TW201228729A - Method for preparing tetraalkylammonium salts and preparing tetraalkylammonium hydroxide using the same - Google Patents

Method for preparing tetraalkylammonium salts and preparing tetraalkylammonium hydroxide using the same Download PDF

Info

Publication number
TW201228729A
TW201228729A TW100146674A TW100146674A TW201228729A TW 201228729 A TW201228729 A TW 201228729A TW 100146674 A TW100146674 A TW 100146674A TW 100146674 A TW100146674 A TW 100146674A TW 201228729 A TW201228729 A TW 201228729A
Authority
TW
Taiwan
Prior art keywords
exchange resin
taa
solution
salt
tetraalkylammonium
Prior art date
Application number
TW100146674A
Other languages
Chinese (zh)
Other versions
TWI495509B (en
Inventor
Akiko Murata
Naoyuki Umezu
Seiji Tono
Hiroaki Taira
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Publication of TW201228729A publication Critical patent/TW201228729A/en
Application granted granted Critical
Publication of TWI495509B publication Critical patent/TWI495509B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

In a case where tetraalkylammonium (TAA) ions are recovered from waste liquor from development or the like using a cation-exchange resin in a conventional manner, the obtained TAA salt is contaminated with metal ions. Therefore, attempts to produce TAA hydroxide using the TAA salt as raw material result in products which are significantly contaminated with metal impurities. A TAA salt solution with a low metal ion concentration can be obtained by a process which comprises bringing a solution that contains both metal ions and TAA ions, such as a waste liquor from the development of a photoresist, into contact with a cation-exchange resin to make the TAA ions adsorbed on the cation-exchange resin, and then passing an acid through the resulting cation-exchange resin to recover a TAA salt, and in which the recover is stopped before the pH of the obtained TAA salt solution lowers to a prescribed level or lower and/or before the change in the electric conductivity thereof reaches a prescribed margin or more. Further, a high-purity TAAH solution can be obtained either by bringing the TAA salt thus obtained into contact with an anion-exchange resin which has previously been converted to the OH form or by subjecting the TAA salt thus obtained to electrolysis.

Description

201228729. 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於一種使用陽離子交換樹脂的四烷基銨鹽 的新穎製造方法、及以其為原料的氫氧化四炫基錢的製 造方法。 C先前技術3 [0002] 一般而言,氫氧化四烷基銨(以下’簡稱為TAAH)是作為 以相轉移催化劑為例的非水溶液滴定中的鹽基的標準液 、或是有機合成中的有機系鹼劑的有用的化合物。此外 ,亦可作為在積體電路或大型積體電路的製造中,半導 體基板的洗淨、蝕刻、光阻的顯像等的處理劑來使用β [0003] 尤其是於半導體方面的用途中,由於半導趙基板會被汗 染,因而需要盡可能未含有不純物的高純度的ΤΑΑΗ。 [0004] 另一方面,如上所述使用於光阻的顯像的廢液中,除光 阻之外’還包含了金屬離子及ΤΑΑΗ,因此為了降低環境 負擔,從該廢液回收ΤΑΑΗ再利用的技術越顯重要(以下, 〇 亦有將包含光阻及ΤΑΑΗ的廢液稱作「光阻顯像廢液」的 情況)。迄今,處理光阻顯像廢液的方法中,以透過蒸發 法或逆滲透膜法濃縮後予以廢棄(焚化或交由業者收取) 的方法、利用活性汙泥進行生物分解處理再行玫流的方 法為主流。然而,如上所述,從關懷環境的角度,關於 從該廢液回收ΤΑΑΗ加以再利用的嘗試已提出有多數方案 〇 闺具體來說,針對已濃縮的廢液或本來mH濃度就高的顯 像廢液,經中和處崎去光阻成分後,進行電透析或電 10014667#單編號Α〇101 第3頁/共33頁 1013093883-0 201228729 解以回收ΤΑ AH的方法早已廣為人知(參見專利文獻1至3) °但是,在處理TAAH濃度低的廢液的情況下,由於在達 到可供電透析或電解的濃度條件為止之前,有對TAAH廢 液進行濃縮的需要,因此相對於這些方法,已提出了無 須進行電透析或電解,即可自光阻顯像廢液回收以…的 方法(參見專利文獻4)。以具體方法來說,首先,透過使 光阻顯像廢液與陽離子交換樹脂接觸,而使四烷基銨離 子(TAA離子)吸附至陽離子交換樹脂。接著,將鹽酸通入 該陽離子交換樹脂内以回收TAA鹽,在所得到溶液中添加 過氯酸而成為四烷基銨過氣酸鹽(TAA過氣酸鹽)。之後, 將TAA過氣酸鹽經結晶而精製後,再使所得到的TAA過氯 酸鹽與陰離子交換樹脂接觸’藉此回收TAAH的方法。 [0006] 此外,更公開有使TAA離子吸附至離子交換樹脂上,而從 稀薄的顯像溶液回收TAA鹽,再將其電解以製造TAAH的技 術(專利文獻5及6)。但是,由於無法控制使TAA鹽從離子 交換樹脂溶離之際的條件,所得到的TAA鹽溶液中會混有 金屬離子,就結果而言,會具有電解後的以…溶液中混 入較尚濃度的金屬離子的問題。 [0007] <先前技術文獻> 專利文獻1 :特開平04 —228587號公報 專利文獻2 .特開平05 — 106074號公報 專利文獻3 :專利第321 6998號公報 專利文獻4 ·特開2 〇 〇 4 — 6 610 2號公報 專利文獻5 :專利2688009號公報 專利文獻6 :特表2002 _5〇9〇29號公報 10014667^^^^ 第4頁/共33頁 1013093883-0 201228729 【發明内容】 [0008] <發明所欲解決的問題>201228729. VI. Description of the invention: [Technical field to which the invention pertains] [0001] The present invention relates to a novel method for producing a tetraalkylammonium salt using a cation exchange resin, and a hydrogen oxyhydroxide using the same as a raw material Manufacturing method. C. Prior Art 3 [0002] In general, tetraalkylammonium hydroxide (hereinafter abbreviated as TAAH) is a standard solution for a salt base in a nonaqueous solution titration using a phase transfer catalyst as an example, or in organic synthesis. A useful compound of an organic base agent. In addition, as a processing agent for cleaning, etching, and development of a semiconductor substrate in the production of an integrated circuit or a large integrated circuit, β can be used, particularly in semiconductor applications. Since the semi-conductive substrate is sweat-stained, it is required to have high-purity germanium which is as free as possible from impurities. [0004] On the other hand, as described above, in the waste liquid used for developing the photoresist, in addition to the photoresist, metal ions and ruthenium are contained, and therefore, in order to reduce the environmental burden, the waste liquid is recovered and reused. The more important the technology is (the following is also the case where the waste liquid containing photoresist and ruthenium is called "photo-resistance waste liquid"). Heretofore, in the method of treating the photoresist developing waste liquid, the method of dispersing by the evaporation method or the reverse osmosis membrane method, and then discarding it (incineration or paying by the industry), using the activated sludge for biological decomposition treatment, and then performing the flow of the rose stream The method is mainstream. However, as described above, from the viewpoint of caring for the environment, attempts have been made to recycle the waste liquid from the waste liquid, and in many cases, for the concentrated waste liquid or the original high concentration of mH, the development is high. Waste liquid, after the neutralization of the photoresist component, electrodialysis or electricity 10014667#单号Α〇101 Page 3 of 33 1013093883-0 201228729 The method of recycling ΤΑ AH has long been widely known (see patent literature) 1 to 3) ° However, in the case of treating a waste liquid having a low concentration of TAAH, since there is a need to concentrate the TAAH waste liquid before the concentration condition of the supplyable dialysis or electrolysis is reached, it is already relative to these methods. There has been proposed a method of recovering from a photoresist developing waste liquid without performing electrodialysis or electrolysis (see Patent Document 4). In a specific method, first, a tetraalkylammonium ion (TAA ion) is adsorbed to the cation exchange resin by bringing the photoresist recording waste liquid into contact with the cation exchange resin. Next, hydrochloric acid was introduced into the cation exchange resin to recover the TAA salt, and perchloric acid was added to the obtained solution to obtain a tetraalkylammonium percarbonate (TAA percarbonate). Thereafter, the TAA peroxy acid salt is purified by crystallization, and then the obtained TAA perchlorate is brought into contact with the anion exchange resin, whereby TAAH is recovered. Further, a technique of adsorbing TAA ions onto an ion exchange resin, recovering a TAA salt from a thin developing solution, and electrolyzing it to produce TAAH is disclosed (Patent Documents 5 and 6). However, since the conditions for dissolving the TAA salt from the ion exchange resin cannot be controlled, metal ions are mixed in the obtained TAA salt solution, and as a result, there is a concentration of the solution in the solution after the electrolysis The problem of metal ions. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. 〇4 — 6 610 2 pp. Patent Document 5: Patent No. 2688009 Patent Document 6: Special Table 2002 _5〇9〇29 Bulletin 10014667^^^^ Page 4/Total 33 Page 1013093883-0 201228729 [Summary of the Invention] <Problems to be Solved by the Invention>

[0009][0009]

