WO2017061100A1 - Vリブドベルト及びその製造方法 - Google Patents

Vリブドベルト及びその製造方法 Download PDF

Info

Publication number
WO2017061100A1
WO2017061100A1 PCT/JP2016/004451 JP2016004451W WO2017061100A1 WO 2017061100 A1 WO2017061100 A1 WO 2017061100A1 JP 2016004451 W JP2016004451 W JP 2016004451W WO 2017061100 A1 WO2017061100 A1 WO 2017061100A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
core wire
ribbed belt
dtex
less
Prior art date
Application number
PCT/JP2016/004451
Other languages
English (en)
French (fr)
Inventor
友哉 真銅
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2016561869A priority Critical patent/JP6114482B1/ja
Priority to DE112016003826.7T priority patent/DE112016003826B4/de
Priority to CN201680052811.3A priority patent/CN108027015B/zh
Publication of WO2017061100A1 publication Critical patent/WO2017061100A1/ja
Priority to US15/916,092 priority patent/US10174808B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • B29D29/103Multi-ribbed driving belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/447Yarns or threads for specific use in general industrial applications, e.g. as filters or reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/048Natural or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2413/00Belts
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to a V-ribbed belt and a manufacturing method thereof.
  • Patent Document 1 discloses a V-ribbed belt in which a core wire composed of polybutylene terephthalate fibers having a total fineness of 4000 dtex or more and 12000 dtex or less is embedded.
  • Patent Document 2 discloses a V-ribbed belt in which a core wire made of polyethylene terephthalate fiber is embedded and the fineness per 1 mm width of the belt is 2000 dtex / mm or more and 5000 dtex / mm or less.
  • a rubber V-ribbed belt main body provided such that a plurality of V-ribs extending in the belt length direction are arranged in parallel in the belt width direction, and a spiral having a pitch in the belt width direction in the V-ribbed belt.
  • the time contraction force is 44 N or more.
  • the present invention is a belt transmission device in which the V-ribbed belt of the present invention is wound around a plurality of pulleys.
  • the present invention is a method for producing a V-ribbed belt according to the present invention, wherein the core wire is subjected to a stretching heat setting process in which a tension is applied and stretched in an adhesive treatment in which the core wire is immersed and heated, and The stretching ratio in the stretching heat setting treatment is set to be larger than 6.0%.
  • V-ribbed belt It is a perspective view of the V-ribbed belt which concerns on embodiment. It is sectional drawing for one V rib of the V ribbed belt which concerns on embodiment. It is the 1st explanatory view showing the manufacturing method of the V ribbed belt concerning an embodiment. It is the 2nd explanatory view showing the manufacturing method of the V ribbed belt concerning an embodiment. It is the 3rd explanatory view showing the manufacturing method of the V ribbed belt concerning an embodiment. It is a 4th explanatory view showing the manufacturing method of the V ribbed belt concerning an embodiment. It is a 5th explanatory view showing the manufacturing method of the V ribbed belt concerning an embodiment. It is a figure which shows the pulley layout of the auxiliary machine drive belt transmission of a motor vehicle.
  • V-ribbed belt B 1 and 2 show a V-ribbed belt B according to an embodiment.
  • the V-ribbed belt B according to the embodiment is, for example, an endless belt used for an auxiliary machine driving belt transmission provided in an engine room of an automobile.
  • the V-ribbed belt B according to the embodiment has, for example, a belt length of 700 mm to 3000 mm, a belt width of 10 mm to 36 mm, and a belt maximum thickness of 4.0 mm to 5.0 mm.
  • the V-ribbed belt B is made of rubber that is formed of a triple layer of a compression rubber layer 11 that constitutes a pulley contact portion on the inner peripheral side of the belt, an intermediate adhesive rubber layer 12, and a back rubber layer 13 on the outer peripheral side of the belt.
  • the V-ribbed belt main body 10 is provided, and a core wire 14 is embedded in an intermediate portion in the thickness direction of the adhesive rubber layer 12 of the V-ribbed belt main body 10 so as to form a spiral having a pitch in the belt width direction.
  • the compressed rubber layer 11 and the adhesive rubber layer 12 may constitute the V-ribbed belt main body 10 and a configuration in which a reinforcing cloth is provided instead of the back rubber layer 13 may be used.
  • the compressed rubber layer 11 is provided such that a plurality of V ribs 15 hang down to the inner peripheral side of the belt, and the maximum thickness is, for example, not less than 3.5 mm and not more than 5.0 mm.
  • the plurality of V ribs 15 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction, and provided in parallel in the belt width direction.
  • the height of the V rib 15 is not less than 2.0 mm and not more than 3.0 mm, and the belt width for one V rib 15 is typically 3.56 mm.
  • the number of V ribs 15 is, for example, 3 or more and 6 or less (6 in FIG. 1).
  • the adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 1.0 mm to 2.5 mm.
  • the back rubber layer 13 is also configured in a band shape having a horizontally long cross section, and has a thickness of, for example, 0.4 mm or more and 0.8 mm or less.
  • the surface of the back rubber layer 13 is preferably formed in a form in which the texture of the woven fabric is transferred from the viewpoint of suppressing the sound generated between the back rubber layer 13 and the flat pulley in contact with the belt back surface.
  • the compression rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are rubber compositions obtained by heating and pressurizing an uncrosslinked rubber composition in which various compounding agents are blended in a rubber component and then crosslinking with a crosslinking agent. It is formed of things. This rubber composition may be either crosslinked with sulfur as a crosslinking agent or crosslinked with an organic peroxide as a crosslinking agent.
  • the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 may be formed of different rubber compositions or may be formed of the same rubber composition.
  • the back rubber layer 13 is preferably made of a rubber composition slightly harder than the adhesive rubber layer 12 from the viewpoint of suppressing the occurrence of adhesion due to contact with the flat pulley with which the belt back contacts.
  • Examples of the rubber component of the rubber composition forming the compression rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 include ethylene- ⁇ -olefin elastomer (EPDM, EPR, etc.), chloroprene rubber (CR), chlorosulfone. And polyethylene rubber (CSM) and hydrogenated acrylonitrile rubber (H-NBR).
  • Examples of the compounding agent include a reinforcing material, a filler, a softening agent, a processing aid, a vulcanization acceleration aid, a crosslinking agent, a vulcanization accelerator, and an antiaging agent.
  • the rubber composition forming the compressed rubber layer 11 may contain short fibers such as nylon short fibers.
  • the short fibers are preferably included in the compressed rubber layer 11 so as to be oriented in the belt width direction, and the short fibers are preferably provided so as to protrude from the surface of the compressed rubber layer 11.
  • the rubber composition that forms the compressed rubber layer 11 may not have a configuration including short fibers, but may have a configuration in which the short fibers are attached to the surface of the V rib 15 of the compressed rubber layer 11.
  • the core wire 14 is composed of a filament yarn of polyester fiber.
  • the polyester fibers constituting the core wire 14 include polyethylene terephthalate fibers, polyethylene naphthalate fibers, polypropylene terephthalate fibers, polybutylene terephthalate fibers, and fibers of one or more types of these copolymers. It is done.
  • the core wire 14 may be composed of a single type of polyester fiber, or may be composed of a mixture of a plurality of types of polyester fiber.
  • the fineness of the filament of the polyester fiber constituting the core wire 14 is, for example, 4.4 dtex or more and 6.6 dtex or less, and the filament diameter is, for example, 20 ⁇ m or more and 25 ⁇ m or less.
  • the total fineness of the polyester fibers constituting the core wire 14 is 2200 dtex or more and 5500 dtex or less, and preferably 3300 dtex or more from the viewpoint of suppressing a decrease in belt tension. Further, the belt bending rigidity is lowered to increase efficiency. From the viewpoint of aiming, it is preferably 4400 dtex or less.
  • the outer diameter D of the core wire 14 is preferably 0.50 mm or more, more preferably 0.60 mm or more, and further preferably 0.70 mm or more from the viewpoint of suppressing a decrease in belt tension. From the viewpoint of increasing the efficiency by reducing the thickness, it is preferably 1.00 mm or less, more preferably 0.95 mm or less, and still more preferably 0.85 mm or less.
  • the pitch P of the core 14 in the belt width direction is determined by the distance from the core 14 to the adhesive rubber layer 12 of the V-ribbed belt body 10. From the viewpoint of obtaining sufficient adhesiveness, it is preferably 0.70 mm or more, more preferably 0.75 mm or more, and still more preferably 0.85 mm or more, and from the viewpoint of suppressing a decrease in belt tension, preferably 1. It is 10 mm or less, More preferably, it is 1.05 mm or less, More preferably, it is 0.95 mm or less.
  • the distance (PD) between the cores 14 adjacent to each other in the belt width direction is preferably 0.08 mm from the viewpoint of obtaining sufficient adhesion of the core 14 to the adhesive rubber layer 12 of the V-ribbed belt body 10. As mentioned above, it is more preferably 0.13 mm or more, and preferably 0.20 mm or less, more preferably 0.15 mm or less from the viewpoint of suppressing a decrease in belt tension.
