WO2013061506A1 - 真空処理装置 - Google Patents

真空処理装置 Download PDF

Info

Publication number
WO2013061506A1
WO2013061506A1 PCT/JP2012/005836 JP2012005836W WO2013061506A1 WO 2013061506 A1 WO2013061506 A1 WO 2013061506A1 JP 2012005836 W JP2012005836 W JP 2012005836W WO 2013061506 A1 WO2013061506 A1 WO 2013061506A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chamber
vacuum processing
processing apparatus
stopper
Prior art date
Application number
PCT/JP2012/005836
Other languages
English (en)
French (fr)
Inventor
雄二 梶原
祥悟 平松
和人 山中
上田 敬
和俊 吉林
賢司 佐藤
肇 佐長谷
裕久 平柳
正浩 厚見
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to CN201280053643.1A priority Critical patent/CN104024472A/zh
Priority to JP2013540622A priority patent/JP5731663B2/ja
Publication of WO2013061506A1 publication Critical patent/WO2013061506A1/ja
Priority to US14/263,696 priority patent/US20140230728A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67751Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers

Definitions

  • the present invention relates to a vacuum processing apparatus suitable for vacuum processing on a sheet-like or plate-like substrate.
  • an apparatus for transferring a vacuum container while holding a substrate on a carrier may be used.
  • the substrate may be attached and detached while the carrier is taken out of the vacuum vessel, and the number of man-hours required for the attachment and removal of the substrate is large, and improvement of productivity has been an issue.
  • the load lock chamber (LL) is arranged on the upstream side and the downstream side with respect to the process chamber (PC), and the substrate passes in one direction.
  • a method is employed (see, for example, Patent Document 2).
  • Patent Document 2 is a method using a vacuum processing apparatus in which a plurality of process chambers are disposed between a LOAD chamber and an UNLOAD chamber.
  • a vacuum processing apparatus since the substrate can be transferred while being held by a carrier, a multilayer film can be continuously formed on the substrate.
  • Patent Document 2 has a problem that the mechanism for transferring the carrier (or holder) holding the substrate in the vacuum vessel is complicated, and it is difficult to reduce the cost of the film forming apparatus.
  • the working time in the LOAD chamber and the UNLOAD chamber increases relatively, and a large number of carriers are prepared to increase the operation rate of the process chamber. There is a problem that it is difficult to reduce the cost.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a vacuum processing apparatus that can improve the productivity of film formation and contribute to cost reduction.
  • a vacuum processing apparatus includes a process chamber, a load lock chamber connected to the process chamber, and a transfer device for transferring a substrate from the load lock chamber to the process chamber.
  • the substrate is configured to move by gravity, and the transfer device restricts movement of the substrate by gravity when holding the substrate, and a guide that forms a transfer path when the substrate moves by gravity. And a stopper for releasing the restriction when the substrate is moved.
  • the substrate is transferred using gravity, a vacuum processing apparatus that can easily save energy can be provided. Moreover, since this vacuum processing apparatus transfers a substrate with a relatively simple configuration, it is easy to reduce initial costs and running costs.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is the schematic of the transfer apparatus which concerns on 1st Embodiment of this invention. It is the schematic of the transfer apparatus which concerns on 1st Embodiment of this invention.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4. It is an expansion schematic of the transfer device concerning a 1st embodiment of the present invention.
  • 1 is a schematic view of a stopper of a transfer device according to an embodiment of the present invention.
  • a CVD apparatus vacuum processing apparatuses 1 and 2 for forming DLC (diamond-like carbon) as a vacuum processing apparatus
  • DLC diamond-like carbon
  • the present invention can be applied to a sputtering apparatus, other PVD apparatuses, other CVD apparatuses, and the like.
  • the present invention can also be applied to a processing apparatus other than the film forming apparatus, such as a dry etching apparatus, an ashing apparatus, or a heat treatment apparatus.
  • the vacuum processing apparatus 1 is a CVD apparatus, and three vacuum chambers are connected in series in the direction of gravity. That is, in the vacuum processing apparatus 1, the load lock chamber LL, the process chamber PC, and the unload chamber UL are connected in a line in this order via the gate valve GV. Further, the vacuum processing apparatus 1 is connected to a magazine rack 11 for supplying an unprocessed substrate 5 to the load lock chamber LL and a collection case 12 for receiving the processed substrate 5 discharged from the unload chamber UL. Moreover, although mentioned later, the vacuum processing apparatus 1 is provided with the transfer apparatus T which transfers the board
  • the process chamber PC is a CVD film forming chamber for forming a DLC (Diamond Like Carbon) film, and includes a gas introduction system 17, a power supply system 19, an exhaust system 20, and the like, although details are omitted.
  • the gas introduced from the gas introduction system 17 is, for example, CxHy (hydrocarbon gas), H2, N2, or Ar.
  • a vacuum gauge 15 for monitoring the pressure during the process can be provided in the process chamber PC.
  • the process chamber PC includes an ashing processing apparatus and a heater for heating the substrate 5 to a predetermined temperature.
  • the substrate 5 may be a conductive plate or sheet.
  • the substrate 5 can be, for example, a metal plate such as a stainless steel plate.
  • the substrate 5 may be a non-conductive substrate when performing a process in which bias application described later is not performed, that is, a process in which power is not supplied to the substrate.
