2-ヒドロキシエチル)アンモニウム等を挙げることができる。中でも、TMAHが最も汎用的に使用されている。
 (陽イオン交換樹脂にテトラアルキルアンモニウムイオンを吸着させる工程)
 本発明においては、上記の如き原料溶液を水素イオン型(以下「H型」とも称す)の陽イオン交換樹脂が充填された吸着塔に通液して、該陽イオン交換樹脂にTAAを吸着させる。
 即ち、TAAイオンは陽イオンであるから、H型の陽イオン交換樹脂と接触させることにより、該陽イオン交換樹脂の有する水素イオンとイオン交換を起こして該樹脂に吸着される。従って、効率よく廃液からTAAイオンを回収することができる。特にTAAHの濃度が低い場合の廃液でも、TAAイオンを低コストで回収することができる。
 ここで、通常の金属イオンもまた陽イオンであるため、この通液により陽イオン交換樹脂に吸着されてしまう。本発明は、後述する方法を採用することにより、このような陽イオン交換樹脂に吸着されてしまった金属イオンとTAAイオンとを効率よく分離するものである。なお金属イオンであっても、原料溶液中で錯形成などの化学平衡反応により、金属が含まれているイオン種自体が陰イオンである場合には、陽イオン交換樹脂には吸着され難く、吸着塔から排出される。
 一方、原料溶液がフォトレジスト廃液である場合、溶解しているフォトレジスト由来の有機物成分は通常、陰イオンの形態であるため、陽イオン交換樹脂には吸着され難く大部分は除去される。また非イオン性の成分が存在している場合でも、この工程で陽イオン交換樹脂には吸着されずに排出される(流出する)ため大部分は除去できる。なお、この後、陽イオン交換樹脂に若干残るレジストを超純水または純度の高いTAAH溶液等で流すことにより洗浄してもよい。
 (陽イオン交換樹脂)
 本発明において、上記陽イオン交換樹脂としては、特に限定されず、公知のものを用いることができる。具体的には、イオン交換基がスルホン酸基である強酸性陽イオン交換樹脂、イオン交換基がカルボキシル基である弱酸性陽イオン交換樹脂のいずれも使用することができる。中でも、イオン交換容量が大きいものが多く、使用する樹脂量を低減できるという点から弱酸性陽イオン交換樹脂を使用することが好ましい。さらに、弱酸性陽イオン交換樹脂の場合、後述するTAAイオンの溶離も容易である。
 また、樹脂の構造もゲル型であってもMR型(マクロポーラス型)であってもよい。樹脂の形状も、粉状、粒状、膜状、繊維状等のいずれでもよい。処理効率、操作性、経済性などの点で粒状等のスチレン系やアクリル系等の陽イオン交換樹脂を用いるのが好ましい。
 陽イオン交換樹脂の対イオンは、通常、水素イオン(H型)かナトリウムイオン(Na型)で市販されているが、最終的に得られるTAAH溶液へのナトリウムイオンの混入を防ぐことと、TAAイオンの吸着効率を向上させるためには、対イオンを水素イオンとしたH型が好ましい。Na型で市販されている陽イオン交換樹脂を使用する場合には、使用に際して予め陽イオン交換樹脂に塩酸や硫酸等の酸を通液し、超純水で充分洗浄するなどして、対イオンを水素イオンとして使用する。
 強酸性陽イオン交換樹脂の具体例としては、ロームアンドハース社製のアンバーライトIR120B、アンバーライトIR124、三菱化学社製のダイヤイオンSK1B、ダイヤイオンPK228、住化ケムテックス社製デュオライトC255LFH、ランクセス社レバチットモノプラスS100、ピュロライト社ピュロライトC160などを挙げることができる。また、弱酸性陽イオン交換樹脂の具体例としては、ロームアンドハース社製のアンバーライトIRC76、三菱化学社製のダイヤイオンWK40L、住化ケムテックス社製デュオライトC433LF、デュオライトC476、ランクセス社レバチットCNP80WS、ピュロライト社ピュロライトC104などを挙げることができる。
 (陽イオン交換樹脂を充填した吸着塔へ溶液を通液する方法)
 本発明においては、上記のH型の陽イオン交換樹脂を充填した吸着塔へ、原料溶液を通液させて陽イオン交換樹脂に接触させることによって、TAAイオンを陽イオン交換樹脂に吸着させる。
 また、該原料溶液を、陽イオン交換樹脂を充填した吸着塔へと通液させる方法については、陽イオン交換樹脂の種類や形状によって、従来から知られている方法を適宜採用することができる。具体的には、例えば、上部に流入孔、下端部に流出孔を有する筒状の吸着塔を用い、該吸着塔内に陽イオン交換樹脂を充填し、原料溶液を、重力を利用して連続的に通過させる方式が好ましい。この方式を採用する場合、該吸着塔の大きさは、陽イオン交換樹脂の性能等に応じて適宜決定すればよい。効率よくTAAイオンを吸着するためには、TAAHの含有量が0.001~1質量%のフォトレジスト廃液であれば、吸着塔の高さ(L)と直径(D)との比(L/D)が0.5~30、該廃液の空間速度(SV)を1(1/時間)以上150(1/時間)以下とすることが好ましい。