  • the fineness of the core wire 14 is 10,000 dtex or more and 19000 dtex or less per belt width of one V rib 15, and preferably 13500 dtex or more from the viewpoint of suppressing a decrease in belt tension. In addition, from the viewpoint of improving the efficiency by lowering the belt bending rigidity, it is preferably 16500 dtex or less.
  • the fineness of the core wire 14 per belt width of one V rib 15 can be obtained by dividing the sum of the fineness of the core wires 14 arranged in the belt width direction by the number of V ribs 15.
  • Examples of the yarn configuration of the core wire 14 include various twisted yarns, single twisted yarns, rung twisted yarns, and braids. Of these, twisted yarns are preferred.
  • the plied yarns are a collection of a plurality of lower twisted yarns obtained by twisting a fiber bundle of a predetermined fineness composed of one or a plurality of yarns in one direction at a predetermined lower twist number, and the plurality of the lower twisted yarns in the lower twist direction. Is a yarn twisted with a predetermined number of twists in the opposite direction.
  • the number of yarns included in the lower twisted yarn is preferably one or two from the viewpoint of the balance between high efficiency and suppression of belt tension reduction. is there. From the same viewpoint, the fineness of the lower twisted yarn is preferably 1100 dtex.
  • the number of lower twists is preferably 25 times / 10 cm or more, more preferably 28 times / 10 cm or more, and preferably 32 times / 10 cm or less, more preferably 29 times / 10 cm or less.
  • the twist coefficient of the lower twist is preferably 700 or more, more preferably 800 or more, and preferably 1100 or less, more preferably 1000 or less.
  • a twist coefficient is calculated
  • the number of lower plied yarns is preferably 2 from the viewpoint of improving efficiency and suppressing the decrease in belt tension. As described above, the number is more preferably 3, and the number is preferably 5 or less, more preferably 4 or less. From the same viewpoint, the number of twists is preferably 8 times / 10 cm or more, more preferably 10 times / 10 cm or more, still more preferably 13 times / 10 cm or more, and preferably 23 times / 10 cm or less, more preferably Is 21 times / 10 cm or less, more preferably 18 times or less.
  • the twist coefficient of the upper twist is preferably 700 or more, more preferably 800 or more, and preferably 1100 or less, more preferably 1000 or less.
  • the twist coefficient of the upper twist is preferably the same as the twist coefficient of the lower twist.
  • the cords 14 of the various twisted yarns may be either S-twisted yarn having an upper twist of S twist or Z-twisted yarn having an upper twist of Z twist. Further, the core wires 14 of the plied yarns may be provided so that both the S twisted yarn and the Z twisted yarn form a double helix.
  • the belt shrinkage force at the time of dry heat is 44 N or more per belt width of one V rib 15, and is preferably 45 N or more from the viewpoint of suppressing a decrease in belt tension. Also, from the viewpoint of practicality, it is preferably 55N or less, more preferably 51N or less, and still more preferably 47N or less.
  • the shrinkage force during dry heat is obtained by applying a load of 6N in the belt length direction for a belt length of 300 mm under an atmosphere of 150 ° C. using a test piece having a belt width corresponding to one or a plurality of V ribs 15. It is determined as the amount of increase in load 30 minutes after loading and fixing. When the test piece has a belt width corresponding to a plurality of V ribs 15, the load increase amount is divided by the number of V ribs 15.
  • the belt bending rigidity EI obtained based on the following formula (2) is preferably 0.045 N ⁇ m 2 or more, more preferably 0.050 N per belt width of one V rib 15 from the viewpoint of practicality.
  • ⁇ M 2 or more more preferably 0.060 N ⁇ m 2 or more, and from the viewpoint of high efficiency, preferably 0.080 N ⁇ m 2 or less, more preferably 0.075 N ⁇ m 2 or less, and still more preferably Is 0.070 N ⁇ m 2 or less.
  • the V-ribbed belt provided in the engine room of the automobile is required to be highly efficient under the same usage environment as before.
  • it is effective to reduce the belt rigidity by reducing the core wire.
  • the total fineness of the core wire 14 made of polyester fiber is as thin as 2200 dtex or more and 5500 dtex or less, so that high efficiency can be achieved.
  • the fineness of the core wire 14 is 10000 dtex or more and 19000 dtex or less per belt width of one V-rib, and 6N in the belt length direction with respect to a belt length of 300 mm in an atmosphere of 150 ° C.
  • the belt contraction force at the time of dry heat which is the amount of increase in the load 30 minutes after the load is fixed, is 44 N or more, so that the belt tension is prevented from being lowered and can be sufficiently put into practical use.
  • the manufacturing method of the V-ribbed belt B according to the embodiment includes a material preparation process, a material setting process, a vulcanization molding process, a grinding process, and a width cutting process.
  • ⁇ Material preparation process> Each compound is blended with a rubber component and kneaded with a kneader such as a kneader or a Banbury mixer, and the resulting uncrosslinked rubber composition is molded into a sheet by calendering or the like to form an uncrosslinked rubber sheet for a compressed rubber layer 11 ′ is produced.
  • a kneader such as a kneader or a Banbury mixer
  • the core wire 14 ′ is subjected to an adhesion treatment in which the core wire 14 ′ is immersed in an adhesive such as an RFL aqueous solution and heated, and a stretching heat setting treatment in which tension is applied and stretched.
  • an adhesion treatment in which the core wire 14 ′ is immersed in an adhesive such as an RFL aqueous solution and heated, and a stretching heat setting treatment in which tension is applied and stretched.
  • the RFL aqueous solution is a mixture of latex with an initial condensate of resorcin and formaldehyde.
  • the liquid temperature of the RFL aqueous solution is, for example, 20 ° C. or higher and 30 ° C. or lower.
  • the solid content concentration of the RFL aqueous solution is, for example, 30% by mass or less.
  • the immersion time of the core wire 14 'in the RFL aqueous solution is, for example, 1 second or more and 3 seconds or less.
  • the heating temperature (furnace temperature) after immersion in the RFL aqueous solution is, for example, 200 ° C. or more and 250 ° C. or less.
  • the heating time (residence time in the furnace) is, for example, 1 minute or more and 3 minutes or less.
  • the tension applied to the core wire 14 ′ for the stretching heat setting process during the adhesion process using the RFL aqueous solution is 0.91 cN / dtex or more and 1.67 cN / dtex or less.
  • the number of adhesion treatments of the core wire 14 ′ with the RFL aqueous solution may be only once or may be two or more.
  • RFL solid matter adheres to the inside and the surface of the core wire 14 ′, and the attached amount (weight per unit area) of the V-ribbed belt body of the core wire 14 is based on the mass of the polyester fiber constituting the core wire 14 ′.
  • it is preferably 4% by mass or more, more preferably 6% by mass or more, and still more preferably 6.5% by mass or more.
  • it is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably 7.5% by mass or less.
  • an adhesion treatment in which epoxy or isocyanate (block isocyanate) is dissolved in a solvent such as toluene or immersed in a primer solution and heated before the adhesion treatment with an RFL aqueous solution. May be applied.
  • the temperature of the primer solution is, for example, 20 ° C. or higher and 30 ° C. or lower.
  • the solid content concentration of the primer solution is, for example, 20% by mass or less.
  • the immersion time of the core wire 14 'in the primer solution is, for example, 1 second or more and 3 seconds or less.
  • the heating temperature (furnace temperature) after immersion in the primer solution is, for example, 200 ° C. or higher and 250 ° C. or lower.
  • the heating time (residence time in the furnace) is, for example, 1 minute or more and 3 minutes or less.
  • the tension applied to the core wire 14 ′ for the stretching heat setting process during the bonding process using the primer solution is, for example, 0.30 cN / dtex or more and 0.61 cN / dtex or less.
  • the number of times of the adhesion treatment with the primer solution of the core wire 14 ′ may be only once or may be two times or more.
  • the amount of attachment (weight per unit area) of the V-ribbed belt body of the core wire 14 is based on the mass of the polyester fiber constituting the core wire 14 ′.
  • it is preferably 2% by mass or more, more preferably 3% by mass or more, and from the viewpoint of increasing the efficiency by reducing the belt bending rigidity.
  • the core wire 14 ′ may be subjected to an adhesion treatment in which an unvulcanized rubber composition is dipped in a rubber paste dissolved in a solvent such as toluene and dried by heating after the adhesion treatment with the RFL aqueous solution.
  • the temperature of the rubber paste is, for example, 20 ° C. or higher and 30 ° C. or lower.
  • the solid content concentration of the rubber paste is, for example, 20% by mass or less.
  • the immersion time of the core wire 14 ′ in the rubber paste is, for example, not less than 1 second and not more than 3 seconds.
  • the drying temperature (furnace temperature) after immersion in rubber paste is, for example, 50 ° C. or higher and 100 ° C. or lower.
  • the drying time (residence time in the furnace) is, for example, 1 minute or more and 3 minutes or less.
  • the tension applied to the core wire 14 ′ during the adhesive treatment with rubber glue is, for example, not less than 0.30 cN / dtex and not more than 0.61 cN / dtex.
  • the number of times of bonding with the rubber paste of the core wire 14 ′ may be one time or may be two times or more.
