WO2013054707A1 - 走行作業機械又は船舶の遠隔監視端末装置 - Google Patents

走行作業機械又は船舶の遠隔監視端末装置 Download PDF

Info

Publication number
WO2013054707A1
WO2013054707A1 PCT/JP2012/075603 JP2012075603W WO2013054707A1 WO 2013054707 A1 WO2013054707 A1 WO 2013054707A1 JP 2012075603 W JP2012075603 W JP 2012075603W WO 2013054707 A1 WO2013054707 A1 WO 2013054707A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
data
remote monitoring
unit
control unit
Prior art date
Application number
PCT/JP2012/075603
Other languages
English (en)
French (fr)
Inventor
順也 楠野
学 佐竹
啓祐 上住谷
坂本 博文
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201280050139.6A priority Critical patent/CN103917932B/zh
Priority to KR1020147012691A priority patent/KR101982369B1/ko
Priority to EP12840351.6A priority patent/EP2749978B1/en
Priority to US14/350,629 priority patent/US9336631B2/en
Publication of WO2013054707A1 publication Critical patent/WO2013054707A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/823Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/826Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent periodically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode

Definitions

  • the present invention is provided in a traveling work machine such as a construction machine or an agricultural machine or a ship such as a pleasure board or a fishing boat, and is remotely monitored by the remote monitoring device by communicating with the remote monitoring device.
  • a traveling work machine such as a construction machine or an agricultural machine or a ship such as a pleasure board or a fishing boat
  • This relates to a remote monitoring terminal device.
  • Patent Document 1 in a mobile work machine management system, when an on / off operation of an engine key switch is received (when an event occurs), the mobile work machine side performs maintenance on the management unit. It is disclosed that data relating to the operating state is transmitted (see paragraphs [0024] and [0025] of Patent Document 1).
  • Patent Document 1 does not disclose at which time point data is transmitted when an event occurs in the mobile work machine. For example, simply transmitting the data at the time of event occurrence causes the event to be transmitted. The user cannot accurately grasp the operating state of the generated mobile work machine.
  • the present invention is a remote monitoring terminal device for a traveling work machine or a ship that is provided in a traveling work machine or a ship and is remotely monitored by the remote monitoring apparatus by communicating with a remote monitoring apparatus,
  • the traveling work machine or the ship remote monitoring terminal device that allows a user to accurately grasp the operating state of the traveling work machine or the ship in which the event has occurred.
  • the purpose is to provide.
  • the present invention provides a remote monitoring of a traveling work machine or a ship that is provided in a traveling work machine or a ship and is remotely monitored by the remote monitoring apparatus by communicating with the remote monitoring apparatus.
  • a terminal device wherein a plurality of connection terminals to which data relating to the operating state of the traveling work machine or the ship is input, and the data input via the connection terminals from the latest to the latest for every predetermined period
  • a data storage control unit that temporarily stores data in the data storage unit for a predetermined number of times, and a communication unit that communicates with the remote monitoring device, the data storage control unit comprising the traveling work machine or the ship
  • the predetermined number of times including the data at the time when the predetermined event occurs is stored in the data storage unit on condition that a predetermined event occurs in A traveling operation characterized in that information indicating the predetermined event and the predetermined number of times of data stored in the data storage unit are transmitted from the communication unit to the remote monitoring device.
  • the traveling work machine in which the predetermined event has occurred such as data for the predetermined number of times including data at the time when the predetermined event has occurred, or Data necessary for allowing the user to accurately grasp the operating state of the ship can be transmitted to the remote monitoring device. Therefore, when the predetermined event occurs in the traveling work machine or the ship, it is possible to allow the user to accurately grasp the operating state of the traveling work machine or the ship in which the predetermined event has occurred.
  • the data storage control unit is any one of information indicating the predetermined event and data for the predetermined number of times stored in the data storage unit on the condition that the predetermined event occurs.
  • One time of data is transmitted to the remote monitoring device, and if there is a request for transmission of the predetermined number of data from the remote monitoring device, the predetermined number of data is transmitted from the communication unit to the remote monitoring device.
  • the data for the predetermined number of times can be transmitted to the remote monitoring device as needed on the remote monitoring device side by the one-time data.
  • the present invention it is possible to exemplify an aspect in which the occurrence of the predetermined event is when an abnormality of the traveling work machine or the ship is detected.
  • the present invention it is possible to exemplify a mode in which the occurrence of the predetermined event is a time when an on operation or an off operation by an operation member instructing a predetermined predetermined operation of the traveling work machine or the ship is received.
  • the traveling work machine or the ship remote monitoring terminal device As described above, according to the traveling work machine or the ship remote monitoring terminal device according to the present invention, the traveling work in which the predetermined event occurs when the predetermined event occurs in the traveling work machine or the ship. It becomes possible for the user to accurately grasp the operating state of the machine or the ship.
  • movement diagram which shows typically the operation
  • It is a schematic block diagram which shows typically the data structure of the 3rd data storage part used by the operation information transmission control part. It is a flowchart which shows the first half part of the operation example by an operation information transmission control part. It is a flowchart which shows the second half part of the operation example by an operation information transmission control part.
  • movement diagram which shows typically the operation
  • movement diagram which shows typically the operation
  • FIG. 1 is a schematic configuration diagram schematically showing a remote monitoring system 100 for remotely monitoring agricultural machines 110.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the agricultural machine 110 including the remote monitoring terminal device 200.
  • FIG. 3 is a block diagram showing a schematic configuration of the remote monitoring terminal device 200 in the agricultural machine 110.
  • a remote monitoring system 100 includes one or a plurality (here, a plurality) of agricultural machines (an example of a traveling work machine) 110,... And remote monitoring terminals provided in the agricultural machines 110,. And a remote monitoring device 130 connected to the remote monitoring terminal device 200 via a communication network 140.
  • the remote monitoring device 130 is arranged in the remote monitoring center 120 located far away from the agricultural machines 110, and collects and stores data relating to the operating state of the agricultural machines 110.
  • the remote monitoring device 130 is connected to a terminal device 160 such as a personal computer or a portable terminal via a network 150 such as a LAN (Local Area Network), and the accumulated data is taken into the terminal device 160.
  • a network 150 such as a LAN (Local Area Network)
  • LAN Local Area Network
  • the remote monitoring terminal device 200 and the remote monitoring device 130 have communication units 210 and 131 (specifically, communication modules), respectively, and are connected by the communication units 210 and 131 via the communication network 140.
  • the remote monitoring device 130 can remotely monitor the agricultural machines 110,... By the user at the remote monitoring center 120.
  • the communication network 140 may be a wired communication network, a wireless communication network, or a combination of a wired communication network and a wireless communication network.
  • the communication network 140 is typically a public line network provided by a telecommunications carrier and can be a public line network in which terminals such as fixed telephones and mobile phones communicate with each other.
  • the agricultural machine 110 includes one or a plurality (here, a plurality) of working units 111,.
  • the working units 111 For example, when the agricultural machine is a combine, a traveling working unit, a mowing working unit, a threshing working unit, and the like can be given.
  • Each work unit 111,... Is provided with an electronic control device (specifically, a controller) 113,.
  • the electronic control devices 113,... command various actuators (not shown), and appropriately control the operating states of the working units 111,.
  • Each of the electronic control devices 113,... Is adapted to transfer data to each other based on the CAN (Controller Area Network) standard.
  • each of the electronic control devices 113,... Is based on detection value information (signals) detected by various sensors (to be described later) in the respective working units 111,... And on / off information of various switches (to be described later).
  • each electronic control unit 113,... Appropriately determines whether or not an abnormality such as a failure of the agricultural machine 110 has occurred, and if an abnormality has occurred, error information ( Specifically, an error code) is generated.
  • An operating unit (traveling working unit 111a) that operates the engine 112 monitors the engine 112, the rotational speed of the engine 112, the load state, and the like, and determines the optimal injection pressure and injection timing to the fuel system.
  • the electronic control unit 113 (engine controller 113a) performs operation start / pause operation and operation state control by driving the engine 112 in addition to operation control of the operation unit 111 (traveling work unit 111a). It has become.
  • the battery BT is appropriately charged by the electric power supplied from the generator 114 in the activated state (the operational state of the engine 112) of the operating unit 111 (traveling working unit 111a).
  • the activation switch SW provided in the operating unit 111 (traveling working unit 111a) is in a power-on state for supplying power from the battery BT to the control unit 240 and the electronic control unit 113 (engine controller 113a) in the remote monitoring terminal device 200.
  • the changeover switch selectively switches between a power-off state in which power supply from the battery BT to the control unit 240 and the electronic control unit 113 (engine controller 113a) in the remote monitoring terminal device 200 is cut off.
  • the battery BT is connected to both the power connection line L1 connected to the control unit 240 and the power connection line L2 connected to the electronic control device 113 (engine controller 113a) via the start switch SW. Connected.
  • the start switch SW is a so-called key switch
  • the “ON” terminal is a connection terminal of the power supply connection lines L1 and L2 when the engine 112 is operating.
  • the “OFF” terminal is a terminal when the start switch SW is in an OFF state.
  • the battery BT and the power control unit 220 in the remote monitoring terminal device 200 connect the power connection line Lbt regardless of whether the start switch SW is on or off in order to periodically start the power. Connected through. As a result, the power control unit 220 in the remote monitoring terminal device 200 is constantly supplied with power from the battery BT.
  • the remote monitoring terminal device 200 includes a communication unit 210, a power control unit 220 that periodically starts power when the start switch SW of the agricultural machine 110 is in an off state, and data during communication. , Transmission / reception control, various input / output controls and arithmetic processing control, and a plurality of connection terminals T to which data on the operating state of the agricultural machine 110 is input.
  • the communication unit 210 is communicable with the same communication protocol (communication protocol) as the communication unit 131 of the remote monitoring device 130 in the remote monitoring center 120. Data transmitted / received during communication is converted by the communication unit 210 so as to follow the communication protocol. Then, the communication unit 210 transmits data regarding the operating state of the agricultural machine 110 acquired by the control unit 240 to the remote monitoring device 130.
  • communication protocol communication protocol
  • the power control unit 220 has a timer function and is connected to the battery BT regardless of whether the start switch SW is off or on. Specifically, the battery BT and the input side power supply line (not shown) of the power supply control unit 220 are connected by the power supply connection line Lbt. As a result, the power controller 220 is constantly supplied with power from the battery BT.
  • the output side power supply line (not shown) of the power supply control unit 220 and the power supply line (not shown) of the control unit 240 are connected by the power supply connection line L3.
  • the start switch SW is turned off, and the power supply to the power connection line L1 that connects the battery BT and the input side power line of the control unit 240 is cut off.
  • the power from the battery BT is periodically supplied to the control unit 240 by the timer function of the power supply control unit 220.
  • a predetermined period of time (for example, 30 minutes) is preset in the power supply control unit 220. That is, in the power supply control unit 220, the input-side power supply line and the output-side power supply line are in a non-conductive state until a predetermined period of time comes. Then, when the power of the predetermined period comes, the power supply control unit 220 is in a conductive state between the input power line and the output power line for a predetermined time (for example, 360 seconds (6 minutes)). Thereby, the power supply control part 220 can supply the electric power from the battery BT to the control part 240 for every predetermined period.
  • a predetermined period of time for example, 30 minutes
  • the remote monitoring terminal device 200 includes a GPS sensor (an example of a position sensor) 231 that receives radio waves from a GPS (Global Positioning System) satellite, and an agricultural machine based on the radio waves received by the GPS sensor 231.
  • 110 further includes a position detection unit 232 that detects position information 110 and a position information storage unit 233 that temporarily stores the position information detected by the position detection unit 232.
  • the GPS sensor 231 is configured to receive radio waves (information including world standard time) from GPS satellites.
  • the position detection unit 232 can detect the speed information of the agricultural machine 110 and the direction information of the agricultural machine 110 in addition to the position information of the agricultural machine 110. That is, the position information includes information on the latitude, longitude, speed, and direction of the agricultural machine 110.
  • the position detector 232 constitutes a positioning system together with the GPS sensor 231 and the GPS satellite.
  • the position detector 232 receives radio waves from three or more GPS satellites with the GPS sensor 231 and calculates the distance between the GPS satellite transmission time and the reception time, thereby determining the current position of the agricultural machine 110.
  • Position information (for example, latitude and longitude) can be measured. Further, by calculating the displacement per unit time, the speed information and the direction information of the agricultural machine 110 can be measured.
  • the location information storage unit 233 is a volatile memory such as a RAM (Random Access Memory).
  • the position information storage unit 233 is connected to the power supply control unit 220 and is always supplied with power from the battery BT. As a result, the position information storage unit 233 can hold the position information even when the activation switch SW is in the OFF state.
  • the control unit 240 includes a processing unit 250 including a microcomputer such as a CPU (Central Processing Unit) and a storage unit (an example of a data storage unit) 260 including a volatile memory such as a ROM (Read Only Memory) and a RAM. is doing.
  • a processing unit 250 including a microcomputer such as a CPU (Central Processing Unit) and a storage unit (an example of a data storage unit) 260 including a volatile memory such as a ROM (Read Only Memory) and a RAM. is doing.
  • a processing unit 250 including a microcomputer such as a CPU (Central Processing Unit) and a storage unit (an example of a data storage unit) 260 including a volatile memory such as a ROM (Read Only Memory) and a RAM. is doing.
