WO2013054720A1 - 手袋の製造方法 - Google Patents

手袋の製造方法 Download PDF

Info

Publication number
WO2013054720A1
WO2013054720A1 PCT/JP2012/075709 JP2012075709W WO2013054720A1 WO 2013054720 A1 WO2013054720 A1 WO 2013054720A1 JP 2012075709 W JP2012075709 W JP 2012075709W WO 2013054720 A1 WO2013054720 A1 WO 2013054720A1
Authority
WO
WIPO (PCT)
Prior art keywords
immersion liquid
rubber
glove
less
latex foam
Prior art date
Application number
PCT/JP2012/075709
Other languages
English (en)
French (fr)
Inventor
高井 淳
芳明 宮本
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN201280050550.3A priority Critical patent/CN103857305B/zh
Publication of WO2013054720A1 publication Critical patent/WO2013054720A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core

Definitions

  • the present invention relates to a method for manufacturing a glove including a porous film of rubber or resin.
  • the glove is generally manufactured by a so-called dipping method.
  • various additives such as a vulcanizing agent are blended with rubber latex to prepare an unvulcanized or pre-cured immersion liquid.
  • a ceramic mold corresponding to the three-dimensional shape of the glove is prepared, and the surface thereof is treated with a coagulant (mainly calcium nitrate aqueous solution).
  • the mold is immersed in the immersion liquid for a certain period of time and then pulled up so that the immersion liquid is attached to the surface of the mold. Then, the entire mold is heated to dry the immersion liquid and vulcanize the rubber, or once dried and heated together with the mold to vulcanize the rubber, and then demolded to form a rubber film as a whole.
  • the glove formed integrally is manufactured.
  • the glove formed integrally with the resin film is the same as described above except that an immersion liquid prepared by blending various additives into a resin emulsion is used instead of an immersion liquid containing rubber latex. Can be manufactured.
  • an immersion liquid prepared by blending various additives into a resin emulsion is used instead of an immersion liquid containing rubber latex.
  • a continuous film of rubber or resin does not have moisture permeability or hygroscopicity, when wearing gloves for a long period of time, there is a problem that the hands get muddy or sticky due to sweat. .
  • a glove has a laminated structure including two or more layers including a porous film, in particular, a laminated structure in which the innermost layer in contact with the hand is a porous film, and moisture generated from the hand is absorbed by the porous film, thereby creating a feeling of stuffiness.
  • a porous film is formed by an immersion method using an immersion liquid that is foamed by blowing air using a hose or the like.
  • An object of the present invention is to provide a manufacturing method for manufacturing a glove with reduced stuffiness.
  • the inventor used a foamed immersion liquid (rubber latex or resin emulsion foam, which is used to form a porous film by an immersion method, hereinafter referred to as “latex foam”.
  • latex foam a foamed immersion liquid
  • the relationship between the specific gravity, the average cell diameter, and the viscosity, the total cell volume of the porous film formed by the dipping method using latex foam, the hygroscopic property, and the feeling of stuffiness We studied diligently.
  • the specific gravity of the latex foam is regulated to 0.35 g / ml or more and 0.85 g / ml or less, the average cell diameter is set to 100 ⁇ m or less, and the viscosity is set to 100 mPa ⁇ s or more and 600 mPa ⁇ s or less.
  • the present inventors have found that a porous film that has a structure and has a large total volume of bubbles and is excellent in hygroscopicity can form a porous film that can significantly reduce the stuffiness of gloves.
  • the present invention is a manufacturing method for manufacturing a glove including a porous membrane of rubber or resin, which includes foamed rubber or resin and has a specific gravity of 0.35 g / ml or more and 0.85 g / ml.
  • a mold corresponding to the shape of the glove is immersed in an immersion liquid having an average bubble diameter of 100 ⁇ m or less and a viscosity of 100 mPa ⁇ s or more and 600 mPa ⁇ s or less, and then the rubber is vulcanized or the resin is cured. It includes a step of forming a porous film.
  • the specific gravity is an index that defines the total amount of bubbles contained in the latex foam, and is obtained by measuring the weight per unit volume of the latex foam.
  • the specific gravity of the latex foam is limited to the above range for the following reason. That is, if the specific gravity is less than 0.35 g / ml, excessive bubbles exist in the latex foam, and the film of the immersion liquid separating the individual bubbles becomes too thin. After adhering to the rubber, a large number of bubbles break during the vulcanization of the rubber, so that the porous film is destroyed, resulting in a problem that a continuous porous film having a uniform thickness cannot be formed.
  • the specific gravity exceeds 0.85 g / ml, the amount of bubbles contained in the latex foam is insufficient, and the total volume of bubbles in the porous film formed using the latex foam is insufficient, resulting in hygroscopicity. Becomes insufficient, and the effect of reducing the sensation of glove is not obtained.
  • the specific gravity of the latex foam is in the range of 0.35 g / ml or more and 0.85 g / ml or less, the total volume of bubbles in the porous film can be reduced as much as possible while suppressing the destruction of the porous film as much as possible. It is possible to increase the hygroscopicity as much as possible to greatly reduce the feeling of stuffiness of the gloves.
  • the specific gravity is preferably 0.75 g / ml or less even within the above range.
  • the reason why the average cell diameter of the latex foam is limited to the above range is as follows. That is, when the average bubble diameter exceeds 100 ⁇ m, even if the amount of bubbles is the same, the surface area inside each bubble is reduced, resulting in a problem that the hygroscopicity is reduced and moisture cannot be absorbed efficiently.
  • the average bubble diameter of the latex foam is within the range of 100 ⁇ m or less, the surface area inside the bubbles can be increased, so that the hygroscopicity is improved and moisture can be absorbed more efficiently. It is possible to greatly reduce the feeling of stuffiness.
  • the average cell diameter is preferably 50 ⁇ m or less even within the above range.
  • the reason why the viscosity of the latex foam is limited to the above range is as follows. That is, when the viscosity is less than 100 mPa ⁇ s, the cell structure cannot be stably maintained in the process of vulcanizing the rubber after the latex foam is adhered to the mold surface by, for example, the dipping method. The problem is that the volume is insufficient and the hygroscopicity becomes insufficient, and the effect of reducing the feeling of stuffiness of the gloves cannot be obtained.
  • the viscosity of the latex foam is in the range of 100 mPa ⁇ s or more and 600 mPa ⁇ s or less, the dipping processability of the latex foam is improved, and the fingertip pool, fingertip flowback, finger cuff, etc. are defective. It is possible to improve the hygroscopicity of the porous membrane as much as possible while suppressing the occurrence of mist as much as possible, and to greatly reduce the feeling of stuffiness of the gloves. In consideration of further improving this effect and further reducing the greasy feeling of the glove, the viscosity is preferably 400 mPa ⁇ s or less even within the above range.
  • the present invention is a production method for producing a glove including a porous membrane of rubber or resin, the foam containing and containing rubber or resin, and having a specific gravity of 0.35 g / ml or more and 0.85 g / ml or less.
  • the mold corresponding to the shape of the glove is dipped in an immersion liquid (latex foam) having an average bubble diameter of 100 ⁇ m or less and a viscosity of 100 mPa ⁇ s or more and 600 mPa ⁇ s or less, and then the rubber is vulcanized or cured. It includes a step of forming the porous film by reacting.
  • the reason why the specific gravity of the latex foam is limited to the above range is as follows. That is, if the specific gravity is less than 0.35 g / ml, excessive bubbles exist in the latex foam, and the film of the immersion liquid separating the individual bubbles becomes too thin. After adhering to the rubber, a large number of bubbles burst while the rubber is vulcanized, thereby destroying the porous film, resulting in a problem that a continuous porous film having a uniform thickness cannot be formed.
  • the specific gravity exceeds 0.85 g / ml, the amount of bubbles contained in the latex foam is insufficient, and the total volume of bubbles in the porous film formed using the latex foam is insufficient, resulting in hygroscopicity. Becomes insufficient, and the effect of reducing the sensation of glove is not obtained.
  • the specific gravity of the latex foam is in the range of 0.35 g / ml or more and 0.85 g / ml or less, the total volume of bubbles in the porous film can be reduced as much as possible while suppressing the destruction of the porous film as much as possible. It is possible to increase the hygroscopicity as much as possible to greatly reduce the feeling of stuffiness of the gloves.
  • the specific gravity is preferably 0.75 g / ml or less even within the above range.
