JP2013184076A - イオン交換樹脂再生用の酸の再生方法、イオン交換樹脂再生装置とこれを用いた銅エッチング液再生装置 - Google Patents

イオン交換樹脂再生用の酸の再生方法、イオン交換樹脂再生装置とこれを用いた銅エッチング液再生装置 Download PDF

Info

Publication number
JP2013184076A
JP2013184076A JP2012048768A JP2012048768A JP2013184076A JP 2013184076 A JP2013184076 A JP 2013184076A JP 2012048768 A JP2012048768 A JP 2012048768A JP 2012048768 A JP2012048768 A JP 2012048768A JP 2013184076 A JP2013184076 A JP 2013184076A
Authority
JP
Japan
Prior art keywords
copper
acid
concentration
exchange resin
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012048768A
Other languages
English (en)
Inventor
Tomohiro Kuroba
智宏 黒羽
Shinji Yoshida
真司 吉田
Kazuhiro Niwa
和裕 丹羽
Hiroyuki Umezawa
浩之 梅沢
Yoshikazu Tashiro
義和 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012048768A priority Critical patent/JP2013184076A/ja
Publication of JP2013184076A publication Critical patent/JP2013184076A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】イオン交換樹脂の再生に用いる酸を回収、再生することで、新規に追加する酸の使用量を低減するとともに、酸の廃棄処分のための処理費用を低減することができる、イオン交換樹脂再生用の酸の再生方法と再生装置ならびにこれを用いた銅エッチング液再生装置を提供することを目的とする。
【解決手段】銅を吸着したイオン交換樹脂4を再生するための硫酸2を、銅濃度を測定する銅濃度測定手段を有する銅濃度測定装置6により測定した銅の濃度に応じてそれぞれ分画し、各分画ごとに別々の銅を除去する銅除去手段を有する銅除去装置8、銅除去装置12、銅除去装置16を用いて再生する。
【選択図】図1

