WO2013061567A1 - 操舵制御装置 - Google Patents

操舵制御装置 Download PDF

Info

Publication number
WO2013061567A1
WO2013061567A1 PCT/JP2012/006756 JP2012006756W WO2013061567A1 WO 2013061567 A1 WO2013061567 A1 WO 2013061567A1 JP 2012006756 W JP2012006756 W JP 2012006756W WO 2013061567 A1 WO2013061567 A1 WO 2013061567A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial force
steering
force
current
lateral
Prior art date
Application number
PCT/JP2012/006756
Other languages
English (en)
French (fr)
Inventor
佑文 蔡
孝彰 江口
幸允 松下
一弘 五十嵐
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/354,324 priority Critical patent/US9701337B2/en
Priority to EP12843134.3A priority patent/EP2772410B1/en
Priority to CN201280052874.0A priority patent/CN103906672B/zh
Priority to JP2013540648A priority patent/JP5751338B2/ja
Publication of WO2013061567A1 publication Critical patent/WO2013061567A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/06Steering behaviour; Rolling behaviour

Definitions

  • the present invention relates to a steer-by-wire steering control device in which a steering wheel and a steered wheel are mechanically separated.
  • the current axial force and the lateral G axial force are distributed at a preset distribution ratio to calculate the feedback axial force.
  • the reaction force motor is driven based on the calculated feedback axial force. At this time, the distribution ratio of the lateral G-axis force is made larger than the distribution ratio of the current axial force.
  • the reaction force motor is driven based on the detection results of sensors provided in a general vehicle such as the steering current of the steering motor and the lateral acceleration of the vehicle. Therefore, according to one embodiment of the present invention, there is no need to provide a dedicated sensor, and an increase in manufacturing cost can be suppressed.
  • FIG. 2 is a conceptual diagram illustrating a configuration of a vehicle A.
  • FIG. 3 is a block diagram illustrating a configuration of a control calculation unit 11.
  • FIG. It is a block diagram showing the detailed structure of the target steering reaction force calculating part 11B. It is a figure for demonstrating the coefficient of the calculation formula of feedforward axial force TFF . It is a graph showing a lateral G axial force, a current axial force, a yaw rate axial force, and an actual steering rack axial force. It is a graph showing the feedback axial force T FB and the actual steering rack axial force. It is a graph showing distribution ratio map M1. It is a graph showing an axial force-steering reaction force conversion map.
  • FIG. 3 is a block diagram illustrating a configuration of a control calculation unit 11.
  • FIG. It is a graph showing control map M0. It is a figure for demonstrating a tire lateral force and a self-aligning torque. It is a figure for demonstrating the distribution ratio of a current axial force, a yaw rate axial force, and a lateral G axial force. It is a graph showing control map M0.
  • the vehicle A according to this embodiment is a vehicle including a steering control device of a so-called steer-by-wire system (SBW system) in which the steering wheel 1 and the front wheel (steering wheel 2) are mechanically separated.
  • FIG. 1 is a conceptual diagram illustrating a configuration of a vehicle A according to the present embodiment. As shown in FIG. 1, the vehicle A includes a steering angle sensor 3, a turning angle sensor 4, a vehicle speed sensor 5, a lateral G sensor 6, and a yaw rate sensor 7.
  • the steering angle sensor 3 detects the steering angle ⁇ of the steering wheel 1. Then, the steering angle sensor 3 outputs a signal representing the detection result (hereinafter also referred to as a detection signal) to the control calculation unit 11 described later.
  • the turning angle sensor 4 detects the turning angle ⁇ of the steered wheel 2. As a method of detecting the steered angle ⁇ of the steered wheels 2, a method of calculating based on the rack movement amount of the steering rack can be employed. Then, the turning angle sensor 4 outputs a detection signal to the control calculation unit 11.
  • the vehicle speed sensor 5 detects the vehicle speed V of the vehicle A.
  • the vehicle speed sensor 5 outputs a detection signal to the control calculation unit 11.
  • the lateral G sensor 6 detects the lateral acceleration Gy of the vehicle A. Then, the lateral G sensor 6 outputs a detection signal to the control calculation unit 11.
  • the yaw rate sensor 7 detects the yaw rate ⁇ of the vehicle A. Then, the yaw rate sensor 7 outputs a detection signal to the control calculation unit 11.
  • the lateral G sensor 6 and the lateral G sensor 6 are arranged on a spring (vehicle body).
  • the vehicle A includes a steering control unit 8 and a reaction force control unit 9.
  • the steered control unit 8 includes a steered motor 8A, a steered current detecting unit 8B, and a steered motor driving unit 8C.
  • the steered motor 8A is connected to the pinion shaft 10 via a speed reducer.
  • the steered motor 8 ⁇ / b> A is driven by the steered motor driving unit 8 ⁇ / b> C and moves the steering rack to the left and right via the pinion shaft 10. Thereby, the steered motor 8A steers the steered wheel 2.
  • a method for driving the steered motor 8A a method for controlling a current for driving the steered motor 8A (hereinafter also referred to as a steered current) can be employed.
  • the turning current detection unit 8B detects the turning current. Then, the steering current detection unit 8B outputs a detection signal to the steering motor drive unit 8C and the control calculation unit 11. Based on the target turning current calculated by the control calculation unit 11, the turning motor drive unit 8C turns the turning motor 8A so that the turning current detected by the turning current detection unit 8B matches the target turning current. Controls the steering current. Thereby, the steered motor driving unit 8C drives the steered motor 8A.
  • the target turning current is a target value of a current for driving the turning motor 8A.
  • the reaction force control unit 9 includes a reaction force motor 9A, a reaction force current detection unit 9B, and a reaction force motor drive unit 9C.
  • the reaction force motor 9A is connected to the steering shaft via a reduction gear. Then, the reaction force motor 9A is driven by the reaction force motor drive unit 9C and applies rotational torque to the steering wheel 1 via the steering shaft. Thereby, the reaction force motor 9A generates a steering reaction force.
  • a method of driving the reaction force motor 9A a method of controlling a current for driving the reaction force motor 9A (hereinafter also referred to as reaction force current) can be employed.
  • the reaction force current detection unit 9B detects a reaction force current.
  • the reaction force current detection unit 9B outputs a detection signal to the reaction force motor drive unit 9C and the control calculation unit 11.
  • the reaction force motor drive unit 9C is based on the target reaction force current calculated by the control calculation unit 11 so that the reaction force current detected by the reaction force current detection unit 9B matches the target reaction force current. Controls the reaction force current. Thereby, the reaction force motor drive unit 9C drives the reaction force motor 9A.
  • the target reaction force current is a target value of a current for driving the reaction force motor 9A.
  • FIG. 2 is a block diagram illustrating the configuration of the control calculation unit 11.
  • the control calculation unit 11 includes a target turning angle calculation unit 11A, a target steering reaction force calculation unit 11B, and a target turning current calculation unit 11C.
  • the target turning angle calculation unit 11A calculates a target turning angle ⁇ *, which is a target value of the turning angle ⁇ , based on the steering angle ⁇ detected by the steering angle sensor 3 and the vehicle speed V detected by the vehicle speed sensor 5. . Then, the target turning angle calculation unit 11A outputs the calculation result to the target steering reaction force calculation unit 11B.
  • the target steering reaction force calculation unit 11B is based on the target turning angle ⁇ * calculated by the target turning angle calculation unit 11A, the vehicle speed V detected by the vehicle speed sensor 5, and the turning current detected by the turning current detection unit 8B. To calculate the target reaction force current. Then, the target steering reaction force calculation unit 11B outputs the calculation result to the reaction force control unit 9 (reaction force motor drive unit 9C).
  • FIG. 3 is a block diagram illustrating a detailed configuration of the target steering reaction force calculation unit 11B.
  • the target steering reaction force calculation unit 11B includes a feedforward axial force calculation unit 11Ba, a feedback axial force calculation unit 11Bb, a final axial force calculation unit 11Bc, an axial force-steering reaction force conversion unit 11Bd, and a target.
  • a reaction force current calculation unit 11Be is provided.
  • the feedforward axial force calculation unit 11Ba calculates a steering rack axial force (hereinafter referred to as “feedforward axial force”) according to the following equation (1).
  • TFF is calculated.
  • the steering rack axial force is a rack axial force applied to the steering rack.
  • feedforward axial force calculation part 11Ba outputs a calculation result to final axial force calculation part 11Bc.
  • T FF (Ks + Css) / (JrS 2 + (Cr + Cs) s + Ks) ⁇ k ⁇ V / (1 + A ⁇ V 2 ) ⁇ ⁇ + Ks (Jrs 2 + Crs) / (JrS 2 + (Cr + Cs) s + Ks) ⁇ ⁇ .
  • feedforward axial force calculating unit 11Ba as feedforward axial force T FF, calculates a steering rack axial force that does not reflect the impact of tire lateral force Fd acting on the steering wheel 2.
  • the above equation (1) is an equation derived based on an equation of motion of a vehicle including a steering mechanism that mechanically connects the steering wheel 1 and the steered wheels 2 in a preset road surface state or vehicle state. is there. (1) where the first term on the right side of, among the components constituting the feedforward axial force T FF, are those representing the component based on the steering angle ⁇ and the vehicle speed V, the second term on the right side, the steering angular velocity It is a term representing the component based on.
  • the term representing the component based on the steering angular acceleration is excluded because it contains a lot of noise components and induces vibration in the calculation result of the feedforward axial force TFF .
  • the feedback axial force calculation unit 11Bb calculates a steering rack axial force (hereinafter also referred to as a lateral G-axis force) according to the following equation (2) based on the lateral acceleration Gy (the state of the vehicle A) detected by the lateral G sensor 6. To do.
  • a steering rack axial force hereinafter also referred to as a lateral G-axis force
  • the front wheel load and the lateral acceleration Gy are multiplied, and the multiplication result is used to calculate the axial force (axial force) applied to the steered wheel 2.
  • the calculated axial force applied to the steered wheel 2 is multiplied by a constant (hereinafter also referred to as a link ratio) according to the link angle and suspension, and the multiplication result is represented by the horizontal G axis.
  • Lateral G-axis force Axial force applied to steering wheel 2 x Link ratio (2)
  • Axial force applied to steering wheel 2 front wheel load x lateral acceleration Gy
  • the feedback axial force calculation unit 11Bb can calculate the steering rack axial force (lateral G axial force) reflecting the influence of the tire lateral force Fd acting on the steered wheels 2 based on the lateral acceleration Gy.
  • the lateral G sensor 6 is disposed on the spring (vehicle body), detection of the lateral acceleration Gy is delayed. Therefore, as shown in FIG. 5, the lateral G-axis force is delayed in phase as compared with the actual steering rack axial force.
  • the lateral acceleration Gy detected by the lateral G sensor 6 is used to calculate the lateral G-axis force
  • the yaw rate ⁇ detected by the yaw rate sensor 7 may be multiplied by the vehicle speed V detected by the vehicle speed sensor 5, and the multiplication result ⁇ ⁇ V may be used instead of the lateral acceleration Gy.
  • the feedback axial force calculation unit 11 ⁇ / b> Bb is based on the steering current (the state of the vehicle A) detected by the steering current detection unit 8 ⁇ / b> B according to the following equation (3), and the steering rack axial force (hereinafter, current axial force). (Also called).
  • the steering current the state of the vehicle A
  • the motor torque of the steered motor 8A are transmitted. Multiply by the motor gear ratio.
  • the multiplication result is divided by the pinion radius [m] of the pinion gear of the steered motor 8A, and the division result is multiplied by the efficiency when the output torque of the steered motor 8A is transmitted.
  • the multiplication result is calculated as the current axial force.
  • Current axial force steering current x motor gear ratio x torque constant [Nm / A] / pinion radius [m] x efficiency (3)
  • the steering current varies when the steering wheel 1 is steered, the target turning angle ⁇ * varies, and a difference occurs between the target turning angle ⁇ * and the actual turning angle ⁇ .
  • the steered current is also generated when the steered wheel 2 is steered, the tire lateral force Fd acts on the steered wheel 2, and a difference occurs between the target steered angle ⁇ * and the actual steered angle ⁇ . fluctuate.
  • the steering current is caused by a road surface disturbance acting on the steered wheel 2 due to road surface unevenness or the like, and a tire lateral force Fd acting on the steered wheel 2 so that the target steered angle ⁇ * and the actual steered angle ⁇ It also fluctuates due to differences.
  • the feedback axial force calculation unit 11Bb can calculate the steering rack axial force (current axial force) reflecting the influence of the tire lateral force Fd acting on the steered wheels 2 based on the steering current.
  • the current axial force is generated when a difference occurs between the target turning angle ⁇ * and the actual turning angle ⁇ . Therefore, the phase of the current axial force advances as compared with the actual steering rack axial force and lateral G axial force, as shown in FIG.
  • the feedback axial force calculation unit 11Bb is based on the vehicle speed V (the state of the vehicle A) detected by the vehicle speed sensor 5 and the yaw rate ⁇ (the state of the vehicle A) detected by the yaw rate sensor 7 (4)
  • a steering rack axial force (hereinafter also referred to as a yaw rate axial force) is calculated according to the equation.
  • the front wheel load, the vehicle speed V, and the yaw rate ⁇ are multiplied, and the axial force applied to the steered wheel 2 is calculated from the multiplication result.
  • the feedback axial force calculation unit 11Bb can calculate the steering rack axial force (yaw rate axial force) reflecting the influence of the tire lateral force Fd acting on the steered wheels 2 based on the yaw rate ⁇ .
  • the yaw rate sensor 7 is disposed on the spring (vehicle body), the detection of the yaw rate ⁇ is delayed. Therefore, as shown in FIG. 5, the phase of the yaw rate axial force is delayed compared to the actual steering rack axial force.
  • the feedback axial force calculation unit 11Bb is based on the calculated lateral G-axis force, current axial force, and yaw rate axial force, and the steering rack axial force (hereinafter also referred to as “feedback axial force”) T according to the following equation (5).
  • feedback axial force the steering rack axial force
  • the feedback axial force calculation unit 11Bb outputs the calculation result to the final axial force calculation unit 11Bc.
  • T FB Lateral G Axial Force x K 1 + Current Axial Force x K 2 + Yaw Rate Axial Force x K 3 (5)
  • the distribution ratios K 1 , K 2 , and K 3 are the distribution ratios of the lateral G-axis force, current axial force, and yaw rate axial force.
  • the magnitude relationship between the distribution ratios K 1 , K 2 , and K 3 is K 1 > K 2 > K 3 . That is, the distribution ratio is set to a large value in the order of the lateral G axial force, the current axial force, and the yaw rate axial force.
  • the feedback axial force calculating unit 11Bb as feedback axial force T FB calculates a steering rack axial force that reflects the influence of the tire lateral force Fd acting on the steering wheel 2.
  • the feedback axial force calculation unit 11Bb of the present embodiment calculates the current axial force and the lateral G-axis force based on the turning current of the steering motor 8A and the lateral acceleration Gy of the vehicle A. Then, the feedback axial force calculation unit 11Bb of the present embodiment calculates the feedback axial force T FB based on the calculated current axial force and lateral G axial force. Therefore, the feedback axial force calculation unit 11Bb of the present embodiment includes sensors (steering current detection unit 8B, steering current detection unit 8B, steering current of the steering motor 8A, lateral acceleration Gy of the vehicle A, and the like provided in a general vehicle. The feedback axial force T FB can be calculated based on the detection result of the lateral G sensor 6). Therefore, the control calculation unit 11 of the present embodiment does not need to include a dedicated sensor such as an axial force sensor that detects the steering rack axial force, and can suppress an increase in manufacturing cost.
  • a dedicated sensor such as an axial force sensor that detects the steering rack axial force
  • the feedback axial force calculation unit 11Bb of the present embodiment calculates the feedback axial force T FB based on the value obtained by multiplying the current axial force by the distribution ratio K 2 and the value obtained by multiplying the lateral G axial force by the distribution ratio K 1. calculate.
  • the phase of the lateral G-axis force is delayed compared to the actual steering rack axial force.
  • the phase of the current axial force advances compared to the actual steering rack axial force. Therefore, the feedback axial force calculation unit 11Bb of the present embodiment can compensate for the phase delay due to the lateral G-axis force as shown in FIG. 6 by adding the current axial force to the lateral G-axis force, and more appropriately.
  • the feedback axial force T FB can be calculated. Therefore, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the feedback axial force calculation unit 11Bb of the present embodiment calculates the feedback axial force T FB based on the value obtained by multiplying the current axial force by the distribution ratio K 2 and the value obtained by multiplying the lateral G axial force by the distribution ratio K 1. calculate.
  • the vehicle A has a target turning angle ⁇ * and an actual turning angle ⁇ . There will be a difference.
  • the control calculation unit 11 of the present embodiment can reflect the influence of the road surface disturbance acting on the steering wheel 2 due to the road surface unevenness or the like on the feedback axial force T FB by adding the current axial force to the lateral G axial force. A more appropriate feedback axial force T FB can be calculated. Therefore, the control calculation part 11 of this embodiment can provide a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the feedback axial force calculation unit 11Bb of the present embodiment increases the lateral G-axis force distribution ratio K 1 to be greater than the current axial force distribution ratio K 2 . Therefore, the feedback axial force calculation unit 11Bb according to the present embodiment can reduce the distribution ratio of the current axial force.
  • the estimation accuracy of the current axial force depends on the inertia of the steering motor 8A and the effect of friction, and thus the actual steering rack shaft. Even if it is lower than the force, it is possible to suppress a decrease in the estimation accuracy of the feedback axial force T FB . Therefore, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the feedback axial force calculating unit 11Bb of the present embodiment calculates the distribution ratio K 3 to the current axial force to a value obtained by multiplying the allocation ratio K 2 and the lateral G axis force distribution ratio K 1 values and yaw axial force multiplied by the Based on the multiplied value, the feedback axial force T FB is calculated.
  • the feedback axial force T FB is calculated.
  • the steering current and the lateral acceleration Gy increase, so that the detection result of the lateral G sensor 6 and the detection result of the steering current detection unit 8B are both maximum. Value (saturated value).