  • the reason why the average cell diameter of the latex foam is limited to the above range is as follows. That is, when the average bubble diameter exceeds 100 ⁇ m, even if the amount of bubbles is the same, the surface area inside each bubble is reduced, resulting in a problem that the hygroscopicity is reduced and moisture cannot be absorbed efficiently.
  • the average bubble diameter of the latex foam is within the range of 100 ⁇ m or less, the surface area inside the bubbles can be increased, so that the hygroscopicity is improved and moisture can be absorbed more efficiently. It is possible to greatly reduce the feeling of stuffiness.
  • the average cell diameter is preferably 50 ⁇ m or less even within the above range.
  • the average cell diameter is preferably 5 ⁇ m or more, particularly 10 ⁇ m or more even in the above range, considering that the total volume of the bubbles is sufficiently large and a porous film having excellent hygroscopicity is formed.
  • the reason why the viscosity of the latex foam is limited to the above range is as follows. That is, when the viscosity is less than 100 mPa ⁇ s, the cellular structure cannot be stably maintained in the process of vulcanizing the rubber after the latex foam is adhered to the mold surface by, for example, the dipping method. Becomes insufficient, and the effect of reducing the sensation of glove is not obtained.
  • the viscosity of the latex foam is in the range of 100 mPa ⁇ s or more and 600 mPa ⁇ s or less, the dipping processability of the latex foam is improved, and the fingertip pool, fingertip flowback, finger cuff, etc. are defective. It is possible to improve the hygroscopicity of the porous membrane as much as possible while suppressing the occurrence of mist as much as possible, and to greatly reduce the feeling of stuffiness of the gloves. In consideration of further improving this effect and further reducing the greasy feeling of the glove, the viscosity is preferably 400 mPa ⁇ s or less even within the above range.
  • Latex foam can be prepared by stirring a dipping solution containing a rubber latex or resin emulsion, blowing air, or using both in combination. What is necessary is just to adjust so that specific gravity, an average bubble diameter, and a viscosity may become in the said range by setting the conditions of foaming, the composition of the immersion liquid etc. which become the latex foam arbitrarily and individually .
  • the immersion liquid containing rubber which is the basis of the latex foam, is prepared by blending various additives such as a vulcanizing agent with the latex of the rubber as in the prior art.
  • a vulcanizing agent such as a vulcanizing agent
  • the rubber natural rubber and various rubbers that can be converted into latex from synthetic rubber can be used. Examples of such rubber include natural rubber, deproteinized natural rubber, acrylonitrile-butadiene rubber (NBR), One type or two or more types such as styrene-butadiene rubber (SBR) and chloroprene rubber (CR) may be mentioned.
  • vulcanizing agents for vulcanizing rubber include sulfur and organic sulfur-containing compounds.
  • the blending ratio of the vulcanizing agent is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the solid content (rubber content) in the rubber latex.
  • various additives such as vulcanization accelerator, vulcanization acceleration aid, anti-aging agent, filler, dispersant, stabilizer and foaming agent may be further blended. Good.
  • vulcanization accelerators for example, PX (zinc N-ethyl-N-phenyldithiocarbamate), PZ (zinc dimethyldithiocarbamate), EZ (zinc diethyldithiocarbamate), BZ (zinc dibutyldithiocarbamate), MZ ( 2-mercaptobenzothiazole zinc salt), TT (tetramethylthiuram disulfide) and the like.
  • the blending ratio of the vulcanization accelerator is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the rubber content in the rubber latex.
  • the vulcanization acceleration aid include zinc white (zinc oxide) and / or stearic acid.
  • the blending ratio of the vulcanization acceleration aid is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the rubber content in the rubber latex.
  • non-fouling phenols are preferably used as the antioxidant, but amines may also be used.
  • the blending ratio of the anti-aging agent is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of rubber in the rubber latex.
  • the filler include one or more of kaolin clay, hard clay, calcium carbonate, and the like.
  • the blending ratio of the filler is preferably 10 parts by mass or less per 100 parts by mass of the rubber content in the rubber latex.
  • a dispersing agent is mix
  • 1 type (s), such as an anionic surfactant, etc. are mentioned, for example.
  • the blending ratio of the dispersant is preferably 0.3 parts by mass or more and 1 part by mass or less of the total amount of components to be dispersed.
  • the stabilizer is used to assist foaming when foaming the immersion liquid to prepare a latex foam.
  • the stabilizer has a function of assisting foaming of the immersion liquid, such as a surfactant.
  • Various stabilizers can be used. The stabilizer may be omitted, but when blended, the blending ratio may be appropriately set according to the required specific gravity, average cell diameter, and viscosity of the latex foam.
  • the immersion liquid containing the resin which is the basis for the latex foam, is prepared by blending various additives into the resin emulsion, as in the prior art.
  • the resin include one or more thermosetting resins that can be emulsified, such as urethane resins and curable acrylic resins.
  • Various additives such as an anti-aging agent, a filler, a dispersant, a stabilizer, and a foaming agent may be further blended in the immersion liquid containing the resin.
  • the blending ratio of the antioxidant is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the solid content (resin content) in the resin emulsion.
  • the filler include one or more of the exemplified fillers.
  • the blending ratio of the filler is preferably 10 parts by mass or less per 100 parts by mass of the resin component in the resin emulsion.
  • a dispersing agent 1 type (s) or 2 or more types, such as the anionic surfactant of the said illustration, are mentioned.
  • the blending ratio of the dispersant is preferably 0.3 parts by mass or more and 1 part by mass or less of the total amount of components to be dispersed.
  • various stabilizers having a function of assisting foaming of the immersion liquid, such as a surfactant can be used.
  • the stabilizer may be omitted, but when blended, the blending ratio may be appropriately set according to the required specific gravity, average cell diameter, and viscosity of the latex foam.
  • the porous membrane can be formed in the same manner as in the prior art except that the latex foam having the specific gravity, the average cell diameter, and the viscosity prepared by foaming the immersion liquid is used. That is, for example, a ceramic mold corresponding to the three-dimensional shape of the glove is prepared, and the surface thereof is treated with a coagulant (mainly calcium nitrate aqueous solution).
  • a coagulant mainly calcium nitrate aqueous solution.
  • the mold is dipped in the latex foam for a predetermined time and then pulled up to attach the latex foam to the surface of the mold.
  • the heated mold is heated to dry the latex foam and the rubber is vulcanized, or the resin is cured, or once dried, the mold is heated to vulcanize the rubber, or the resin is cured. As a result, a porous film is formed.
  • a porous membrane that mainly has a continuous pore structure, has a large total volume of bubbles and is excellent in hygroscopicity, and can greatly reduce the feeling of stuffiness of gloves.
  • the glove manufactured by the manufacturing method of the present invention that has undergone the above-described steps may have a single-layer structure having only a porous membrane, but in order to impart appropriate strength, water impermeability, etc. to the glove, It is preferable to form a laminated structure of two or more layers with this layer.
  • the thickness of the porous membrane should be suitable for work with fine fingertips, etc. while giving the gloves appropriate strength and good hygroscopicity, and making the whole as thin as possible. Is preferably 0.07 mm or more, particularly preferably 0.1 mm or more, more preferably 2.0 mm or less, especially 1.5 mm or less, particularly 1.0 mm or less.
  • a glove having a laminated structure with a porous film can be formed by various structures and materials, but considering the construction of a glove that is particularly thin and suitable for fine fingertip work, for example, A thin film made of at least one polymer selected from the group consisting of polyurethane, silicone rubber, cellulose acetate, ethyl cellulose, and polyvinyl alcohol, or a mixture of a polymer and rubber or resin that forms the porous film is preferable. .
  • the thin film is preferably formed of polyurethane or a mixture of polyurethane and a rubber or resin that forms a porous film.
  • the thin film is water-impermeable and moisture-permeable, and by providing the thin film on the outside of the glove and the porous film on the inside of the glove, while reliably preventing water from entering the glove from the outside, Moisture absorbed by the porous membrane can be effectively released to the outside of the glove, and the feeling of stuffiness of the glove can be further greatly reduced.
