WO2013061538A1 - 高負荷伝動用vベルト及びその製造方法 - Google Patents

高負荷伝動用vベルト及びその製造方法 Download PDF

Info

Publication number
WO2013061538A1
WO2013061538A1 PCT/JP2012/006598 JP2012006598W WO2013061538A1 WO 2013061538 A1 WO2013061538 A1 WO 2013061538A1 JP 2012006598 W JP2012006598 W JP 2012006598W WO 2013061538 A1 WO2013061538 A1 WO 2013061538A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
high load
load transmission
block
carbon fiber
Prior art date
Application number
PCT/JP2012/006598
Other languages
English (en)
French (fr)
Inventor
坂中 宏行
博之 橘
畑 克彦
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to EP12843589.8A priority Critical patent/EP2772662A4/en
Priority to KR1020147013590A priority patent/KR20140082833A/ko
Publication of WO2013061538A1 publication Critical patent/WO2013061538A1/ja
Priority to US14/262,555 priority patent/US20140235393A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • F16G5/166V-belts, i.e. belts of tapered cross-section consisting of several parts with non-metallic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section

Definitions

  • the present invention relates to a V-belt for high load transmission and a manufacturing method thereof.
  • Patent Document 1 discloses such a high-load transmission V-belt in which a block has a configuration in which a reinforcing material made of aluminum is covered with a resin coating layer.
  • the high-load transmission V-belt of the present invention includes an endless tension band and a plurality of blocks that are arranged so as to be aligned in the length direction of the tension band and are locked to the tension band.
  • Each of the plurality of blocks includes a reinforcing structure material formed of carbon fibers and a resin coating layer provided so as to cover the reinforcing structure material.
  • the method for manufacturing a V-belt for high load transmission includes a block molding step in which a reinforcing structural member formed of carbon fiber is disposed in a cavity of a block molding die and an unsolidified resin material is supplied into the cavity. .
  • FIG. 1 It is a perspective view of the V belt for high load transmission. It is II-II sectional drawing in FIG. It is a side view of a tension belt. It is a side view of a block.
  • (A) And (b) is a figure which shows the fixation aspect to the sheet-like base material of a carbon fiber thread
  • (A)-(d) is a figure which shows the orientation pattern of a carbon fiber yarn.
  • A) And (b) is a figure which shows the pulley layout of a belt-type continuously variable transmission. It is a figure which shows shaping
  • (A)-(c) is a schematic diagram of a belt running test machine.
  • V-belt B for high load transmission 1 and 2 show a V belt B for high load transmission according to the present embodiment.
  • the high load transmission V-belt B according to this embodiment is used for a belt type continuously variable transmission in an automobile or the like, for example.
  • the high load transmission V-belt B includes a pair of endless tension bands 10 and a plurality of blocks 20, and the plurality of blocks 20 are arranged in the length direction of the pair of tension bands 10 and at a constant pitch. They are arranged with a space between each other, and each has a configuration in which it is locked and fixed to a pair of tension bands 10.
  • the high load transmission V-belt B has, for example, a belt length (dimension in the belt length direction at a center line center position described later in the tension band 10) of 480 to 750 mm, and a belt pitch width (center line center in the tension band 10).
  • Position dimension in the belt width direction is 20 to 30 mm
  • the belt thickness is 10 to 16.5 mm
  • the number of blocks 20 is 96 to 375
  • the block pitch is 2 to 5 mm
  • the distance between the blocks 20 is 0. 01 to 0.5 mm.
  • FIG. 3 shows the tension band 10.
  • Each tension band 10 is formed in an endless flat band shape. Each tension band 10 is chamfered on one side on the upper side and the lower side, and the other side is formed on an inclined surface. Each tension band 10 has upper fitting recesses 11a formed of U-shaped cross sections extending in the belt width direction on the upper surface side (outer peripheral surface side) at a constant pitch in the belt length direction, and upper fitting recesses 11a. Are formed on the lower surface side (inner peripheral surface side) at a constant pitch in the belt length direction. Each tension band 10 has, for example, a length of 480 to 750 mm, a width of 6 to 13 mm, and a thickness of 1.0 to 5.0 mm (preferably 1.5 to 3.0 mm). In particular, the thickness t 1 of the thinnest portion between the bottoms of the upper fitting recess 11a and the lower fitting recess 11b is, for example, 0.606 to 3.0 mm (preferably 0.606 to 1.5 mm).
  • Each tension band 10 is composed of a shape-retaining rubber layer 12 in the tension band body.
  • a core wire 13 is embedded in the shape-retaining rubber layer 12 so as to form a spiral having a pitch in the belt width direction at substantially the center in the belt thickness direction.
  • An upper reinforcing cloth 14 is attached to the shape retaining rubber layer 12 so as to cover the upper surface side surface.
  • a lower reinforcing cloth 15 is attached to the shape retaining rubber layer 12 so as to cover the lower surface.
  • the tension band 10 may be composed of only the shape-retaining rubber layer 12 and the core wire 13 without the upper reinforcing cloth 14 and the lower reinforcing cloth 15 being provided.
  • the shape-retaining rubber layer 12 is formed of a rubber composition in which an uncrosslinked rubber composition obtained by blending various rubber compounding ingredients with a rubber component and kneaded is heated and pressurized to be crosslinked with a crosslinking agent.
  • Examples of rubber components include ethylene- ⁇ such as hydrogenated acrylonitrile rubber (H-NBR), ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (EPDM), ethylene / octene copolymer, and ethylene / butene copolymer. -Olefin elastomers, chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM) and the like.
  • the rubber component may be hydrogenated acrylonitrile rubber (H-NBR) reinforced with an unsaturated carboxylic acid metal salt such as zinc dimethacrylate or zinc diacrylate.
  • the rubber component may be composed of a single species or a blend of a plurality of species.
  • compounding agents include vulcanization accelerators, plasticizers, reinforcing materials, anti-aging agents, co-crosslinking agents, and crosslinking agents.
  • the vulcanization accelerator examples include metal oxides such as magnesium oxide and zinc oxide (zinc white), fatty acids such as metal carbonates and stearic acid, and derivatives thereof.
  • the vulcanization accelerator may be composed of a single species or a plurality of species.
  • the blending amount of the vulcanization accelerator with respect to 100 parts by mass of the rubber component is, for example, 5 to 15 parts by mass.
  • plasticizer examples include phthalic acid derivatives, isophthalic acid derivatives, tetrahydrophthalic acid derivatives, adipic acid derivatives, azelaic acid derivatives, sebacic acid derivatives, dodecane-2-acid derivatives, maleic acid derivatives, fumaric acid derivatives, trimellitic acid. Derivatives, pyromellitic acid derivatives, citric acid derivatives, itaconic acid derivatives, oleic acid derivatives, ricinoleic acid derivatives, stearic acid derivatives, sulfonic acid derivatives, phosphoric acid derivatives, glutaric acid derivatives, glycol derivatives, glycerin derivatives, paraffin derivatives, epoxy derivatives Etc.
  • the plasticizer may be composed of a single species or a plurality of species. The compounding amount of the plasticizer with respect to 100 parts by mass of the rubber component is, for example, 5 to 15 parts by mass.
  • a reinforcing material for example, carbon black, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black.
  • Silica is also mentioned as a reinforcing agent.
  • the reinforcing agent may be composed of a single species or a plurality of species.
  • the compounding amount of the reinforcing material with respect to 100 parts by mass of the rubber component is, for example, 5 to 100 parts by mass.
  • the reinforcing material include organic short fibers such as aramid short fibers and nylon short fibers, and inorganic short fibers such as carbon short fibers. These reinforcing short fibers may be blended or not blended. When reinforcing short fibers are blended, they are preferably provided so as to be oriented in the belt width direction.
  • Antiaging agents include amine-based, quinoline-based, hydroquinone derivatives, phenol-based, phosphite-based compounds, and the like.
  • the anti-aging agent may be composed of a single species or a plurality of species.
  • the blending amount of the anti-aging agent with respect to 100 parts by mass of the rubber component is, for example, 0.1 to 10 parts by mass.
  • co-crosslinking agent examples include bismaleimide co-crosslinking agent, TAIC, 1,2-polybutadiene, unsaturated carboxylic acid metal salt, oximes, guanidine, trimethylolpropane trimethacrylate, and the like.
  • bismaleimide co-crosslinking agents are preferred, and specific bismaleimide co-crosslinking agents include, for example, N, Nm-phenylene bismaleimide, 4,4′-diphenylmethane bismaleimide, 4-methyl-1 , 3-phenylene bismaleimide, 1,6′-bismaleimide- (2,2,4-trimethyl) hexane, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4 ′ -Diphenylmethane bismaleimide, 4,4'diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, etc. Can be mentioned.
  • the co-crosslinking agent may be composed of a single species or a plurality of species. The compounding amount of the co-crosslink
  • the crosslinking agent examples include sulfur and organic peroxides.
  • a crosslinking agent only sulfur may be used, only an organic peroxide may be used, and both of them may be used in combination.
  • the crosslinking agent is preferably used in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component. ⁇ 10 parts by mass.
  • the crosslinking agent is preferably an organic peroxide.
  • the organic peroxide include, for example, diacyl peroxide, peroxy ester, t-butylcumyl peroxide, dicumyl peroxide (DCP), 2,5-dimethyl-2,5-di (t-butyl peroxide).
  • the core wire 13 is composed of a high-strength fiber twisted yarn or braid, such as aramid fiber, PBO fiber, or carbon fiber, which has been subjected to an adhesive treatment.
  • the core wire 13 is formed of, for example, a filament bundle of 800 to 1200 dtex and has an outer diameter of 0.5 to 1.4 mm.
  • the adhesive treatment of the core wire 13 is configured by performing a first treatment that is heated after being immersed in a treatment solution of an epoxy solution or an isocyanate solution, and a second treatment that is heated after being immersed in an RFL aqueous solution. After the second treatment, a third treatment for drying after dipping in the rubber paste may be performed, but it is preferable that this third treatment is not performed.
  • the treatment liquid used for the first treatment is an aqueous solution of an epoxy compound or an isocyanate compound or a solution containing toluene or methyl ethyl ketone as a solvent.
  • the RFL aqueous solution used for the second treatment is a mixed aqueous solution of resorcin (R) -formalin (F) precondensate aqueous solution and rubber latex (L).
  • This rubber latex is preferably a carboxylated hydrogenated nitrile rubber (carboxylated H-NBR) latex.
  • the rubber paste used in the third treatment is a solution obtained by dissolving rubber and resin in toluene, methyl ethyl ketone or the like, or a commercially available rubber adhesive.
  • Each of the upper and lower reinforcing cloths 14 and 15 is immersed in an epoxy solution or an isocyanate solution and then heated in a woven fabric, a knitted fabric or a nonwoven fabric such as an aramid fiber or a nylon fiber, and after being immersed in an RFL aqueous solution. It comprises a second treatment to be heated and a third treatment to be dried after dipping or coating the rubber paste as necessary.
  • Each of the upper and lower reinforcing cloths 14 and 15 has a thickness of 0.2 to 0.4 mm, for example.
  • FIG. 4 shows the block 20.
  • Each block 20 is formed with a slit-like fitting portion 22 opened laterally on each side surface portion 21 in the belt width direction of a trapezoidal plate-like body whose upper base is longer than the lower base in plan view.
  • the shape is such that the letter “H” is horizontal.
  • Each block 20 is formed so that the upper part from the fitting part 22 has a uniform thickness in a side view, while the lower part from the fitting part 22 becomes thinner as it goes downward. .
  • Each block 20 has, for example, a height of 10 to 16.5 mm, a width of 20 to 30 mm, and a thickness of 2 to 5 mm.
  • the angle formed by both sides, that is, the belt angle is, for example, 15 to 26 °.
  • Each fitting portion 22 of each block 20 is formed so as to extend horizontally at a uniform interval from the inner back portion toward the side opening.
  • Each fitting portion 22 has an upper fitting convex portion 22a formed of a semicircular cross-sectional protrusion extending in the belt width direction on the upper surface side, and a cross-section arc-shaped protrusion extending in the belt width direction on the lower surface side.
  • a lower fitting convex portion 22b made of a strip is formed.
  • Each fitting portion 22 includes a surface in which the back portion is continuously inclined from the upper side surface to the back side and a surface that is continuously outwardly inclined from the surface and continues to the lower side surface.
  • Each fitting portion 22 has, for example, a gap t 2 in the belt thickness direction of 1 to 3 mm and a depth in the belt width direction of 2 to 5 mm.
  • Each block 20 has a configuration in which a reinforcing structural member 23 arranged in the center so as to form a skeleton is covered with a resin coating layer 24. Note that the entire reinforcing structural member 23 does not need to be covered with the resin coating layer 24, and at least the contact portion with the tension band 10 and both side surface portions 21 (upper side surface portions above the fitting portion 22) constituting the pulley contact surface. And the lower side surface portion below the fitting portion 22), and the reinforcing structural member 23 may be exposed in other portions.
  • the reinforcing structural member 23 is formed in a shape with the letter “H” on its side as in the block 20, and the center pillars 23 c vertically move between the center portions of the upper and lower beams 23 a and 23 b extending in the belt width direction. It has the structure which was connected to.