  • the load lock chamber LL is a chamber that supplies the substrate 5 to the process chamber PC from above, and is connected to the upper side of the process chamber PC via a gate valve GV.
  • the unload chamber UL is a chamber for discharging the substrate 5 downward from the process chamber PC, and is connected to the lower side of the process chamber PC via a gate valve GV.
  • These chambers (LL, UL) are provided with a gas introduction system 18 and an exhaust system (not shown).
  • the upper and lower sides of the process chamber PC performing vacuum processing are connected via gate valves GV.
  • the load lock chamber LL when the substrate 5 is introduced from the atmosphere side (the magazine rack 11), gas is introduced (vented), and the gate valve GV is opened. Then, after the substrate 5 is introduced, the gate valve GV is closed and evacuated by a vacuum pump. Similarly, in the unload chamber UL, when the substrate 5 is introduced from the process chamber PC, the gate valve GV is opened with the inside being evacuated by the vacuum pump. Then, after the introduction of the substrate 5, the gate valve GV is closed, gas is introduced (vented), and then the substrate 5 is discharged to the atmosphere side (collection case). That is, the load lock chamber LL and the unload chamber UL have a mechanism that repeatedly exhausts / vents and supplies / discharges the substrate 5. A vacuum gauge 16 for monitoring the pressure in the load lock chamber LL and the unload chamber UL chamber is attached.
  • the magazine rack 11 is a device that supplies the substrates 5 one by one to the introduction port of the load lock chamber LL.
  • an apparatus is employed in which the substrates 5 are sent one by one to the slope 13 from a state where the substrates 5 are stacked in the thickness direction.
  • the slope 13 guides the substrate 5 to the introduction port of the load lock chamber LL.
  • a robot having a hand capable of gripping the substrates 5 one by one may be directly supplied to the introduction port of the load lock chamber LL.
  • the collection case 12 is a device that receives the substrate 5 discharged from the process chamber PC.
  • a slope 14 is connected to the discharge port of the process chamber PC, and the substrates can be collected one by one in the thickness direction.
  • both the magazine rack 11 and the collection case 12 may be replaced with a conveyor such as a belt conveyor.
  • the unprocessed substrates 5 conveyed from the previous process one by one on the conveyor can be sequentially supplied to the introduction port of the load lock chamber LL.
  • the processed substrates 5 can be transferred to the next process one by one from the lower side of the unload chamber UL by a conveyor.
  • the transfer device T is a device that transfers a substrate using gravity, and transfers the substrate 5 at a predetermined timing in the order of the load lock chamber LL, the process chamber PC, and the unload chamber UL.
  • the transfer device T includes a guide 21 and a stopper 23, forms a transfer path when the substrate 5 falls by the guide 21, and moves to the next chamber positioned in the gravity direction by the operation of the stopper 23. Can be determined.
  • the guide 21 and the stopper 23 are provided on the left and right sides (both sides of the transfer path of the substrate 5) in the respective chambers to restrict the substrate 5 from moving in the horizontal direction beyond a certain level.
  • the term “drop” in this specification includes not only the movement in the direction of gravity but also the direction of movement when the substrate 5 is transferred only by the action of gravity. That is, when the transfer path is formed with an angle with respect to the direction of gravity, the substrate 5 is transferred along the angle of the transfer path. In this case, the movement is also referred to as dropping.
  • the guide 21 includes a wire 25 (first guide) that restricts movement of the substrate 5 in the thickness direction and a roller 27 (second guide) that restricts movement in the width direction.
  • the pair of wires 25 are provided with a predetermined gap on both sides in the thickness direction of the substrate 5.
  • the pair of rollers 27 is provided with a predetermined gap on both sides in the width direction of the substrate 5. That is, the guide 21 regulates the movement range of the substrate 5 in the horizontal direction (direction intersecting with gravity) by the pair of wires 25 and the pair of rollers 27, so that a substrate 5 transfer path is formed.
  • the wire 25 of the present embodiment is configured by fixing a metal thin wire (wire) between two protrusions 25a provided in the chamber.
  • a metal thin wire wire
  • slits may be formed on the inner walls of the chamber located on both sides of the substrate 5 in the width direction.
  • the roller 27 is supported by the bearing, the roller 5 may be slidably contacted with a member whose surface is smoothly processed or coated.
  • the stopper 23 is a member that can support or open the lower part of the substrate 5 supported on the side by the guide 21.
  • the stopper 23 is a member that can rotate around a shaft portion 23a at one end. When the substrate 5 is held, the stopper 23 protrudes into a transfer path through which the substrate 5 passes, so that the substrate 5 can be dropped downward. Can be limited. On the other hand, when the substrate 5 is moved, the stopper 23 is retracted from the transfer path. As a result, the restriction on the falling of the substrate 5 is released, so that the substrate 5 falls downward.
  • the shaft portion 23a is connected to the drive device 23b (see FIG. 5), and the stopper 23 can be operated at a predetermined timing.
  • the stopper 23 of the present embodiment is a refractory metal such as tungsten, and power (bias power) can be applied from the bias power source 29. Therefore, bias power can be applied to the substrate 5 by bringing the stopper 23 into contact with the substrate 5 in a state where power is applied.
  • FIG. 7 shows an enlarged view of the stopper 23.