  • the thickness of the thin film is preferably 5 ⁇ m or more, particularly preferably 10 ⁇ m or more, and is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less. If the thickness is less than the above range, a continuous thin film having good water impermeability cannot be formed on one surface of the porous membrane, so that it may not be possible to reliably prevent water from entering from the outside. On the other hand, when the thickness exceeds the above range, sufficient moisture permeability cannot be imparted to the thin film, so that when the gloves are worn for a long time, the hands may be easily stuffy or sticky due to sweat.
  • the thin film is preferably a non-porous film in order to ensure good water impermeability.
  • the thin film is prepared by preparing a coating solution containing the polymer and the like, and applying the coating solution to the surface of the previously formed porous film by any coating method such as dipping or spraying. It can be formed by drying.
  • a crosslinkable polymer such as polyurethane or silicone rubber
  • a crosslinking agent, a curing agent or the like of the polymer is blended in an appropriate ratio in the immersion liquid, and simultaneously with drying or drying. What is necessary is just to carry out the crosslinking reaction of a polymer by heating later.
  • the thin film can also be formed integrally with the porous film by, for example, an immersion method. For example, after treating with a coagulant and before immersing the mold in latex foam, immerse it in an immersion liquid containing a polymer or the like that forms the thin film for a certain period of time and then pull it up, and apply the immersion liquid to the mold surface. Next, the latex foam is attached after being immersed in the latex foam for a certain period of time and then pulled up.
  • an immersion method For example, after treating with a coagulant and before immersing the mold in latex foam, immerse it in an immersion liquid containing a polymer or the like that forms the thin film for a certain period of time and then pull it up, and apply the immersion liquid to the mold surface. Next, the latex foam is attached after being immersed in the latex foam for a certain period of time and then pulled up.
  • porous film and the thin film are integrated by drying and vulcanizing the rubber or curing the resin, or once drying and heating the mold together to cure the rubber or curing the resin. Can be formed.
  • the order of immersion may be reversed.
  • a few drops of the prepared latex foam were dropped on a petri dish, and a micrograph was taken using a digital microscope. Then, 50 bubbles were arbitrarily selected from the photographed micrograph, the diameter of each bubble was measured in the two-point distance measurement mode, and the average value was calculated as the average bubble diameter.
  • the immersion liquid was foamed by stirring at high speed using a stirrer to prepare a latex foam having a specific gravity of 0.67 g / ml, an average cell diameter of 15 ⁇ m, and a viscosity of 350 mPa ⁇ s.
  • a polyurethane-based aqueous coating agent [Hydran (registered trademark) WLS-208 manufactured by DIC Corporation] is added to 4 parts by mass of a crosslinking agent [Hydran Assista manufactured by DIC Corporation] per 100 parts by mass of polyurethane in the aqueous coating agent.
  • CS-7 was blended to prepare a moisture-permeable polyurethane emulsion.
  • the moisture-permeable polyurethane emulsion and the NBR latex-based immersion liquid before foaming were blended so as to have a mass ratio of 1: 1 to prepare a coating solution for a thin film.
  • a coating solution for a thin film As the mold, we prepared ceramics that correspond to the three-dimensional shape of gloves. The mold was first immersed in a 25% calcium nitrate aqueous solution, pulled up, and dried to treat the mold surface with calcium nitrate as a coagulant.
  • the mold is immersed in the previous thin film immersion liquid whose liquid temperature is maintained at 25 ° C., held for 10 seconds, and then pulled up at a constant speed to attach the immersion liquid to the surface of the mold. Subsequently, it was immersed in the latex foam at a constant speed, held for 5 seconds, and then pulled up at a constant speed to further adhere the latex foam. Then, the raised mold is first held for 10 seconds with the fingertips up, then for 10 seconds with the fingertips down, and then placed in an oven heated to 100 ° C. with the molds and heated for 30 minutes.
  • the glove having a two-layer structure of a porous membrane and a thin membrane was produced by drying and vulcanizing NBR and crosslinking reaction of polyurethane, followed by demolding.
  • Example 2 By adjusting the foaming conditions of the immersion liquid, a latex foam having a specific gravity of 0.7 g / ml, an average cell diameter of 19 ⁇ m, and a viscosity of 480 mPa ⁇ s was prepared. A glove having a two-layer structure of a porous membrane and a thin film was produced in the same manner as in Example 1 except that latex foam was used.
  • Example 3 By adjusting the foaming conditions of the immersion liquid, a latex foam having a specific gravity of 0.69 g / ml, an average cell diameter of 85 ⁇ m, and a viscosity of 350 mPa ⁇ s was prepared. A glove having a two-layer structure of a porous membrane and a thin film was produced in the same manner as in Example 1 except that latex foam was used.
  • Example 4 By adjusting the foaming conditions of the immersion liquid, a latex foam having a specific gravity of 0.81 g / ml, an average cell diameter of 14 ⁇ m, and a viscosity of 290 mPa ⁇ s was prepared. A glove having a two-layer structure of a porous membrane and a thin film was produced in the same manner as in Example 1 except that latex foam was used.
  • ⁇ Comparative example 1> By adjusting the foaming conditions of the immersion liquid, a latex foam having a specific gravity of 0.88 g / ml, an average cell diameter of 14 ⁇ m, and a viscosity of 210 mPa ⁇ s was prepared. A glove having a two-layer structure of a porous membrane and a thin film was produced in the same manner as in Example 1 except that latex foam was used.
  • ⁇ Comparative example 2> By adjusting the foaming conditions of the immersion liquid, a latex foam having a specific gravity of 0.7 g / ml, an average cell diameter of 120 ⁇ m, and a viscosity of 380 mPa ⁇ s was prepared. A glove having a two-layer structure of a porous membrane and a thin film was produced in the same manner as in Example 1 except that latex foam was used.
  • ⁇ Comparative Example 3> By adjusting the foaming conditions of the immersion liquid, a latex foam having a specific gravity of 0.7 g / ml, an average cell diameter of 14 ⁇ m, and a viscosity of 93 mPa ⁇ s was prepared. A glove having a two-layer structure of a porous membrane and a thin film was produced in the same manner as in Example 1 except that latex foam was used.
  • ⁇ Comparative example 4> By adjusting the foaming conditions of the immersion liquid, a latex foam having a specific gravity of 0.7 g / ml, an average cell diameter of 11 ⁇ m, and a viscosity of 640 mPa ⁇ s was prepared. A glove having a two-layer structure of a porous membrane and a thin film was produced in the same manner as in Example 1 except that latex foam was used.
  • Latex foam that has not solidified flows from the fingertips, and the traces that remain clearly after vulcanization are poor in fingertip flowback. Latex foam accumulates between two adjacent fingers, and after capping the finger crotch The film forming film was defined as a finger groin defect, and the rate of occurrence of each defect when the glove was continuously manufactured was recorded to evaluate the dipping processability of the latex foam.
  • Test pieces having a predetermined area were cut out from the gloves manufactured in Examples 1 to 4 and Comparative Examples 1 to 4, and cross-sectional micrographs were taken using a digital microscope. And the thickness of the porous film and the thin film was measured from the photographed micrograph, and the volume of the porous film and the thin film was obtained from the thickness and the area of the test piece.
  • the mass of the thin film was determined from the volume of the thin film and the true specific gravity of the material forming the thin film.
  • the mass of the test piece was measured using an electronic balance, and the mass of the porous membrane was obtained by subtracting the mass of the thin film obtained previously from the mass. From the volume and mass, the apparent specific gravity of the porous membrane is calculated, and from the apparent specific gravity and the true specific gravity of the material forming the porous membrane, the bubble content as an index of the total volume of bubbles in the porous membrane The rate (%) was calculated.
  • Test pieces were cut from the gloves manufactured in Examples 1 to 4 and Comparative Examples 1 to 4, and cross-sectional micrographs were taken using a digital microscope. Then, 50 bubbles were arbitrarily selected from the photographed micrograph, the diameter of each bubble was measured in the two-point distance measurement mode, and the average value was calculated as the average bubble diameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gloves (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 この発明は、多孔質膜を含み、蒸れ感の軽減効果に優れた手袋の製造方法である。この方法は、ゴムまたは樹脂を含み、起泡された、比重0.35g/ml以上0.85g/ml以下、平均気泡径100μm以下、粘度100mPa・s以上600mPa・s以下の浸漬液に、手袋の形状に対応した型を浸漬し、引き上げたのちゴムを加硫させるかまたは樹脂を硬化反応させて多孔質膜を形成する工程を含む。起泡された浸漬液の比重は、0.75g/ml以下であることが好ましい。また、起泡された浸漬液の平均気泡径は、50μm以下であることが好ましい。さらに、起泡された浸漬液の粘度は、400mPa・s以下であることが望ましい。