  • the height of the upper beam 23a is 5.0 to 9.5 mm
  • the height of the lower beam 23b is 5.0 to 9.5 mm.
  • the reinforcing structural member 23 is made of carbon fiber.
  • the carbon fiber may be polyacrylonitrile-based carbon fiber (PAN-based carbon fiber), may be pitch-based carbon fiber, or may be a mixture of them.
  • PAN-based carbon fiber polyacrylonitrile-based carbon fiber
  • the carbon fiber is preferably subjected to a surface treatment with a silane coupling agent or the like.
  • the filament diameter of the carbon fiber is, for example, 4 to 20 ⁇ m.
  • the reinforcing structural member 23 may be formed of carbon fiber filament yarn or may be formed of carbon fiber spun yarn.
  • the filament yarn of carbon fiber may be twisted or untwisted.
  • the filament yarn or spun yarn of carbon fiber may be wound with carbon fiber.
  • the fineness of the carbon fiber filament yarn or spun yarn is, for example, 50 to 2000 tex.
  • the reinforcing structural member 23 may be formed of a composite yarn of the above-described carbon fiber filament yarn or spun yarn and other fibers.
  • fibers other than carbon fiber include synthetic fibers such as polyethylene fiber, polypropylene fiber, polyester fiber, nylon fiber, aramid fiber, and PBO fiber, natural fibers such as cotton and hemp, and metal fibers such as glass fiber and steel wire. Is mentioned.
  • thermoplastic resin fibers that melt at the molding temperature are preferred from the viewpoint that the integrity is enhanced by melting at the time of block molding and being compatible with the resin coating layer 24.
  • the composite yarn may have a configuration in which fibers other than carbon fibers are vertically attached inside or outside the fiber bundle of carbon fiber filament yarn or spun yarn, and the carbon fiber filament yarn or spun yarn other than carbon fiber
  • the configuration may be a configuration in which the fibers are wound and sewed, or may be a configuration in which they are combined.
  • the yarn In a configuration in which fibers other than carbon fibers are vertically attached inside or outside a fiber bundle of carbon fiber filament yarn or spun yarn, the yarn may be twisted or untwisted.
  • the ratio of the carbon fiber to the other fibers may be such that the former may be more than the latter, the former may be less than the latter, and the former and the latter may be the same. Good.
  • the fineness of fibers other than carbon fibers is, for example, 50 to 30000 tex.
  • Such a composite yarn is disclosed in Japanese Patent Application Laid-Open No. 2010-121250.
  • the reinforcing structural member 23 may be formed of a knitting yarn configured in a braid shape by collecting a plurality of carbon fiber filament yarns or spun yarns.
  • the reinforcing structural member 23 has a carbon fiber filament yarn, spun yarn, composite yarn, or knitting yarn (hereinafter referred to as “carbon fiber yarn T”) in a block shape. It may be configured to be fixed to the sheet-like substrate 25.
  • a method for producing a carbon fiber reinforced resin molded article in which carbon fiber is preliminarily molded using a plate-like prepreg obtained by hardening an epoxy resin or the like and then placed in an autoclave or the like to cure the resin, or a carbon fiber woven In the method of manufacturing a carbon fiber reinforced resin molded product in which a cloth or the like is cut into a predetermined shape and placed in a cavity of a mold, and an unsolidified resin material is supplied and cured there, by pre-molding or cutting a woven cloth, etc.
  • the sheet-like substrate 25 include thermoplastic resin sheets such as polyethylene resin sheets and polypropylene resin sheets; woven fabrics and knitted fabrics formed of synthetic fibers such as polyethylene fibers, polyester fibers, nylon fibers, aramid fibers, and PBO fibers. And non-woven fabric.
  • a thermoplastic resin sheet such as a polyethylene resin sheet having a melting point of 130 ° C. or less, a polyethylene fiber, etc.
  • a woven fabric, a knitted fabric or a non-woven fabric formed of the thermoplastic resin fibers is preferred.
  • the thickness of the sheet-like substrate 25 is, for example, 0.1 to 10 mm.
  • the reinforcing structural member 23 has a configuration in which the sheet-like base material 25 is sewn by the carbon fiber yarn T itself and the sheet-like base material 25 is embroidered by the carbon fiber. Good. Further, as shown in FIG. 5 (b), the reinforcing structural member 23 is embroidered by sewing the carbon fiber thread T on the sheet-like base material 25 with a sewing thread 26 made of a thin carbon fiber thread or the like. It may be a configuration. Specifically, the reinforcing structural member 23 is placed, for example, while pressing the carbon fiber yarns T on the sheet-like base material 25 and sews them with a sewing thread 26 to form the carbon fiber yarns T into a sheet shape.
  • the distance between the turns of the carbon fiber yarn T is preferably 1 mm or more, more preferably 2 mm or more, and further preferably 5 mm or more.
  • the orientation pattern of the carbon fiber yarn T is such that the carbon fiber yarn T extends substantially in the belt width direction in the upper and lower beams 23a and 23b. It is preferable that the carbon fiber yarn T is provided in the center pillar 23c so as to extend in the belt thickness direction. Moreover, as shown in FIG.6 (b), in the upper side and lower side beam 23a, 23b, the carbon fiber yarn T is provided so that it may extend in the orthogonal
  • the carbon fiber yarn T extends from the center pillar 23c to the upper and lower beams 23a and 23b. You may provide so that it may extend in the direction which inclined on both sides outward.
  • the carbon fiber yarns T may be provided in multiple layers along the outline of the sheet-like substrate 25.
  • the carbon fiber yarn T that reinforces the upper and lower beams 23a and 23b and the center pillar 23c is continuous, and at the joint between the upper and lower beams 23a and 23b and the center pillar 23c, A high reinforcing effect can be obtained by arranging the fiber yarns T at a high density.
  • the reinforcing structural member 23 may be constituted by a prepreg arranged so that the carbon fibers are oriented in one direction.
  • the reinforcing structural member 23 may be configured by cutting and laminating a prepreg sheet arranged so that carbon fibers are oriented in one direction.
  • the carbon fibers are preferably provided so as to be oriented in the belt width direction.
  • the reinforcing structural member 23 may be composed of a three-dimensional woven fabric formed of carbon fiber yarns T.
  • the maximum length of the carbon fiber contained in the block 20 is preferably 1 mm or more, more preferably 2 mm or more, and further preferably 5 mm or more from the viewpoint that the high reinforcing effect of the block 20 is obtained.
  • the content of the carbon fiber forming the reinforcing structural member 23 included in the block 20 is preferably 15 to 95% by volume, and 25 to 80% by volume from the viewpoint that the high reinforcing effect of the block 20 can be obtained. Is more preferable, and more preferably 30 to 75% by volume.
  • a single reinforcing structure member 23 may be embedded, or a plurality of reinforcing structure members 23 may be stacked and embedded. Further, in addition to the reinforcing structural member 23, a thinner metal reinforcing material than that in the related art may be embedded in the block 20.
  • the resin coating layer 24 is formed of a resin composition in which a resin compounding agent is blended with a matrix resin.
  • the layer thickness of the resin coating layer 24 is, for example, 0.8 to 1.5 mm.
  • the matrix resin of the resin composition forming the resin coating layer 24 may be a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin include a phenol resin and an epoxy resin.
  • the thermoplastic resin include polyamide resin, polyimide resin, polycarbonate resin, and the like.
  • the matrix resin may be composed of a single species or a plurality of species.
  • the matrix resin may be composed only of a thermosetting resin, may be composed only of a thermoplastic resin, and is a blend of a thermosetting resin and a thermoplastic resin. Also good.
  • the matrix resin may additionally contain a rubber component or the like.
  • the resin coating layer 24 may be formed of a carbon short fiber reinforced resin composition in which carbon short fibers are mixed in a matrix resin.
  • at least both side portions 21 constituting the pulley contact surface are formed of a carbon short fiber reinforced resin composition of a thermosetting resin containing carbon short fibers from the viewpoint of improving frictional wear resistance.
  • the carbon short fibers may be polyacrylonitrile-based carbon short fibers (PAN-based carbon short fibers), pitch-based carbon short fibers, or a mixture of them.
  • the blending amount of the short carbon fibers with respect to 100 parts by mass of the matrix resin is, for example, 10 to 40 parts by mass.
  • the length of the short carbon fibers contained in the resin coating layer 24 is, for example, 50 to 150 ⁇ m.
  • the resin composition forming the resin coating layer 24 may contain graphite powder, para-aramid short fibers, and the like.
  • the para-aramid short fibers have a fiber length of 1 to 3 mm and a blending amount of 2 to 5 parts by mass with respect to 100 parts by mass of the matrix resin.
  • the graphite powder has, for example, a particle size of 5 to 10 ⁇ m and a blending amount of 15 to 20 parts by mass with respect to 100 parts by mass of the matrix resin.
  • the block molding resin material forming the resin coating layer 24 may contain a curing agent.
  • the tension band 10 is fitted to the fitting portions 22 of the plurality of blocks 20 so as to connect them. Specifically, the tension band 10 is inserted into each fitting portion 22 of each block 20 from one side portion chamfered, and an upper fitting convex portion 22a on the upper side surface of the fitting portion 22 is formed. The upper fitting recess 11a on the upper side of the tension band 10 is fitted, and the lower fitting projection 22b on the lower side of the fitting part 22 is fitted on the lower fitting depression 11b on the lower side of the tension band 10. In addition, the tension band 10 is fitted into the fitting part 22 so that one side of the tension band 10 comes into contact with the inner part of the fitting part 22.
  • a structure is formed in which a plurality of blocks 20 are locked and fixed to the endless tension band 10 so as to be spaced apart from each other at a constant pitch along the belt length direction.
  • the other side surface of the surface portion 21 and the tension band 10 exposed to the outside is configured as a pulley contact surface.
  • the gap t 2 of the fitting portion 22 of the block 20 is larger than the thickness t 1 between the upper and lower fitting recesses 11a and 11b of the tension band 10. Somewhat small. Accordingly, the tension band 10 is fitted into the fitting portion 22 of the block 20 in a compressed state.
  • the tightening allowance t 1 -t 2 is, for example, 0.006 to 0.150 mm, and the tightening allowance is a ratio of the tightening allowance t 1 -t 2 to the gap t 2 of the gap of the fitting portion 22 of the block 20.
  • the tension band 10 is provided in a state of protruding out of the block 20, whereby the high load transmission V-belt B enters the pulley.
  • the impact can be reduced by the protruding tension band 10.
  • the protrusion amount ⁇ d of the protruding amount is, for example, 0.02 to 0.25 mm
  • the insertion width w of the tension band 10 in the belt pitch line (center line center position) is, for example, 6 to 13 mm.
  • the reinforcing structural member 23 of the block 20 is formed of carbon fiber, so that it is compared with a conventional reinforcing member made of aluminum.
  • the weight of the high load transmission V-belt B can be reduced.
  • the weight of the block 20 is preferably reduced to 1.5 to 2.2 g / cm 3, more preferably 1.5 to 1.8 g / cm 3. More preferably, the weight is reduced to 4 to 1.6 g / cm 3 .
  • the weight per belt unit length is preferably reduced to 0.25 to 0.46 g / mm.
  • 7 (a) and 7 (b) show a belt type continuously variable transmission 70 using a high load transmission V-belt B according to the present embodiment.
  • This belt-type continuously variable transmission 70 includes a drive shaft 71 and a driven shaft 73 arranged in parallel thereto, and a drive pulley 72 on the drive shaft 71 and substantially the same as the drive pulley 72 on the driven shaft 73.
  • a diameter driven pulley 74 is provided.
  • the drive pulley 72 includes a fixed sheave that is fixed to the drive shaft 71 so as to rotate integrally and non-slidably, and a movable sheave that is supported so as to rotate integrally and slidably so as to face the fixed sheave.
  • the driven pulley 74 includes a fixed sheave which is fixed to the driven shaft 73 so as to be rotatable and non-slidable, and a movable sheave supported so as to be rotatable and slidably opposed to the fixed sheave.
  • Each of the driving pulley 72 and the driven pulley 74 has a V-groove between the fixed sheave and the movable sheave, and the high load transmission V-belt B is wound around the V-groove of the driving pulley 72 and the driven pulley 74. It has been.
  • Each of the driving pulley 72 and the driven pulley 74 is configured to be variable in a pulley pitch diameter of, for example, 40 to 150 mm.
  • the power required for belt transmission is supplied on the drive shaft 71 side and consumed on the driven shaft 73 side, and the belt winding diameter of the drive pulley 72 and the winding of the driven pulley 74 are also measured.
  • the travel speed of the high load transmission V-belt B is changed by changing the hook diameter. Specifically, when the movable sheave of the driving pulley 72 is brought close to the fixed sheave and the movable sheave of the driven pulley 74 is moved away from the fixed sheave, as shown in FIG. This is larger than the belt winding diameter of the driven pulley 74. As a result, the high load transmission V-belt B travels at a high speed.
  • ⁇ Tension band production process> Preparation of uncrosslinked rubber composition-
  • a rubber component is put into a rubber kneading machine such as a Banbury mixer and kneaded, and then a rubber compounding agent is put into this and kneaded. Then, the kneaded uncrosslinked rubber composition is processed into a sheet form by a calender roll to obtain a sheet-like uncrosslinked rubber composition.
  • twisted yarn or braid is subjected to a treatment of heating after being immersed in an RFL aqueous solution and / or a treatment of drying after being immersed in rubber paste to obtain the core wire 13.