  • 8A and 8B are explanatory diagrams when the stopper 23 is operated.
  • FIG. 8A shows a state in which the stopper 23 supports the lower portion of the substrate 5
  • FIG. 8B shows a state in which the stopper 23 rotates and transports the substrate 5 downward (falling).
  • the stopper 23 is formed with a slit 24 at a portion that contacts the substrate 5.
  • the lower edge portion of the substrate 5 is fitted into the slit 24 and the position of the edge portion can be regulated. Therefore, the support position of the substrate 5 in the transfer path can be adjusted.
  • the substrate 5 By supporting the substrate 5 at the center position of the opening of the gate valve GV, it is possible to effectively prevent the substrate 5 from contacting the inner wall of the gate valve GV. Further, the substrate 5 can be smoothly transferred to the guide 21 in the next chamber.
  • the edge of the width direction of the substrate 5 is fitted into the slit 24 and the position of the edge can be regulated.
  • the support position of the inside substrate 5 can be adjusted.
  • the substrate 5 can be prevented from contacting the inner wall of the gate valve GV. Further, it is possible to smoothly shift to the guide 21 in the next chamber.
  • the stopper 23 of this embodiment is comprised so that it may rotate centering around the axial part 23a, the structure which advances / retracts (slides) in the direction which a stopper projects over a transfer path may be sufficient.
  • the gate valve GV (referred to as GV1) at the top of the load lock chamber LL is opened, and the substrate 5 held in the magazine rack 11 is supplied into the load lock chamber LL through the slope 13.
  • ⁇ GV1 is closed and the load lock chamber LL is evacuated.
  • the substrate 5 is supported by the guide 21 and the stopper 23 (referred to as 231) in the load lock chamber LL.
  • the gate valve GV (referred to as GV2) between the load lock chamber LL and the process chamber PC is opened, the stopper 23 of the load lock chamber LL is operated, and the substrate 5 is transferred into the process chamber PC.
  • the stopper 231 may be operated simultaneously with the opening of GV2 or at a timing slightly delayed from the opening of GV2.
  • the substrate 5 is transferred at a predetermined position (in the transfer path) by the guide 21 in the process chamber PC, and is supported in contact with a stopper 23 (referred to as 232) in the process chamber PC.
  • GV2 is closed and vacuum processing is performed in the process chamber PC.
  • a hard carbon film (DLC film) is formed on both surfaces of the substrate 5 by a CVD process.
  • the substrate 5 is supported by the guide 21 and the stopper 23 (232) in the process chamber PC.
  • a bias power is applied to the substrate 5 through the stopper 23 (232) in the process chamber PC.
  • the gate valve GV (GV3) between the process chamber PC and the unload chamber UL is opened, the stopper 23 (232) of the process chamber PC is operated, and the substrate 5 is loaded into the unload chamber. Transfer into the UL.
  • the substrate 5 is transferred to a predetermined position (transfer path) by a guide 21 in the unload chamber UL, and is supported in a state of being in contact with a stopper 23 (referred to as 233) in the unload chamber UL.
  • the gate valve GV (GV4) below the unload chamber UL is opened, the stopper 23 (233) is operated, and the substrate 5 is discharged from the unload chamber UL.
  • the discharged vacuum-treated substrate 5 is collected in the collection case 12 via the slope 14.
  • the stoppers 232 and 233 may be operated at the same time as opening of the gate valves GV (GV2 and GV3) associated with the stoppers 232 and 233 or at a timing slightly behind the opening.
  • the vacuum processing apparatus 1 performs evacuation and venting (release to the atmosphere) in the load lock chamber LL and unload chamber UL during the vacuum processing in the process chamber PC.
  • the unprocessed substrate 5 can be supplied and the processed substrate 5 can be discharged.
  • the vacuum processing apparatus 1 of this embodiment since the substrate 5 is transferred using gravity, power for driving the substrate 5 is not required, and it is easy to save energy. Moreover, since the vacuum processing apparatus 1 does not use a carrier or a substrate holder, particles are not generated from the carrier. Further, since the vacuum processing apparatus transfers the substrate 5 with a simple configuration, the initial cost and the running cost can be reduced.
  • FIG. 9 shows a vacuum processing apparatus 2 according to another embodiment of the present invention.
  • the same members and arrangements as those of the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the vacuum processing apparatus 2 is formed by connecting a load lock chamber LL, a process chamber PC, and an unload chamber UL with an angle with respect to the direction of gravity. Since the transfer device of the vacuum processing apparatus 2 is configured to have an angle with respect to the direction of gravity, the substrate 5 is transferred in the chamber while being in contact with the guide 21. For this reason, the position and speed at which the substrate 5 is transferred can be adjusted by adjusting the inclination angle of the vacuum processing apparatus 2. According to the vacuum processing apparatus 2, in addition to the effect of the vacuum processing apparatus 1 described above, the position and speed at which the substrate 5 is transferred can be adjusted.
  • both the vacuum processing apparatuses 1 and 2 which concern on each embodiment mentioned above are provided with the unload chamber UL.
  • the present invention can be applied even to a configuration in which the unloaded chamber UL is not provided and the processed substrate 5 is discharged directly from the process chamber PC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 真空処理装置は、プロセスチャンバと、前記プロセスチャンバに接続されたロードロックチャンバと、前記ロードロックチャンバから前記プロセスチャンバへ基板を移送する移送装置と、を備える。前記移送装置は、前記基板を重力によって移動させるように構成される。前記移送装置は、前記基板が重力によって移動する際の移送路を形成するガイドと、前記基板を保持するときは前記基板の重力による移動を制限し、前記基板を移動させるときは前記制限を解除するストッパと、を備える。