  • a glue rubber film adheres to the surface of the core wire 14 ', and the amount of attachment (weight per unit area) is, for example, 2% by mass or more and 5% by mass or less based on the mass of the polyester fiber constituting the core wire 14'. is there.
  • the stretching rate in the stretching heat setting process performed during the bonding process on the core wire 14 ′ is to reduce the belt tension by reducing the belt bending rigidity by suppressing the impregnation of the adhesive and reducing the belt tension. From the viewpoint of suppression, it is preferably larger than 6.0%, more preferably 6.2% or more, still more preferably 6.5% by mass or more, and from the viewpoint of practicality, preferably 7.5%. Hereinafter, it is more preferably 7.2% or less, still more preferably 7.0% or less.
  • the shrinkage stress during drying of the core wire 14 ′ after the adhesion treatment and the stretching heat setting treatment is preferably 0.20 cN / dtex or more, more preferably 0.25 cN / dtex or more, From the viewpoint of practicality, it is preferably 0.50 cN / dtex or less, more preferably 0.45 cN / dtex or less, and 0.35 cN / dtex or less.
  • the shrinkage stress during dry heat is obtained based on JIS L1017.
  • an uncrosslinked rubber sheet 13 ′ for the back rubber layer and an uncrosslinked rubber sheet 12 ′ for the adhesive rubber layer are sequentially wound on the outer periphery of the cylindrical mold 21 and laminated thereon.
  • a core wire 14 'that has been subjected to an adhesion treatment and a stretching heat setting treatment is wound around the cylindrical mold 21 with a certain tension spirally wound thereon, and an uncrosslinked rubber sheet 12' for the adhesive rubber layer is further wound thereon.
  • a layered product B ′ is formed by sequentially winding and laminating uncrosslinked rubber sheets 11 ′ for the compressed rubber layer.
  • the tension at the time of winding the core wire 14 ′ is preferably 0.18 N / dtex or more, more preferably 0.20 N / dtex or more from the viewpoint of suppressing a decrease in belt tension, and from the viewpoint of practicality, Preferably it is 0.27 N / dtex or less, More preferably, it is 0.25 N / dtex or less.
  • the laminated body B ′ is covered with a rubber sleeve 22, placed in a vulcanizing can and sealed, and filled with high-temperature and high-pressure steam in a vulcanizing can. Hold for molding time only.
  • the crosslinking of the uncrosslinked rubber sheets 11 ′, 12 ′, and 13 ′ proceeds and integrates and is combined with the core wire 14 ′, and finally, the cylindrical belt slab S Is molded.
  • the molding temperature of the belt slab S is, for example, 100 ° C. to 180 ° C.
  • the molding pressure is, for example, 0.5 MPa to 2.0 MPa
  • the molding time is, for example, 10 minutes to 60 minutes.
  • FIG. 8 shows a pulley layout of an auxiliary drive belt transmission device 30 for an automobile using the V-ribbed belt B according to the first embodiment.
  • This accessory drive belt transmission device 30 is of a serpentine drive type in which a V-ribbed belt B is wound around six pulleys, four rib pulleys and two flat pulleys, to transmit power.
  • the auxiliary drive belt transmission device 30 is provided with a power steering pulley 31 of a rib pulley at the uppermost position, and an AC generator pulley 32 of a rib pulley is provided below the power steering pulley 31.
  • a flat pulley tensioner pulley 33 is provided at the lower left of the power steering pulley 31, and a flat pulley water pump pulley 34 is provided below the tensioner pulley 33.
  • a ribshaft crankshaft pulley 35 is provided on the lower left side of the tensioner pulley 33, and a rib pulley air conditioner pulley 36 is provided on the lower right side of the crankshaft pulley 35.
  • These pulleys are made of, for example, a metal stamped product, a cast, a resin molded product such as a nylon resin, a phenol resin, or the like, and have a pulley diameter of 50 mm to 150 mm.
  • the V-ribbed belt B is wound around the power steering pulley 31 so that the V-rib 15 side contacts, and then wound around the tensioner pulley 33 so that the back side of the belt contacts. Further, the crankshaft pulley 35 and the air conditioner pulley 36 are wound around in order so that the V rib 15 side comes into contact, and further, they are wound around the water pump pulley 34 so that the back side of the belt comes into contact, and the V rib 15 side comes into contact. Is wound around an AC generator pulley 32 and finally returned to the power steering pulley 31.
  • the belt span length which is the length of the V-ribbed belt B spanned between the pulleys, is, for example, not less than 50 mm and not more than 300 mm. Misalignment that may occur between the pulleys is 0 ° or more and 2 ° or less.
  • V-ribbed belt V-ribbed belts of Examples 1 to 4 and Comparative Examples 1 to 5 below were produced. The respective configurations are also shown in Tables 1 and 2.
  • Example 1 Collect two lower twisted yarns of 1100 tex polyester fiber bundle (manufactured by Teijin Ltd.) twisted in the S direction at a lower twist number (twisting factor 900) of 28.6 times / 10 cm, and these two lower twisted yarns in the Z direction A core wire of various twisted yarns was prepared by first twisting with 20.2 times / 10 cm of the upper twist number (twist coefficient 900).
  • the core wire was subjected to an adhesive treatment in which it was immersed in a primer solution for heating, an adhesive treatment in which it was immersed in an RFL aqueous solution for heating, and an adhesive treatment in which it was immersed in rubber glue for heating.
  • a primer solution an isocyanate resin toluene solution was used, and the number of times of adhesion treatment was one.
  • RFL aqueous solution one having a latex component of vinylpyridine styrene butadiene rubber latex was used, and the number of times of adhesion treatment was two.
  • the rubber paste a rubber composition for forming an adhesive rubber layer dissolved in toluene was used, and the number of times of adhesion treatment was one.
  • a stretching heat setting treatment was performed so that the stretching ratio was 7.2%.
  • the amount of resin solids attached to the primer solution (weight per unit area) is 4.0% by mass, based on the mass of the polyester fiber constituting the core, and the RFL solids using the RFL aqueous solution.
  • the adhesion amount (weight per unit area) of the product was 8.0% by mass, and the adhesion amount (weight per unit area) of the glue rubber film with rubber paste was 4.0% by mass.
  • the shrinkage stress at the time of dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment obtained based on JIS L1017 was 0.43 cN / dtex.
  • a V-ribbed belt was produced by the same method as in the above embodiment using this core wire subjected to the adhesion treatment and the stretching heat setting treatment.
  • the tension when winding the core wire was 0.23 cN / dtex
  • the pitch P in the belt width direction of the core wire was 0.75 mm.
  • the outer diameter D of the core wire is 0.60 mm
  • the distance (PD) between the core wires adjacent to each other in the belt width direction is 0.15 mm
  • the core wire per belt width for one V-rib The fineness was 10443 dtex.
  • the compression rubber layer, the adhesive rubber layer, and the back rubber layer were formed of a rubber composition containing EPDM as a rubber component.
  • the belt circumference is 1200 mm
  • the belt thickness is 4.3 mm
  • the belt width of one V-rib is 3.56 mm
  • the number of V-ribs is 2 (belt width 7.12 mm)
  • 4 (belt width) 14.24 mm) and 6 sizes were produced.
  • Example 2 Three pieces of the 1100 tex polyester fiber bundle twisted in the S direction with 28.6 times / 10cm of the number of twists (twisting factor 900) were collected, and the three pieces of the lower twisted yarn were 16.5 times in the Z direction. / 10cm using twisted cores of twisted yarn (twisting factor 900), 6.8% stretch rate by stretching heat setting process, and the core P pitch P in the belt width direction is 0.85mm Except for the above, a V-ribbed belt was produced in the same manner as in Example 1 and designated as Example 2.
  • the amount of resin solid matter attached (primary amount) by the primer solution based on the mass of the polyester fiber constituting the core wire is 4.0% by mass
  • the RFL solid matter by the RFL aqueous solution The adhesion amount (weight per unit area) was 7.0% by mass, and the adhesion amount (weight per unit area) of the glue rubber film by rubber paste was 3.6% by mass.
  • the shrinkage stress during dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment was 0.32 cN / dtex.
  • the outer diameter D of the core wire is 0.71 mm
  • the distance between the core wires adjacent to each other in the belt width direction (P ⁇ D) is 0.14 mm
  • the per belt width of one V rib was 13821 dtex.
  • Example 3 Collect 4 pieces of 1x tex polyester fiber bundle twisted 28.6 times / 10cm in the S direction (twisting factor 900) and 4 times in the Z direction. / 10cm, using twisted strands of twisted yarn with a twist of 900cm (twisting factor 900), stretching ratio of 6.8% by stretching heat setting treatment, and pitch P in the belt width direction of the strands of 0.95mm Except for the above, a V-ribbed belt was produced in the same manner as in Example 1 and designated as Example 3.
  • the amount of resin solid matter attached (primary amount) by the primer solution based on the mass of the polyester fiber constituting the core wire is 4.0% by mass
  • the RFL solid matter by the RFL aqueous solution The adhesion amount (weight per unit area) was 6.5% by mass, and the adhesion amount (weight per unit area) of the glue rubber film with rubber paste was 3.3% by mass.
  • the shrinkage stress at the time of dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment was 0.29 cN / dtex.
  • the outer diameter D of the core wire is 0.82 mm
  • the distance between the core wires adjacent to each other in the belt width direction (P ⁇ D) is 0.13 mm
  • the per belt width of one V rib was 16488 dtex.