  • ROM Read Only Memory
  • the control unit 240 controls the operation of various components by causing the processing unit 250 to load and execute a control program stored in advance in the ROM of the storage unit 260 on the RAM of the storage unit 260. .
  • the RAM of the storage unit 260 provides first to fourth data storage units 261 to 264.
  • connection terminals T A plurality (70 in this case) of connection terminals T,... Are a plurality of types of connection terminals that are connected to output elements Q,... That output data relating to the operating state of the agricultural machine 110. , Or two or more (here 32) first connection terminals T1,..., One or two (20 here) second connection terminals T2,. The third connection terminals T3,..., And one or more (four in this case) fourth connection terminals T4,..., And one or more (eight in this case). Are provided with one or more (two in this case) sixth connection terminals T6,.
  • the first connection terminals T1, ..., the second connection terminals T2, ..., the third connection terminals T3, ... and the fourth connection terminals T4, ... are connected to the control unit 240, and the first connection terminals T1, ..., and The second connection terminal T2 is connected to the output elements Q,... In each working unit 111,. Further, the fifth connection terminals T5,... And the sixth connection terminals T6,... Are connected to the control unit 240, and are directly connected to the output elements Q,. Yes.
  • the first connection terminals T1,... Are ON / OFF information (specifically, contact information of 0 or 1), error status information indicating the presence or absence of an abnormality such as a failure (specifically, error information of 0 or 1) Are input to the output elements Qa,... That output binary information (specifically, binarized signals).
  • the binary information is transmitted as CAN bit data.
  • output elements Qa As output elements Qa,... That output binary information, various switches Wa,... That are connected to the input system of the electronic control device 113,.
  • An output control unit Pa that is provided in the devices 113,... And outputs error state information indicating whether there is an abnormality such as a failure in each working unit 111,.
  • the second connection terminals T2,... are numerical value data indicating a value obtained by measuring (detecting) a predetermined physical quantity, an error code indicating the content of an abnormality such as a failure, and detected value information such as a voltage value of the battery BT (specifically, Is connected to output elements Qb,... That output multilevel digital signals), and detected value information from the output elements Qb,.
  • the detection value information is transmitted as numerical data of CAN.
  • An output control unit Pb that is provided in 113a) and outputs the voltage value of the battery BT can be exemplified.
  • the third connection terminals T3,... are connected to output elements Qc,... That output integration information such as integration time, and the integration information from the output elements Qc,.
  • the integration information is transmitted as CAN integration data.
  • the output elements Qc,... That output the accumulated information are provided in the electronic control unit 113 (engine controller 113a) and stop the operation of the engine 112 from the start of the operation of the engine 112 (when the start switch SW is turned on).
  • An output control unit Pc that outputs an accumulated time obtained by accumulating the operation time of the engine 112 until the time (when the start switch SW is turned off) is illustrated.
  • the fourth connection terminals T4,... are connected to the output elements Qd,... That output error information related to the CAN communication protocol (communication protocol), and the error information from the output elements Qd,.
  • an output control unit Pd provided in the electronic control unit 113,... For recognizing an error in the specification related to the CAN communication protocol and outputting error information corresponding to the error. It can be illustrated.
  • connection terminals T5,... are connected to the output elements Qe,... That output binary information, and the binary information from the output elements Qe,.
  • Examples of output elements Qe,... That output binary information include various switches We,... That output on / off information when the agricultural machine 110 is in operation.
  • the sixth connection terminals T6,... are numerical data indicating values obtained by measuring (detecting) predetermined physical quantities (for example, the voltage value of the battery BT and the temperature of a substrate (not shown) mounted on the electronic control device 113, etc ) And the like, which are connected to output elements Qf,... That output detection value information (specifically analog signals), etc., and detected value information from the output elements Qf,.
  • various sensors Wf,... For detecting the operating state of the agricultural machine 110 can be exemplified.
  • the control unit 247 will be described later.
  • FIG. 4 is a table showing specific examples of output elements Qa,... To Qf,... Corresponding to various connection terminals T1, ... to T6, ... when the agricultural machine 110 is a combine.
  • the output elements Qa,... Connected to the first connection terminals T1,... are threshing switches, mowing switches, engine-related charges, hydraulic pressure, water temperature, overload, air cleaner clogging, waste / cutters.
  • 32 items of binary information such as clogging and engine emergency stop alarms are input from the first connection terminals T1,.
  • the output elements Qb,... Connected to the second connection terminals T2,... Represent the number of revolutions of the engine 112 per unit time during working and non-working, and the load on the engine 112 during working and non-working.
  • the control unit 240 has an activation information transmission control unit 241 that functions as an activation information transmission function that transmits activation information, and an operation information transmission control that functions as an operation information transmission function that transmits operation information.
  • Unit 242 event information transmission control unit 243 that functions as an event information transmission function that transmits event information
  • trend information transmission control unit 246 that functions as a trend information transmission function that transmits trend information
  • a position information transmission control unit 247 that functions as a position information transmission function.
  • activation information transmission function operation information transmission function
  • event information transmission function event information transmission function
  • trend information transmission function trend information transmission function
  • position information transmission function position information transmission function
  • FIG. 5 is an operation diagram schematically showing an operation process of the activation information transmission function by the activation information transmission control unit 241 in the control unit 240.
  • the control unit 240 includes an activation information transmission control unit 241 that transmits activation information to the remote monitoring device 130 when the activation switch SW of the agricultural machine 110 is turned on (see ⁇ 1 in FIG. 5).
  • the activation information includes position information (specifically longitude, latitude) and date / time (specifically, international standard year, year, month, day, hour, minute, second) of the agricultural machine 110 at the time of activation. Has been.
  • the position information may include the speed and direction of the agricultural machine 110.
  • the activation information transmission control unit 241 receives the on operation accepting unit 241a that accepts an on operation of the activation switch SW of the agricultural machine 110, and the GPS sensor 231 and the position detection unit 232 when accepted by the on operation accepting unit 241.
  • the data acquisition unit 241b that detects and acquires the position information and date / time of the agricultural machine 110, and the data storage control unit 241c that temporarily stores the position information and date / time acquired by the data acquisition unit 241b in the position information storage unit 233.
  • a data transmission unit 241d that transmits the location information and date / time stored in the location information storage unit 233 from the communication unit 210 to the remote monitoring device 130.
  • FIG. 6 is a schematic configuration diagram schematically showing a data structure of the position information storage unit 233 used by the activation information transmission control unit 241.
  • the position information storage unit 233 stores the date and time when the activation switch SW of the agricultural machine 110 is turned on (specifically, the international standard year, year, month, and day). , Hour, minute, second) and position information (latitude, longitude) are stored.
  • the position information storage unit 233 received an off operation of the start switch SW of the agricultural machine 110 by an off operation accepting unit 247a, a data acquisition unit 247b, and a data storage control unit 247c of the position information transmission control unit 247 described later.
  • the date and time (specifically, the Western calendar year, year, month, day, hour, minute, second) and position information (latitude, longitude) are also stored.
  • the time t (see FIG. 5) from when the activation operation of the activation switch SW is received until the position information and date / time of the agricultural machine 110 is acquired by the detection operation by the GPS sensor 231 is 40 seconds to 180 seconds.
  • the degree can be exemplified.
  • the activation information transmission control unit 241 activates the activation information when the activation information cannot be acquired within a predetermined time (for example, 300 seconds (5 minutes)) from when the activation operation of the activation switch SW is accepted. Instead of the information, the data transmission unit 241d transmits on operation information indicating that the activation switch SW is turned on to the remote monitoring device 130.
  • a predetermined time for example, 300 seconds (5 minutes)
  • activation information for a predetermined number of on / off operations in the past (for example, for one on / off operation) is set as the number of on / off operations of the activation switch SW. Is retained.
  • the remote monitoring terminal device 200 converts the activation information into a format according to the communication protocol of the communication unit 131 of the remote monitoring device 130 by the communication unit 210, and then passes through the communication network 140 and the communication unit 131. Send to. Thereby, the start information (specifically, latitude, longitude, and international standard year, year, month, day, hour, minute, second) of the agricultural machine 110 can be confirmed on the remote monitoring center side.
  • the start information specifically, latitude, longitude, and international standard year, year, month, day, hour, minute, second
  • operation information of an operation information transmission function event information of an event information transmission function, trend information of a trend information transmission function, and position information of a position information transmission function, which will be described later.
  • FIG. 7 is a flowchart illustrating an operation example by the activation information transmission control unit 241.
  • step Sa1 when the activation operation of the activation switch SW is accepted (step Sa1: Yes), activation information (here, position information and date / time) of the agricultural machine 110 is detected by the GPS sensor 231 and the position detection unit 232 ( Step Sa2).
  • step Sa3 it is determined whether or not the activation information of the agricultural machine 110 has been acquired.
  • step Sa3: Yes the acquired activation information is stored in the position information storage unit 233.
  • Step Sa4 the activation information stored in the position information storage unit 233 is transmitted to the remote monitoring device 130 (Step Sa5), and the process ends.
  • step Sa6 it is determined whether or not a predetermined time (300 seconds in this case) has elapsed (step Sa6), and the predetermined time has elapsed. If not (step Sa6: No), the process proceeds to step Sa2.
  • step Sa6 when a predetermined time has elapsed in step Sa6 (step Sa6: Yes), on-operation information indicating that the activation switch SW has been turned on is transmitted to the remote monitoring device 130 (step Sa7), and the process is terminated. .
  • the activation information transmission function described above data necessary for allowing the user to grasp the activation information (specifically, position information and date / time) of the agricultural machine 110 at the start of operation is transmitted to the remote monitoring device 130. can do. Therefore, it becomes possible for the user to grasp the activation information (specifically, position information and date / time) at the start of operation of the agricultural machine 110.
  • FIG. 8 is an operation diagram schematically showing an operation process of the operation information transmission function by the operation information transmission control unit 242 in the control unit 240.
  • the GPS sensor 231, the position detection unit 232, and the position information storage unit 233 are not shown.
  • the control unit 240 includes an operation information transmission control unit (an example of a data summary control unit) 242 that transmits operation information to the remote monitoring device 130 when the start switch SW of the agricultural machine 110 is turned off (see ⁇ 2 in FIG. 8). ing.
  • an operation information transmission control unit an example of a data summary control unit
  • the operation information transmission control unit 242 sets a predetermined period (for example, 0.1 second) of data (see FIGS. 4 and 6) regarding the operation state of the agricultural machine 110 input via the connection terminals T,. )
  • a first data storage control unit 242b that is temporarily stored in the storage unit (specifically, ring buffer) 261, and the activation switch SW is turned on based on the data for each predetermined cycle stored in the first data storage control unit 242b.
  • the data calculation unit 242c to perform, and the minimum value and the maximum value of the data related to the operating state of the agricultural machine 110 calculated by the data calculation unit 242c, the number of occurrences of the predetermined event, and the generation time are temporarily stored in the third data storage unit 263.
  • the second data storage control unit 242d to be stored is configured to function as an operation unit.
  • the second data storage control unit 242d temporarily stores the integration information and error information in the third data storage unit 263.
  • the first data storage unit 261 is used as a ring buffer that stores data by logically connecting both ends of a buffer in which storage areas are arranged in series and handling them in a ring shape.
  • the “operation information” is position information (specifically longitude, latitude) and date / time (specifically international standard year, year, month, day) when the start switch SW of the agricultural machine 110 is turned on. , Hour, minute, second) (see FIG. 6), position information (specifically longitude, latitude) and date and time (specifically international standard year, year) when the start switch SW of the agricultural machine 110 is turned off. , Month, day, hour, minute, second) (see FIG.
  • various switches Wa We are the number of times the various switches Wa, We are turned on from the on operation to the off operation of the start switch SW of the agricultural machine 110 , We turn-on times, various switches Wa, We are on time, various switch Wa, We on time, detection value from various sensors Wb, Wf, minimum value, maximum value, average value and start Time and start / stop information, Meta occurrence count and time of a predetermined event, and, (specifically error code) a predetermined generation number of times error information determined in advance in the chronological order is the.
  • error information specifically, error code
  • error code is not subject to transmission (storage) when error information exceeds a predetermined number of occurrences (for example, 4 times).
  • the “predetermined predetermined period” is not limited to this, but a fixed first period (specifically, 0.1 second) selected from values exceeding 0 second and less than 1 second, A constant second period (specifically, 1 second) selected from values of 1 second or more and less than 60 seconds can be exemplified.
  • the predetermined period is 0.1 seconds.
  • the operation information transmission control unit 242 may be configured to selectively switch between the first period (specifically, 0.1 second) and the second period (specifically, 1 second). In this case, switching between the first cycle and the second cycle may be performed by the remote monitoring terminal device 200 or the remote monitoring device 130.
  • the setting values of the items of the first period, the second period, the binary information, the detected value information, and the error information may be changeable.
  • the setting values of the items of the first period, the second period, the binary information, the detected value information, and the error information may be changed by the remote monitoring terminal device 200 or set by the remote monitoring device 130. It may be changed. Further, the remote monitoring terminal device 200 can permit an instruction from the remote monitoring device 130 to change the set values of the items of the first cycle, the second cycle, binary information, detection value information, and error information. It may be.
  • occurrence of a predetermined event refers to occurrence of a predetermined operation, action, or state change that occurs in the agricultural machine 110 by accident or unplanned.
  • a predetermined event for example, when an error indicating an abnormality (specifically, a charge (power generation) abnormality, a hydraulic pressure abnormality, a water temperature abnormality, etc.) with respect to a predetermined work item occurs.