  • the upper and lower reinforcing fabrics 14 and 15 are obtained by subjecting a woven fabric, knitted fabric, or nonwoven fabric to a treatment of heating after being immersed in an RFL aqueous solution and / or a treatment of immersing or coating rubber paste with a rubber paste and then drying. In addition, you may perform the process dried after immersing in an epoxy solution or an isocyanate solution to a woven fabric etc. before these processes.
  • the cylindrical mold is put in a heating and pressing apparatus, and the inside of the apparatus is set to a predetermined temperature and pressure so that the crosslinking of the uncrosslinked rubber composition proceeds about half, and the state is maintained for a predetermined time. .
  • the crosslinking of the uncrosslinked rubber composition proceeds about half, and the shape of the lower half of the shape-retaining rubber layer 12 is formed.
  • the uncrosslinked rubber composition flows and the protrusion provided on the cylindrical mold presses the lower reinforcing cloth 15 to form the lower fitting recess 11b.
  • the cylindrical mold is taken out from the heating and pressurizing apparatus, the core wire 13 is spirally wound at an equal pitch from above the semi-crosslinked rubber composition, and the sheet-like uncrosslinked rubber composition is again formed thereon.
  • a predetermined layer is laminated, and an upper reinforcing cloth 14 formed in a cylindrical shape is placed thereon.
  • an outermost layer is covered with a cylindrical sleeve in which protrusions extending in the axial direction of the upper fitting concave shape of the tension band 10 are provided at equal pitches in the circumferential direction of the inner peripheral surface.
  • a cylindrical mold in which a material is set is placed in the heating and pressurizing device, the inside of the device is set to a predetermined temperature and pressure, and the state is maintained for a predetermined time.
  • crosslinking of the semi-crosslinked rubber composition and the uncrosslinked rubber composition proceeds to form the shape retaining rubber layer 12.
  • the uncrosslinked rubber composition flows and the protrusion provided on the sleeve presses the upper reinforcing cloth 14 to form the upper fitting recess 11a.
  • the adhesive on the surface of the core wire 13 and the shape-retaining rubber layer 12 are mutually diffused, whereby the core wire 13 is integrally bonded to the shape-retaining rubber layer 12 and is attached to the upper and lower reinforcing cloths 14 and 15.
  • the upper and lower reinforcing cloths 14 and 15 are integrally bonded to the shape-retaining rubber layer 12.
  • a cylindrical slab is formed on the surface of the cylindrical mold.
  • the cylindrical mold is taken out from the heating and pressurizing device, the cylindrical slab formed on the peripheral surface is removed from the mold, and the strip is cut into a band with a predetermined width and subjected to chamfering or the like, thereby performing a tension band. Get 10.
  • ⁇ Block molding process> Preparation of resin material for block molding-
  • a matrix resin and a resin compounding agent are charged into a resin kneader such as a biaxial kneader and kneaded, and the recovered kneaded material is pulverized to be pulverized or granulated to obtain a resin material for block molding.
  • the viscosity of the unsolidified resin material is lower. It can be controlled by setting conditions.
  • the block molding step can be performed by injection molding.
  • RIM reaction / Injection / Molding
  • RTM using a low-viscosity non-solidified resin material M for block molding
  • Resin (Molding) molding is preferable.
  • VaRTM Vauum assisted Resin Transfer Molding
  • the reinforcing structural member 23 is formed of a composite yarn of carbon fibers and thermoplastic resin fibers, the thermoplastic resin fibers around the carbon fibers are melted by heat and impregnated into the carbon fibers.
  • This block molding process can also be performed by press molding.
  • the mold 80 After cooling the mold 80, the mold is opened and the block 20 is taken out.
  • the matrix resin is a thermosetting resin
  • the annealing temperature is, for example, 190 to 195 ° C.
  • the annealing time is, for example, 2 to 4 hours.
  • the upper and lower fitting concave portions 11a and 11b of one tension band 10 are respectively associated with the upper and lower fitting convex portions 22a and 22b of the block 20, and the upper and lower fitting concave portions 11a and 11b are respectively upper and lower.
  • the tension band 10 is inserted into one of the fitting parts 22 of the block 20 so that the lower fitting convex parts 22 a and 22 b are fitted, and the block 20 is locked to the tension band 10. This operation is performed for the entire circumference of the tension band 10.
  • the other tension band 10 is inserted into the other fitting portion 22 of the block 20, thereby obtaining the high load transmission V-belt B.
  • V-belt for high load transmission V-belts for high load transmission of Examples 1 to 5 and Comparative Examples 1 to 4 below were produced. Each configuration is also shown in Table 1.
  • Example 1 As a resin material for block molding, 72.5 parts by mass of PAN-based carbon short fiber and 17.5 parts of graphite powder with respect to 100 parts by mass of a phenol resin (50% by mass of phenol aralkyl resin and 50% by mass of novolak phenol resin) as a matrix resin. What knead
  • the molten resin material for block molding is injected into the cavity to form carbon that forms the reinforcing structural material
  • a block having a fiber content of 60% by volume was molded.
  • the density of this block was 1.50 g / cm 3 .
  • the maximum length of the carbon fiber contained in the block was 1.95 mm.
  • Example 1 A high-load transmission V-belt having the same configuration as that of the above embodiment using this block was produced, and this was designated as Example 1.
  • the belt length of Example 1 is 612 mm, the belt pitch width is 25 mm, the belt thickness is 12.8 mm, the belt angle is 26 °, the number of blocks is 204, the block pitch is 3 mm, and the spacing between the blocks is It was 0.05 mm. Further, the belt mass of Example 1 was 215.5 g (total tension band mass 78.0 g and block total mass 137.5 g), and therefore the mass per belt unit length was 0.35 kg / m.
  • the tension-retaining rubber layer is a hydrogenated acrylonitrile rubber composition reinforced with zinc dimethacrylate, the core is a braid of aramid fibers, and the upper and lower reinforcing fabrics are nylon fiber woven fabrics. Formed.
  • Example 2 As a reinforcing structural material, carbon fiber filament yarn (manufactured by Toho Tenax Co., Ltd., trade name: HTS40, 7 ⁇ ⁇ 3000, 200 tex) is added to a polyethylene sheet having a thickness of 200 ⁇ m as a sheet-like base material formed into a block shape. A high-load power transmission V-belt having the same configuration as in Example 1 was used except that an embroidery was used so that the fiber orientation direction corresponded to the belt width direction.
  • the belt mass of Example 2 was 215.5 g (total tension band mass 78.0 g and block total mass 137.5 g), and therefore the mass per belt unit length was 0.35 kg / m.
  • the density of the reinforcing structural material is 1.51 g / cm 3
  • the density of the block is 1.50 g / cm 3
  • the maximum length of the carbon fiber included in the block is 1.80 mm
  • the reinforcing structural material included in the block is formed.
  • the content of carbon fiber to be used was 60% by volume.
  • Example 3 As a reinforcing structural material, a filament sheet of carbon fiber and a filament thread of polypropylene fiber are drawn in a ratio of 1: 1 on a polyethylene sheet having a thickness of 200 ⁇ m as a sheet-like base material formed into a block shape, and these are made of polypropylene fiber.
  • a high-load power transmission V-belt having the same configuration as that of No. 1 was produced.
  • Example 3 The belt mass was 215.5 g (total tension band mass 78.0 g and block total mass 137.5 g), and therefore the mass per belt unit length was 0.35 kg / m.
  • the density of the reinforcing structural material is 1.51 g / cm 3
  • the density of the block is 1.50 g / cm 3
  • the maximum length of the carbon fiber included in the block is 1.90 mm
  • the reinforcing structural material included in the block is formed.
  • the content of carbon fiber to be used was 60% by volume.
  • Example 4 The orientation direction of the carbon fiber by the spun yarn of carbon fiber (the same thickness as the filament yarn of the carbon fiber of Example 2) on a polyethylene sheet having a thickness of 200 ⁇ m as a sheet-like base material formed into a block shape as a reinforcing structural material Except that the embroidery was applied so as to correspond to the belt width direction, the carbon fiber content forming the reinforcing structural material included in the block was 35% by volume, and the belt pitch width was 20 mm. A high-load power transmission V-belt having the same configuration as that of Example 1 was produced.
  • the belt mass of Example 4 was 186.1 g (total tension band mass 63.0 g and block total mass 123.1 g), and therefore the mass per belt unit length was 0.30 kg / m.
  • the density of the reinforcing structural member was 1.32 g / cm 3
  • the density of the block was 1.34 g / cm 3
  • the maximum length of carbon fibers contained in the block was 1.90 mm.
  • Example 5 The orientation direction of the carbon fiber by the spun yarn of carbon fiber (the same thickness as the filament yarn of the carbon fiber of Example 2) on a polyethylene sheet having a thickness of 200 ⁇ m as a sheet-like base material formed into a block shape as a reinforcing structural material Except that the embroidery was applied so as to correspond to the belt width direction, the carbon fiber content forming the reinforcing structural material included in the block was 95% by volume, and the belt pitch width was 20 mm.
  • a V-belt for high load transmission having the same configuration as that of Example 1 was produced and designated as Example 5.
  • the belt mass of Example 5 was 219.3 g (tensile band total mass 63.0 g and block total mass 156.3 g), and therefore the mass per belt unit length was 0.36 kg / m.
  • the density of the reinforcing structure material 1.76 g / cm 3, the density of the block 1.70 g / cm 3, the maximum length of the carbon fiber contained in the block was 1.90 mm.
  • Example 1 A high-load power transmission V-belt having the same configuration as in Example 1 except that a metal reinforcing material formed of duralumin of A2024P T361 in JIS H 4000 was used instead of the reinforcing structural material, and this was compared with the comparative example. It was set to 1.
  • the belt mass of Comparative Example 1 was 305.3 g (total tension band mass 78.0 g and block gross mass 227.3 g), and thus the mass per belt unit length was 0.50 kg / m.
  • the density of the metal reinforcing member is 2.70 g / cm 3
  • the density of the block is 2.48 g / cm 3
  • the maximum length of the carbon fiber contained in the block was 0.1 mm.
  • ⁇ Comparative example 2> As a block molding resin material, 100 mass parts of 4,6 nylon resin, which is a matrix resin, is used by blending 30 parts by mass of PAN-based carbon short fibers and without embedding a reinforcing structural material. A high-load transmission V-belt having the same configuration as that of Example 1 except that the manufactured block was used was prepared, and this was designated as Comparative Example 2.
  • the belt mass of Comparative Example 2 was 210.2 g (total tension band mass 78.0 g and block gross mass 210.2 g), and thus the mass per belt unit length was 0.34 kg / m.
  • the density of the block was 1.44 g / cm 3 and the maximum length of the carbon fiber contained in the block was 0.1 mm.
  • the belt mass of Comparative Example 3 was 216.5 g (total tension band mass 63.0 g and block gross mass 153.5 g), and therefore the mass per belt unit length was 0.35 kg / m.
  • the density of the block was 2.28 g / cm 3
  • the maximum length of the carbon fiber contained in the block was 0.1 mm.
  • the belt mass of Comparative Example 4 was 159.9 g (total tension band mass 63.0 g and block total mass 96.9 g), and thus the mass per belt unit length was 0.26 kg / m.
  • the density of the block was 1.44 g / cm 3 and the maximum length of the carbon fiber contained in the block was 0.1 mm.
  • Test evaluation method Using a belt running test machine in which a driving pulley and a driven pulley were provided in the chamber, a belt running test was conducted to test and evaluate the following items.
  • the pulley pitch diameter (the core when the high load transmission V-belt B is wound) It is wound around a drive pulley 91 having a diameter of 65.0 mm and a driven pulley 92 having a pulley pitch diameter of 130 mm.
  • the driven pulley 92 is loaded with a dead weight (DW) of 4000 N, and air at 90 ° C. is placed in the chamber 93.
  • the drive pulley 91 was rotated at a rotational speed of 2600 ⁇ 60 rpm with a drive shaft torque of 80.0 N ⁇ m.
  • N 1 input rotation speed
  • N 2 output rotation speed
  • Tr 1 input torque
  • Tr 2 output torque
  • a pulley 91 having a pulley pitch diameter of 130 mm and a driven pulley having a pulley pitch diameter of 60.0 mm are used.
  • the pulley 92 is wound, and the driven pulley 92 is loaded with a dead weight (DW) of 4000 N, and air is blown into the chamber 93 at 23 ⁇ 4 ° C., while the drive shaft is unloaded and the drive pulley 91 is set at 0 to 3000 rpm. It was rotated while changing the rotation speed range.
  • the maximum value of noise measured with a noise measuring device at a position 10 mm from the belt side surface in the center between the belt spans was defined as belt noise.
  • Table 2 shows the test results.
  • the belt transmission efficiency was 98% in Example 1, 97% in Example 2, 98% in Example 3, 98% in Example 4, 98% in Example 5, and 95% in Comparative Example 1, compared with 95%.
  • Example 2 was 97%
  • Comparative Example 3 was 95%
  • Comparative Example 4 was 97%.
  • the high-speed and high-load heat-resistant durability life is 500 hours or more for Examples 1 to 5, 500 hours or more for Comparative Example 1, 24 hours (block breakage) for Comparative Example 2, 500 hours or more for Comparative Example 3, and Comparative Example 4 was 20 hours (block breakage).
  • the belt noise was 74 dB in Example 1, 75 dB in Example 2, 75 dB in Example 3, 76 dB in Example 4, 76 dB in Example 5, and 90 dB in Comparative Example 1, and 75 dB in Comparative Example 2. 3 was 85 dB, and Comparative Example 4 was 75 dB.
  • the present invention is useful for a V-belt for high load transmission and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