  • the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the final axial force calculating unit 11Bc reads the feedforward axial force T FF and the feedback axial force T FB from the feedforward axial force calculating unit 11Ba and feedback axial force calculating unit 11Bb. Subsequently, the final axial force calculating unit 11Bc, based on the feedforward axial force imported T FF and the feedback axial force T FB, steering rack shaft force according to the following (6) (hereinafter, the final axial force) is calculated. Then, the final axial force calculation unit 11Bc outputs the calculation result to the axial force-steering reaction force conversion unit 11Bd.
  • Final axial force feedforward axial force T FF ⁇ GF-feedback axial force T FB ⁇ (1-GF) ......... (6)
  • GF is a numerical value representing a distribution ratio of the distribution ratio GF and the feedback axial force T FB feedforward axial force T FF (1-GF) (hereinafter, referred to as distribution ratio) is.
  • distribution ratio the feedback axial force T FB feedforward axial force T FF
  • the final axial force calculating unit 11Bc based on the distribution ratio GF, the feedforward axial force T FF and the feedback axial force T FB GF: by combined at a ratio of (1-GF), the final axial force calculate.
  • the final axial force calculating unit 11Bc of the present embodiment calculates the final axial force based on the feedback axial force T FB and feedforward axial force T FF.
  • the feedback axial force T FB changes according to a change in the road surface state or a change in the vehicle state in order to reflect the influence of the tire lateral force Fd acting on the steering wheel 2.
  • the feedforward axial force T FF since not reflect the influence of tire lateral force Fd, smoothly changes regardless of the change or the like of the road surface condition.
  • the final axial force calculating unit 11Bc in addition to the feedback axial force T FB, it calculates the final axial force on the basis of the feedforward axial force T FF, it can be calculated more appropriate final axial force. Therefore, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the axial force difference is a difference between the feedforward axial force TFF and the feedback axial force TFB .
  • the distribution ratio map M1 is a map in which the distribution ratio GF corresponding to the axial force difference is registered.
  • the feedforward axial force TFF is calculated according to the above equation (1) derived based on a preset road surface state and vehicle state. Therefore, the estimation accuracy of the feedforward axial force TFF decreases when the road surface state or the vehicle state changes. On the other hand, the estimation accuracy of the feedback axial force T FB is substantially constant regardless of the road surface state and the vehicle state. Therefore, the final axial force calculating unit 11Bc of the present embodiment, the axial force difference is the difference between the feedforward axial force T FF and the feedback axial force T FB, the distribution ratio GF, i.e., allocation of the feedforward axial force T FF This is an index for setting the ratio and the distribution ratio of the feedback axial force TFB . Thereby, final axial force calculation part 11Bc of this embodiment can set more suitable distribution ratio GF.
  • FIG. 7 is a graph showing the distribution ratio map M1.
  • the distribution ratio map M1 has a distribution ratio regardless of the magnitude of the axial force difference in the range where the absolute value of the axial force difference is 0 or more and less than the first set value Z 1 (> 0).
  • GF is set to a value (for example, “1”) larger than the distribution ratio (1 ⁇ GF).
  • the first set value Z 1 a axial force difference estimation accuracy of the feedforward axial force T FF starts lowering (threshold).
  • the distribution ratio GF is set to the distribution ratio (1-GF) regardless of the magnitude of the axial force difference in the range where the absolute value of the axial force difference is equal to or larger than the second set value Z 2 (> Z 1 ). ) Smaller value (for example, “0.0”).
  • the second set value Z 2 is an axial force difference (threshold) at which the estimated accuracy of the feedforward axial force T FF is lower than the estimated accuracy of the feedback axial force T FB .
  • the distribution ratio GF is linearly set according to the absolute value of the axial force difference. To lower.
  • the distribution ratio map M1 is a distribution ratio based on the axial force difference in the range where the absolute value of the axial force difference is not less than the first set value Z 1 and less than the second set value Z 2.
  • the distribution ratio GF can be calculated in accordance with a linear function representing the relationship between the absolute value of the distribution ratio and the distribution ratio GF. In the linear function, the distribution ratio GF is “1” when the absolute value of the axial force difference is the first set value Z 1 , and the distribution ratio is set when the absolute value of the axial force difference is the second set value Z 2. GF is set to “0”.
  • the final axial force calculating unit 11Bc the absolute value of the axial force difference when it is first less than the set value Z 1 is the final axial force feedforward axial force T FF. Also, the final axial force calculating unit 11Bc, when the absolute value of the axial force difference is the second set value Z 2 or more, the feedback axial force T FB final axial force. Further, the distribution ratio map M1, the absolute value of the axial force difference when a and smaller than the second set value Z 2 at first set value Z 1 or more, obtained by multiplying the distribution ratio GF feedforward axial force T FF The final axial force is obtained by adding the value and the value obtained by multiplying the feedback axial force TFB by the distribution ratio (1-GF).
  • the axial force-steering reaction force conversion unit 11Bd calculates a target steering reaction force based on the final axial force calculated by the final axial force calculation unit 11Bc.
  • the target steering reaction force is a target value of the steering reaction force.
  • a method of calculating the target steering reaction force a method of reading the target steering reaction force corresponding to the vehicle speed V and the final axial force from the axial force-steering reaction force conversion map can be employed.
  • the axial force-steering reaction force conversion map is a map that is set for each vehicle speed V and that registers the target steering reaction force corresponding to the final axial force.
  • FIG. 8 is a graph showing an axial force-steering reaction force conversion map.
  • the axial force-steering reaction force conversion map is set for each vehicle speed V.
  • the target steering reaction force is set to a larger value as the final axial force is larger.
  • the target reaction force current calculation unit 11Be calculates a target reaction force current according to the following equation (7) based on the target steering reaction force calculated by the axial force-steering reaction force conversion unit 11Bd. Then, the target reaction force current calculation unit 11Be outputs the calculation result to the reaction force motor drive unit 9C.
  • Target reaction force current Target steering reaction force ⁇ Gain (7)
  • the target turning current calculation unit 11C is based on a subtraction result obtained by subtracting the turning angle ⁇ detected by the turning angle sensor 4 from the target turning angle ⁇ * calculated by the target turning angle calculation unit 11A. To calculate the target steering current. Then, the target turning current calculation unit 11C outputs the calculation result to the turning motor drive unit 8C.
  • the control calculation unit 11 calculates the target turning angle ⁇ * based on the steering angle ⁇ and the vehicle speed V (target turning angle calculation unit 11A in FIG. 2). Subsequently, the control calculation unit 11 calculates a target turning current based on a subtraction result obtained by subtracting the actual turning angle ⁇ from the calculated target turning angle ⁇ * (target turning current calculation unit 11C in FIG. 2). ). Thereby, the steering control part 8 steers the steered wheel 2 according to a driver
  • the control calculation unit 11 calculates a feedforward axial force T FF based on the steering angle ⁇ and the vehicle speed V (feedforward axial force calculating unit 11Ba of Figure 3). Subsequently, the control calculation unit 11 calculates the lateral G-axis force based on the lateral acceleration Gy (feedback axial force calculation unit 11Bb in FIG. 3). Subsequently, the control calculation unit 11 calculates a current axial force based on the steering current (feedback axial force calculation unit 11Bb in FIG. 3). Subsequently, the control calculation unit 11 calculates the yaw rate axial force based on the yaw rate ⁇ and the vehicle speed V (feedback axial force calculation unit 11Bb in FIG. 3).
  • the feedback axial force T FB is calculated (feedback axial force calculation unit 11Bb in FIG. 3).
  • the distribution ratios K 1 , K 2 , and K 3 of the lateral G axial force, current axial force, and yaw rate axial force are 0.6: 0.3: 0.1 (feedback axial force calculating unit 11Bb in FIG. 3).
  • the control calculation unit 11 distributes the calculated feedforward axial force TFF and the feedback axial force TFB by GF: (1-GF) to calculate the final axial force (the final axial force in FIG. 3).
  • the control calculation unit 11 calculates a target steering reaction force based on the calculated final axial force (axial force-steering reaction force conversion unit 11Bd in FIG. 3).
  • the control calculation unit 11 calculates a target reaction force current based on the calculated target steering reaction force (target reaction force current calculation unit 11Be in FIG. 3).
  • the control calculation unit 11 drives the reaction force motor 9A based on the calculated target reaction force current (reaction force motor drive unit 9C in FIG. 2).
  • the reaction force control unit 9 applies a steering reaction force to the steering wheel 1.
  • the current axial force and the lateral G-axis force are calculated based on the steering current of the steering motor 8A and the lateral acceleration Gy of the vehicle A.
  • feedback axial force TFB is calculated based on the calculated current axial force and lateral G axial force. Therefore, the steering control device of the present embodiment includes sensors (steering current detection unit 8B, lateral G sensor) provided in general vehicles such as the steering current of the steering motor 8A and the lateral acceleration Gy of the vehicle A. Based on the detection result of 6), the feedback axial force T FB can be calculated. Therefore, the steering control device of this embodiment does not need to include a dedicated sensor for detecting the steering rack axial force by driving the reaction force motor 9A based on the feedback axial force TFB , and the manufacturing cost is reduced. The increase can be suppressed.
  • the feedback axial force T FB is calculated based on the value obtained by multiplying the current axial force by the distribution ratio K 2 and the value obtained by multiplying the lateral G axial force by the distribution ratio K 1 .
  • the phase of the lateral G-axis force is delayed compared to the actual steering rack axial force.
  • the phase of the current axial force advances compared to the actual steering rack axial force. Therefore, the steering control device of the present embodiment can compensate for the phase lag due to the lateral G-axis force by applying the current axial force to the lateral G-axis force, as shown in FIG. T FB can be calculated. Therefore, the steering control device of the present embodiment can apply a more appropriate steering reaction force based on the feedback axial force TFB .
  • the steering control device of the present embodiment increases the lateral G-axis force distribution ratio K 2 “0.6” more than the current axial force distribution ratio K 2 “0.3”. Therefore, the steering control device of the present embodiment can reduce the current axial force distribution ratio K 2.
  • the estimation accuracy of the current axial force depends on the inertia of the steered motor 8A and the effect of friction and the actual steering rack axial force. Even if it may be reduced more than this, a decrease in the estimation accuracy of the feedback axial force T FB can be suppressed. Therefore, the steering control device of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the control axial calculation unit 11 varies the feedback axial force T FB according to the degree of road surface disturbance acting on the steering wheel 2 (feedback axial force calculating unit 11Bb in FIG. 3). Thereby, the reaction force control unit 9 gives a more appropriate steering reaction force.
  • the target turning current calculation unit 11C calculates the target turning current so as to reduce the difference between the target turning angle ⁇ * and the actual turning angle ⁇ , the detection result of the lateral G sensor 6 The detection results of the yaw rate sensor 7 hardly change.
  • the vehicle A is in a spin state while the vehicle A is traveling. Then, the tire lateral force Fd acting on the steered wheels 2 is increased, the steered angle ⁇ of the steered wheels 2 is changed, and a difference occurs between the target steered angle ⁇ * and the actual steered angle ⁇ . Thereby, the steering current of the steering motor 8A increases, and the detection result of the steering current detection unit 8b becomes the maximum value (saturation value). Further, the side slip and rotation of the vehicle A occur. Thereby, the lateral acceleration Gy of the vehicle A increases, and the detection result of the lateral G sensor 6 becomes the maximum value (saturated value).
  • the detection result of the lateral G sensor 6 and the detection result of the turning current detection unit 8B are constant (saturated value).
  • the yaw rate ⁇ of the vehicle A increases as the vehicle A slides and rotates.
  • the detection result of the yaw rate sensor 7 does not reach the maximum value (saturation value). Therefore, the detection result of the yaw rate sensor 7 varies depending on the degree of spin state of the vehicle A. Therefore, the control calculation unit 11 varies the feedback axial force T FB according to the degree of the spin state of the vehicle A (feedback axial force calculation unit 11Bb in FIG. 3). Thereby, the reaction force control unit 9 gives a more appropriate steering reaction force.
  • the steering wheel 1 of FIG. 1 comprises a steering wheel.
  • the steering angle sensor 3 in FIG. 1 constitutes a steering angle detector.
  • the steered motor 8A in FIG. 1 constitutes a steered motor.
  • the steered motor drive unit 8C in FIG. 1 constitutes a steered motor drive unit.
  • the steering current detection part 8B of FIG. 1 comprises a steering current detection part.
  • the lateral G sensor 6 in FIG. 1 constitutes a lateral acceleration detection unit.
  • the reaction force motor 9A of FIG. 1 constitutes a reaction force motor.
  • the distribution ratio K 2 constituting the first distribution ratio.
  • the distribution ratio K 1 constitutes the second distribution ratio.
  • the distribution ratio K 3 constitutes a third distribution ratio.
  • the reaction force motor drive unit 9C and the target steering reaction force calculation unit 11B in FIG. 1 constitute a reaction force motor drive unit.
  • the yaw rate sensor 7 in FIG. 1 constitutes a yaw rate detector.
  • the vehicle speed sensor 5 of FIG. 1 constitutes a vehicle speed detection unit.
  • the feedforward axial force calculation unit 11Ba of FIG. 1 constitutes a feedforward axial force calculation unit.
  • the control calculation unit 11 distributes the current axial force and the lateral G-axis force at preset distribution ratios K 2 and K 1 to calculate a feedback axial force T FB that is a steering rack axial force. Then, the control calculation unit 11 drives the reaction force motor 9A based on the calculated feedback axial force TFB . Further, the distribution ratio K 1 of the lateral G-axis force is made larger than the distribution ratio K 2 of the current axial force. According to such a configuration, the reaction force motor 9A can be driven based on the detection results of sensors provided in a general vehicle, such as the turning current of the turning motor 8A and the lateral acceleration Gy. Therefore, it is not necessary to provide a dedicated sensor, and an increase in manufacturing cost can be suppressed.
  • the current axial force and the lateral G-axis force are distributed at preset distribution ratios K 2 and K 1 to calculate the feedback axial force T FB . Therefore, the phase delay due to the lateral G-axis force can be compensated. Therefore, a more appropriate feedback axial force T FB can be calculated, and a more appropriate steering reaction force can be applied.
  • a road surface disturbance acts on the steered wheel 2 due to road surface unevenness or the like
  • a tire lateral force Fd acts on the steered wheel 2, resulting in a difference between the target turning angle ⁇ * and the actual turning angle ⁇ .
  • the feedback axial force T FB can be varied according to the degree of road surface disturbance acting on the steering wheel 2. Therefore, a more appropriate feedback axial force T FB can be calculated, and a more appropriate steering reaction force can be applied.
  • the lateral G-axis force distribution ratio K 1 is made larger than the current axial force distribution ratio K 2 . Therefore, for example, even when the estimation accuracy of the current axial force is lower than the actual steering rack axial force due to the inertia and friction of the steering motor 8A, it is possible to suppress a decrease in the estimation accuracy of the feedback axial force TFB. . Therefore, a more appropriate feedback axial force T FB can be calculated, and a more appropriate steering reaction force can be applied.
  • the control calculation unit 11 distributes the current axial force, the lateral G-axis force, and the yaw rate axial force at preset distribution ratios K 2 , K 1 , K 3 to calculate the feedback axial force T FB .
  • the steering current and the lateral acceleration Gy increase, so the detection result of the lateral G sensor 6 and the detection of the steering current detection unit 8B. All of the results are maximum values (saturation values).
  • the yaw rate ⁇ also increases, but since the increase amount of the yaw rate ⁇ is relatively small, the detection result of the yaw rate sensor 7 does not reach the maximum value (saturated value).
  • the detection result of the yaw rate sensor 7 varies depending on the degree of spin state of the vehicle A. Therefore, the feedback axial force T FB can be varied according to the degree of the spin state of the vehicle A. Therefore, a more appropriate feedback axial force T FB can be calculated, and a more appropriate steering reaction force can be applied.
  • the control calculation unit 11 distributes the steering angle ⁇ of the steering wheel 1 and the vehicle speed V of the vehicle A at the distribution ratios GF and (1-GF), and calculates the feedforward axial force. Then, the control calculation unit 11 drives the reaction force motor 9A based on the feedback axial force and the feedforward axial force. According to such a configuration, since the reaction force motor 9A is driven based on the feedforward axial force in addition to the feedback axial force, a more appropriate steering reaction force can be applied.
  • FIG. 9 is a block diagram illustrating the configuration of the control calculation unit 11.
  • T FB lateral G-axis force ⁇ K 1
  • the steering rack axial force (feedback axial force) T FB is calculated according to (+ current axial force ⁇ K 2 + yaw rate axial force ⁇ K 3 ).
  • the feedback axial force calculation unit 11Bb outputs the calculation result to the final axial force calculation unit 11Bc.
  • a method of setting the distribution ratio K 2 is a lateral acceleration distribution ratio K 2 corresponding to the absolute value of Gy may be employed a method of reading from the control map M0 to be described later.
  • a method of setting the distribution ratios K 1 and K 3 a method of setting to a preset ratio (for example, 6: 1) according to the following equation (8) based on the distribution ratio K 2 read from the control map M 0. Can be adopted.
  • K 1 (1 ⁇ K 2 ) ⁇ 6/7
  • K 3 (1 ⁇ K 2 ) ⁇ 1/7 (8)
  • FIG. 10 is a graph showing the control map M0.
  • the absolute value of the lateral acceleration Gy is not less than 0 and less than the first set value G 1 (> 0), regardless of the magnitude of the lateral acceleration Gy.