  • Example 4 Collect 5 pieces of 1100 tex polyester fiber bundle twisted 28.6 times / 10cm in the S direction with a twist number of 900cm (twisting factor 900), and 12.8 times those 5 twisted yarns in the Z direction. / 10cm using twisted strands of twisted yarn (twisting coefficient 900), stretching rate by stretching heat fixing treatment is 6.2%, and pitch P in the belt width direction of the strand is 1.05mm Except for the above, a V-ribbed belt was produced in the same manner as in Example 1 and designated as Example 4.
  • the amount of resin solid matter attached (primary amount) by the primer solution based on the mass of the polyester fiber constituting the core wire is 4.0% by mass
  • the RFL solid matter by the RFL aqueous solution The adhesion amount (weight per unit area) was 6.0% by mass, and the adhesion amount (weight per unit area) of the glue rubber film with rubber paste was 3.0% by mass.
  • the shrinkage stress during dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment was 0.27 cN / dtex.
  • the outer diameter D of the core wire is 0.91 mm
  • the distance between the core wires adjacent to each other in the belt width direction (P ⁇ D) is 0.14 mm
  • the per belt width for one V-rib was 18684 dtex.
  • the amount of resin solid matter attached (primary amount) by the primer solution based on the mass of the polyester fiber constituting the core wire is 4.0% by mass
  • the RFL solid matter by the RFL aqueous solution The adhesion amount (weight per unit area) was 5.7% by mass, and the adhesion amount (weight per unit area) of the glue rubber film with rubber paste was 2.8% by mass.
  • the shrinkage stress during dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment was 0.28 cN / dtex.
  • the outer diameter D of the core wire is 1.00 mm
  • the distance (PD) between the core wires adjacent to each other in the belt width direction is 0.15 mm
  • the per belt width for one V-rib was 19800 dtex.
  • the amount of resin solid matter attached (primary amount) by the primer solution based on the mass of the polyester fiber constituting the core wire is 4.0% by mass
  • the RFL solid matter by the RFL aqueous solution The adhesion amount (weight per unit area) was 5.7% by mass, and the adhesion amount (weight per unit area) of the glue rubber film with rubber paste was 2.8% by mass.
  • the shrinkage stress during dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment was 0.27 cN / dtex.
  • the outer diameter D of the core wire is 1.15 mm
  • the distance (P ⁇ D) between the core wires adjacent to each other in the belt width direction is 0.15 mm
  • the fineness of the core wire was 19800 dtex.
  • the amount of resin solid matter attached (primary amount) by the primer solution based on the mass of the polyester fiber constituting the core wire is 4.0% by mass
  • the RFL solid matter by the RFL aqueous solution The adhesion amount (weight per unit area) was 6.5% by mass, and the adhesion amount (weight per unit area) of the glue rubber film with rubber paste was 3.3% by mass.
  • the shrinkage stress during dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment was 0.26 cN / dtex.
  • the outer diameter D of the core wire is 0.82 mm
  • the distance between the core wires adjacent to each other in the belt width direction (P ⁇ D) is 0.13 mm
  • the per belt width of one V rib was 16488 dtex.
  • the amount of resin solid matter attached (primary amount) by the primer solution based on the mass of the polyester fiber constituting the core wire is 4.0% by mass
  • the RFL solid matter by the RFL aqueous solution The adhesion amount (weight per unit area) was 7.0% by mass, and the adhesion amount (weight per unit area) of the glue rubber film by rubber paste was 3.6% by mass.
  • the shrinkage stress during dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment was 0.27 cN / dtex.
  • the outer diameter D of the core wire is 0.71 mm
  • the distance between the core wires adjacent to each other in the belt width direction (P ⁇ D) is 0.14 mm
  • the per belt width of one V rib was 13821 dtex.
  • the amount of resin solid matter attached (primary amount) by the primer solution based on the mass of the polyester fiber constituting the core wire is 4.0% by mass
  • the RFL solid matter by the RFL aqueous solution The adhesion amount (weight per unit area) was 8.0% by mass, and the adhesion amount (weight per unit area) of the glue rubber film with rubber paste was 4.0% by mass.
  • the shrinkage stress at the time of dry heat of the core wire after the adhesion treatment and the stretching heat setting treatment was 0.34 cN / dtex.
  • the outer diameter D of the core wire is 0.60 mm
  • the distance (PD) between the core wires adjacent to each other in the belt width direction is 0.15 mm
  • the per belt width of one V rib was 0.10443 dtex.
  • FIG. 10A and 10B show a belt power loss measuring device 50.
  • FIG. 10A and 10B show a belt power loss measuring device 50.
  • the belt power loss measuring device 50 includes a rib pulley driving pulley 51 having a pulley diameter of 50 mm and a rib pulley driven pulley 52 having a pulley diameter of 50 mm provided on the right side thereof.
  • the drive pulley 51 is attached to one end of a drive shaft 51b rotatably provided by a pair of support shafts 51a provided at intervals, and a rotation imparting pulley 51c is provided at the other end of the drive shaft 51b. It has been.
  • a motor pulley 53b that is pivotally supported by the motor shaft 53a of the drive motor 53 is provided on the right side of the rotation imparting pulley 51c.
  • a rotation drive belt 54 is wound around the rotation imparting pulley 51c and the motor pulley 53b. Yes.
  • a torque meter 55 for detecting the rotational torque of the drive shaft 51b is provided between the pair of support shafts 51a.
  • the driven pulley 52 is attached to one end of a drive shaft 52b that is rotatably provided by a pair of support shafts 52a that are spaced apart from each other, and the entirety thereof is movably provided in the left-right direction.
  • the V-ribbed belt having two V-ribs in each of Examples 1 to 4 and Comparative Examples 1 to 5 is wound around the drive pulley 51 and the driven pulley 52 and has a dead weight of 600 N on the right side of the driven pulley 52 ( DW) was loaded, and the belt was run by rotating the driving pulley 51 at a rotational speed of 3000 rpm by the driving motor 53 in a room temperature atmosphere, and the driving torque at that time was measured with a torque meter 55. Similarly, the driving torque was measured for V-ribbed belts having 4 and 6 V-ribs. In order to measure a stable driving torque by eliminating the influence of heat generation or the like, the measurement was performed after running the belt for 1 hour.
  • the belt bending stiffness was determined using an Olsen bending tester in the same manner as described above.
  • the loss torque was subtracted from each measured value of the drive torque.
  • the power was converted, and the average power obtained by dividing the power by the number of V ribs was obtained to determine the belt power loss per belt width for one V rib.
  • FIG. 11 shows a pulley layout of the belt running test machine 60.
  • This belt running test machine 60 is provided with a drive pulley 61 of a rib pulley having a pulley diameter of 120 mm, a first driven pulley 62 of a rib pulley having a pulley diameter of 120 mm provided above it, and a right side in the middle in the vertical direction thereof. And a second driven pulley 63 of a rib pulley having a pulley diameter of 45 mm. The second driven pulley 63 is positioned so that the belt winding angle is 90 °.
  • the belt running tester 60 was set, and the second driven pulley 63 was loaded with a set weight (SW) of 834N on the right side.
  • SW set weight
  • the belt tension of the V-ribbed belt B is measured using a non-contact type belt tension measuring device under an atmospheric temperature of 23 ° C., and then the driving pulley 61 is rotated at a rotational speed of 4900 rpm for 150 hours.
  • the belt tension of the V-ribbed belt B was measured again, and the belt tension maintenance rate was calculated from the belt tension before and after belt running.
  • Test results The test results are shown in Tables 3 and 4.
  • the total fineness of the core wire made of polyester fibers is as thin as 2200 dtex or more and 5500 dtex or less, and the belt bending rigidity is low, so the belt power loss is small and high efficiency. It turns out that it is.
  • the contraction force during belt dry heat is 44 N or more, and the belt tension maintenance rate is high, so that the decrease in belt tension is suppressed.
  • the belt shrinkage force at the time of dry heat is 44 N or more, and the belt tension maintenance rate is high, so that the decrease in belt tension is suppressed, but the total fineness of the core wire is as thick as 6600 dtex. Also, it can be seen that the belt bending rigidity is high, so that the belt power loss is large and the efficiency is low.
  • the total fineness of the core wire is as thin as 4400 dtex, but the belt bending rigidity is high, the belt power loss is high, the contraction force when the belt is dry heat is lower than 44 N, and the belt tension maintenance rate is also low. Therefore, it can be seen that the belt tension is greatly reduced.
  • Comparative Example 4 although the total fineness of the core wire is as thin as 3300 dtex, the belt bending rigidity is high and the belt power loss is high as compared with Example 2 in which the total fineness of the core wire is the same. It can be seen that the time contraction force is lower than 44N and the belt tension maintenance rate is low, and therefore the belt tension is greatly reduced.
  • Comparative Example 5 although the total fineness of the core wire is as thin as 2200 dtex, the belt bending rigidity is higher than that in Example 1 in which the total fineness of the core wire is the same, and the total fineness of the core wire is the same. Compared with 1, the belt power loss is also high, and the belt shrinkage force during dry heat is lower than 44N, and the belt tension maintenance rate is also low, so that it can be seen that the belt tension is greatly reduced.
  • the present invention is useful in the technical field of V-ribbed belts and manufacturing methods thereof.
  • V-ribbed belt 10 V-ribbed belt body 14, 14 'Core 15 V-rib