  • An on / off operation of a switch for example, a travel switch, a mowing switch, a threshing switch, etc.
  • a predetermined work item in a predetermined operation unit specifically, a travel operation unit, a mowing operation unit, a threshing operation unit, etc.
  • a detection value detected by various sensors exceeds a predetermined threshold value set in advance.
  • the maximum value, the minimum value, the average value, the number of occurrences and the occurrence time of the detected value information by the operation information transmission control unit 242 can be obtained as follows, for example.
  • off-operation receiving unit 242 and the data transmission unit 242f illustrated in FIG. 8 will be described later.
  • FIG. 9 is an explanatory diagram for explaining an operation example in which the operation information transmission control unit 242 obtains the maximum value, the minimum value, the average value, the number of occurrences and the occurrence time of the detected value information.
  • the data acquisition unit 242a performs data DT (1) to DT (1) to DT at a predetermined period TA (for example, 0.1 second) from when the start switch SW of the agricultural machine 110 is turned on.
  • DT (n) (n is an integer equal to or greater than 2) is temporarily stored in the first data storage unit 261 by the first data storage control unit 242b.
  • the first data storage unit 261 has binary information (specifically, contact information and error presence / absence information) for each predetermined period detected by the output elements (Qa,%), (Qe,%), And Detection value information (specifically, the number of revolutions of the engine 112 per unit time, engine load factor, vehicle speed, error code, substrate temperature, detected by the output elements (Qb,%), (Qf,%) Battery voltage etc.) is stored by the first data storage controller 242b. Further, the first data storage unit 261 has accumulated information (integrated time) for each predetermined period detected by the output element (Qc,%) And error information for each predetermined period detected by the output element (Qd,). Are also stored by the first data storage controller 242b.
  • binary information specifically, contact information and error presence / absence information
  • And Detection value information specifically, the number of revolutions of the engine 112 per unit time, engine load factor, vehicle speed, error code, substrate temperature, detected by the output elements (Qb,%), (Qf,%) Battery voltage etc.
  • the data calculation unit 242c obtains the maximum value of the detected value information (specifically, the rotational speed of the engine 112 per unit time, the engine load factor, the vehicle speed, etc.), the output element (Qb,%), (Qf ,... Is detected by the second data storage control unit 242d and stored in the third data storage unit 263, and the detection value information detected next by the output elements (Qb,%), (Qf,.
  • the detected value information detected by the output elements (Qb,%), (Qf,%) By comparing with the detected value information stored in the third data storage unit 263 is stored in the third data storage unit 263. If the detected value information is larger than the detected value information, the detected value information stored in the third data storage unit 263 is replaced with the detected value information detected by the output elements (Qb,%), (Qf,...), And the maximum value Dmax is updated. To go.
  • the second data storage control unit 242d stores the detection value information detected by the output elements (Qb,%), (Qf,.
  • the detection value information stored in the third data storage unit 263 are compared with each other. If the detection value information detected in (Qb,%), (Qf,%) Is smaller than the detection value information stored in the third data storage unit 263, the detection value information stored in the third data storage unit 263 is used.
  • the minimum value Dmin is updated by replacing the detected value information detected by the output elements (Qb,%), (Qf,).
  • the data calculation unit 242c stores the individual data DT (1) to DT (n) (n is an integer of 2 or more) stored in the first data storage unit 261.
  • TA for example, 0.1 seconds
  • the data calculation unit 242c calculates the total TLB of the individual 1-minute average values AVA (1),..., AVA (k) stored in the second data storage unit 262 when the activation switch SW is turned off.
  • the value (TLB / k) divided by the number k of the minute average values AVA (1),..., AVA (k) is set as the average value AVB, and stored in the third data storage unit 263 by the second data storage control unit 242d. To do.
  • the data calculation unit 242c turns on the contact information from the output elements (Qa,%), (Qe,%) )
  • the DTE1 and the ON time DTE2, and the ON number DTE1 and the ON time DTE2 of the error presence / absence information from the output elements (Qa,%), (Qe,%) Are respectively stored in the third data storage unit 263 by the second data storage control unit 242d.
  • the number of ON times stored and the ON number and ON time of the contact information and error presence / absence information obtained next in the output elements (Qa,%), (Qe,...) Are stored in the third data storage unit 263. It is updated by adding to DTE1 and on-time DTE2, respectively.
  • the second data storage control unit 242d stores the accumulated time DS from the output elements Qc,... In the third data storage unit 263 at the time of starting and stopping. Further, the second data storage control unit 242d stores the error information from the output elements Qd,... In the third data storage unit 263 by a predetermined number of occurrences in the order of occurrence.
  • FIG. 10 is a schematic configuration diagram schematically showing a data structure of the third data storage unit 263 used by the operation information transmission control unit 242.
  • the third data storage unit 263 stores binary information (specifically, contact information and error presence / absence information) from the time when the ON operation of the start switch SW is received until the time when the OFF operation is received. ) ON count and ON time, detection value information from when the start switch SW is turned ON until the OFF operation is received (specifically, the rotational speed of the engine 112 per unit time, the engine load factor, the vehicle speed) Etc.) is stored by the second data storage control unit 242d.
  • binary information specifically, contact information and error presence / absence information
  • the operation information transmission control part 242 received the OFF operation reception part 242e which receives the OFF operation of the start switch SW of the agricultural machine 110, and the OFF operation reception part 242e received the OFF operation of the start switch SW.
  • a data transmission unit 242f that transmits the minimum value, maximum value, average value, number of occurrences and generation times of events, and integration information stored in the third data storage unit 263 from the communication unit 210 to the remote monitoring device 130; It is set as the structure which functions also as an operation
  • the data transmission unit 242f receives the off operation of the activation switch SW in the off operation reception unit 242e, the position information and date / time stored in the position information storage unit 233 are also transmitted from the communication unit 210 to the remote monitoring device 130. Send to.
  • the control unit 240 does not turn off the power by the power control unit 220, and the data transmission unit 242f uses the minimum value, maximum value, average value, and event
  • the power supply control unit 220 turns off the power after transmitting the number of occurrences, occurrence time, integration information, position information, and date / time.
  • the third data storage unit 263 operates for a predetermined number of on / off operations in the past (for example, 30 on / off operations), where the on / off operation of the start switch SW is one on / off operation. Information is retained.
  • FIGS. 11 and 12 are flowcharts showing the first half and the second half of the operation example by the operation information transmission control unit 242, respectively.
  • step Sb1 when the ON operation of the start switch SW is accepted (step Sb1: Yes), the position information and date / time of the agricultural machine 110 are acquired by the GPS sensor 231 and the position detection unit 232 (see FIG. 3). The information is stored in the information storage unit 233 (see FIG. 6) (step Sb2).
  • step Sb3 the operation information of the agricultural machine 110 is detected by the output elements Q,... (Step Sb3), and it is determined whether or not the timing is a predetermined cycle TA (here, 0.1 second) (step Sb4). If it is not the timing (step Sb4: No), the process proceeds to step Sb3. On the other hand, if it is the timing of the predetermined period TA in step Sb4 (step Sb4: Yes), binary information and detected value information are acquired from the output elements Q,... (Step Sb5), and the maximum value Dmax of the detected value information is obtained.
  • TA 0.1 second
  • step Sb6 And the minimum value Dmin are updated in the third data storage unit 263 (step Sb6), and the one-minute average values AV (1) to AV (k) of the detected value information are calculated and stored in the second data storage unit 262 (
  • step Sb7 the ON number DTE1 and the ON time DTE2 of the contact information and the error presence / absence information are added and stored in the third data storage unit 263 (step Sb8), and further, the error code and the integrated time DS at the time of starting are stored. 3 is stored in the data storage unit 263 (step Sb9).
  • step Sb10 it is determined whether an off operation of the start switch SW has been accepted. If no off operation has been accepted (step Sb10: No), the process proceeds to step Sb3. On the other hand, when an off operation is accepted in step Sb10 (step Sb10: Yes), as shown in FIG. 12, the position information and date / time of the agricultural machine 110 are obtained by the GPS sensor 231 and the position detection unit 232 (see FIG. 3). Obtained and stored in the position information storage unit 233 (see FIG. 6) (step Sb11), and the average values of the individual 1-minute average values AV (1) to AV (k) stored in the second data storage unit 262 AVB is calculated and stored in the third data storage unit 263 (step Sb12).
  • the accumulated time DS at the time of starting and stopping is stored in the third data storage unit 263 (step Sb13), and the maximum value Dmax, minimum value Dmin, average value AVB, and contact information stored in the third data storage unit 263 are stored.
  • the ON number DTE1 and ON time DTE2 of the error presence / absence information, the error code, and the accumulated time DS at the time of starting and stopping are transmitted to the remote monitoring device 130 (step Sb14), and the processing is ended.
  • the position information and the date and time at the start and stop of the activation stored in the position information storage unit 233 are also transmitted to the remote monitoring device 130.
  • the minimum value and the maximum value of the data related to the operation state of the agricultural machine 110 from the start time to the latest data acquisition time Further, data necessary for allowing the user to grasp the operating state such as the average value and the integration information, the number of occurrences and the occurrence time of a predetermined event, can be transmitted to the remote monitoring device 130. Therefore, it becomes possible for the user to grasp the operating state such as the maximum value, the minimum value, the average value, and the number of times the switch is turned on for each sensor of the agricultural machine 110.
  • the user can manage the operation of the agricultural machine 110 for a long time by accumulating information (for example, daily work report, planned maintenance, grasping the usage situation in the market, diagnosis of parts by analyzing long-term data (aging deterioration)) Operation management).
  • information for example, daily work report, planned maintenance, grasping the usage situation in the market, diagnosis of parts by analyzing long-term data (aging deterioration)) Operation management.
  • the operation information transmission control unit 242 transmits the operation information summarizing the detection value information such as the minimum value, the maximum value, the average value, the number of occurrences and the occurrence time of the event, and the integration information to the remote monitoring device 130, the remote information
  • the monitoring device 130 is easy to tabulate, and the storage capacity of the storage unit (not shown) in the remote monitoring device 130 and the communication load of the communication network 140 can be reduced.
  • FIG. 13 is an operation diagram schematically showing an operation process of the event information transmission function by the event information transmission control unit 243 in the control unit 240.
  • the GPS sensor 231, the position detection unit 232, and the position information storage unit 233 are not shown.
  • the control unit 240 includes an event information transmission control unit (an example of a data storage control unit) 243 that transmits event information to the remote monitoring device 130 when a predetermined event occurs (see ⁇ 3 in FIG. 13).
  • an event information transmission control unit an example of a data storage control unit
  • the event information transmission control unit 243 sets a predetermined period TA (for example, 0.1) for data (see FIGS. 4 and 6) regarding the operating state of the agricultural machine 110 input via the connection terminals T,.
  • Data acquisition unit 243a acquired every second), and data for each predetermined cycle acquired by the data acquisition unit 243a are first set for a predetermined number of times (points) (for example, 600 times (points)) closest to the latest.
  • a first data storage control unit 243b that temporarily stores data storage unit (specifically, ring buffer) 261; an event detection unit 243c that detects occurrence of a predetermined event in agricultural machine 110; and event detection A predetermined number of times (points) including data at the time of occurrence of the predetermined event on the condition that the predetermined event detected by the unit 243c occurs Min (specifically 600 times (points)) is configured to function as an operation unit and a second data storage control unit to store the data in the fourth data storage unit 264 of the 243 d.
  • the data for a predetermined number of times (points) including data at the time when the predetermined event occurs, stored in the fourth data storage unit 264 on the condition that the predetermined event occurs is stored in the fourth data storage.
  • the data at the time of occurrence of the predetermined event may be the latest storage position data (latest data), or the data at the time of occurrence of the predetermined event is the oldest storage position data (oldest data).
  • the data at the time of occurrence of the predetermined event is the data of the storage position between the latest storage position and the oldest storage position (data between the latest data and the oldest data). It may be.
  • the second data storage control unit 243d uses the data at the time of occurrence of the predetermined event as the data at the oldest storage position or the data at the storage position between the latest storage position and the oldest storage position. causes the fourth data storage unit 264 to store data for the necessary number of times (points) even after a predetermined event occurs.
  • the storage location of “data when a predetermined event occurs” may be changeable.
  • the storage position of “data when a predetermined event occurs” may be changed by the remote monitoring terminal device 200 or may be changed by the remote monitoring device 130.
  • the remote monitoring terminal device 200 may be able to permit an instruction from the remote monitoring device 130 to change the setting value of the storage position of “data when a predetermined event occurs”.
  • “event information” includes position information (specifically, longitude and latitude) and date and time (specifically, international standard year, year, month, day, hour, minute, second) of the agricultural machine 110 at predetermined intervals. ), Binary information (specifically, contact information and error presence / absence information) for each predetermined period TA for each predetermined period, detection value information for each predetermined period (specifically, the number of revolutions of the engine 112 per unit time, the engine Load factor, vehicle speed, error code, substrate temperature, battery voltage, etc.), integrated information for each predetermined period, and error information for each predetermined period.
  • the position information may include the speed and direction of the agricultural machine 110.
  • the first data storage unit 261 stores position information, date and time, binary information (specifically, contact information and error presence / absence information), detection value information (specifically, unit information) as instantaneous data for each predetermined period TA.
  • binary information specifically, contact information and error presence / absence information
  • detection value information specifically, unit information
  • the “predetermined predetermined period TA” is the same as the predetermined period TA described in the operation information transmission function, and the description thereof is omitted here.