  • the first set value G 1 is a lateral acceleration Gy (for example, 0.7 G) at which the vehicle A reaches the high G limit region while traveling on a dry road. As shown in FIG.
  • the high G limit region is a region where the increase amount of the absolute value of the tire lateral force Fd is reduced with respect to the increase amount of the absolute value of the tire slip angle.
  • the absolute value of the self-aligning torque is increased with respect to the increase in the absolute value of the tire slip angle by reducing the increase in the tire lateral force Fd with respect to the increase in the absolute value of the tire slip angle. Decrease.
  • the model formula set in advance for example, the above formula (1) in which the increase amount of the absolute value of the tire lateral force Fd is not reduced with respect to the increase amount of the absolute value of the tire slip angle can be adopted.
  • the distribution ratios K 1 , K 2 , and K 3 are set to 0.6, 0.3, and 0.1, for example. Equation (5) can be adopted.
  • the vehicle behavior threshold for example, with respect to an increase in the absolute value of the tire slip angle, a value at which the increase in the absolute value of the tire lateral force Fd starts to decrease, or an increase in the absolute value of the tire slip angle.
  • the value at which the absolute value of the self-aligning torque starts to decrease can be adopted.
  • the first set value G 1 is set in advance at the time of manufacturing the vehicle A or the like by experiments or simulations using the actual vehicle A.
  • the distribution ratio K 2 is set regardless of the magnitude of the lateral acceleration Gy.
  • the second set value G 2 is a lateral acceleration Gy (for example, 1.0 G) at which the absolute value of the tire lateral force Fd becomes the maximum value (saturated value) with respect to an increase in the absolute value of the tire slip angle.
  • control map M0 the lateral acceleration range and the second lower than the set value G 2 in absolute value first set value G 1 or more Gy, the distribution ratio K in accordance with an increase in the absolute value of the lateral acceleration Gy Increase 2 linearly.
  • the control map M0 is the lateral acceleration in the range and the second lower than the set value G 2 in absolute value first set value G 1 or more Gy
  • the lateral acceleration absolute value distribution ratio K 2 of Gy Is expressed by a linear function.
  • the horizontal absolute value of the longitudinal acceleration Gy is calculated distribution ratio K 2 as 0.3 in the case of the first set value G 1, in the lateral acceleration absolute value second set value G 2 of Gy calculates the distribution ratio K 2 as 1.0 in some cases.
  • the feedback axial force calculating unit 11Bb when the absolute value of the lateral acceleration Gy is the second set value G 2 or more, 12 (c), the feedback axial force current axial force T FB And Further, when the absolute value of the lateral acceleration Gy is not less than the first set value G 1 and less than the second set value G 2 , the feedback axial force calculator 11Bb, as shown in FIG.
  • the sum of the value multiplied by 7 is the feedback axial force T FB .
  • the feedback axial force calculating unit 11Bb as feedback axial force T FB, calculates a steering rack axial force that reflects the influence of the tire lateral force Fd acting on the steering wheel 2.
  • the feedback axial force calculating unit 11Bb of the present embodiment when the absolute value of the lateral acceleration Gy is within the range and the first less than the set value G 1 0 or more, the distribution ratio K to the current axial force
  • the feedback axial force T FB is calculated based on the value obtained by multiplying 2 and the value obtained by multiplying the lateral G axial force by the distribution ratio K 1 .
  • the vehicle A has a target turning angle ⁇ * and an actual turning angle ⁇ . There will be a difference.
  • the control calculation unit 11 of the present embodiment can reflect the influence of the road surface disturbance acting on the steering wheel 2 due to the road surface unevenness or the like on the feedback axial force T FB by adding the current axial force to the lateral G axial force. A more appropriate feedback axial force T FB can be calculated. Therefore, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the feedback axial force calculation unit 11Bb of the present embodiment uses the current axial force distribution ratio K 2 when the absolute value of the lateral acceleration Gy is in the range of 0 or more and less than the first set value G 1. also increase the distribution ratio K 1 in the lateral G axial force. Therefore, the feedback axial force calculation unit 11Bb of the present embodiment can reduce the distribution ratio of the current axial force. For example, the estimation accuracy of the current axial force may be lowered due to the inertia of the steered motor 8A or the influence of friction. Even so, it is possible to suppress a decrease in the estimation accuracy of the feedback axial force TFB . Therefore, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the feedback axial force calculation unit 11Bb of the present embodiment sets the distribution ratio K 2 to the current axial force. calculating a feedback axial force T FB based on the value obtained by multiplying the allocation ratio K 3 the value and the yaw rate axial force multiplied by the distribution ratio K 1 in the multiplier value and the lateral G axial force.
  • the steering current and the lateral acceleration Gy increase, so that the detection result of the lateral G sensor 6 and the detection result of the steering current detection unit 8B are both maximum. Value (saturated value).
  • the feedback axial force calculating unit 11Bb of the present embodiment can vary the feedback axial force T FB according to the degree of spin state of the vehicle A.
  • the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the feedback axial force calculating unit 11Bb of the present embodiment when the absolute value of the lateral acceleration Gy is within the range and the second lower than the set value G 2 in the first set value G 1 or more, lateral acceleration Gy increasing the distribution ratio K 2 of the current axial force in accordance with an increase in the absolute value.
  • the absolute value of the lateral acceleration Gy is equal to or greater than the first set value G 1 (0.7 G), that is, when the vehicle A is in the high G limit region
  • the lateral G axial force is determined by tire slip.
  • the maximum value (saturation value) increases as the absolute value of the corner increases.
  • the current axial force decreases as the absolute value of the tire slip angle increases.
  • the feedback axial force calculation unit 11Bb of the present embodiment responds to the increase in the absolute value of the lateral acceleration Gy when the absolute value of the tire slip angle increases and the absolute value of the lateral acceleration Gy increases.
  • the absolute value of the feedback axial force T FB can be decreased. Therefore, as shown in FIG. 11, when the vehicle A is in the high G limit region, the absolute value of the feedback axial force T FB can be reduced similarly to the self-aligning torque.
  • the control calculation unit 11 of the present embodiment based on the feedback axial force T FB, by driving the reaction force motor 9A, it is possible to reduce the steering reaction force can be imparted a reaction dropping feeling (limit sensitive) .
  • the control calculation part 11 of this embodiment can provide the steering reaction force corresponding to the self-aligning torque, that is, the steering reaction force corresponding to the actual vehicle behavior.
  • Other configurations are the same as those of the first embodiment.
  • the control calculation unit 11 calculates the target turning angle ⁇ * based on the steering angle ⁇ and the vehicle speed V (target turning angle calculation unit 11A in FIG. 9). Subsequently, the control calculation unit 11 calculates a target turning current based on a subtraction result obtained by subtracting the actual turning angle ⁇ from the calculated target turning angle ⁇ * (target turning current calculation unit 11C in FIG. 9). ). Thereby, the steering control part 8 steers the steered wheel 2 according to a driver
  • the control calculation unit 11 calculates a feedforward axial force T FF based on the steering angle ⁇ and the vehicle speed V (feedforward axial force calculating unit 11Ba of Figure 3). Subsequently, the control calculation unit 11 calculates a lateral G-axis force based on the lateral acceleration Gy (feedback axial force calculation unit 11Bb in FIG. 3). Subsequently, the control calculation unit 11 calculates a current axial force based on the steering current (feedback axial force calculation unit 11Bb in FIG. 3). Subsequently, the control calculation unit 11 calculates the yaw rate axial force based on the yaw rate ⁇ and the vehicle speed V (feedback axial force calculation unit 11Bb in FIG. 3).
  • the steered wheel 2 is steered to increase the absolute value of the tire slip angle, increase the tire lateral force Fd, and generate a lateral acceleration Gy of 0 or more and less than the first set value G 1. To do. Then, as shown in FIG. 10, the control calculation unit 11 sets the distribution ratios K 1 , K 2 , and K 3 to 0.6, 0.3, and 0.1, respectively.
  • the control calculation unit 11 distributes the calculated feedforward axial force TFF and the feedback axial force TFB by GF: (1-GF) to calculate the final axial force (the final axial force in FIG. 3).
  • the control calculation unit 11 calculates a target steering reaction force based on the calculated final axial force (axial force-steering reaction force conversion unit 11Bd in FIG. 3).
  • the control calculation unit 11 calculates a target reaction force current based on the calculated target steering reaction force (target reaction force current calculation unit 11Be in FIG. 3).
  • the control calculation unit 11 drives the reaction force motor 9A based on the calculated target reaction force current (reaction force motor drive unit 9C in FIG. 9).
  • the reaction force control unit 9 applies a steering reaction force to the steering wheel 1.
  • the steering control device of the present embodiment when the lateral acceleration Gy is 0 or more and less than the first set value G 1 , the lateral G axial force is greater than the current axial force distribution ratio K 2 .
  • the estimation accuracy of the current axial force depends on the inertia of the steered motor 8A and the effect of friction and the actual steering rack axial force. Even if it may be reduced more than this, a decrease in the estimation accuracy of the feedback axial force T FB can be suppressed. Therefore, the steering control device of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the feedback axial force TFB .
  • the control calculation unit 11 gradually increases the current axial force distribution ratio K 2 from 0.3 in accordance with the increase in the absolute value of the lateral acceleration Gy (feedback axis in FIG. 3). Force calculator 11Bb). Further, the control calculation unit 11 gradually decreases the distribution ratio K 1 of the lateral G-axis force and the distribution ratio K 3 of the yaw rate axial force from 0.6 and 0.1 (the feedback axial force calculation unit of FIG. 3). 11Bb). As a result, as shown in FIGS. 12B and 12C, the distribution ratio of the current axial force gradually increases as the absolute value of the lateral acceleration Gy increases, and the lateral G-axis force and the yaw rate axial force are increased. The allocation ratio gradually decreases.
  • control arithmetic unit 11 adds the current axial force, the lateral G axial force and the yaw rate axial force at these distribution ratios as a feedback axial force T FB (feedback axial force calculating unit 11Bb in FIG. 3).
  • the lateral acceleration Gy when the absolute value of the lateral acceleration Gy is in the range of the first set value G 1 or more and less than the second set value G 2 , the lateral acceleration Gy increasing the distribution ratio K 2 of the current axial force in accordance with an increase in the absolute value.
  • the absolute value of the lateral acceleration Gy when the absolute value of the lateral acceleration Gy is equal to or greater than the first set value G 1 (0.7 G), that is, when the vehicle A is in the high G limit region, the lateral G axial force is determined by tire slip.
  • the maximum value (saturation value) increases as the absolute value of the corner increases.
  • the current axial force decreases as the absolute value of the tire slip angle increases.
  • the control calculation unit 11 of the present embodiment determines the current axis according to the increase of the absolute value of the lateral acceleration Gy.
  • the absolute value of the feedback axial force T FB can be decreased. Therefore, as shown in FIG. 11, when the vehicle A is in the high G limit region, the feedback axial force TFB can be reduced similarly to the self-aligning torque.
  • the control calculation unit 11 of the present embodiment based on the feedback axial force T FB, by driving the reaction force motor 9A, it is possible to reduce the steering reaction force can be imparted a reaction dropping feeling (limit sensitive) .
  • the control calculation part 11 of this embodiment can provide the steering reaction force corresponding to the self-aligning torque, that is, the steering reaction force corresponding to the actual vehicle behavior.
  • the steering wheel 1 of FIG. 1 comprises a steering wheel.
  • the steering angle sensor 3 in FIG. 1 constitutes a steering angle detector.
  • the steered motor 8A in FIG. 1 constitutes a steered motor.
  • the steered motor drive unit 8C in FIG. 1 constitutes a steered motor drive unit.
  • the steering current detection part 8B of FIG. 1 comprises a steering current detection part.
  • the lateral G sensor 6 in FIG. 1 constitutes a lateral acceleration detection unit.
  • the reaction force motor 9A of FIG. 1 constitutes a reaction force motor.
  • reaction force motor drive unit 9C and the target steering reaction force calculation unit 11B in FIG. 1 constitute a reaction force motor drive unit.
  • first set value G 1 constitutes a lateral acceleration threshold value.
  • yaw rate sensor 7 in FIG. 1 constitutes a yaw rate detector.
  • control calculation unit 11 the horizontal direction when the absolute value of the acceleration Gy is first set value G 1 or more, lateral acceleration distribution ratio K 2 of the absolute value current axial force according to an increase in the Gy Increase.
  • the absolute value of lateral acceleration Gy becomes the first set value G 1 or more, the absolute value of the lateral acceleration Gy as the absolute value of the tire lateral force Fd is the saturation value is increased,
  • the absolute value of the steering reaction force can be reduced by increasing the current axial force distribution ratio K 2 in accordance with the increase in the absolute value of the lateral acceleration Gy. Thereby, the steering reaction force corresponding to the actual vehicle behavior can be applied.
  • the lateral acceleration Gy deviation between the actual tire lateral force Fd and the arithmetic tire lateral force Fd becomes vehicle behavior threshold than a preset by the first set value G 1, the absolute of the self-aligning torque
  • the lateral acceleration Gy whose value tends to decrease can be used as the vehicle behavior threshold.
  • the control calculation unit 11 distributes the current axial force and the lateral G-axis force at preset distribution ratios K 2 and K 1 to calculate a feedback axial force T FB that is a steering rack axial force. Then, the control calculation unit 11 drives the reaction force motor 9A based on the calculated feedback axial force TFB . Further, the distribution ratio K 1 of the lateral G-axis force is made larger than the distribution ratio K 2 of the current axial force. According to such a configuration, the current axial force and the lateral G axial force are distributed at preset distribution ratios K 2 and K 1 to calculate the feedback axial force T FB . Therefore, the phase delay due to the lateral G-axis force can be compensated. Therefore, a more appropriate feedback axial force T FB can be calculated, and a more appropriate steering reaction force can be applied.
  • a road surface disturbance acts on the steered wheel 2 due to road surface unevenness and the like
  • a tire lateral force Fd acts on the steered wheel 2 and a difference occurs between the target turning angle ⁇ * and the actual turning angle ⁇ .
  • the feedback axial force T FB can be varied according to the degree of road surface disturbance acting on the steering wheel 2. Therefore, a more appropriate feedback axial force T FB can be calculated, and a more appropriate steering reaction force can be applied.
  • the distribution ratio K 1 of the lateral G axial force is made larger than the distribution ratio K 2 of the current axial force.
  • the control calculation unit 11 calculates the feedback axial force T FB by distributing the current axial force, the lateral G-axis force, and the yaw rate axial force at preset distribution ratios K 2 , K 1 , K 3 .
  • the steering current and the lateral acceleration Gy increase, so the detection result of the lateral G sensor 6 and the detection of the steering current detection unit 8B. All of the results are maximum values (saturation values).
  • the yaw rate ⁇ also increases, but since the increase amount of the yaw rate ⁇ is relatively small, the detection result of the yaw rate sensor 7 does not reach the maximum value (saturated value).
  • the detection result of the yaw rate sensor 7 varies depending on the degree of spin state of the vehicle A. Therefore, the feedback axial force T FB can be varied according to the degree of the spin state of the vehicle A. Therefore, a more appropriate feedback axial force T FB can be calculated, and a more appropriate steering reaction force can be applied.
  • FIG. 13 is a diagram illustrating an application example.
  • the lateral acceleration Gy when the absolute value of the lateral acceleration Gy is in the range of the first set value G 1 or more and less than the second set value G 2 , the lateral acceleration Gy
  • the distribution ratio K 2 may be calculated according to an upward convex function (for example, a quadratic function) that represents the relationship between the lateral acceleration Gy and the distribution ratio K 2 .
  • the lateral acceleration distribution ratio K 2 when the absolute value is a first set value G 1 of Gy and 0.3 the absolute value of the lateral acceleration Gy is the distribution ratio K 2
  • the distribution ratio GF is set to 1.0.
  • the amount of increase in the distribution ratio K 2 with respect to the increase in the absolute value of the lateral acceleration Gy is increased.
  • this application example has the following effects. (1) When the lateral acceleration Gy is greater than or equal to the first set value G 1 when the control calculation unit 11 is greater than or equal to the first set value G 1 , the smaller the absolute value of the lateral acceleration Gy, the more current the absolute value of the lateral acceleration Gy has to increase. The increase amount of the axial force distribution ratio K 2 is increased. According to such a configuration, when the lateral acceleration Gy becomes equal to or greater than the first set value G 1 , the current axial force distribution ratio K 2 can be immediately increased, and the absolute value of the steering reaction force can be immediately increased. Can be reduced. Therefore, it is possible to immediately give the driver a sense of lack of reaction force.
  • 1 is steering wheel (steering wheel) 3 is a steering angle sensor (steering angle detector).
  • 5 is a vehicle speed sensor (vehicle speed detector).
  • 6 is a lateral G sensor (lateral acceleration detection unit) 7 is a yaw rate sensor (yaw rate detector)
  • 8A is a steering motor (steering motor).
  • 8B is a steering current detector (steering current detector).
  • 8C is a steering motor drive unit (steering motor drive unit).
  • 9A is a reaction force motor (reaction force motor)
  • 9C is a reaction force motor drive unit (reaction force motor drive unit, estimated reaction force motor drive unit)
  • 11B is a target steering reaction force calculation unit (reaction force motor drive unit).
  • 11Ba is a feedforward axial force calculation unit (feedforward axial force calculation unit)
  • 11Bb is a feedback axial force calculator (current axial force calculator, lateral G-axis force calculator, feedback axial force calculator, and yaw rate axial force calculator).
  • K 2 is the set value (first distribution ratio)
  • K 3 is the set value (the second distribution ratio)