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Vリブドベルト(B)は、心線(14)がポリエステル系繊維で構成され、その総繊度が2200dtex以上5500dtex以下であり、また、Vリブ(15)の1個分のベルト幅当たりにおいて、心線(14)の繊度が10000dtex以上19000dtex以下であり、且つ150℃の雰囲気下、ベルト長さ300mmについて、ベルト長さ方向に6Nの荷重を負荷して固定してから30分後の荷重の上昇量であるベルト乾熱時収縮力が44N以上である。

Description

Vリブドベルト及びその製造方法
 本発明は、Vリブドベルト及びその製造方法に関する。
 ポリエステル系繊維で構成された心線が埋設された伝動ベルトは公知である。例えば、特許文献1には、総繊度が4000dtex以上12000dtex以下のポリブチレンテレフタレート繊維で構成された心線が埋設されたVリブドベルトが開示されている。特許文献2には、ポリエチレンテレフタレート繊維で構成された心線が埋設され、そのベルト1mm幅当たりの繊度が2000dtex/mm以上5000dtex/mm以下であるVリブドベルトが開示されている。
特開2005-076703号公報 特開2005-076705号公報
 本発明は、各々、ベルト長さ方向に延びる複数のVリブがベルト幅方向に並列するように設けられたゴム製のVリブドベルト本体と、前記Vリブドベルトに、ベルト幅方向にピッチを有する螺旋を形成するように埋設され総繊度が2200dtex以上5500dtex以下のポリエステル系繊維で構成された心線とを備えたVリブドベルトであって、前記Vリブ1個分のベルト幅当たりにおいて、前記心線の繊度が10000dtex以上19000dtex以下であり、且つ150℃の雰囲気下、ベルト長さ300mmについて、ベルト長さ方向に6Nの荷重を負荷して固定してから30分後の荷重の上昇量であるベルト乾熱時収縮力が44N以上である。
 本発明は、本発明のVリブドベルトが複数のプーリに巻き掛けられたベルト伝動装置である。
 本発明は、本発明のVリブドベルトの製造方法であって、前記心線に対し、接着剤に浸漬して加熱する接着処理の際に張力を付与して延伸する延伸熱固定処理を施し、且つ前記延伸熱固定処理における延伸率を6.0%よりも大きくするものである。
実施形態に係るVリブドベルトの斜視図である。 実施形態に係るVリブドベルトのVリブ1個分の断面図である。 実施形態に係るVリブドベルトの製造方法を示す第1の説明図である。 実施形態に係るVリブドベルトの製造方法を示す第2の説明図である。 実施形態に係るVリブドベルトの製造方法を示す第3の説明図である。 実施形態に係るVリブドベルトの製造方法を示す第4の説明図である。 実施形態に係るVリブドベルトの製造方法を示す第5の説明図である。 自動車の補機駆動ベルト伝動装置のプーリレイアウトを示す図である。 ベルト乾熱時収縮力の測定方法の説明図である。 ベルト動力損失測定装置の正面図である。 ベルト動力損失測定装置の平面図である。 ベルト走行試験機のプーリレイアウトを示す図である。
 以下、実施形態について図面に基づいて詳細に説明する。
 (VリブドベルトB)
 図1及び2は、実施形態に係るVリブドベルトBを示す。実施形態に係るVリブドベルトBは、例えば、自動車のエンジンルーム内に設けられる補機駆動用のベルト伝動装置等に用いられるエンドレスのものである。実施形態に係るVリブドベルトBは、例えば、ベルト長さが700mm以上3000mm以下、ベルト幅が10mm以上36mm以下、及びベルト最大厚さが4.0mm以上5.0mm以下である。
 実施形態に係るVリブドベルトBは、ベルト内周側のプーリ接触部分を構成する圧縮ゴム層11と中間の接着ゴム層12とベルト外周側の背面ゴム層13との三重層に構成されたゴム製のVリブドベルト本体10を備えており、Vリブドベルト本体10の接着ゴム層12の厚さ方向の中間部には、ベルト幅方向にピッチを有する螺旋を形成するように心線14が埋設されている。なお、圧縮ゴム層11と接着ゴム層12とでVリブドベルト本体10を構成し、背面ゴム層13の代わりに補強布が設けられた構成であってもよい。
 圧縮ゴム層11は、複数のVリブ15がベルト内周側に垂下するように設けられており、最大厚さが例えば3.5mm以上5.0mm以下である。複数のVリブ15は、各々がベルト長さ方向に延びる断面略逆三角形の突条に形成されていると共に、ベルト幅方向に並列するように設けられている。Vリブ15の高さは2.0mm以上3.0mm以下であり、Vリブ15の1個分のベルト幅は典型的には3.56mmである。また、Vリブ15の個数は例えば3個以上6個以下である(図1では6個)。
 接着ゴム層12は、断面横長矩形の帯状に構成されており、厚さが例えば1.0mm以上2.5mm以下である。背面ゴム層13も、断面横長矩形の帯状に構成されており、厚さが例えば0.4mm以上0.8mm以下である。背面ゴム層13の表面は、ベルト背面が接触する平プーリとの間で生じる音を抑制する観点から、織布の布目が転写された形態に形成されていることが好ましい。
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13は、ゴム成分に種々の配合剤が配合されて混練された未架橋ゴム組成物を加熱及び加圧して架橋剤により架橋させたゴム組成物で形成されている。このゴム組成物は、硫黄を架橋剤として架橋したものであっても、また、有機過酸化物を架橋剤として架橋したものであっても、どちらでもよい。圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13は、別配合のゴム組成物で形成されていても、また、同じ配合のゴム組成物で形成されていても、どちらでもよい。ベルト背面が接触する平プーリとの接触で粘着が生じるのを抑制する観点からは、背面ゴム層13は、接着ゴム層12よりもやや硬めのゴム組成物で形成されていることが好ましい。
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物のゴム成分としては、例えば、エチレン-α-オレフィンエラストマー(EPDM、EPRなど)、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。配合剤としては、補強材、充填剤、軟化剤、加工助剤、加硫促進助剤、架橋剤、加硫促進剤、老化防止剤等が挙げられる。
 圧縮ゴム層11を形成するゴム組成物は、ナイロン短繊維等の短繊維を含んでいてもよい。その場合、短繊維が圧縮ゴム層11にベルト幅方向に配向するように含まれていることが好ましく、また、短繊維が圧縮ゴム層11の表面から突出するように設けられていることが好ましい。なお、圧縮ゴム層11を形成するゴム組成物が短繊維を含む構成ではなく、圧縮ゴム層11のVリブ15の表面に短繊維を付着させた構成であってもよい。
 心線14は、ポリエステル系繊維のフィラメント糸で構成されている。心線14を構成するポリエステル系繊維としては、例えば、ポリエチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリプロピレンテレフタレート繊維、ポリブチレンテレフタレート繊維、及びこれらの1種又は2種以上の共重合体の繊維等が挙げられる。心線14は、単一種のポリエステル系繊維で構成されていても、また、複数種のポリエステル系繊維が混在して構成されていても、どちらでもよい。心線14を構成するポリエステル系繊維のフィラメントの繊度は例えば4.4dtex以上6.6dtex以下であり、フィラメント径は例えば20μm以上25μm以下である。
 心線14を構成するポリエステル系繊維の総繊度は2200dtex以上5500dtex以下であり、ベルト張力の低下を抑制する観点から、好ましくは3300dtex以上であり、また、ベルト曲げ剛性を低くして高効率化を図る観点から、好ましくは4400dtex以下である。
 心線14の外径Dは、ベルト張力の低下を抑制する観点から、好ましくは0.50mm以上、より好ましくは0.60mm以上、更に好ましくは0.70mm以上であり、また、ベルト曲げ剛性を低くして高効率化を図る観点から、好ましくは1.00mm以下、より好ましくは0.95mm以下、更に好ましくは0.85mm以下である。
 心線14のベルト幅方向のピッチP、つまり、ベルト横断面におけるベルト幅方向に相互に隣接する心線14の中心間の距離は、心線14のVリブドベルト本体10の接着ゴム層12への十分な接着性を得る観点から、好ましくは0.70mm以上、より好ましくは0.75mm以上、更に好ましくは0.85mm以上であり、また、ベルト張力の低下を抑制する観点から、好ましくは1.10mm以下、より好ましくは1.05mm以下、更に好ましくは0.95mm以下である。
 ベルト幅方向に相互に隣接する心線14間の間隔(P-D)は、心線14のVリブドベルト本体10の接着ゴム層12への十分な接着性を得る観点から、好ましくは0.08mm以上、より好ましくは0.13mm以上であり、また、ベルト張力の低下を抑制する観点から、好ましくは0.20mm以下、より好ましくは0.15mm以下である。
 実施形態に係るVリブドベルトBでは、Vリブ15の1個分のベルト幅当たりにおいて、心線14の繊度が10000dtex以上19000dtex以下であり、ベルト張力の低下を抑制する観点から、好ましくは13500dtex以上であり、また、ベルト曲げ剛性を低くして高効率化を図る観点から、好ましくは16500dtex以下である。このVリブ15の1個分のベルト幅当たりの心線14の繊度は、ベルト幅方向に並んだ心線14の繊度の和をVリブ15の数で除することにより求められる。
 心線14の糸構成としては、例えば、諸撚り糸、片撚り糸、ラング撚り糸、組紐が挙げられる。これらのうち諸撚り糸が好ましい。諸撚り糸は、1本又は複数本のヤーンからなる所定の繊度の繊維束を一方向に所定の下撚り数で撚った下撚り糸を複数本集め、それらの複数本の下撚り糸を下撚り方向とは逆方向に所定の上撚り数で上撚りした糸である。
 諸撚り糸の心線14では、高効率化及びベルト張力の低下抑制のバランスの観点から、下撚り糸に含まれるヤーンの本数、つまり、下撚り糸の構成ヤーン数は、好ましくは1本又は2本である。同様の観点から、下撚り糸の繊度は、好ましくは1100dtexである。下撚り数は、好ましくは25回/10cm以上、より好ましくは28回/10cm以上であり、また、好ましくは32回/10cm以下、より好ましくは29回/10cm以下である。下撚りの撚り係数は、好ましくは700以上、より好ましくは800以上であり、また、好ましくは1100以下、より好ましくは1000以下である。なお、撚り係数は次式(1)により求められる(以下同じ)。
Figure JPOXMLDOC01-appb-M000001
 諸撚り糸の心線14では、高効率化及びベルト張力の低下抑制のバランスの観点から、上撚り糸(諸撚り糸)に含まれる下撚り糸の本数、つまり、上撚り糸の構成糸数は、好ましくは2本以上、より好ましくは3本であり、また、好ましくは5本以下、より好ましくは4本以下である。同様の観点から、上撚り数は、好ましくは8回/10cm以上、より好ましくは10回/10cm以上、更に好ましくは13回/10cm以上であり、また、好ましくは23回/10cm以下、より好ましくは21回/10cm以下、更に好ましくは18回以下である。上撚りの撚り係数は、好ましくは700以上、より好ましくは800以上であり、また、好ましくは1100以下、より好ましくは1000以下である。上撚りの撚り係数は、下撚りの撚り係数と同一であることが好ましい。
 諸撚り糸の心線14は、上撚りがS撚りであるS撚り糸であっても、また、上撚りがZ撚りであるZ撚り糸であっても、どちらでもよい。更には、諸撚り糸の心線14は、S撚り糸及びZ撚り糸の両方が二重螺旋を形成するように設けられていてもよい。
 実施形態に係るVリブドベルトBでは、Vリブ15の1個分のベルト幅当たりにおいて、ベルト乾熱時収縮力が44N以上であり、ベルト張力の低下を抑制する観点から、好ましくは45N以上であり、また、実用性の観点から、好ましくは55N以下、より好ましくは51N以下、更に好ましくは47N以下である。このベルト乾熱時収縮力は、Vリブ15の1個分又は複数個分のベルト幅の試験片を用い、150℃の雰囲気下、ベルト長さ300mmについて、ベルト長さ方向に6Nの荷重を負荷して固定してから30分後の荷重の上昇量として求められる。なお、試験片がVリブ15の複数個分のベルト幅の場合、荷重の上昇量をVリブ15の個数で除す。
 実施形態に係るVリブドベルトBでは、オルゼン曲げ試験機を用い、振子の回転角度φ=0.175rad(=10°)としてベルト長さ方向に曲げたときの荷重目盛板の読みn(%)から次式(2)に基づいて求められるベルト曲げ剛性EIは、実用性の観点から、Vリブ15の1個分のベルト幅当たり、好ましくは0.045N・m以上、より好ましくは0.050N・m以上、更に好ましくは0.060N・m以上であり、また、高効率化の観点から、好ましくは0.080N・m以下、より好ましくは0.075N・m以下、更に好ましくは0.070N・m以下である。
Figure JPOXMLDOC01-appb-M000002
 ところで、自動車の低燃費化が重要視されている。そのため自動車のエンジンルーム内に設けられるVリブドベルトについては、従来と同じ使用環境下での高効率化が求められている。Vリブドベルトを高効率化させるには、心線を細くしてベルト剛性を低くすることが有効であるが、そうすると著しいベルト張力の低下が生じるため実用に耐えないという問題がある。しかしながら、上記の構成の実施形態に係るVリブドベルトBによれば、ポリエステル系繊維で構成された心線14の総繊度が2200dtex以上5500dtex以下と細いので高効率化を図ることができ、その一方、心線14が細いものの、Vリブ1個分のベルト幅当たりにおいて、心線14の繊度が10000dtex以上19000dtex以下であり、且つ150℃の雰囲気下、ベルト長さ300mmについて、ベルト長さ方向に6Nの荷重を負荷して固定してから30分後の荷重の上昇量であるベルト乾熱時収縮力が44N以上であるので、ベルト張力の低下が抑制されて十分に実用に耐えることができる。