若按照前述方法’雖然能以高收得率回收TAa離子,彳曰化 據本發明人等的檢討’可得知於以下各點中仍有改盖餘 地。上述方法於回收TAA離子之際,進行taa離子、产的 測量,因為直到TAA離子降至200〇ppm,即達到非常^薄 的濃度為止,回收仍會進行,所以吸附在陽離子交換樹 脂上的幾乎全部的TAA離子得被回收。但於回收之p,产 著TAA離子濃度下降的同時’會多量混入回收中使用的Z 酸,再加上吸附在樹脂上的金屬離子亦會混入其中,故 具有所得到的TAA鹽含有多量的不純物的問題存在。 &lt;解決問題的手段&gt; 本發明人等為了解決上述課題,經專心致力的檢討,結 果發現’藉由使光阻顯像廢液與陽離子交換樹脂接觸, 而使TAA離子吸附,接著’當將鹽酸通入該陽離子交換樹 脂内以回收TAA鹽之際,於所得到的TAA鹽溶液的pH達到 規定值以下之前及/或電導度的變化率達到規定以上之前 停止回收’藉此能夠得到金屬離子濃度較低的溶液,而 完成本發明。 [〇〇1〇]也就是說,本發明在使含有金屬離子及氫氧化四烷基銨 (TAAH)的溶液通入填充有氫離子型的陽離子交換樹脂的 吸附塔内,令四烷基銨離子吸附在陽離子交換樹脂上後 ’將酸溶液通入吸附塔内’再回收從吸附塔流出的回收 液以製造四烷基銨鹽的製造方法中,測量所流出的回收 液的pH及/或電導度以決定回收液的回收量為其特徵。 10014667#·單編號 A0101 第5頁/共33頁 1013093883-0 201228729 [0011] 並且,本發明是使像這樣所^ ' W知到的TAA鹽與事先轉成OH型 的陰離子交換樹脂接觸, π或是進行電解,藉而能夠得 到高純度的TAAH溶液。 [0012] 此外,利用上述本發明的太、+ 乃决所製造的氫氧化四烷基銨 (TAAH)非常適合作為液晶昼苞、 曰曰顯不器製造用的顯像液使用。 [0013] &lt;發明的效果&gt; 根據本發明的方法’由於是以仙測量及/或電導度測量的 單純的方法來決定ΤΑΑ鹽溶液的回收量,所以可以有效率 地得到高純度的ΤΑΑ鹽。因此,於前及後工程中,變得沒 有必要設置利用螯合樹脂等的金屬除去工程而讓裝置 的構成簡單化,繼而降低成本。 [〇〇14]並且,透過使該ΤΑΑ鹽與陰離子交換樹脂接觸,亦或是進 •ft電解’藉而能夠得到高純度的TaΑΗ溶液。 【實施方式】 [0015] 本發明為一種從含有金屬離子及氫氧化四烷基銨(TAAH) 的溶液製造出四院基敍鹽(TAA鹽)的方法,包含使該 TAAH溶液與陽離子樹脂接觸,令taa離子吸附至該陽離子 交換樹脂後’將酸溶液通入該吸附塔内,再測量由吸附 塔所流出的回收液的pH及/或電導度,以決定回收液的回 收停止時機’而得到TAA鹽的方法。 [0016] 〈含有金屬離子及氫氧化四烧基錄的溶液〉 於本發明中,關於含有金屬離子及氫氧化四烷基銨的溶 液,只要是包含這些成分的溶液,並無特別限制(以下, 稱為「原料溶液」)。當考量包含這些成分且多量發生在 10014667^^^51 A〇101 第6頁/共33頁 1013093883-0 201228729 半導體製造工程、液晶顯示器製造工程等時,以從該工 程被排出的光阻顯像廢液較為適宜。這些廢液為將曝光 後的光阻以鹼顯像液進行顯像之際所排出的廢液,主要 含有光阻、TAAH及金屬離子。 [0017] 光阻顯像廢液通常呈pH介於10〜14的鹼性,於光阻為鹼 性的顯像廢液中,其羧基、酚性氫氧基等酸基經酸解離 而溶解。以光阻的主要成分來說,可列舉透過鄰重氮萘 醌感光劑的光分解所生成的茚羧酸或來自酚醛樹脂的酚 類為例。此外,於本發明中,包含上述光阻成分者,事 先已除去光阻成分的一部分或全部者皆可作為對象。 [0018] 於此,針對從半導體製造及液晶顯示器製造中的顯像工 程所排出的代表性廢液進行詳細說明。在顯像工程中, 通常多用單晶圓處理方式的自動顯像裝置,但於此裝置 中,使用包含TAAH的顯像液的工程與之後使用純水的清 洗(基板洗淨)可於相同槽内進行,此時,在清洗工程中 ,可使用顯像液的5〜1 000倍量的純水。因此,在顯像工 程中所使用的顯像液通常會被稀釋成5〜1D倍的廢液。結 果於此顯像工程中所排出的廢液的組成會變成TAAH佔 0. 001〜1質量%程度、阻抗佔10〜lOOppm程度、以及界 面活性劑佔0〜數10ppm程度者。此外,也有混入其他工 程的廢液的情況,TAAH濃度還會變得比上述範圍内更低 。具體來說,會有變成0. 05質量%以下(0. 001〜0.05質 量%程度)的情況。特別是由液晶顯示器製造工程所排出 的光阻顯像廢液中,TAAH濃度成為0. 001〜0. 05質量%程 度的情況較多,為了從這種光阻顯像液製造TAA鹽,尤其 10014667^單編號 A〇101 第7頁/共33頁 1013093883-0 201228729 可適合採用本發明的方法。 [0019] [0020] [0021] [0022] 此外,於光阻顯像廢液中可包含複數種金屬離子。例如 以單價離子來說有納、料;以二價離子來說有範、辞 等;以其他多價離子來說則有鋁、鎳、銅、鉻、鐵等作 為光阻顯像廢液中含量較多的代表性金屬。 光阻顯像液中的TAAH為使用於各種電子元件製造等之際 ,所使用的光阻的顯像液中的驗。以TAAH的具體例來說 ’可列舉氫氧化四甲基録(以下簡稱為TMAH)、氫氧化四 乙基敍、氫乳化四丁基铵、氫氧化甲基三乙基錢氣氧 化三曱基乙基銨、氫氧化二甲基二乙基銨、氫氧化三甲 基(2-羥乙基)銨、氫氧化三乙基(2_羥乙基)銨氫氧化 二曱基二(2-經乙基)铵、氫氧化二乙基二(2,乙基)錄 、氫氧化甲基三(2-經乙基)錢、氫氧化乙基三&amp;經乙基 )敍、氫氧化四(2-經乙基)錢等為例。其中,以tmah最 為廣泛地被使用。 &lt;使四烷基銨離子吸附在陽離子交換樹脂上的工程&gt; 於本發明中’將如上述的原料溶液通人填充有氫離子型( 以下亦稱為「Η型」)的陽離子交換樹脂的吸附塔内,以 使T A Α吸附至該陽離子交換樹脂上。 亦即,因為TAA離子為陽離子,故透過與H型的陽離子交 換樹脂接觸,進而與該陽離子交換樹脂的氫離子發生離 子父換而吸附至該樹脂上。因此,可以效率良好地從廢 液回收TAA離子。尤其即便是ΤΑΑΙί濃度較低的情況下的廢 液’仍可以低成本回收ΤΑΑ離子。 10014667#單編號 A01〇i 第8頁/共33頁 1013093883-0 201228729 [0023] 於此,由於通常的金屬離子亦為陽離子,所以透過此通 液而可吸附矣陽離子交換樹脂上。本發明藉由採用後述 的方法,而玎讓吸附在這種陽離子交換樹脂上的金屬離 子與TAA離子玎效率良好地相互分離。此外,即便為金屬 離子,於原料溶液中仍可由於配位等化學平衡反應而讓 金屬所包含的離子種類本身為陰離子的情況下,將難以 吸附至陽離子交換樹脂而自吸附塔排出。 [0024] 另一方面,原料溶液為光阻廢液的情況下,由於來自於 ^ 溶解的光阻的有機成分通常為陰離子的形態,故難以吸 附至陽離子交換樹脂,而大部分將可被除去◊此外,即 便存在有非離子性的成分的情況下,於此工程中,由於 不會吸附至陽離子交換樹脂而被排出(流出),所以大部 分可被除去。此外’之後再將殘留於陽離子交換樹脂的 少數光阻以超純水或高純度的TAAH溶液等沖洗予以洗淨 亦可。 [0025] &lt;陽離子交換樹脂&gt; 於本發明中,以上述陽離子交換樹脂來說沒有特別限定 ’可以使用公知的樹脂。具體來說,可使用離子交換基 為磺酸基的強酸性陽離子交換樹脂、離子交換基為羧基 的弱酸性陽離子交換樹脂中任何一種皆可。其中,從離 子交換容量較大者較多’並可降低所使用的樹脂量的觀 點考1 ’使用弱酸性陽離子交換樹脂較為適宜。並且, 在弱酸性陽離子交換樹脂的情況下,進行後述TAA離子的 溶離亦較為容易。 [0026]此外 10014667#單編號 A〇l〇l 樹脂的構造為凝膠型或為MR型(大孔型, 第9頁/共33頁 1013093883-0 201228729According to the above-described method, the TAa ion can be recovered at a high yield, and it is known from the review by the present inventors that there is still room for remodeling in the following points. The above method is used to measure the taa ion and the production when the TAA ion is recovered, because the recovery is still carried out until the TAA ion is reduced to 200 〇ppm, that is, the concentration is very thin, so that it is adsorbed on the cation exchange resin. All TAA ions are recovered. However, in the recovery of p, the concentration of TAA ions is decreased, and the Z acid used in the recovery is mixed in a large amount, and the metal ions adsorbed on the resin are also mixed therein, so that the obtained TAA salt contains a large amount. The problem of impurities is present. &lt;Means for Solving the Problem&gt; In order to solve the above problems, the inventors of the present invention have found that 'the TAA ion is adsorbed by contacting the photoresist recording waste liquid with the cation exchange resin, and then 'when When hydrochloric acid is introduced into the cation exchange resin to recover the TAA salt, the recovery is stopped until the pH of the obtained TAA salt solution reaches a predetermined value or less and/or the rate of change of the electrical conductivity reaches a predetermined value or more. The present invention is completed by a solution having a lower ion concentration. [〇〇1〇] That is, the present invention allows a solution containing a metal ion and a tetraalkylammonium hydroxide (TAAH) to be introduced into an adsorption column filled with a hydrogen ion-type cation exchange resin to make a tetraalkylammonium. After the ions are adsorbed on the cation exchange resin, the pH of the recovered liquid is measured and/or after the acid solution is introduced into the adsorption column to recover the recovered liquid flowing out of the adsorption column to produce a tetraalkylammonium salt. The electrical conductivity is characterized by determining the amount of recovered liquid recovered. 10014667#·单编号A0101 Page 5/33 pages 1013093883-0 201228729 [0011] Further, the present invention is to contact the TAA salt thus known to the anion exchange resin previously converted into an OH type, π Either electrolysis is performed to obtain a highly pure TAAH solution. Further, tetraalkylammonium hydroxide (TAAH) produced by using the above-described present invention is very suitable for use as a developing liquid for producing liquid crystal ruthenium or ruthenium. <Effects of the Invention> According to the method of the present invention, since the amount of recovery of the cerium salt solution is determined by a simple method of measuring the sensation and/or measuring the conductivity, it is possible to efficiently obtain cesium of high purity. salt. Therefore, in the front and rear projects, it is not necessary to provide a metal removal process using a chelating resin or the like to simplify the structure of the apparatus, thereby reducing the cost. [〇〇14] Further, a high-purity Ta ΑΗ solution can be obtained by bringing the cerium salt into contact with the anion exchange resin or by introducing the ft electrolysis. [Embodiment] The present invention is a method for producing a four-yard salt (TAA salt) from a solution containing a metal ion and a tetraalkylammonium hydroxide (TAAH), comprising contacting the TAAH solution with a cationic resin. After the taa ion is adsorbed to the cation exchange resin, the acid solution is introduced into the adsorption tower, and the pH and/or electrical conductivity of the recovered liquid flowing out of the adsorption tower is measured to determine the recovery stop timing of the recovered liquid. A method of obtaining a TAA salt. In the present invention, the solution containing a metal ion and a tetraalkylammonium hydroxide is not particularly limited as long as it is a solution containing these components (hereinafter). , called "raw material solution"). When considering the inclusion of these components and a large amount occurs in 10014667^^^51 A〇101 Page 6/33 pages 1013093883-0 201228729 semiconductor manufacturing engineering, liquid crystal display manufacturing engineering, etc., the photoresist image is discharged from the project Waste liquid is more suitable. These waste liquids are waste liquids discharged when the exposed photoresist is developed with an alkali developing solution, and mainly contain photoresist, TAAH, and metal ions. [0017] The photoresist recording waste liquid is generally alkaline with a pH of 10 to 14, and the acid group such as a carboxyl group or a phenolic hydroxyl group is dissolved by acid dissociation in a developing waste liquid having a basic photoresist. . The main component of the photoresist is exemplified by a ruthenium carboxylic acid produced by photodegradation of the azodiazepine sensitizer or a phenol derived from a phenol resin. Further, in the present invention, in the case where the above-mentioned photoresist component is contained, a part or all of the photoresist component may be removed as a target. [0018] Here, a detailed description will be given of a representative waste liquid discharged from a semiconductor manufacturing process and a developing process in the manufacture of a liquid crystal display. In the development project, an automatic developing device of a single wafer processing method is usually used. However, in this device, the process using a developing solution containing TAAH and the subsequent cleaning using pure water (substrate cleaning) can be performed in the same tank. In this case, in the cleaning process, 5 to 1 000 times of pure water of the developing solution can be used. Therefore, the developing liquid used in the developing process is usually diluted to 5 to 1 D times the waste liquid. As a result, the composition of the waste liquid discharged in this development project becomes such that TAAH accounts for 0.001 to 1 mass%, the impedance accounts for 10 to 100 ppm, and the surfactant accounts for 0 to 10 ppm. In addition, there are cases where waste liquids from other projects are mixed, and the TAAH concentration will become lower than the above range. Specifically, it may be in the range of 0.05% by mass or less (0. 001 to 0.05% by mass). In particular, in the photoresist liquid waste liquid discharged from the liquid crystal display manufacturing process, the TAAH concentration is in the range of 0.001 to 0.05% by mass, in order to produce TAA salt from such a photoresist liquid, in particular 10014667^Single number A〇101 Page 7 of 33 Page 1013093883-0 201228729 The method of the present invention can be suitably employed. [0022] In addition, a plurality of metal ions may be included in the photoresist development waste liquid. For example, in the case of monovalent ions, there are nanometers and materials; in the case of divalent ions, there are vanes, words, etc.; in the case of other multivalent ions, there are aluminum, nickel, copper, chromium, iron, etc. as photoresist liquid waste liquid. A representative metal with a large content. The TAAH in the photoresist is used in the development of the photoresist used in the production of various electronic components. In the specific example of TAAH, 'tetramethyl hydroxide hydride (hereinafter abbreviated as TMAH), tetraethyl hydride hydroxide, hydrogen emulsified tetrabutylammonium, methyl triethyl hydroxy ruthenium trioxide Ethyl ammonium, dimethyldiethylammonium hydroxide, trimethyl(2-hydroxyethyl)ammonium hydroxide, triethyl(2-hydroxyethyl)ammonium hydroxide dihydrazinium di(2- Ethyl)ammonium, diethyldi(2,ethyl) hydroxide, methyltris(2-ethyl)hydroxide, ethyltrioxide hydroxide, ethylethylamine, hydrogen hydroxide (2-ethyl) money and the like as an example. Among them, tmah is most widely used. &lt;Engineering of Adsorption of Tetraalkylammonium Ion on Cation Exchange Resin&gt; In the present invention, a cation exchange resin in which a raw material solution as described above is filled with a hydrogen ion type (hereinafter also referred to as "Η type") is used. In the adsorption column, TA Α is adsorbed onto the cation exchange resin. That is, since the TAA ion is a cation, it is in contact with the H-type cation exchange resin, and further, the hydrogen ion of the cation exchange resin is transferred to the resin. Therefore, TAA ions can be efficiently recovered from the waste liquid. Especially in the case of waste liquid with a low concentration of ΤΑΑΙ, it is possible to recover cesium ions at low cost. 10014667#单号 A01〇i Page 8 of 33 1013093883-0 201228729 [0023] Here, since the usual metal ions are also cations, the cation exchange resin can be adsorbed through the liquid. According to the present invention, the metal ion adsorbed on the cation exchange resin and the TAA ionium are efficiently separated from each other by a method described later. Further, even in the case of a metal ion, when the ion species contained in the metal itself is anion due to a chemical equilibrium reaction such as coordination in the raw material solution, it is difficult to adsorb to the cation exchange resin and be discharged from the adsorption column. On the other hand, when the raw material solution is a photoresist waste liquid, since the organic component derived from the dissolved photoresist is usually in the form of an anion, it is difficult to adsorb to the cation exchange resin, and most of it can be removed. Further, even in the case where a nonionic component is present, in this process, since it is discharged (flowed out) without being adsorbed to the cation exchange resin, most of it can be removed. In addition, a small amount of photoresist remaining in the cation exchange resin may be washed with ultrapure water or a high-purity TAAH solution. &lt;Cation Exchange Resin&gt; In the present invention, the above cation exchange resin is not particularly limited. A known resin can be used. Specifically, any of a strongly acidic cation exchange resin having a sulfonic acid group as a sulfonic acid group and a weakly acidic cation exchange resin having a carboxyl group as a carboxyl group may be used. Among them, it is preferable to use a weakly acidic cation exchange resin from the viewpoint that the ion exchange capacity is large and the amount of the resin to be used can be lowered. Further, in the case of a weakly acidic cation exchange resin, it is also easy to carry out the elution of the TAA ions described later. [0026] In addition, the structure of the 10014667# single-numbered A〇l〇l resin is gel type or MR type (large hole type, page 9/page 33 1013093883-0 201228729)

Macroporous)樹脂皆可。樹脂的形狀為粉狀、粒狀、膜 狀、纖維狀等任何一種皆可。就處理效率、操作性、經 濟性等觀點來看,使用粒狀等的苯乙烯系或丙烯酸系等 陽離子交換樹脂較為適宜。 [〇〇27] 陽離子交換樹脂的反離子通常以氫離子(H型)或鈉離子 (Na型)於市面上進行販售,但為了防止鈉離子混入最後 所得到的TAAH溶液以及提升TAA離子的吸附效率,將反離 子設成氫離子的Η型較為適宜。在使用市售的Na型陽離子 交換樹脂的情況下,使用之際事先將鹽酸或硫酸通入陽 離子交換樹脂内,以超純水進行充分洗淨等,以將反離 子作為氫離子使用。 [0028] 以強酸性陽離子交換樹脂的具體例來說可舉出R〇hm andMacroporous) resin is acceptable. The shape of the resin may be any of powder, granule, film, and fiber. From the viewpoints of processing efficiency, workability, economy, and the like, a cation-exchange resin such as a styrene-based or acrylic-based resin such as a granular material is preferably used. [〇〇27] The counter ion of the cation exchange resin is usually sold on the market as hydrogen ion (H type) or sodium ion (Na type), but in order to prevent the sodium ion from being mixed into the finally obtained TAAH solution and to enhance the TAA ion The adsorption efficiency is preferably a type in which the counter ion is set to a hydrogen ion. In the case of using a commercially available Na-type cation exchange resin, hydrochloric acid or sulfuric acid is introduced into the cation exchange resin in advance, and sufficiently washed with ultrapure water to use the counterion as a hydrogen ion. [0028] Specific examples of the strongly acidic cation exchange resin include R〇hm and