Abstract

 制御演算部(11)が、電流軸力と横G軸力とを予め設定した配分比率(K2、K1)で配分して、ステアリングラック軸力であるフィードバック軸力(TFB)を算出する。そして、制御演算部(11)が、算出したフィードバック軸力(TFB)に基づいて、反力モータ(9A)を駆動する。また、電流軸力の配分比率(K2)よりも、横G軸力の配分比率(K1)を大きくする。

Description

操舵制御装置
 本発明は、ステアリングホイールと操向輪とが機械的に分離したステア・バイ・ワイヤ方式の操舵制御装置に関するものである。
 従来、操舵制御装置としては、例えば、特許文献1に記載の従来技術がある。
 この従来技術では、車両の転舵機構のステアリングラックに作用するラック軸力に基づいて操舵反力を生成する。これにより、この従来技術では、タイヤに作用する横力(以下、タイヤ横力とも呼ぶ)を操舵反力に反映させている。
特開2000-108914号公報
 しかしながら、上記従来技術にあっては、ラック軸力に基づいて操舵反力を生成するため、ラック軸力を検出する軸力センサが必要となる。このため、軸力センサは比較的高価であるため、操舵制御装置の製造コストが増大する可能性があった。
 本発明は、上記のような点に着目し、製造コストの増大を抑制可能とすることを課題とする。
 上記課題を解決するため、本発明の一態様では、電流軸力と横G軸力とを予め設定した配分比率で配分して、フィードバック軸力を算出する。そして、本発明の一態様では、算出したフィードバック軸力に基づいて、反力モータを駆動する。その際、電流軸力の配分比率よりも、横G軸力の配分比率を大きくする。
 本発明の一態様では、転舵モータの転舵電流および車両の横方向加速度等、一般的な車両が備えているセンサの検出結果に基づいて、反力モータを駆動する。それゆえ、本発明の一態様によれば、専用のセンサを備える必要がなく、製造コストの増大を抑制できる。
車両Aの構成を表す概念図である。 制御演算部11の構成を表すブロック図である。 目標操舵反力演算部11Bの詳細な構成を表すブロック図である。 フィードフォワード軸力TFFの算出式の係数を説明するための図である。 横G軸力、電流軸力、ヨーレート軸力、および実際のステアリングラック軸力を表すグラフである。 フィードバック軸力TFB、および実際のステアリングラック軸力を表すグラフである。 配分比率マップM1を表すグラフである。 軸力-操舵反力変換マップを表すグラフである。 制御演算部11の構成を表すブロック図である。 制御マップM0を表すグラフである。 タイヤ横力とセルフアライニングトルクとを説明するための図である。 電流軸力、ヨーレート軸力、および横G軸力の配分比率を説明するための図である。 制御マップM0を表すグラフである。
 次に、本発明に係る実施形態について図面を参照して説明する。
(構成)
 本実施形態の車両Aは、ステアリングホイール1と前輪(操向輪2)とが機械的に分離した、いわゆるステア・バイ・ワイヤ方式(SBW方式)の操舵制御装置を備える車両である。
 図1は、本実施形態の車両Aの構成を表す概念図である。
 図1に示すように、車両Aは、操舵角センサ3、転舵角センサ4、車速センサ5、横Gセンサ6、およびヨーレートセンサ7を備える。
 操舵角センサ3は、ステアリングホイール1の操舵角δを検出する。そして、操舵角センサ3は、検出結果を表す信号(以下、検出信号とも呼ぶ)を後述する制御演算部11に出力する。
 転舵角センサ4は、操向輪2の転舵角θを検出する。操向輪2の転舵角θの検出方法としては、ステアリングラックのラック移動量に基づいて算出する方法を採用できる。そして、転舵角センサ4は、検出信号を制御演算部11に出力する。
 車速センサ5は、車両Aの車速Vを検出する。そして、車速センサ5は、検出信号を制御演算部11に出力する。
 横Gセンサ6は、車両Aの横方向加速度Gyを検出する。そして、横Gセンサ6は、検出信号を制御演算部11に出力する。
 ヨーレートセンサ7は、車両Aのヨーレートγを検出する。そして、ヨーレートセンサ7は、検出信号を制御演算部11に出力する。
 なお、横Gセンサ6および横Gセンサ6は、バネ上(車体)に配置する。
 また、車両Aは、転舵制御部8、および反力制御部9を備える。
 転舵制御部8は、転舵モータ8A、転舵電流検出部8B、および転舵モータ駆動部8Cを備える。
 転舵モータ8Aは、減速機を介してピニオンシャフト10と連結される。そして、転舵モータ8Aは、転舵モータ駆動部8Cによって駆動され、ピニオンシャフト10を介してステアリングラックを左右に移動させる。これにより、転舵モータ8Aは、操向輪2を転舵する。転舵モータ8Aの駆動方法としては、転舵モータ8Aを駆動する電流(以下、転舵電流とも呼ぶ)を制御する方法を採用できる。
 転舵電流検出部8Bは、転舵電流を検出する。そして、転舵電流検出部8Bは、検出信号を転舵モータ駆動部8Cおよび制御演算部11に出力する。
 転舵モータ駆動部8Cは、制御演算部11が算出する目標転舵電流に基づいて、転舵電流検出部8Bが検出する転舵電流が当該目標転舵電流と一致するように転舵モータ8Aの転舵電流を制御する。これにより、転舵モータ駆動部8Cは、転舵モータ8Aを駆動する。目標転舵電流とは、転舵モータ8Aを駆動する電流の目標値である。
 反力制御部9は、反力モータ9A、反力電流検出部9B、および反力モータ駆動部9Cを備える。
 反力モータ9Aは、減速機を介してステアリングシャフトと連結される。そして、反力モータ9Aは、反力モータ駆動部9Cによって駆動され、ステアリングシャフトを介してステアリングホイール1に回転トルクを付与する。これにより、反力モータ9Aは、操舵反力を発生する。反力モータ9Aの駆動方法としては、反力モータ9Aを駆動する電流(以下、反力電流とも呼ぶ)を制御する方法を採用できる。
 反力電流検出部9Bは、反力電流を検出する。そして、反力電流検出部9Bは、検出信号を反力モータ駆動部9Cおよび制御演算部11に出力する。
 反力モータ駆動部9Cは、制御演算部11が算出する目標反力電流に基づいて、反力電流検出部9Bが検出する反力電流が当該目標反力電流と一致するように反力モータ9Aの反力電流を制御する。これにより、反力モータ駆動部9Cは、反力モータ9Aを駆動する。目標反力電流とは、反力モータ9Aを駆動する電流の目標値である。
 また、車両Aは、制御演算部11を備える。
 図2は、制御演算部11の構成を表すブロック図である。
 図2に示すように、制御演算部11は、目標転舵角演算部11A、目標操舵反力演算部11B、および目標転舵電流演算部11Cを備える。
 目標転舵角演算部11Aは、操舵角センサ3が検出した操舵角δおよび車速センサ5が検出した車速Vに基づいて、転舵角θの目標値である目標転舵角θ*を算出する。そして、目標転舵角演算部11Aは、算出結果を目標操舵反力演算部11Bに出力する。
 目標操舵反力演算部11Bは、目標転舵角演算部11Aが算出した目標転舵角θ*、車速センサ5が検出した車速V、および転舵電流検出部8Bが検出した転舵電流に基づいて目標反力電流を算出する。そして、目標操舵反力演算部11Bは、算出結果を反力制御部9(反力モータ駆動部9C)に出力する。
 図3は、目標操舵反力演算部11Bの詳細な構成を表すブロック図である。
 ここで、目標操舵反力演算部11Bの詳細な構成を説明する。
 図3に示すように、目標操舵反力演算部11Bは、フィードフォワード軸力算出部11Ba、フィードバック軸力算出部11Bb、最終軸力算出部11Bc、軸力-操舵反力変換部11Bd、および目標反力電流演算部11Beを備える。
 フィードフォワード軸力算出部11Baは、操舵角センサ3が検出した操舵角δ、および車速センサ5が検出した車速Vに基づき、下記(1)式に従ってステアリングラック軸力(以下、フィードフォワード軸力とも呼ぶ)TFFを算出する。ステアリングラック軸力とは、ステアリングラックに加わるラック軸力である。そして、フィードフォワード軸力算出部11Baは、算出結果を最終軸力算出部11Bcに出力する。
 TFF=(Ks+Css)/(JrS2+(Cr+Cs)s+Ks)・k・V/(1+A・V2)・θ+Ks(Jrs2+Crs)/(JrS2+(Cr+Cs)s+Ks)・θ
                            ………(1)
 ここで、図4に示すように、Ksはピニオン剛性、Csはピニオン粘性、Jrはラック慣性、Crはラック粘性、k、Aは予め設定した定数である。これにより、フィードフォワード軸力算出部11Baは、フィードフォワード軸力TFFとして、操向輪2に作用するタイヤ横力Fdの影響を反映しないステアリングラック軸力を算出する。
 ここで、上記(1)式は、予め設定した路面状態や車両状態において、ステアリングホイール1と操向輪2とを機械的に接続した操舵機構を備える車両の運動方程式を基に導出した数式である。上記(1)式の右辺第1項は、フィードフォワード軸力TFFを構成する成分のうち、操舵角δと車速Vとに基づく成分を表すものであり、右辺第2項は、操舵角速度に基づく成分を表す項である。なお、上記(1)式では、操舵角加速度に基づく成分を表す項は、ノイズ成分を多く含み、フィードフォワード軸力TFFの算出結果に振動を誘発するため、除いてある。
 フィードバック軸力算出部11Bbは、横Gセンサ6が検出した横方向加速度Gy(車両Aの状態)に基づき、下記(2)式に従ってステアリングラック軸力(以下、横G軸力とも呼ぶ)を算出する。下記(2)式では、まず、前輪荷重と横方向加速度Gyとを乗算し、乗算結果を操向輪2にかかる軸力(軸方向の力)を算出する。続いて、下記(2)式では、算出した操向輪2にかかる軸力と、リンクの角度やサスペンションに応じた定数(以下、リンク比とも呼ぶ)とを乗算し、乗算結果を横G軸力として算出する。
 横G軸力=操向輪2にかかる軸力×リンク比 ………(2)
 操向輪2にかかる軸力=前輪荷重×横方向加速度Gy
 ここで、横方向加速度Gyは、操向輪2が転舵され、操向輪2にタイヤ横力Fdが作用し、車両Aが旋回することによって発生する。それゆえ、フィードバック軸力算出部11Bbは、横方向加速度Gyに基づくことで、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力(横G軸力)を算出できる。ここで、横Gセンサ6は、バネ上(車体)に配置したため、横方向加速度Gyの検出が遅れる。そのため、横G軸力は、図5に示すように、実際のステアリングラック軸力に比べ、位相が遅れる。
 なお、本実施形態では、横G軸力を算出する際に、横Gセンサ6で検出した横方向加速度Gyを用いる例を示したが、他の構成を採用してもよい。例えば、ヨーレートセンサ7が検出したヨーレートγに車速センサ5が検出した車速Vを乗算し、乗算結果γ×Vを横方向加速度Gyに代えて用いる構成としてもよい。
 図3に戻り、フィードバック軸力算出部11Bbは、転舵電流検出部8Bが検出した転舵電流(車両Aの状態)に基づき、下記(3)式に従ってステアリングラック軸力(以下、電流軸力とも呼ぶ)を算出する。下記(3)式では、まず、転舵電流と、転舵電流を基に転舵モータ8Aの出力トルクを算出するためのトルク定数[Nm/A]と、転舵モータ8Aのモータトルクを伝達するためのモータギア比とを乗算する。続いて、下記(3)式では、乗算結果を転舵モータ8Aのピニオンギアのピニオン半径[m]で除算し、除算結果に、転舵モータ8Aの出力トルクが伝達される際の効率を乗算し、乗算結果を電流軸力として算出する。
 電流軸力=転舵電流×モータギア比×トルク定数[Nm/A]/ピニオン半径[m]×効率  ………(3)
 ここで、転舵電流は、ステアリングホイール1が操舵され、目標転舵角θ*が変動し、目標転舵角θ*と実際の転舵角θとに差が生じることによって変動する。また、転舵電流は、操向輪2が転舵され、操向輪2にタイヤ横力Fdが作用し、目標転舵角θ*と実際の転舵角θとに差が生じることによっても変動する。さらに、転舵電流は、路面凹凸等によって操向輪2に路面外乱が作用し、操向輪2にタイヤ横力Fdが作用し、目標転舵角θ*と実際の転舵角θとに差が生じることによっても変動する。それゆえ、フィードバック軸力算出部11Bbは、転舵電流に基づくことで、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力(電流軸力)を算出できる。ここで、電流軸力は、目標転舵角θ*と実際の転舵角θとに差が生じた時点で発生する。そのため、電流軸力は、図5に示すように、実際のステアリングラック軸力や横G軸力に比べ、位相が進む。
 図3に戻り、フィードバック軸力算出部11Bbは、車速センサ5が検出した車速V(車両Aの状態)、およびヨーレートセンサ7が検出したヨーレートγ(車両Aの状態)に基づき、下記(4)式に従ってステアリングラック軸力(以下、ヨーレート軸力とも呼ぶ)を算出する。下記(4)式では、まず、前輪荷重と車速Vとヨーレートγとを乗算し、乗算結果を操向輪2にかかる軸力を算出する。続いて、下記(4)式では、算出した操向輪2にかかる軸力とリンク比とを乗算し、乗算結果をヨーレート軸力として算出する。
 ヨーレート軸力=操向輪2にかかる軸力×リンク比 ………(4)
 操向輪2にかかる軸力=前輪荷重×車速V×ヨーレートγ
 ここで、ヨーレートγは、操向輪2が転舵され、操向輪2にタイヤ横力Fdが作用し、車両Aが旋回することによって発生する。それゆえ、フィードバック軸力算出部11Bbは、ヨーレートγに基づくことで、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力(ヨーレート軸力)を算出できる。ここで、ヨーレートセンサ7は、バネ上(車体)に配置したため、ヨーレートγの検出が遅れる。そのため、ヨーレート軸力は、図5に示すように、実際のステアリングラック軸力に比べ、位相が遅れる。
 また、フィードバック軸力算出部11Bbは、算出した横G軸力、電流軸力、およびヨーレート軸力に基づき、下記(5)式に従ってステアリングラック軸力(以下、「フィードバック軸力」とも呼ぶ)TFBを算出する。下記(5)式では、横G軸力に配分比率K1を乗算し、電流軸力に配分比率K2を乗算し、ヨーレート軸力に配分比率K3を乗算し、これらの乗算結果の和をフィードバック軸力TFBとして算出する。すなわち、横G軸力に配分比率K1を乗算した値、電流軸力に配分比率K2を乗算した値、およびヨーレート軸力に配分比率K3を乗算した値に基づいて、フィードバック軸力TFBを算出する。そして、フィードバック軸力算出部11Bbは、算出結果を最終軸力算出部11Bcに出力する。
 TFB=横G軸力×K1+電流軸力×K2+ヨーレート軸力×K3 ………(5)