Description

本発明は、イオン交換樹脂再生用の酸の再生方法とイオン交換樹脂再生装置ならびにこれを用いた銅エッチング液再生装置に関するものである。
従来、フラットディスプレイパネルなどの配線には、アルミニウムが用いられてきたが、ディスプレイの大型化や高解像度化に伴い、信号遅延などの問題を解消するため、より電気抵抗の低い銅が用いられている。
ディスプレイの銅配線を行う際の工法としてウエットエッチングを利用する場合、エッチング液が必要であるが、銅の配線形状に微細な加工精度が求められることから、従来プリント基板等のエッチング用に用いられてきたエッチング液とは、異なるエッチング液が開発されている(例えば特許文献1参照)。
このようなエッチング液は、エッチング性能が低下すると廃棄処分されるが、環境負荷ならびにコストの低減といった観点から、再生して再利用することが望まれている。
エッチング液を再生するためには、エッチング液中の銅を除去することと、消費された化学物質の補充が必要である。
従来の方法としては、例えば、塩化第二鉄を主成分とするエッチング液では、陽イオン交換樹脂により溶解した金属を吸着除去することにより、エッチング液の再生を行っている(例えば特許文献2参照)。
特開2002−302780号公報 特開昭61−149485号公報
しかしながら、イオン交換樹脂を利用してエッチング液を再生すると、イオン交換樹脂は金属イオンを吸着するため、定期的に酸などで洗浄し、イオン交換樹脂の再生を行う必要があるが、このとき用いられた酸などの洗浄液は、高純度で高価にもかかわらず有料の廃棄処分がなされており、洗浄液を大量に使用し、かつ処理費用も掛かるという課題があった。
そこで本発明では、イオン交換樹脂の再生に用いる酸を回収、再生することで、新規に追加する酸の使用量を低減するとともに、酸の廃棄処分のための処理費用を低減することができる、イオン交換樹脂再生用の酸の再生方法と再生装置ならびにこれを用いた銅エッチング液再生装置を提供することを目的とする。
そして、この目的を達成するために、本発明は、銅を吸着したイオン交換樹脂の再生に用いた酸を、前記酸に含まれる銅の濃度に応じて少なくとも2分画し、少なくとも1分画で銅を除去する銅除去手段を用いて再生することにより、イオン交換樹脂再生用の酸の再生法と再生装置、ならびに銅エッチング液再生装置としたものであり、これにより所期の目的を達成するものである。
本発明によれば、銅を吸着したイオン交換樹脂の再生に用いた酸を、前記酸に含まれる銅の濃度に応じて少なくとも2分画し、少なくとも1分画で銅を除去する銅除去手段を用いて再生することで、回収する酸と、廃棄する酸とに分画することが可能となるので、イオン交換樹脂の再生に用いた酸を効率よく回収、再生することができる。
これにより、新規に追加する酸の量を低減するとともに、酸の廃棄処分のための処理費用を低減することができる、イオン交換樹脂再生用の酸の再生方法と再生装置ならびにこれを用いた銅エッチング液再生装置を提供することができる。
イオン交換樹脂再生装置の構成図 イオン交換樹脂を通過した酸に含まれる銅の相対銅濃度の時間変化の模式図 イオン交換樹脂再生装置の構成図 イオン交換樹脂を通過した酸に含まれる銅の相対銅濃度と酸の相対対陰イオン濃度との時間変化の模式図 銅エッチング液再生装置の構成図 銅エッチング液再生装置における、イオン交換樹脂を通過した酸に含まれる銅の相対銅濃度と酸の相対対陰イオン濃度との時間変化の模式図
以下、本発明の実施の形態について図面を参照しながら説明する。
(実施の形態1)
図1に、本発明のイオン交換樹脂再生用の酸の再生方法を用いた装置の一例を示す。
以下、イオン交換樹脂を再生するために用いる酸は、硫酸を用いて記載するが、酸の種類を限定するものではない。
本実施の形態では、硫酸2の代わりに銅の濃度を測定して分画する例を説明する。
タンク1にイオン交換樹脂再生用の硫酸2が溜められており、この硫酸2がポンプ3によって、銅を吸着したイオン交換樹脂4の充填された、イオン交換樹脂塔5に流入する。
イオン交換樹脂4から銅を脱着し、銅を含有した硫酸2は、銅濃度測定手段を有する銅濃度測定装置6を通過することで、オンタイムに銅濃度を測定する。
オンタイムに測定された銅濃度によって、バルブ7、バルブ11、バルブ15の開閉をそれぞれ制御することで、銅を含有した硫酸2を分画する。
銅濃度測定装置6に用いる銅濃度測定手段としては、ランベルト・ベールの法則を利用するために、特定波長の光吸収を検出する手段を用いることができるが、銅濃度を検出することが可能であるならば、その手段を問うものではない。
図2に、イオン交換樹脂を通過した硫酸2に含まれる銅の相対銅濃度の時間変化を実線で示す。
縦軸はイオン交換樹脂を通過した酸に含まれる最大銅濃度CMAXに対する銅濃度Cの比である、相対銅濃度C/CMAXを、横軸はポンプの運転を開始してからの時間を表し、各時間における相対銅濃度を実線で表記した。
開始時間t0から相対銅濃度C1になる時間t1までを第1分画とする期間T1、時間t1から銅濃度が最大濃度CMAXとなり、相対銅濃度C2になる時間t2までを第2分画とする期間T2、時間t2から相対銅濃度C3になる時間t3までを第3分画とする期間T3とし、3つに分画する。
このとき、イオン交換樹脂に流入する硫酸2の濃度と、流速は一定としている。
銅を含有した硫酸2は、図2に示したT1の期間はバルブ7を通過して、銅除去装置8を通過後、タンク9に第1分画回収酸10として、T2の期間はバルブ11を通過して、銅除去装置12を通過後、タンク13に第2分画回収酸14として、T3の期間はバルブ15を通過して、銅除去装置16を通過後、タンク17に第3分画回収酸18として、それぞれ分画される。
期間T1における第1分画回収酸10は、第1分画回収酸10、第2分画回収酸14、第3分画回収酸18の中で銅濃度が最も低くなる。このため銅除去装置8に用いる銅除去手段は、低濃度の銅を効率よく除去する手段が望ましく、その手段としては、例えばキレート樹脂などのイオン交換樹脂、活性炭などによる銅の吸着除去法、電気分解法による銅析出、アルカリ混合による中和沈殿法などがある。
期間T1を決定する時間t1となる、相対銅濃度C1は、数1かつ数2の関係を満たしていればどの値であってもかまわないが、
Figure 2013184076
Figure 2013184076