Description

真空処理装置
 本発明は、シート状又は板状の基板に対する真空処理に適した真空処理装置に関する。
 従来、基板に対して1~3層程度の成膜を行う場合には、1つのプロセスチャンバ(PC)に1つのロードロック(LL)が連結された成膜装置を用いることがあった(例えば、特許文献1参照)。
 このような、1つのプロセスチャンバ(PC)と1つのロードロック(LL)とで構成された成膜装置では、ロードロック室(LL)で基板の交換が行われる間はプロセスチャンバ(PC)で成膜することができないため、実質的な設備稼動率を向上するには限界があり、成膜処理の生産性(スループット)向上を図ることが困難であった。
 また、1つのプロセスチャンバ(PC)と1つのロードロック(LL)とで構成された成膜装置において、基板をキャリアに保持した状態で真空容器を移送する装置が用いられることがある。このような装置では、キャリアを真空容器から取り出した状態で、基板の取付けと取り外しを行うことがあり、基板の取付けと取り外しの作業に要する工数が多く生産性の向上が課題となっていた。
 そこで、ロードロック室(LL)での作業時間短縮を図るために、プロセスチャンバ(PC)を挟んで上流側と下流側にそれぞれロードロック室(LL)を配置し、基板を一方向に通過させる方法が採用されている(例えば、特許文献2参照)。
 例えば、特許文献2に開示された技術は、LOADチャンバとUNLOADチャンバとの間に複数のプロセスチャンバが配設された真空処理装置を用いた方法である。この真空処理装置では基板をキャリアで保持した状態で移送することができるため、連続的に基板上に多層膜を形成することができる。
特開平9-272979号公報 特開平7-243037号公報
 しかしながら、特許文献2の技術では、基板を保持するキャリア(若しくはホルダ)を真空容器内で移送するための機構が複雑であり、成膜装置の低コスト化が困難であるという問題があった。また、基板上に積層させる層の数が少ない場合には、相対的にLOADチャンバとUNLOADチャンバでの作業時間が多くなり、また、プロセスチャンバの稼働率を高くするには大量のキャリアを用意しなければならないことからコスト低減が困難であるという問題があった。
 本発明は、上記課題に鑑みてなされたものであり、成膜処理の生産性の向上を図ることができ、且つコスト低減に寄与する真空処理装置を提供することにある。
 本発明に係る真空処理装置は、プロセスチャンバと、前記プロセスチャンバに接続されたロードロックチャンバと、前記ロードロックチャンバから前記プロセスチャンバへ基板を移送する移送装置と、を備え、前記移送装置は、前記基板を重力によって移動させるように構成され、前記移送装置は、前記基板が重力によって移動する際の移送路を形成するガイドと、前記基板を保持するときは前記基板の重力による移動を制限し、前記基板を移動させるときは前記制限を解除するストッパと、を備える。
 重力を利用して基板を移送するため、省エネルギー化を図ることが容易な真空処理装置を提供することができる。また、この真空処理装置は、比較的簡単な構成で基板の移送を行うため、イニシャルコストやランニングコストの低減を図ることが容易である。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一実施形態に係る真空処理装置の正面図である。 図1のA-A断面図である。 本発明の第1実施形態に係る移送装置の概略図である。 本発明の第1実施形態に係る移送装置の概略図である。 図4のB-B断面矢視図である。 本発明の第1実施形態に係る移送装置の拡大概略図である。 本発明の一実施形態に係る移送装置のストッパの該略図である。 本発明の一実施形態に係るストッパの作動説明図である。 本発明の一実施形態に係るストッパの作動説明図である。 本発明の他の実施形態に係る真空処理装置の断面図である。
 以下に、本発明の各実施形態について図面に基づいて説明する。なお、以下に説明する部材、配置等は発明を具体化した一例であって本発明を限定するものではなく、本発明の趣旨に沿って各種改変できることは勿論である。なお、図面の煩雑化を防ぐため一部を除いて省略している。
 本願明細書中では、真空処理装置としてDLC(ダイヤモンドライクカーボン)を成膜するCVD装置(真空処理装置1,2)を例に挙げて説明するが本発明はこの限りではない。例えば、スパッタリング装置や他のPVD装置若しくは他のCVD装置などにも本発明は適用可能である。本発明は成膜装置以外の処理装置、例えばドライエッチング装置若しくはアッシング装置、熱処理装置などの装置にも適用可能である。