 なお通液する原料液の量は、吸着塔に充填した陽イオン交換樹脂が破過しない程度の量とすることが、効率よくTAA塩を製造できる点で好ましい。
 なお、陽イオン交換樹脂の交換容量以上の量の陽イオンが含まれている原料溶液の通液により、吸着されずにTAAイオンが流出(破過)してしまっているかどうかは、吸着塔中を通過して流出してくる液中のTAAイオン濃度をイオンクロマトグラフィー法で分析することにより確認可能である。より簡便には、吸着塔中での陽イオン交換樹脂の占める高さを測定すればよい。陽イオン交換樹脂の対イオンが水素イオンからTAAイオンになると、陽イオン交換樹脂の種類にもよるが、体積が2倍程度に膨潤する。従って、陽イオン交換樹脂の体積を測定することにより、TAAイオンの吸着を確認することができる。
 また、原料溶液のpHが10以上のアルカリ性の場合、TAAイオンが吸着されずに吸着塔中を通過すると、通過した液のpHがアルカリ性となるため、pHメーターによっても確認することが可能である。また、通常は、吸着塔中を通過して流出した液中にTAAイオンが含まれている場合、液の電気伝導度が上昇するため、電気伝導度によっても確認することが可能である。
 (テトラアルキルアンモニウムイオンを吸着させた陽イオン交換樹脂からテトラアルキルアンモニウム塩を回収する工程)
 本発明においては、上記方法によりTAAイオンを陽イオン交換樹脂に吸着させた後、該陽イオン交換樹脂を充填した吸着塔に酸溶液を通液して、吸着塔から流出する回収液を回収してテトラアルキルアンモニウム塩を製造する。
 即ち、酸溶液を吸着塔の一端から吸着塔に導入し、他端から液を流出させることによって通液することにより、該酸溶液に含まれる大過剰の水素イオンがTAAイオンと順次置換されて行き、TAAイオンが用いた酸の酸塩として吸着塔から流出してくる。
 当該酸溶液としては、コスト等を勘案すると水溶液であることが好ましい。
 用いることのできる酸を具体的に例示すると、塩酸、硫酸、硝酸、炭酸、酢酸、などが挙げられるが、溶出するTAA塩の濃度を高くしやすい、という点で、強酸である塩酸、硫酸、硝酸が好ましい。これらの中でも、減圧濃縮することで過剰の酸が除かれやすく、また酸化力が低く液に接する部材が損傷を受け難いという点で塩酸が最も好ましい。
 酸溶液の濃度は0.1Nから10Nの範囲で適宜選定することができるが、高濃度のTAA塩が流出することと金属不純物の混入を防止しやすいという点で0.5N~4Nの範囲が特に好ましい。
 また酸溶液の通液速度は、吸着塔の大きさ、陽イオン交換樹脂の種類や使用量、酸溶液の濃度等に応じて、適宜設定できるが、好ましくは、酸の空間速度が1以上50以下である。これより小さい場合、処理に時間がかかるようになる。
 (流出液の回収)
 上述の酸溶液の通液により、吸着塔の一端からTAAイオンが、用いた酸に応じた酸根(例えばClなど)を対イオンとしてTAA塩として流出(溶離)してくるので、当該流出液を貯留槽に回収し、該回収液を後述する電気分解に供する。
 本発明における特徴は、当該流出液のpHおよび/または電気伝導度を測定し、所定の測定値となった時点で上記貯留槽への回収を停止する点にある。
 即ち、吸着塔中の陽イオン交換樹脂には、前述のとおりTAAイオンに加え、金属イオンが吸着しているが、流出液のpHが所定の値となった時点および/または電気伝導度が規定幅以上変化する前に回収を停止することで、混入する金属イオンの量を低く抑えることができる。
 なお当該流出液のpHおよび/または電気伝導度が該所定値となった時点より後の時点では、吸着塔から液を流出させること自体を停止してもよいが、切り替えバルブなどの流路変更手段を設けておき、該所定値に達した時点で、上記貯留槽とは別の貯留槽等へ回収することが好ましい。
 なお、pHおよび/または電気伝導度の測定手段は公知のものを特に制限無く使用できる。
 (pHの所定値及びその測定方法)
 pHの所定値は、用いる酸の種類により異なる。例えば、酸として強酸である塩酸を用いた場合、流出してくる塩である塩化TAA(以下「TAAC」)は中性であるため、吸着塔中にTAAイオンが十分に存在する状態では、流出液はほぼ中性(強酸性陽イオン交換樹脂の場合)又は弱塩基性~中性(弱酸性陽イオン交換樹脂の場合)であるが、TAAイオンが少なくなるにつれて、徐々に酸性を呈し始める。
 平衡状態にある場合、流出液が弱酸性でも、その中にはTAAイオン(TAAC)が含まれているが徐々に減少していき、一方で、吸着塔内を流通する液の酸性が強まるにつれ、陽イオン交換樹脂に強く吸着されていた金属イオンも徐々に溶離量が増大してくる。
 このため酸溶液を流し続けると、そのうち流出液中にはTAAイオンが殆ど含まれない一方で、金属イオンが多量に含まれるようになる。そこでTAAの回収率を重視する場合は該所定のpH値を低めに設定し、金属イオンの混入量低減を重視する場合は高めに設定する。