数3の関係となる領域では、期間T1の銅濃度が高まるため、数4の関係であることが好ましい。
Figure 2013184076
Figure 2013184076
特に第1分画回収酸10は、硫酸2を流入する前にイオン交換樹脂塔5に溜まっていた、洗浄水などが含まれるため、銅のみならず、硫酸の濃度も低下している。従って、第1分画回収酸10は回収・再生を行わずに廃棄するほうが経済的であるため、銅除去装置8においては、排水のための銅除去処理が不要となる、例えば銅の排水基準銅濃度以下である3mg/L以下とすることができる、銅除去手段が好ましい。
さらに、相対銅濃度C1を、例えば第1分画回収酸10の銅濃度が、銅の排水基準銅濃度以下である3mg/L以下となるように設定することで、第1分画回収酸10を廃棄処理する際の銅の除去を省くことができるため、銅除去装置8を不要とすることが可能になる。
従って、相対銅濃度C1は、0より大きく、第1分画回収酸10の銅濃度が、銅の排水基準銅濃度以下となるまでの、相対銅濃度以下であることが好ましい。
期間T2における第2分画回収酸14は、第1分画回収酸10、第2分画回収酸14、第3分画回収酸18の中で銅濃度が最も高くなるため、高濃度の銅を効率よく除去する手段が好ましい。このため銅除去装置12に用いる銅除去手段は、高濃度の銅を効率よく除去する手段が望ましく、電気分解法による銅析出、イオン交換膜を利用した拡散透析・電気透析、キレート樹脂などのイオン交換樹脂、活性炭などによる銅の吸着除去法、アルカリ混合による中和沈殿法などがある。
特に電気分解法では、硫酸中に含まれる銅の除去をする場合において、陽極から酸素、陰極に銅を析出させることで、銅のみを除去することができるため、不純物混入の少ない酸の回収が可能となる。
また、第2分画回収酸14のように、液の電気伝導率がより高く、また銅の濃度がより高いほうが、電流効率が高くなるため、銅の除去効率が高くなる。
さらに、陰極板に銅が析出することで銅の除去がなされるため、析出量に応じてあらかじめ陽極板と陰極板との距離を離しておくことや、陰極板を容易に交換しやすい構造にしておくなどの工夫により、除去した銅の回収も容易となるなど、利点が多い。
このような理由から、銅除去装置12に用いる銅除去手段としては、電気分解法が好ましい。
期間T3における第3分画回収酸18は、第1分画回収酸10、第2分画回収酸14、第3分画回収酸18の中で2番目に銅濃度が高い。そのため、このため銅除去装置16に用いる銅除去手段は、高濃度の銅を効率よく除去する手段が望ましく、電気分解法による銅析出、イオン交換膜を利用した拡散透析・電気透析、キレート樹脂などのイオン交換樹脂、活性炭などによる銅の吸着除去法、アルカリ混合による中和沈殿法などがある。
第3分画回収酸18においても、第2分画回収酸14と同様の理由により、銅除去手段に電気分解法を用いることが好ましい。
しかしながら、第3分画回収酸18は第2分画回収酸14より銅濃度が低いため、第2分画回収酸14と第3分画回収酸18とを同一の銅除去装置で銅の除去を行うと、第2分画回収酸14と第3分画回収酸18とは混合されるため、第3分画回収酸18の銅濃度が高まってしまう。銅の濃度が高まると、銅の除去に余分なエネルギーや時間などが必要となり、最終的にはより多くのランニングコストが生じることになる。
このため、銅除去装置12、銅除去装置16としての電気分解装置は、極板の数、面積、間隔や、装置の大きさなどを変えたほうが、銅の除去効率が高まるため、異なる装置であったほうが好ましい。
第2分画回収酸14と第3分画回収酸18とを分割する時間t2を決める相対銅濃度C2は、銅除去装置12、銅除去装置16の銅除去性能に応じて、銅除去にかかるランニングコスト、時間などから決定すればよく、数5の関係を満たす範囲であれば、どの値であってもかまわない。
Figure 2013184076
相対銅濃度C3は、酸によるイオン交換樹脂再生を終了する時間t3を決める相対銅濃度であり、数6の関係を満たす範囲であれば、どの値であってもかまわないが、0に限りなく近いほうが好ましい。
Figure 2013184076
本実施の形態1では、硫酸2を3分画したが、必要に応じてより細く分画してもかまわないが、少なくとも2分画し、うち1分画に銅を除去する銅除去手段を備えることで、本発明の所期の目的を達成することができる。
また、本実施の形態1では、イオン交換樹脂の再生に硫酸を利用したが、イオン交換樹脂の再生が可能となる規定のpH以下の酸であれば、硫酸以外にも例えば、塩酸や硝酸、リン酸、などの無機酸、酢酸、クエン酸などの有機酸などでもかまわない。
ただし、酸の再生手段として電気分解を用いた際は、硫酸が好ましい。有機酸は銅と錯体形成することで分解に必要な電圧が高くなる点、無機酸でも塩酸の場合は電気分解の際に陽極から腐食性の高い塩素ガスが発生する点、硝酸の場合は銅金属と反応し、銅が溶解する点において課題が生じるが、硫酸の場合は、こうした課題が生じないからである。
本実施の形態1の構成により、イオン交換樹脂の再生に用いる酸を効率よく回収、再生することができるため、新規に追加する酸の量を低減するとともに、酸の廃棄処分のための処理費用を低減することができる。
(実施の形態2)
図3に、本発明のイオン交換樹脂再生用の酸の再生方法の一例を示す。実施の形態1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
本実施の形態2と、実施の形態1との違いは、実施の形態1が銅濃度のみによって、イオン交換樹脂の再生に用いた酸を分画するタイミングを決定したのに対し、本実施の形態2では、イオン交換樹脂の再生に用いる酸の対となる対陰イオンの濃度を測定し、銅濃度に加えて酸の対陰イオン濃度も、イオン交換樹脂の再生に用いた酸を分画するタイミングを決定するのに用いた点である。
これにより、銅濃度の測定だけでは判別できない、酸の濃度を測定することができるようになるため、回収すべきか、廃棄すべきかを、実施の形態1と比較して、より正確にコントロールすることができるようになるといった効果を期待できるものである。
以下、イオン交換樹脂を再生するために用いる酸は、硫酸を用いて記載するが、酸の種類を特定するものではない。
また、酸の対陰イオンとは、例えば硫酸の場合は硫酸イオン、硝酸の場合は硝酸イオン、塩酸の場合は塩化物イオンなど、用いる酸の水素イオンの対となる陰イオンのことであるため、酸の対陰イオンは硫酸イオンとして説明する。