 ここで、配分比率K1、K2、K3は横G軸力、電流軸力、ヨーレート軸力の配分比率である。配分比率K1、K2、K3の大小関係は、K1>K2>K3とする。すなわち、横G軸力、電流軸力、ヨーレート軸力の順に配分比率を大きい値とする。例えば、配分比率K1、K2、K3のそれぞれは、K1=0.6、K2=0.3、K3=0.1に設定する。これにより、フィードバック軸力算出部11Bbは、フィードバック軸力TFBとして、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力を算出する。
 このように、本実施形態のフィードバック軸力算出部11Bbは、転舵モータ8Aの転舵電流および車両Aの横方向加速度Gyに基づいて電流軸力および横G軸力を算出する。そして、本実施形態のフィードバック軸力算出部11Bbは、算出した電流軸力および横G軸力に基づいてフィードバック軸力TFBを算出する。それゆえ、本実施形態のフィードバック軸力算出部11Bbは、転舵モータ8Aの転舵電流および車両Aの横方向加速度Gy等、一般的な車両が備えているセンサ(転舵電流検出部8B、横Gセンサ6)の検出結果に基づいて、フィードバック軸力TFBを算出できる。そのため、本実施形態の制御演算部11は、ステアリングラック軸力を検出する軸力センサ等、専用のセンサを備える必要がなく、製造コストの増大を抑制できる。
 また、本実施形態のフィードバック軸力算出部11Bbは、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とに基づいてフィードバック軸力TFBを算出する。ここで、図5に示すように、横G軸力は、実際のステアリングラック軸力に比べ、位相が遅れる。また、電流軸力は、実際のステアリングラック軸力に比べ、位相が進む。それゆえ、本実施形態のフィードバック軸力算出部11Bbは、横G軸力に電流軸力を加えることで、図6に示すように、横G軸力による位相の遅れを補償でき、より適切なフィードバック軸力TFBを算出できる。そのため、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 さらに、本実施形態のフィードバック軸力算出部11Bbは、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とに基づいてフィードバック軸力TFBを算出する。ここで、車両Aは、路面凹凸等によって操向輪2に路面外乱が作用し、操向輪2にタイヤ横力Fdが作用した場合、目標転舵角θ*と実際の転舵角θとに差が生じる。それゆえ、本実施形態の制御演算部11は、横G軸力に電流軸力を加えることで、路面凹凸等によって操向輪2に作用する路面外乱の影響をフィードバック軸力TFBに反映でき、より適切なフィードバック軸力TFBを算出できる。そのため、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 また、本実施形態のフィードバック軸力算出部11Bbは、電流軸力の配分比率K2よりも横G軸力の配分比率K1を大きくする。それゆえ、本実施形態のフィードバック軸力算出部11Bbは、電流軸力の配分比率を低減でき、例えば、電流軸力の推定精度が転舵モータ8Aの慣性やフリクションの影響によって実際のステアリングラック軸力よりも低下することがあったとしても、フィードバック軸力TFBの推定精度の低下を抑制できる。そのため、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 さらに、本実施形態のフィードバック軸力算出部11Bbは、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とヨーレート軸力に配分比率K3を乗算した値とに基づいてフィードバック軸力TFBを算出する。ここで、例えば、車両Aがスピン状態になった場合に、転舵電流および横方向加速度Gyが増大するため、横Gセンサ
6の検出結果および転舵電流検出部8Bの検出結果はいずれも最大値(飽和値)となる。これに対し、ヨーレートγも増大するが、ヨーレートγの増大量は比較的小さいので、ヨーレートセンサ7の検出結果は最大値(飽和値)に到達しない。そのため、車両Aのスピン状態の度合いに応じてヨーレートセンサ7の検出結果は変動する。それゆえ、車両Aのスピン状態の度合いに応じてフィードバック軸力TFBを変動できる。その結果、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 図3に戻り、最終軸力算出部11Bcは、フィードフォワード軸力算出部11Baおよびフィードバック軸力算出部11Bbからフィードフォワード軸力TFFおよびフィードバック軸力TFBを読み込む。続いて、最終軸力算出部11Bcは、読み込んだフィードフォワード軸力TFFおよびフィードバック軸力TFBに基づき、下記(6)に従ってステアリングラック軸力(以下、最終軸力)を算出する。そして、最終軸力算出部11Bcは、算出結果を軸力-操舵反力変換部11Bdに出力する。
 最終軸力=フィードフォワード軸力TFF×GF―フィードバック軸力TFB×(1-GF)  ………(6)
 ここで、GFは、フィードフォワード軸力TFFの配分比率GFとフィードバック軸力TFBの配分比率(1-GF)を表す数値(以下、配分比率と呼ぶ)である。これにより、最終軸力算出部11Bcは、配分比率GFに基づいて、フィードフォワード軸力TFFとフィードバック軸力TFBとをGF:(1-GF)の割合で合算させて、最終軸力を算出する。
 このように、本実施形態の最終軸力算出部11Bcは、フィードバック軸力TFBおよびフィードフォワード軸力TFFに基づいて最終軸力を算出する。ここで、フィードバック軸力TFBは、操向輪2に作用するタイヤ横力Fdの影響を反映するため、路面状態の変化や車両状態の変化に応じて変化する。これに対し、フィードフォワード軸力TFFは、タイヤ横力Fdの影響を反映しないため、路面状態の変化等にかかわらず滑らかに変化する。それゆえ、最終軸力算出部11Bcは、フィードバック軸力TFBに加え、フィードフォワード軸力TFFに基づいて最終軸力を算出することで、より適切な最終軸力を算出できる。そのため、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 ここで、配分比率GFの設定方法としては、軸力差分に対応した配分比率GFを配分比率マップM1から読み出す方法を採用できる。軸力差分とは、フィードフォワード軸力TFFとフィードバック軸力TFBとの差である。具体的には、フィードフォワード軸力TFFからフィードバック軸力TFBを減算した減算結果である。また、配分比率マップM1とは、軸力差分に対応した配分比率GFを登録したマップである。
 ここで、フィードフォワード軸力TFFは、予め設定した路面状態や車両状態を基に導出した上記(1)式に従って算出する。それゆえ、フィードフォワード軸力TFFの推定精度は、路面状態や車両状態が変化すると低下する。これに対し、フィードバック軸力TFBの推定精度は、路面状態や車両状態にかかわらずほぼ一定となる。そのため、本実施形態の最終軸力算出部11Bcは、フィードフォワード軸力TFFとフィードバック軸力TFBとの差である軸力差分を、配分比率GF、つまり、フィードフォワード軸力TFFの配分比率、およびフィードバック軸力TFBの配分比率を設定するための指標としている。これにより、本実施形態の最終軸力算出部11Bcは、より適切な配分比率GFを設定できる。
 図7は、配分比率マップM1を表すグラフである。
 図7に示すように、配分比率マップM1は、軸力差分の絶対値が0以上で且つ第1設定値Z1(>0)未満の範囲では、軸力差分の大きさにかかわらず配分比率GFを配分比率(1―GF)より大きい値(例えば、「1」)に設定する。第1設定値Z1とは、フィードフォワード軸力TFFの推定精度が低下を開始する軸力差分(閾値)である。また、配分比率マップM1では、軸力差分の絶対値が第2設定値Z2(>Z1)以上の範囲では、軸力差分の大きさにかかわらず配分比率GFを配分比率(1―GF)より小さい値(例えば、「0.0」)に設定する。第2設定値Z2とは、フィードフォワード軸力TFFの推定精度がフィードバック軸力TFBの推定精度よりも低下する軸力差分(閾値)である。さらに、配分比率マップM1では、軸力差分の絶対値が第1設定値Z1以上で且つ第2設定値Z2未満の範囲では、軸力差分の絶対値に応じて配分比率GFを直線的に低下させる。具体的には、配分比率マップM1は、軸力差分の絶対値が第1設定値Z1以上で且つ第2設定値Z2未満の範囲では、軸力差分に基づく配分比率で、軸力差分の絶対値と配分比率GFとの関係を表す一次関数に従って配分比率GFを算出可能とする。当該一次関数では、軸力差分の絶対値が第1設定値Z1である場合に配分比率GFを「1」とし、軸力差分の絶対値が第2設定値Z2である場合に配分比率GFを「0」とする。これにより、最終軸力算出部11Bcは、軸力差分の絶対値が第1設定値Z1未満である場合には、フィードフォワード軸力TFFを最終軸力とする。また、最終軸力算出部11Bcは、軸力差分の絶対値が第2設定値Z2以上である場合には、フィードバック軸力TFBを最終軸力とする。また、配分比率マップM1では、軸力差分の絶対値が第1設定値Z1以上で且つ第2設定値Z2未満である場合には、フィードフォワード軸力TFFに配分比率GFを乗算した値とフィードバック軸力TFBに配分比率(1-GF)を乗算した値とを合算したものを最終軸力とする。
 図3に戻り、軸力-操舵反力変換部11Bdは、最終軸力算出部11Bcが算出した最終軸力に基づいて目標操舵反力を算出する。目標操舵反力とは、操舵反力の目標値である。目標操舵反力の算出方法としては、車速Vおよび最終軸力に対応した目標操舵反力を軸力-操舵反力変換マップから読み出す方法を採用できる。軸力-操舵反力変換マップとは、車速V毎に設定され、最終軸力に対応した目標操舵反力を登録したマップである。
 図8は、軸力-操舵反力変換マップを表すグラフである。
 図8に示すように、軸力-操舵反力変換マップは、車速V毎に設定される。また、軸力-操舵反力変換マップでは、最終軸力が大きいほど目標操舵反力を大きい値とする。
 図3に戻り、目標反力電流演算部11Beは、軸力-操舵反力変換部11Bdが算出した目標操舵反力に基づき、下記(7)式に従って目標反力電流を算出する。そして、目標反力電流演算部11Beは、算出結果を反力モータ駆動部9Cに出力する。
 目標反力電流=目標操舵反力×ゲイン ………(7)
 図2に戻り、目標転舵電流演算部11Cは、目標転舵角演算部11Aが算出した目標転舵角θ*から転舵角センサ4が検出した転舵角θを減じた減算結果に基づいて目標転舵電流を算出する。そして、目標転舵電流演算部11Cは、算出結果を転舵モータ駆動部8Cに出力する。
(動作その他)
 次に、車両Aの操舵制御装置の動作について説明する。
 車両Aの走行中、運転者がステアリングホイール1を操舵したとする。すると、制御演算部11が、操舵角δおよび車速Vに基づいて目標転舵角θ*を算出する(図2の目標転舵角演算部11A)。続いて、制御演算部11が、算出した目標転舵角θ*から実際の転舵角θを減じた減算結果に基づいて目標転舵電流を算出する(図2の目標転舵電流演算部11C)。これにより、転舵制御部8が、運転者の操舵操作に応じて操向輪2を転舵する。
 同時に、制御演算部11が、操舵角δおよび車速Vに基づいてフィードフォワード軸力TFFを算出する(図3のフィードフォワード軸力算出部11Ba)。続いて、制御演算部11が、横方向加速度Gyに基づいて横G軸力を算出する(図3のフィードバック軸力算出部11Bb)。続いて、制御演算部11が、転舵電流に基づいて電流軸力を算出する(図3のフィードバック軸力算出部11Bb)。続いて、制御演算部11が、ヨーレートγおよび車速Vに基づいてヨーレート軸力を算出する(図3のフィードバック軸力算出部11Bb)。続いて、制御演算部11が、算出した電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とヨーレート軸力に配分比率K3を乗算した値とに基づいて、フィードバック軸力TFBを算出する(図3のフィードバック軸力算出部11Bb)。横G軸力、電流軸力、ヨーレート軸力の配分比率K1,K2,K3は、0.6:0.3:0.1になる(図3のフィードバック軸力算出部11Bb)。続いて、制御演算部11が、算出したフィードフォワード軸力TFFとフィードバック軸力TFBとをGF:(1-GF)で配分して、最終軸力を算出する(図3の最終軸力算出部11Bc)。続いて、制御演算部11が、算出した最終軸力に基づいて目標操舵反力を算出する(図3の軸力-操舵反力変換部11Bd)。続いて、制御演算部11が、算出した目標操舵反力に基づいて目標反力電流を算出する(図3の目標反力電流演算部11Be)。続いて、制御演算部11が、算出した目標反力電流に基づいて反力モータ9Aを駆動する(図2の反力モータ駆動部9C)。これにより、反力制御部9が、ステアリングホイール1に操舵反力を付与する。
 このように、本実施形態の操舵制御装置では、転舵モータ8Aの転舵電流および車両Aの横方向加速度Gyに基づいて電流軸力および横G軸力を算出する。そして、本実施形態の操舵制御装置では、算出した電流軸力および横G軸力に基づいてフィードバック軸力TFBを算出する。それゆえ、本実施形態の操舵制御装置は、転舵モータ8Aの転舵電流および車両Aの横方向加速度Gy等、一般的な車両が備えているセンサ(転舵電流検出部8B、横Gセンサ6)の検出結果に基づいて、フィードバック軸力TFBを算出できる。そのため、本実施形態の操舵制御装置は、フィードバック軸力TFBに基づいて反力モータ9Aを駆動することで、ステアリングラック軸力を検出するための専用のセンサを備える必要がなく、製造コストの増大を抑制できる。
 また、本実施形態の操舵制御装置では、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とに基づいてフィードバック軸力TFBを算出する。ここで、図5に示すように、横G軸力は、実際のステアリングラック軸力に比べ、位相が遅れる。また、電流軸力は、実際のステアリングラック軸力に比べ、位相が進む。それゆえ、本実施形態の操舵制御装置は、横G軸力に電流軸力を加えることで、図6に示すように、横G軸力による位相の遅れを補償でき、より適切なフィードバック軸力TFBを算出できる。そのため、本実施形態の操舵制御装置は、フィードバック軸力TFBに基づくことで、より適切な操舵反力を付与できる。