Description

手袋の製造方法
 本発明は、ゴムまたは樹脂の多孔質膜を含む手袋の製造方法に関するものである。
 一般家庭や工場、医療現場、あるいはスポーツといった様々な場面において人の手肌を保護したり、食中毒や感染症等を防止したり、あるいは取り扱う対象物(半導体や精密機器等)を手肌の皮脂等から保護したりするために、各種の手袋が広く用いられている。
 特に、全体がゴムまたは樹脂の皮膜によって一体に形成された手袋は、薄肉で指先の細かい作業等にも適しているため広く利用されている。
 前記手袋は、いわゆる浸漬法によって製造するのが一般的である。
 例えば全体がゴムの皮膜によって一体に形成された手袋を製造する場合は、まずゴムのラテックスに加硫剤等の各種添加剤を配合して未加硫もしくは前加硫状態の浸漬液を調製する。また手袋の立体形状に対応した、例えば陶器製の型を用意して、その表面を凝固剤(主に硝酸カルシウム水溶液)で処理する。
 次いで、型を浸漬液に一定時間に亘って浸漬したのち引き上げることで、型の表面に浸漬液を付着させる。
 そして引き上げた型ごと加熱して浸漬液を乾燥させるとともにゴムを加硫させるか、あるいは一旦乾燥させた後に型ごと加熱してゴムを加硫させたのち脱型することにより、全体がゴムの皮膜によって一体に形成された手袋が製造される。
 また、全体が樹脂の皮膜によって一体に形成された手袋は、ゴムのラテックスを含む浸漬液に代えて、樹脂のエマルションに各種添加剤を配合して調製した浸漬液を用いること以外は前記と同様にして製造することができる。
 ところが、ゴムや樹脂の連続した皮膜は透湿性や吸湿性を有さないため、手袋を長時間装着していると、汗によって手が蒸れたりべたついたりする、いわゆる蒸れ感を生じるという問題がある。
 手袋を、多孔質膜を含む2層以上の積層構造、特に手と接触する最内層を多孔質膜とした積層構造とし、手から発生した湿気を多孔質膜によって吸収させることで、蒸れ感を軽減する方法がある。
 例えば浸漬法では、浸漬液を起泡させると、形成されるゴムまたは樹脂の皮膜が、主に連続気孔構造を有する多孔質膜になることが知られており、それを利用して多孔質膜を含む手袋を製造することが検討されている。例えば特許文献1では、ホース等を使用して空気を吹き込むことで起泡させた浸漬液を使用して、浸漬法により多孔質膜を形成している。
特開2011-1662号公報
 前記方法によれば、確かにゴムまたは樹脂からなる多孔質膜を形成することはできる。しかし発明者の検討によると、特許文献1等に記載の従来の多孔質膜は、その内部に含まれる気泡の総量(気泡総体積)が総じて小さいため吸湿性が十分でなく、ユーザーが期待する蒸れ感の軽減を十分に満足しうるものではないのが現状である。
 本発明の目的は、蒸れ感の軽減された手袋を製造するための製造方法を提供することにある。
 前記課題を解決するため、発明者は、浸漬法によって多孔質膜を形成するために用いる、起泡させた浸漬液(ゴムのラテックスまたは樹脂のエマルションのフォームであって、以下では「ラテックスフォーム」と総称する場合がある。)の比重、平均気泡径、および粘度と、ラテックスフォームを用いて浸漬法によって形成される多孔質膜の気泡総体積、および吸湿性、さらには蒸れ感との関係について鋭意検討した。
 その結果、ラテックスフォームの比重を0.35g/ml以上、0.85g/ml以下、平均気泡径を100μm以下、粘度を100mPa・s以上、600mPa・s以下に規定することにより、主に連続気孔構造を有し、しかも気泡総体積が大きく吸湿性に優れるため手袋の蒸れ感を大幅に軽減できる多孔質膜を形成できることを見出し、本発明を完成するに至った。
 すなわち本発明は、ゴムまたは樹脂の多孔質膜を含む手袋を製造するための製造方法であって、ゴムまたは樹脂を含み、起泡された、比重0.35g/ml以上、0.85g/ml以下、平均気泡径100μm以下、粘度100mPa・s以上、600mPa・s以下の浸漬液に、手袋の形状に対応した型を浸漬し、引き上げたのちゴムを加硫させるかまたは樹脂を硬化反応させて多孔質膜を形成する工程を含むことを特徴とするものである。
 比重は、ラテックスフォーム中に含まれる気泡の総量を規定する指標であって、ラテックスフォームの単位体積あたりの重量を測定することによって求められる。
 本発明においてラテックスフォームの比重が前記範囲に限定されるのは、下記の理由による。
 すなわち比重が0.35g/ml未満では、ラテックスフォーム中に過剰の気泡が存在することになり、個々の気泡を隔てる浸漬液の膜が薄くなりすぎて、例えば浸漬法によってラテックスフォームを型の表面に付着させたのちゴムを加硫させる間に多数の気泡が破泡することで多孔質膜が破壊されてしまい、厚みが均一な、連続した多孔質膜を形成できないという問題を生じる。
 一方、比重が0.85g/mlを超える場合には、ラテックスフォーム中に含まれる気泡の量が不十分で、ラテックスフォームを用いて形成される多孔質膜の気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないという問題を生じる。
 これに対し、ラテックスフォームの比重を0.35g/ml以上、0.85g/ml以下の範囲内とすれば、多孔質膜の破壊を極力抑制しながら、当該多孔質膜の気泡総体積をできるだけ大きくし、吸湿性を極力向上して、手袋の蒸れ感を大幅に軽減することが可能となる。
 なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、比重は、前記範囲内でも0.75g/ml以下とするのが好ましい。
 また、ラテックスフォームの平均気泡径が前記範囲に限定されるのは、下記の理由による。
 すなわち平均気泡径が100μmを超える場合には、同じ気泡量でも個々の気泡内部の表面積が小さくなるため、吸湿性が低下して、湿気を効率的に吸収できないという問題を生じる。
 これに対し、ラテックスフォームの平均気泡径を100μm以下の範囲内とすれば、気泡内部の表面積を増やすことができるため、吸湿性を向上し、湿気をより効率的に吸収できるようにして、手袋の蒸れ感を大幅に軽減することが可能となる。
 なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、平均気泡径は、前記範囲内でも50μm以下とするのが好ましい。
 さらにラテックスフォームの粘度が前記範囲に限定されるのは、下記の理由による。
 すなわち粘度が100mPa・s未満では、例えば浸漬法によって前記ラテックスフォームを型の表面に付着させたのちゴムを加硫させる過程で気泡構造を安定に維持できないため、形成される多孔質膜の気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないという問題を生じる。
 一方、粘度が600mPa・sを超える場合には、ラテックスフォームの浸漬加工性が低くなって、当該ラテックスフォームに型を浸漬して引き上げた際に、型の表面にほぼ均等にラテックスフォームを付着させることができず、型の指先に他の部分よりも厚くラテックスフォームが溜まるいわゆる指先溜まりや、溜まったラテックスフォームが流れ落ちて、加硫後の手袋に流れ落ちた痕跡が残るいわゆる指先フローバック、あるいは指と指の間に膜を生じるいわゆる指股膜等の不良を生じる。
 これに対し、ラテックスフォームの粘度を100mPa・s以上、600mPa・s以下の範囲内とすれば、当該ラテックスフォームの浸漬加工性を向上して、指先溜まりや指先フローバック、指股膜等の不良の発生を極力抑制しながら、多孔質膜の吸湿性を極力向上して、手袋の蒸れ感を大幅に軽減することが可能となる。
 なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、粘度は、前記範囲内でも400mPa・s以下とするのが好ましい。
 本発明によれば、蒸れ感の軽減効果に優れた手袋を製造するための製造方法を提供することができる。
 本発明は、ゴムまたは樹脂の多孔質膜を含む手袋を製造するための製造方法であって、ゴムまたは樹脂を含み、起泡された、比重0.35g/ml以上、0.85g/ml以下、平均気泡径100μm以下、粘度100mPa・s以上、600mPa・s以下の浸漬液(ラテックスフォーム)に、手袋の形状に対応した型を浸漬し、引き上げたのちゴムを加硫させるかまたは樹脂を硬化反応させて前記多孔質膜を形成する工程を含むことを特徴とするものである。
 ラテックスフォームの比重が前記範囲に限定されるのは、下記の理由による。
 すなわち比重が0.35g/ml未満では、ラテックスフォーム中に過剰の気泡が存在することになり、個々の気泡を隔てる浸漬液の膜が薄くなりすぎて、例えば浸漬法によってラテックスフォームを型の表面に付着させたのちゴムを加硫させる間に多数の気泡が破裂することで多孔質膜が破壊されてしまい、厚みが均一な、連続した多孔質膜を形成できないという問題を生じる。
 一方、比重が0.85g/mlを超える場合には、ラテックスフォーム中に含まれる気泡の量が不十分で、ラテックスフォームを用いて形成される多孔質膜の気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないという問題を生じる。
 これに対し、ラテックスフォームの比重を0.35g/ml以上、0.85g/ml以下の範囲内とすれば、多孔質膜の破壊を極力抑制しながら、当該多孔質膜の気泡総体積をできるだけ大きくし、吸湿性を極力向上して、手袋の蒸れ感を大幅に軽減することが可能となる。
 なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、比重は、前記範囲内でも0.75g/ml以下とするのが好ましい。
 また、ラテックスフォームの平均気泡径が前記範囲に限定されるのは、下記の理由による。
 すなわち平均気泡径が100μmを超える場合には、同じ気泡量でも個々の気泡内部の表面積が小さくなるため、吸湿性が低下して、湿気を効率的に吸収できないという問題を生じる。
 これに対し、ラテックスフォームの平均気泡径を100μm以下の範囲内とすれば、気泡内部の表面積を増やすことができるため、吸湿性を向上し、湿気をより効率的に吸収できるようにして、手袋の蒸れ感を大幅に軽減することが可能となる。
 なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、平均気泡径は、前記範囲内でも50μm以下とするのが好ましい。
 また平均気泡径は、気泡総体積が十分に大きく、吸湿性に優れた多孔質膜を形成することを考慮すると、前記範囲内でも5μm以上、特に10μm以上であるのが好ましい。
 さらにラテックスフォームの粘度が前記範囲に限定されるのは、下記の理由による。
 すなわち粘度が100mPa・s未満では、例えば浸漬法によって前記ラテックスフォームを型の表面に付着させたのちゴムを加硫させる過程で気泡構造を安定に維持できないため、形成される多孔質膜の吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないという問題を生じる。
 一方、粘度が600mPa・sを超える場合には、ラテックスフォームの浸漬加工性が低くなって、当該ラテックスフォームに型を浸漬して引き上げた際に、型の表面にほぼ均等にラテックスフォームを付着させることができず、型の指先に他の部分よりも厚くラテックスフォームが溜まるいわゆる指先溜まりや、前記溜まったラテックスフォームが流れ落ちて、加硫後の手袋に流れ落ちた痕跡が残るいわゆる指先フローバック、あるいは指と指の間に膜を生じるいわゆる指股膜等の不良を生じる。
 これに対し、ラテックスフォームの粘度を100mPa・s以上、600mPa・s以下の範囲内とすれば、当該ラテックスフォームの浸漬加工性を向上して、指先溜まりや指先フローバック、指股膜等の不良の発生を極力抑制しながら、多孔質膜の吸湿性を極力向上して、手袋の蒸れ感を大幅に軽減することが可能となる。
 なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、粘度は、前記範囲内でも400mPa・s以下とするのが好ましい。
 ラテックスフォームは、ゴムのラテックスもしくは樹脂のエマルションを含む浸漬液をかく拌したり、空気を吹き込んだり、あるいはこの両方を併用したりして起泡させることによって調製できる。起泡の条件や、ラテックスフォームのもとになる浸漬液の組成等を任意に、かつ個別に設定することで、比重、平均気泡径、および粘度が前記範囲内となるように調整すればよい。
 ラテックスフォームのもとになる、ゴムを含む浸漬液は、従来同様に、ゴムのラテックスに加硫剤等の各種添加剤を配合して調製される。
 ゴムとしては天然ゴム、および合成ゴムの中からラテックス化が可能な種々のゴムがいずれも使用可能であり、かかるゴムとしては、例えば天然ゴム、脱蛋白天然ゴム、アクリロニトリル-ブタジエンゴム(NBR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)等の1種または2種以上が挙げられる。
 ゴムを加硫させる加硫剤としては硫黄や有機含硫黄化合物等が挙げられる。加硫剤の配合割合は、ゴムラテックス中の固形分(ゴム分)100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 ゴムおよび加硫剤を含む浸漬液中には、さらに加硫促進剤、加硫促進助剤、老化防止剤、充填剤、分散剤、安定剤、発泡剤等の各種添加剤を配合してもよい。
 このうち加硫促進剤としては、例えばPX(N-エチル-N-フェニルジチオカルバミン酸亜鉛)、PZ(ジメチルジチオカルバミン酸亜鉛)、EZ(ジエチルジチオカルバミン酸亜鉛)、BZ(ジブチルジチオカルバミン酸亜鉛)、MZ(2-メルカプトベンゾチアゾールの亜鉛塩)、TT(テトラメチルチウラムジスルフィド)等の1種または2種以上が挙げられる。
 加硫促進剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 加硫促進助剤としては、例えば亜鉛華(酸化亜鉛)、および/またはステアリン酸等が挙げられる。加硫促進助剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 老化防止剤としては、一般に非汚染性のフェノール類が好適に用いられるが、アミン類を使用してもよい。老化防止剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 充填剤としては、例えばカオリンクレー、ハードクレー、炭酸カルシウム等の1種または2種以上が挙げられる。充填剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり10質量部以下であるのが好ましい。
 分散剤は、各種添加剤をゴムラテックス中に良好に分散させるために配合されるものであり、分散剤としては、例えば陰イオン系界面活性剤等の1種または2種以上が挙げられる。分散剤の配合割合は、分散対象である成分の総量の0.3質量部以上、1質量部以下であるのが好ましい。
 安定剤は、浸漬液を起泡させてラテックスフォームを調製する際に、起泡を助けるためのものであり、安定剤としては、例えば界面活性剤等の、浸漬液の起泡を助ける機能を有する種々の安定剤が使用可能である。安定剤は省略しても良いが、配合する場合は、求められるラテックスフォームの比重、平均気泡径、および粘度に応じて、その配合割合を適宜設定すればよい。