 酸として塩酸などの強酸を用いた場合、吸着塔から流出する回収液のpHを測定し、pHが3以上8以下の範囲にある所定の値となった時点で回収を停止することにより、回収されたTAA塩溶液中に含まれる金属イオン濃度が低い液を得ることが出来る。金属イオン濃度を一層低くするためには、所定値をpH5以上に定めることが好ましい。また所定値を7以下のpHに設定することにより高い回収率にてTAA塩を回収することが可能である。なお、強酸とは、25℃での酸解離定数pKaが3以下のものをいう。
 一方、使用する酸が酢酸、炭酸などの弱酸の場合、得られるTAA塩の溶液は弱アルカリ性を呈するため、金属イオン混入量を低減するための好ましいpHの範囲は4~9となる。なお、弱酸とは、25℃での酸解離定数pKaが3より高いものをいう。
 pHの測定方法としては、従来より知られている方法を適宜採用することが出来る。具体的には、例えば吸着塔から流出する流出液を一定量サンプリングし、pH試験紙や電極型のpH計などを用いてpHを測定する方法や、流出液を貯留等へ導く配管途中にインライン型のpH計を設置して測定する方法等がある。インライン型のpH計を用いれば、液を途中で抜き出すことなくpHが規定値外になった瞬間に回収を停止することも出来、回収液のロスを抑えることが出来、好ましい。
 なおpHの測定手段にもよるが、一般的なガラス電極型のpH計を用いてインラインで流体のpHを測定すると、その特性上、および吸着塔内の樹脂の充填状態の不均一性などの要因により±0.2程度でぶれを生じることが多い。本発明においては、このような場合、該pH計の示すpH値を統計的に処理し、該統計値が所定値となった時点で、流出液の貯留槽への回収を停止すればよい。
 該統計処理の方法は公知の処理方法を適宜採用すればよいが、例えば、所定時間(例えば0.1秒)毎の値を得るようにしておき、所定時間(例えば2秒間)の相加平均あるいは相乗平均値が所定値となれば、所定のpH値とすることなどが挙げられる。市販のpH計にはこのような統計処理手段を備え、統計処理後のpHを表示する機能を備えたものもあり、本発明においてはそのようなpH計をそのまま用いることも可能である。
 なお、統計処理をする時間間隔は主として流出液の流量(流速)によって変更する必要がある。高流速で溶液を流す場合、流出液のpHの変化が急激に起こるため、所望の性状(金属イオンの濃度)の液を得るためには測定の間隔を短くする必要がある。
 (電気伝導度の変化率及びその測定方法)
 電気伝導度の変化率は、pHと同様に用いる酸の種類によって異なると共に、吸着塔に流す酸濃度によっても異なる。即ち、吸着塔からの流出液に含まれるTAA塩濃度は、酸濃度が濃ければ濃く、薄ければ薄い状態となっている。そして吸着塔内に十分にTAAイオンが存在する場合には、(流出速度を一定に保っていれば)その濃度状態を保持して流出してくる(以下「濃度維持状態」ともいう)。
 吸着塔に酸溶液を流し続け十分にTAAイオンが陽イオン交換樹脂から溶離すると、流出液に含まれるTAA塩濃度が徐々に減少すると同時に、遊離酸および金属塩濃度が上昇していく。この際、通常は、TAA塩溶液の電気伝導度と、遊離酸および金属塩溶液の電気伝導度が異なるため、電気伝導度を測定することで遊離酸および金属塩が混入し始めるタイミングを検出することが可能となる。
 具体的には、TAAイオンとしてテトラメチルアンモニウム(TMA)イオンを、酸として2Nの塩酸を使用し、流速(SV)を1とした場合、カラムより流出する液が塩酸を含まない塩化テトラメチルアンモニウム(TMAC)のときには80mS/cm程度であり、塩酸の混入に伴い、最大500mS/cm程度(2N塩酸)まで上昇する。
 なお濃度維持状態での電気伝導度は、上記酸の種類と濃度に加え、陽イオン交換樹脂の種類、カラムの形状、流速などにより変化するため、装置の運転条件により確認しておく必要がある。
 一般に使用される電気伝導度計の測定精度(フルスケールの±1%以下)、カラムの形状、イオン交換樹脂の充填状態の不均一性などによる電気伝導度の測定値のばらつきを勘案すると、上記の濃度維持状態での電気伝導度の変動幅は±5%未満となる。ゆえに、この変動幅を超えた伝導度の上昇が認められた場合、流出する液に塩酸が混入し始めたと判断することができる。
 本発明においては、このような場合、該電気伝導度計の示す電気伝導度を統計的に処理し、該統計値が濃度維持状態での電気伝導度より5%以上大きくなった時点で、流出液の貯留槽への回収を停止すればよい。
 該統計処理の方法は公知の処理方法を適宜採用すればよいが、例えば、所定時間(例えば0.1秒)毎の値を得るようにしておき、所定時間(例えば2秒間)の相加平均あるいは相乗平均値を電気伝導度とすることなどが挙げられる。市販の電気伝導度計にはこのような統計処理手段を備え、統計処理後の電気伝導度を表示する機能を備えたものもあり、本発明においてはそのような電気伝導度計をそのまま用いることも可能である。