タンク1にイオン交換樹脂用の硫酸2が溜められており、この硫酸2がポンプ3によって、銅を吸着したイオン交換樹脂4の充填された、イオン交換樹脂塔5に流入する。
イオン交換樹脂4から銅を脱着し、銅を含有した硫酸2は、銅濃度測定手段を有する銅濃度測定装置6、硫酸イオン濃度測定手段を有する硫酸イオン濃度測定装置31を通過することで、オンタイムに銅濃度と硫酸イオン濃度とをそれぞれ測定する。
オンタイムに測定された銅濃度によって、バルブ32、バルブ36、バルブ40、バルブ44の開閉を制御することで銅を含有した硫酸2を分画する。
銅濃度測定装置6に用いる銅濃度測定手段としては、実施の形態1と同じである。
硫酸イオン濃度測定装置31に用いる硫酸イオン濃度測定手段としては、イオンクロマトグラフを用いることができるが、硫酸イオン濃度を検出することが可能であるならば、その手段を問うものではない。
また、本発明のイオン交換樹脂再生方法においては、銅と酸以外に混入する不純物の濃度が低いため、銅イオン濃度に比して硫酸イオン濃度が大きい場合では、水素イオン濃度を検出することで、間接的に硫酸イオン濃度を検出することが可能である。水素イオン濃度計は、時間応答性もよく、工業的にも広く使われているなど利点が多いため、硫酸イオン濃度測定手段として好ましい。
図4に、イオン交換樹脂を通過した酸に含まれる銅の相対銅濃度と硫酸イオン濃度との時間変化を示す。
縦軸はイオン交換樹脂を通過した酸に含まれる、最大銅濃度に対する銅濃度の比または最大硫酸イオン濃度に対する硫酸イオン濃度の比である、相対濃度C/CMAXを、横軸はポンプの運転を開始してからの時間を表し、各時間における相対銅濃度を実線で、相対硫酸イオン濃度を破線で表記した。
開始時間t0から相対硫酸イオン濃度CA1になる時間t21までを第1分画とする期間T21、時間t21から相対硫酸イオン濃度CA2になる時間t22までを第2分画とする期間T22、時間t22から相対銅濃度CC3になる時間t23までを第3分画とする期間T23、時間t23から相対銅濃度CC4になる時間t24までを第4分画とする期間をT24とする。
このとき、イオン交換樹脂に流入する前記酸の濃度と、流速とは一定とする。
銅を含有した硫酸2は、図3に示したT21の期間はバルブ32を通過して、銅除去装置33を通過後、タンク34に第1分画回収酸35として、T22の期間はバルブ36通過して、銅除去装置37を通過後、タンク38に第2分画回収酸39として、T23の期間はバルブ40を通過して、銅除去装置41を通過後、タンク42に第3分画回収酸43として、T24の期間はバルブ44を通過して、銅除去装置45を通過後、タンク46に第4分画回収酸47として、それぞれ分画される。
期間T21における第1分画回収酸35は、第1分画回収酸35、第2分画回収酸39、第3分画回収酸43、第4分画回収酸47の中で銅濃度、硫酸イオン濃度がともに最も低くなる。このため銅除去装置8に用いる銅除去手段は、低濃度の銅を効率よく除去する手段が望ましく、キレート樹脂などのイオン交換樹脂、活性炭などによる銅の吸着除去法、電気分解法による銅析出、アルカリ混合による中和沈殿法などがある。
期間T21を決定する時間t21となる、相対硫酸イオン濃度CA1は、数7の関係を満たしていればどの値であってもかまわない。
Figure 2013184076
相対硫酸イオン濃度CA1が0に近い領域では、硫酸2を流入する前にイオン交換樹脂塔5に溜まっていた、洗浄水などが含まれるため、銅の濃度も低い。従って、第1分画回収酸35は、回収・再生を行わずに廃棄するほうが経済的であるため、銅除去装置33においては、排水のための銅除去処理が不要となる、例えば銅の排水基準銅濃度以下である3mg/L以下とすることができる、銅除去手段が好ましい。
さらに、相対硫酸イオン濃度CA1を決めるにあたり、そのときの相対銅濃度CC1を測定しておき、例えば第1分画回収酸10の銅濃度が、銅の排水基準銅濃度以下である3mg/L以下となるような相対銅濃度CC1となる、相対硫酸イオン濃度CA1に設定することで、第1分画回収酸10を廃棄処理する際の銅の除去を省くことができるため、銅除去装置33を不要とすることが可能になる。
従って、相対硫酸イオン濃度CA1は、0より大きく、第1分画回収酸10の銅濃度が、銅の排水基準銅濃度以下となるまでの範囲であることが好ましい。
期間T22における第2分画回収酸39は、第1分画回収酸35、第2分画回収酸39、第3分画回収酸43、第4分画回収酸47の中で2番目に酸の対陰イオン濃度が低くなる。
期間T22を決定する時間t22となる、相対対陰イオン濃度CA2を決める因子としては、酸として回収するべき濃度を超えるかどうかである。
すなわち本発明の所期の目的である酸の回収・再生をするにあたり、酸の濃度が希薄である場合は廃棄処理し、濃厚である場合は回収・再生するために分画を行うわけだが、希薄であるか、濃厚であるかは、コスト的に回収する価値があるかどうかで決まる。
従って、相対対陰イオン濃度CA2は、酸のコスト、銅除去装置で銅を除去するコスト、廃棄処理する際のコストなど、様々なコスト要因によって計算された、損益分岐点で決定されるため、数8の関係を満たしていればどの値であってもかまわない。
Figure 2013184076
このような理由から、期間T22における第2分画回収酸39は、廃棄処理することが好ましいため、銅除去装置37に用いる銅除去手段は、低濃度の銅を効率よく安価に除去する手段が望ましく、キレート樹脂などのイオン交換樹脂、活性炭などによる銅の吸着除去法、電気分解法による銅析出、アルカリ混合による中和沈殿法などがある。
特に第2分画回収酸39は、酸と銅とを同時に含む廃液となるため、銅除去装置37に用いる銅除去手段は、アルカリ混合による中和沈殿法を用いることで、同時に処理が可能となるため好ましい。
また、期間T22における第2分画回収酸39の銅濃度が、銅の排水基準値以下である3mg/L以下である場合においては、銅除去装置12がなくてもかまわない。加えてこの場合においては、期間T21と期間T22とを同時に処理することで2系統の処理ラインを1系統の処理ラインに統一することも可能となる。