  • occurrence of a predetermined event is the same as the occurrence of the event described in the operation information transmission function, and the description is omitted here.
  • the event information transmission control unit 243 detects information corresponding to the predetermined event detected by the event detection unit 243c and the predetermined number of times (points) stored in the fourth data storage unit 264. It is configured to also function as an operation unit including a data transmission unit 243e that transmits all data from the communication unit 210 to the remote monitoring device 130.
  • events corresponding to a predetermined number of on / off operations in the past are set as the number of on / off operations of the start switch SW. Information is retained.
  • the first data storage unit 261 is a ring that stores data by logically connecting both ends of a buffer in which storage areas are arranged in series and handling them in a ring shape. Used as a buffer.
  • step Sc1 when an ON operation of the start switch SW is accepted (step Sc1: Yes), the first data storage unit 261 used as a ring buffer is all cleared (step Sc2).
  • step Sc3 the operation information of the agricultural machine 110 is detected by the output elements Q,... (Step Sc3), and it is determined whether or not the timing is a predetermined cycle TA (here, 0.1 seconds) (step Sc4). If it is not the timing (step Sc4: No), the process proceeds to step Sc3. On the other hand, when it is the timing of the predetermined cycle TA in step Sc4 (step Sc4: Yes), the position information and date / time of the agricultural machine 110 are acquired by the GPS sensor 231 and the position detection unit 232 (see FIG. 3) and the first. The binary information, the detected value information, the integration information, and the error information are acquired from the output elements Q,... And stored in the first data storage unit 261 (step Sc6).
  • a predetermined cycle TA here, 0.1 seconds
  • step Sc7 it is determined whether or not a predetermined event has occurred. If a predetermined event has not occurred (step Sc7: No), the process proceeds to step Sc3. On the other hand, when a predetermined event occurs in step Sc7 (step Sc7: Yes), as shown in FIG. 15, the predetermined number of times (for example, 600 times) of position information, date and time, two times from the first data storage unit 261. Value information, detection value information, integration information and error information are acquired (step Sc8), and the acquired position information, date and time, binary information, detection value information, integration information and error information for a predetermined number of times are stored in a fourth data storage unit.
  • step Sc7 the predetermined number of times (for example, 600 times) of position information, date and time, two times from the first data storage unit 261.
  • Value information, detection value information, integration information and error information are acquired (step Sc8), and the acquired position information, date and time, binary information, detection value information, integration information and error information for a predetermined number of times are stored in a fourth data storage
  • step Sc9 and the predetermined number of times of position information, date / time, binary information, detected value information, integration information, and error information stored in the fourth data storage unit 264 are stored together with information indicating a predetermined event. It transmits to the remote monitoring device 130 (step Sc10).
  • step Sc11 it is determined whether or not an off operation of the start switch SW has been accepted. If no off operation has been accepted (step Sc11: No), the process proceeds to step Sc3 shown in FIG. On the other hand, if an off operation is accepted in step Sc11 (step Sc11: Yes), the process is terminated.
  • an agricultural machine in which a predetermined event has occurred such as data for a predetermined number of times (points) including data at the time when the predetermined event occurs, on the condition that the predetermined event has occurred.
  • Data necessary for allowing the user to accurately grasp the operating state of 110 can be transmitted to the remote monitoring device 130. Therefore, when a predetermined event occurs in the agricultural machine 110, it is possible to cause the user to accurately grasp the operating state of the agricultural machine 110 in which the predetermined event has occurred. For example, when the occurrence of a predetermined event is when an abnormality of the agricultural machine 110 is detected, it is possible to allow the user to accurately grasp the operating state when the abnormality of the agricultural machine 110 is detected.
  • an on operation or an off operation by an operation switch (specifically, a travel operation switch, a mowing operation switch, a threshing operation switch) that instructs a predetermined operation of the agricultural machine 110 is accepted.
  • an operation switch specifically, a travel operation switch, a mowing operation switch, a threshing operation switch
  • the operating state of the agricultural machine 110 before, after, or before and after the occurrence of a predetermined event can be analyzed in detail, thereby contributing to effective investigation of the cause.
  • the transmission unit 243c uses either one of the information indicating the predetermined event and the predetermined number of times (points) of data stored in the first data storage unit 261 on the condition that the predetermined event occurs.
  • Data for example, data at the time of occurrence of an event
  • the predetermined data stored in the first data storage unit 261 is transmitted to the remote monitoring device 130, and the predetermined data stored in the first data storage unit 261 from the remote monitoring device 130 based on this one-time (point) data. If there is a data transmission request for the number of times (points), all the data for the predetermined number of times (points) stored in the first data storage unit 261 may be transmitted to the remote monitoring device.
  • FIG. 16 is a flowchart showing another example of the operation by the event information transmission control unit 243 shown in FIGS.
  • the flowchart shown in FIG. 16 is a flowchart in which Steps Sc71 to Sc74 are provided before Step Sc8 in the example of the operation by the event information transmission control unit 243 shown in FIG.
  • step Sc7 when a predetermined event occurs in step Sc7 shown in FIG. 14 (step Sc7: Yes), any one of predetermined number of times (here 600 times) from the first data storage unit 261.
  • Position information, date / time, binary information, detection value information, integration information and error information for one time are acquired (step Sc71), and the acquired position information, date / time, two
  • the value information, the detected value information, the integration information, and the error information are transmitted to the remote monitoring device 130 together with information indicating a predetermined event (step Sc72).
  • step Sc73 it is determined whether or not there is a predetermined number (point) of data transmission request from the remote monitoring device 130 (step Sc73), and there is no transmission request (step Sc73: No), and a predetermined time has elapsed.
  • step Sc74: Yes the process proceeds to step Sc11.
  • step Sc74: No the same processing as the processing after step Sc8 shown in FIG. 15 is performed.
  • the event information transmission control unit 243 shown in FIG. 16 it is necessary on the remote monitoring device 130 side by one time (point) of the data for the predetermined number of times (point) in the first data storage unit 261. In response to this, all the data for the predetermined number of times (points) stored in the first data storage unit 261 can be transmitted to the remote monitoring device 130.
  • FIG. 17 is an operation diagram schematically showing an operation process of the trend information transmission function by the trend information transmission control unit 246 in the control unit 240.
  • the GPS sensor 231, the position detection unit 232, and the position information storage unit 233 are not shown.
  • the control unit 240 includes a data storage control unit 244 that temporarily stores event information in the first data storage unit 261, and a second data storage unit 262 at the time of a request from the remote monitoring device 130 (see ⁇ 4 in FIG. 17).
  • a trend information transmission control unit 246 including a sampling data storage control unit 245 that transmits all the sampling data stored in the remote monitoring device 130.
  • the data storage control unit 244 determines a predetermined period TA (for example, 0.1 second) of data (see FIGS. 4 and 6) regarding the operating state of the agricultural machine 110 input via the connection terminals T,. ) And the first data acquisition unit 244a acquired every time, and the data for each predetermined cycle acquired by the first data acquisition unit 244a is the first predetermined number of times (points) from the latest to the first (for example, 600 times).
  • the data storage unit (specifically, ring buffer) 261 is configured to function as an operation unit including a first data storage control unit 244b that temporarily stores the data storage unit 261.
  • the sampling data storage control unit 245 is an integer multiple of 2 or more with respect to a predetermined cycle TA (for example, 0.1 seconds) from a predetermined number of times (for example, 600 times (points)) stored in the first data storage unit 261.
  • Second data acquisition unit 245a that acquires sampling data (specifically, position information, date and time, binary information, detection value information, integration information, error information) every sampling cycle TC (for example, 1 time) (for example, 600 times).
  • sampling data specifically, position information, date and time, binary information, detection value information, integration information, error information
  • every sampling cycle TC for example, 1 time
  • the average value of the sampling data that is the target of calculating the average value among the sampling data acquired by the second data acquisition unit 245a (specifically, the rotational speed of the engine 112 per unit time, the engine load factor, the vehicle speed, etc.
  • the data calculation unit 245b that calculates the average value of the detection value information) and the sampling data (specifically) acquired by the second data acquisition unit 245a Includes binary information, detected value information, integration information, error information) and an average value of sampling data calculated by the data calculation unit 245b (specifically, the number of revolutions of the engine 112 per unit time, engine load factor, vehicle speed)
  • the average value of the detected value information is configured to function as an operation unit including a second data storage control unit 245c that temporarily stores the second data storage unit 262.
  • the “trend information” includes position information (specifically, longitude and latitude) and date and time (specifically, the international standard year, year, month, day, hour, minute) of the agricultural machine 110 for each sampling cycle TC. , Second), binary information, detection value information, average value of detection value information, integration information, and error information for each sampling period TC.
  • the position information may include the speed and direction of the agricultural machine 110.
  • the “predetermined predetermined period TA” is the same as the predetermined period TA described in the operation information transmission function, and the description thereof is omitted here.
  • the calculation of the average value of the sampling data (specifically, the detected value information) by the trend information transmission control unit 246 can be performed as follows, for example.
  • the request detection unit 245d and the data transmission unit 245e illustrated in FIG. 17 will be described later.
  • FIG. 18 is an explanatory diagram for describing a calculation example in which the trend information transmission control unit 246 calculates an average value.
  • the data acquisition unit 244 a has a predetermined period TA (for example, 0.1 second) from when the start switch SW of the agricultural machine 110 is turned on.
  • the data DT (1) to DT (n) (n is an integer of 2 or more) are temporarily stored in the first data storage unit 261 by the first data storage control unit 244b.
  • the first data storage unit 261 stores binary information (specifically, contact information and error presence / absence information) for each predetermined period detected by the output elements (Qa,%), (Qe,%) (Qb,%), (Qf,%) Detected value information for each predetermined period (specifically, the number of revolutions of the engine 112 per unit time, engine load factor, vehicle speed, error code, substrate temperature, battery voltage) And the like)) are stored by the first data storage control unit 244b.
  • the first data storage unit 261 also includes accumulated information (integrated time) for each predetermined period detected by the output element (Qc,%) And error information for each predetermined period detected by the output element (Qd,). 1 is stored by the data storage control unit 244b.
  • the data calculation unit 245b receives the individual data DT (1) to DT (n) (n is 2 or more) acquired from the first data storage unit 261 by the second data acquisition unit 245a.
  • TA (1) DT (1)
  • sampling data storage control unit 245 stores the average value stored in the second data storage unit 262 for the one-minute average value for each sampling period TC and the sampling of the instantaneous data detected value information in the second data storage unit 262. It may be configured to selectively switch the instantaneous data storage operation for each cycle TC.
  • the second data storage unit 262 stores binary information (specifically, contact point information and error presence / absence information) and detection value information (specifically, the engine 112 per unit time) as instantaneous data for each sampling period TC. ), Engine load factor, vehicle speed, error code, board temperature, battery voltage, etc.), integration information, and error information are stored by the second data storage control unit 245c.
  • the sampling data storage control unit 245 receives a request from the remote monitoring device 130 by the request detection unit 245d for detecting a request from the remote monitoring device 130, and when the operation is completed.
  • the sampling data stored in the second data storage unit 262 is remotely transmitted from the communication unit 210 at least one time (specifically, when both of the start switches SW are turned off). It is also configured to function as an operation unit including a data transmission unit 245e that transmits to the monitoring device 130.
  • the capacity of data stored in the second data storage unit 262 for each sampling cycle TC (specifically, 1 minute) is a predetermined number of times (points) (specifically, 720 times (points)). It is said to have a capacity of minutes.
  • the second data storage unit 262 has a trend corresponding to the past predetermined number of on / off operations (for example, one on / off operation times) as the number of on / off operations of the start switch SW as one on / off operation number. Information is retained.
  • the averaging cycle TB, the sampling cycle TC, and the switching setting between the average value storage operation and the instantaneous data storage operation may be changeable.
  • the averaging cycle TB, the sampling cycle TC, and the switching setting between the average value storage operation and the instantaneous data storage operation may be changed by the remote monitoring terminal device 200 or changed by the remote monitoring device 130. You may make it do.
  • the remote monitoring terminal device 200 can permit an instruction from the remote monitoring device 130 to change the set values of the averaging cycle TB and the sampling cycle TC, and the switching setting between the average value storage operation and the instantaneous data storage operation. It may be like this.
  • the data transmission unit 245e when the number of times data is stored in the first data storage unit 261 reaches a predetermined number (for example, the number corresponding to the limit of the storage capacity), the first data storage unit 261. Is transmitted from the communication unit 210 to the remote monitoring device 130 to initialize the storage count (specifically, the storage count is set to 0).
  • the first data storage unit 261 is a ring buffer that stores data by logically connecting both ends of a buffer in which storage areas are arranged in series and handling them in a ring shape. Used as.
  • step Sd1 when an ON operation of the start switch SW is accepted (step Sd1: Yes), the number of times data is stored in the first data storage unit 261 is set to 0, and the first data storage used as a ring buffer is used. The part 261 is all cleared (step Sd2).
  • step Sd3 the operation information of the agricultural machine 110 is detected by the output elements Q,... (Step Sd3), and it is determined whether or not the timing is a predetermined cycle TA (here, 0.1 seconds) (step Sd4). If it is not the timing (step Sd4: No), the process proceeds to step Sd3. On the other hand, when it is the timing of the predetermined cycle TA in step Sd4 (step Sd4: Yes), the position information and date / time of the agricultural machine 110 are acquired by the GPS sensor 231 and the position detection unit 232 (see FIG. 3), and the first The binary information, the detected value information, the integration information, and the error information are acquired from the output elements Q,... And stored in the first data storage unit 261 (step Sd6). At this time, 1 is added to the number of times of storage.