高負荷伝動用VベルトBは、エンドレスの張力帯10と、その長さ方向に並ぶように配設され、各々、張力帯10に係止された複数のブロック20とを備える。複数のブロック20のそれぞれは、炭素繊維で形成された補強構造材23と、それを被覆するように設けられた樹脂被覆層24とを有する。

Description

高負荷伝動用Vベルト及びその製造方法
 本発明は高負荷伝動用Vベルト及びその製造方法に関する。
 自動車等のベルト式無段変速装置に用いられる高負荷伝動用Vベルトとして、エンドレスの張力帯の長さ方向に並ぶように複数のブロックが配設され、それらの各々が張力帯に係止された構成を有するものが公知となっている。
 特許文献1には、かかる高負荷伝動用Vベルトにおいて、ブロックがアルミニウム製の補強材を樹脂被覆層で被覆した構成を有するものが開示されている。
特開2010-60114号公報
 本発明の高負荷伝動用Vベルトは、エンドレスの張力帯と、該張力帯の長さ方向に並ぶように配設され、各々、該張力帯に係止された複数のブロックと、を備えたものであって、該複数のブロックのそれぞれは、炭素繊維で形成された補強構造材と、該補強構造材を被覆するように設けられた樹脂被覆層と、を有する。
 本発明の高負荷伝動用Vベルトの製造方法は、ブロック成形型のキャビティに炭素繊維で形成された補強構造材を配置し、該キャビティ内に未固化樹脂材料を供給するブロック成型工程を含むものである。
高負荷伝動用Vベルトの斜視図である。 図1におけるII-II断面図である。 張力帯の側面図である。 ブロックの側面図である。 (a)及び(b)は炭素繊維糸のシート状基材への固定態様を示す図である。 (a)~(d)は炭素繊維糸の配向パターンを示す図である。 (a)及び(b)はベルト式無段変速装置のプーリレイアウトを示す図である。 ブロックの成型を示す図である。 (a)~(c)はベルト走行試験機の模式図である。
 以下、実施形態について図面に基づいて詳細に説明する。
 (高負荷伝動用VベルトB)
 図1及び2は本実施形態に係る高負荷伝動用VベルトBを示す。この本実施形態に係る高負荷伝動用VベルトBは、例えば自動車等におけるベルト式無段変速装置に用いられるものである。
 本実施形態に係る高負荷伝動用VベルトBは、一対のエンドレスの張力帯10と複数のブロック20とを備え、複数のブロック20が一対の張力帯10の長さ方向に並ぶと共に一定ピッチで相互に間隔をおいて配設され、各々が一対の張力帯10に係止固定された構成を有する。この高負荷伝動用VベルトBは、例えば、ベルト長さ(張力帯10における後述の心線中心位置のベルト長さ方向の寸法)が480~750mm、ベルトピッチ幅(張力帯10における心線中心位置のベルト幅方向の寸法)が20~30mm、及びベルト厚さが10~16.5mm、並びにブロック20の数が96~375個、ブロックピッチが2~5mm、ブロック20間の間隔が0.01~0.5mmである。
 図3は張力帯10を示す。
 各張力帯10は、エンドレスの平帯状に形成されている。各張力帯10は、一方の側部が上側及び下側のそれぞれで面取り加工されており、他方の側部が傾斜面に形成されている。各張力帯10は、上面側(外周面側)にベルト幅方向に延びる断面U字溝からなる上側嵌合凹部11aがベルト長さ方向に一定ピッチで形成されていると共に、上側嵌合凹部11aに対応するように、下面側(内周面側)にベルト幅方向に延びる断面円弧溝からなる下側嵌合凹部11bがベルト長さ方向に一定ピッチで形成されている。各張力帯10は、例えば、長さが480~750mm、幅が6~13mm、及び厚さが1.0~5.0mm(好ましくは1.5~3.0mm)である。特に上側嵌合凹部11aと下側嵌合凹部11bとの底部間の最も薄い部分の厚さt1は例えば0.606~3.0mm(好ましくは0.606~1.5mm)である。
 各張力帯10は、張力帯本体が保形ゴム層12で構成されている。保形ゴム層12には、ベルト厚さ方向の略中央に、ベルト幅方向にピッチを有する螺旋を形成するように配された心線13が埋設されている。保形ゴム層12には、上面側表面を被覆するように上側補強布14が貼設されている。保形ゴム層12には、下面側表面を被覆するように下側補強布15が貼設されている。なお、張力帯10は、上側補強布14及び下側補強布15が設けられずに、保形ゴム層12及び心線13のみで構成されていてもよい。
 保形ゴム層12は、ゴム成分に種々のゴム配合剤が配合されて混練された未架橋ゴム組成物を加熱及び加圧して架橋剤により架橋させたゴム組成物で形成されている。
 ゴム成分としては、例えば、水素添加アクリロニトリルゴム(H-NBR)、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)等が挙げられる。ゴム成分は、ジメタクリル酸亜鉛やジアクリル酸亜鉛等の不飽和カルボン酸金属塩が添加されて強化された水素添加アクリロニトリルゴム(H-NBR)であってもよい。ゴム成分は、単一種で構成されていてもよく、また、複数種がブレンドされて構成されていてもよい。
 配合剤としては、加硫促進剤、可塑剤、補強材、老化防止剤、共架橋剤、架橋剤等が挙げられる。
 加硫促進剤としては、例えば、酸化マグネシウムや酸化亜鉛(亜鉛華)などの金属酸化物、金属炭酸塩、ステアリン酸などの脂肪酸及びその誘導体等が挙げられる。加硫促進剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。加硫促進剤のゴム成分100質量部に対する配合量は例えば5~15質量部である。
 可塑剤としては、例えば、フタル酸誘導体、イソフタル酸誘導体、テトラヒドロフタル酸誘導体、アジピン酸誘導体、アゼライン酸誘導体、セバシン酸誘導体、ドデカン-2-酸誘導体、マレイン酸誘導体、フマル酸誘導体、トリメリット酸誘導体、ピロメリット酸誘導体、クエン酸誘導体、イタコン酸誘導体、オレイン酸誘導体、リシノール酸誘導体、ステアリン酸誘導体、スルホン酸誘導体、リン酸誘導体、グルタール酸誘導体、グリコール誘導体、グリセリン誘導体、パラフィン誘導体、エポキシ誘導体等が挙げられる。可塑剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。可塑剤のゴム成分100質量部に対する配合量は例えば5~15質量部である。
 補強材としては、カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラックが挙げられる。補強剤としてはシリカも挙げられる。補強剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。補強材のゴム成分100質量部に対する配合量は例えば5~100質量部である。なお、補強材として、アラミド短繊維やナイロン短繊維などの有機短繊維や炭素短繊維などの無機短繊維も挙げられる。これらの補強用の短繊維は、配合されていてもよく、また、配合されていなくてもよい。補強用の短繊維が配合される場合、それらはベルト幅方向に配向するように設けられることが好ましい。
 老化防止剤としては、アミン系、キノリン系、ヒドロキノン誘導体、フェノール系、亜リン酸エステル系のもの等が挙げられる。老化防止剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。老化防止剤のゴム成分100質量部に対する配合量は例えば0.1~10質量部である。
 共架橋剤としては、例えば、ビスマレイミド系共架橋剤、TAIC、1,2-ポリブタジエン、不飽和カルボン酸金属塩、オキシム類、グアニジン、トリメチロールプロパントリメタクリレート等が挙げられる。これらのうちビスマレイミド系共架橋剤が好ましく、具体的なビスマレイミド系共架橋剤としては、例えば、N,N-m-フェニレンビスマレイミド、4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4,4’ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン等が挙げられる。共架橋剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。共架橋剤のゴム成分100質量部に対する配合量は例えば0.5~15質量部である。
 架橋剤としては、例えば、硫黄、有機過酸化物が挙げられる。架橋剤として、硫黄のみを用いてもよく、また、有機過酸化物のみを用いてもよく、さらには、それらの両方を併用してもよい。架橋剤は、硫黄の場合、ゴム成分100質量部に対する配合量が0.1~5質量部であることが好ましく、有機過酸化物の場合、ゴム成分100質量部に対する配合量が例えば0.1~10質量部である。但し、耐熱性の観点からは、架橋剤は有機過酸化物であることが好ましい。有機過酸化物としては、例えば、例えば、ジアシルパーオキサイド、パーオキシエステル、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド(DCP)、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン-3、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、1,1-ジブチルパーオキシ-3,3,5-トリメチルシクロヘキサン等が挙げられる。
 心線13は、アラミド繊維、PBO繊維、炭素繊維等の高強度繊維の撚り糸或いは組紐に接着処理が施されたもので構成されている。心線13は、例えば、800~1200dtexのフィラメント束で構成され、外径が0.5~1.4mmである。
 心線13の接着処理は、エポキシ溶液又はイソシアネート溶液の処理液に浸漬した後に加熱する第1処理、及びRFL水溶液に浸漬した後に加熱する第2処理が施されたもので構成されている。第2処理の後、ゴム糊に浸漬した後に乾燥させる第3処理が施されていてもよいが、この第3処理は施されていないことが好ましい。
 第1処理に用いられる処理液はエポキシ化合物又はイソシアネート化合物の水溶液又はトルエンやメチルエチルケトンなどを溶剤とする溶液である。
 第2処理に用いられるRFL水溶液は、レゾルシン(R)-ホルマリン(F)の初期縮合物水溶液とゴムラテックス(L)との混合水溶液である。このゴムラテックスはカルボキシル化水素化ニトリルゴム(カルボキシル化H-NBR)ラテックスであることが好ましい。
 第3処理に用いられるゴム糊とは、ゴム及び樹脂をトルエンやメチルエチルケトンなどを溶剤に溶解させた溶液或いは市販のゴム接着剤である。
 上側及び下側補強布14,15のそれぞれは、アラミド繊維やナイロン繊維等の織布、編物、或いは不織布に、エポキシ溶液或いはイソシアネート溶液に浸漬した後に加熱する第1処理、RFL水溶液に浸漬した後に加熱する第2処理、及び必要に応じてゴム糊に浸漬或いはゴム糊をコートした後に乾燥させる第3処理が施されたもので構成されている。上側及び下側補強布14,15のそれぞれは、厚さが例えば0.2~0.4mmである。
 図4はブロック20を示す。