期間T23における第3分画収酸43は、第1分画回収酸35、第2分画回収酸39、第3分画回収酸43、第4分画回収酸47の中で最も銅濃度が高い。そのため、このため銅除去装置41に用いる銅除去手段は、高濃度の銅を効率よく除去する手段が望ましく、電気分解法による銅析出、キレート樹脂などのイオン交換樹脂、活性炭などによる銅の吸着除去法などがある。
特に電気分解法では、硫酸中に含まれる銅の除去をする場合において、陽極から酸素、陰極に銅を析出させることで、銅のみを除去することができるため、不純物混入の少ない酸の回収が可能となる。
また、第3分画回収酸43のように、液の電気伝導率がより高く、また銅の濃度がより高いほうが、電流効率が高くなるため、銅の除去効率が高くなる。
さらに、陰極板に銅が析出することで銅の除去がなされるため、析出量に応じてあらかじめ陽極板と陰極板との距離を離しておくことや、陰極板を容易に交換しやすい構造にしておくなどの工夫により、除去した銅の回収も容易となるなど、利点が多い。
このような理由から、銅除去装置41に用いる銅除去手段としては、電気分解法が好ましい。
期間T24における第4分画回収酸47は、第1分画回収酸35、第2分画回収酸39、第3分画回収酸43、第4分画回収酸47の中で最も酸の対陰イオン濃度が高いが、銅濃度は第3分画回収酸18より低くなる。
そのため、このため銅除去装置45に用いる銅除去手段は、電気分解法による銅析出、キレート樹脂などのイオン交換樹脂、活性炭などによる銅の吸着除去法、アルカリ混合による中和沈殿法などがある。
第4分画回収酸47においても、第3分画回収酸43と同様の理由により、銅除去手段に電気分解法を用いることが好ましい。
しかしながら、第4分画回収酸47は第3分画回収酸43より銅濃度が低いため、第3分画回収酸43と第4分画回収酸47とを同一の銅除去装置で銅の除去を行うと、第3分画回収酸43と第4分画回収酸47とは混合されるため、第4分画回収酸47の銅濃度が高まってしまう。銅の濃度が高まると、銅の除去に余分なエネルギーや時間などが必要となり、最終的にはより多くのランニングコストが生じることになる。
このため、銅除去装置41、銅除去装置45としての電気分解装置は、極板の数、面積、間隔や、装置の大きさなどを変えたほうが、銅の除去効率が高まるため、異なる装置であったほうが好ましい。
第3分画回収酸43と第4分画回収酸47とを分割する時間t23を決める相対銅濃度CC3は、銅除去装置41、銅除去装置45の除去性能に応じて、銅を除去するコスト、時間などから決定すればよく、数9の関係を満たす範囲であれば、どの値であってもかまわない。
Figure 2013184076
相対銅濃度CC4は、酸によるイオン交換樹脂再生を終了する時間t24を決める相対銅濃度であり、数10の関係を満たす範囲であれば、どの値であってもかまわないが、銅除去装置45によって除去可能な銅濃度の下限か、イオン交換樹脂の再生が完了したとみなすことのできる銅濃度のどちらかであることが好ましい。
Figure 2013184076
本実施の形態1では、硫酸2を4分画したが、必要に応じてより細く分画してもかまわないが、少なくとも2分画し、うち1分画に銅を除去する銅除去手段を備えることで、本発明の所期の目的を達成することができる。
また、分画のタイミングを決めるための銅濃度、硫酸イオン濃度は、硫酸2の回収・再生が効率よく行える濃度であれば、上記関係を満たす範囲においていずれの濃度を用いても構わず、例えば第1分画回収酸35が、相対硫酸イオン濃度CA1ではなく、相対銅濃度CC1を基準に分画してもかまわない。
本実施の形態2の構成により、イオン交換樹脂の再生に用いる酸を効率よく回収、再生することができるため、新規に追加する酸の量を低減するとともに、酸の廃棄処分のための処理費用を低減することができる。
(実施の形態3)
図5に、本発明のイオン交換樹脂再生用の酸の再生方法を用いた銅エッチング液再生装置を示す。
使用済銅エッチング液52の銅除去によるエッチング液再生工程として、タンク51から使用済銅エッチング液52が、バルブ53を通り、ポンプ54にてイミノ二酢酸型キレート樹脂56が充填されたイオン交換樹脂塔55に流れる。
使用済銅エッチング液52は、イミノ二酢酸型キレート樹脂56を通過することで銅を除去される。その後、銅濃度測定手段を有する銅濃度測定装置57、硫酸イオン濃度測定手段を有する硫酸イオン濃度測定装置58を通過後、バルブ59を通って再生銅エッチング液61として、タンク60に入る。
このとき、銅濃度測定装置57にて測定された銅濃度により、イミノ二酢酸型キレート樹脂56の破過を検知し、所定の銅濃度となった時点で、使用済エッチング液52のエッチング液再生工程を終えることができる。
次にイミノ二酢酸型キレート樹脂56の洗浄工程のため、タンク85から純水86がポンプ87によって、バルブ88を通過後、イオン交換樹脂塔55の下部から流され、逆洗される。その後バルブ89を通り、タンク90に廃水91として回収される。このときポンプ54側に逆流しないように、ポンプ54には逆流防止機構を付与するなどするか、逆止弁を設けるなどしておくことがよい。
洗浄工程は、逆洗の例を記載したが、その方法を問うものではない。また、不要である場合は行う必要はない。
次に、イミノ二酢酸型キレート樹脂56のイオン交換樹脂再生工程として、タンク62から、硫酸63がバルブ64を通過してからポンプ54を通過し、イミノ二酢酸型キレート樹脂56が充填されたイオン交換樹脂塔55に流れる。
硫酸63は、イミノ二酢酸型キレート樹脂56を通過することで銅を除去される。その後、銅濃度測定手段を有する銅濃度測定装置57、硫酸イオン濃度測定手段を有する硫酸イオン濃度測定装置58を通過する。
このとき、銅濃度測定装置57、硫酸イオン濃度測定装置58によって測定されたそれぞれの濃度に応じて、バルブ65、バルブ68、バルブ75、バルブ79のいずれかに分画される。
用いた硫酸63の濃度は10重量%(以下%は重量%とする)、流速はSV=3である。
図6に、銅濃度測定装置57、硫酸イオン濃度測定装置58によって測定された相対銅濃度、相対硫酸イオン濃度の実測値の時間変化を示す。相対銅濃度を実線で、相対硫酸イオン濃度を破線で示す。
各相対濃度は、測定時間内での濃度の最大値CMAXとある時間の濃度Cとの比、C/CMAXと定義した。