 なお、統計処理をする時間間隔は主として流出液の流量(流速)によって変更する必要がある。高流速で溶液を流す場合、流出液の電気伝導度の変化が急激に起こるため、所望の性状(金属イオンの濃度)の液を得るためには、測定の間隔を短くする必要がある。
 (テトラアルキルアンモニウム塩から水酸化テトラアルキルアンモニウムを製造する方法)
 本発明においては、上記の方法にて、廃液から回収した溶液に含まれるTAA塩を電解又は、対イオンとして水酸化物イオンを有する陰イオン交換樹脂に接触させることによりTAAHを製造することが出来る。
 (TAAHの製造:TAA塩の電解工程)
 得られたTAA塩を電解してTAAHにする電解工程については、特に制限されるものではなく、公知の方法を用いることができるが、なかでも特許2059769号に記載の陽極、陰極、陽イオン交換膜を使用した電気分解により製造することが好ましい。
 (TAAHの製造:TAA塩と陰イオン交換樹脂との接触工程)
 また、廃液から回収した溶液に含まれるTAA塩と、陰イオン交換樹脂とを接触させることによりTAAHを製造する方法については、特開昭52-003009や特願2009-197778記載の方法が採用される。この方法は、TAA塩と対イオンとして水酸化物イオンを有する陰イオン交換樹脂(OH型陰イオン交換樹脂)を接触させることによりTAACからTAAHを製造する方法である。この方法では、電気透析、又は電気分解を行わなくてもTAACから容易に純度の高いTAAHを製造することができる。
 以上の通り、本発明によれば、純度の高いTAA塩を得ることが出来る。また従来法と比べて、キレート樹脂等の金属イオン除去工程が必用ないため、処理にかかるトータルコストを削減することが出来る。また、フォトレジスト現像廃液からTAA塩を回収した場合、金属不純物量を元の量の10分の1以下に低減することが出来る。さらにはこれを用いて上記の方法にてTAAHを製造した場合、得られたTAAHは液晶ディスプレイ向けの現像液として好適に使用できる。
 本発明をさらに具体的に説明するため以下実施例および比較例を挙げて説明するが、本発明はこれらに限定されるものではない。
 (陽イオン交換樹脂の再生処理(H型陽イオン交換樹脂))
 用いた陽イオン交換樹脂は、使用に際して、ガラス塔に充填し、超純水、1N-HCl(塩酸)、及び超純水をこの順で通液させて、対イオンを水素イオンとした。各液は、空間速度SV 5(l/時間)で通液させ、各液の使用液量は、10L/L-樹脂とした。
 (濃度測定)
 水酸化テトラメチルアンモニウム(TMAH)、塩化テトラメチルアンモニウム(TMAC)濃度、塩化物イオンはイオンクロマトグラフィー法より分析した。
 具体的には、ダイオネクス社製 ICS2000を使用し、カラムは陽イオン分析にはION-pac CS12A、陰イオン分析にはION-pac AS15を使用し、溶離液は陽イオン分析にはメタンスルホン酸、陰イオン分析には水酸化カリウムを用いて分析を行った。
 溶液中に含まれる金属イオン濃度は、高周波誘導結合プラズマ質量分析(ICP-MS)法(測定装置:HP-4500(Agilent社製))、及び高周波誘導結合プラズマ発光分析(ICP-OES)法(測定装置:iCAP 6500 DUO (サーモエレクトロン株式会社製)により測定した。
 溶液のpHは、pH電極法(測定装置:HM-30R、東亜ディーケーケー株式会社製)により測定した。電気伝導度は横川電気製SCメーター(型番:SC72-21JAA)を用いて測定した。
 実施例1
 弱酸性陽イオン交換樹脂ダイヤイオンWK40L(三菱化学社製)100mlを直径22mm×750mmのガラスカラムに充填し、上記の再生処理を行った。
 (TAAイオンの吸着工程)
 このカラムに8000mlの0.5質量%TMAH廃液(フォトレジスト現像廃液 フォトレジスト含有量 COD換算42ppm、金属イオン濃度 Na:9.0ppb、Al:4.4ppb、K:1.1ppb、Ca:12.9ppb、Cr:5.5ppb、Fe:16.4ppb、Ni:1.2ppb、Cu:0.14ppb )を空間速度SV=20(l/時間)で通液した。
 (洗浄工程)
 次いで、100mlの0.5質量%TMAHを空間速度SV=1(l/時間)で通液し、レジスト分を洗浄した。
 (塩酸との接触工程/TAACの回収工程)