 各ブロック20は、平面視で上底が下底よりも長い台形状の板状体のベルト幅方向の両側面部21のそれぞれに側方に開口したスリット状の嵌合部22が形成された「H」の文字を横にしたような形状に構成されている。各ブロック20は、側面視で嵌合部22より上側部分が均一厚さに形成されている一方、嵌合部22より下側部分が下方に向かうに従って厚さが薄くなるように形成されている。各ブロック20は、例えば、高さが10~16.5mm、幅が20~30mm、及び厚さが2~5mmである。両側部のなす角度、すなわち、ベルト角度は例えば15~26°である。
 各ブロック20の各嵌合部22は、中央側の奥部から側部の開口に向かって均一な間隔で水平に延びるように形成されている。各嵌合部22は、上面側にベルト幅方向に延びる断面半円状の突条からなる上側嵌合凸部22aが形成されていると共に、下面側にベルト幅方向に延びる断面円弧状の突条からなる下側嵌合凸部22bが形成されている。各嵌合部22は、奥部が上側面から連続して奥側に傾斜した面とその面に連続して外側に傾斜して下側面に続く面とによって構成されている。各嵌合部22は、例えば、ベルト厚さ方向の隙間t2が1~3mm、及びベルト幅方向の奥行きが2~5mmである。
 各ブロック20は、骨格をなすように中央に配された補強構造材23が樹脂被覆層24で被覆された構成を有する。なお、補強構造材23全体が樹脂被覆層24で被覆されている必要はなく、少なくとも張力帯10との接触部分及びプーリ接触面を構成する両側面部21(嵌合部22より上側の上側側面部及び嵌合部22より下側の下側側面部)を形成するように被覆されていればよく、その他の部分では補強構造材23が露出していてもよい。
 補強構造材23は、ブロック20と同様に「H」の文字を横にしたような形状に形成され、ベルト幅方向に延びる上側及び下側ビーム23a,23bの中央部間がセンターピラー23cで上下に連結されたような構成を有する。補強構造材23は、例えば、上側ビーム23aの高さが5.0~9.5mm、及び下側ビーム23bの高さが5.0~9.5mmである。
 補強構造材23は炭素繊維で形成されている。炭素繊維は、ポリアクリロニトリル系炭素繊維(PAN系炭素繊維)であってもよく、また、ピッチ系炭素繊維であってもよく、さらに、それらが混在したものであってもよい。炭素繊維にはシランカップリング剤等による表面処理が施されていることが望ましい。炭素繊維のフィラメント径は例えば4~20μmである。
 補強構造材23は、炭素繊維のフィラメント糸で形成されていてもよく、また、炭素繊維の紡績糸で形成されていてもよい。炭素繊維のフィラメント糸は、撚られていてもよく、また、無撚りであってもよい。炭素繊維のフィラメント糸或いは紡績糸には、炭素繊維により巻き縫いが施されていてもよい。炭素繊維のフィラメント糸或いは紡績糸の繊度は例えば50~2000texである。
 補強構造材23は、上記炭素繊維のフィラメント糸又は紡績糸とそれ以外の繊維との複合糸で形成されていてもよい。炭素繊維以外の繊維としては、例えば、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維、ナイロン繊維、アラミド繊維、PBO繊維などの合成繊維、木綿や麻などの天然繊維、ガラス繊維、鋼線などの金属繊維等が挙げられる。これらのうち、ブロック成型時に溶融して樹脂被覆層24と相溶することにより一体性が高められるという観点から、成型温度で溶融する熱可塑性樹脂繊維が好ましい。複合糸は、炭素繊維のフィラメント糸又は紡績糸の繊維束内又は外に炭素繊維以外の繊維が縦添えされた構成であってもよく、また、炭素繊維のフィラメント糸又は紡績糸に炭素繊維以外の繊維により巻き縫いされた構成であってもよく、さらに、それらが組み合わされた構成であってもよい。炭素繊維のフィラメント糸或いは紡績糸の繊維束内又は外に炭素繊維以外の繊維が縦添えされた構成では、撚りが施されていてもよく、また、無撚りであってもよい。複合糸において、炭素繊維とそれ以外の繊維との割合は、前者が後者よりも多くてもよく、また、前者が後者よりも少なくてもよく、さらに、前者と後者とが同一であってもよい。炭素繊維以外の繊維の繊度は例えば50~30000texである。なお、かかる複合糸については、特開2010-121250号公報に開示されている。
 補強構造材23は、炭素繊維のフィラメント糸或いは紡績糸が複数本集められて組紐状に構成された編糸で形成されていてもよい。
 補強構造材23は、図5(a)及び(b)に示すように、炭素繊維のフィラメント糸、紡績糸、複合糸、或いは編糸(以下「炭素繊維糸T」という。)がブロック形状のシート状基材25に固定されて構成されていてもよい。炭素繊維をエポキシ樹脂等で固めた板状のプリプレグを用いて予備成形を行った後、それをオートクレーブ等に入れて樹脂を硬化させる炭素繊維強化樹脂成形品の製造方法、或いは、炭素繊維の織布等を所定形状に裁断して金型のキャビティ内に配置し、そこに未固化樹脂材料を供給して硬化させる炭素繊維強化樹脂成形品の製造方法では、予備成形や織布等の切断により炭素繊維の大きなロスが発生するが、炭素繊維糸Tがシート状基材25に固定された補強構造材23を用いれば、これらの場合に比較して、炭素繊維のロスの発生を著しく低減することができる。シート状基材25としては、例えば、ポリエチレン樹脂シート、ポリプロピレン樹脂シートなどの熱可塑性樹脂シート;ポリエチレン繊維、ポリエステル繊維、ナイロン繊維、アラミド繊維、PBO繊維などの合成繊維で形成された織布や編物や不織布等が挙げられる。これらのうち、ブロック成型時に溶融して樹脂被覆層24と相溶することにより一体性が高められるという観点から、例えば、融点が130℃以下のポリエチレン樹脂シートなどの熱可塑性樹脂シートやポリエチレン繊維などの熱可塑性樹脂繊維で形成された織布や編物や不織布が好ましい。シート状基材25の厚さは例えば0.1~10mmである。
 補強構造材23は、図5(a)に示すように、炭素繊維糸T自体によりシート状基材25が縫われ、炭素繊維によりシート状基材25に刺繍が施された構成であってもよい。また、補強構造材23は、図5(b)に示すように、炭素繊維糸Tがシート状基材25に細い炭素繊維糸等からなる縫付糸26により縫い付けられて刺繍が施された構成であってもよい。かかる補強構造材23は、具体的には、例えば、シート状基材25に炭素繊維糸Tを押さえ付けながら置いて並べ、それらを瞬時に縫付糸26で縫って炭素繊維糸Tをシート状基材25に位置固定して刺繍する方法で得ることができ、工業用のロックミシンを用いて作製することができる。これらの場合において、炭素繊維の折損を抑制する観点から、炭素繊維糸Tの折り返し間距離は1mm以上であることが好ましく、2mm以上であることがより好ましく、5mm以上であることがさらに好ましい。
 また、これらの場合において、炭素繊維糸Tの配向パターンとして、図6(a)に示すように、上側及び下側ビーム23a,23bにおいて炭素繊維糸Tが実質的にベルト幅方向に延びるように設けられていると共に、センターピラー23cにおいて炭素繊維糸Tがベルト厚さ方向に延びるように設けられていることが好ましい。また、図6(b)に示すように、上側及び下側ビーム23a,23bにおいては、炭素繊維糸Tがプーリ接触面を構成する両側面部21に対して垂直方向に延びるように設けられていてもよい。さらに、ブロック20には、嵌合部22奥の上下の角部に嵌合部22の開口を拡げるように応力が集中することから、図6(c)に示すように、この部分に対応する補強構造材23における上側及び下側ビーム23a,23bのそれぞれとセンターピラー23cとの結合部において、補強効果を高める観点から、炭素繊維糸Tがセンターピラー23cから上側及び下側ビーム23a,23bのそれぞれの両側外向きに傾斜した方向に延びるように設けられていてもよい。また、図6(d)に示すように、炭素繊維糸Tがシート状基材25の輪郭に沿って多層に設けられていてもよい。このパターンでは、上側及び下側ビーム23a,23b並びにセンターピラー23cを補強する炭素繊維糸Tが連続することに加え、上側及び下側ビーム23a,23bのそれぞれとセンターピラー23cとの結合部において炭素繊維糸Tが高密度に配設されることにより、高い補強効果を得ることができる。
 補強構造材23は、炭素繊維が一方向に配向するように配されたプリプレグで構成されていてもよい。具体的には、例えば、補強構造材23は、炭素繊維が一方向に配向するように配されたプリプレグシートを裁断積層成形して構成されたものであってもよい。この場合、炭素繊維はベルト幅方向に配向するように設けられていることが好ましい。
 補強構造材23は、炭素繊維糸Tで形成された三次元織物で構成されていてもよい。
 ブロック20に含まれる炭素繊維の最大長さは、ブロック20の高い補強効果が得られるという観点から1mm以上であることが好ましく、2mm以上であることがより好ましく、5mm以上であることがさらに好ましい。ブロック20に含まれる補強構造材23を形成する炭素繊維の含有量は、ブロック20の高い補強効果が得られるという観点から15~95体積%であることが好ましく、25~80体積%であることがより好ましく、30~75体積%であることがさらに好ましい。
 ブロック20には、単一の補強構造材23が埋設されていてもよく、また、複数の補強構造材23が積層されて埋設されていてもよい。また、ブロック20には、補強構造材23に加えて、従来よりも薄肉の金属補強材が埋設されていてもよい。
 樹脂被覆層24は、マトリクス樹脂に樹脂配合剤が配合された樹脂組成物で形成されている。樹脂被覆層24の層厚さは例えば0.8~1.5mmである。
 樹脂被覆層24を形成する樹脂組成物のマトリクス樹脂は、熱硬化性樹脂であってもよく、また、熱可塑性樹脂であってもよい。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂等が挙げられる。熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂等が挙げられる。マトリクス樹脂は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。マトリクス樹脂は、熱硬化性樹脂のみで構成されていてもよく、また、熱可塑性樹脂のみで構成されていてもよく、さらに、熱硬化性樹脂と熱可塑性樹脂とがブレンドされたものであってもよい。マトリクス樹脂は、その他にゴム成分等を含んでいてもよい。
 樹脂被覆層24は、マトリクス樹脂に炭素短繊維が配合された炭素短繊維補強樹脂組成物で形成されていてもよい。特に、少なくともプーリ接触面を構成する両側部21は、耐摩擦摩耗性を向上させる観点から、炭素短繊維が配合された熱硬化性樹脂の炭素短繊維補強樹脂組成物で形成されていることが好ましい。炭素短繊維は、ポリアクリロニトリル系炭素短繊維(PAN系炭素短繊維)であってもよく、また、ピッチ系炭素短繊維であってもよく、さらに、それらが混在したものであってもよい。炭素短繊維のマトリクス樹脂100質量部に対する配合量は例えば10~40質量部である。樹脂被覆層24に含まれる炭素短繊維の長さは例えば50~150μmである。
 樹脂被覆層24を形成する樹脂組成物には、その他、グラファイト粉末、パラアラミド短繊維等が配合されていてもよい。パラアラミド短繊維は、例えば、繊維長が1~3mmであり、マトリクス樹脂100質量部に対する配合量が2~5質量部である。グラファイト粉末は、例えば、粒径が5~10μmであり、マトリクス樹脂100質量部に対する配合量が15~20質量部である。なお、マトリックス樹脂が熱硬化性樹脂の場合、樹脂被覆層24を形成するブロック成型用樹脂材料には硬化剤が配合されていてもよい。