 (VリブドベルトBの製造方法)
 次に、実施形態に係るVリブドベルトBの製造方法について説明する。
 実施形態に係るVリブドベルトBの製造方法は、材料準備工程、材料セット工程、加硫成型工程、研削工程、及び幅切り工程を有する。
 <材料準備工程>
 ゴム成分に各配合物を配合し、ニーダー、バンバリーミキサー等の混練機で混練し、得られた未架橋ゴム組成物をカレンダー成形等によってシート状に成形して圧縮ゴム層用の未架橋ゴムシート11’を作製する。圧縮ゴム層11に短繊維を含める場合には、この未架橋ゴムシート11’に短繊維を配合すればよい。同様に、接着ゴム層用及び背面ゴム層用の未架橋ゴムシート12’,13’も作製する。
 心線14’に対し、RFL水溶液等の接着剤に浸漬して加熱する接着処理、及びその際に張力を付与して延伸する延伸熱固定処理を施す。
 RFL水溶液は、レゾルシンとホルムアルデヒドとの初期縮合物にラテックスを混合したものである。RFL水溶液の液温は例えば20℃以上30℃以下である。RFL水溶液の固形分濃度は例えば30質量%以下である。レゾルシン(R)とホルマリン(F)とのモル比は例えばR/F=1/2以上1/1以下である。ラテックスとしては、例えば、ビニルピリジンスチレンブタジエンゴムラテックス(Vp・SBR)、クロロプレンゴムラテックス(CR)、クロロスルホン化ポリエチレンゴム3とラテックス(L)の質量比は例えばRF/L=1/20以上1/5以下である。
 心線14’のRFL水溶液への浸漬時間は例えば1秒以上3秒以下である。RFL水溶液への浸漬後の加熱温度(炉温度)は例えば200℃以上250℃以下である。加熱時間(炉内滞在時間)は例えば1分以上3分以下である。RFL水溶液による接着処理時に心線14’に延伸熱固定処理のために付与する張力は例えば0.91cN/dtex以上1.67cN/dtex以下である。心線14’のRFL水溶液による接着処理回数は、1回のみであっても、また、2回以上であっても、どちらでもよい。心線14’の内部及び表面にはRFL固形物が付着するが、その付着量(目付量)は、心線14’を構成するポリエステル系繊維の質量を基準として、心線14のVリブドベルト本体10の接着ゴム層12への十分な接着性を得る観点から、好ましくは4質量%以上、より好ましくは6質量%以上、更に好ましくは6.5質量%以上であり、また、ベルト曲げ剛性を低くして高効率化を図る観点から、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは7.5質量%以下である。
 心線14’には、RFL水溶液による接着処理の前に、エポキシやイソシアネート(ブロックイソシアネート)をトルエン等の溶剤に溶解させた、或いは、水に分散させたプライマー溶液に浸漬して加熱する接着処理を施してもよい。プライマー溶液の液温は例えば20℃以上30℃以下である。プライマー溶液の固形分濃度は例えば20質量%以下である。
 心線14’のプライマー溶液への浸漬時間は例えば1秒以上3秒以下である。プライマー溶液への浸漬後の加熱温度(炉温度)は例えば200℃以上250℃以下である。加熱時間(炉内滞在時間)は例えば1分以上3分以下である。プライマー溶液による接着処理時に心線14’に延伸熱固定処理のために付与する張力は例えば0.30cN/dtex以上0.61cN/dtex以下である。心線14’のプライマー溶液による接着処理回数は、1回のみであっても、また、2回以上であっても、どちらでもよい。心線14’の内部及び表面には樹脂固形物が付着するが、その付着量(目付量)は、心線14’を構成するポリエステル系繊維の質量を基準として、心線14のVリブドベルト本体10の接着ゴム層12への十分な接着性を得る観点から、好ましくは2質量%以上、より好ましくは3質量%以上であり、また、ベルト曲げ剛性を低くして高効率化を図る観点から、好ましくは6質量%以下、より好ましくは5質量%以下である。
 心線14’には、RFL水溶液による接着処理の後に、未加硫ゴム組成物をトルエン等の溶剤に溶解させたゴム糊に浸漬して加熱することにより乾燥させる接着処理を施してもよい。ゴム糊の液温は例えば20℃以上30℃以下である。ゴム糊の固形分濃度は例えば20質量%以下である。
 心線14’のゴム糊への浸漬時間は例えば1秒以上3秒以下である。ゴム糊への浸漬後の乾燥温度(炉温度)は例えば50℃以上100℃以下である。乾燥時間(炉内滞在時間)は例えば1分以上3分以下である。ゴム糊による接着処理時に心線14’に付与する張力は例えば0.30cN/dtex以上0.61cN/dtex以下である。心線14’のゴム糊による接着処理回数は、1回のみであっても、また、2回以上であっても、どちらでもよい。心線14’の表面には糊ゴム被膜が付着するが、その付着量(目付量)は、心線14’を構成するポリエステル系繊維の質量を基準として例えば2質量%以上5質量%以下である。
 心線14’に対して接着処理の際に行う延伸熱固定処理における延伸率は、接着剤の含浸を抑制することによりベルト曲げ剛性を低くして高効率化を図り、且つベルト張力の低下を抑制する観点から、好ましくは6.0%よりも大きく、より好ましくは6.2%以上、更に好ましくは6.5質量%以上であり、また、実用性の観点から、好ましくは7.5%以下、より好ましくは7.2%以下、更に好ましくは7.0%以下である。
 接着処理及び延伸熱固定処理後の心線14’の乾熱時収縮応力は、ベルト張力の低下を抑制する観点から、好ましくは0.20cN/dtex以上、より好ましくは0.25cN/dtex以上、0.28cN/dtex以上であり、また、実用性の観点から、好ましくは0.50cN/dtex以下、より好ましくは0.45cN/dtex以下、0.35cN/dtex以下である。乾熱時収縮応力は、JIS L1017に基づいて求められる。
 <材料セット工程>
 次いで、図3に示すように、円筒型21の外周上に、背面ゴム層用の未架橋ゴムシート13’、及び接着ゴム層用の未架橋ゴムシート12’を順に巻き付けて積層し、その上に接着処理及び延伸熱固定処理を施した心線14’を円筒型21に対して螺旋状に一定の張力を付与して巻き付け、更にその上に接着ゴム層用の未架橋ゴムシート12’及び圧縮ゴム層用の未架橋ゴムシート11’を順に巻き付けて積層することにより積層体B’を成形する。心線14’を巻き付ける際の張力は、ベルト張力の低下を抑制する観点から、好ましくは0.18N/dtex以上、より好ましくは0.20N/dtex以上であり、また、実用性の観点から、好ましくは0.27N/dtex以下、より好ましくは0.25N/dtex以下である。
 <加硫成型工程>
 次いで、図4に示すように、積層体B’にゴムスリーブ22を被せ、それを加硫缶内に配置して密閉すると共に、加硫缶内に高温及び高圧の蒸気を充填して所定の成型時間だけ保持する。このとき、図5に示すように、未架橋ゴムシート11’,12’,13’の架橋が進行して一体化すると共に心線14’と複合化し、最終的に、円筒状のベルトスラブSが成型される。ベルトスラブSの成型温度は例えば100℃以上180℃以下、成型圧力は例えば0.5MPa以上2.0MPa以下、成型時間は例えば10分以上60分以下である。
 <研削工程>
 続いて、加硫缶内から蒸気を排出して密閉を解き、円筒型21上に成型されたベルトスラブSを型抜きし、図6に示すように、ベルトスラブSを一対のスラブ掛け渡し軸23間に掛け渡すと共に、ベルトスラブSの外周面に対し、周方向に延びるVリブ形状溝が外周面の軸方向に連設された研削砥石24を回転させながら当接させ、また、ベルトスラブSも一対のスラブ掛け渡し軸23間で回転させることにより、その外周面を全周に渡って研削する。このとき、図7に示すように、ベルトスラブSの外周面にはVリブ15が形成される。なお、ベルトスラブSは、必要に応じて長さ方向に分割して研削を行ってもよい。
 <幅切り工程>
 そして、研削によりVリブ15を形成したベルトスラブSを所定幅に幅切りして表裏を裏返すことによりVリブドベルトBが得られる。
 (補機駆動ベルト伝動装置30)
 図8は、実施形態1に係るVリブドベルトBを用いた自動車の補機駆動ベルト伝動装置30のプーリレイアウトを示す。この補機駆動ベルト伝動装置30は、VリブドベルトBが4つのリブプーリ及び2つの平プーリの6つのプーリに巻き掛けられて動力を伝達するサーペンタインドライブ方式のものである。
 この補機駆動ベルト伝動装置30は、最上位置にリブプーリのパワーステアリングプーリ31が設けられ、そのパワーステアリングプーリ31の下方にリブプーリのACジェネレータプーリ32が設けられている。また、パワーステアリングプーリ31の左下方には平プーリのテンショナプーリ33が設けられており、そのテンショナプーリ33の下方には平プーリのウォーターポンププーリ34が設けられている。更に、テンショナプーリ33の左下方にはリブプーリのクランクシャフトプーリ35が設けられており、そのクランクシャフトプーリ35の右下方にリブプーリのエアコンプーリ36が設けられている。これらのプーリは、例えば、金属のプレス加工品や鋳物、ナイロン樹脂、フェノール樹脂などの樹脂成形品で構成されており、また、プーリ径がφ50mm以上150mm以下である。
 この補機駆動ベルト伝動装置30では、VリブドベルトBは、Vリブ15側が接触するようにパワーステアリングプーリ31に巻き掛けられ、次いで、ベルト背面側が接触するようにテンショナプーリ33に巻き掛けられた後、Vリブ15側が接触するようにクランクシャフトプーリ35及びエアコンプーリ36に順に巻き掛けられ、更に、ベルト背面側が接触するようにウォーターポンププーリ34に巻き掛けられ、そして、Vリブ15側が接触するようにACジェネレータプーリ32に巻き掛けられ、最後にパワーステアリングプーリ31に戻るように設けられている。プーリ間で掛け渡されるVリブドベルトBの長さであるベルトスパン長は例えば50mm以上300mm以下である。プーリ間で生じ得るミスアライメントは0°以上2°以下である。
 (Vリブドベルト)
 以下の実施例1~4及び比較例1~5のVリブドベルトを作製した。それぞれの構成を表1及び2も示す。
 <実施例1>
 1100texのポリエステル繊維束(帝人社製)をS方向に28.6回/10cmの下撚り数(撚り係数900)で撚った下撚り糸を2本集め、それらの2本の下撚り糸をZ方向に20.2回/10cmの上撚り数(撚り係数900)で上撚りした諸撚り糸の心線を準備した。
 この心線に、プライマー溶液に浸漬して加熱する接着処理、RFL水溶液に浸漬して加熱する接着処理、及びゴム糊に浸漬して加熱する接着処理を順に施した。プライマー溶液として、イソシアネート樹脂トルエン溶液を用い、接着処理回数を1回とした。RFL水溶液として、ラテックス成分がビニルピリジンスチレンブタジエンゴムラテックスであるものを用い、接着処理回数を2回とした。ゴム糊として、接着ゴム層を形成するゴム組成物をトルエンに溶解させたものを用い、接着処理回数を1回とした。また、これらの接着処理と共に延伸率が7.2%となるように延伸熱固定処理を行った。
 これらの接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は8.0質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は4.0質量%であった。JIS L1017に基づいて求めた接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.43cN/dtexであった。
 接着処理及び延伸熱固定処理を施したこの心線を用い、上記実施形態と同様の方法によりVリブドベルトを作製した。このとき、心線を巻き付ける際の張力は0.23cN/dtex、心線のベルト幅方向のピッチPは0.75mmとした。心線の外径Dは0.60mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.15mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は10443dtexであった。
  なお、圧縮ゴム層、接着ゴム層、及び背面ゴム層は、EPDMをゴム成分とするゴム組成物で形成した。ベルト周長を1200mm、ベルト厚さを4.3mm、及びVリブの1個分のベルト幅を3.56mmとし、Vリブの個数が2個(ベルト幅7.12mm)、4個(ベルト幅14.24mm)、及び6個(ベルト幅を21.36mm)の3サイズを作製した。
 <実施例2>
 1100texのポリエステル繊維束をS方向に28.6回/10cmの下撚り数(撚り係数900)で撚った下撚り糸を3本集め、それらの3本の下撚り糸をZ方向に16.5回/10cmの上撚り数(撚り係数900)で上撚りした諸撚り糸の心線を用い、延伸熱固定処理による延伸率を6.8%、及び心線のベルト幅方向のピッチPを0.85mmとしたことを除いて実施例1と同様にVリブドベルトを作製し、それを実施例2とした。
 接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は7.0質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は3.6質量%であった。接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.32cN/dtexであった。また、心線の外径Dは0.71mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.14mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は13821dtexであった。