Haas社製的AMBERLITE IR120B、AMBERLITE IR124、 三菱化學社製的DAION SK1B、DAI0N PK228、住化 CHEMTEX社製的DU0LITE C255LFH、LANXESS社 LEWATIT MonoPlus S100、PUROLITE社PUR0LITEAMBERLITE IR120B, AMBERLITE IR124 manufactured by Haas, DAION SK1B, DAI0N PK228 manufactured by Mitsubishi Chemical Corporation, DU0LITE C255LFH manufactured by CHEMTEX Co., Ltd., LANWESS LEWATIT MonoPlus S100, PUROLITE PUR0LITE

Cl60等為例。此外,以弱酸性陽離子交換樹脂的具體例 來說可舉出 Rohm and Haas 社製的 AMBERLITE IRC76、 三菱化學社製的DAION WK40L、住化CHEMTEX社製的 DU0LITE C433LF、DU0LITE C476、 LANXESS社 LEWATIT CNP80WS、PUROLITE社PUROLITE C104等為 例。 [0029] &lt;將溶液往已填充陽離子交換樹脂的吸附塔通液的方法 &gt; 1013093883-0 於本發明中,使原料溶液通入已填充上述Η型的陽離子交 10014667产單編號Α01(η 第10頁/共33頁 201228729 換樹脂的吸附塔而與陽離子交換樹脂接觸,藉而令TAA離 子吸附至陽離子交換樹脂上。 [0030]此外’針對使該原料溶液通入已填充陽離子交換樹脂的 吸附塔的方法’根據陽離子交換樹脂的種類或形狀而可 適採用習知的方法。具體來說,例如使用上部具有流 入孔、下端部具有流出孔的筒狀吸附塔,於該吸附塔内 填充陽離子交換樹脂’利用重力使原料溶液連續地通過 的方式較為適宜。採用此方法的情況下,該吸附塔的大 小 &lt; 對應於陽離子交換樹脂的性能作出適宜決定即可。 〇 為了效率良好地吸附ΤΑΑ離子,如為ΤΑΑ含有量為〇. 001 〜1質量%的光阻廢液,則將吸附塔的高度(L)與直徑(d) 的比設成介於0. 5〜30 ’將該廢液的空間速度(space velocity,SV)設成1(1/時間)以上15〇(1/時間)較為 適宜° [0031] 此外,將通入的原料液的量,設成不會穿透已填充於吸 附塔的陽離子交換樹脂的程度的量,從能夠效率良好地 Q 製造TAA鹽的觀點來看較為適宜。 [0032] 此外,是否因為通入含有陽離子交換樹脂的交換容量以 上的Ϊ的陽離子的原料溶液而使TAA離子不被吸附而流出 (穿透),可以藉由將通過吸附塔内再流出的液體中的T a a 離子濃度利用離子色層分析法進行分析而加以確認。更 為簡單來說,測量吸附塔内的陽離子交換樹脂所佔的高 度即可。當陽離子交換樹脂的反離子從氫離子變成taa離 子時’雖然根據陽離子交換樹脂的種财所不同,但體 積會膨脹成二倍程度。因此,藉由測量陽離子交換樹脂 讓4667/單減Α〇101 第頁/共33頁 1013093883-0 201228729 的體積而可以確認TAA離子的吸附。 [0033] 此外,原料溶液的pH為10以上的鹼性的情況下,當ΤΑΑ離 子不被吸附而通過吸附塔内時,由於已通過的液體的pH 變成鹼性,利用pH測量器亦能夠進行確認。此外,通常 來說,通過吸附塔内再流出的液體中含有TAA離子的情況 下,由於液體的電導度會上升,根據電導度也能夠加以 確認。 [0034] &lt;從已吸附四烷基銨離子的陽離子交換樹脂回收四烷基 銨鹽的工程&gt; 於本發明中,利用上述方法使TAA離子吸附至陽離子交換 樹脂後,將酸溶液通入已填充該陽離子交換樹脂的吸附 塔内,回收從吸附塔流出的回收液以製造出四烷基銨鹽 〇 [0035] 亦即,將酸溶液從吸附塔的一端導入至吸附塔内,使液 體從另一端流出進行通液,藉此包含於該酸溶液内得過 量氫離子可與TAA離子依序進行置換,進而作為使用TAA 離子的酸的酸鹽從吸附塔流出。 [0036] 以該酸溶液來說,當考慮成本等時,為水溶液者較為適 宜。 [0037] 當將可使用的酸以具體例加以例示時,雖可舉出鹽酸、 硫酸、硝酸、碳酸、醋酸等為例,但從容易溶出高濃度 的TAA鹽的點來看,屬強酸的鹽酸、硫酸、墙酸較為適宜 。於這些強酸之中,從藉由減壓濃縮而容易除掉過量的 酸、以及酸化力較低使液體接觸的部材較難以遭受損傷 1001466#料號删1 第12頁/共33頁 1013093883-0 201228729 的觀點來看,以鹽酸最為適宜。 [0038] 酸溶液的濃度雖可於〇. 1N至1 0N的範圍内適宜地進行選定 ,但是從使高濃度的TAA鹽流出與易於防止金屬不純物混 入的觀點來看,〇. 5N〜4N的範圍特別適宜。 [0039] 此外,酸溶液的通液速度對應於吸附塔的大小、陽離子 交換樹脂的種類或使用量、酸溶液的濃度等雖可適宜設 定,但酸的空間速度為1以上50以下較為適宜。在小於此 範圍的情況下’處理時間將會變得冗長。 π v ’ [0040] &lt;流出液的回收&gt; 藉由通入上述酸溶液’因為TAA離子會將與所使用的酸相 應的酸根(例如cr等)當作反離子而成為TAA鹽從吸附塔 的-端流出(溶離),所以可將該流出液回收於儲留槽, 並將該流出液提供作為後述的電解使用。 [_本發明的特徵在於,測量該流出液的戲7或電導度,將 達到預定的測量值的時點作為停止朝往上述儲留槽回收 〇 的時點^ [_心卩,如前所述,韻塔㈣陽離子錢樹猶m離子 之外也會吸附金屬離子,但透過當流出液的邱達到預定 值之時點及/或電導度變化了規定幅度以上之前停止回收 ,藉而可以將混入的金屬離子的量抑制在較低程度。 闺此外,在該流出液的pH及/或電導度達到該預定值的時點 之後的時點,雖使液體從吸附塔流出的狀態本身停止亦 可,但設置切換活門等流路變更手段,當到達該預定值 。。。的時點時,可往與上述儲留槽相異的其他儲留槽回收較 10014667#&quot;早編號A〇1〇l 第13頁/共33頁 1013093883-0 201228729 的方式為適宜。 [0044] 此外,pH及/或電導度的測量手段並無任何特別限制,亦 可使用公知手段。 [0045] &lt;pH的預定值及其測量方法&gt; pH的預定值根據所使用的酸的種類而有所不同。例如使 用屬強酸的鹽酸作為酸的情況下,由於所流出的鹽,即 氣化TAA(以下稱「TAAC」)呈中性,所以在吸附塔内TAA 離子充分存在的狀態下,流出液幾乎呈中性(強酸性陽離 子交換樹脂的情況)或弱驗性〜中性(弱酸性陽離子交換 樹脂的情況),但隨著TAA離子越來越少,會慢慢地開始 呈酸性。 [0046] 在平衡狀態的情況下,即使流出液呈弱酸性,流出液中 雖含有TAA離子(TAAC)但會逐漸減少,從另一方面說, 隨著流通於吸附塔内的液的酸性變強,強力吸附在陽離 子交換樹脂上的金屬離子的溶離量也會逐漸增大。 [0047] 因此,當持續通入酸溶液時,屆時流出液内幾乎不含TAA 離子,而會含有多量的金屬離子。於此,在重視TAA的回 收率的情況下,將該預定的pH值設定成較低,而重視金 屬離子的混入量減少的情況下,則設定成較高。 [0048] 使用鹽酸等強酸當作酸的情況下,測量從吸附塔流出的 回收液的pH,在pH達到介於3以上8以下的範圍中的預定 值之時點停止回收,藉此可以得到回收的TAA鹽溶液内所 含有的金屬離子濃度較低的液體。為了進一步將金屬離 子濃度設成更低,將預定值設定在pH5以上較為適宜。此 HHU4667#單編號 A0101 第i4頁/共33頁 1013093883-0 201228729 [0049] [0050] Ο [0051]Cl60 and the like as an example. In addition, specific examples of the weakly acidic cation exchange resin include AMBERLITE IRC76 manufactured by Rohm and Haas Co., Ltd., DAION WK40L manufactured by Mitsubishi Chemical Corporation, DU0LITE C433LF manufactured by Sumiyoshi CHEMTEX Co., Ltd., DU0LITE C476, and LANXESS LEWATIT CNP80WS. PUROLITE PUROLITE C104, etc. as an example. &lt;Method of Passing Solution to Adsorption Column Filled with Cation Exchange Resin&gt; 1013093883-0 In the present invention, the raw material solution is introduced into the cation exchange 10014667 which has been filled with the above-mentioned quinone type. Page 10/33 pages 201228729 The resin adsorption column is replaced with a cation exchange resin to adsorb TAA ions onto the cation exchange resin. [0030] In addition, 'for the feed solution to be filled with the cation exchange resin The method of the adsorption tower 'according to the kind or shape of the cation exchange resin, a conventional method can be suitably used. Specifically, for example, a cylindrical adsorption tower having an inflow hole at the upper portion and an outflow hole at the lower end portion is used, and the adsorption tower is filled in the adsorption tower. The cation exchange resin is preferably a method in which the raw material solution is continuously passed by gravity. In the case of this method, the size of the adsorption column is appropriately determined in accordance with the performance of the cation exchange resin. ΤΑΑ ion, such as 光 001 ~ 1% by mass of photoresist waste liquid, the height of the adsorption tower (L) The ratio of the diameter (d) is set to 0. 5~30 'The spatial velocity (SV) of the waste liquid is set to 1 (1/time) or more and 15 〇 (1/time) is more suitable. [0031 Further, the amount of the raw material liquid to be supplied is set to such an extent that it does not penetrate the cation exchange resin filled in the adsorption column, and is preferable from the viewpoint that the TAA salt can be efficiently produced by Q. [0032] Further, whether or not the TAA ions are allowed to flow out (penetrate) without being adsorbed by the raw material solution containing the cation of the cation containing the cation exchange resin or more, can be passed through the liquid which flows through the adsorption tower. The concentration of T aa ion is confirmed by ion chromatography analysis. More simply, the height of the cation exchange resin in the adsorption column can be measured. When the counter ion of the cation exchange resin changes from hydrogen ion to taa ion Although 'the volume of the cation exchange resin is different, the volume will expand to twice. Therefore, by measuring the cation exchange resin, let 4667/single reduction 101 Page/Total 33 Page 1013093883-0 2012287 In addition, when the pH of the raw material solution is 10 or more, when the pH of the raw material solution is not adsorbed and passes through the adsorption tower, the pH of the liquid that has passed through It is also possible to confirm by using a pH measuring device. In general, when TAA ions are contained in the liquid that flows out of the adsorption tower, the conductivity of the liquid increases, and it can be confirmed based on the electrical conductivity. &lt;Process for recovering tetraalkylammonium salt from cation exchange resin having adsorbed tetraalkylammonium ions&gt; In the present invention, after the TAA ion is adsorbed to the cation exchange resin by the above method, the acid solution is passed Into the adsorption column filled with the cation exchange resin, recovering the recovered liquid flowing out from the adsorption column to produce a tetraalkylammonium salt [0035], that is, introducing the acid solution from one end of the adsorption column into the adsorption tower, so that The liquid flows out from the other end to pass through, whereby excess hydrogen ions contained in the acid solution can be sequentially replaced with TAA ions, and further used as an acid salt of an acid using TAA ions. Adsorption column outflow. [0036] In the case of the acid solution, when considering the cost or the like, it is more suitable for an aqueous solution. [0037] When a usable acid is exemplified as a specific example, hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, acetic acid or the like is exemplified, but from the viewpoint of easily eluting a high concentration of TAA salt, it is a strong acid. Hydrochloric acid, sulfuric acid and wall acid are suitable. Among these strong acids, the excess acid is easily removed by concentration under reduced pressure, and the material having a lower acidification force makes the liquid contact less susceptible to damage. 1001466#Item No. 1 Page 12 of 33 1013093883-0 From the viewpoint of 201228729, hydrochloric acid is most suitable. [0038] The concentration of the acid solution may be suitably selected within the range of from 1 N to 10 N, but from the viewpoint of allowing a high concentration of TAA salt to flow out and easily preventing the incorporation of metal impurities, 〇. 5N to 4N The range is particularly suitable. Further, the liquid passing rate of the acid solution may be appropriately set in accordance with the size of the adsorption tower, the type or amount of the cation exchange resin, the concentration of the acid solution, and the like, but the space velocity of the acid is preferably 1 or more and 50 or less. In the case of less than this range, the processing time will become lengthy. π v ' [0040] &lt;Recovery of effluent&gt; By introducing the above acid solution 'because the TAA ion will act as a counter ion corresponding to the acid (e.g., cr, etc.) corresponding to the acid used, and become a TAA salt adsorption Since the end of the column flows out (dissolved), the effluent can be recovered in the storage tank, and the effluent can be supplied as electrolysis to be described later. [The present invention is characterized in that the measurement of the effluent or the electrical conductivity of the effluent is such that the time at which the predetermined measurement value is reached is taken as the point at which the recovery of the enthalpy to the storage tank is stopped. Rhythm tower (4) The cationic money tree will also adsorb metal ions in addition to the m ion, but the metal can be mixed before the point where the effluent reaches a predetermined value and/or the electrical conductivity changes by more than a predetermined range. The amount of ions is suppressed to a low degree. Further, when the pH and/or the electrical conductivity of the effluent reaches the predetermined value, the state in which the liquid flows out of the adsorption tower itself may be stopped, but a flow path changing means such as a switching valve may be provided to arrive. The predetermined value. . . At the time of the point, it is suitable to recover the other storage tanks different from the above-mentioned storage tanks by the way of 10014667#&quot;early number A〇1〇l page 13/33 pages 1013093883-0 201228729. Further, the means for measuring the pH and/or the electrical conductivity is not particularly limited, and a known means can also be used. &lt;Predetermined value of pH and measurement method thereof&gt; The predetermined value of pH differs depending on the kind of acid to be used. For example, when hydrochloric acid which is a strong acid is used as the acid, since the salt which flows out, that is, vaporized TAA (hereinafter referred to as "TAAC") is neutral, the effluent is almost present in a state where TAA ions are sufficiently present in the adsorption tower. Neutral (in the case of strongly acidic cation exchange resin) or weakly to neutral (in the case of weakly acidic cation exchange resin), but as the TAA ion becomes less and less, it will slowly start to be acidic. [0046] In the case of an equilibrium state, even if the effluent is weakly acidic, the effluent contains TAA ions (TAAC) but gradually decreases, and on the other hand, with the acidity of the liquid flowing through the adsorption tower The amount of metal ions strongly adsorbed on the cation exchange resin is also gradually increased. [0047] Therefore, when the acid solution is continuously supplied, the effluent is almost free of TAA ions and contains a large amount of metal ions. Here, in the case where the recovery of TAA is emphasized, the predetermined pH value is set to be low, and when the amount of metal ions to be mixed is decreased, the setting is made higher. When a strong acid such as hydrochloric acid is used as the acid, the pH of the recovered liquid flowing out of the adsorption tower is measured, and when the pH reaches a predetermined value in the range of 3 or more and 8 or less, the recovery is stopped, whereby the recovery can be obtained. A liquid having a low concentration of metal ions contained in the TAA salt solution. In order to further set the metal ion concentration to be lower, it is preferable to set the predetermined value to pH 5 or higher. This HHU4667#单号 A0101 Page i4 / Total 33 1013093883-0 201228729 [0049] [001] [0051]