銅濃度測定装置57に用いた銅濃度測定手段は、イミノ二酢酸型キレート樹脂56を通過したあと硫酸63をフローセルに流通させながら、CMOSイメージセンサを利用した分光光度計により測定した760.11nmの波長を用い、ランベルト・ベール則に従うことで求める手段を用いた。
硫酸イオン濃度測定装置58に用いた硫酸イオン濃度測定手段は、分取装置によって分取したサンプルを陰イオンクロマトグラフによって測定する手段を用いた。
これら濃度の測定手段については、濃度の時間変化を検知できる手段であればいかなる方法であってもよく、手段を限定するものではない。
相対硫酸イオン濃度C31=0.01となる時間t31=10.2minまでの期間T31の間は、硫酸63はバルブ65を通り、タンク66に第1分画回収酸67として溜められる。このときの銅濃度は3mg/Lを下回っていたため、炭酸水素ナトリウムによる中和処理を施した後、排水した。
期間T31を相対硫酸イオン濃度C31=0.01となる時間t31=10.2minまでに決めた理由は、t31=10.2min以後、硫酸イオン濃度の上昇、すなわちpHの低下が大きくなるため、中和に多量のアルカリを必要とするため、中和槽を設けねばならなくなるからである。t31=10.2minまでであれば、pH=3程度であり、中和に炭酸水素ナトリウムを使用した場合でも少量でよいという利点がある。
相対硫酸イオン濃度C32=0.5となる時間t32=30.3minまでの期間T32の間は、硫酸63はバルブ68を通り、第2分画回収酸として、銅除去手段として中和沈殿法を利用した銅除去装置69に入る。中和沈殿法としては、例えばタンク70から水酸化ナトリウム水溶液71がポンプ72によって導入され、硫酸63に含まれる銅は水酸化銅として沈殿し、沈殿汚泥74としてタンク73に溜められ、処理される方法である。上澄みは、タンク66に第1分画回収酸67と混合され、処理される。
期間T32を相対硫酸イオン濃度C32=0.5となる時間t32=30.3minまでに決めた理由は、相対硫酸イオン濃度C32=0.5より回収できる硫酸濃度が5%を超えるからである。
本実施の形態3では、硫酸濃度5%以上を回収濃度と定めたが、これは装置ごとのコスト計算によって決まるものであって、濃度を限定するものではない。
相対銅濃度C33=0.1となる時間t32=50.2minまでの期間T33の間は、硫酸63はバルブ75を通り、銅除去手段として電気分解法を利用した銅除去装置76を通って銅を一定量除去された後、タンク77に第3分画回収酸78として溜められる。
期間T33を相対銅イオン濃度C33=0.1となる時間t33=50.2minまでに決めた理由は、銅除去装置76の銅除去性能が、銅濃度30000mg/Lから3000mg/Lで程度の範囲で最適となるように、極板間距離、印加電圧等を決めたからで、最大銅濃度CMAX=32628mg/Lの10分の1となる、相対銅イオン濃度C33=0.1までに期間T33を決めた。
本実施の形態3では相対銅イオン濃度C33=0.1で分画したが、これは装置ごとのコスト計算によって決まるものであって、濃度を限定するものではない。
時間t34=90minまでの期間T34の間は、硫酸63はバルブ79を通り、銅除去手段として電気分解法を利用した銅除去装置80を通って銅を除去された後、タンク81に第4分画回収酸82として溜められる。
銅除去装置80の銅除去性能は、銅濃度3000mg/L以下で最適となるように、極板間距離、印加電圧等を最適化した。
期間T33で分画され、銅除去装置76で銅を一定量除去された第3分画回収酸78は、ポンプ83によって同じく銅除去装置80に送り込まれる。
こうして、期間T33、期間T34でそれぞれ分画された第3分画回収酸78、第4分画回収酸82は銅を除去することによって再生されてタンク81に混合され、ポンプ84にて元のタンク62へと戻され、硫酸63として再び、イミノ二酢酸型キレート樹脂56再生のために使用することができる。
本実施の形態3においては、硫酸63の分画を4分画としたが、銅および硫酸の濃度によってはより細く分画することも可能である。
また、イオン交換樹脂としてイミノ二酢酸型キレート樹脂を用いたが、限定されるものではない。
酸として硫酸を用いたが、これに限定されるものではない。
本実施の形態3の構成により、イオン交換樹脂の再生に用いる酸を効率よく回収、再生することができるため、新規に追加する酸の量を低減するとともに、酸の廃棄処分のための処理費用を低減することができ、銅エッチング液再生にかかるコストを低減することできる。
本発明にかかるイオン交換樹脂再生用の酸の再生方法と再生装置ならびにそれを用いた銅エッチング液の再生装置は、銅を吸着したイオン交換樹脂再生用の酸の再生ならびに銅エッチング液の再生を可能とするものであり、イオン交換樹脂再生に用いる酸の新規に追加する量を低減するとともに、酸の廃棄処分のための処理費用を低減することができることから、廃液処理費用低減や環境負荷低減、銅エッチング液再生の低コスト化に有用である。
1 タンク
2 硫酸
3 ポンプ
4 イオン交換樹脂
5 イオン交換樹脂塔
6 銅濃度測定装置
7 バルブ
8 銅除去装置
9 タンク
10 第1分画回収酸
11 バルブ
12 銅除去装置
13 タンク
14 第2分画回収酸
15 バルブ
16 銅除去装置
17 タンク
18 第3分画回収酸
31 硫酸イオン濃度測定装置
32 バルブ
33 銅除去装置
34 タンク
35 第1分画回収酸
36 バルブ
37 銅除去装置
38 タンク
39 第2分画回収酸
40 バルブ
41 銅除去装置
42 タンク
43 第3分画回収酸
44 バルブ
45 銅除去装置
46 タンク
47 第4分画回収酸
51 タンク
52 使用済銅エッチング液
53 バルブ
54 ポンプ
55 イオン交換樹脂塔
56 イミノ二酢酸型キレート樹脂
57 銅濃度測定装置
58 硫酸イオン濃度測定装置
59 バルブ
60 タンク
61 再生銅エッチング液
62 タンク
63 硫酸
64 バルブ
65 バルブ
66 タンク
67 第1分画回収酸
68 バルブ
69 銅除去装置
70 タンク
71 水酸化ナトリウム水溶液
72 ポンプ
73 タンク
74 沈殿汚泥
75 バルブ
76 銅除去装置
77 タンク
78 第3分画回収酸
79 バルブ
80 銅除去装置
81 タンク
82 第4分画回収酸
83 ポンプ
84 ポンプ
85 タンク
86 純水
87 ポンプ
88 バルブ
89 バルブ
90 タンク
91 廃水