  • a predetermined cycle TA here, 0.1 seconds
  • step Sd7 it is determined whether or not it is the timing of the sampling cycle TC (here, 1 minute) (step Sd7). If it is not the timing of the sampling cycle TC (step Sd7: No), the process proceeds to step Sd3. On the other hand, when it is the timing of the sampling cycle TC in step Sd7 (step Sd7: Yes), the data for the predetermined number of times (points) (here, 600 times (points)) stored in the first data storage unit 261. Binary information, detection value information, integration information, and error information (sampling data) for each sampling period TC are acquired (step Sd8), and an average value of detection value information (average value of sampling data) is calculated (step Sd9). The acquired sampling data and the average value of the calculated sampling data are stored in the second data storage unit 262 (step Sd10).
  • step Sd11 it is determined whether or not a request has been received from the remote monitoring device 130 (step Sd11). If a request has been received from the remote monitoring device 130 (step Sd11: Yes), the second The sampling data stored in the data storage unit 262 and the average value of the sampling data are all transmitted to the remote monitoring device 130 (step Sd12).
  • step Sd13 it is determined whether or not the activation switch SW has been turned off. If the activation switch SW has not been turned off (step Sd13: No), the process proceeds to step Sd2 shown in FIG. If the operation is turned off in step Sd13 (step Sd13: Yes), the sampling data stored in the second data storage unit 262 and the average value of the sampling data are all transmitted to the remote monitoring device 130 (step Sd14). ), The process is terminated.
  • step Sd11 if no request is received from the remote monitoring device 130 in step Sd11 (step Sd11: No), the number of times data is stored in the first data storage unit 261 is a predetermined number (here, it corresponds to the limit of the storage capacity). Is determined (step Sd14), and if the number of times data is stored in the first data storage unit 261 has not reached the predetermined number (step Sd14: No), the process directly proceeds to step Sd13. Transition. On the other hand, if the number of times data is stored in the first data storage unit 261 reaches a predetermined number in step Sd14 (step Sd14: Yes), the number of data storages in the first data storage unit 261 is set to 0. All data for the predetermined number of times (points) stored in the first data storage unit 261 is transmitted to the remote monitoring device 130 (step Sd15), and the process proceeds to step Sd13.
  • steps Sd14 and Sd15 of FIG. 20 may be removed, and the processes of steps Sd14 and Sd15 may be provided between steps Sd6 and Sd7 of FIG.
  • the second data storage unit 262 can store data related to the operating state throughout the entire operation period of the agricultural machine 110 and transmit the data to the remote monitoring device 130.
  • all the data corresponding to the predetermined number (points) stored in the first data storage unit 261 is sent to the remote monitoring device 130.
  • the remote monitoring device 130 By transmitting, regardless of whether a request is received from the remote monitoring device 130, when the number of times of storage reaches a predetermined number of times, all the data for the predetermined number of times (points) in the first data storage unit 261 is remotely transmitted. It can be transmitted to the monitoring device 130. Therefore, it is possible to transmit all the data related to the operating state over the entire operation period of the agricultural machine 110 to the remote monitoring device 130 while suppressing the storage capacity of the first data storage unit 261 to a predetermined number of times (points). It becomes possible for the user to reliably grasp the operating state of the agricultural machine 110 throughout the entire operating period.
  • FIG. 21 is an operation diagram schematically showing an operation process of the position information transmission function by the position information transmission control unit 247 in the control unit 240.
  • the control unit 240 When the control unit 240 receives an off operation (see ⁇ 5 in FIG. 21) of the start switch SW of the agricultural machine 110, the control unit 240 receives position information (specifically, longitude and latitude) and date / time (specifically, the international standard AD). , Year, month, day, hour, minute, second) are stored in the position information storage unit 233, the position information stored when the start switch SW is off, and the position information detected when the start switch SW is off Are different from each other, a position information transmission control unit 247 for transmitting the detected position information and date / time to the remote monitoring device 130 is provided.
  • position information specifically, longitude and latitude
  • date / time specifically, the international standard AD
  • the position information transmission control unit 247 receives the off operation reception unit 247a that receives the off operation of the start switch SW of the agricultural machine 110, and the GPS sensor 231 and the position detection unit 232 when the position information transmission control unit 247 receives the off operation reception unit 247a.
  • a data acquisition unit 247b that detects and acquires position information and date and time
  • a data storage control unit 247c that temporarily stores the position information and date and time acquired by the data acquisition unit 247b in the position information storage unit 233
  • an activation switch In the SW off period, the GPS sensor 231 and the position detection unit 232 function as an operation unit including position information and a data detection unit 247d that detects the date and time every predetermined period TD (for example, 30 minutes). It is configured.
  • position information latitude, longitude
  • date / time specifically, international standard year, year, month
  • Day, hour, minute, second is stored by the data storage control unit 247c.
  • the position information may include the speed and direction of the agricultural machine 110.
  • the data detection unit 247d detects the position information and date / time of the agricultural machine 110 when the power switch 220 is turned on every predetermined cycle TD (for example, 30 minutes) while the start switch SW is off.
  • the activation information transmission control unit 241 detects the position information stored in the position information storage unit 233 (stored when the activation switch SW is turned off) and the data detection unit 247d every predetermined period TD (for example, 30 minutes).
  • TD for example, 30 minutes.
  • the position information and the date and time detected by the GPS sensor and position detection unit 232 are configured to function as an operation unit including a data transmission unit 247e that transmits the position information and date / time from the communication unit 210 to the remote monitoring device 130. ing.
  • the predetermined period TD may be settable and changeable.
  • the setting of the predetermined period TD may be changed by the remote monitoring terminal device 200 or the setting may be changed by the remote monitoring device 130.
  • the remote monitoring terminal device 200 may be able to permit an instruction from the remote monitoring device 130 to change the set value of the predetermined period TD.
  • the control unit 240 does not turn off the power supply by the power supply control unit 220, and the data storage control unit 247 c displays the position information and date / time in the position information storage unit 233. After being stored, the power control unit 220 turns off the power.
  • FIG. 22 is a flowchart illustrating an operation example of the position information transmission control unit 247.
  • Step Se1 when the start switch SW is turned off (Step Se1), the GPS sensor 231 and the position detector 232 detect and acquire the position information and date / time of the agricultural machine 110 (Step Se2).