[0052] 外,藉由將預定值設定成7以下的pH,而能夠以高回收率 回收TAA鹽。此外,所謂的強酸是指於25°C下酸解離常數 pKa為3以下者。 另一方面,所使用的酸為醋酸、碳酸等弱酸的情況下, 由於所得到的TAA鹽的溶液呈弱鹼性,故用以降低金屬離 子混入量的較佳的pH範圍會介於4〜9。此外,所謂的弱 酸是指於25°C下的酸解離常數pKa比3還高者。 以pH的測量方法來說,可以適宜採用習知方法。具體而 言,例如將從吸附塔流出的流出液依一定量取樣,使用 pH試驗紙或電極型pH計等以測量pH的方法,或者是將流 出液導引至儲留等的配管途中,設置沿線型pH計加以測 量的方法等。如使用沿線型pH計,則無需將液體於途中 抽出即可在pH達到規定值外的瞬間停止回收,並可抑制 回收液的損失,故較為適宜。 此外,雖然根據pH測量手段而有所不同,但當使用一般 的玻璃電極型pH計於沿線測量流體的pH時,以其於特性 上及吸附塔内的樹脂的填充狀態的不均一性為要因,而 多半會產生±0. 2程度的誤差。於本發明中,於這種情況 可將該pH計所顯示的pH值進行統計處理,在該統計值達 到預定值的時點,再停止朝往儲留槽的流出液回收即可 〇 該統計處理的方法適宜採用公知的處理方法即可,例如 事先取得每預定時間(例如0. 1秒)的值,當預定時間(例 如2秒間)的相加平均或相乘平均值達到預定值,將其設 10014667产單編&amp; A〇101 第15頁/共33頁 1013093883-0 201228729 成預定的pH值。於市售的pH計之中也有具前述統計處理 手段,並具顯示統計處理後的pH的功能的pH計,於本發 明中也能夠直接使用這種pH計。 [0053] 此外,進行統計處理的時間間隔主要會有根據流出液的 流量(流速)而變更的需要。以高流速流通溶液時,由於 流出液的pH變化發生較為急遽,所以為了得到預期狀態( 金屬離子濃度)的溶液而有縮短測量間隔的需要。 [0054] &lt;電導度的變化率及其測量方法&gt; 電導度的變化率與pH相同地根據所使用的酸的種類而有 所相異,並且也會根據流通於吸附塔内的酸濃度而有所 不同。亦即,當酸濃度越濃則來自吸附塔的流出液中所 含有的TAA鹽濃度會較濃,當酸濃度越淡則會成較淡狀態 。接著,當吸附塔内存在充足的TAA離子的情況下(若流 出速保持一定),流出液將會保持其濃度狀態流出(以下 亦稱為「濃度維持狀態」)。 [0055] 當足夠讓酸溶液持續流通的TAA離子從陽離子交換樹脂溶 離時,流出液所含有的TAA鹽濃度逐漸變小,同時游離酸 及金屬鹽濃度則會上升。此時,通常由於TAA鹽溶液的電 導度和游離酸及金屬鹽的電導度相異,所以透過測量電 導度而能夠檢測出游離酸及金屬鹽開始混入的時機。 [0056] 具體而言,使用四曱基銨(TMA)作為TAA離子、2N的鹽酸 作為酸,在流速(SV)設成1的情況下,當從管柱流出的液 體為不含鹽酸的四曱基氣化銨(TMAC)時則為80mS/cm程 度,隨著鹽酸的混入,則最大會上升到500mS/cm程度 10014667^^'^^ A〇101 第16頁/共33頁 1013093883-0 201228729 (2N鹽酸)為止。 [0057] 此外,在濃度維持狀態下的電導度,由於除上述酸的種 類與濃度外,還會根據陽離子交換樹脂的種類、管柱的 形狀、流速等而有所變化,故有依照裝置的運轉條件事 先確認的必要。 [0058] 當考慮到因一般使用的電導度計的測量精度(全量程的土 1 %以下)、管柱的形狀、離子交換樹脂的填充狀態的不均 一性等而造成電導度的測量值有偏差時,在上述濃度維 持狀態下的電導度的變動幅度仍未滿±5%。所以,在超過 此變動幅度的傳導度被認定為上升的情況,可判斷為流 出的液體中開始混入鹽酸。 [0059] 於本發明中,於這種情況可將該電導度計所顯示的電導 度值進行統計處理,在該統計值達到比濃度維持狀態下 的電導度還大5%以上的時點,再停止朝往儲留槽的流出 液回收即可-。 [0060] 該統計處理的方法只需適宜採用公知的處理方法即可, 例如可舉出事先取得每預定時間(例如0. 1秒)的值,將預 定時間(例如2秒間)的相加平均或相乘平均值設成預定的 電導度為例。於市售的電導度計之中也有具前述統計處 理手段,並具顯示統計處理後的電導度的功能的電導度 計,於本發明中能夠直接使用這種電導度計。 [0061] 此外,進行統計處理的時間間隔主要會有根據流出液的 流量(流速)而變更的需要。以高流速流通溶液時,由於 流出液的電導度變化發生較為急遽,所以為了得到預期 10014667产單編&amp; A0101 第17頁/共33頁 1013093883-0 201228729 狀態(金屬離子濃度)的溶液而有縮_量間 [0062] [0063] [0064] [0065] &lt;從四燒基㈣製造出氫氧化岐基錄的方法〉 於本發明中,以上述方法對從聽回㈣溶液中所含有 的TM鹽進行電解’或者是使其與作為反離子的具有 化物離子的陰離子线樹脂朗,藉而㈣製造出了_ &lt;TAAH的製造:TAA鹽的電解工程〉 針對將所得到的TM鹽進行電解而得到taah的電解工程而 言,並無任㈣別限制,可以使用公知的方法,其令以 專利第m9469號中所記載的使用陽極、陰極、_子交 換膜的電解加以製造較為適宜。 &lt;ΤΜΗ的製造:TAA鹽與陰離子交換樹脂的接觸工程》 此外’針對使從廢液回㈣雜巾所含㈣m與陰離子 交換樹脂接觸而製造出TAAH的方法,可採用特開昭52一 003009或特願2009 — 1 97778中所記載的方法。此方法 為使TAA鹽與作為反離子的具有氫氧化物離子的陰離子交 換樹脂(OH型陰離子交換樹脂)接觸,藉而從TAAC製造出 TAAH的方法。這種方法無須進行電透析或電解即可簡單 地從TAAC製造出高純度的TAAH。 如上所述,根據本發明可以得到高純度的TAA鹽。此外’ 與習知方法相比,由於螯合樹脂等金屬離子除去工程並 非必須,故可削減處理所需的總成本。此外,在從光阻 顯像廢液回收TAA鹽的情況下,可以將金屬不純物量從原 本的量降低到十分之一以下。並且,在使用回收的TAA鹽 1〇_7昃單編號A〇101 第18頁/共33頁 1013093883-0 201228729 以上述方法製造ΤΑΑΗ的情況下,所得到的ΤΑΑΗ適合使用 於液晶顯示器用的顯像液。 [0066] [0067] Ο [0068] [0069] ❹ [0070] [實施例] 以下’為進一步具體理解本發明,茲列舉實施例及比較 例進行詳細說明’但本發明並非限定於此些實施例》 &lt;陽離子交換樹脂的再生處理(Η型陽離子交換樹脂)&gt; 使用之際將所使用的陽離子交換樹脂填充至玻璃塔内, 依超純水、1N-HC1(鹽酸)及超純水的順序進行通液’並 以氫離子作為反離子。各液體是將空間速度…設為5(i/ 時間)進行通液,且將各液體的使用液量設成10L/L—樹 脂。 &lt;濃度測定&gt; 氫氧化四甲基銨(TMAH)、四甲基氣化銨(TMAC)濃度、氣 化物離子可利用離子色層分析法加以分析。 具體而言,可使用DIONEX社製ICS2000,其中,陽離子 分析時,管柱可使用ION-pac CS12A,陰離子分析時, 管枉則可使用I〇N-pac AS15,另外,陽離子分析時,溶 離液玎使用甲院績酸,陰離子分析時,溶離液則可使用 氩氧化鉀進行分析。 溶液中所含有的金屬離子濃度可利用高頻感應偶合電漿 質量分析(ICP-MS)法(測量裝置:HP-4500 (Agilent 社製))或高頻感應偶合電漿發射光譜分析(ICP —〇ES)法 (測量裝置:iCAP 6500 DUO (THERMO ELECTRON株式 會社製))加以測量。 10014667^^^^ A0101 第19頁/共33頁 1013093883-0 201228729 [0071] 溶液的pH可利用pH電極法(測量裝置:HM-30R,東亞 DKK株式會社製)加以測量。電導度則可使用橫川電氣製 SC測量器(型號:SC72 —21JAA)加以測量。 [0072] 實施例1 將弱酸性陽離子交換樹脂DIAION WK40LC三菱化學社製 ) 1 000ml填充至直徑22ramx750ram的玻璃管柱内,再進行 上述再生處理。 [0073] &lt;TAA離子的吸附工程&gt; 將8000ml的0. 5質量%TMAH廢液(光阻顯像廢液,光阻含 有量經COD換算為42ppm,金屬離子濃度Na : 9. Oppb,Further, by setting the predetermined value to a pH of 7 or less, the TAA salt can be recovered at a high recovery rate. Further, the term "strong acid" means an acid dissociation constant pKa of 3 or less at 25 °C. On the other hand, when the acid to be used is a weak acid such as acetic acid or carbonic acid, since the solution of the obtained TAA salt is weakly alkaline, a preferable pH range for reducing the amount of metal ion mixed may be 4~ 9. Further, the so-called weak acid means that the acid dissociation constant pKa at 25 ° C is higher than 3. In the case of measuring the pH, a conventional method can be suitably employed. Specifically, for example, the effluent flowing out of the adsorption tower is sampled in a certain amount, and the pH is measured by using a pH test paper, an electrode type pH meter, or the like, or the effluent is guided to a pipe for storage or the like, and is set. A method of measuring along a line type pH meter. If a linear pH meter is used, it is not necessary to take out the liquid on the way, and it is possible to stop the recovery at a moment when the pH reaches a predetermined value, and it is possible to suppress the loss of the recovered liquid, which is preferable. Further, although it differs depending on the pH measuring means, when the pH of the fluid is measured along the line using a general glass electrode type pH meter, the inhomogeneity of the filling state of the resin in the characteristics and in the adsorption tower is a factor. , and most likely will produce an error of ± 0.2 degrees. In the present invention, in this case, the pH value displayed by the pH meter can be statistically processed, and when the statistical value reaches a predetermined value, the effluent recovery to the storage tank can be stopped, and the statistical processing can be performed. The method is preferably a well-known processing method, for example, obtaining a value every predetermined time (for example, 0.1 second), and when the added average or the multiplied average value of the predetermined time (for example, 2 seconds) reaches a predetermined value, Set 10014667 production list & A〇101 page 15 / total page 33 1013093883-0 201228729 into a predetermined pH. Among the commercially available pH meters, there is also a pH meter having the above-described statistical processing means and a function of displaying the pH after the statistical treatment, and the pH meter can be directly used in the present invention. Further, the time interval at which the statistical processing is performed is mainly required to be changed in accordance with the flow rate (flow rate) of the effluent. When the solution is passed at a high flow rate, since the pH change of the effluent is relatively rapid, there is a need to shorten the measurement interval in order to obtain a solution in a desired state (metal ion concentration). &lt;Change rate of electrical conductivity and measurement method thereof&gt; The rate of change in electrical conductivity differs depending on the type of acid used, and also depends on the acid concentration flowing in the adsorption tower. And it is different. That is, when the acid concentration is rich, the concentration of the TAA salt contained in the effluent from the adsorption tower is relatively concentrated, and the acid concentration becomes lighter as it becomes lighter. Then, when there is sufficient TAA ions in the adsorption tower (if the flow rate is kept constant), the effluent will maintain its concentration state (hereinafter also referred to as "concentration maintenance state"). When the TAA ions sufficient to allow the acid solution to continue to flow are eluted from the cation exchange resin, the concentration of the TAA salt contained in the effluent gradually becomes smaller, and the concentration of the free acid and the metal salt increases. In this case, since the conductivity of the TAA salt solution and the electrical conductivity of the free acid and the metal salt are different, it is possible to detect the timing at which the free acid and the metal salt start to be mixed by measuring the conductivity. Specifically, tetrakisyl ammonium (TMA) is used as the TAA ion and 2N hydrochloric acid is used as the acid. When the flow rate (SV) is set to 1, the liquid flowing out from the column is four without hydrochloric acid. When the thiol vaporized ammonium (TMAC) is 80mS/cm, the maximum will rise to 500mS/cm with the mixing of hydrochloric acid. 10014667^^'^^ A〇101 Page 16 / Total 33 Page 1013093883-0 201228729 (2N hydrochloric acid). [0057] In addition, the conductivity in the concentration maintenance state varies depending on the type and concentration of the above-mentioned acid, depending on the type of the cation exchange resin, the shape of the column, the flow rate, and the like. It is necessary to confirm the operating conditions in advance. [0058] When considering the measurement accuracy of the commonly used conductivity meter (less than 1% of the whole range of soil), the shape of the column, the inhomogeneity of the filling state of the ion exchange resin, etc., the measured value of the electrical conductivity is In the case of the deviation, the fluctuation range of the electrical conductivity in the above-described concentration maintenance state is still less than ±5%. Therefore, when the conductivity exceeding the fluctuation range is considered to be rising, it can be judged that hydrochloric acid is mixed in the discharged liquid. [0059] In the present invention, in this case, the electrical conductivity value displayed by the conductivity meter can be statistically processed, and when the statistical value reaches 5% or more greater than the electrical conductivity in the concentration maintenance state, Stop the effluent recovery to the storage tank -. [0060] The method of the statistical processing only needs to adopt a well-known processing method, and for example, a value obtained every predetermined time (for example, 0.1 second) is obtained, and an average of a predetermined time (for example, between 2 seconds) is added. Or the multiplication average is set to a predetermined electrical conductivity as an example. Among the commercially available conductivity meters, there is also a conductivity meter having the above-described statistical processing means and a function of displaying the electrical conductivity after the statistical processing, and the conductivity meter can be directly used in the present invention. Further, the time interval at which the statistical processing is performed is mainly required to be changed in accordance with the flow rate (flow rate) of the effluent. When the solution is circulated at a high flow rate, since the change in the electrical conductivity of the effluent occurs more rapidly, in order to obtain a solution of the expected state of the product (metal ion concentration) of 10014667 singly & A0101 page 17 / page 33 1013093883-0 201228729 [0062] [0065] [0065] [Method for producing a ruthenium hydroxide base record from a tetraalkyl group (IV)] In the present invention, the above method is used to contain the (4) solution The TM salt is electrolyzed or made with an anion-line resin having a counter ion as a counter ion. (4) Manufacture of _ &lt;TAAH: Electrolytic Engineering of TAA Salt > For the TM salt to be obtained In the electrolysis process in which electrolysis is carried out to obtain taah, there is no limitation (four), and a known method can be used, which is suitable for the production of electrolysis using an anode, a cathode, and a sub-exchange membrane described in Patent No. m9469. . &lt;Manufacturing of bismuth: contact engineering of TAA salt and anion exchange resin. Further, the method for producing TAAH by contacting (4) m from the waste liquid back to the anion exchange resin can be used. Or the method described in 2009-1 97778. This method is a method for producing TAAH from TAAC by contacting a TAA salt with an anion exchange resin (OH type anion exchange resin) having a hydroxide ion as a counter ion. This method can easily produce high purity TAAH from TAAC without electrodialysis or electrolysis. As described above, a highly pure TAA salt can be obtained according to the present invention. Further, since the metal ion removing process such as a chelate resin is not necessary as compared with the conventional method, the total cost required for the treatment can be reduced. Further, in the case where the TAA salt is recovered from the photoresist developing waste liquid, the amount of the metal impurities can be reduced from the original amount to less than one tenth. Further, in the case of using the recovered TAA salt 1〇_7昃单号 A〇101 page 18/33 pages 1013093883-0 201228729, the obtained crucible is suitable for use in liquid crystal displays. Like liquid. [Embodiment] The following is a detailed description of the present invention, and the embodiments and comparative examples are described in detail. However, the present invention is not limited to the embodiments. Example &lt;Regeneration treatment of cation exchange resin (Η-type cation exchange resin)&gt; When used, the cation exchange resin used is filled into a glass column, depending on ultrapure water, 1N-HC1 (hydrochloric acid), and ultrapure water. The sequence is carried out by liquid and uses hydrogen ions as counter ions. Each liquid was passed through a space velocity of 5 (i/time), and the liquid amount of each liquid was set to 10 L/L-resin. &lt;Concentration measurement&gt; Tetramethylammonium hydroxide (TMAH), tetramethylammonium hydroxide (TMAC) concentration, and vapor ions can be analyzed by ion chromatography. Specifically, ICS2000 manufactured by DIONEX Co., Ltd. can be used, in which ION-pac CS12A can be used for the cation analysis, I〇N-pac AS15 can be used for the anion analysis, and the separation solution can be used for the cation analysis.玎 Use the acidity of the hospital, and the anion analysis, the solution can be analyzed using potassium aroxide. The concentration of metal ions contained in the solution can be determined by high frequency inductively coupled plasma mass spectrometry (ICP-MS) (measuring device: HP-4500 (manufactured by Agilent)) or high frequency inductively coupled plasma emission spectrometry (ICP- 〇ES) method (measurement device: iCAP 6500 DUO (manufactured by THERMO ELECTRON CORPORATION)) was measured. 10014667^^^^ A0101 Page 19 of 33 1013093883-0 201228729 The pH of the solution can be measured by a pH electrode method (measuring device: HM-30R, manufactured by Toa DKK Co., Ltd.). The electrical conductivity can be measured using a Yokogawa Electric SC measuring device (model: SC72 - 21JAA). Example 1 A weakly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, DIAION WK40LC) was filled in a glass column having a diameter of 22 ram x 750 ram, and the above-mentioned regeneration treatment was carried out. &lt;Adsorption Engineering of TAA Ions&gt; 8000 ml of 0.5% by mass of TMAH waste liquid (photoresist developing waste liquid, the amount of photoresist is converted to 42 ppm by COD, and the metal ion concentration is Na: 9. Oppb,