 さらに、本実施形態の操舵制御装置は、電流軸力の配分比率K2「0.3」よりも横G軸力の配分比率K2「0.6」を大きくする。それゆえ、本実施形態の操舵制御装置は、電流軸力の配分比率K2を低減でき、例えば、電流軸力の推定精度が転舵モータ8Aの慣性やフリクションの影響によって実際のステアリングラック軸力よりも低下することがあったとしても、フィードバック軸力TFBの推定精度の低下を抑制できる。そのため、本実施形態の操舵制御装置は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 ここで、車両Aの走行中、路面凹凸等によって操向輪2に路面外乱が作用したとする。すると、操向輪2にタイヤ横力Fdが作用し、目標転舵角θ*と実際の転舵角θとに差が生じる。これにより、転舵モータ8Aの転舵電流が増大し、操向輪2に作用する路面外乱の度合いに応じて転舵電流検出部8bの検出結果は変動する。それゆえ、フィードバック軸力TFBに反映でき、より適切なフィードバック軸力TFBを算出できる。そのため、制御演算部11が、操向輪2に作用する路面外乱の度合いに応じてフィードバック軸力TFBが変動する(図3のフィードバック軸力算出部11Bb)。これにより、反力制御部9が、より適切な操舵反力を付与する。なおその際、目標転舵電流演算部11Cが、目標転舵角θ*と実際の転舵角θとの差を低減するように目標転舵電流を算出するため、横Gセンサ6の検出結果およびヨーレートセンサ7の検出結果はいずれも殆ど変動しない。
 また、車両Aの走行中、車両Aがスピン状態になったとする。すると、操向輪2に作用するタイヤ横力Fdが増大し、操向輪2の転舵角θが変化し、目標転舵角θ*と実際の転舵角θとに差が生じる。これにより、転舵モータ8Aの転舵電流が増大し、転舵電流検出部8bの検出結果は最大値(飽和値)となる。また、車両Aの横すべりおよび回転が発生する。これにより、車両Aの横方向加速度Gyが増大し、横Gセンサ6の検出結果は最大値(飽和値)となる。それゆえ、車両Aのスピン状態の度合いにかかわらず、横Gセンサ6の検出結果および転舵電流検出部8Bの検出結果は一定(飽和値)となる。これに対し、車両Aの横すべりおよび回転に伴い、車両Aのヨーレートγも増大する。しかしながら、ヨーレートγの増大量は比較的小さいので、ヨーレートセンサ7の検出結果は最大値(飽和値)に到達しない。そのため、車両Aのスピン状態の度合いに応じてヨーレートセンサ7の検出結果は変動する。それゆえ、制御演算部11が、車両Aのスピン状態の度合いに応じてフィードバック軸力TFBが変動する(図3のフィードバック軸力算出部11Bb)。これにより、反力制御部9が、より適切な操舵反力を付与する。
 本実施形態では、図1のステアリングホイール1がステアリングホイールを構成する。以下同様に、図1の操舵角センサ3が操舵角検出部を構成する。また、図1の転舵モータ8Aが転舵モータを構成する。さらに、図1の転舵モータ駆動部8Cが転舵モータ駆動部を構成する。また、図1の転舵電流検出部8Bが転舵電流検出部を構成する。さらに、図1の横Gセンサ6が横方向加速度検出部を構成する。また、図1の反力モータ9Aが反力モータを構成する。さらに、図3のフィードバック軸力算出部11Bbが電流軸力算出部、横G軸力算出部、フィードバック軸力算出部、およびヨーレート軸力算出部を構成する。また、配分比率K2が第1の配分比率を構成する。さらに、配分比率K1が第2の配分比率を構成する。また、配分比率K3が第3の配分比率を構成する。さらに、図1の反力モータ駆動部9Cおよび目標操舵反力演算部11Bが反力モータ駆動部を構成する。また、図1のヨーレートセンサ7がヨーレート検出部を構成する。さらに、図1の車速センサ5が車速検出部を構成する。また、図1のフィードフォワード軸力算出部11Baがフィードフォワード軸力算出部を構成する。
(本実施形態の効果)
 本実施形態は、次のような効果を奏する。
(1)制御演算部11が、電流軸力と横G軸力とを予め設定した配分比率K2、K1で配分して、ステアリングラック軸力であるフィードバック軸力TFBを算出する。そして、制御演算部11が、算出したフィードバック軸力TFBに基づいて、反力モータ9Aを駆動する。また、電流軸力の配分比率K2よりも、横G軸力の配分比率K1を大きくする。
 このような構成によれば、転舵モータ8Aの転舵電流および横方向加速度Gy等、一般的な車両が備えているセンサの検出結果に基づいて、反力モータ9Aを駆動できる。それゆえ、専用のセンサを備える必要がなく、製造コストの増大を抑制できる。
 また、電流軸力と横G軸力とを予め設定した配分比率K2、K1で配分して、フィードバック軸力TFBを算出する。それゆえ、横G軸力による位相の遅れを補償できる。そのため、より適切なフィードバック軸力TFBを算出でき、より適切な操舵反力を付与できる。
 さらに、例えば、路面凹凸等によって操向輪2に路面外乱が作用し、操向輪2にタイヤ横力Fdが作用し、目標転舵角θ*と実際の転舵角θとに差が生じた場合に、操向輪2に作用する路面外乱の度合いに応じてフィードバック軸力TFBを変動できる。そのため、より適切なフィードバック軸力TFBを算出でき、より適切な操舵反力を付与できる。
 また、電流軸力の配分比率K2よりも横G軸力の配分比率K1を大きくする。それゆえ、例えば、電流軸力の推定精度が転舵モータ8Aの慣性やフリクションの影響によって実際のステアリングラック軸力よりも低下した場合にも、フィードバック軸力TFBの推定精度の低下を抑制できる。そのため、より適切なフィードバック軸力TFBを算出でき、より適切な操舵反力を付与できる。
(2)制御演算部11が、電流軸力と横G軸力とヨーレート軸力とを予め設定した配分比率K2、K1、K3で配分して、フィードバック軸力TFBを算出する。
 このような構成によれば、例えば、車両Aがスピン状態になった場合に、転舵電流および横方向加速度Gyが増大するため、横Gセンサ6の検出結果および転舵電流検出部8Bの検出結果はいずれも最大値(飽和値)となる。これに対し、ヨーレートγも増大するが、ヨーレートγの増大量は比較的小さいので、ヨーレートセンサ7の検出結果は最大値(飽和値)に到達しない。そのため、車両Aのスピン状態の度合いに応じてヨーレートセンサ7の検出結果は変動する。それゆえ、車両Aのスピン状態の度合いに応じてフィードバック軸力TFBを変動できる。そのため、より適切なフィードバック軸力TFBを算出でき、より適切な操舵反力を付与できる。
(3)制御演算部11が、ステアリングホイール1の操舵角δ、および車両Aの車速Vを配分比率GF、(1-GF)で配分して、フィードフォワード軸力を算出する。そして、制御演算部11が、フィードバック軸力、およびフィードフォワード軸力に基づいて、反力モータ9Aを駆動する。
 このような構成によれば、フィードバック軸力に加え、フィードフォワード軸力に基づいて反力モータ9Aを駆動するため、より適切な操舵反力を付与できる。
(第2実施形態)
 次に、本発明の第2実施形態について図面を参照して説明する。
 なお、前記第1実施形態と同様な構成等については同一の符号を使用する。
 本実施形態では、車両Aの横方向加速度Gyの絶対値が後述する第1設定値G1以上である場合には、車両Aの横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率K2を増大させる点が前記第1実施形態と異なる。
 図9は、制御演算部11の構成を表すブロック図である。
 図9、図3に示すように、フィードバック軸力算出部11Bbは、横G軸力、電流軸力、およびヨーレート軸力に基づき、上記(5)式(TFB=横G軸力×K1+電流軸力×K2+ヨーレート軸力×K3)に従ってステアリングラック軸力(フィードバック軸力)TFBを算出する。そして、フィードバック軸力算出部11Bbは、算出結果を最終軸力算出部11Bcに出力する。
 ここで、配分比率K2の設定方法としては、横方向加速度Gyの絶対値に対応した配分比率K2を後述する制御マップM0から読み出す方法を採用できる。また、配分比率K1、K3の設定方法としては、制御マップM0から読み出した配分比率K2に基づき、下記(8)式に従って予め設定した比率(例えば、6:1)に設定する方法を採用できる。
 K1=(1-K2)×6/7
 K3=(1-K2)×1/7 ………(8)
 図10は、制御マップM0を表すグラフである。
 図10に示すように、制御マップM0は、横方向加速度Gyの絶対値が0以上で且つ第1設定値G1(>0)未満の範囲では、横方向加速度Gyの大きさにかかわらず、配分比率K2をその他の配分比率K1とK3との合計値K1+K3=(1-K2)より小さい値(例えば、0.3)に設定する。第1設定値G1とは、乾燥路を走行中に、車両Aが高G限界領域に到達する横方向加速度Gy(例えば、0.7G)である。高G限界領域とは、図11に示すように、タイヤすべり角の絶対値の増加量に対し、タイヤ横力Fdの絶対値の増加量が低減する領域である。高G限界領域では、タイヤすべり角の絶対値の増加量に対し、タイヤ横力Fdの増加量が低減することで、タイヤすべり角の絶対値の増加に対し、セルフアライニングトルクの絶対値が減少する。具体的には、制御マップM0では、運転者の運転操作(例えば、転舵角θ(=操舵角δ×ギア比)、車速V)に基づいて予め設定したモデル式で算出した車両Aの挙動(例えば、タイヤ横力Fd)と実際の車両Aの挙動との乖離が予め設定した車両挙動閾値以上となる横方向加速度Gyを第1設定値G1とする。予め設定したモデル式としては、例えば、タイヤすべり角の絶対値の増加量に対しタイヤ横力Fdの絶対値の増加量が低減しない上記(1)式を採用できる。また、実際の車両挙動(実際のタイヤ横力Fd)の算出式としては、例えば、配分比率K1、K2、K3を0.6、0.3、0.1に設定してなる上記(5)式を採用できる。さらに、車両挙動閾値としては、例えば、タイヤすべり角の絶対値の増加量に対し、タイヤ横力Fdの絶対値の増加量が低減を開始する値や、タイヤすべり角の絶対値の増加に対し、セルフアライニングトルクの絶対値が減少を開始する値を採用できる。第1設定値G1は、実際の車両Aを用いた実験やシミュレーション等によって予め車両Aの製造時等に設定する。
 図10に戻り、制御マップM0では、横方向加速度Gyの絶対値が第2設定値G2(>G1)以上の範囲では、横方向加速度Gyの大きさにかかわらず、配分比率K2をその他の配分比率K1とK3との合計値K1+K3=(1-K2)より大きい値(例えば、1.0G)に設定する。第2設定値G2とは、タイヤすべり角の絶対値の増加に対し、タイヤ横力Fdの絶対値が最大値(飽和値)となる横方向加速度Gy(例えば、1.0G)である。
 さらに、制御マップM0では、横方向加速度Gyの絶対値が第1設定値G1以上で且つ第2設定値G2未満の範囲では、横方向加速度Gyの絶対値の増加に応じて配分比率K2を直線的に増加させる。具体的には、制御マップM0は、横方向加速度Gyの絶対値が第1設定値G1以上で且つ第2設定値G2未満の範囲では、横方向加速度Gyの絶対値と配分比率K2との関係を一次関数によって表す。当該一次関数では、横方向加速度Gyの絶対値が第1設定値G1である場合に配分比率K2として0.3を算出し、横方向加速度Gyの絶対値が第2設定値G2である場合に配分比率K2として1.0を算出する。
 これにより、フィードバック軸力算出部11Bbは、横方向加速度Gyの絶対値が0以上で且つ第1設定値G1未満である場合には、図12(a)に示すように、横G軸力、電流軸力、ヨーレート軸力を60%、30%、10%(K1=0.6、K2=0.3、K3=0.1)の配分比率で合算したものをフィードバック軸力TFBとする。また、フィードバック軸力算出部11Bbは、横方向加速度Gyの絶対値が第2設定値G2以上である場合には、図12(c)に示すように、電流軸力をフィードバック軸力TFBとする。また、フィードバック軸力算出部11Bbは、横方向加速度Gyの絶対値が第1設定値G1以上で且つ第2設定値G2未満である場合には、図12(b)に示すように、横G軸力にK1=(1-K2)×6/7を乗算した値と電流軸力にK2を乗算した値とヨーレート軸力にK3=(1-K2)×1/7を乗算した値とを合算したものをフィードバック軸力TFBとする。これにより、フィードバック軸力算出部11Bbは、フィードバック軸力TFBとして、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力を算出する。
 このように、本実施形態のフィードバック軸力算出部11Bbは、横方向加速度Gyの絶対値が0以上で且つ第1設定値G1未満の範囲にある場合には、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とに基づいてフィードバック軸力TFBを算出する。ここで、車両Aは、路面凹凸等によって操向輪2に路面外乱が作用し、操向輪2にタイヤ横力Fdが作用した場合、目標転舵角θ*と実際の転舵角θとに差が生じる。それゆえ、本実施形態の制御演算部11は、横G軸力に電流軸力を加えることで、路面凹凸等によって操向輪2に作用する路面外乱の影響をフィードバック軸力TFBに反映でき、より適切なフィードバック軸力TFBを算出できる。そのため、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 また、本実施形態のフィードバック軸力算出部11Bbは、横方向加速度Gyの絶対値が0以上で且つ第1設定値G1未満の範囲にある場合には、電流軸力の配分比率K2よりも横G軸力の配分比率K1を大きくする。それゆえ、本実施形態のフィードバック軸力算出部11Bbは、電流軸力の配分比率を低減でき、例えば、電流軸力の推定精度が転舵モータ8Aの慣性やフリクションの影響によって低下することがあったとしても、フィードバック軸力TFBの推定精度の低下を抑制できる。そのため、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 さらに、本実施形態のフィードバック軸力算出部11Bbは、横方向加速度Gyの絶対値が0以上で且つ第1設定値G1未満の範囲にある場合には、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とヨーレート軸力に配分比率K3を乗算した値とに基づいてフィードバック軸力TFBを算出する。ここで、例えば、車両Aがスピン状態になった場合に、転舵電流および横方向加速度Gyが増大するため、横Gセンサ6の検出結果および転舵電流検出部8Bの検出結果はいずれも最大値(飽和値)となる。これに対し、ヨーレートγも増大するが、ヨーレートγの増大量は比較的小さいので、ヨーレートセンサ7の検出結果は最大値(飽和値)に到達しない。そのため、車両Aのスピン状態の度合いに応じてヨーレートセンサ7の検出結果は変動する。それゆえ、本実施形態のフィードバック軸力算出部11Bbは、車両Aのスピン状態の度合いに応じてフィードバック軸力TFBを変動できる。その結果、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 また、本実施形態のフィードバック軸力算出部11Bbは、横方向加速度Gyの絶対値が第1設定値G1以上で且つ第2設定値G2未満の範囲にある場合には、横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率K2を増加させる。ここで、横方向加速度Gyの絶対値が第1設定値G1(0.7G)以上である場合、つまり、車両Aが高G限界領域にある場合には、横G軸力は、タイヤすべり角の絶対値の増加に応じて増加して最大値(飽和値)となる。これに対し、電流軸力は、タイヤすべり角の絶対値の増加に応じて減少する。それゆえ、本実施形態のフィードバック軸力算出部11Bbは、タイヤすべり角の絶対値が増加し、横方向加速度Gyの絶対値が増加する場合に、横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率K2を増加させることで、フィードバック軸力TFBの絶対値を減少できる。そのため、図11に示すように、車両Aが高G限界領域にある場合に、フィードバック軸力TFBの絶対値をセルフアライニングトルクと同様に低減できる。その結果、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、操舵反力を低減でき、反力抜け感(限界感知性)を付与できる。これにより、本実施形態の制御演算部11は、セルフアライニングトルクに対応した操舵反力、つまり、実際の車両挙動に対応した操舵反力を付与できる。