  • the position information and date / time thus stored are stored in the position information storage unit 233 (step Se3), and the power supply control unit 220 turns off the power (step Se4).
  • step Se5 it is determined whether or not it is the timing of the predetermined cycle TD (here, 30 minutes) (step Se5), and waits until the timing of the predetermined cycle TD is reached (step Se5: No). On the other hand, if it is the timing of the predetermined cycle TD in step Se5 (step Se5: Yes), the power supply control unit 220 releases the off control and turns on the power (step Se6), and the GPS sensor 231 and the position detection unit 232 Thus, the position information and date / time of the agricultural machine 110 are detected and acquired (step Se7).
  • Step Se8 it is determined whether or not the position information stored in the position information storage unit 233 is different from the detected position information (step Se8), and the position information detected by the position information stored in the position information storage unit 233 is detected. (Step Se8: No), the process proceeds to Step Se5. On the other hand, when the position information stored in the position information storage unit 233 is different from the detected position information in Step Se8 (Step Se8: Yes), the detected position information and date / time are transmitted to the remote monitoring device 130 (Step S8). Se9), the power-off control by the power supply controller 220 is returned to turn off the power supply (step Se10).
  • step Se11 it is determined whether or not an on operation of the start switch SW has been accepted (step Se11). If no on operation has been accepted (step Se11: No), the process proceeds to step Se5. On the other hand, when the ON operation is accepted in step Se11 (step Se11: Yes), the process is terminated.
  • the position information and date / time are detected by the GPS sensor 231 and stored in the position information storage unit 233, and the start switch During the SW off period, the power supply is periodically activated every predetermined cycle TD, the position information and date / time are detected by the GPS sensor 231, and the position information stored in the position information storage unit 233 and every predetermined cycle TD.
  • the position information detected periodically is different, the position information detected by the GPS sensor 231 and the date and time are transmitted to the remote monitoring device 130 to monitor the position information of the agricultural machine 110 while suppressing the power consumption of the battery.
  • the remote monitoring terminal device 200 is applied to a traveling work machine such as a combiner, a tiller or a rice transplanter, but is not limited thereto, and construction work such as a tractor, an excavator, a wheel loader or a carrier
  • a traveling work machine such as a combiner, a tiller or a rice transplanter
  • construction work such as a tractor, an excavator, a wheel loader or a carrier
  • the present invention can also be suitably applied to traveling working machines such as machines, and ships such as pleasure boats and fishing boats.
  • Remote monitoring system 110 Agricultural machine (an example of traveling work machine) 120 Remote monitoring center 130 Remote monitoring device 140 Communication network 200 Remote monitoring terminal device 210 Communication unit 220 Power supply control unit 231 GPS sensor (an example of a position sensor) 232 Position detection unit 233 Position information storage unit 240 Control unit 241 Activation information transmission control unit 242 Operation information transmission control unit (an example of a data summary control unit) 243 Event information transmission control unit (an example of a data storage control unit) 244 Data storage control unit 245 Sampling data storage control unit 246 Trend information transmission control unit 247 Position information transmission control unit 250 Processing unit 260 Storage unit (an example of data storage unit) 261 First data storage unit 262 Second data storage unit 263 Third data storage unit 264 Fourth data storage unit BT Battery SW Start switch T,... Connection terminal TA Predetermined period TB Averaging period TC Sampling period TD Predetermined period

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Harvester Elements (AREA)

Abstract

 接続端子(T,…)と、接続端子(T,…)を介して入力されたデータを所定周期(TA)毎に最新分から直近の所定回数分だけデータ記憶部(260)に格納するデータ記憶制御部(243)と、通信部(210)とを備え、データ記憶制御部(243)は、走行作業機械(110)又は船舶における所定のイベントの発生時を条件として、所定のイベントが発生した時点のデータを含む所定回数分のデータをデータ記憶部(260)に格納し、所定のイベントを示す情報と、データ記憶部(260)が格納している所定回数分のデータとを通信部(210)から遠隔監視装置(130)へ送信する遠隔監視端末装置(200)。

Description

走行作業機械又は船舶の遠隔監視端末装置
 本発明は、建設機械や農業機械など走行作業機械又はプレジャーボードや漁船など船舶に備えられ、遠隔監視装置との間で通信を行うことにより前記遠隔監視装置で遠隔監視される走行作業機械又は船舶の遠隔監視端末装置に関する。
 走行作業機械等に備えられる遠隔監視端末装置と、遠隔監視センターに設けられる遠隔監視装置との間で通信を行って、走行作業機械等を監視する遠隔監視システムは従来から公知となっている。
 例えば、特許文献1には、移動作業機械の管理システムにおいて、エンジンキースイッチのオン操作やオフ操作を受け付けたとき(イベントの発生時)に、移動作業機械側から管理部に対して、保守に係わる作動状態に関するデータを送信することが開示されている(特許文献1の段落[0024],[0025]参照)。
特許第3011256号公報
 しかしながら、特許文献1には、移動作業機械においてイベントが発生した場合にどの時点のデータを送信するかについては開示されておらず、例えば、イベントの発生時点のデータを送信するだけでは、イベントが発生した移動作業機械の稼動状態を利用者に精度良く把握させることができない。
 そこで、本発明は、走行作業機械又は船舶に備えられ、遠隔監視装置との間で通信を行うことにより前記遠隔監視装置で遠隔監視される走行作業機械又は船舶の遠隔監視端末装置であって、前記走行作業機械又は前記船舶においてイベントが発生した場合に前記イベントが発生した前記走行作業機械又は前記船舶の稼動状態を利用者に精度良く把握させることができる走行作業機械又は船舶の遠隔監視端末装置を提供することを目的とする。
 本発明は、前記課題を解決するために、走行作業機械又は船舶に備えられ、遠隔監視装置との間で通信を行うことにより前記遠隔監視装置で遠隔監視される走行作業機械又は船舶の遠隔監視端末装置であって、前記走行作業機械又は前記船舶の稼動状態に関するデータが入力される複数の接続端子と、前記接続端子を介して入力された前記データを予め定めた所定周期毎に最新分から直近の予め定めた所定回数分だけデータ記憶部に一時的に格納するデータ記憶制御部と、前記遠隔監視装置と通信する通信部とを備え、前記データ記憶制御部は、前記走行作業機械又は前記船舶における予め定めた所定のイベントの発生時を条件として、前記所定のイベントが発生した時点のデータを含む前記所定回数分のデータを前記データ記憶部に格納し、前記所定のイベントを示す情報と、前記データ記憶部が格納している前記所定回数分のデータとを前記通信部から前記遠隔監視装置へ送信する構成とされていることを特徴とする走行作業機械又は船舶の遠隔監視端末装置を提供する。
 本発明によれば、前記所定のイベントの発生時を条件として、前記所定のイベントが発生した時点のデータを含む前記所定回数分のデータといった、前記所定のイベントが発生した前記走行作業機械又は前記船舶の稼動状態を利用者に精度良く把握させるために必要なデータを前記遠隔監視装置へ送信することができる。従って、前記走行作業機械又は前記船舶において前記所定のイベントが発生した場合に前記所定のイベントが発生した前記走行作業機械又は前記船舶の稼動状態を利用者に精度良く把握させることが可能となる。
 本発明において、前記データ記憶制御部は、前記所定のイベントの発生時を条件として、前記所定のイベントを示す情報と、前記データ記憶部が格納している前記所定回数分のデータのうち何れか1回分のデータとを前記遠隔監視装置に送信し、前記遠隔監視装置から前記所定回数分のデータの送信要求があれば、前記所定回数分のデータを前記通信部から前記遠隔監視装置へ送信することを特徴とする走行作業機械又は船舶の遠隔監視端末装置。
 この特定事項では、前記1回分のデータにより、前記遠隔監視装置側で必要に応じて前記所定回数分のデータを前記遠隔監視装置に送信することができる。
 本発明において、前記所定のイベントの発生時は、前記走行作業機械又は前記船舶の異常を検知した時である態様を例示できる。
 この特定事項では、前記走行作業機械又は前記船舶の異常検知時での稼動状態を利用者に精度良く把握させることが可能となる。
 本発明において、前記所定のイベントの発生時は、前記走行作業機械又は前記船舶の予め定めた所定の動作を指示する操作部材によるオン操作又はオフ操作を受け付けた時である態様を例示できる。
 この特定事項では、前記走行作業機械又は前記船舶の前記操作部材によるオン操作又はオフ操作の受け付け時での稼動状態を利用者に精度良く把握させることが可能となる。
 以上説明したように、本発明に係る走行作業機械又は船舶の遠隔監視端末装置によると、前記走行作業機械又は前記船舶において前記所定のイベントが発生した場合に前記所定のイベントが発生した前記走行作業機械又は前記船舶の稼動状態を利用者に精度良く把握させることが可能となる。
農業機械を遠隔監視する遠隔監視システムを模式的に示す概略構成図である。 遠隔監視端末装置を備えた農業機械の概略構成を示すブロック図である。 農業機械における遠隔監視端末装置の概略構成を示すブロック図である。 農業機械がコンバインの場合での各種接続端子に対応する出力要素の具体例を示す表である。 制御部における起動情報送信制御部による起動情報送信機能の動作過程を模式的に示す動作図である。 起動情報送信制御部により使用される位置情報記憶部のデータ構造を模式的に示す概略構成図である。 起動情報送信制御部による動作例を示すフローチャートである。 制御部における稼動情報送信制御部による稼動情報送信機能の動作過程を模式的に示す動作図である。 稼動情報送信制御部によって検出値情報の最大値、最小値、平均値、イベントの発生回数及び発生時間を求める動作例を説明するための説明図である。 稼動情報送信制御部により使用される第3データ記憶部のデータ構造を模式的に示す概略構成図である。 稼動情報送信制御部による動作例の前半部分を示すフローチャートである。 稼動情報送信制御部による動作例の後半部分を示すフローチャートである。 制御部におけるイベント情報送信制御部によるイベント情報送信機能の動作過程を模式的に示す動作図である。 イベント情報送信制御部による動作例の前半部分を示すフローチャートである。 イベント情報送信制御部による動作例の後半部分を示すフローチャートである。 図14及び図15に示すイベント情報送信制御部による動作の他の例を示すフローチャートである。 制御部におけるトレンド情報送信制御部によるトレンド情報送信機能の動作過程を模式的に示す動作図である。 トレンド情報送信制御部によって平均値を算出する算出例を説明するための説明図である。 トレンド情報送信制御部による動作例の前半部分を示すフローチャートである。 トレンド情報送信制御部による動作例の後半部分を示すフローチャートである。 制御部における位置情報送信制御部による位置情報送信機能の動作過程を模式的に示す動作図である。 位置情報送信制御部による動作例を示すフローチャートである。
 以下、本発明の実施の形態について走行作業機械又は船舶としてコンバイン、耕耘機や田植機等の農業機械を例にとって添付図面を参照しつつ説明する。なお、以下の実施の形態は、本発明を具体化した例であって、本発明の技術的範囲を限定する性格のものではない。
 [遠隔監視システムの全体構成について]
 図1は、農業機械110,…を遠隔監視する遠隔監視システム100を模式的に示す概略構成図である。図2は、遠隔監視端末装置200を備えた農業機械110,…の概略構成を示すブロック図である。また、図3は、農業機械110における遠隔監視端末装置200の概略構成を示すブロック図である。
 図1に示すように、遠隔監視システム100は、1つ又は複数(ここでは複数)の農業機械(走行作業機械の一例)110,…と、農業機械110,…にそれぞれ設けられた遠隔監視端末装置200と、遠隔監視端末装置200に通信網140を介して接続される遠隔監視装置130とを備えている。