Al : 4. 4ppb,K : 1. Ippb,Ca : 12. 9ppb,Cr : 5.5ppb,Fe : 16.4ppb,Ni : 1·2 ppb,Cu : 0. 14ppb)以空間速度SV = 20(1/時間)於此管柱中進行 通液。 [0074] &lt;洗淨工程&gt; 隨後,將l〇〇ml的0. 5質量%TMAH以空間速度SV = 1(1/時 間)進行通液,以洗淨阻抗成分。 [0075] 〈與鹽酸的接觸工程/TAAC的回收工程〉 接著,將800ml的1N-HC1作為溶離液以空間速度SV = 1(1/時間)進行通液,使吸附的TMA離子形成TMAC後溶出 。依序分別取得溶出液,而可區分成以下所示之十二種 液體。從0至50〇11}1為止,每10〇1111進行區分而分出5種( 區分液體A〜E) ; 500至600ml為止,則每20ml進行區分 而分出5種(區分液體F-1〜5) ; 600至800ml為止,則每 10014667^^^ A〇101 第20頁/共33頁 1013093883-0 201228729 100ml進行區分而分出2種(區分液體G〜Η),共計分成十 二種液體《將這些區分液體分別以離子層析法測量TMAC 濃度’以ICP質量分析法測量金屬離子濃度,以ρΗ測量器 測量pH。將其結果分別示於表1、第2圖及第3圖中。 [0076] [表 1〕 區分 pH 電導度 TMAC 濃度 HC1 濃度 金屬離手濃度(ppb) 液鑪 (mS / cm) (mol /1) (mol /1) Na Al K Ca Cr Fe Ni Cu A 9.0 0 0 0 2.7 9.3 &lt; 1.0 &lt;5.0 &lt;0.5 &lt;4.0 &lt;2.5 &lt; 0.3 B S.S 4S 0.63 0 10.2 &lt;1.0 1.5 &lt; 5.0 &lt; 0.5 &lt;4.0 &lt; 2.5 &lt; 0.3 C S.8 57 0.77 0 2.1 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt;2.5 &lt;0.3 D 8.9 57 0.77 0 1.9 &lt;1.0 &lt; 1.0 &lt; 5.0 &lt;0.5 4.6 &lt;2.5 &lt;0.3 E 8.8 58 0.78 0 t.8 8.3 &lt; 1.0 &lt; 5.0 &lt;0.5 19.3 &lt;2.5 &lt; 0.3 F-1 8.9 56 0.76 0 U8 29.9 &lt; 1.0 &lt; 5.0 &lt;0.5 30.7 &lt;2-5 0.7 F-2 8.8 56 0.76 0 1.9 49.9 11.6 &lt;5.0 &lt;0.5 35.7 &lt;2.5 &lt;0.3 F-3 5.3 85 0.75 0 373.7 1Π.3 17.4 230.1 &lt;0.5 86.5 &lt; 2.5 0.9 F-4 0.6 113 0.71 0.08 1333.0 245.5 92.3 2117.8 &lt;0.5 179.1 6.4 1.5 F-5 0.5 177 0.46 0.39 459.2 216.5 18.1 1091.8 &lt; 0.5 180.0 5.9 1.2 G 0.4 292 0.06 0.87 53.5 52.2 3.6 X42.2 &lt; 0.5 82.4 &lt;2.5 &lt;0.3 Η 0.3 325 0.00 1.01 11.6 9.2 1.7 14.8 &lt;0.5 26.9 &lt;2.5 &lt;0.3Al : 4. 4ppb, K : 1. Ippb, Ca : 12. 9ppb, Cr : 5.5ppb, Fe : 16.4ppb, Ni : 1·2 ppb, Cu : 0. 14ppb) With space velocity SV = 20(1/ Time) The liquid is passed through the column. &lt;Washing Process&gt; Subsequently, 0.5% by mass of TMAH was passed through at a space velocity of SV = 1 (1/time) to wash the impedance component. <Contact Engineering with Hydrochloric Acid/Recovery of TAAC> Next, 800 ml of 1N-HC1 was passed as a solution at a space velocity of SV = 1 (1/time), and the adsorbed TMA ions were formed into a TMAC and then dissolved. . The eluate is separately obtained in order, and can be divided into twelve kinds of liquids shown below. From 0 to 50〇11}1, 5 types are distinguished every 10 1111 (different liquids A to E); 500 to 600 ml are divided into 5 types for every 20 ml (separation of liquid F-1) ~5) ; 600 to 800ml, every 10014667^^^ A〇101 page 20/33 pages 1013093883-0 201228729 100ml to distinguish between two types (different liquid G ~ Η), a total of twelve The liquid "Measure these TMAC concentrations by ion chromatography separately by ion chromatography" measures the metal ion concentration by ICP mass spectrometry and the pH with a pH meter. The results are shown in Table 1, Figure 2, and Figure 3, respectively. [Table 1] Distinguishing pH Conductivity TMAC Concentration HC1 Concentration Metal Offset Concentration (ppb) Liquid Furnace (mS / cm) (mol /1) (mol /1) Na Al K Ca Cr Fe Ni Cu A 9.0 0 0 0 2.7 9.3 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt; 2.5 &lt; 0.3 B SS 4S 0.63 0 10.2 &lt; 1.0 1.5 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt; 2.5 &lt; 0.3 C S. 8 57 0.77 0 2.1 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt; 2.5 &lt; 0.3 D 8.9 57 0.77 0 1.9 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt;0.5 &lt; 0.5 4.6 &lt;2.5 &lt; 0.3 E 8.8 58 0.78 0 t.8 8.3 &lt; 1.0 &lt; 5.0 &lt;0.5 19.3 &lt; 2.5 &lt; 0.3 F-1 8.9 56 0.76 0 U8 29.9 &lt; 1.0 &lt; 5.0 &lt;0.5 30.7 &lt; 2-5 0.7 F-2 8.8 56 0.76 0 1.9 49.9 11.6 &lt;5.0 &lt;0.5 35.7 &lt;2.5 &lt;0.3 F-3 5.3 85 0.75 0 373.7 1Π.3 17.4 230.1 &lt;0.5 86.5 &lt; 2.5 0.9 F-4 0.6 113 0.71 0.08 1333.0 245.5 92.3 2117.8 &lt;0.5 179.1 6.4 1.5 F-5 0.5 177 0.46 0.39 459.2 216.5 18.1 1091.8 &lt; 0.5 180.0 5.9 1.2 G 0.4 292 0.06 0.87 53.5 52.2 3.6 X42.2 &lt; 0.5 82.4 &lt;2.5 &lt;0.3 Η 0.3 325 0.00 1.01 11.6 9.2 1.7 14.8 &lt;0.5 26.9 &l t;2.5 &lt;0.3