 本実施形態に係る高負荷伝動用VベルトBでは、複数のブロック20の嵌合部22にそれらを連結するように張力帯10が嵌め入れられている。具体的には、各ブロック20の各嵌合部22には、面取り加工された一方の側部の方から張力帯10が挿入され、嵌合部22の上側面の上側嵌合凸部22aが張力帯10の上側面の上側嵌合凹部11aに嵌合すると共に、嵌合部22の下側面の下側嵌合凸部22bが張力帯10の下側面の下側嵌合凹部11bに嵌合し、且つ嵌合部22の奥部に張力帯10の一方の側部が当接するように、嵌合部22に張力帯10が嵌め入れられている。そして、それによってエンドレスの張力帯10にベルト長さ方向に沿って一定ピッチで相互に間隔をおくように複数のブロック20が係止固定された構造が構成されると共に、複数のブロック20の両側面部21及び外側に露出した張力帯10の他方の側面がプーリ接触面に構成されている。
 また、本実施形態に係る高負荷伝動用VベルトBでは、張力帯10の上側及び下側嵌合凹部11a,11b間の厚さt1よりもブロック20の嵌合部22の隙間t2が若干小さい。従って、張力帯10は圧縮状態でブロック20の嵌合部22に嵌め入れられている。ここで、その締め代t1-t2は例えば0.006~0.150mmであり、ブロック20の嵌合部22の隙間の隙間t2に対する締め代t1-t2の割合である締め代率をα={(t1-t2)/t2}×100で表すとするとα=1~5%であることが好ましい。
 さらに、本実施形態に係る高負荷伝動用VベルトBでは、張力帯10はブロック20からはみ出して突出した状態に設けられており、これによって高負荷伝動用VベルトBがプーリに突入する際の衝撃を突出した張力帯10により緩和することができる。ここで、その突出量の出代Δdは例えば0.02~0.25mmであり、一方、ベルトピッチライン(心線中心位置)における張力帯10の挿入幅wは例えば6~13mmであり、ベルトピッチラインにおけるブロック20の張力帯噛合位置での張力帯10の挿入幅wに対する出代Δdの割合である出代率をβ=(Δd/w)×100で表すとするとβ=0.3~1.5%であることが好ましい。なお、この出代Δdは、高負荷伝動用VベルトBの側面をコントレーサ(輪郭形状測定器)で走査すれば容易に測定することができる。
 以上の構成の本実施形態に係る高負荷伝動用VベルトBによれば、ブロック20の補強構造材23が炭素繊維で形成されているので、従来のアルミニウム製の補強材を用いたものと比較して、高負荷伝動用VベルトB全体の軽量化を図ることができる。具体的には、ブロック20の密度が1.5~2.2g/cm3まで軽量化されることが好ましく、1.5~1.8g/cm3まで軽量化されることがより好ましく、1.4~1.6g/cm3まで軽量化されることがさらに好ましい。また、高負荷伝動用VベルトBとしては、ベルト単位長さ当たりの質量が0.25~0.46g/mmまで軽量化されることが好ましい。
 図7(a)及び(b)は本実施形態に係る高負荷伝動用VベルトBを用いたベルト式無段変速装置70を示す。
 このベルト式無段変速装置70は、駆動軸71とそれに平行に配置された従動軸73とを備え、駆動軸71上に駆動プーリ72が、また、従動軸73上に駆動プーリ72と略同径の従動プーリ74が、それぞれ設けられている。駆動プーリ72は、駆動軸71上に回転一体に且つ摺動不能に固定された固定シーブとそれに対向するように回転一体に且つ摺動可能に支持された可動シーブとを備えている。同様に、従動プーリ74は、従動軸73上に回転一体に且つ摺動不能に固定された固定シーブとそれに対向するように回転一体に且つ摺動可能に支持された可動シーブとを備えている。駆動プーリ72及び従動プーリ74のそれぞれは、固定シーブと可動シーブとの間にV溝が構成され、これらの駆動プーリ72及び従動プーリ74のV溝間に高負荷伝動用VベルトBが巻き掛けられている。駆動プーリ72及び従動プーリ74のそれぞれは、プーリピッチ径が例えば40~150mmの範囲で可変に構成されている。
 そして、このベルト式無段変速装置70では、ベルト伝動に要する動力が駆動軸71側で供給されて従動軸73側で消費され、また、駆動プーリ72のベルト巻き掛け径及び従動プーリ74の巻き掛け径が変化することにより高負荷伝動用VベルトBの走行速度が変化するように構成されている。具体的には、駆動プーリ72の可動シーブを固定シーブに接近させ、且つ従動プーリ74の可動シーブを固定シーブから遠ざけると、図7(a)に示すように、駆動プーリ72のベルト巻き掛け径の方が従動プーリ74のベルト巻き掛け径よりも大きくなり、その結果、高負荷伝動用VベルトBは高速で走行することとなる。逆に、駆動プーリ72の可動シーブを固定シーブから遠ざけ、且つ従動プーリ74の可動シーブを固定シーブに接近させると、図7(b)に示すように、駆動プーリ72のベルト巻き掛け径の方が従動プーリ74のベルト巻き掛け径よりも小さくなり、その結果、高負荷伝動用VベルトBは低速で走行することとなる。
 (高負荷伝動用VベルトBの製造方法)
 次に、高負荷伝動用VベルトBの製造方法について説明する。
 <張力帯作製工程>
 -未架橋ゴム組成物準備-
 バンバリーミキサー等のゴム練り加工機にゴム成分を投入して素練りした後、これにゴム配合剤を投入して混練りする。そして、練り上がった未架橋ゴム組成物をカレンダロールによりシート状に加工してシート状の未架橋ゴム組成物を得る。
 -心線準備-
 撚り糸又は組紐に、RFL水溶液に浸漬した後に加熱する処理及び/又はゴム糊に浸漬した後に乾燥させる処理を施して心線13と得る。なお、これらの処理の前に撚り糸等にエポキシ溶液やイソシアネート溶液に浸漬した後に乾燥させる処理を施してもよい。
 -上側及び下側補強布準備-
 織布、編物、或いは不織布に、RFL水溶液に浸漬した後に加熱する処理及び/又はゴム糊に浸漬或いはゴム糊をコートした後に乾燥させる処理を施して上側及び下側補強布14,15を得る。なお、これらの処理の前に織布等に、エポキシ溶液やイソシアネート溶液に浸漬した後に乾燥させる処理を施してもよい。
 -張力帯成型-
 張力帯10の下側嵌合凹部形状の金型軸方向に延びる突条が外周面に周方向に等ピッチで設けられた円筒金型を筒状に形成した下側補強布15で被覆し、その上にシート状の未架橋ゴム組成物を所定層積層して設ける。
 次いで、加熱加圧装置の中にその円筒金型を入れ、未架橋ゴム組成物の架橋が半分程度進行するように、装置内を所定の温度及び圧力に設定して所定時間その状態を保持する。このとき、未架橋ゴム組成物の架橋が半分程度進行して保形ゴム層12の下側半分の形状が形成される。また、未架橋ゴム組成物が流動して円筒金型に設けられた突条が下側補強布15を押圧して下側嵌合凹部11bが形成される。
 続いて、加熱加圧装置の中から円筒金型を取り出し、半架橋したゴム組成物の上から心線13を等ピッチで螺旋状に巻き付け、その上に再びシート状の未架橋ゴム組成物を所定層積層して設け、その上から筒状に形成した上側補強布14を被せる。
 次いで、張力帯10の上側嵌合凹部形状の軸方向に延びる突条が内周面の周方向に等ピッチで設けられた筒状のスリーブを最外層に被せる。
 そして、加熱加圧装置の中に材料をセットした円筒金型を入れ、装置内を所定の温度及び圧力に設定して所定時間その状態を保持する。このとき、半架橋ゴム組成物及び未架橋ゴム組成物の架橋が進行して保形ゴム層12が形成される。また、未架橋ゴム組成物が流動してスリーブに設けられた突条が上側補強布14を押圧して上側嵌合凹部11aが形成される。さらに、心線13表面の接着剤と保形ゴム層12とが相互拡散することにより、心線13が保形ゴム層12に一体に接着すると共に、上側及び下側補強布14,15に付着した接着剤と保形ゴム層12とが相互拡散することにより、上側及び下側補強布14,15が保形ゴム層12に一体に接着する。
 以上のようにして、円筒金型表面に円筒状のスラブが成型される。
 最後に、加熱加圧装置から円筒金型を取り出し、その周面上に形成された円筒状のスラブを脱型し、これを所定幅の帯状に輪切りして面取り加工等を施すことにより張力帯10を得る。
 <ブロック成型工程>
 -ブロック成型用樹脂材料準備-
 二軸混練機等の樹脂混練機にマトリクス樹脂及び樹脂配合剤を投入して混練し、回収した混練物を粉砕して粉状化乃至粒状化してブロック成型用樹脂材料を得る。
 -ブロック成型-
 図8に示すようにブロック成型機の金型80のキャビティC内に補強構造材23を配置して型締めした後、キャビティC内に樹脂被覆層24を形成する未固化のブロック成型用樹脂材料Mを供給することによりブロック20を成型する。
 ここで、補強構造材23を形成する炭素繊維間への未固化樹脂材料の含浸を高める観点からは、未固化樹脂材料の粘度はより低いことが好ましく、この点については成型温度等の成型加工条件の設定により制御することができる。
 また、このブロック成型工程は、射出成形で行うことも可能であるが、上記と同様の理由から、低粘度の未固化のブロック成型用樹脂材料Mを用いるRIM(Reaction Injection Molding)成形又はRTM(Resin Transfer Molding)成形で行うことが好ましい。さらに、ブロック20内におけるボイドの発生を抑制することを考慮すれば、VaRTM(Vacuum assisted Resin Transfer Molding)成形で行うことが好ましい。
 さらに、補強構造材23が炭素繊維と熱可塑性樹脂繊維との複合糸で形成されている場合には、熱により炭素繊維の周りの熱可塑性樹脂繊維が溶融して炭素繊維に含浸することから、このブロック成型工程はプレス成形でも行うことができる。
 金型80を冷却した後、型開きしてブロック20を取り出す。なお、マトリクス樹脂が熱硬化性樹脂の場合、その後、ブロック20にアニール処理等することにより樹脂被覆層24を十分に硬化させることが好ましい。アニール温度は例えば190~195℃であり、アニール時間は例えば2~4時間である。
 <組立工程>
 一方の張力帯10の上側及び下側嵌合凹部11a,11bにそれぞれブロック20の上側及び下側嵌合凸部22a,22bを対応させ、上側及び下側嵌合凹部11a,11bにそれぞれ上側及び下側嵌合凸部22a,22bが嵌め入れられるように、ブロック20の一方の嵌合部22に張力帯10を挿入し、ブロック20を張力帯10に係止させる。この操作を張力帯10の全周について行う。同様に、他方の張力帯10をブロック20の他方の嵌合部22に挿入し、それによって高負荷伝動用VベルトBを得る。
 (高負荷伝動用Vベルト)
 以下の実施例1~5及び比較例1~4の高負荷伝動用Vベルトを作製した。それぞれの構成は表1にも示す。
 <実施例1>
 ブロック成型用樹脂材料として、マトリックス樹脂であるフェノール樹脂(フェノールアラルキル樹脂50質量%及びノボラックフェノール樹脂50質量%)100質量部に対し、PAN系炭素短繊維72.5質量部、グラファイト粉末17.5質量部、パラアラミド短繊維2.8質量部、及び硬化剤のヘキサミン15質量部を配合して混練したものを調製した。このブロック成型用樹脂材料の密度は1.44g/cm3であった。