 なお、その他の構成は、前記第1実施形態の構成と同様である。
(動作その他)
 次に、車両Aの操舵制御装置の動作について説明する。
 車両Aの走行中、運転者がステアリングホイール1を操舵したとする。すると、制御演算部11が、操舵角δおよび車速Vに基づいて目標転舵角θ*を算出する(図9の目標転舵角演算部11A)。続いて、制御演算部11が、算出した目標転舵角θ*から実際の転舵角θを減じた減算結果に基づいて目標転舵電流を算出する(図9の目標転舵電流演算部11C)。これにより、転舵制御部8が、運転者の操舵操作に応じて操向輪2を転舵する。
 同時に、制御演算部11が、操舵角δおよび車速Vに基づいてフィードフォワード軸力TFFを算出する(図3のフィードフォワード軸力算出部11Ba)。続いて、制御演算部11が、横方向加速度Gyに基づいて横G軸力を算出する(図3のフィードバック軸力算出部11Bb)。続いて、制御演算部11が、転舵電流に基づいて電流軸力を算出する(図3のフィードバック軸力算出部11Bb)。続いて、制御演算部11が、ヨーレートγおよび車速Vに基づいてヨーレート軸力を算出する(図3のフィードバック軸力算出部11Bb)。ここで、操向輪2の転舵により、タイヤすべり角の絶対値が増加し、タイヤ横力Fdが増加し、0以上で且つ第1設定値G1未満の横方向加速度Gyが発生したとする。すると、制御演算部11が、図10に示すように、配分比率K1、K2、K3のそれぞれを0.6、0.3、0.1に設定する。続いて、制御演算部11が、算出した電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とヨーレート軸力に配分比率K3を乗算した値とに基づいて、フィードバック軸力TFBを算出する(図3のフィードバック軸力算出部11Bb)。すなわち、図12(a)に示すように、横G軸力、電流軸力、ヨーレート軸力を60%、30%、10%(K1=0.6、K2=0.3、K3=0.1)の配分比率で合算したものをフィードバック軸力TFBとする。続いて、制御演算部11が、算出したフィードフォワード軸力TFFとフィードバック軸力TFBとをGF:(1-GF)で配分して、最終軸力を算出する(図3の最終軸力算出部11Bc)。続いて、制御演算部11が、算出した最終軸力に基づいて目標操舵反力を算出する(図3の軸力-操舵反力変換部11Bd)。続いて、制御演算部11が、算出した目標操舵反力に基づいて目標反力電流を算出する(図3の目標反力電流演算部11Be)。続いて、制御演算部11が、算出した目標反力電流に基づいて反力モータ9Aを駆動する(図9の反力モータ駆動部9C)。これにより、反力制御部9が、ステアリングホイール1に操舵反力を付与する。
 このように、本実施形態の操舵制御装置は、横方向加速度Gyが0以上で且つ第1設定値G1未満である場合には、電流軸力の配分比率K2よりも横G軸力の配分比率K1を大きくする(K2=0.3、K1=0.6)。それゆえ、本実施形態の操舵制御装置は、電流軸力の配分比率K2を低減でき、例えば、電流軸力の推定精度が転舵モータ8Aの慣性やフリクションの影響によって実際のステアリングラック軸力よりも低下することがあったとしても、フィードバック軸力TFBの推定精度の低下を抑制できる。そのため、本実施形態の操舵制御装置は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
 ここで、運転者がさらに操舵を行い、操向輪2の転舵により、タイヤすべり角の絶対値が増加し、タイヤ横力Fdの絶対値が増加し、第1設定値G1以上で且つ第2設定値G2未満の横方向加速度Gyが発生したとする。これにより、車両Aが高G限界領域に到達し、図11に示すように、タイヤすべり角の絶対値の増加量に対し、タイヤ横力Fdの絶対値の増加量が低減する。それゆえ、タイヤすべり角の絶対値の増加に対し、セルフアライニングトルクの絶対値が減少し、タイヤ横力Fdの絶対値とセルフアライニングトルクの絶対値とが乖離する。すると、制御演算部11が、図10に示すように、横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率K2を0.3から徐々に増加させる(図3のフィードバック軸力算出部11Bb)。また、制御演算部11が、横G軸力の配分比率K1およびヨーレート軸力の配分比率K3のそれぞれを0.6、0.1から徐々に減少させる(図3のフィードバック軸力算出部11Bb)。これにより、図12(b)、(c)に示すように、横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率が徐々に増大し、横G軸力およびヨーレート軸力の配分比率が徐々に減少する。そして、制御演算部11が、これらの配分比率で電流軸力、横G軸力およびヨーレート軸力を合算したものをフィードバック軸力TFBとする(図3のフィードバック軸力算出部11Bb)。
 このように、本実施形態の制御演算部11では、横方向加速度Gyの絶対値が第1設定値G1以上で且つ第2設定値G2未満の範囲にある場合には、横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率K2を増加させる。ここで、横方向加速度Gyの絶対値が第1設定値G1(0.7G)以上である場合、つまり、車両Aが高G限界領域にある場合には、横G軸力は、タイヤすべり角の絶対値の増加に応じて増加して最大値(飽和値)となる。これに対し、電流軸力は、タイヤすべり角の絶対値の増加に応じて減少する。それゆえ、本実施形態の制御演算部11は、タイヤすべり角の絶対値が増加し、横方向加速度Gyの絶対値が増加する場合に、横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率K2を増加させることで、フィードバック軸力TFBの絶対値を減少できる。そのため、図11に示すように、車両Aが高G限界領域にある場合に、フィードバック軸力TFBをセルフアライニングトルクと同様に低減できる。その結果、本実施形態の制御演算部11は、フィードバック軸力TFBに基づいて、反力モータ9Aを駆動することで、操舵反力を低減でき、反力抜け感(限界感知性)を付与できる。これにより、本実施形態の制御演算部11は、セルフアライニングトルクに対応した操舵反力、つまり、実際の車両挙動に対応した操舵反力を付与できる。
 本実施形態では、図1のステアリングホイール1がステアリングホイールを構成する。以下同様に、図1の操舵角センサ3が操舵角検出部を構成する。また、図1の転舵モータ8Aが転舵モータを構成する。さらに、図1の転舵モータ駆動部8Cが転舵モータ駆動部を構成する。また、図1の転舵電流検出部8Bが転舵電流検出部を構成する。さらに、図1の横Gセンサ6が横方向加速度検出部を構成する。また、図1の反力モータ9Aが反力モータを構成する。さらに、図3のフィードバック軸力算出部11Bbが電流軸力算出部、横G軸力算出部、フィードバック軸力算出部、操舵反力算出部、およびヨーレート軸力算出部を構成する。さらに、図1の反力モータ駆動部9Cおよび目標操舵反力演算部11Bが反力モータ駆動部を構成する。また、第1設定値G1が横方向加速度閾値を構成する。また、図1のヨーレートセンサ7がヨーレート検出部を構成する。
(本実施形態の効果)
 本実施形態は、前記第1実施形態効果に加えて、次のような効果を奏する。
(1)制御演算部11が、横方向加速度Gyの絶対値が第1設定値G1以上である場合には、横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率K2を増加させる。
 このような構成によれば、横方向加速度Gyの絶対値が第1設定値G1以上となり、タイヤ横力Fdの絶対値が飽和値となるほど横方向加速度Gyの絶対値が増大した場合に、横方向加速度Gyの絶対値の増加に応じて電流軸力の配分比率K2を増加させることで、操舵反力の絶対値を低減できる。これにより、実際の車両挙動に対応した操舵反力を付与できる。
(2)制御演算部11が、運転者の運転操作に基づいて予め設定したモデル式で算出した車両Aの挙動(以下、演算車両挙動とも呼ぶ)と実際の車両Aの挙動との乖離が予め設定した車両挙動閾値以上となる横方向加速度Gyを第1設定値G1とする。
 このような構成によれば、タイヤ横力Fdの絶対値が飽和値となるほど横方向加速度Gyの絶対値が増大した場合には、演算車両挙動と実際の車両Aの挙動との乖離が増大するとともに、セルフアライニングトルクの絶対値が減少傾向になる。それゆえ、演算タイヤ横力Fdと実際のタイヤ横力Fdとの乖離が予め設定した車両挙動閾値以上となる横方向加速度Gyを第1設定値G1とすることで、セルフアライニングトルクの絶対値が減少傾向となる横方向加速度Gyを車両挙動閾値とすることができる。
(3)制御演算部11が、電流軸力と横G軸力とを予め設定した配分比率K2、K1で配分して、ステアリングラック軸力であるフィードバック軸力TFBを算出する。そして、制御演算部11が、算出したフィードバック軸力TFBに基づいて、反力モータ9Aを駆動する。また、電流軸力の配分比率K2よりも、横G軸力の配分比率K1を大きくする。
 このような構成によれば、電流軸力と横G軸力とを予め設定した配分比率K2、K1で配分して、フィードバック軸力TFBを算出する。それゆえ、横G軸力による位相の遅れを補償できる。そのため、より適切なフィードバック軸力TFBを算出でき、より適切な操舵反力を付与できる。
 また、例えば、路面凹凸等によって操向輪2に路面外乱が作用し、操向輪2にタイヤ横力Fdが作用し、目標転舵角θ*と実際の転舵角θとに差が生じた場合に、操向輪2に作用する路面外乱の度合いに応じてフィードバック軸力TFBを変動できる。そのため、より適切なフィードバック軸力TFBを算出でき、より適切な操舵反力を付与できる。
 さらに、電流軸力の配分比率K2よりも横G軸力の配分比率K1を大きくする。それゆえ、例えば、電流軸力の推定精度が転舵モータ8Aの慣性やフリクションの影響によって実際のステアリングラック軸力よりも低下した場合にも、フィードバック軸力TFBの推定精度の低下を抑制できる。そのため、より適切なフィードバック軸力TFBを算出でき、より適切な操舵反力を付与できる。
(4)制御演算部11が、電流軸力と横G軸力とヨーレート軸力とを予め設定した配分比率K2、K1、K3で配分して、フィードバック軸力TFBを算出する。
 このような構成によれば、例えば、車両Aがスピン状態になった場合に、転舵電流および横方向加速度Gyが増大するため、横Gセンサ6の検出結果および転舵電流検出部8Bの検出結果はいずれも最大値(飽和値)となる。これに対し、ヨーレートγも増大するが、ヨーレートγの増大量は比較的小さいので、ヨーレートセンサ7の検出結果は最大値(飽和値)に到達しない。そのため、車両Aのスピン状態の度合いに応じてヨーレートセンサ7の検出結果は変動する。それゆえ、車両Aのスピン状態の度合いに応じてフィードバック軸力TFBを変動できる。そのため、より適切なフィードバック軸力TFBを算出でき、より適切な操舵反力を付与できる。
(応用例)
 図13は、応用例を示す図である。
 なお、本実施形態では、図10に示すように、横方向加速度Gyの絶対値が第1設定値G1以上で且つ第2設定値G2未満の範囲にある場合に、横方向加速度Gyと配分比率K2との関係を表す一次関数に従って配分比率K2を算出する例を示したが、他の構成を採用することもできる。例えば、図13に示すように、横方向加速度Gyと配分比率K2との関係を表す上に凸な関数(例えば、二次関数)に従って配分比率K2を算出するようにしてもよい。当該二次関数では、横方向加速度Gyの絶対値が第1設定値G1である場合に配分比率K2を0.3とし、横方向加速度Gyの絶対値が配分比率K2である場合に配分比率GFを1.0とする。また、当該二次関数では、横方向加速度Gyの絶対値が小さいほど、横方向加速度Gyの絶対値の増加に対する配分比率K2の増大量を増加させる。
(本応用例の効果)
 本応用例は、上記各実施形態の効果に加えて、次のような効果を奏する。
(1)制御演算部11が、横方向加速度Gyが第1設定値G1以上である場合には、横方向加速度Gyの絶対値が小さいほど、横方向加速度Gyの絶対値の増加量に対する電流軸力の配分比率K2の増大量を大きくする。
 このような構成によれば、横方向加速度Gyが第1設定値G1以上になった場合には、電流軸力の配分比率K2をすぐに増大でき、操舵反力の絶対値をすぐに減少できる。そのため、運転者に反力抜け感をすぐに付与できる。
 以上、本願が優先権を主張する日本国特許出願2011-235241(2011年10月26日出願)および日本国特許出願2011-275531(2011年12月16日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1はステアリングホイール(ステアリングホイール)
3は操舵角センサ(操舵角検出部)
5は車速センサ(車速検出部)
6は横Gセンサ(横方向加速度検出部)
7はヨーレートセンサ(ヨーレート検出部)
8Aは転舵モータ(転舵モータ)
8Bは転舵電流検出部(転舵電流検出部)
8Cは転舵モータ駆動部(転舵モータ駆動部)
9Aは反力モータ(反力モータ)
9Cは反力モータ駆動部(反力モータ駆動部、推定反力モータ駆動部)
11Bは目標操舵反力演算部(反力モータ駆動部)
11Baはフィードフォワード軸力算出部(フィードフォワード軸力算出部)
11Bbはフィードバック軸力算出部(電流軸力算出部、横G軸力算出部、フィードバック軸力算出部、ヨーレート軸力算出部)
1は設定値(第2の配分比率)
2は設定値(第1の配分比率)
3は設定値(第2の配分比率)