由表1可明白得知,從pH變成7以下的F-3起金屬離子的濃 度會變高。從區分液體B至F-2為止的合計液體的金屬離 子濃度無論任何一種金屬皆為l〇ppb以下,TMAC濃度為 7.8質量%(0.71mol/l),且不含HC1。此時的TMAC回收 率為90. 0%。 [0077] 實施例2 使用2N的鹽酸當作溶離之際所使用的酸,除了將與鹽酸 的接觸工程的操作於下述的條件下進行以外,其他皆利 用與實施例1相同的操作,以得到TMAC。將結果示於表2 中。 [0078] 〈與鹽酸的接觸工程/TAAC的回收工程〉 10014667^ 單、编號1 A0101 第21頁/共33頁 1013093883-0 201228729 接著,將600ml的2N-HC1作為溶離液以空間速度SV = 1(1/時間)進行通液,使吸附的TMA離子形成TMAC後溶出 。依序分別取得溶出液,而可區分成以下所示之十二種 液體。從0至40 0ml為止,每80ml進行區分而分出5種(區 分液體A〜E) ; 400至500ml為止,則每20ral進行區分而 为出5種(區分液體F-1〜5) ; 500至600ml為止,則每 50ml進行區分而分出2種(區分液體G、H),共計分成十 二種液體。將這些區分液體分別以離子層析法測量TMAC 濃度’以ICP質量分析法測量金屬離子濃度,以pH測量器 測量pH。將其結果分別示於表2。 [_]〔表 2〕 區分 液鑀 PH 重導度 (mS / cm) TMAC 濃度 (mol /t) HCi 濃炙 (mol /1) 金屬鎿子濃度(ppb) Na A1 K Ca Cr Fe Mi Cu A 9.0 0 0 0 &lt;2.5 &lt;1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt;2.5 &lt; 0.3 β 8.8 50 0.64 0 &lt;2.5 &lt;1.0 I.S &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt; 2.5 &lt;0.3 C 8.8 74 1,12 0 &lt;2.5 &lt;1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt;4.0 &lt; 2.5 &lt; 0.3 D 8.6 76 1.17 0 &lt; 2.5 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt;0.5 &lt; 4.0 &lt; 2.5 &lt; 0.3 E 8.4 76 1-17 0 &lt;2.5 10.3 &lt;1.0 &lt; 5.0 &lt;0.5 22.1 &lt; 2.5 &lt; 0..¾ F-l 8.3 77 1.19 0 &lt; 2.5 22.8 &lt; 1.0 &lt; 5.0 &lt;0.5 33.9 &lt; 2.5 &lt; 0.3 F-2 8.2 77 1.19 0 &lt; 2.5 74.3 15.5 &lt;5.0 &lt; 0.5 39.5 &lt; 2.5 &lt; 0.3 F-3 0.8 Ϊ25 0.76 0.20 674.6 170.9 46.2 422.4 &lt; 0.5 100.1 3.0 1.3 F-4 0.3 370 0.64 1.01 1330.4 201.4 84.2 2025.0 &lt; 0.5 235.5 5.J 1.8 F-5 0.2 460 0.40 1.43 — 1.90 347.0 266.8 13,3 1008.5 &lt;0.5 186.3 4.9 1.4 G 0.1 524 0.02 220.5 78.3 5.5 188.5 &lt; 0.5 54.1 2.1 &lt; 0.3 0.1 544 0.00 2.00 15,4 24.3 1.2 17.7 &lt; 0.5 15.9 &lt; 2.5 &lt;0.3 ------ 從表2可得知當pH變成7以下時,金屬離子濃度將會上升 [0080] 10014667^ 單編號1 A0101 實施例3使用4N的鹽酸當作溶離之際所使用的酸,除了將與鹽酸 的接觸JL程的操作於下料條件下進行以外其他皆利 ^與實施例1相同的操作,以得到TMC。將結果示於表3 第22頁/共33頁 1013093883-0 201228729 中。 [0081] 〈與鹽酸的接觸工程/TAAC的回收工程〉 Ο 接著,將600ml的4N-HC1作為溶離液以空間速度SV = 1(1/時間)進行通液,使吸附的TMA離子形成TMAC後溶出 。依序分別取得溶出液,而可區分成以下所示之十二種 液體。從0至250ml為止,每50ml進行區分而分出5種(區 分液體A〜E) ; 250至500ml為止,則每50ral進行區分而 分出5種(區分液體F-1〜5) ; 500至600ml為止,則每 50ml進行區分而分出2種(區分液體G、H),共計分成十 二種液體。將這些區分液體分別以離子層析法測量TMAC 濃度’以ICP質量分析法測量金屬離子濃度,以pH測量器 測置pH。將其結果分別表示於表3中。 [0082] 從表3可得知當PH變成7以下時,金屬離子濃度將會上升 〇 [0083] Ο 〔表3〕 S分 液馥 pH 電導度 (»S / cm) TMAC 濃度 (mol /1) HC1 濃度 (mol /1) 金曷離子濃度(ppb&gt; Na A! K Ca Cr Fe Ni Cu A 9.0 0 0 0 &lt; 2,5 &lt; 1.0 &lt; 1.0 &lt;5.0 &lt;0.5 &lt; 4.0 &lt;2.5 &lt;0.3 B 8.8 0 0 0 &lt;2.5 &lt; 1.0 1.8 &lt; 5.0 &lt;0.5 &lt;4.0 &lt;2.5 &lt; 0.3 C 8,8 22 0.25 0 &lt;2.5 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt;2.5 &lt;0.3 D 8.9 76 1.17 0 &lt; 2.5 &lt; 1.0 &lt;1.0 &lt; 5.0 &lt; 0.5 &lt;4.0 &lt;2.5 &lt; 0.3 E 8.8 94 1.64 0 &lt;2.5 8.3 &lt; 1.0 &lt; 5.0 &lt; 0.5 14.5 &lt;2.5 &lt;0.3 F-1 8.9 96 1.69 0 &lt;2.5 21.5 &lt;1.0 &lt; 5.0 &lt; 0.5 30.5 &lt;2.5 &lt;0.3 F-2 0.? 220 1.55 0.36 &lt;2.5 44.3 8.4 &lt; 5.0 &lt;0.5 20.3 &lt;2.5 &lt;0.3 F-3 0.3 516 1.19 1.50 433.6 132.5 34.1 318.5 &lt; 0.5 75,1 2.5 0.8 F-4 0.2 731 0.53 2.91 1121.8 168.4 75.4 1765.5 &lt;0.5 198.5 3.5 1.6 F-5 0.1 762 0.22 3.58 654.3 470.5 25.2 1580.6 &lt;0.5 140,6 3.2 1.5 G 0.1 771 O.iO 3.89 184.7 62.8 8.6 274.3 &lt;0.5 75.1 2.4 0.5 Η 0.1 775 0.01 3.98 42.5 30.1 6.5 70.2 &lt; 0.5 21.1 1.8 0.3 [0084] 實施例4 1001料號 A0101 第23頁/共33頁 1013093883-0 201228729 =利用實施例i的方法所得到的TMAC進行蒸發濃縮,以調 27. 5質量而獄溶液。所得到的濃端tmac溶液依以 下的電解工程進行TAAH的製造。 [0085] 此々k . 電解工程中,使用從陽極開始依序分別配置了 一牧陰離子交換膜及一枚陽離子交換膜(任—交換膜皆為 NAFION 90209(杜邦社製))的三室型電解槽。上述離子 父換膜的有效膜面積設為2dm2,納菲膜則是將具幾酸基 的一面朝向陰極側設置。使用在鈦板上鍍鉑者當作陽極 ’陰極則使用SUS316。分別使〇. 5規定的硫酸在上述電 解槽的陽極室内循環;使上述氣化TMA溶液在陰離子交換 膜與陰極侧的陽離子交換膜間循環;以及使純水在陰極 室内循環’將電流密度維持在18A/ dm2,溫度則維持在 40°C的同時’連續地實施電解。於連續運轉中,將陰極 室的氫氧化四曱基銨濃度設成18質量%。相同地,將循環 於各室的液體的濃度設成為一定值,當濃度變濃時添加 純水,而當濃度變淡時則添加其所含成分。 [0086] 電解開始後,運轉狀態進入安定的12小時後(安定時), 以及在連續運轉已進行3個月的時點所得到的TAAH溶液的 分析結果分別示於表4中。 [0087] 實施例5 將以實施例2的方法所得到的TMAC利用與實施例4相同的 方法進行電解而製造出TMAH。將結果示於表4中。 [0088] 〔表 4〕 10014667#^'^ A〇101 第24頁/共33頁 1013093883-0 201228729 — 實施例4 實施例5 安定時 連續運轉後 安定時 連續運轉後 Na 1.5 1.1 2.0 1.3 AI 0-9 0.5 1.1 0.7 金屬離子 濃度 (ppbw) K 1.5 0.8 1.2 0.8 Ca 1.2 0.7 1.4 0.9 Cr &lt;0.5 &lt;0.5 &lt;0.5 &lt;0.5 Fe &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 Ni &lt;2.5 &lt;2.5 &lt;2.5 &lt;2.5 Cu &lt;0.3 &lt;0.3 &lt;0.3 &lt;0.3 Ο --- [0089] 實施例6 (陽離子交換樹脂的再生處理(Η型陽離子交換樹脂)) 將陽離子交換樹脂1 OOOial填充至直徑50mmx2000 mm的 聚氯乙烯製管柱内’以超純水、1N-HC1進行通液之際的 空間速度SV設為4(1/時間),除了將各液體的使用液量設 成5L/L—樹脂以外,其他皆與實施例1相同地進行再生處 理。 0 [0090] &lt;TAA離子的吸附工程&gt; 將801與實施例1相同組成的〇. 5質量%TMAH廢液以空間速 度SV = 20(1/時間)進行通液。 [0091] 〈洗淨工程〉 隨後,將21的0. 5質量%TMAH以空間速度SV = 5(1/時間) 進行通液,以洗淨阻抗成分。 [0092] 〈與鹽酸的接觸工程/TAAC的回收工程〉 接著,將8000ml的1N-HC1作為溶離液以空間速度”= 10014667^單編號 A0101 第25頁/共33頁 1013093883-0 201228729 5(1/時間)進行通液,使吸附的τΜΑ離子形成TMAC後溶出 。依序分別取得溶出液,而可區分成以下所示之二十三 種液體。首先,區分〇〜1 000ml(區分液體A);從1〇〇〇至 5000ml為止’每5〇〇mi進行區分而分出8種(區分液體B〜 Π ’ 5000至600 〇ml為止,則每1〇 〇ml進行區分而分出1〇 種(區分液體J-1〜J-10)、6000至8000ml為止,則每 500ml進行區分而分出4種(區分液體K〜N),共計分成二 十二種液體。將這些區分液體分別以離子層析法測量 TMAC濃度,以ICP質量分析法測量金屬離子濃度以邱 測量器測量pH。將其結果分別示於表5、第4圖及第5圖中 。此外,將區分液體B〜j_5的合計液體的pH、電導度、 TMAC濃度、金屬離子濃度示於表6中。 [0093] 〔表 5 ] 第26頁/共33頁 10014667^單編號 1013093883-0 201228729 [0094]〔表 6〕 B-J-5 的合計液體 pH 電導度 TMAC HC1 Na A1 K Ca Cr Fe Ni Cn (mS / cm) (mol/l) (mol /1) ppb ppb ppb ppb ppb ppb ppb Total 8.7 53 0.71 0.00 3.5 3.5 &lt; 1.0 &lt;5.0 &lt; 0.5 7.1 &lt;2.5 &lt; 0.3 (7.7wt%)As is clear from Table 1, the concentration of metal ions increased from F-3 whose pH was changed to 7 or less. The metal ion concentration of the total liquid from the liquid B to the F-2 was 1 ppb or less, the TMAC concentration was 7.8% by mass (0.71 mol/l), and the HCl content was not contained. 0%。 The TMAC recovery rate was 90.0%. [Example 2] The same operation as in Example 1 was carried out except that the acid used for the dissolution of 2N hydrochloric acid was used except that the operation of the contact engineering with hydrochloric acid was carried out under the following conditions. Get TMAC. The results are shown in Table 2. [Contact Engineering with Hydrochloric Acid/Recycling Engineering of TAAC] 10014667^ Single, No. 1 A0101 Page 21/Total 33 Page 1013093883-0 201228729 Next, 600 ml of 2N-HC1 is used as a dissolving solution at a space velocity SV = 1 (1/time) was passed through, and the adsorbed TMA ions were dissolved after forming TMAC. The eluate is separately obtained in order, and can be divided into twelve kinds of liquids shown below. From 0 to 40 0 ml, 5 types are distinguished every 80 ml (different liquids A to E); 400 to 500 ml are divided into 5 types per 20 ral (different liquids F-1 to 5); 500 Up to 600 ml, two types were separated for each 50 ml (the liquids G and H were distinguished), and the total was divided into twelve kinds of liquids. These different liquids were separately measured by ion chromatography to measure the TMAC concentration. The metal ion concentration was measured by ICP mass spectrometry, and the pH was measured with a pH meter. The results are shown in Table 2, respectively. [_][Table 2] Distinguish liquid helium pH Reinforcement (mS / cm) TMAC concentration (mol / t) HCi Concentration (mol /1) Metal tweezers concentration (ppb) Na A1 K Ca Cr Fe Mi Cu A 9.0 0 0 0 &lt; 2.5 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt; 2.5 &lt; 0.3 β 8.8 50 0.64 0 &lt; 2.5 &lt; 1.0 IS &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt; 2.5 &lt;0.3 C 8.8 74 1,12 0 &lt;2.5 &lt;1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt;4.0 &lt; 2.5 &lt; 0.3 D 8.6 76 1.17 0 &lt; 2.5 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt;0.5 &lt; 4.0 &lt; 2.5 &lt; 0.3 E 8.4 76 1-17 0 &lt; 2.5 10.3 &lt;1.0 &lt; 5.0 &lt;0.5 22.1 &lt; 2.5 &lt; 0..3⁄4 Fl 8.3 77 1.19 0 &lt; 2.5 22.8 &lt; 1.0 &lt; 5.0 &lt;0.5 33.9 &lt; 2.5 &lt; 0.3 F-2 8.2 77 1.19 0 &lt; 2.5 74.3 15.5 &lt;5.0 &lt; 0.5 39.5 &lt; 2.5 &lt; 0.3 F-3 0.8 Ϊ25 0.76 0.20 674.6 170.9 46.2 422.4 &lt; 0.5 100.1 3.0 1.3 F-4 0.3 370 0.64 1.01 1330.4 201.4 84.2 2025.0 &lt; 0.5 235.5 5.J 1.8 F-5 0.2 460 0.40 1.43 — 1.90 347.0 266.8 13,3 1008.5 &lt;0.5 186.3 4.9 1.4 G 0.1 524 0.02 220.5 78.3 5.5 188.5 &lt; 0.5 54.1 2.1 &Lt; 0.3 0.1 544 0.00 2.00 15,4 24.3 1.2 17.7 &lt; 0.5 15.9 &lt; 2.5 &lt;0.3 ------ It can be seen from Table 2 that when the pH becomes 7 or less, the metal ion concentration will rise [0080] 10014667^ Single No. 1 A0101 Example 3 using 4N hydrochloric acid as the acid used for the dissolution, except that the contact with hydrochloric acid is carried out under the conditions of the JL process, the same as in the first embodiment. Operation to get TMC. The results are shown in Table 3, page 22 of 33, 1013093883-0 201228729. <Contact Engineering with Hydrochloric Acid/Recovery of TAAC> Ο Next, 600 ml of 4N-HC1 was passed as a solution at a space velocity of SV = 1 (1/time), and the adsorbed TMA ions were formed into TMAC. Dissolution. The eluate is separately obtained in order, and can be divided into twelve kinds of liquids shown below. From 0 to 250 ml, 5 types are distinguished every 50 ml (different liquids A to E); 250 to 500 ml are divided into 5 types (different liquids F-1 to 5) for each 50 ral; 500 to In the case of 600 ml, two types (different liquids G and H) are separated for each 50 ml, and a total of twelve liquids are divided. The TMAC concentration was measured by ion chromatography using these different liquids. The metal ion concentration was measured by ICP mass spectrometry, and the pH was measured by a pH meter. The results are shown in Table 3, respectively. It can be seen from Table 3 that when the pH becomes 7 or less, the metal ion concentration will rise 〇 [0083] 〔 [Table 3] S liquid 馥 pH conductivity (»S / cm) TMAC concentration (mol / 1) HC1 concentration (mol / 1) gold ion concentration (ppb> Na A! K Ca Cr Fe Ni Cu A 9.0 0 0 0 &lt; 2, 5 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt;;2.5&lt;0.3 B 8.8 0 0 0 &lt;2.5 &lt; 1.0 1.8 &lt; 5.0 &lt;0.5 &lt;4.0 &lt; 2.5 &lt; 0.3 C 8,8 22 0.25 0 &lt;2.5 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt; 0.5 &lt; 4.0 &lt;2.5 &lt;0.3 D 8.9 76 1.17 0 &lt; 2.5 &lt; 1.0 &lt;1.0 &lt; 5.0 &lt; 0.5 &lt;4.0 &lt;2.5 &lt;0.3 &lt; 0.3 E 8.8 94 1.64 0 &lt;2.5 8.3 &lt; 1.0 &lt; 5.0 &lt; 0.5 14.5 &lt;2.5 &lt;0.3 F-1 8.9 96 1.69 0 &lt; 2.5 21.5 &lt;1.0 &lt; 5.0 &lt; 0.5 30.5 &lt;2.5 &lt;0.3 F-2 0.? 220 1.55 0.36 &lt; 2.5 44.3 8.4 &lt; 5.0 &lt; 0.5 20.3 &lt; 2.5 &lt; 0.3 F-3 0.3 516 1.19 1.50 433.6 132.5 34.1 318.5 &lt; 0.5 75,1 2.5 0.8 F-4 0.2 731 0.53 2.91 1121.8 168.4 75.4 1765.5 &lt;0.5 198.5 3.5 1.6 F-5 0.1 762 0.22 3.58 654.3 470.5 25.2 1580.6 &lt;0.5 140,6 3.2 1.5 G 0.1 771 O.iO 3.89 184.7 62.8 8.6 274.3 &lt;0.5 75.1 2.4 0.5 Η 0.1 775 0.01 3.98 42.5 30.1 6.5 70.2 &lt; 0.5 21.1 1.8 0.3 [0084] Example 4 1001 Part No. A0101 Page 23 of 33 10质量为下下溶液。 The sulphate was condensed by the TMAC obtained by the method of Example i to adjust the 27. 5 mass and the prison solution. The resulting concentrated tmac solution was subjected to electrolysis engineering to produce TAAH. [0085] In the electrolysis process, a three-chamber electrolysis in which an anion exchange membrane and a cation exchange membrane (any exchange membrane are NAFION 90209 (made by DuPont)) are sequentially disposed from the anode. groove. The effective membrane area of the above-mentioned ion-parent replacement film is set to 2 dm 2 , and the Nafic film is provided with the side having a few acid groups toward the cathode side. Platinum is used as the anode on the titanium plate, and SUS316 is used as the cathode. Circulating the sulfuric acid specified in 〇.5 in the anode chamber of the electrolytic cell; circulating the vaporized TMA solution between the anion exchange membrane and the cation exchange membrane on the cathode side; and circulating pure water in the cathode chamber to maintain the current density At 18 A/dm2, the temperature was maintained at 40 ° C while 'electrolysis was continuously performed. In the continuous operation, the concentration of tetramethylammonium hydroxide in the cathode chamber was set to 18% by mass. Similarly, the concentration of the liquid circulating in each chamber is set to a constant value, pure water is added when the concentration becomes rich, and the components contained therein are added when the concentration becomes light. [0086] After the start of electrolysis, the analysis results of the TAAH solution obtained after the operation state entered the stable 12 hours (safety) and at the time when the continuous operation was performed for 3 months are shown in Table 4, respectively. Example 5 The TMAC obtained by the method of Example 2 was electrolyzed in the same manner as in Example 4 to produce TMAH. The results are shown in Table 4. [Table 4] 10014667#^'^ A〇101 Page 24/ Total 33 1013093883-0 201228729 - Example 4 Example 5 After continuous operation after continuous operation, Na 1.5 1.1 2.0 1.3 AI 0 -9 0.5 1.1 0.7 metal ion concentration (ppbw) K 1.5 0.8 1.2 0.8 Ca 1.2 0.7 1.4 0.9 Cr &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.1 &lt; 0.1 &lt; 0.1 &lt; 0.1 Ni &lt; 2.5 &lt; 2.5 &lt; 2.5 &lt; 2.5 Cu &lt; 0.3 &lt; 0.3 &lt; 0.3 &lt; 0.3 &lt; 0.3 Ο --- [Example 6 (Regeneration treatment of cation exchange resin (Η-type cation exchange resin)) The exchange resin 1 OOOial is filled into a PVC column with a diameter of 50 mm x 2000 mm. The space velocity SV at the time of passing through the ultrapure water and 1N-HC1 is set to 4 (1/time), except for the use of each liquid. The amount of liquid was changed to 5 L/L-resin, and the regeneration treatment was carried out in the same manner as in Example 1. &lt;Adsorption Engineering of TAA Ion&gt; A 5% mass% TMAH waste liquid having the same composition as that of Example 1 was passed through at a space velocity of SV = 20 (1/time). <Cleaning Process> Subsequently, 0.5 mass% TMAH of 21 was passed through at a space velocity SV = 5 (1/time) to wash the impedance component. <Contact Engineering with Hydrochloric Acid/Recycling Engineering of TAAC> Next, 8000 ml of 1N-HC1 was used as an eluent at a space velocity "= 10014667^, single number A0101, page 25/33, 1013093883-0, 201228729 5 (1) / time) to carry out the liquid, so that the adsorbed τ ΜΑ ion forms TMAC and then dissolves. The eluate is separately obtained in order, and can be divided into twenty-three liquids as shown below. First, distinguish 〇~1 000 ml (distinguish liquid A) From 1〇〇〇 to 5000ml, every 5〇〇mi is divided into 8 types (different from liquid B~ Π '5000 to 600 〇ml, then 1 〇〇ml is divided and 1 分 is divided. (Different liquids J-1 to J-10) and 6000 to 8000 ml are divided into four types (dividing liquids K to N) for every 500 ml, and are divided into twenty-two kinds of liquids. The TMAC concentration was measured by chromatography, and the metal ion concentration was measured by ICP mass spectrometry to measure the pH by a Qiu measuring device. The results are shown in Table 5, Figure 4, and Figure 5. In addition, the liquid B to j_5 will be distinguished. The pH, conductivity, TMAC concentration, and metal ion concentration of the total liquid are shown in Table 6. [Table 5] [Page 5] Page 26 of 33 10014667^Single Number 1013093883-0 201228729 [Table 6] Total Liquid pH Conductivity of BJ-5 TMAC HC1 Na A1 K Ca Cr Fe Ni Cn ( mS / cm) (mol / l) (mol / 1) ppb ppb ppb ppb ppb ppb ppb Total 8.7 53 0.71 0.00 3.5 3.5 &lt; 1.0 &lt; 5.0 &lt; 0.5 7.1 &lt; 2.5 &lt; 0.3 (7.7 wt%)