 遠隔監視装置130は、農業機械110,…に対して遠く離れた位置にある遠隔監視センター120に配置されており、農業機械110の稼動状態に関するデータを収集して蓄積するようになっている。そして、遠隔監視装置130は、LAN(Local Area Network)等のネットワーク150を介してパーソナルコンピュータや携帯端末機等の端末装置160,…に接続され、蓄積したデータが端末装置160,…に取り込まれることで、農業機械110のユーザやディーラ等の利用者によって利用されるようになっている。
 詳しくは、遠隔監視端末装置200及び遠隔監視装置130は、それぞれ、通信部210,131(具体的には通信モジュール)を有し、通信網140を介して互いの通信部210,131で接続されることで、遠隔監視端末装置200と遠隔監視装置130との間で情報の送受信を行うことが可能とされている。これにより、遠隔監視装置130は、遠隔監視センター120で利用者により農業機械110,…を遠隔監視できるようになっている。
 なお、通信網140は、有線通信網でもよいし、無線通信網でもよく、有線通信網及び無線通信網を組み合わせたものであってもよい。通信網140としては、代表的には、電気通信事業者が提供する公衆回線網であって、固定電話機や携帯電話機等の端末機同士を通信させる公衆回線網を挙げることができる。
 図2に示すように、農業機械110,…は、1つ又は複数(ここでは複数)の作業部111,…と、遠隔監視端末装置200とを備えている。ここで、作業部111,…としては、例えば、農業機械がコンバインである場合には、走行作業部、刈り取り作業部、脱穀作業部等を挙げることができる。
 各作業部111,…には、電子制御装置(具体的にはコントローラ)113,…が設けられている。電子制御装置113,…は、各種アクチュエータ(図示せず)に対して指令し、各作業部111,…への運転状態を適切に制御する。各電子制御装置113,…は、CAN(Controller Area Network)規格に基づいて互いにデータ転送されるようになっている。
 詳しくは、各電子制御装置113,…は、各作業部111,…での後述する各種センサにて検出した検出値情報(信号)及び後述する各種スイッチのオン・オフ情報に基づいて各作業部111,…への運転状態を作動制御する。また、各電子制御装置113,…は、農業機械110の故障等の異常が発生した否かの異常発生の有無を適宜判断し、異常が発生した場合には、該異常に応じたエラー情報(具体的にはエラーコード)を生成する。
 作業部111,…のうちのエンジン112を作動させる作動部(走行作業部111a)は、エンジン112と、エンジン112の回転数や負荷状態などを監視し、最適な噴射圧力や噴射時期を燃料システムに指示してエンジン全体を制御する電子制御装置113(エンジンコントローラ113a)と、発電機114と、起動スイッチSWとを備えており、バッテリーBTが搭載されている。そして、電子制御装置113(エンジンコントローラ113a)は、作動部111(走行作業部111a)の作動制御の他、運転開始/休止の操作や、エンジン112の駆動による運転状態の制御が行われるようになっている。
 なお、作動部111(走行作業部111a)の起動状態(エンジン112の稼動状態)において、発電機114から供給される電力によってバッテリーBTの充電が適宜行われるようになっている。
 作動部111(走行作業部111a)に備えられている起動スイッチSWは、バッテリーBTから遠隔監視端末装置200における制御部240及び電子制御装置113(エンジンコントローラ113a)へ電力を供給する電源オン状態と、バッテリーBTから遠隔監視端末装置200における制御部240及び電子制御装置113(エンジンコントローラ113a)への電力供給を遮断する電源オフ状態とを選択的に切り替える切り替えスイッチとされている。
 詳しくは、バッテリーBTは、遠隔監視端末装置200における制御部240に接続された電源接続ラインL1及び電子制御装置113(エンジンコントローラ113a)に接続された電源接続ラインL2の双方に起動スイッチSWを介して接続されている。
 この例では、起動スイッチSWは、所謂キースイッチと呼ばれるスイッチであり、「ON」端子は、エンジン112の運転状態での電源接続ラインL1,L2の接続端子である。「OFF」端子は、起動スイッチSWがオフ状態のときの端子である。
 なお、後述するように、定期的に電源を起動させるために、起動スイッチSWのオン状態及びオフ状態に関わらず、バッテリーBTと遠隔監視端末装置200における電源制御部220とが電源接続ラインLbtを介して接続されている。これにより、遠隔監視端末装置200における電源制御部220は、バッテリーBTからの電力が常時供給されるようになっている。
 [遠隔監視端末装置について]
 図3に示すように、遠隔監視端末装置200は、通信部210と、農業機械110の起動スイッチSWがオフ状態のときに、定期的に電源を起動させる電源制御部220と、通信時におけるデータの送受信、各種の入出力制御及び演算処理の制御を行う制御部240と、農業機械110の稼動状態に関するデータが入力される複数の接続端子T,…とを備えている。
 (通信部)
 通信部210は、遠隔監視センター120における遠隔監視装置130の通信部131と同一の通信プロトコル(通信規約)で通信可能とされている。通信時に送受信されるデータは、通信プロトコルに従うように通信部210で変換される。そして、通信部210は、制御部240にて取得した農業機械110の稼動状態に関するデータを遠隔監視装置130に送信する。
 (電源制御部)
 電源制御部220は、タイマー機能を有しており、起動スイッチSWのオフ状態及びオン状態に関わらず、バッテリーBTに接続されている。具体的には、バッテリーBTと電源制御部220の入力側電源ライン(図示せず)とが電源接続ラインLbtによって接続されている。これにより、電源制御部220は、バッテリーBTからの電力が常時供給されるようになっている。
 また、電源制御部220の出力側電源ライン(図示せず)と制御部240の電源ライン(図示せず)とが電源接続ラインL3によって接続されている。
 そして、バッテリーBTの電力消費量を抑えるという観点から、起動スイッチSWがオフ状態となり、バッテリーBTと制御部240の入力側電源ラインとを接続する電源接続ラインL1への電力供給が遮断されているときに、遠隔監視端末装置200において、電源制御部220のタイマー機能によりバッテリーBTからの電力を定期的に制御部240へ供給するようになっている。
 詳しくは、電源制御部220には所定周期の時間(例えば30分)が予め設定されている。つまり、電源制御部220は、所定周期の時間が到来するまでは、入力側電源ラインと出力側電源ラインとが非導通状態となっている。そして、電源制御部220は、所定周期の時間が到来すると、予め定めた所定時間(例えば360秒(6分))だけ入力側電源ラインと出力側電源ラインとが導通状態になる。これにより、電源制御部220は、所定周期毎に、バッテリーBTからの電力を制御部240へ供給することができる。
 (位置検出部)
 本実施の形態では、遠隔監視端末装置200は、GPS(Global Positioning System)衛星からの電波を受信するGPSセンサ(位置センサの一例)231と、GPSセンサ231にて受信した電波に基づいて農業機械110の位置情報を検出する位置検出部232と、位置検出部232にて検出した位置情報を一時的に格納する位置情報記憶部233とをさらに備えている。
 GPSセンサ231は、GPS衛星からの電波(世界標準時刻を含む情報)を受信するようになっている。
 位置検出部232は、農業機械110の位置情報の他、農業機械110の速度情報を検出したり、農業機械110の方位情報を検出したりすることができる。すなわち、位置情報は、農業機械110の緯度、経度、速度及び方位の情報を含んでいる。
 具体的には、位置検出部232は、GPSセンサ231及びGPS衛星と共に測位システムを構成している。位置検出部232は、GPSセンサ231で3以上のGPS衛星からの電波を受信してGPS衛星の発信時刻と受信時刻との時刻差からそれぞれとの距離を割り出すことにより、農業機械110の現在位置の位置情報(例えば緯度及び経度)を測定することができる。また、単位時間当たりの変位を割り出すことにより、農業機械110の速度情報及び方位情報を測定することができる。
 位置情報記憶部233は、RAM(Random Access Memory)等の揮発性メモリとされている。位置情報記憶部233は、電源制御部220に接続されており、バッテリーBTからの電力が常時供給されるようになっている。これにより、位置情報記憶部233は、起動スイッチSWがオフ状態のときでも、位置情報を保持できるようになっている。
 (制御部)
 制御部240は、CPU(Central Processing Unit)等のマイクロコンピュータからなる処理部250と、ROM(Read Only Memory)、RAM等の揮発性メモリを含む記憶部(データ記憶部の一例)260とを有している。
 制御部240は、処理部250が記憶部260のROMに予め格納された制御プログラムを記憶部260のRAM上にロードして実行することにより、各種構成要素の作動制御を行うようになっている。記憶部260のRAMは、第1から第4データ記憶部261~264とを提供する。
 (接続端子)
 複数(ここでは70個)の接続端子T,…は、農業機械110の稼動状態に関するデータを出力する出力要素Q,…に接続される複数種類の接続端子であり、本実施の形態では、1個又は2個以上(ここでは32個)の第1接続端子T1,…と、1個又は2個以上(ここでは20個)の第2接続端子T2,…と、1個又は2個以上(ここでは4個)の第3接続端子T3,…と、1個又は2個以上(ここでは4個)の第4接続端子T4,…と、1個又は2個以上(ここでは8個)の第5接続端子T5,…と、1個又は2個以上(ここでは2個)の第6接続端子T6,…とを備えている。
 第1接続端子T1,…、第2接続端子T2,…、第3接続端子T3,…及び第4接続端子T4,…は、制御部240に接続されており、第1接続端子T1,…及び第2接続端子T2は、各作業部111,…における出力要素Q,…と電子制御装置113,…を介して接続するようになっている。また、第5接続端子T5,…及び第6接続端子T6,…は、制御部240に接続されており、各作業部111,…における出力要素Q,…と直接的に接続するようになっている。
 第1接続端子T1,…は、オン・オフ情報(具体的には0又は1の接点情報)、故障等の異常の有無を示すエラー状態情報(具体的には0又は1のエラー有無情報)等の二値情報(具体的には二値化信号)を出力する出力要素Qa,…に接続されて出力要素Qa,…からの二値情報が入力される。ここでは、二値情報は、CANのビットデータとして伝送される。
 二値情報を出力する出力要素Qa,…としては、電子制御装置113,…の入力系に接続されて農業機械110の稼動状態におけるオン・オフ情報を出力する各種スイッチWa,…や、電子制御装置113,…に設けられて各作業部111,…での故障等の異常の有無を示すエラー状態情報を出力する出力制御部Paを例示できる。
 具体的には、出力要素Qa,…が各種スイッチWa,…である場合には、第1接続端子T1,…は、各種スイッチWa,…からのオン・オフ情報が電子制御装置113,…を経て入力され、出力要素Qa,…が出力制御部Paである場合には、第1接続端子T1,…は、電子制御装置113,…における出力制御部Paからのエラー状態情報が入力される。
 第2接続端子T2,…は、予め定めた物理量を測定(検出)した値を示す数値データ、故障等の異常の内容を示すエラーコード、バッテリーBTの電圧値等の検出値情報(具体的には多値化デジタル信号)を出力する出力要素Qb,…に接続されて出力要素Qb,…からの検出値情報が入力される。ここでは、検出値情報は、CANの数値データとして伝送される。
 検出値情報を出力する出力要素Qb,…としては、電子制御装置113,…の入力系に接続されて農業機械110の稼動状態を検知する各種センサWb,…や、電子制御装置113(エンジンコントローラ113a)に設けられてバッテリーBTの電圧値を出力する出力制御部Pbを例示できる。
 具体的には、出力要素Qb,…が各種センサWb,…である場合には、第2接続端子T2,…は、各種センサWb,…からの数値データが電子制御装置113,…を経て入力され、出力要素Qb,…が出力制御部Pbである場合には、第2接続端子T2,…は、電子制御装置113(エンジンコントローラ113a)における出力制御部PbからのバッテリーBTの電圧値が入力される。
 第3接続端子T3,…は、積算時間等の積算情報を出力する出力要素Qc,…に接続されて出力要素Qc,…からの積算情報が入力される。ここでは、積算情報は、CANの積算データとして伝送される。
 積算情報を出力する出力要素Qc,…としては、電子制御装置113(エンジンコントローラ113a)に設けられてエンジン112の運転開始時(起動スイッチSWのオン操作を受け付けた時点)からエンジン112の運転停止時(起動スイッチSWのオフ操作を受け付けた時点)までのエンジン112の運転時間を積算した積算時間を出力する出力制御部Pcを例示できる。
 具体的には、出力要素Qc,…が出力制御部Pcである場合には、第3接続端子T3,…は、電子制御装置113(エンジンコントローラ113a)における出力制御部Pcからのエンジン112の積算時間が入力される。
 第4接続端子T4,…は、CANの通信プロトコル(通信規約)に関するエラー情報を出力する出力要素Qd,…に接続されて出力要素Qd,…からのエラー情報が入力される。
 エラー情報を出力する出力要素Qd,…としては、電子制御装置113,…に設けられてCANの通信プロトコルに関する仕様のエラーを認識して該エラーに応じたエラー情報を出力する出力制御部Pdを例示できる。
 具体的には、出力要素Qd,…が出力制御部Pdである場合には、第4接続端子T4,…は、電子制御装置113,…における出力制御部Pdからのエラー情報が入力される。
 第5接続端子T5,…は、二値情報を出力する出力要素Qe,…に接続されて出力要素Qe,…からの二値情報が入力される。
 二値情報を出力する出力要素Qe,…としては、農業機械110の稼動状態におけるオン・オフ情報を出力する各種スイッチWe,…を例示できる。
 具体的には、出力要素Qe,…が各種スイッチWe,…である場合には、第5接続端子T5,…は、各種スイッチWe,…からのオン・オフ情報が直接的に入力される。なお、第5接続端子T5,…は、各作業部111,…に電子制御装置113,…が存在する場合にも用いることができるが、主として、各作業部111,…に電子制御装置113,…が存在しない場合に有利である。
 第6接続端子T6,…は、予め定めた物理量を測定(検出)した値を示す数値データ(例えばバッテリーBTの電圧値や電子制御装置113,…に搭載された基板(図示せず)の温度)等の検出値情報(具体的にはアナログ信号)を出力する出力要素Qf,…に接続されて出力要素Qf,…からの検出値情報が入力される。
 検出値情報を出力する出力要素Qf,…としては、農業機械110の稼動状態を検知する各種センサWf,…を例示できる。
 具体的には、出力要素Qf,…が各種センサWf,…である場合には、第6接続端子T6,…は、各種センサWf,…からの数値データが直接的に入力される。
 なお、図3に示す起動情報送信制御部241、稼動情報送信制御部242、イベント情報送信制御部243、データ記憶制御部244、サンプリングデータ記憶制御部245、トレンド情報送信制御部246及び位置情報送信制御部247については、後述する。
 図4は、農業機械110がコンバインの場合での各種接続端子T1,…~T6,…に対応する出力要素Qa,…~Qf,…の具体例を示す表である。
 図4に示すように、第1接続端子T1,…に接続された出力要素Qa,…は、脱穀スイッチ、刈り取りスイッチ、エンジン関係のチャージ、油圧、水温、オーバーロード、エアクリーナ詰まり、排わら・カッタ詰まり、エンジン緊急停止等の警報といった32項目の二値情報を第1接続端子T1,…から入力する。第2接続端子T2,…に接続された出力要素Qb,…は、作業時及び非作業時での単位時間当たりのエンジン112の回転数、作業時及び非作業時でのエンジン112への負荷の程度を示すエンジン負荷率、作業時及び非作業時での車速、作業時及び非作業時での旋回モータの単位時間当たりの回転数といった20項目の検出値情報を第2接続端子T2,…から入力する。第3接続端子T3,…に接続された出力要素Qc,…は、4項目の積算情報(この例では1項目の積算情報)を第3接続端子T3,…から入力する。第4接続端子T4,…に接続された出力要素Qd,…は、4項目のエラー情報を第4接続端子T4,…から入力する。第5接続端子T5,…に接続された出力要素Qe,…は、8項目の二値情報を第5接続端子T5,…から入力する。また、第6接続端子T6,…に接続された出力要素Qf,…は、2項目の検出値情報(具体的にはバッテリー電圧及び基板温度)を第6接続端子T6,…から入力する。
 そして、制御部240は、特定の条件の場合において、起動情報を送信する起動情報送信機能として作用する起動情報送信制御部241と、稼動情報を送信する稼動情報送信機能として作用する稼動情報送信制御部242と、イベント情報を送信するイベント情報送信機能として作用するイベント情報送信制御部243と、トレンド情報を送信するトレンド情報送信機能として作用するトレンド情報送信制御部246と、位置情報及び日時を送信する位置情報送信機能として作用する位置情報送信制御部247と有している。
 次に、起動情報送信機能、稼動情報送信機能、イベント情報送信機能、トレンド情報送信機能及び位置情報送信機能について順に説明する。
 [起動情報送信機能]
 図5は、制御部240における起動情報送信制御部241による起動情報送信機能の動作過程を模式的に示す動作図である。
 制御部240は、農業機械110の起動スイッチSWのオン操作時(図5のα1参照)に起動情報を遠隔監視装置130に送信する起動情報送信制御部241を備えている。ここで、起動情報は、起動時の農業機械110の位置情報(具体的には経度、緯度)及び日時(具体的には国際標準の西暦、年、月、日、時、分、秒)とされている。なお、位置情報は、農業機械110の速度や方位を含んでいてもよい。
 詳しくは、起動情報送信制御部241は、農業機械110の起動スイッチSWのオン操作を受け付けるオン操作受付部241aと、オン操作受付部241にて受け付けたときに、GPSセンサ231及び位置検出部232により農業機械110の位置情報及び日時を検出して取得するデータ取得部241bと、データ取得部241bにて取得した位置情報及び日時を位置情報記憶部233に一時的に格納させるデータ格納制御部241cと、位置情報記憶部233が格納している位置情報及び日時を通信部210から遠隔監視装置130に送信するデータ送信部241dとを含む動作部として機能する構成とされている。