 次に、溶離液として800mlの1N―HClを空間速度SV=1(l/時間)で通液し、吸着したTMAイオンをTMACとして溶出させた。溶出液は、順次、分取して以下に示す12つの液に分別した。0から500mlまでは100mlずつ5つ(分別液A~E)、500から600mlまでは20mlずつ5つ(分別液F-1~5)、600から800mlまでは100mlずつ2つ(分別液G、H)の計12つに分けた。これらの分別液をイオンクロマト法にてTMAC濃度を、ICP質量分析法にて金属イオン濃度を、pHメーターにてpHをそれぞれ測定した。その結果を表1、図2および図3に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、pHが7以下になるF-3から金属イオン濃度が高くなった。分別液BからF-2までの合算液の金属イオン濃度はいずれの金属においても10ppb以下であり、TMAC濃度は7.8質量%(0.71mol/l)、HClは含まれていなかった。このときのTMAC回収率は90.0%であった。
 実施例2
 溶離する際に使用する酸として2Nの塩酸を使用し、塩酸との接触工程の操作を下記の条件で行った以外は実施例1と同様の操作により、TMACを得た。結果を表2に示す。
 (塩酸との接触工程/TAACの回収工程)
 次に、溶離液として600mlの2N―HClを空間速度SV=1(l/時間)で通液し、吸着したTMAイオンをTMACとして溶出させた。溶出液は、順次、分取して以下に示す12つの液に分別した。0から400mlまでは80mlずつ5つ(分別液A~E)、400から500mlまでは20mlずつ5つ(分別液F-1~5)、500から600mlまでは50mlずつ2つ(分別液G、H)の計12つに分けた。これらの分別液をイオンクロマト法にてTMAC濃度を、ICP質量分析法にて金属イオン濃度を、pHメーターにてpHをそれぞれ測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、pHが7以下になると金属イオン濃度が上昇することがわかる。
 実施例3
 溶離する際に使用する酸として4Nの塩酸を使用し、塩酸との接触工程の操作を下記の条件で行った以外は実施例1と同様の操作により、TMACを得た。結果を表3に示す。
 (塩酸との接触工程/TAACの回収工程)
 次に、溶離液として600mlの4N―HClを空間速度SV=1(l/時間)で通液し、吸着したTMAイオンをTMACとして溶出させた。溶出液は、順次、分取して以下に示す12つの液に分別した。0から250mlまでは50mlずつ5つ(分別液A~E)、250から500mlまでは50mlずつ5つ(分別液F-1~5)、500から600mlまでは50mlずつ2つ(分別液G、H)の計12つに分けた。これらの分別液をイオンクロマト法にてTMAC濃度を、ICP質量分析法にて金属イオン濃度を、pHメーターにてpHをそれぞれ測定した。その結果を表3に示す。
 表3よりpHが7以下になると、金属イオン濃度が上昇することがわかる。
Figure JPOXMLDOC01-appb-T000003
 実施例4
 実施例1の方法により得られたTMACを蒸発濃縮し、27.5質量%のTMAC溶液を調製した。得られた濃縮TMAC溶液を以下の電解工程に付し、TAAHの製造を行った。
 なお電解工程では、陽極より順に陰イオン交換膜及び、陽イオン交換膜(いずれもナフィオン90209(デュポン社製))を各1枚配置した、3室型の電解槽を用いた。上記イオン交換膜の有効膜面積は2dmとし、ナフィオン膜は、カルボン酸基を有する面を陰極側に向けて設置した。陽極はチタン板に白金めっきを施したものを用い、陰極はSUS316を使用した。上記の電解槽の陽極室に0.5規定の硫酸を、陰イオン交換膜と陰極側の陽イオン交換膜の間に上記塩化TMA溶液を、陰極室に純水をそれぞれ循環させ、電流密度18A/dm、温度は40℃に維持しながら、連続的に電解を実施した。連続運転中は、陰極室の水酸化テトラメチルアンモニウム濃度が18質量%になるようにした。同じく各室を循環する液の濃度が一定になるように、濃度が濃くなったときは純水を、薄くなったときは、その成分を添加した。
 電解の開始後、運転状態が安定した、12時間後(安定時)、及び3ヶ月連続運転を行った時点で得られたTAAH溶液の分析結果を表4に示す。
 実施例5
 実施例2の方法で得られたTMACを実施例4と同様の方法により電解することでTMAHを製造した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例6
 (陽イオン交換樹脂の再生処理(H型陽イオン交換樹脂))
 陽イオン交換樹脂1000mlを直径50mm×2000mmの塩ビ製カラムに充填し、超純水、1N-HCl(塩酸)等を通液する際の空間速度SVを4(l/時間)とし、各液の使用液量を5L/L-樹脂とした以外は、実施例1と同様にして再生処理を行った。
 (TAAイオンの吸着工程)
 このカラムに80lの実施例1と同じ組成の0.5質量%TMAH廃液を空間速度SV=20(l/時間)で通液した。
 (洗浄工程)