由表5可明白得知’從仙變成7以下的j_6起金屬離子的濃 度會變高。此外’從表6的結果可得知區分液體8至卜5的 合計液體的金屬離子濃度無論任何一種金屬皆為3 5ppb 以下,TMAC濃度為7. 7質量!;(;(〇 71m〇1/1),且不含HC1 。此時的TMAC回收率為87. 8%。As can be seen from Table 5, it is known that the concentration of metal ions increases from j_6 which becomes 7 or less. In addition, from the results of Table 6, it can be seen that the concentration of the metal ions of the liquids of the liquids 8 to 5 is 3 5 ppb or less, and the TMAC concentration is 7.7 mass!; (; (〇71m〇1/ 1), and the TMAC recovery rate was 87.8%.

【圖式簡單說明J 表單煸號 100146674 區分 液逋 pH t導度 (mS / cm) TMAC 濃度 (mol /1) HC1 濃度 (mol /1) 全屬》.子«度(PPbw ) Ka A1 K Ca Cr Fe Ni Cu A 9.1 0 0 0 2.7 9.3 &lt; 1.0 &lt;5.0 &lt;0.5 &lt; 4.0 &lt;2.5 &lt;0.3 B 8.9 20 0.23 0 6.5 3.5 &lt; 1.0 &lt;5.0 &lt;0.5 &lt;4.0 &lt;2.5 &lt;0.3 C 8.9 52 0.69 0 10.2 &lt; 1.0 1.5 &lt;5.0 &lt;0.5 &lt;4.0 &lt;2.5 &lt; 0.3 D 8.9 56 0.75 0 3.3 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt;0.5 &lt; 4.0 &lt; 2.5 &lt;0.3 E 8.8 57 0.77 0 2.1 &lt; 1,0 &lt; I.G &lt; 5.0 &lt;0.5 &lt;4.0 &lt;2.5 &lt;0.3 F 8.8 57 0.77 0 2.8 &lt; 1.0 &lt; i.o &lt; 5 .0 &lt;0.5 &lt; 4.0 &lt; 2.5 &lt; 0.3 G 8.8 57 0.77 0 1.9 &lt; 1.0 &lt; 1.0 &lt;5.0 &lt;0.5 4.6 &lt;2.5 &lt; 0.3 Η 8.7 5S 0.79 0 0.8 &lt; 1.0 &lt; 1.0 &lt;5.0 &lt;0.5 6.6 &lt;2.5 &lt;0.3 I 8.6 58 0.79 0 2.2 8.3 &lt; 1.0 &lt;5.0 &lt;0.5 19.3 &lt;2.5 &lt; 0 3 J-l 8.6 58 0.79 0 1.2 13.5 &lt; 1.0 &lt;5.0 &lt; 0.5 24.1 &lt; 2.5 &lt; 0.3 J-2 8.6 58 0.79 0 1.8 22 &lt; 1,0 &lt;5.0 &lt;0.5 30-7 &lt;2.5 &lt; 0.3 J-3 8.6 58 0.79 0 1.6 18.9 &lt; I.o &lt; 5.0 &lt; 0.5 34.2 &lt;2.5 &lt;0.3 J-4 8.5 58 0.79 0 1.9 20.4 6.4 &lt;5.0 &lt; 0.5 35-7 &lt; 2.5 &lt; 0.3 J-5 8.5 58 0-79 0 3.6 24.2 11.2 28 &lt;0.5 42.9 &lt;2-5 0.6 3-6 6.1 71 0.79 0 243-3 103.3 38.4 230.1 &lt;0.5 86-5 &lt;2.5 0.9 J-7 2.4 83 0.78 0.02 670.7 201.4 65.5 880.4 &lt;0.5 122.6 3.4 2.2 J.S 1.1 98 0.76 0.05 1333.6 245.5 92.3 1847.8 &lt;0.5 179.1 6.4- 1.5 J-9 0.7 131 0 64 0.20 1242 231.5 77.1 2204.1 &lt;0.5 164.1 6.2 1.6 ΜΌ 0.5 183 0.45 0.30 459.2 216.5 1S.1 1287.4 &lt; 0.5 134 5.9 l K 0.4 264 Ο.Ϊ5 0.71 218.4 87 6.8 542 &lt; 0.5 86.6 2.8 0.7 L 0.4 315 0.04 0.91 53.5 46.2 3.6 142.2 &lt;0.5 74.6 &lt; 2.5 &lt;0.3 M 0.3 322 0.01 0.98 34.4 32.8 3.1 70.4 &lt; 0.5 48.8 &lt;2.5 &lt;0.3 N 0.3 337 0 1.01 Π.6 9.2 1.7 14.8 &lt; 0.5 26.9 &lt;2.5 &lt;0.3 [0095]帛1圖係為本發明的四烧基錄鹽的製造方法的製造設備 A0101 第打頁/共33頁 101309388Σ 201228729 的一實施態樣的示意圖。 第2圖係為有關於本發明的實施例的曲線圖。 第3圖係為有關於本發明的實施例的曲線圖。 第4圖係為有關於本發明的實施例的曲線圖。 第5圖係為有關於本發明的實施例的曲線圖。 【主要元件符號說明】 [0096]無 | 丽棚#料號纽01 1013093883-0 第28頁/共33頁[Simple diagram of the figure J Form nickname 100146674 Distinguish liquid 逋 pH t conductance (mS / cm) TMAC concentration (mol /1) HC1 concentration (mol /1) Full genus. Sub-degree (PPbw) Ka A1 K Ca Cr Fe Ni Cu A 9.1 0 0 0 2.7 9.3 &lt; 1.0 &lt;5.0 &lt;0.5 &lt; 4.0 &lt;2.5 &lt;0.3 B 8.9 20 0.23 0 6.5 3.5 &lt; 1.0 &lt;5.0 &lt;0.5 &lt;4.0 &lt; 2.5 &lt;0.3 C 8.9 52 0.69 0 10.2 &lt; 1.0 1.5 &lt;5.0 &lt;0.5 &lt;4.0 &lt;2.5 &lt;2.5 &lt;0.3 D 8.9 56 0.75 0 3.3 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt;0.5 &lt;&lt; 2.5 &lt;0.3 E 8.8 57 0.77 0 2.1 &lt; 1,0 &lt; IG &lt; 5.0 &lt;0.5 &lt;4.0 &lt;2.5 &lt;0.3 F 8.8 57 0.77 0 2.8 &lt; 1.0 &lt; io &lt; 5 .0 &lt;0.5 &lt; 4.0 &lt; 2.5 &lt; 0.3 G 8.8 57 0.77 0 1.9 &lt; 1.0 &lt; 1.0 &lt; 5.0 &lt;0.5 4.6 &lt;2.5 &lt; 0.3 Η 8.7 5S 0.79 0 0.8 &lt; 1.0 &lt; 1.0 &lt;5.0 &lt;0.5 6.6 &lt;2.5 &lt;0.3 I 8.6 58 0.79 0 2.2 8.3 &lt; 1.0 &lt;5.0 &lt;0.5 19.3 &lt;2.5 &lt; 0 3 Jl 8.6 58 0.79 0 1.2 13.5 &lt; 1.0 &lt; 5.0 &lt; 0.5 24.1 &lt; 2.5 &lt; 0.3 J-2 8.6 58 0.79 0 1.8 22 &lt; 1,0 &lt;5.0 &lt;0.5 30-7 &lt;2.5 &lt;0.3 J-3 8.6 58 0.79 0 1.6 18.9 &lt; Io &lt; 5.0 &lt; 0.5 34.2 &lt;2.5 &lt;0.3 &lt;0.3 J-4 8.5 58 0.79 0 1.9 20.4 6.4 &lt;5.0 &lt; 0.5 35-7 &lt; 2.5 &lt; 0.3 J-5 8.5 58 0-79 0 3.6 24.2 11.2 28 &lt;0.5 42.9 &lt; 2-5 0.6 3-6 6.1 71 0.79 0 243-3 103.3 38.4 230.1 &lt;0.5 86-5 &lt; 2.5 0.9 J-7 2.4 83 0.78 0.02 670.7 201.4 65.5 880.4 &lt;0.5 122.6 3.4 2.2 JS 1.1 98 0.76 0.05 1333.6 245.5 92.3 1847.8 &lt;0.5 179.1 6.4- 1.5 J-9 0.7 131 0 64 0.20 1242 231.5 77.1 2204.1 &lt;0.5 164.1 6.2 1.6 ΜΌ 0.5 183 0.45 0.30 459.2 216.5 1S.1 1287.4 &lt; 0.5 134 5.9 l K 0.4 264 Ο.Ϊ5 0.71 218.4 87 6.8 542 &lt; 0.5 86.6 2.8 0.7 L 0.4 315 0.04 0.91 53.5 46.2 3.6 142.2 &lt;0.5 74.6 &lt; 2.5 &lt; 0.3 M 0.3 322 0.01 0.98 34.4 32.8 3.1 70.4 &lt; 0.5 48.8 &lt; 2.5 &lt; 0.3 N 0.3 337 0 1.01 Π.6 9.2 1.7 14.8 &lt; 0.5 26.9 &lt; 2.5 &lt; 0.3 [0095] 1 is a schematic view showing an embodiment of a manufacturing apparatus A0101 of the method for producing a four-sinter-base salt of the present invention, page 33 of 101309388Σ 201228729. Figure 2 is a graph relating to an embodiment of the invention. Figure 3 is a graph relating to an embodiment of the invention. Figure 4 is a graph relating to an embodiment of the invention. Figure 5 is a graph relating to an embodiment of the invention. [Main component symbol description] [0096]No | 丽棚#料号纽01 1013093883-0 Page 28 of 33