 補強構造材として、炭素繊維が一方向に配向するように配されたプリプレグシート(東邦テナックス社製、一方向プリプレグ 商品名:HTS40、炭素繊維含有率60% 厚さ0.19mm)を11枚積層し、炭素繊維の配向方向がベルト幅方向に対応するようにブロック形状に裁断成形したものを準備した。この補強構造材の密度は1.51g/cm3であった。
 上記補強構造材をブロック成型機の金型のキャビティ内に配置して型締めした後、上記ブロック成型用樹脂材料を溶融させたものをキャビティ内に射出することにより、補強構造材を形成する炭素繊維の含有量を60体積%としたブロックを成型した。このブロックの密度は1.50g/cm3であった。ブロックに含まれる炭素繊維の最大長さは1.95mmであった。
 そして、このブロックを用いた上記実施形態と同様の構成の高負荷伝動用Vベルトを作製し、それを実施例1とした。
 実施例1のベルト長さは612mm、ベルトピッチ幅は25mm、ベルト厚さは12.8mm、及びベルト角度は26°、並びにブロックの数は204個、ブロックピッチは3mm、及びブロック間の間隔は0.05mmであった。また、実施例1のベルト質量は215.5g(張力帯総質量78.0g及びブロック総質量137.5g)、従って、ベルト単位長さ当たりの質量は0.35kg/mであった。
 なお、張力帯の保形ゴム層はジメタクリル酸亜鉛が添加されて強化された水素添加アクリロニトリルゴム組成物、心線はアラミド繊維の組紐、並びに上側及び下側補強布はナイロン繊維織布でそれぞれ形成した。
 <実施例2>
 補強構造材として、ブロック形状に形成したシート状基材としての厚さ200μmのポリエチレンシートに、炭素繊維のフィラメント糸(東邦テナックス社製、商品名:HTS40、7μ×3000本、200tex)により、炭素繊維の配向方向がベルト幅方向に対応するように刺繍を施したものを用いたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを作製し、それを実施例2とした。
 実施例2のベルト質量は215.5g(張力帯総質量78.0g及びブロック総質量137.5g)、従って、ベルト単位長さ当たりの質量は0.35kg/mであった。
 なお、補強構造材の密度は1.51g/cm3、ブロックの密度は1.50g/cm3、ブロックに含まれる炭素繊維の最大長さは1.80mm、ブロックに含まれる補強構造材を形成する炭素繊維の含有量は60体積%であった。
 <実施例3>
 補強構造材として、ブロック形状に形成したシート状基材としての厚さ200μmのポリエチレンシートに炭素繊維のフィラメント糸とポリプロピレン繊維のフィラメント糸とを1:1の割合で引き揃え、それらをポリプロピレン繊維により巻き縫いした複合糸(実施例2の炭素繊維のフィラメント糸と同一太さ)により、炭素繊維の配向方向がベルト幅方向に対応するように刺繍を施したものを用いたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを作製し、それを実施例3とした。
 実施例3ベルト質量は215.5g(張力帯総質量78.0g及びブロック総質量137.5g)、従って、ベルト単位長さ当たりの質量は0.35kg/mであった。
 なお、補強構造材の密度は1.51g/cm3、ブロックの密度は1.50g/cm3、ブロックに含まれる炭素繊維の最大長さは1.90mm、ブロックに含まれる補強構造材を形成する炭素繊維の含有量は60体積%であった。
 <実施例4>
 補強構造材として、ブロック形状に形成したシート状基材としての厚さ200μmのポリエチレンシートに炭素繊維の紡績糸(実施例2の炭素繊維のフィラメント糸と同一太さ)により、炭素繊維の配向方向がベルト幅方向に対応するように刺繍を施したものを用い、ブロックに含まれる補強構造材を形成する炭素繊維の含有量を35体積%とし、ベルトピッチ幅を20mmに形成したことを除いて実施例1と同一構成の高負荷伝動用Vベルトを作製し、それを実施例4とした。
 実施例4のベルト質量は186.1g(張力帯総質量63.0g及びブロック総質量123.1g)、従って、ベルト単位長さ当たりの質量は0.30kg/mであった。
 なお、補強構造材の密度は1.32g/cm3、ブロックの密度は1.34g/cm3、ブロックに含まれる炭素繊維の最大長さは1.90mmであった。
 <実施例5>
 補強構造材として、ブロック形状に形成したシート状基材としての厚さ200μmのポリエチレンシートに炭素繊維の紡績糸(実施例2の炭素繊維のフィラメント糸と同一太さ)により、炭素繊維の配向方向がベルト幅方向に対応するように刺繍を施したものを用い、ブロックに含まれる補強構造材を形成する炭素繊維の含有量を95体積%とし、ベルトピッチ幅を20mmに形成したことを除いて実施例1と同一構成の高負荷伝動用Vベルトを作製し、それを実施例5とした。
 実施例5のベルト質量は219.3g(張力帯総質量63.0g及びブロック総質量156.3g)、従って、ベルト単位長さ当たりの質量は0.36kg/mであった。
 なお、補強構造材の密度は1.76g/cm3、ブロックの密度は1.70g/cm3、ブロックに含まれる炭素繊維の最大長さは1.90mmであった。
 <比較例1>
 補強構造材の代わりに、JIS H 4000におけるA2024P T361のジュラルミンで形成された金属補強材を用いたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを作製し、それを比較例1とした。
 比較例1のベルト質量は305.3g(張力帯総質量78.0g及びブロック総質量227.3g)、従って、ベルト単位長さ当たりの質量は0.50kg/mであった。
 なお、金属補強材の密度は2.70g/cm3、ブロックの密度は2.48g/cm3、ブロックに含まれる炭素繊維の最大長さは0.1mmであった。
 <比較例2>
 ブロック成型用樹脂材料として、マトリックス樹脂である4,6ナイロン樹脂100質量部に対し、PAN系炭素短繊維30質量部を配合して混練したものを用い、また、補強構造材を埋設せずに作製したブロックを用いたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを作製し、それを比較例2とした。
 比較例2のベルト質量は210.2g(張力帯総質量78.0g及びブロック総質量210.2g)、従って、ベルト単位長さ当たりの質量は0.34kg/mであった。
 なお、ブロックの密度は1.44g/cm3、ブロックに含まれる炭素繊維の最大長さは0.1mmであった。
 <比較例3>
 ベルトピッチ幅を20mmに形成したことを除いて比較例1と同一構成の高負荷伝動用Vベルトを作製し、それを比較例3とした。
 比較例3のベルト質量は216.5g(張力帯総質量63.0g及びブロック総質量153.5g)、従って、ベルト単位長さ当たりの質量は0.35kg/mであった。
 なお、ブロックの密度は2.28g/cm3、及びブロックに含まれる炭素繊維の最大長さは0.1mmであった。
 <比較例4>
 ベルトピッチ幅を20mmに形成したことを除いて比較例2と同一構成の高負荷伝動用Vベルトを作製し、それを比較例4とした。
 比較例4のベルト質量は159.9g(張力帯総質量63.0g及びブロック総質量96.9g)、従って、ベルト単位長さ当たりの質量は0.26kg/mであった。
 なお、ブロックの密度は1.44g/cm3、ブロックに含まれる炭素繊維の最大長さは0.1mmであった。
Figure JPOXMLDOC01-appb-T000001
 (試験評価方法)
 駆動プーリ及び従動プーリがチャンバー内に設けられたベルト走行試験機を用い、以下の各項目を試験評価するためのベルト走行試験を行った。
 <ベルト伝動効率>
 実施例1~5及び比較例1~4のそれぞれの高負荷伝動用VベルトBについて、図9(a)に示すように、プーリピッチ径(高負荷伝動用VベルトBを巻き掛けたときの心線位置の径)が65.0mmの駆動プーリ91及びプーリピッチ径が130mmの従動プーリ92に巻き掛けると共に、従動プーリ92に4000Nのデッドウエイト(DW)を負荷し、チャンバー93内に90℃の空気を吹き込みながら、駆動軸トルク80.0N・mで駆動プーリ91を2600±60rpmの回転数で回転させた。そして、このときのN1:入力回転数、N2:出力回転数、Tr1:入力トルク、及びTr2:出力トルクを求め、(N2×Tr2)/(N1×Tr1))×100をベルト伝動効率として算出した。
 <高速高負荷耐熱耐久寿命>
 実施例1~5及び比較例1~4のそれぞれの高負荷伝動用VベルトBについて、図9(b)に示すように、プーリピッチ径が130mmの駆動プーリ91及びプーリピッチ径が60.0mmの従動プーリ92に巻き掛けると共に、従動プーリ92に2300Nのデッドウエイト(DW)を負荷し、チャンバー93内に120℃の空気を吹き込みながら、駆動軸トルク65.0N・mで駆動プーリ91を5800±60rpmの回転数で回転させ、最長走行時間500時間としてベルトが破壊するまで走行させた。そして、ベルトが破壊するまでの走行時間を高速高負荷耐熱耐久寿命とした。
 <ベルト騒音>
 実施例1~5及び比較例1~4のそれぞれの高負荷伝動用VベルトBについて、図9(c)に示すように、プーリピッチ径が130mmの駆動プーリ91及びプーリピッチ径が60.0mmの従動プーリ92に巻き掛けると共に、従動プーリ92に4000Nのデッドウエイト(DW)を負荷し、チャンバー93内に23±4℃の空気を吹き込みながら、駆動軸を無負荷として駆動プーリ91を0~3000rpmの回転数の範囲で変動させながら回転させた。そして、このときベルトスパン間中央でベルト側面から10mmの位置で騒音測定器を用いて計測した騒音の最大値をベルト騒音とした。
 (試験評価結果)
 表2は試験結果を示す。
Figure JPOXMLDOC01-appb-T000002
 ベルト伝動効率は、実施例1が98%、実施例2が97%、実施例3が98%、実施例4が98%、及び実施例5が98%、並びに比較例1が95%、比較例2が97%、比較例3が95%、及び比較例4が97%であった。
 高速高負荷耐熱耐久寿命は、実施例1~5が500時間以上、並びに、比較例1が500時間以上、比較例2が24時間(ブロック破損)、比較例3が500時間以上、及び比較例4が20時間(ブロック破損)であった。
 ベルト騒音は、実施例1が74dB、実施例2が75dB、実施例3が75dB、実施例4が76dB、及び実施例5が76dB、並びに比較例1が90dB、比較例2が75dB、比較例3が85dB、及び比較例4が75dBであった。
 本発明は高負荷伝動用Vベルト及びその製造方法について有用である。
B 高負荷伝動用Vベルト
C キャビティ
T 炭素繊維糸
10 張力帯
11a 上側嵌合凹部
11b 下側嵌合凹部
12 保形ゴム層
13 心線
14 上側補強布
15 下側補強布
20 ブロック
21 側面部
22 嵌合部
22a 上側嵌合凸部
22b 下側嵌合凸部
23 補強構造材
23a 上側ビーム
23b 下側ビーム
23c センターピラー
24 樹脂被覆層
25 シート状基材
26 縫付糸
70 ベルト式無段変速装置
71 駆動軸
72 駆動プーリ
73 従動軸
74 従動プーリ
80 金型
91 駆動プーリ
92 従動プーリ
93 チャンバー