 次いで、2lの0.5質量%TMAHを空間速度SV=5(l/時間)で通液し、レジスト分を洗浄した。
 (塩酸との接触工程/TAACの回収工程)
 次に、溶離液として8000mlの1N―HClを空間速度SV=5(l/時間)で通液し、吸着したTMAイオンをTMACとして溶出させた。溶出液は、順次、分取して以下に示す23つの液に分別した。まず、0~1000mlを分別し(分別液A)、1000から5000mlまでは500mlずつ8つ(分別液B~I)、5000から6000mlまでは100mlずつ10つ(分別液J-1~J-10)、6000から8000mlまでは500mlずつ4つ(分別液K~N)の計23つに分けた。これらの分別液をイオンクロマト法にてTMAC濃度を、ICP質量分析法にて金属イオン濃度を、pHメーターにてpHをそれぞれ測定した。その結果を表5、図4および図5に示す。また、分別液B~J-5の合算液のpH、電気伝導度、TMAC濃度、金属イオン濃度を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5の結果から明らかなように、pHが7以下になるJ-6から金属イオン濃度が高くなった。また、表6の結果から、分別液BからJ-5の合算液の金属イオン濃度はいずれの金属においても3.5ppb以下であり、TMAC濃度は7.7質量%(0.71mol/l)、HClは含まれていないことが確認できた。このときのTMAC回収率は87.8%であった。

Claims (5)

  1.  金属イオン及び水酸化テトラアルキルアンモニウムを含有する溶液より、テトラアルキルアンモニウム塩を含有する溶液を得るテトラアルキルアンモニウム塩溶液の製造方法であって、
    (1)水素イオン型の陽イオン交換樹脂が充填された吸着塔に、金属イオン及び水酸化テトラアルキルアンモニウムを含有する溶液を通液させて、該溶液中のテトラアルキルアンモニウムイオンを、陽イオン交換樹脂に吸着させる吸着工程、
    (2)前記吸着工程にて、テトラアルキルアンモニウムイオンが吸着された陽イオン交換樹脂が充填された吸着塔に、酸溶液を通液させて、該樹脂に吸着されたテトラアルキルアンモニウムイオンを前記酸塩として溶離させ、該吸着塔より流出する流出液を貯留槽に回収する回収工程、
    の各工程を含んでなり、且つ、前記回収工程において、吸着塔からの流出液のpH、および/または電気伝導度を測定し、該流出液のpHが所定のpHとなった時点および/または電気伝導度が所定の変化量だけ変化した時点で、前記貯留槽への流出液の回収を停止することを特徴とするテトラアルキルアンモニウム塩溶液の製造方法。
  2.  前記回収工程における、前記酸溶液が強酸であり、貯留槽への流出液の回収を停止させる流出液の所定のpHが3~8の範囲にある請求項1記載のテトラアルキルアンモニウム塩溶液の製造方法。
  3.  前記回収工程における、貯留槽への流出液の回収を停止させる流出液の所定の電気伝導度の変化量が、テトラアルキルアンモニウム塩濃度が一定の状態を維持している状態で流出している時点の電気伝導度に対して5%である請求項1記載のテトラアルキルアンモニウム塩溶液の製造方法。
  4.  請求項1乃至3の何れかに記載の方法でテトラアルキルアンモニウム塩を製造した後、得られたテトラアルキルアンモニウム塩を原料として水酸化テトラアルキルアンモニウムを製造することを特徴とする水酸化テトラアルキルアンモニウムの製造方法。
  5.  水酸化テトラアルキルアンモニウム溶液からテトラアルキルアンモニウム塩溶液を製造するための製造装置であって、
     陽イオン交換樹脂が充填された吸着塔、該吸着塔より流出された流出液を回収する貯留槽、及び、該流出液のpHおよび/または電気伝導度を測定するためのpH測定手段および/または電気伝導度測定手段を備えることを特徴とする前記製造装置。
PCT/JP2011/078801 2010-12-28 2011-12-13 テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法 WO2012090699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180041307.0A CN103080070B (zh) 2010-12-28 2011-12-13 四烷基铵盐的制造方法及以其为原料的氢氧化四烷基铵的制造方法
JP2012550813A JP5887279B2 (ja) 2010-12-28 2011-12-13 テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法