 図1,2に基づいて真空処理装置1の概略構成を説明する。真空処理装置1はCVD装置であり、3つの真空チャンバが重力方向に直列に連結されている。すなわち真空処理装置1は、ロードロックチャンバLL、プロセスチャンバPC、アンロードチャンバULがゲートバルブGVを介してこの順番で一列に連結されている。さらに真空処理装置1には、ロードロックチャンバLLに未処理の基板5を供給するマガジンラック11と、アンロードチャンバULから排出された処理済の基板5を受け取る回収ケース12が連結されている。また後述するが、真空処理装置1は各チャンバ間で基板5を移送する移送装置Tを備えている。プロセスチャンバPCは、上方のロードロックチャンバLLから基板5を導入され、基板5を処理した後に、下方のアンロードチャンバULに基板を排出する。
 プロセスチャンバPCは、DLC(Diamond Like Carbon)を成膜するためのCVD成膜チャンバであり、詳細は省くが、ガス導入系17、電力供給系19及び排気系20などを備えている。ガス導入系17から導入されるガスは、例えば、CxHy(炭化水素系ガス),H2,N2又はArである。その他にも、プロセス中の圧力をモニターする真空計15などがプロセスチャンバPCに備えられうる。また、プロセスチャンバPCには、DLC膜を成膜するCVD処理装置の他に、アッシング処理装置及び基板5を所定温度に加熱するヒータが備えられている。
 基板5として導電性の板状若しくはシート状のものが用いられうる。基板5は、例えば、ステンレス板などの金属板でありうる。プロセスチャンバPC内で、後述するバイアス印加などを行わないプロセス、即ち基板に電力を供給しないプロセスを行う場合は、基板5は不導体の基板であってもよい。
 ロードロックチャンバLLは、プロセスチャンバPCに対して基板5を上方から供給するチャンバであり、プロセスチャンバPCの上側にゲートバルブGVを介して接続されている。アンロードチャンバULは、プロセスチャンバPCから基板5を下方に排出するチャンバであり、プロセスチャンバPCの下側にゲートバルブGVを介して接続されている。これらのチャンバ(LL,UL)にはガス導入系18や不図示の排気系が備えられている。真空処理を行うプロセスチャンバPCの上下の両側にゲートバルブGVを介して接続される。
 ロードロックチャンバLLは、大気側(マガジンラック11)から基板5が導入される際に、ガスが導入(ベント)されて、ゲートバルブGVが開放される。そして、基板5の導入後にゲートバルブGVが閉じられて、真空ポンプにより排気される。同様に、アンロードチャンバULは、プロセスチャンバPCから基板5が導入される際には、内部が真空ポンプにより排気された状態でゲートバルブGVが開放される。そして、基板5の導入後にゲートバルブGVが閉じられて、ガスが導入(ベント)されて、その後に、基板5が大気側(回収ケース)に排出される。すなわち、ロードロックチャンバLL、アンロードチャンバULは、排気/ベントを繰り返し行い、基板5の供給/排出を行う機構を有している。また、ロードロックチャンバLL、アンロードチャンバULチャンバ内の圧力をモニターする真空計16が取り付けられている。
 マガジンラック11は、ロードロックチャンバLLの導入口に基板5を一枚ずつ供給する装置である。本実施形態では、基板5を厚さ方向に重ねて配置した状態から一枚ずつ基板5をスロープ13に送り出す装置が採用されている。スロープ13は基板5をロードロックチャンバLLの導入口に誘導する。なお、基板5を一枚ずつ把持できるハンドを有するロボットを用いて、ロードロックチャンバLLの導入口に直接供給する構成でもよい。回収ケース12は、プロセスチャンバPCから排出された基板5を受け取る装置である。プロセスチャンバPCの排出口にスロープ14が接続されており、基板を一枚ずつ、厚さ方向に重ねて回収することができる。
 また、マガジンラック11と回収ケース12をいずれもベルトコンベアなどのコンベアで置き換えてもよい。この場合、コンベアで一枚ずつ前工程から搬送されてきた未処理の基板5を、順次ロードロックチャンバLLの導入口に供給することができる。同様に、アンロードチャンバULの下方から処理済の基板5を一枚ずつコンベアで次工程に搬送することができる。