Claims (15)

  1.  エンドレスの張力帯と、
     上記張力帯の長さ方向に並ぶように配設され、各々、該張力帯に係止された複数のブロックと、
    を備えた高負荷伝動用Vベルトであって、
     上記複数のブロックのそれぞれは、炭素繊維で形成された補強構造材と、該補強構造材を被覆するように設けられた樹脂被覆層と、を有する高負荷伝動用Vベルト。
  2.  請求項1に記載された高負荷伝動用Vベルトにおいて、
     上記補強構造材は、炭素繊維がシート状基材に固定されて構成されている高負荷伝動用Vベルト。
  3.  請求項2に記載された高負荷伝動用Vベルトにおいて、
     上記補強構造材は、炭素繊維によりシート状基材に刺繍が施されて構成されている高負荷伝動用Vベルト。
  4.  請求項1に記載された高負荷伝動用Vベルトにおいて、
     上記補強構造材は、炭素繊維が一方向に配向するように配されたプリプレグで構成されている高負荷伝動用Vベルト。
  5.  請求項4に記載された高負荷伝動用Vベルトにおいて、
     上記補強構造材は、炭素繊維がベルト幅方向に配向するように設けられている高負荷伝動用Vベルト。
  6.  請求項1乃至5のいずれかに記載された高負荷伝動用Vベルトにおいて、
     上記補強構造材が炭素繊維のフィラメント糸又は紡績糸で形成されている高負荷伝動用Vベルト。
  7.  請求項1乃至6のいずれかに記載された高負荷伝動用Vベルトにおいて、
     上記補強構造材が炭素繊維とそれ以外の繊維との複合糸で形成されている高負荷伝動用Vベルト。
  8.  請求項1乃至7のいずれかに記載された高負荷伝動用Vベルトにおいて、
     ベルト単位長さ当たりの質量が0.25~0.46g/mmである高負荷伝動用Vベルト。
  9.  請求項1乃至8のいずれかに記載された高負荷伝動用Vベルトにおいて、
     上記ブロックの密度が1.5~2.2g/cm3である高負荷伝動用Vベルト。
  10.  請求項1乃至9のいずれかに記載された高負荷伝動用Vベルトにおいて、
     上記ブロックに含まれる炭素繊維の最大長さが1mm以上である高負荷伝動用Vベルト。
  11.  請求項1乃至10のいずれかに記載された高負荷伝動用Vベルトにおいて、
     上記ブロックに含まれる上記補強構造材を形成する炭素繊維の含有量が15~95体積%である高負荷伝動用Vベルト。
  12.  請求項1乃至11のいずれかに記載された高負荷伝動用Vベルトにおいて、
     上記樹脂被覆層における少なくともプーリ接触面を構成する部分は炭素短繊維が配合された熱硬化性樹脂で形成されている高負荷伝動用Vベルト。
  13.  エンドレスの張力帯と、
     上記張力帯の長さ方向に並ぶように配設され、各々、該張力帯に係止された複数のブロックと、
    を備えた高負荷伝動用Vベルトの製造方法であって、
     ブロック成形型のキャビティに炭素繊維で形成された補強構造材を配置し、該キャビティ内に未固化樹脂材料を供給するブロック成型工程を含む高負荷伝動用Vベルトの製造方法。
  14.  請求項13に記載された高負荷伝動用Vベルトの製造方法において、
     上記ブロック成型工程をRIM成形、RTM成形、又はVaRTM成形で行う高負荷伝動用Vベルトの製造方法。
  15.  請求項13に記載された高負荷伝動用Vベルトの製造方法において、
     補強構造材が炭素繊維と熱可塑性樹脂繊維との複合糸で形成されており、
     上記ブロック成型工程をプレス成形で行う高負荷伝動用Vベルトの製造方法。
PCT/JP2012/006598 2011-10-26 2012-10-15 高負荷伝動用vベルト及びその製造方法 WO2013061538A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12843589.8A EP2772662A4 (en) 2011-10-26 2012-10-15 TRAPEZOIDAL BELT FOR TRANSMITTING HIGH LOAD AND METHOD OF MANUFACTURING THE SAME
KR1020147013590A KR20140082833A (ko) 2011-10-26 2012-10-15 고부하 전동용 v 벨트 및 그 제조방법
US14/262,555 US20140235393A1 (en) 2011-10-26 2014-04-25 High load transmission v-belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-234937 2011-10-26
JP2011234937 2011-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/262,555 Continuation US20140235393A1 (en) 2011-10-26 2014-04-25 High load transmission v-belt

Publications (1)

Publication Number Publication Date
WO2013061538A1 true WO2013061538A1 (ja) 2013-05-02

Family

ID=48167394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006598 WO2013061538A1 (ja) 2011-10-26 2012-10-15 高負荷伝動用vベルト及びその製造方法

Country Status (5)

Country Link
US (1) US20140235393A1 (ja)
EP (1) EP2772662A4 (ja)
JP (1) JPWO2013061538A1 (ja)
KR (1) KR20140082833A (ja)
WO (1) WO2013061538A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205943A (ja) * 2016-05-18 2017-11-24 新日鐵住金株式会社 接合体及びその製造方法
US10716912B2 (en) 2015-03-31 2020-07-21 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
US11324908B2 (en) 2016-08-11 2022-05-10 Fisher & Paykel Healthcare Limited Collapsible conduit, patient interface and headgear connector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114482B1 (ja) * 2015-10-09 2017-04-12 バンドー化学株式会社 Vリブドベルト及びその製造方法
US9601567B1 (en) * 2015-10-30 2017-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Multiple Fin FET structures having an insulating separation plug
CN110546400B (zh) * 2017-04-27 2021-06-29 盖茨公司 带有单向织物增强件的同步带
US10743608B2 (en) 2017-12-28 2020-08-18 Under Armour, Inc. Fiber reinforced plate for articles of footwear and methods of making

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318345A (ja) * 1987-06-22 1988-12-27 Toray Ind Inc Vベルト
JPH04224342A (ja) * 1990-12-25 1992-08-13 Bando Chem Ind Ltd 高負荷伝動ベルト用ブロック及びその製造方法
JPH0516433Y2 (ja) * 1986-04-05 1993-04-30
JP2003065393A (ja) * 2001-08-24 2003-03-05 Bando Chem Ind Ltd 導電性伝動ベルト
JP2005308172A (ja) * 2004-04-26 2005-11-04 Mitsuboshi Belting Ltd 高負荷伝動ベルト
JP2010060114A (ja) 2008-09-05 2010-03-18 Bando Chem Ind Ltd 高負荷伝動用vベルト
JP2010121250A (ja) 2008-11-21 2010-06-03 Hyogo Prefecture 繊維強化複合材料およびその複合成形体
JP2010133551A (ja) * 2008-10-31 2010-06-17 Mitsuboshi Belting Ltd 高負荷伝動ベルト

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239432A (ja) * 2003-01-15 2004-08-26 Bando Chem Ind Ltd 高負荷伝動用vベルト及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516433Y2 (ja) * 1986-04-05 1993-04-30
JPS63318345A (ja) * 1987-06-22 1988-12-27 Toray Ind Inc Vベルト
JPH04224342A (ja) * 1990-12-25 1992-08-13 Bando Chem Ind Ltd 高負荷伝動ベルト用ブロック及びその製造方法
JP2003065393A (ja) * 2001-08-24 2003-03-05 Bando Chem Ind Ltd 導電性伝動ベルト
JP2005308172A (ja) * 2004-04-26 2005-11-04 Mitsuboshi Belting Ltd 高負荷伝動ベルト
JP2010060114A (ja) 2008-09-05 2010-03-18 Bando Chem Ind Ltd 高負荷伝動用vベルト
JP2010133551A (ja) * 2008-10-31 2010-06-17 Mitsuboshi Belting Ltd 高負荷伝動ベルト
JP2010121250A (ja) 2008-11-21 2010-06-03 Hyogo Prefecture 繊維強化複合材料およびその複合成形体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716912B2 (en) 2015-03-31 2020-07-21 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
US11904097B2 (en) 2015-03-31 2024-02-20 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
JP2017205943A (ja) * 2016-05-18 2017-11-24 新日鐵住金株式会社 接合体及びその製造方法
US11324908B2 (en) 2016-08-11 2022-05-10 Fisher & Paykel Healthcare Limited Collapsible conduit, patient interface and headgear connector

Also Published As

Publication number Publication date
KR20140082833A (ko) 2014-07-02
EP2772662A4 (en) 2015-06-17
JPWO2013061538A1 (ja) 2015-04-02
EP2772662A1 (en) 2014-09-03
US20140235393A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2013061538A1 (ja) 高負荷伝動用vベルト及びその製造方法
KR102165523B1 (ko) V 벨트 및 그 제조방법
JP4768893B2 (ja) 摩擦伝動ベルト
KR102070476B1 (ko) 전동 벨트
KR102062739B1 (ko) 전동 벨트 및 그 제조방법
CN108700162B (zh) 齿形带
CN103511555A (zh) 用于动力传递皮带的覆盖织物和带齿皮带
KR20130105866A (ko) 마찰전동벨트
JP6505335B1 (ja) 伝動ベルト
WO2017033392A1 (ja) 摩擦伝動ベルト
EP1130284B1 (en) Power transmission belt and method of manufacturing the power transmission belt
JP2013091252A (ja) 炭素繊維強化樹脂成形品及びその製造方法
JP5379929B1 (ja) 高負荷伝動用vベルト
CN114810944A (zh) 摩擦传动带
JP2004034352A (ja) 動力伝動ベルトの製造方法
JP2003194152A (ja) Vリブドベルト
JP6082853B1 (ja) 摩擦伝動ベルト
JP2011236994A (ja) 高負荷伝動用vベルト及びその製造方法
JP2005132037A (ja) 動力伝動ベルトの製造方法
WO2010023824A1 (ja) 高負荷伝動用vベルト
JP2017082914A (ja) ベルト
JP2003240055A (ja) 動力伝動ベルト
JP2012193770A (ja) 複合vベルト
JP2019132430A (ja) 摩擦伝動ベルト及びその製造方法
JP2007216394A (ja) 歯付ベルトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540635

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012843589

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013590

Country of ref document: KR

Kind code of ref document: A