 ラテックスフォームのもとになる、樹脂を含む浸漬液は、従来同様に、樹脂のエマルションに各種添加剤を配合して調製される。
 樹脂としては、ウレタン系樹脂、硬化性アクリル系樹脂等の、エマルション化が可能な熱硬化性樹脂の1種または2種以上が挙げられる。
 樹脂を含む浸漬液中には、さらに老化防止剤、充填剤、分散剤、安定剤、発泡剤等の各種添加剤を配合してもよい。
 このうち老化防止剤としては、先に例示した非汚染性のフェノール類やアミン類等の1種または2種以上が挙げられる。老化防止剤の配合割合は、樹脂エマルション中の固形分(樹脂分)100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 充填剤としては、前記例示の充填剤の1種または2種以上が挙げられる。充填剤の配合割合は、樹脂エマルション中の樹脂分100質量部あたり10質量部以下であるのが好ましい。
 分散剤としては、前記例示の陰イオン系界面活性剤等の1種または2種以上が挙げられる。分散剤の配合割合は、分散対象である成分の総量の0.3質量部以上、1質量部以下であるのが好ましい。
 安定剤としては、界面活性剤等の、浸漬液の起泡を助ける機能を有する種々の安定剤が使用可能である。安定剤は省略しても良いが、配合する場合は、求められるラテックスフォームの比重、平均気泡径、および粘度に応じて、その配合割合を適宜設定すればよい。
 また浸漬液には、ウレタン系樹脂等を硬化反応させるための架橋剤、硬化剤等を、適宜の割合で配合してもよい。
 多孔質膜は、前記浸漬液を起泡させて調製された、前記の比重、平均気泡径、および粘度を有するラテックスフォームを用いること以外は従来同様に形成することができる。
 すなわち手袋の立体形状に対応した、例えば陶器製の型を用意し、その表面を凝固剤(主に硝酸カルシウム水溶液)で処理する。
 次いで型を、ラテックスフォームに一定時間に亘って浸漬したのち引き上げることで、型の表面にラテックスフォームを付着させる。
 そして引き上げた型ごと加熱してラテックスフォームを乾燥させるとともにゴムを加硫、もしくは樹脂を硬化反応させるか、あるいは一旦乾燥させた後に型ごと加熱してゴムを加硫、または樹脂を硬化反応させることによって多孔質膜が形成される。
 そして本発明によれば、前述の工程を経ることで、主に連続気孔構造を有し、気泡総体積が大きく吸湿性に優れるため手袋の蒸れ感を大幅に軽減できる多孔質膜を形成することが可能となる。
 前述の工程を経る本発明の製造方法によって製造される手袋は、多孔質膜のみを有する単層構造であってもよいが、手袋に適度な強度や不透水性等を付与するために、他の層との2層以上の積層構造に形成するのが好ましい。
 積層構造を有する手袋において、多孔質膜の厚みは、手袋に適度な強度と良好な吸湿性とを付与しながら、なおかつその全体をできるだけ薄肉化して指先の細かい作業等に適用できるようにすることを考慮すると0.07mm以上、特に0.1mm以上であるのが好ましく、2.0mm以下、中でも1.5mm以下、特に1.0mm以下であるのが好ましい。
 多孔質膜とともに積層構造を有する手袋を構成する他の層は種々の構造、材料によって形成することができるが、特に薄肉で指先の細かい作業等に適した手袋を構成することを考慮すると、例えばポリウレタン、シリコーンゴム、セルロースアセテート、エチルセルロース、およびポリビニルアルコールからなる群より選ばれた少なくとも1種のポリマ、またはポリマと、多孔質膜のもとになるゴムまたは樹脂との混合物等からなる薄膜が好ましい。
 特に、薄膜に良好な不透水性と透湿性とを付与することを考慮すると、薄膜はポリウレタン、またはポリウレタンと、多孔質膜のもとになるゴムまたは樹脂との混合物によって形成するのが好ましい。
 薄膜は不透水性でかつ透湿性を有しており、当該薄膜を手袋の外側、多孔質膜を手袋の内側に設けることで、外部から手袋内への水の侵入を確実に防止しながら、多孔質膜で吸湿した湿気を効果的に手袋外へ逃がすことができ、手袋の蒸れ感をより一層大幅に軽減することができる。
 薄膜の厚みは5μm以上、特に10μm以上であるのが好ましく、200μm以下、中でも100μm以下、特に50μm以下であるのが好ましい。
 厚みが前記範囲未満では、多孔質膜の片面に、良好な不透水性を有する連続した薄膜を形成できないため、外部から水が侵入するのを確実に防止できないおそれがある。
 一方、厚みが前記範囲を超える場合には、薄膜に十分な透湿性を付与できないため、手袋を長時間装着した際に汗によって手が蒸れたりべたついたりしやすくなるおそれがある。
 さらに薄膜は、良好な不透水性を確保するために、非多孔質膜であるのが好ましい。
 薄膜は、そのもとになる、ポリマ等を含む塗布液を調製し、塗布液を、例えば浸漬法、スプレー法等の任意の塗布方法によって、先に形成した多孔質膜の表面に塗布したのち乾燥させることによって形成できる。
 また、ポリマがポリウレタンやシリコーンゴム等の架橋性のポリマである場合、浸漬液中には、当該ポリマの架橋剤、硬化剤等を、適宜の割合で配合しておき、乾燥と同時に、あるいは乾燥後に加熱する等してポリマを架橋反応させればよい。
 また薄膜は、例えば浸漬法によって、多孔質膜と一体に形成することもできる。
 例えば、凝固剤で処理したのちラテックスフォームに浸漬する前の型を、薄膜のもとになるポリマ等を含む浸漬液に、一定時間に亘って浸漬したのち引き上げて、型の表面に浸漬液を付着させ、次いでラテックスフォームに一定時間に亘って浸漬したのち引き上げて、ラテックスフォームを付着させる。
 そして乾燥させるとともにゴムを加硫、もしくは樹脂を硬化反応させるか、あるいは一旦乾燥させた後に型ごと加熱してゴムを加硫、または樹脂を硬化反応させることによって、多孔質膜と薄膜とを一体に形成することができる。なお浸漬の順序は逆であってもよい。
 〈ラテックスフォームの特性〉
 後述する実施例、比較例で調製したラテックスフォームの特性は、下記の方法によって求めた。なお測定は、いずれも23±1℃の環境下で実施した。
 (比重)
 調製したラテックスフォームを、メスシリンダで体積が100mlになるように計量し、その質量を測定して比重(g/ml)を求めた。
 (平均気泡径)
 調製したラテックスフォームをシャーレ上に数滴滴下し、デジタルマイクロスコープを用いて顕微鏡写真を撮影した。そして撮影した顕微鏡写真から任意で50個の気泡を選び、それぞれの気泡の直径を2点間距離測定モードによって測定して、その平均値を平均気泡径として算出した。
 (粘度)
 調製したラテックスフォームの粘度を、B型粘度計を用いて測定した。
 〈実施例1〉
 (ラテックスフォームの調製)
 NBRラテックス〔日本ゼオン(株)製のNIPOL(登録商標)LX552〕に、当該NBRラテックス中のゴム分(乾燥ベース)100質量部あたり、加硫剤としての硫黄1質量部、加硫促進剤BZ(ジブチルジチオカルバミン酸亜鉛)1質量部、および加硫促進助剤としての亜鉛華2質量部を配合したのちかく拌しながら30℃で48時間前加硫させて起泡前の浸漬液を作製した。
 次いで浸漬液を、かく拌機を用いて高速かく拌することで起泡させて、比重0.67g/ml、平均気泡径15μm、粘度350mPa・sのラテックスフォームを調製した。
 (薄膜用の浸漬液の調製)
 ポリウレタン系の水性コート剤〔DIC(株)製のハイドラン(登録商標)WLS-208〕に、当該水性コート剤中のポリウレタン100質量部あたり4質量部の架橋剤〔DIC(株)製のハイドラン アシスタCS-7〕を配合して透湿性ポリウレタンエマルションを作製した。