Claims (7)

  1. 銅を吸着したイオン交換樹脂の再生に用いた酸を、
    前記酸に含まれる銅の濃度に応じて少なくとも2分画し、
    少なくとも1分画で銅を除去する銅除去手段を用いて再生することを特徴とする、
    イオン交換樹脂再生用の酸の再生方法。
  2. 銅を吸着したイオン交換樹脂の再生に用いた酸を、
    前記酸に含まれる銅の濃度と酸の陰イオン濃度とに応じて少なくとも2分画し、
    少なくとも1分画で銅を除去する銅除去手段を用いて再生することを特徴とする、
    イオン交換樹脂再生用の酸の再生方法。
  3. 銅除去装置に用いる銅を除去する銅除去手段が、
    電気分解であることを特徴とする、
    請求項1または2記載のイオン交換樹脂再生用の酸の再生方法。
  4. イオン交換樹脂が、
    イミノ二酢酸型キレート樹脂であることを特徴とする、
    請求項1から3のいずれかに記載のイオン交換樹脂再生用の酸の再生方法。
  5. 酸が、
    硫酸であることを特徴とする、
    請求項1から4のいずれかに記載のイオン交換樹脂再生用の酸の再生方法。
  6. 銅を吸着したイオン交換樹脂を再生する装置であって、
    銅を吸着したイオン交換樹脂の再生に用いた酸を、
    請求項1から5のいずれかにに記載のイオン交換樹脂再生用の酸の再生方法にて再生することを特徴とする、
    イオン交換樹脂再生装置。
  7. 銅エッチング液を再生する装置であって、
    銅を吸着したイオン交換樹脂の再生に用いた酸を、
    請求項1から5のいずれかに記載のイオン交換樹脂再生用の酸の再生方法にて再生することを特徴とする、
    銅エッチング液再生装置。
JP2012048768A 2012-03-06 2012-03-06 イオン交換樹脂再生用の酸の再生方法、イオン交換樹脂再生装置とこれを用いた銅エッチング液再生装置 Pending JP2013184076A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012048768A JP2013184076A (ja) 2012-03-06 2012-03-06 イオン交換樹脂再生用の酸の再生方法、イオン交換樹脂再生装置とこれを用いた銅エッチング液再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048768A JP2013184076A (ja) 2012-03-06 2012-03-06 イオン交換樹脂再生用の酸の再生方法、イオン交換樹脂再生装置とこれを用いた銅エッチング液再生装置