Claims (1)

201228729 七、申請專利範圍: 1 . 一種四烷基銨鹽溶液的製造方法,該製造方法是利用含有 金屬離子及氫氧化四烷基銨的溶液以得到含有四烷基銨鹽 的溶液,其係包含: (1) 使含有金屬離子及氫氧化四烷基銨的一溶液通入填充 有氫離子型的陽離子交換樹脂的一吸附塔内,令該溶液中 的四烷基銨離子吸附在陽離子交換樹脂上的一吸附工程; 以及 (2) 於該吸附工程中,使一酸溶液通入填充有吸附了四烷 Ο ' 基銨離子的陽離子交換樹脂的該吸附塔内,令吸附於陽離 子交換樹脂的四烷基銨離子溶離成該酸鹽,並將從該吸附 塔流出的一流出液回收至一儲留槽的一回收工程; 並且,於該回收工程中,測量來自該吸附塔的該流出液的 pH及電導度中的至少之一,當該流出液的pH達到一預定 的pH之時點及電導度僅變化了一預定的電導度的變化量之 時點中的至少之一時,停止朝往該儲留槽的該流出液的回 收。 〇 2 .如申請專利範圍第1項所述之四烷基銨鹽溶液的製造方法 ,其中,於該回收工程中,該酸溶液為強酸,使朝往該儲 留槽的該流出液的回收停止的該流出液的該預定的pH介於 3〜8的範圍。 3 .如申請專利範圍第1項所述之四烷基銨鹽溶液的製造方法 ,其中,於該回收工程中,相對於四烷基銨鹽以濃度維持 在一定狀態下的狀態而流出的時點的電導度,使朝往該儲 留槽的該流出液的回收停止的該流出液的該預定的電導度 10014667#單麟鹿01 第29頁/共33頁 1013093883-0 201228729 的變化量為5%。 4 . 一種氫氧化四烷基銨的製造方法,其係包含: 以申請專利範圍第1項至第3項中任一項所述之方法製造出 四烷基銨鹽後,將所得到的四烷基銨鹽當作原料以製造氫 氧化四烧基銨的工程。 5 . —種製造裝置,該製造裝置係用以從氫氧化四烷基銨溶液 製造四烷基銨鹽溶液,並包含: 填充有陽離子交換樹脂的一吸附塔; 回收從該吸附塔流出的一流出液的一儲留槽;以及 用以測量該流出液的pH的一 pH測量元件及用以測量該流 出液的電導度的一電導度測量元件中的至少之一。 1001466#單編號謝01 第30頁/共33頁 1013093883-0201228729 VII. Patent application scope: 1. A method for producing a tetraalkylammonium salt solution, which is a solution containing a metal ion and a tetraalkylammonium hydroxide to obtain a solution containing a tetraalkylammonium salt. The method comprises the following steps: (1) passing a solution containing a metal ion and a tetraalkylammonium hydroxide into an adsorption tower filled with a hydrogen ion-type cation exchange resin, so that the tetraalkylammonium ion in the solution is adsorbed in the cation exchange An adsorption process on the resin; and (2) in the adsorption process, an acid solution is introduced into the adsorption column filled with a cation exchange resin adsorbed with tetradecane' ammonium ion to adsorb the cation exchange resin Dissolving the tetraalkylammonium ion into the acid salt, and recovering the first-class liquid discharged from the adsorption tower to a recovery project of a storage tank; and, in the recycling process, measuring the outflow from the adsorption tower At least one of pH and electrical conductivity of the liquid, when the pH of the effluent reaches a predetermined pH, and the point at which the electrical conductivity changes only by a predetermined amount of change in electrical conductivity When one of the effluent to stop toward the retention groove recovered. The method for producing a tetraalkylammonium salt solution according to claim 1, wherein in the recycling process, the acid solution is a strong acid, and the effluent toward the storage tank is recovered. The predetermined pH of the effluent that is stopped is in the range of 3 to 8. 3. The method for producing a tetraalkylammonium salt solution according to claim 1, wherein in the recovery process, the time at which the tetraalkylammonium salt flows out in a state in which the concentration is maintained in a certain state The electrical conductivity of the predetermined electrical conductivity of the effluent that stops the recovery of the effluent toward the storage tank is 10014667#单麟鹿01 Page 29/33 pages 1013093883-0 201228729 %. A method for producing a tetraalkylammonium hydroxide, which comprises: after the tetraalkylammonium salt is produced by the method according to any one of claims 1 to 3, the obtained four The use of an alkylammonium salt as a raw material to produce tetraalkylammonium hydroxide. a manufacturing apparatus for producing a tetraalkylammonium salt solution from a tetraalkylammonium hydroxide solution, and comprising: an adsorption tower filled with a cation exchange resin; and recovering one flowing out from the adsorption tower a reservoir of the effluent; and a pH measuring element for measuring the pH of the effluent and at least one of a conductivity measuring element for measuring the electrical conductivity of the effluent. 1001466#单号谢01 Page 30 of 33 1013093883-0
TW100146674A 2010-12-28 2011-12-16 Method for preparing tetraalkylammonium salts and preparing tetraalkylammonium hydroxide using the same TWI495509B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293216 2010-12-28

Publications (2)

Publication Number Publication Date
TW201228729A true TW201228729A (en) 2012-07-16
TWI495509B TWI495509B (en) 2015-08-11

Family

ID=46382815

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100146674A TWI495509B (en) 2010-12-28 2011-12-16 Method for preparing tetraalkylammonium salts and preparing tetraalkylammonium hydroxide using the same

Country Status (5)

Country Link
JP (1) JP5887279B2 (en)
KR (1) KR101879370B1 (en)
CN (1) CN103080070B (en)
TW (1) TWI495509B (en)
WO (1) WO2012090699A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808221B2 (en) * 2011-10-28 2015-11-10 株式会社トクヤマ Method for producing tetraalkylammonium salt solution
CN104176867A (en) * 2013-05-22 2014-12-03 北京思践通科技发展有限公司 Recovery method for amine
CN103304430A (en) * 2013-07-05 2013-09-18 武汉科梦环境工程有限公司 Process for recovering organic amine from catalyst production wastewater
JP2016174979A (en) * 2013-07-30 2016-10-06 株式会社トクヤマ Production method of tetraalkylammonium salt aqueous solution
RU2643554C2 (en) 2013-12-17 2018-02-02 Юдо Вассерауфберайтунг Гмбх Dilution regulation with determination of raw water rigidity in conductivity of soft and mixed water
KR200486055Y1 (en) 2016-10-11 2018-03-28 이요람 Stool for Farm Work
CN114147052B (en) * 2020-09-05 2023-01-24 中国石油化工股份有限公司 High-boiling-point substance metal ion adsorption renewable system and process
CN114920658B (en) * 2022-06-28 2024-05-03 大连理工大学盘锦产业技术研究院 Method for purifying choline hydroxide by ion exchange resin
TWI842314B (en) * 2022-12-30 2024-05-11 三福化工股份有限公司 Method and device for reclaim tetramethylammonium hydroxide in the developing waste liquid and removal of nitrogen-containing compounds

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10207082A (en) * 1997-01-21 1998-08-07 Japan Organo Co Ltd Method for analyzing and managing alkaline developer for photoresist or waste developer thereof or processing liquid therefor and apparatus therefor
JP3968678B2 (en) * 1998-10-26 2007-08-29 オルガノ株式会社 Method for treating tetraalkylammonium ion-containing liquid
JP2003340449A (en) * 2002-05-27 2003-12-02 Babcock Hitachi Kk Method for treating waste water containing tetraalkylammonium hydroxide
JP2004066102A (en) * 2002-08-06 2004-03-04 Babcock Hitachi Kk Waste liquid treatment method and equipment therefor
JP4385407B2 (en) * 2007-04-05 2009-12-16 オルガノ株式会社 Method for treating tetraalkylammonium ion-containing liquid
KR20120070564A (en) * 2009-09-24 2012-06-29 가부시끼가이샤 도꾸야마 Process for production of tetraalkylammonium hydroxide

Also Published As

Publication number Publication date
CN103080070B (en) 2015-02-25
JPWO2012090699A1 (en) 2014-06-05
KR101879370B1 (en) 2018-07-18
KR20130138191A (en) 2013-12-18
JP5887279B2 (en) 2016-03-16
TWI495509B (en) 2015-08-11
WO2012090699A1 (en) 2012-07-05
CN103080070A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
TW201228729A (en) Method for preparing tetraalkylammonium salts and preparing tetraalkylammonium hydroxide using the same
JP4659829B2 (en) Method to produce high purity nickel
WO2011036942A1 (en) Process for production of tetraalkylammonium hydroxide
TWI608989B (en) Method for removing metal ions in phosphoric acid solution
CN104292114B (en) A kind of preparation method of hydroxide
JPS6315355B2 (en)
TWI485003B (en) Method for producing tetraalkylammonium salt solution
EP1337470B1 (en) Process for recovering onium hydroxides from solutions containing onium compounds
JP5808221B2 (en) Method for producing tetraalkylammonium salt solution
JP5483958B2 (en) Method for producing tetraalkylammonium hydroxide
TWI583658B (en) Method for producing high-concentration solution of tetraalkylammonium salt
JP4877863B2 (en) Separation of radioactive copper using chelate exchange resin
TWI423836B (en) Process for recovering and purifying tetraalkyl ammonium hydroxide from waste solution containing the same
TW201509822A (en) Method for producing an aqueous solution of tetraalkylammonium salt
CN116162943B (en) Preparation method of trimethyl ethyl ammonium hydroxide and quaternary ammonium base aqueous solution prepared by preparation method
JP2022063614A (en) Method for treating metal ion-containing acid solution, and method for measuring metal ion level
RU2413796C1 (en) Method for synthesis of hydroxide of onium salts
CN102304034A (en) Method for preparing 2,3,4,4&#39;-tetrahydroxybenzophenone with high purity
JPH0333792B2 (en)
JPS63218505A (en) Production of high-purity hydrazine hydrate