 次いで透湿性ポリウレタンエマルションと、起泡前のNBRラテックス系の浸漬液とを質量比で1:1となるように配合して薄膜用の塗布液を調製した。
 (手袋の製造)
 型としては、陶器製で手袋の立体形状に対応するものを用意した。
 型を、まず25%硝酸カルシウム水溶液に浸漬し、引き上げたのち乾燥させることで、型の表面を凝固剤としての硝酸カルシウムによって処理した。
 次いで型を、液温を25℃に保持した先の薄膜用の浸漬液に一定の速度で浸漬し、10秒間保持したのち一定の速度で引き上げることで、型の表面に浸漬液を付着させ、引き続いてラテックスフォームに一定の速度で浸漬し、5秒間保持したのち一定の速度で引き上げることで、さらにラテックスフォームを付着させた。
 そして引き上げた型を、まず指先を上にして10秒間、次いで指先を下にして10秒間保持した後、指先を上にした状態で型ごと100℃に加熱したオーブン中に入れて30分間加熱して乾燥させるとともにNBRを加硫させ、かつポリウレタンを架橋反応させ、次いで脱型して、多孔質膜と薄膜の2層構造を有する手袋を製造した。
 〈実施例2〉
 浸漬液の起泡条件を調整して、比重0.7g/ml、平均気泡径19μm、粘度480mPa・sのラテックスフォームを調製した。
 そしてラテックスフォームを用いたこと以外は実施例1と同様にして、多孔質膜と薄膜の2層構造を有する手袋を製造した。
 〈実施例3〉
 浸漬液の起泡条件を調整して、比重0.69g/ml、平均気泡径85μm、粘度350mPa・sのラテックスフォームを調製した。
 そしてラテックスフォームを用いたこと以外は実施例1と同様にして、多孔質膜と薄膜の2層構造を有する手袋を製造した。
 〈実施例4〉
 浸漬液の起泡条件を調整して、比重0.81g/ml、平均気泡径14μm、粘度290mPa・sのラテックスフォームを調製した。
 そしてラテックスフォームを用いたこと以外は実施例1と同様にして、多孔質膜と薄膜の2層構造を有する手袋を製造した。
 〈比較例1〉
 浸漬液の起泡条件を調整して、比重0.88g/ml、平均気泡径14μm、粘度210mPa・sのラテックスフォームを調製した。
 そしてラテックスフォームを用いたこと以外は実施例1と同様にして、多孔質膜と薄膜の2層構造を有する手袋を製造した。
 〈比較例2〉
 浸漬液の起泡条件を調整して、比重0.7g/ml、平均気泡径120μm、粘度380mPa・sのラテックスフォームを調製した。
 そしてラテックスフォームを用いたこと以外は実施例1と同様にして、多孔質膜と薄膜の2層構造を有する手袋を製造した。
 〈比較例3〉
 浸漬液の起泡条件を調整して、比重0.7g/ml、平均気泡径14μm、粘度93mPa・sのラテックスフォームを調製した。
 そしてラテックスフォームを用いたこと以外は実施例1と同様にして、多孔質膜と薄膜の2層構造を有する手袋を製造した。
 〈比較例4〉
 浸漬液の起泡条件を調整して、比重0.7g/ml、平均気泡径11μm、粘度640mPa・sのラテックスフォームを調製した。
 そしてラテックスフォームを用いたこと以外は実施例1と同様にして、多孔質膜と薄膜の2層構造を有する手袋を製造した。
 〈手袋の特性評価〉
 以下の試験を、いずれも23±1℃の環境下で実施した。
 (ラテックスフォームの浸漬加工性)
 実施例1~4、比較例1~5の手袋を製造する途中の、型をラテックスフォームから引き上げてから、加熱して乾燥させるとともにNBRを加硫させ、かつポリウレタンを架橋反応させるまでの間の段階における、ラテックスフォームの状態を観察した。
 そして、指先から凝固していないラテックスフォームが流れ落ちて、加硫後もその痕跡がはっきり残ったものを指先フローバック不良、隣り合う2本の指の間にラテックスフォームが溜まって加硫後に指股膜を生じたものを指股膜不良と規定し、手袋を連続的に製造した際の、それぞれの不良の発生率を記録して、ラテックスフォームの浸漬加工性を評価した。
 (多孔質膜の気泡含有率)
 実施例1~4、比較例1~4で製造した手袋から所定の面積の試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影した。そして撮影した顕微鏡写真から多孔質膜、および薄膜の厚みを測定し、厚みと試験片の面積とから、多孔質膜、および薄膜の体積を求めた。
 また薄膜の体積と、当該薄膜を形成する材料の真比重とから薄膜の質量を求めた。
 次に、電子天秤を用いて試験片の質量を測定し、質量から先に求めた薄膜の質量を差し引いて、多孔質膜の質量を求めた。
 そして体積と質量とから、多孔質膜の見かけの比重を算出し、当該見かけの比重と、多孔質膜を形成する材料の真比重とから、多孔質膜の気泡総体積の指標としての気泡含有率(%)を算出した。
 (平均気泡径)
 実施例1~4、比較例1~4で製造した手袋から試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影した。そして撮影した顕微鏡写真から任意で50個の気泡を選び、それぞれの気泡の直径を2点間距離測定モードによって測定して、その平均値を平均気泡径として算出した。
 (官能試験)
 実施例1~4、比較例1~4で製造した手袋を10名の被験者に装着してもらい、装着10分後の装着感を下記の5段階で評価してもらった。
 A:蒸れは全く感じられなかった。非常に快適。
 B:蒸れは殆ど感じられなかった。快適。
 C:蒸れが僅かに感じられたものの、実用レベル。
 D:蒸れが感じられた。不快。
 E:蒸れが強く感じられた。非常に不快。
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の比較例1の結果より、ラテックスフォームの比重が0.85g/mlを超える場合には、形成される多孔質膜の気泡含有率が小さいことや、官能試験の結果が良好でないことから、気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないことが判った。
 また比較例2の結果より、ラテックスフォームの平均気泡径が100μmを超える場合には、形成される多孔質膜の気泡含有率は実施例と変らないものの、官能試験の結果が良好でないことから、個々の気泡内部の表面積が小さくなって吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないことが判った。
 また比較例3の結果より、ラテックスフォームの粘度が100mPa・s未満では、形成される多孔質膜の気泡含有率が小さいことや、官能試験の結果が良好でないことから、気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないことが判った。
 さらに比較例4の結果より、ラテックスフォームの粘度が600mPa・sを超える場合には、ラテックスフォームに型を浸漬して引き上げた際に生じる指先フローバック不良や指股膜不良の発生率が高いことから、ラテックスフォームの浸漬加工性が低く、型の表面にほぼ均等にラテックスフォームを付着できないことが判った。
 これに対し実施例1~4の結果より、ラテックスフォームの比重、平均気泡径、および粘度を、それぞれ規定した範囲内とすることにより、主に連続気孔構造を有し、しかも気泡総体積が大きく吸湿性に優れるため手袋の蒸れ感を大幅に軽減できる多孔質膜を形成できることが判った。
 また実施例1~4の結果より、手袋の蒸れ感をさらに軽減することを考慮すると、ラテックスフォームの比重は0.75g/ml以下、平均気泡径は50μm以下、粘度は400mPa・s以下であるのが好ましいことが判った。