Publications (1)

Publication Number Publication Date
JP2013184076A true JP2013184076A (ja) 2013-09-19

Family

ID=49386025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048768A Pending JP2013184076A (ja) 2012-03-06 2012-03-06 イオン交換樹脂再生用の酸の再生方法、イオン交換樹脂再生装置とこれを用いた銅エッチング液再生装置

Country Status (1)

Country Link
JP (1) JP2013184076A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711636A (zh) * 2015-02-11 2015-06-17 昆山市益民环保技术开发有限公司 印刷电路板酸性蚀刻废液处理方法
CN105174556A (zh) * 2015-10-16 2015-12-23 南京大学 一种高酸高铁重金属废水分质资源回收的方法
CN112408670A (zh) * 2020-12-09 2021-02-26 淮安中顺环保科技有限公司 一种化学镀铜水洗液的处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711636A (zh) * 2015-02-11 2015-06-17 昆山市益民环保技术开发有限公司 印刷电路板酸性蚀刻废液处理方法
CN105174556A (zh) * 2015-10-16 2015-12-23 南京大学 一种高酸高铁重金属废水分质资源回收的方法
CN112408670A (zh) * 2020-12-09 2021-02-26 淮安中顺环保科技有限公司 一种化学镀铜水洗液的处理方法

Similar Documents

Publication Publication Date Title
CN101218012A (zh) 电净化设备中吸附介质的再生
KR101879370B1 (ko) 테트라알킬암모늄염의 제조 방법 및 그것을 원료로 한 수산화테트라알킬암모늄의 제조 방법
Chekioua et al. Purification of H2SO4 of pickling bath contaminated by Fe (II) ions using electrodialysis process
KR101806823B1 (ko) 테트라알킬암모늄염 수용액의 제조 방법
JP4385407B2 (ja) テトラアルキルアンモニウムイオン含有液の処理方法
JP2007516835A (ja) 廃水のクロマトグラフィー分離によるフッ化物及びアンモニアの選択的除去
KR20110084391A (ko) 배수 처리 방법 및 배수 처리 장치
JP6082192B2 (ja) 純水製造装置
JP2013184076A (ja) イオン交換樹脂再生用の酸の再生方法、イオン交換樹脂再生装置とこれを用いた銅エッチング液再生装置
JP2013188720A (ja) イオン交換樹脂の再生方法と再生装置ならびにこれを用いた銅エッチング液再生装置
JP2013158707A (ja) イオン交換樹脂の再生方法とそれを用いた再生装置および銅エッチング液の再生装置
JP5808221B2 (ja) テトラアルキルアンモニウム塩溶液の製造方法
CN103819306A (zh) 生产氯化苯产生的氯化液中除去三氯化铁的工艺
US5874204A (en) Process for rejuvenation treatment of photoresist development waste
JP5167253B2 (ja) テトラアルキルアンモニウムイオン含有現像廃液の処理方法
TWI583658B (zh) 高濃度四烷基銨鹽水溶液之製造方法
CN203049006U (zh) 一种冶锌工业中的氟氯净化系统
WO2011074495A1 (ja) テトラアルキルアンモニウムイオン除去廃液の再利用方法
CN110643818B (zh) 一种从电镀废水中回收镍的方法
TW201247293A (en) Process for recovering and purifying tetraalkyl ammonium hydroxide from waste solution containing the same
CN203429267U (zh) 一种四甲基氢氧化铵回收再利用装置
JP2004358316A (ja) フッ素含有水の処理方法および装置
CN113754122B (zh) 电镀重金属离子回槽除钠工艺
JP2003215810A (ja) フォトレジスト現像廃液からの現像液の回収方法
JP2001170658A (ja) フッ素含有排水の処理装置及び処理方法