 図3~7に基づいて基板を移送する移送装置について説明する。移送装置Tは、重力を利用して基板を移送する装置であり、ロードロックチャンバLL、プロセスチャンバPC、アンロードチャンバULの順番に基板5を所定のタイミングで移送する。移送装置Tは、ガイド21とストッパ23とを有して構成され、ガイド21によって基板5が落下する際の移送路を形成し、ストッパ23の動作によって重力方向に位置する次のチャンバに基板5を供給するタイミングを決定することができる。
 図3に示すように、ガイド21とストッパ23は、それぞれのチャンバ内の左右(基板5の移送路の両側)に設けられており、基板5が一定以上、水平方向に移動することを制限している。なお、本明細書における落下とは重力方向の移動のみではなく、重力の作用のみで基板5が移送される場合の移動方向を含むものとする。すなわち、移送路が重力方向に対して角度を有して形成される場合には、基板5はその移送路の角度に沿って移送されることになるが、この場合の移動も落下と呼ぶ。
 図4~6にプロセスチャンバPC内の移送装置Tを示す。ガイド21は、基板5の厚さ方向への動きを規制するワイヤ25(第1ガイド)と、幅方向への動きを規制するローラー27(第2ガイド)とを含む。一対のワイヤ25は、基板5の厚さ方向の両面側に所定の隙間を有して設けられている。一対のローラー27は、基板5の幅方向の両側に所定の隙間を有して設けられている。すなわち、ガイド21は、それぞれ一対のワイヤ25と一対のローラー27によって、基板5の水平方向(重力に交わる方向)の移動範囲を規制し、基板5移送路が形成される。
 図4に示すように、本実施形態のワイヤ25は、チャンバ内に設けられた2つの突起25aの間に金属製の細線(ワイヤ)を固定して構成されている。しかし、角部を滑らかに加工した板状部材や、ローラー若しくはメッシュで構成してもよい。また、基板5の幅方向の両側に位置するチャンバの内壁にスリットを形成してもよい。ローラー27はベアリングに支持されているが、表面を滑らかに加工又はコーティングした部材に基板5を摺接させるものであってもよい。
 ストッパ23は、ガイド21で側方を支持された基板5の下部を支持または開放することができる部材である。ストッパ23は、一端部の軸部23aを中心に回動できる部材であり、基板5を保持するときは、基板5の通過する移送路内に張り出すことで、基板5の下方への落下を制限することができる。一方、基板5を移動させるときは、ストッパ23は移送路内から退避させられる。これによって基板5の落下の制限は解除されるので、基板5は下方に落下する。軸部23aは駆動装置23bに連結されており(図5参照)、所定のタイミングでストッパ23を動作させることができる。また、本実施形態のストッパ23は、タングステンなどの高融点金属であり、バイアス電源29から電力(バイアス電力)を印加させることができる。そのため、ストッパ23に電力を印加した状態で基板5に当接させると、基板5にバイアス電力を印加することができる。
 図7にストッパ23の拡大図を示す。また、図8A、8Bにストッパ23が作動する際の説明図を示す。図8Aはストッパ23が基板5の下部を支持しているときの様子であり、図8Bはストッパ23が回動し基板5を下方に移送する(落下)様子である。
 ストッパ23は、基板5と当接する部分にスリット24が形成されている。基板5の下部を支持するときは、スリット24に基板5の下部の縁部が嵌まり込んでその縁部の位置を規制できる。そのため、移送路内での基板5の支持位置を調整することができる。ゲートバルブGVの開口の中心位置に基板5を支持することで、基板5がゲートバルブGVの内壁に接触することを効果的に防ぐことができる。また、次のチャンバ内のガイド21に基板5をスムーズに移行させることができる。
 また、ストッパ23が回動し、基板5を下方に位置するチャンバに移送させるときは、スリット24に基板5の幅方向の縁部が嵌まり込んでその縁部の位置を規制できるため、移送中の基板5の支持位置を調整することができる。移送中の基板5の支持位置を調整することで、基板5がゲートバルブGVの内壁に接触することを防ぐことができる。また、次のチャンバ内のガイド21にスムーズに移行させることができる。なお、本実施形態のストッパ23は軸部23aを中心に回動するように構成されているが、ストッパが移送路に張り出す方向に進退動(スライド)する構成であってもよい。
 真空処理装置1での処理工程について説明する。まず、ロードロックチャンバLLの上部のゲートバルブGV(GV1とする)を開放し、マガジンラック11に保持されている基板5を、スロープ13を介してロードロックチャンバLL内に供給する。