Claims (13)

  1.  ゴムの多孔質膜を含む手袋を製造するための製造方法であって、ゴムを含み、起泡された、比重0.35g/ml以上0.85g/ml以下、平均気泡径100μm以下、粘度100mPa・s以上600mPa・s以下の浸漬液に、手袋の形状に対応した型を浸漬し、引き上げたのちゴムを加硫させて多孔質膜を形成する工程を含むことを特徴とする手袋の製造方法。
  2.  前記起泡された浸漬液の比重は0.75g/ml以下である請求項1に記載の手袋の製造方法。
  3.  前記起泡された浸漬液の平均気泡径は50μm以下である請求項1または2に記載の手袋の製造方法。
  4.  前記起泡された浸漬液の粘度は400mPa・s以下である請求項1~3のいずれか一項に記載の手袋の製造方法。
  5.  前記ゴムは、天然ゴム、脱蛋白天然ゴム、アクリロニトリル-ブタジエンゴム(NBR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)から選ばれる1種または2種以上を含む、請求項1~4のいずれか一項に記載の手袋の製造方法。
  6.  前記浸漬液には、加硫剤が配合されており、その配合割合は、浸漬液中のゴム分100質量部あたり0.5質量部以上3質量部以下である、請求項1または5に記載の手袋の製造方法。
  7.  前記浸漬液には、加硫促進剤が配合されており、その配合割合は、浸漬液中のゴム分100質量部あたり0.5質量部以上3質量部以下である、請求項6に記載の手袋の製造方法。
  8.  前記浸漬液には、老化防止剤が配合されており、その配合割合は、浸漬液中のゴム分100質量部あたり0.5質量部以上3質量部以下である、請求項7に記載の手袋の製造方法。
  9.  前記浸漬液には、充填剤が配合されており、その配合割合は、浸漬液中のゴム分100質量部あたり10質量部以下である、請求項8に記載の手袋の製造方法。
  10.  樹脂の多孔質膜を含む手袋を製造するための製造方法であって、樹脂を含み、起泡された、比重0.35g/ml以上0.85g/ml以下、平均気泡径100μm以下、粘度100mPa・s以上600mPa・s以下の浸漬液に、手袋の形状に対応した型を浸漬し、引き上げたのち樹脂を硬化反応させて多孔質膜を形成する工程を含むことを特徴とする手袋の製造方法。
  11.  前記起泡された浸漬液の比重は0.75g/ml以下である請求項10に記載の手袋の製造方法。
  12.  前記起泡された浸漬液の平均気泡径は50μm以下である請求項10または11に記載の手袋の製造方法。
  13.  前記起泡された浸漬液の粘度は400mPa・s以下である請求項10~12のいずれか一項に記載の手袋の製造方法。
PCT/JP2012/075709 2011-10-14 2012-10-03 手袋の製造方法 WO2013054720A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280050550.3A CN103857305B (zh) 2011-10-14 2012-10-03 手套的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011226850 2011-10-14
JP2011-226850 2011-10-14
JP2012142166A JP5481529B2 (ja) 2011-10-14 2012-06-25 手袋の製造方法
JP2012-142166 2012-06-25

Publications (1)

Publication Number Publication Date
WO2013054720A1 true WO2013054720A1 (ja) 2013-04-18

Family

ID=48081777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075709 WO2013054720A1 (ja) 2011-10-14 2012-10-03 手袋の製造方法

Country Status (4)

Country Link
JP (1) JP5481529B2 (ja)
CN (1) CN103857305B (ja)
MY (1) MY163174A (ja)
WO (1) WO2013054720A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133624U (ja) * 1983-02-26 1984-09-07 旭化成株式会社 通気性を有する防塵・防水作業用衣料素材
JPH0280606A (ja) * 1988-09-19 1990-03-20 Sumitomo Chem Co Ltd 透湿性手袋
JP2005120549A (ja) * 2003-10-20 2005-05-12 Sumitomo Rubber Ind Ltd ゴム手袋の製造方法
JP2011001662A (ja) * 2009-06-19 2011-01-06 Towa Corp:Kk 手袋及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191202A (ja) * 1983-01-19 1983-11-08 オカモト株式会社 合成樹脂製手袋の製造方法
JPS626903A (ja) * 1985-07-02 1987-01-13 ダイヤゴム株式会社 透湿性作業用手袋
US20050221073A1 (en) * 2004-04-02 2005-10-06 Der-Lin Liou Elastomeric foam article
JP4331782B2 (ja) * 2007-03-30 2009-09-16 株式会社東和コーポレーション 樹脂表面の形成方法、表面に異なる大きさの凹状部が混在する物品の製造方法及びその物品、手袋の製造方法及び手袋
CN101756395B (zh) * 2008-11-06 2013-07-17 邓龙兴 内衬发泡橡胶手套的制备方法
JP5384090B2 (ja) * 2008-12-09 2014-01-08 ショーワグローブ株式会社 滑り止め手袋及びその製造方法
JP5407911B2 (ja) * 2009-02-18 2014-02-05 東ソー株式会社 水性ポリウレタン樹脂組成物およびこれを用いたフィルム成型体
CN101828780A (zh) * 2009-03-09 2010-09-15 沙晓林 水性pu发泡手套生产工艺
JP4875138B2 (ja) * 2009-12-09 2012-02-15 株式会社東和コーポレーション 湿式成膜による樹脂皮膜品及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133624U (ja) * 1983-02-26 1984-09-07 旭化成株式会社 通気性を有する防塵・防水作業用衣料素材
JPH0280606A (ja) * 1988-09-19 1990-03-20 Sumitomo Chem Co Ltd 透湿性手袋
JP2005120549A (ja) * 2003-10-20 2005-05-12 Sumitomo Rubber Ind Ltd ゴム手袋の製造方法
JP2011001662A (ja) * 2009-06-19 2011-01-06 Towa Corp:Kk 手袋及びその製造方法

Also Published As

Publication number Publication date
JP5481529B2 (ja) 2014-04-23
JP2013100630A (ja) 2013-05-23
CN103857305B (zh) 2015-11-25
CN103857305A (zh) 2014-06-11
MY163174A (en) 2017-08-15

Similar Documents

Publication Publication Date Title
EP2280618B1 (en) Dip-formed synthetic polyisoprene latex articles with improved intraparticle and interparticle crosslinks
RU2008106479A (ru) Эластомерные пленки и перчатки
JP2015094038A (ja) 手袋の製造方法
CA2429840A1 (en) Elastomeric articles made from a synthetic polymer
JP2009531509A (ja) ポリイソプレンコンドーム
CN105722908A (zh) 包含聚异戊二烯的聚合物组合物
CN108433217B (zh) 一种丁腈假发泡防滑手套的制备方法
JP6021198B2 (ja) ゴム手袋の製造方法
CN103289141A (zh) 防静电无味防臭二硫海绵胶料及其制备方法及应用
JP3146413B2 (ja) 接着性に優れたゴム製手袋の製造方法
JP5323968B2 (ja) 手袋
CN111421729B (zh) 一种丁腈微孔透气发泡手套的制备方法
JP5490190B2 (ja) 手袋およびその製造方法
JP5481529B2 (ja) 手袋の製造方法
JP2014169517A (ja) ゴム手袋の製造方法
JP2018003210A (ja) 手袋
CN114672082A (zh) 一种羧基丁腈乳液及其制备方法和应用
JP2013087374A (ja) 手袋
JP2024026615A (ja) スリップ防止靴カバー
JP2005120549A (ja) ゴム手袋の製造方法
JP2003138413A (ja) 手袋の製造方法
JP6308652B2 (ja) 薄膜製品の製造方法
JPH08294930A (ja) ゴム手袋の製造方法およびゴム手袋の内面形成用組成物
KR20080041776A (ko) 수분산 고분자 수지가 도포된 피복물과 그 제조방법
JP2012107360A (ja) 手袋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839660

Country of ref document: EP

Kind code of ref document: A1