KR1020137005702A KR101879370B1 (ko) 2010-12-28 2011-12-13 테트라알킬암모늄염의 제조 방법 및 그것을 원료로 한 수산화테트라알킬암모늄의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010293216 2010-12-28
JP2010-293216 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090699A1 true WO2012090699A1 (ja) 2012-07-05

Family

ID=46382815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078801 WO2012090699A1 (ja) 2010-12-28 2011-12-13 テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法

Country Status (5)

Country Link
JP (1) JP5887279B2 (ja)
KR (1) KR101879370B1 (ja)
CN (1) CN103080070B (ja)
TW (1) TWI495509B (ja)
WO (1) WO2012090699A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062100A1 (ja) * 2011-10-28 2013-05-02 株式会社トクヤマ テトラアルキルアンモニウム塩溶液の製造方法
WO2015016230A1 (ja) * 2013-07-30 2015-02-05 株式会社トクヤマ テトラアルキルアンモニウム塩水溶液の製造方法
JP2016540637A (ja) * 2013-12-17 2016-12-28 ユード ヴァッサーアオフベライトゥング ゲー・エム・ベー・ハーJudo Wasseraufbereitung GmbH 軟水及び混合水の伝導度による未処理水の硬度の判定を含む混合の制御
CN114147052A (zh) * 2020-09-05 2022-03-08 中国石油化工股份有限公司 一种高沸物金属离子吸附可再生系统及工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176867A (zh) * 2013-05-22 2014-12-03 北京思践通科技发展有限公司 一种胺的回收方法
CN103304430A (zh) * 2013-07-05 2013-09-18 武汉科梦环境工程有限公司 一种从催化剂生产废水中回收有机胺工艺
KR200486055Y1 (ko) 2016-10-11 2018-03-28 이요람 농업용 착좌기구
CN114920658B (zh) * 2022-06-28 2024-05-03 大连理工大学盘锦产业技术研究院 一种离子交换树脂纯化氢氧化胆碱的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340449A (ja) * 2002-05-27 2003-12-02 Babcock Hitachi Kk テトラアルキルアンモニウムヒドロキシド含有廃水の処理方法
JP2004066102A (ja) * 2002-08-06 2004-03-04 Babcock Hitachi Kk 廃液処理方法及び装置
WO2011036942A1 (ja) * 2009-09-24 2011-03-31 株式会社トクヤマ 水酸化テトラアルキルアンモニウムの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10207082A (ja) * 1997-01-21 1998-08-07 Japan Organo Co Ltd フォトレジスト用アルカリ現像液又はその現像廃液又はその処理液の分析管理方法及び装置
JP3968678B2 (ja) * 1998-10-26 2007-08-29 オルガノ株式会社 テトラアルキルアンモニウムイオン含有液の処理方法
JP4385407B2 (ja) * 2007-04-05 2009-12-16 オルガノ株式会社 テトラアルキルアンモニウムイオン含有液の処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340449A (ja) * 2002-05-27 2003-12-02 Babcock Hitachi Kk テトラアルキルアンモニウムヒドロキシド含有廃水の処理方法
JP2004066102A (ja) * 2002-08-06 2004-03-04 Babcock Hitachi Kk 廃液処理方法及び装置