 <実施例3>
 1100texのポリエステル繊維束をS方向に28.6回/10cmの下撚り数(撚り係数900)で撚った下撚り糸を4本集め、それらの4本の下撚り糸をZ方向に14.3回/10cmの上撚り数(撚り係数900)で上撚りした諸撚り糸の心線を用い、延伸熱固定処理による延伸率を6.8%、及び心線のベルト幅方向のピッチPを0.95mmとしたことを除いて実施例1と同様にVリブドベルトを作製し、それを実施例3とした。
 接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は6.5質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は3.3質量%であった。接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.29cN/dtexであった。また、心線の外径Dは0.82mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.13mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は16488dtexであった。
 <実施例4>
 1100texのポリエステル繊維束をS方向に28.6回/10cmの下撚り数(撚り係数900)で撚った下撚り糸を5本集め、それらの5本の下撚り糸をZ方向に12.8回/10cmの上撚り数(撚り係数900)で上撚りした諸撚り糸の心線を用い、延伸熱固定処理による延伸率を6.2%、及び心線のベルト幅方向のピッチPを1.05mmとしたことを除いて実施例1と同様にVリブドベルトを作製し、それを実施例4とした。
 接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は6.0質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は3.0質量%であった。接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.27cN/dtexであった。また、心線の外径Dは0.91mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.14mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は18684dtexであった。
 <比較例1>
 1100texのポリエステル繊維束を2本集めた合計2200texのポリエステル繊維束をS方向に20.2回/10cmの下撚り数(撚り係数900)で撚った下撚り糸を3本集め、それらの3本の下撚り糸をZ方向に11.7回/10cmの上撚り数(撚り係数900)で上撚りした諸撚り糸の心線を用い、延伸熱固定処理による延伸率を6.3%、及び心線のベルト幅方向のピッチPを1.15mmとしたことを除いて実施例1と同様にVリブドベルトを作製し、それを比較例1とした。
 接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は5.7質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は2.8質量%であった。接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.28cN/dtexであった。また、心線の外径Dは1.00mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.15mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は19800dtexであった。
 <比較例2>
 延伸熱固定処理による延伸率を5.5%としたことを除いて比較例1と同様にVリブドベルトを作製し、それを比較例2とした。
 接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は5.7質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は2.8質量%であった。接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.27cN/dtexであった。また、心線の外径Dは1.15mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.15mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は19800dtexであった。
 <比較例3>
 延伸熱固定処理による延伸率を5.5%としたことを除いて実施例3と同様にVリブドベルトを作製し、それを比較例3とした。
 接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は6.5質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は3.3質量%であった。接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.26cN/dtexであった。また、心線の外径Dは0.82mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.13mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は16488dtexであった。
 <比較例4>
 延伸熱固定処理による延伸率を5.8%としたことを除いて実施例2と同様にVリブドベルトを作製し、それを比較例4とした。
 接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は7.0質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は3.6質量%であった。接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.27cN/dtexであった。また、心線の外径Dは0.71mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.14mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は13821dtexであった。
 <比較例5>
 延伸熱固定処理による延伸率を5.8%としたことを除いて実施例1と同様にVリブドベルトを作製し、それを比較例5とした。
 接着処理を施した心線について、心線を構成するポリエステル系繊維の質量を基準として、プライマー溶液による樹脂固形物の付着量(目付量)は4.0質量%、RFL水溶液によるRFL固形物の付着量(目付量)は8.0質量%、及びゴム糊による糊ゴム被膜の付着量(目付量)は4.0質量%であった。接着処理及び延伸熱固定処理後の心線の乾熱時収縮応力は0.34cN/dtexであった。また、心線の外径Dは0.60mmであり、ベルト幅方向に相互に隣接する心線間の間隔(P-D)は0.15mmであり、Vリブ1個分のベルト幅当たりの心線の繊度は10443dtexであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (試験方法)
 <ベルト曲げ剛性>
 実施例1~4及び比較例1~5のそれぞれのVリブドベルトについて、Vリブ1個分のベルト幅3.56mmの試験片を切り出し、オルゼン曲げ試験機を用い、振子の回転角度φ=0.175rad(=10°)として試験片をベルト長さ方向に曲げたときの荷重目盛板の読みn(%)から上記式(2)に基づいてベルト曲げ剛性EIを求めた。
 <ベルト乾熱時収縮力>
 実施例1~4及び比較例1~5のそれぞれのVリブドベルトについて、Vリブ1個分のベルト幅3.56mmの試験片Tを切り出し、図9に示すように、その試験片Tを、上側に設けられたロードセル付の上側チャック41と、その下方に設けられた下側チャック42との間に、自然ベルト長さが300mmとなるようにセットし、150℃の雰囲気下、下側チャック42を下方に移動させて長さ方向に6Nの荷重を負荷して固定し、それから30分後の荷重を測定し、その上昇量をベルト乾熱時収縮力とした。
 <ベルト動力損失>
 図10A及びBはベルト動力損失測定装置50を示す。
 このベルト動力損失測定装置50は、プーリ径が50mmのリブプーリの駆動プーリ51と、その右側方に設けられたプーリ径が50mmのリブプーリの従動プーリ52とを備えている。駆動プーリ51は、間隔をおいて設けられた一対の支軸台51aによって回転可能に設けられた駆動軸51bの一端に取り付けられており、駆動軸51bの他端には回転付与プーリ51cが設けられている。回転付与プーリ51cの右側方には駆動モータ53のモータ軸53aに軸支されたモータプーリ53bが設けられており、それらの回転付与プーリ51c及びモータプーリ53b間には回転駆動ベルト54が巻き掛けられている。また、一対の支軸台51aの間には、駆動軸51bの回転トルクを検知するトルクメータ55が設けられている。従動プーリ52は、間隔をおいて設けられた一対の支軸台52aによって回転可能に設けられた駆動軸52bの一端に取り付けられており、それら全体が左右方向に可動に設けられている。
 実施例1~4及び比較例1~5のそれぞれのVリブの個数が2個のVリブドベルトについて、駆動プーリ51及び従動プーリ52に巻き掛けると共に、従動プーリ52に右側方に600Nのデッドウェイト(DW)を負荷し、室温雰囲気下、駆動モータ53により駆動プーリ51を3000rpmの回転数で回転させてベルト走行させ、そのときの駆動トルクをトルクメータ55で測定した。同様に、Vリブの個数が4個及び6個のVリブドベルトについても駆動トルクを測定した。なお、発熱等の影響を排除して安定した駆動トルクを測定するため、測定は1時間のベルト走行後に行った。
 一方、Vリブの個数が2個、4個、及び6個のそれぞれのVリブドベルトについて、上記と同様の方法でオルゼン曲げ試験機を用いてベルト曲げ剛性を求めた。
 次いで、横軸をベルト曲げ剛性及び縦軸を駆動トルクとしたグラフに測定値をプロットして直線近似すると共に、その直線のベルト曲げ剛性=0の外挿値をベルト以外の損失トルクと仮想し、駆動トルクの各測定値から損失トルクを引いた。そして、それらを動力換算し、更にそれをVリブ数で除したものを平均してVリブ1個分のベルト幅当たりのベルト動力損失を求めた。
 <ベルト走行試験>
  図11はベルト走行試験機60のプーリレイアウトを示す。
  このベルト走行試験機60は、プーリ径が120mmのリブプーリの駆動プーリ61と、その上方に設けられたプーリ径が120mmのリブプーリの第1従動プーリ62と、それらの上下方向中間の右側方に設けられたプーリ径45mmのリブプーリの第2従動プーリ63とを備えている。第2従動プーリ63は、ベルト巻き掛け角度が90°となるように位置付けられている。
 実施例1~4及び比較例1~5のそれぞれのVリブドベルトBについて、上記ベルト走行試験機60にセットすると共に、第2従動プーリ63に右側方に834Nのセットウェイト(SW)を負荷し、雰囲気温度23℃の下、この状態で非接触型のベルト張力測定器を用いてVリブドベルトBのベルト張力を測定し、続いて、駆動プーリ61を4900rpmの回転数で回転させて150時間のベルト走行を実施した後、再びVリブドベルトBのベルト張力を測定し、ベルト走行前後のベルト張力からベルト張力維持率を算出した。
 (試験結果)
 試験結果を表3及び4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3及び4によれば、実施例1~4では、ポリエステル繊維で構成された心線の総繊度が2200dtex以上5500dtex以下と細く、また、ベルト曲げ剛性が低く、そのためベルト動力損失が小さく高効率であることが分かる。しかも、実施例1~4では、ベルト乾熱時収縮力が44N以上であり、また、ベルト張力維持率が高く、そのためベルト張力の低下が抑制されていることが分かる。
 一方、比較例1及び2では、ベルト乾熱時収縮力が44N以上であり、また、ベルト張力維持率が高く、そのためベルト張力の低下が抑制されるものの、心線の総繊度が6600dtexと太く、また、ベルト曲げ剛性が高く、そのためベルト動力損失が大きく低効率であることが分かる。比較例3では、心線の総繊度が4400dtexと細いものの、ベルト曲げ剛性は高く、また、ベルト動力損失も高く、更に、ベルト乾熱時収縮力は44Nよりも低く、ベルト張力維持率も低く、そのためベルト張力の低下が大きいことが分かる。比較例4では、心線の総繊度が3300dtexと細いものの、心線の総繊度が同じである実施例2と比べるとベルト曲げ剛性は高く、また、ベルト動力損失も高く、更に、ベルト乾熱時収縮力は44Nよりも低く、ベルト張力維持率も低く、そのためベルト張力の低下が大きいことが分かる。比較例5では、心線の総繊度が2200dtexと細いものの、心線の総繊度が同じである実施例1と比べるとベルト曲げ剛性は高く、また、心線の総繊度が同じである実施例1と比べるとベルト動力損失も高く、更に、ベルト乾熱時収縮力は44Nよりも低く、ベルト張力維持率も低く、そのためベルト張力の低下が大きいことが分かる。
 本発明は、Vリブドベルト及びその製造方法の技術分野について有用である。
B Vリブドベルト
10 Vリブドベルト本体
14,14’ 心線
15 Vリブ