 GV1を閉鎖し、ロードロックチャンバLL内を真空排気する。このとき、基板5はロードロックチャンバLL内のガイド21とストッパ23(231とする)とによって支持されている。次に、ロードロックチャンバLLとプロセスチャンバPCとの間のゲートバルブGV(GV2とする)を開放し、ロードロックチャンバLLのストッパ23を動作させて、基板5をプロセスチャンバPC内に移送させる。ストッパ231は、GV2の開放と同時、若しくはGV2の開放よりも僅かに遅れるタイミングで動作させるとよい。
 基板5はプロセスチャンバPC内のガイド21により所定の位置(移送路内)を移送され、プロセスチャンバPC内のストッパ23(232とする)に当接した状態で支持される。GV2を閉鎖し、プロセスチャンバPC内での真空処理を行う。本実施形態ではCVDプロセスにより、基板5の両面に硬質カーボン膜(DLC膜)を成膜する。真空処理中は、基板5はプロセスチャンバPC内のガイド21とストッパ23(232)に支持されている。また、プロセスチャンバPC内のストッパ23(232)を介して基板5にはバイアス電力が印加される。
 真空処理が終了したら、プロセスチャンバPCとアンロードチャンバULとの間のゲートバルブGV(GV3とする)を開放し、プロセスチャンバPCのストッパ23(232)を動作させて、基板5をアンロードチャンバUL内に移送させる。基板5はアンロードチャンバUL内のガイド21により所定の位置(移送路)を移送され、アンロードチャンバUL内のストッパ23(233とする)に当接した状態で支持される。
 GV3を閉鎖し、アンロードチャンバUL内が大気圧になるまで窒素ガスを導入(ベント)する。アンロードチャンバULの下部のゲートバルブGV(GV4)を開放し、ストッパ23(233)を動作させて、基板5をアンロードチャンバULから排出する。排出された真空処理済の基板5はスロープ14を介して回収ケース12に回収される。なお、ストッパ232、233は、それぞれと連動するゲートバルブGV(GV2とGV3)の開放と同時、若しくは、その開放よりも僅に遅れるタイミングで動作させるとよい。
 一枚の基板5の処理工程について上述したが、真空処理装置1では、プロセスチャンバPCでの真空処理中に、ロードロックチャンバLLとアンロードチャンバULで真空排気やベント(大気開放)を行い、未処理の基板5の供給や、処理済みの基板5の排出を行うことができる。
 本実施形態の真空処理装置1によれば、重力を利用して基板5を移送するため、基板5を駆動するための動力を必要とせず、省エネルギー化を図ることが容易である。また、真空処理装置1はキャリアや基板ホルダを用いないためキャリアなどからパーティクルが生じることがない。さらに、この真空処理装置は、簡単な構成で基板5の移送を行うため、イニシャルコストやランニングコストを低減できる。
 図9に本発明の他の実施形態に係る真空処理装置2を示す。また、上述の実施形態と同様の部材、配置等には同一符号を付してその詳細な説明を省略する。真空処理装置2は、ロードロックチャンバLLとプロセスチャンバPCとアンロードチャンバULを重力方向に対して角度を有して連結したものである。真空処理装置2の移送装置は、重力方向に対して角度を有して構成されるため、基板5はガイド21に接しながらチャンバ内を移送されることになる。このため、真空処理装置2の傾斜角度を調整することで、基板5が移送される位置と速度を調整することができる。真空処理装置2によれば、上述した真空処理装置1の効果に加えて、基板5が移送される位置や速度を調整に行うことができる。
 なお、上述した各実施形態に係る真空処理装置1,2はいずれもアンロードチャンバULを備えるものである。しかしながら、アンロードチャンバULを備えず、プロセスチャンバPCから直接、処理済の基板5を排出する構成であっても本発明を適用できることはもちろんである。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2011年10月28日提出の日本国特許出願特願2011-236597を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
LL ロードロックチャンバ
PC プロセスチャンバ
GV ゲートバルブ
T 移送装置
1,2 真空処理装置
5 基板
11 マガジンラック
12 回収ケース
13,14 スロープ
15,16 真空計
17,18 ガス導入系
19 電力供給装置
20 排気系
21 ガイド
23 ストッパ
25 ワイヤ
27 ローラー