WO2011036942A1 (ja) * 2009-09-24 2011-03-31 株式会社トクヤマ 水酸化テトラアルキルアンモニウムの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062100A1 (ja) * 2011-10-28 2013-05-02 株式会社トクヤマ テトラアルキルアンモニウム塩溶液の製造方法
WO2015016230A1 (ja) * 2013-07-30 2015-02-05 株式会社トクヤマ テトラアルキルアンモニウム塩水溶液の製造方法
JP2016540637A (ja) * 2013-12-17 2016-12-28 ユード ヴァッサーアオフベライトゥング ゲー・エム・ベー・ハーJudo Wasseraufbereitung GmbH 軟水及び混合水の伝導度による未処理水の硬度の判定を含む混合の制御
US10577260B2 (en) 2013-12-17 2020-03-03 Judo Wasseraufereitung Gmbh Blending control method with determination of untreated water hardness via the conductivity of the soft water and blended water
CN114147052A (zh) * 2020-09-05 2022-03-08 中国石油化工股份有限公司 一种高沸物金属离子吸附可再生系统及工艺
CN114147052B (zh) * 2020-09-05 2023-01-24 中国石油化工股份有限公司 一种高沸物金属离子吸附可再生系统及工艺

Also Published As

Publication number Publication date
JPWO2012090699A1 (ja) 2014-06-05
KR20130138191A (ko) 2013-12-18
TW201228729A (en) 2012-07-16
KR101879370B1 (ko) 2018-07-18
CN103080070A (zh) 2013-05-01
CN103080070B (zh) 2015-02-25
TWI495509B (zh) 2015-08-11
JP5887279B2 (ja) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5887279B2 (ja) テトラアルキルアンモニウム塩の製造方法、及びそれを原料とした水酸化テトラアルキルアンモニウムの製造方法
KR100264643B1 (ko) 수산화유기사급암모늄을 함유하는 폐액의 처리방법
WO2011036942A1 (ja) 水酸化テトラアルキルアンモニウムの製造方法
JP5717997B2 (ja) テトラアルキルアンモニウム塩水溶液の製造方法
WO2013062100A1 (ja) テトラアルキルアンモニウム塩溶液の製造方法
JP5483958B2 (ja) 水酸化テトラアルキルアンモニウムの製造方法
WO2014208509A1 (ja) 高濃度テトラアルキルアンモニウム塩溶液の製造方法
TWI423836B (zh) 自含氫氧化四烷基銨之廢液回收及純化其之方法
WO2011074495A1 (ja) テトラアルキルアンモニウムイオン除去廃液の再利用方法
WO2015016230A1 (ja) テトラアルキルアンモニウム塩水溶液の製造方法
JP2013184076A (ja) イオン交換樹脂再生用の酸の再生方法、イオン交換樹脂再生装置とこれを用いた銅エッチング液再生装置
JP2008050197A (ja) 高純度水酸化アルカリ金属の製造方法
US20240018020A1 (en) Purification method and purification apparatus for liquid to be processed containing tetraalkylammonium ions
JP4745936B2 (ja) 塩化第一鉄液の製造方法
KR102346812B1 (ko) 금속 불순물 함량이 감소된 이온 교환수지의 제조방법
JP4643541B2 (ja) 塩化第一鉄液中からのインジウム化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041307.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005702

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012550813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853986

Country of ref document: EP

Kind code of ref document: A1