Claims (10)

  1.  各々、ベルト長さ方向に延びる複数のVリブがベルト幅方向に並列するように設けられたゴム製のVリブドベルト本体と、
     前記Vリブドベルトに、ベルト幅方向にピッチを有する螺旋を形成するように埋設され総繊度が2200dtex以上5500dtex以下のポリエステル系繊維で構成された心線と、
    を備えたVリブドベルトであって、
     前記Vリブ1個分のベルト幅当たりにおいて、前記心線の繊度が10000dtex以上19000dtex以下であり、且つ150℃の雰囲気下、ベルト長さ300mmについて、ベルト長さ方向に6Nの荷重を負荷して固定してから30分後の荷重の上昇量であるベルト乾熱時収縮力が44N以上であるVリブドベルト。
  2.  請求項1に記載されたVリブドベルトにおいて、
     前記心線が諸撚り糸であるVリブドベルト。
  3.  請求項2に記載されたVリブドベルトにおいて、
     前記諸撚り糸の前記心線の下撚り糸の本数が2本以上5本以下であるVリブドベルト。
  4.  請求項2又は3に記載されたVリブドベルトにおいて、
     前記諸撚り糸の前記心線の下撚り糸の繊度が1100dtexであるVリブドベルト。
  5.  請求項1乃至4のいずれかに記載されたVリブドベルトにおいて、
     前記心線の外径が0.50mm以上1.00mm以下であるVリブドベルト。
  6.  請求項1乃至5のいずれかに記載されたVリブドベルトにおいて、
     前記心線のベルト幅方向のピッチが0.70mm以上1.10mm以下であるVリブドベルト。
  7.  請求項1乃至6のいずれかに記載されたVリブドベルトにおいて、
     ベルト幅方向に相互に隣接する前記心線間の間隔が0.08mm以上0.20mm以下であるVリブドベルト。
  8.  請求項1乃至7のいずれかに記載されたVリブドベルトにおいて、
     前記Vリブの1個分のベルト幅当たりのベルト曲げ剛性が0.045N・m以上0.080N・m以下であるVリブドベルト。
  9.  請求項1乃至8のいずれかに記載されたVリブドベルトの製造方法であって、
     前記心線に対し、接着剤に浸漬して加熱する接着処理の際に張力を付与して延伸する延伸熱固定処理を施し、且つ前記延伸熱固定処理における延伸率を6.0%よりも大きくするVリブドベルトの製造方法。
  10.  請求項9に記載されたVリブドベルトの製造方法において、
     前記接着処理及び前記延伸熱固定処理後の前記心線の乾熱時収縮応力が0.20cN/dtex以上0.50cN/dtex以下であるVリブドベルトの製造方法。
PCT/JP2016/004451 2015-10-09 2016-10-03 Vリブドベルト及びその製造方法 WO2017061100A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016561869A JP6114482B1 (ja) 2015-10-09 2016-10-03 Vリブドベルト及びその製造方法
DE112016003826.7T DE112016003826B4 (de) 2015-10-09 2016-10-03 Keilrippenriemen und Verfahren zu dessen Herstellung
CN201680052811.3A CN108027015B (zh) 2015-10-09 2016-10-03 多楔带及其制造方法
US15/916,092 US10174808B2 (en) 2015-10-09 2018-03-08 V-ribbed belt and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015201301 2015-10-09
JP2015-201301 2015-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/916,092 Continuation US10174808B2 (en) 2015-10-09 2018-03-08 V-ribbed belt and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017061100A1 true WO2017061100A1 (ja) 2017-04-13

Family

ID=58487355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004451 WO2017061100A1 (ja) 2015-10-09 2016-10-03 Vリブドベルト及びその製造方法

Country Status (5)

Country Link
US (1) US10174808B2 (ja)
JP (1) JP6114482B1 (ja)
CN (1) CN108027015B (ja)
DE (1) DE112016003826B4 (ja)
WO (1) WO2017061100A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188701A1 (ja) * 2018-03-30 2019-10-03 バンドー化学株式会社 ローエッジvベルト

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019609B1 (fr) * 2014-04-03 2016-05-13 Hutchinson Courroie de transmission de puissance.
BR112023000241A2 (pt) * 2020-08-14 2023-02-28 Tritana Intellectual Property Ltd Acionamento por correia para um destruidor de sementes de ervas daninhas de uma colheitadeira

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116546A (ja) * 1997-06-17 1999-01-12 Mitsuboshi Belting Ltd Vリブドベルトを用いた多軸駆動装置
JP2013127278A (ja) * 2011-12-16 2013-06-27 Mitsuboshi Belting Ltd 伝動ベルト
JP2014009749A (ja) * 2012-06-29 2014-01-20 Mitsuboshi Belting Ltd 伝動ベルト

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522614A (en) * 1981-03-12 1985-06-11 Bando Chemical Industries, Ltd. Automatic tension maintaining transmission belt
JP2005076703A (ja) * 2003-08-29 2005-03-24 Mitsuboshi Belting Ltd Vリブドベルト
JP2005076705A (ja) * 2003-08-29 2005-03-24 Mitsuboshi Belting Ltd Vリブドベルト
JP2006144988A (ja) * 2004-11-24 2006-06-08 Bando Chem Ind Ltd Vリブドベルト及びそれを用いた自動車の補機駆動用ベルト伝動装置
ATE550462T1 (de) * 2009-01-16 2012-04-15 Teijin Fibers Ltd Polyesterfaser, verfahren zur herstellung der polyesterfaser sowie reifencord, reifen, fasermaterial zur bandverstärkung und band, allesamt mit dieser polyesterfaser
DE102009026077A1 (de) * 2009-07-01 2011-01-05 Contitech Antriebssysteme Gmbh Elastischer Antriebsriemen, insbesondere Keilrippenriemen, mit vermindertem Spannungsverlust
WO2011065576A1 (ja) * 2009-11-26 2011-06-03 帝人株式会社 複合材料
KR20140082833A (ko) * 2011-10-26 2014-07-02 반도 카가쿠 가부시키가이샤 고부하 전동용 v 벨트 및 그 제조방법
CN103998908B (zh) 2012-06-01 2015-06-17 阪东化学株式会社 传动带的稳定时张力测量方法
US9353466B2 (en) * 2012-09-12 2016-05-31 Timken Smo Llc Hybrid power transmission cord
JP5945562B2 (ja) * 2013-03-28 2016-07-05 三ツ星ベルト株式会社 伝動用ベルト及びベルト変速装置
KR101900166B1 (ko) * 2014-04-17 2018-09-18 아사히 가세이 가부시키가이샤 고무 보강용 단섬유, 상기 단섬유 함유 고무 조성물 및 동력 전동 벨트
KR102307541B1 (ko) * 2014-05-22 2021-09-30 반도 카가쿠 가부시키가이샤 전동벨트
KR101735084B1 (ko) * 2014-06-20 2017-05-12 반도 카가쿠 가부시키가이샤 전동벨트 및 이를 구비한 벨트 전동장치
JP5750561B1 (ja) * 2014-06-20 2015-07-22 バンドー化学株式会社 伝動ベルト及びそれを備えたベルト伝動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116546A (ja) * 1997-06-17 1999-01-12 Mitsuboshi Belting Ltd Vリブドベルトを用いた多軸駆動装置
JP2013127278A (ja) * 2011-12-16 2013-06-27 Mitsuboshi Belting Ltd 伝動ベルト
JP2014009749A (ja) * 2012-06-29 2014-01-20 Mitsuboshi Belting Ltd 伝動ベルト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188701A1 (ja) * 2018-03-30 2019-10-03 バンドー化学株式会社 ローエッジvベルト
CN111919048A (zh) * 2018-03-30 2020-11-10 阪东化学株式会社 切边式v带
CN111919048B (zh) * 2018-03-30 2022-02-18 阪东化学株式会社 切边式v带

Also Published As

Publication number Publication date
DE112016003826T5 (de) 2018-05-09
JPWO2017061100A1 (ja) 2017-10-05
US10174808B2 (en) 2019-01-08
CN108027015A (zh) 2018-05-11
JP6114482B1 (ja) 2017-04-12
US20180195579A1 (en) 2018-07-12
DE112016003826B4 (de) 2020-08-20
CN108027015B (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2015193934A1 (ja) 伝動ベルト及びそれを備えたベルト伝動装置
US10174807B2 (en) Hybrid power transmission cord
WO2014006916A1 (ja) 伝動ベルト
US9046149B2 (en) Starter alternator assembly comprising a poli-V belt and poli-V belt
TWI669456B (zh) V肋型皮帶及其製造方法
JP6114482B1 (ja) Vリブドベルト及びその製造方法
JP2004324796A (ja) 摩擦伝動ベルト
JP5750561B1 (ja) 伝動ベルト及びそれを備えたベルト伝動装置
JP5215274B2 (ja) 歯付きベルト
JPWO2007114052A1 (ja) 伝動ベルト用心線及び伝動ベルト
TWI225536B (en) Belt
JP3055897B1 (ja) 歯付きベルト
JP2005256961A (ja) 伝動ベルト
JPH116546A (ja) Vリブドベルトを用いた多軸駆動装置
JP2002039291A (ja) Vリブドベルト駆動装置
JP2010106898A (ja) Vリブドベルト
JP2005098473A (ja) 伝動ベルトの多軸駆動装置
JPH116547A (ja) Vリブドベルトを用いた多軸駆動装置
JPH11159580A (ja) 伝動ベルト用心線及びこれを用いた伝動ベルト
JP2003294088A (ja) 多軸駆動装置用のvリブドベルト
JP2001234984A (ja) Vリブドベルト
JP2005188689A (ja) Vリブドベルト
JP2005188687A (ja) Vリブドベルト
JP2000120801A (ja) Vリブドベルト
JP2005076703A (ja) Vリブドベルト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016561869

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016003826

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853257

Country of ref document: EP

Kind code of ref document: A1