Claims (8)

  1.  操向輪と機械的に分離したステアリングホイールと、
     前記ステアリングホイールの操舵角を検出する操舵角検出部と、
     前記操向輪を転舵する転舵モータと、
     前記操舵角検出部が検出した前記操舵角に基づいて、前記転舵モータを駆動する転舵モータ駆動部と、
     前記転舵モータを駆動する電流である転舵電流を検出する転舵電流検出部と、
     車両の横方向加速度を検出する横方向加速度検出部と、
     前記ステアリングホイールに操舵反力を付与する反力モータと、
     前記転舵電流検出部が検出した前記転舵電流に基づいてステアリングラック軸力である電流軸力を算出する電流軸力算出部と、
     前記横方向加速度検出部が検出した前記横方向加速度に基づいてステアリングラック軸力である横G軸力を算出する横G軸力算出部と、
     前記電流軸力算出部が算出した前記電流軸力と前記横G軸力算出部が算出した前記横G軸力とを予め設定された配分比率で配分して、ステアリングラック軸力であるフィードバック軸力を算出するフィードバック軸力算出部と、
     前記フィードバック軸力算出部が算出した前記フィードバック軸力に基づいて、前記操舵反力を算出する操舵反力算出部と、
     前記操舵反力算出部が算出した前記操舵反力に基づいて、前記反力モータを駆動する反力モータ駆動部と、を備え、
     前記フィードバック軸力算出部は、前記電流軸力算出部が算出した前記電流軸力の配分比率よりも、前記横G軸力算出部が算出した前記横G軸力の配分比率を大きくすることを特徴とする操舵制御装置。
  2.  車両のヨーレートを検出するヨーレート検出部と、
     前記ヨーレート検出部が検出した前記ヨーレートに基づいてステアリングラック軸力であるヨーレート軸力を算出するヨーレート軸力算出部と、を備え、
     前記フィードバック軸力算出部は、前記電流軸力算出部が算出した前記電流軸力と前記横G軸力算出部が算出した前記横G軸力と前記ヨーレート軸力算出部が算出した前記ヨーレート軸力とを予め設定された配分比率で配分して、前記フィードバック軸力を算出することを特徴とする請求項1に記載の操舵制御装置。
  3.  車両の車速を検出する車速検出部と、
     前記操舵角検出部が検出した前記操舵角、および前記車速検出部が検出した前記車速に基づいて、ステアリングラック軸力であるフィードフォワード軸力を算出するフィードフォワード軸力算出部と、を備え、
     前記操舵反力算出部は、前記フィードバック軸力算出部が算出した前記フィードバック軸力、および前記フィードフォワード軸力算出部が算出した前記フィードフォワード軸力を、設定された配分比率で配分して、前記操舵反力を算出することを特徴とする請求項1または2に記載の操舵制御装置。
  4.  前記フィードバック軸力算出部は、前記横方向加速度検出部が検出した前記横方向加速度の絶対値が予め設定した横方向加速度閾値以上である場合には、前記横方向加速度検出部が検出した前記横方向加速度の絶対値の増加に応じて、前記電流軸力算出部が算出した前記電流軸力の配分比率を増大させることを特徴とする請求項1から3のいずれか1項に記載の操舵制御装置。
  5.  前記横方向加速度閾値を、運転者の運転操作に基づいて予め設定したモデル式で算出した車両の挙動と実際の車両の挙動との乖離が予め設定した車両挙動閾値以上となる車両の横方向加速度とすることを特徴とする請求項4に記載の操舵制御装置。
  6.  前記フィードバック軸力算出部は、前記横方向加速度検出部が検出した前記横方向加速度が予め設定した横方向加速度閾値以上である場合には、前記横方向加速度検出部が検出した前記横方向加速度の絶対値が小さいほど、前記横方向加速度検出部が検出した前記横方向加速度の絶対値の増加量に対する前記電流軸力算出部が算出した前記電流軸力の配分比率の増大量を大きくすることを特徴とする請求項4または5に記載の操舵制御装置。
  7.  前記フィードバック軸力算出部は、前記横方向加速度検出部が検出した前記横方向加速度が前記横方向加速度閾値未満である場合には、前記電流軸力算出部が算出した前記電流軸力の配分比率よりも、前記横G軸力算出部が算出した前記横G軸力の配分比率を大きくすることを特徴とする請求項4から6のいずれか1項に記載の操舵制御装置。
  8.  車両のヨーレートを検出するヨーレート検出部と、
     前記ヨーレート検出部が検出した前記ヨーレートに基づいてステアリングラック軸力であるヨーレート軸力を算出するヨーレート軸力算出部と、を備え、
     前記フィードバック軸力算出部は、前記電流軸力算出部が算出した前記電流軸力と前記横G軸力算出部が算出した前記横G軸力と前記ヨーレート軸力算出部が算出した前記ヨーレート軸力とを予め設定した配分比率で配分して、前記フィードバック軸力を算出することを特徴とする請求項4から7のいずれか1項に記載の操舵制御装置。
     
PCT/JP2012/006756 2011-10-26 2012-10-22 操舵制御装置 WO2013061567A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/354,324 US9701337B2 (en) 2011-10-26 2012-10-22 Steering control apparatus and steering control method
EP12843134.3A EP2772410B1 (en) 2011-10-26 2012-10-22 steering control device and steering control method
CN201280052874.0A CN103906672B (zh) 2011-10-26 2012-10-22 转向控制装置
JP2013540648A JP5751338B2 (ja) 2011-10-26 2012-10-22 操舵制御装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-235241 2011-10-26
JP2011235241 2011-10-26
JP2011-275531 2011-12-16
JP2011275531 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013061567A1 true WO2013061567A1 (ja) 2013-05-02

Family

ID=48167421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006756 WO2013061567A1 (ja) 2011-10-26 2012-10-22 操舵制御装置

Country Status (5)

Country Link
US (1) US9701337B2 (ja)
EP (1) EP2772410B1 (ja)
JP (1) JP5751338B2 (ja)
CN (1) CN103906672B (ja)
WO (1) WO2013061567A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104802848A (zh) * 2014-01-23 2015-07-29 株式会社电装 电动转向控制装置
JP2019064568A (ja) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 ステアバイワイヤシステム
EP3647162A1 (en) 2018-10-30 2020-05-06 Jtekt Corporation Controller for steering device
EP3705383A1 (en) 2019-03-05 2020-09-09 Jtekt Corporation Steering control device and method for controlling steering system
EP3974292A1 (en) 2020-09-28 2022-03-30 Jtekt Corporation Steering control device and steering system
EP3974288A1 (en) 2020-09-28 2022-03-30 Jtekt Corporation Steering control device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205867B2 (en) * 2012-09-04 2015-12-08 Nissan Motor Co., Ltd. Stability control device
EP2944542B1 (en) * 2013-01-11 2017-10-11 Nissan Motor Co., Ltd Steering control device
JP6032257B2 (ja) * 2014-10-09 2016-11-24 日本精工株式会社 電動パワーステアリング装置の制御方法、電動パワーステアリング装置及びそれを搭載した車両
FR3039492B1 (fr) * 2015-07-31 2019-05-24 Jtekt Europe Dispositif de direction assistee avec calculateur deporte sous la cremaillere
US10787192B1 (en) 2017-04-11 2020-09-29 Apple Inc. Steer-by-wire system with multiple steering actuators
JP6915480B2 (ja) * 2017-09-27 2021-08-04 株式会社ジェイテクト 車両用制御装置
JP2019064399A (ja) * 2017-09-29 2019-04-25 株式会社Subaru ステアリング装置
US10752287B2 (en) * 2017-10-03 2020-08-25 Toyota Jidosha Kabushiki Kaisha Steer-by-wire system
CN108279133B (zh) * 2017-12-19 2023-11-21 浙江工业大学 一种仓储物流设备电动助力转向系统测试平台
EP4139187B1 (en) * 2020-04-20 2024-03-27 thyssenkrupp Presta AG Steer-by-wire steering system with acceleration dependent steering torque feedback
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs
JP2022160308A (ja) * 2021-04-06 2022-10-19 株式会社ジェイテクト 操舵制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108914A (ja) 1998-10-02 2000-04-18 Toyota Motor Corp 操舵制御装置
JP2006137215A (ja) * 2004-11-10 2006-06-01 Toyota Motor Corp ステアバイワイヤ式ステアリング装置の操舵反力制御装置
JP2006218888A (ja) * 2005-02-08 2006-08-24 Jtekt Corp 車両用操舵装置
JP2008062668A (ja) * 2006-09-04 2008-03-21 Toyota Motor Corp 車両の操舵装置
JP2008189107A (ja) * 2007-02-05 2008-08-21 Nissan Motor Co Ltd 車両用操舵制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271637B1 (en) * 1999-09-17 2001-08-07 Delphi Technologies, Inc. Diagnostic system for electric motor
JP4205442B2 (ja) * 2003-01-16 2009-01-07 本田技研工業株式会社 操舵装置
EP1712448B1 (en) * 2003-12-16 2009-04-29 NSK Ltd., Electric power steering device
US20080264711A1 (en) * 2004-10-18 2008-10-30 Phillips Edward H Force-Based Power Steering System
JP4581660B2 (ja) * 2004-12-02 2010-11-17 日産自動車株式会社 車両用操舵装置
DE102005018519B4 (de) * 2005-04-20 2016-11-03 Zf Friedrichshafen Ag Verfahren zur Fahrdynamik-Regelung von Kraftfahrzeugen
US8775040B2 (en) * 2009-08-18 2014-07-08 Toyota Jidosha Kabushiki Kaisha Vehicle control system
IN2012DN01026A (ja) * 2009-08-18 2015-04-10 Toyota Motor Co Ltd
JP5497598B2 (ja) * 2010-09-15 2014-05-21 トヨタ自動車株式会社 車両制御装置
US10322745B2 (en) * 2015-02-13 2019-06-18 Steering Solutions Ip Holding Corporation Torque steering mitigation for electric power steering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108914A (ja) 1998-10-02 2000-04-18 Toyota Motor Corp 操舵制御装置
JP2006137215A (ja) * 2004-11-10 2006-06-01 Toyota Motor Corp ステアバイワイヤ式ステアリング装置の操舵反力制御装置
JP2006218888A (ja) * 2005-02-08 2006-08-24 Jtekt Corp 車両用操舵装置
JP2008062668A (ja) * 2006-09-04 2008-03-21 Toyota Motor Corp 車両の操舵装置
JP2008189107A (ja) * 2007-02-05 2008-08-21 Nissan Motor Co Ltd 車両用操舵制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104802848A (zh) * 2014-01-23 2015-07-29 株式会社电装 电动转向控制装置
CN104802848B (zh) * 2014-01-23 2018-03-06 株式会社电装 电动转向控制装置
DE102014118639B4 (de) 2014-01-23 2023-05-04 Denso Corporation Steuervorrichtung für eine elektrische Servolenkung
JP2019064568A (ja) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 ステアバイワイヤシステム
EP3647162A1 (en) 2018-10-30 2020-05-06 Jtekt Corporation Controller for steering device
US11485411B2 (en) 2018-10-30 2022-11-01 Jtekt Corporation Controller for steering device
EP3705383A1 (en) 2019-03-05 2020-09-09 Jtekt Corporation Steering control device and method for controlling steering system
US11661103B2 (en) 2019-03-05 2023-05-30 Jtekt Corporation Steering control device and method for controlling steering system
EP3974292A1 (en) 2020-09-28 2022-03-30 Jtekt Corporation Steering control device and steering system
EP3974288A1 (en) 2020-09-28 2022-03-30 Jtekt Corporation Steering control device

Also Published As

Publication number Publication date
EP2772410A4 (en) 2016-07-06
US9701337B2 (en) 2017-07-11
US20140303850A1 (en) 2014-10-09
EP2772410A1 (en) 2014-09-03
JP5751338B2 (ja) 2015-07-22
CN103906672B (zh) 2016-05-11
CN103906672A (zh) 2014-07-02
JPWO2013061567A1 (ja) 2015-04-02
EP2772410B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5751338B2 (ja) 操舵制御装置
JP5626480B2 (ja) 操舵制御装置
JP7264058B2 (ja) 操舵制御装置
US10144446B2 (en) Vehicle and method for controlling vehicle
JP4203062B2 (ja) 車両用操舵装置
JP5949948B2 (ja) 操舵制御装置
JP6020597B2 (ja) 操舵制御装置
JP6183205B2 (ja) 操舵制御装置
KR20020007184A (ko) 자동차의 전동파워스티어링장치
WO2013061568A1 (ja) 操舵制御装置、および操舵制御方法
JP5949949B2 (ja) 操舵制御装置
US8977438B2 (en) Vehicle steering apparatus, method and non-transitory computer readable medium
JP2008074185A (ja) 車両運動制御方法および車両運動制御装置
JP4404688B2 (ja) 車両の走行状態制御装置
JP6107149B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP5949950B2 (ja) 操舵制御装置
JP6107148B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP2005255081A (ja) 電動パワーステアリング制御装置
JP6004011B2 (ja) 操舵制御装置
JP6107147B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280052874.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540648

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14354324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012843134

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012843134

Country of ref document: EP