Claims (5)

  1. プロセスチャンバと、前記プロセスチャンバに接続されたロードロックチャンバと、前記ロードロックチャンバから前記プロセスチャンバへ基板を移送する移送装置と、を備え、
    前記移送装置は、前記基板を重力によって移動させるように構成され、
    前記移送装置は、
    前記基板が重力によって移動する際の移送路を形成するガイドと、
    前記基板を保持するときは前記基板の重力による移動を制限し、前記基板を移動させるときは前記制限を解除するストッパと、を備える
    ことを特徴とする真空処理装置。
  2. 前記ストッパを介して前記基板にバイアス電力を印加できることを特徴とする請求項1に記載の真空処理装置。
  3. 前記ストッパは、前記基板の縁部の位置を規制するスリットを備えることを特徴とする請求項1に記載の真空処理装置。
  4. 前記移送路は、重力方向に前記基板が落下するように構成されていることを特徴とする請求項1に記載の真空処理装置。
  5. 前記移送路は、重力方向から角度を有して前記基板が落下するように構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の真空処理装置。
PCT/JP2012/005836 2011-10-28 2012-09-13 真空処理装置 WO2013061506A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280053643.1A CN104024472A (zh) 2011-10-28 2012-09-13 真空处理装置
JP2013540622A JP5731663B2 (ja) 2011-10-28 2012-09-13 真空処理装置
US14/263,696 US20140230728A1 (en) 2011-10-28 2014-04-28 Vacuum processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011236597 2011-10-28
JP2011-236597 2011-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/263,696 Continuation US20140230728A1 (en) 2011-10-28 2014-04-28 Vacuum processing apparatus

Publications (1)

Publication Number Publication Date
WO2013061506A1 true WO2013061506A1 (ja) 2013-05-02

Family

ID=48167364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005836 WO2013061506A1 (ja) 2011-10-28 2012-09-13 真空処理装置

Country Status (4)

Country Link
US (1) US20140230728A1 (ja)
JP (1) JP5731663B2 (ja)
CN (1) CN104024472A (ja)
WO (1) WO2013061506A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201639063A (zh) * 2015-01-22 2016-11-01 應用材料股份有限公司 批量加熱和冷卻腔室或負載鎖定裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268069A (ja) * 1991-02-22 1992-09-24 Konica Corp 蒸着装置
JPH05334648A (ja) * 1992-06-01 1993-12-17 Anelva Corp 磁気記録媒体とその製造方法および装置
JP2001077169A (ja) * 1999-06-29 2001-03-23 Mitsubishi Heavy Ind Ltd 真空処理装置
JP2001510940A (ja) * 1997-07-17 2001-08-07 クンツェ−コンセウィッツ、ホルスト 超小型電子部品を製造するための平たい基板、特にシリコン薄板(ウェハ)を処理する方法および装置
US20060283391A1 (en) * 2002-03-29 2006-12-21 Parent Donald G Gravity-fed in-line continuous processing system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268069A (ja) * 1991-02-22 1992-09-24 Konica Corp 蒸着装置
JPH05334648A (ja) * 1992-06-01 1993-12-17 Anelva Corp 磁気記録媒体とその製造方法および装置
JP2001510940A (ja) * 1997-07-17 2001-08-07 クンツェ−コンセウィッツ、ホルスト 超小型電子部品を製造するための平たい基板、特にシリコン薄板(ウェハ)を処理する方法および装置
JP2001077169A (ja) * 1999-06-29 2001-03-23 Mitsubishi Heavy Ind Ltd 真空処理装置
US20060283391A1 (en) * 2002-03-29 2006-12-21 Parent Donald G Gravity-fed in-line continuous processing system and method

Also Published As

Publication number Publication date
CN104024472A (zh) 2014-09-03
JP5731663B2 (ja) 2015-06-10
US20140230728A1 (en) 2014-08-21
JPWO2013061506A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP2008297584A (ja) 成膜装置
EP3427291B1 (en) Chamber for degassing substrates
TW201241222A (en) Apparatus and process for atomic layer deposition
TW201241233A (en) Atomic layer deposition carousel with continuous rotation and methods of use
TWI794475B (zh) 用於接收多個基板以進行處理之保持裝置、處理系統及方法
TWI697065B (zh) 真空處理裝置
JP2006513117A (ja) 真空チャンバ内で平らな基板を移送するための装置
CN111334763A (zh) 成膜装置
JP2009200142A (ja) 成膜装置および成膜方法
JP5731663B2 (ja) 真空処理装置
JPWO2011007753A1 (ja) 基板処理装置
JP2014141706A (ja) 成膜装置及び成膜方法
JP5517372B2 (ja) 真空処理装置
JP2010177267A (ja) 搬送トレー及びこの搬送トレーを用いた真空処理装置
JPH11329983A (ja) Cvdによる成膜方法とその装置
TWI701759B (zh) 真空處理裝置
US9803924B2 (en) Vertical heat treatment apparatus
TWI703637B (zh) 熱處理腔室、包括該腔室之設備、工件處理系統及製造熱處理工件的方法
JP2007036289A (ja) 真空処理方法
JP2013098188A (ja) 真空処理装置
JP2012221987A (ja) 基板カート、薄膜形成装置および太陽電池製造用薄膜形成装置
JP5145209B2 (ja) 真空処理装置
JP2004281765A (ja) 基板搬送具、基板搬送具への基板の着脱装置、基板搬送具への基板の着脱方法及び処理装置
JP5450198B2 (ja) スパッタリング装置
KR101914771B1 (ko) 막 증착 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843243

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013540622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843243

Country of ref document: EP

Kind code of ref document: A1