 図6は、起動情報送信制御部241により使用される位置情報記憶部233のデータ構造を模式的に示す概略構成図である。
 図6に示すように、位置情報記憶部233には、農業機械110の起動スイッチSWのオン操作を受け付けたとき(起動時)の日時(具体的には国際標準の西暦、年、月、日、時、分、秒)及び位置情報(緯度、経度)が格納される。なお、位置情報記憶部233には、後述する位置情報送信制御部247のオフ操作受付部247a、データ取得部247b及びデータ格納制御部247cによって、農業機械110の起動スイッチSWのオフ操作を受け付けたとき(停止時)の日時(具体的には国際標準の西暦、年、月、日、時、分、秒)及び位置情報(緯度、経度)も格納される。
 ここで、起動スイッチSWのオン操作を受け付けた時点から、GPSセンサ231による検知動作によって農業機械110の位置情報及び日時を取得するまでの時間t(図5参照)としては、40秒~180秒程度を例示できる。
 そして、起動情報送信制御部241は、起動スイッチSWのオン操作を受け付けた時点から予め定めた所定時間(例えば300秒(5分))の間に起動情報を取得できなかった場合には、起動情報の代わりに、データ送信部241dにより、起動スイッチSWがオン操作されたことを示すオン操作情報を遠隔監視装置130に送信する。
 なお、位置情報記憶部233には、起動スイッチSWのオン・オフ操作を1オン・オフ操作回数として過去の予め定めたオン・オフ操作回数分(例えば1オン・オフ操作回数分)の起動情報が保持される。
 また、遠隔監視端末装置200は、通信部210にて起動情報を遠隔監視装置130の通信部131の通信プロトコルに応じたフォーマットに変換した後、通信網140及び通信部131を経て遠隔監視装置130に送信する。これにより、遠隔監視センター側で農業機械110の起動情報(具体的には緯度、経度及び国際標準の西暦、年、月、日、時、分、秒)を確認することができる。このことは、後述する稼動情報送信機能の稼動情報、イベント情報送信機能のイベント情報、トレンド情報送信機能のトレンド情報及び位置情報送信機能の位置情報についても同様である。
 (起動情報送信制御部による動作例)
 次に、起動情報送信制御部241による動作例について図7を参照しながら以下に説明する。図7は、起動情報送信制御部241による動作例を示すフローチャートである。
 図7に示すフローチャートでは、起動スイッチSWのオン操作を受け付けると(ステップSa1:Yes)、GPSセンサ231及び位置検出部232により農業機械110の起動情報(ここでは位置情報及び日時)を検出する(ステップSa2)。
 次に、農業機械110の起動情報を取得したか否かを判断し(ステップSa3)、起動情報を取得した場合には(ステップSa3:Yes)、取得した起動情報を位置情報記憶部233に格納し(ステップSa4)、位置情報記憶部233が格納している起動情報を遠隔監視装置130に送信し(ステップSa5)、処理を終了する。一方、ステップSa3で農業機械110の起動情報を取得できなかった場合には(ステップSa3:No)、所定時間(ここでは300秒)経過したか否かを判断し(ステップSa6)、所定時間経過していない場合には(ステップSa6:No)、ステップSa2に移行する。一方、ステップSa6で所定時間経過した場合には(ステップSa6:Yes)、起動スイッチSWがオン操作されたことを示すオン操作情報を遠隔監視装置130に送信し(ステップSa7)、処理を終了する。
 以上説明した起動情報送信機能によれば、運転開始時での農業機械110の起動情報(具体的には位置情報及び日時)を利用者に把握させるために必要なデータを遠隔監視装置130へ送信することができる。従って、農業機械110の運転開始時での起動情報(具体的には位置情報及び日時)を利用者に把握させることが可能となる。
 [稼動情報送信機能]
 図8は、制御部240における稼動情報送信制御部242による稼動情報送信機能の動作過程を模式的に示す動作図である。なお、図8において、GPSセンサ231、位置検出部232及び位置情報記憶部233は図示を省略している。
 制御部240は、農業機械110の起動スイッチSWのオフ操作時(図8のα2参照)に稼動情報を遠隔監視装置130に送信する稼動情報送信制御部(データ要約制御部の一例)242を備えている。
 詳しくは、稼動情報送信制御部242は、接続端子T,…を介して入力された農業機械110の稼動状態に関するデータ(図4及び図6参照)を予め定めた所定周期(例えば0.1秒)毎に取得するデータ取得部242aと、データ取得部242aにて取得した所定周期毎のデータを最新分から直近の予め定めた所定回数(ポイント)分(例えば600回(ポイント))だけ第1データ記憶部(具体的にはリングバッファ)261に一時的に格納させる第1データ格納制御部242bと、第1データ格納制御部242bにて格納した所定周期毎のデータに基づいて起動スイッチSWのオン操作時から最新データ取得時までの稼動状態に関するデータの最小値、最大値及び平均値並びに予め定めた所定のイベントの発生回数及び発生時間を演算するデータ演算部242cと、データ演算部242cにて演算した農業機械110の稼動状態に関するデータの最小値、最大値並びに所定のイベントの発生回数及び発生時間を第3データ記憶部263に一時的に格納させる第2データ格納制御部242dとを含む動作部として機能する構成とされている。また、第2データ格納制御部242dは、積算情報及びエラー情報も第3データ記憶部263に一時的に格納させる。なお、本実施の形態では、第1データ記憶部261は、記憶領域が直列的に並んだバッファの両端を論理的に繋げてリング状に扱うことでデータを格納するリングバッファとして使用される。
 ここで、「稼動情報」は、農業機械110の起動スイッチSWのオン操作時での位置情報(具体的には経度、緯度)及び日時(具体的には国際標準の西暦、年、月、日、時、分、秒)(図6参照)、農業機械110の起動スイッチSWのオフ操作時での位置情報(具体的には経度、緯度)及び日時(具体的には国際標準の西暦、年、月、日、時、分、秒)(図6参照)、農業機械110の起動スイッチSWのオン操作時からオフ操作時までの各種スイッチWa,Weがオン操作された回数である各種スイッチWa,Weのオン回数及び各種スイッチWa,Weがオン状態となっていた時間である各種スイッチWa,Weのオン時間、各種センサWb,Wfからの検出値の最小値、最大値、平均値及び起動時と起動停止時との積算情報、予め定めた所定のイベントの発生回数及び発生時間、並びに、発生順での予め定めた所定発生回数分のエラー情報(具体的にはエラーコード)とされている。なお、エラー情報(具体的にはエラーコード)は、所定発生回数(例えば4回)を超えたエラー情報は送信(記憶)対象とはされていない。
 また、「予め定めた所定周期」としては、それには限定されないが、0秒を超え1秒未満の値のうちから選択された一定の第1周期(具体的には0.1秒)や、1秒以上60秒未満の値のうちから選択された一定の第2周期(具体的には1秒)を例示できる。ここでは、所定周期は、0.1秒とされている。なお、稼動情報送信制御部242は、第1周期(具体的には0.1秒)と第2周期(具体的には1秒)とを選択的に切り替える構成とされていていてもよい。この場合、第1周期と第2周期との切り替えは、遠隔監視端末装置200で行うようにしてもよいし、遠隔監視装置130で行うようにしてもよい。
 また、第1周期、第2周期、二値情報、検出値情報及びエラー情報の項目の設定値は、設定変更可能とされていてもよい。この場合、第1周期、第2周期、二値情報、検出値情報及びエラー情報の項目の設定値は、遠隔監視端末装置200で設定変更するようにしてもよいし、遠隔監視装置130で設定変更するようにしてもよい。また、遠隔監視端末装置200は、遠隔監視装置130からの第1周期、第2周期、二値情報、検出値情報及びエラー情報の項目の設定値変更に対する指示の許可を行うことができるようになっていてもよい。
 また、「所定のイベントの発生」とは、農業機械110において偶発的或いは非計画的に生じる予め定めた所定の操作や動作、状態の変化の発生をいう。「所定のイベントが発生するとき」としては、例えば、予め定めた作業項目に対する異常(具体的にはチャージ(発電)異常、油圧異常、水温異常等)を示すエラーが発生したとき、予め定めた所定操作部(具体的には走行操作部、刈り取り操作部、脱穀操作部等)で予め定めた作業項目に対するスイッチ(例えば走行スイッチ、刈り取りスイッチ、脱穀スイッチ等)のオン操作又はオフ操作を受け付けたとき、或いは、各種センサにて検知した検知値が予め設定した所定閾値を超えたときなどを挙げることができる。
 また、稼動情報送信制御部242による検出値情報の最大値、最小値、平均値、イベントの発生回数及び発生時間は、例えば、次のようにして求めることができる。
 なお、図8に示すオフ操作受付部242及びデータ送信部242fについては、後述する。
 図9は、稼動情報送信制御部242によって検出値情報の最大値、最小値、平均値、イベントの発生回数及び発生時間を求める動作例を説明するための説明図である。
 図9に示す稼動情報送信制御部242による動作例では、データ取得部242aは、農業機械110の起動スイッチSWのオン操作時から所定周期TA(例えば0.1秒)でデータDT(1)~DT(n)(nは2以上の整数)を第1データ格納制御部242bにより第1データ記憶部261に一時的に格納していく。このとき、第1データ記憶部261には、出力要素(Qa,…),(Qe,…)で検知した所定周期毎の二値情報(具体的には接点情報及びエラー有無情報)、及び、出力要素(Qb,…),(Qf,…)で検知した所定周期毎の検出値情報(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速、エラーコード、基板温度、バッテリー電圧など)が第1データ格納制御部242bにより格納される。また、第1データ記憶部261には、出力要素(Qc,…)で検知した所定周期毎の積算情報(積算時間)、及び、出力要素(Qd,…)で検知した所定周期毎のエラー情報も第1データ格納制御部242bにより格納される。
 そして、データ演算部242cは、検出値情報(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速など)の最大値を求めるときには、出力要素(Qb,…),(Qf,…)で検知した検出値情報を第2データ格納制御部242dにより第3データ記憶部263に格納し、出力要素(Qb,…),(Qf,…)で次に検知した検出値情報と第3データ記憶部263に格納している検出値情報とを比較して出力要素(Qb,…),(Qf,…)で検知した検出値情報が第3データ記憶部263に格納している検出値情報よりも大きければ第3データ記憶部263に格納している検出値情報を出力要素(Qb,…),(Qf,…)で検知した検出値情報に入れ替えて最大値Dmaxを更新していく。
 また、データ演算部242cは、検出値情報の最小値を求めるときには、出力要素(Qb,…),(Qf,…)で検知した検出値情報を第2データ格納制御部242dにより第3データ記憶部263に格納し、出力要素(Qb,…),(Qf,…)で次に検知した検出値情報と第3データ記憶部263に格納している検出値情報とを比較して出力要素(Qb,…),(Qf,…)で検知した検出値情報が第3データ記憶部263に格納している検出値情報よりも小さければ第3データ記憶部263に格納している検出値情報を出力要素(Qb,…),(Qf,…)で検知した検出値情報に入れ替えて最小値Dminを更新していく。
 また、データ演算部242cは、検出値情報の平均値を算出するときは、第1データ記憶部261に格納した個々のデータDT(1)~DT(n)(nは2以上の整数)の所定周期TA(例えば0.1秒)に対する2以上の整数倍m(例えばm=10倍)の平均化周期TB(例えばTA×m=0.1秒×10=1秒)毎のサンプリングデータDTA(1)(=DT(1)),DTA(2)(=DT(11)),DTA(3)(=DT(21)),…,DTA(i)(=DT(n-9))(i=n/m)のうち、最新の所定個数分j(例えばj=60)を第2データ格納制御部242dにより中間記憶部(具体的にはリングバッファ)261aに一時的に格納していく。
 次に、データ演算部242cは、個々のサンプリングデータDTA(1)~DTA(i)の平均化周期TBに対する2以上の整数倍j(例えばj=60)のサンプリング周期TC(例えばTB×j=1秒×60=1分)毎の総和TLA(1)(=DTA(1)+…+DTA(j)),…,TLA(k)(=DTA(i-(j-1))+…+DTA(i))(k=i/j)をそれぞれ整数倍j(例えばj=60)で割った値(TLA(1)/j,…,TLA(k)/j)を1分平均値AVA(1),…,AVA(k)とし、こうして得られた1分平均値AVA(1),…,AVA(k)を第2データ格納制御部242dによりサンプリング周期TC毎に第2データ記憶部262に一時的に格納していく。
 そして、データ演算部242cは、起動スイッチSWのオフ操作時に第2データ記憶部262に格納している個々の1分平均値AVA(1),…,AVA(k)の総和TLBを個々の1分平均値AVA(1),…,AVA(k)の個数kで割った値(TLB/k)を平均値AVBとし、第2データ格納制御部242dにより第3データ記憶部263に格納に格納する。
 また、データ演算部242cは、イベントの発生回数及び発生時間を算出するときには、出力要素(Qa,…),(Qe,…)からの接点情報のオン回数(オフからオンに変化したときの回数)DTE1及びオン時間DTE2、出力要素(Qa,…),(Qe,…)からのエラー有無情報のオン回数DTE1及びオン時間DTE2を第2データ格納制御部242dによりそれぞれ第3データ記憶部263に格納し、出力要素(Qa,…),(Qe,…)で次に得られた接点情報とエラー有無情報とのオン回数及びオン時間を、第3データ記憶部263に格納しているオン回数DTE1及びオン時間DTE2にそれぞれ加算して更新していく。
 また、第2データ格納制御部242dは、出力要素Qc,…からの積算時間DSを起動時及び起動停止時に第3データ記憶部263に格納する。また、第2データ格納制御部242dは、出力要素Qd,…からのエラー情報を発生順から所定発生回数だけ第3データ記憶部263に格納する。
 図10は、稼動情報送信制御部242により使用される第3データ記憶部263のデータ構造を模式的に示す概略構成図である。
 図10に示すように、第3データ記憶部263には、起動スイッチSWのオン操作を受け付けた時点からオフ操作を受け付けた時点までの二値情報(具体的には接点情報とエラー有無情報と)のオン回数及びオン時間、起動スイッチSWのオン操作を受け付けた時点からオフ操作を受け付けた時点までの検出値情報(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速など)の最大値、最小値、平均値及び積算情報が第2データ格納制御部242dにより格納される。
 そして、稼動情報送信制御部242(図8参照)は、農業機械110の起動スイッチSWのオフ操作を受け付けるオフ操作受付部242eと、オフ操作受付部242eにて起動スイッチSWのオフ操作を受け付けたときに、第3データ記憶部263が格納している最小値、最大値、平均値、イベントの発生回数及び発生時間並びに積算情報を通信部210から遠隔監視装置130へ送信するデータ送信部242fとを含む動作部としても機能する構成とされている。また、データ送信部242fは、オフ操作受付部242eにて起動スイッチSWのオフ操作を受け付けたときに、位置情報記憶部233が格納している位置情報及び日時も通信部210から遠隔監視装置130へ送信する。
 ここで、制御部240は、起動スイッチSWのオフ操作がなされても、電源制御部220により電源がオフされることはなく、データ送信部242fにて最小値、最大値、平均値、イベントの発生回数及び発生時間並びに積算情報さらには位置情報及び日時を送信した後に、電源制御部220により電源がオフされるようになっている。
 また、第3データ記憶部263には、起動スイッチSWのオン・オフ操作を1オン・オフ操作回数として過去の予め定めたオン・オフ操作回数分(例えば30オン・オフ操作回数分)の稼動情報が保持される。
 (稼動情報送信制御部による動作例)
 次に、稼動情報送信制御部242による動作例について図11及び図12を参照しながら以下に説明する。図11及び図12は、それぞれ、稼動情報送信制御部242による動作例の前半部分及び後半部分を示すフローチャートである。
 図11に示すフローチャートでは、起動スイッチSWのオン操作を受け付けると(ステップSb1:Yes)、GPSセンサ231及び位置検出部232(図3参照)により農業機械110の位置情報及び日時を取得して位置情報記憶部233(図6参照)に格納する(ステップSb2)。
 次に、出力要素Q,…で農業機械110の稼動情報を検出し(ステップSb3)、所定周期TA(ここでは0.1秒)のタイミングか否かを判断し(ステップSb4)、所定周期TAのタイミングでない場合には(ステップSb4:No)、ステップSb3に移行する。一方、ステップSb4で所定周期TAのタイミングである場合には(ステップSb4:Yes)、出力要素Q,…から二値情報及び検出値情報を取得し(ステップSb5)、検出値情報の最大値Dmax及び最小値Dminを第3データ記憶部263に更新し(ステップSb6)、検出値情報の1分平均値AV(1)~AV(k)を算出して第2データ記憶部262に格納し(ステップSb7)、接点情報とエラー有無情報とのオン回数DTE1及びオン時間DTE2を加算して第3データ記憶部263に格納し(ステップSb8)、さらに、エラーコード及び起動時の積算時間DSを第3データ記憶部263に格納する(ステップSb9)。
 次に、起動スイッチSWのオフ操作を受け付けたか否かを判断し(ステップSb10)、オフ操作を受け付けていない場合には(ステップSb10:No)、ステップSb3に移行する。一方、ステップSb10でオフ操作を受け付けた場合には(ステップSb10:Yes)、図12に示すように、GPSセンサ231及び位置検出部232(図3参照)により農業機械110の位置情報及び日時を取得して位置情報記憶部233(図6参照)に格納し(ステップSb11)、第2データ記憶部262が格納している個々の1分平均値AV(1)~AV(k)の平均値AVBを算出して第3データ記憶部263に格納する(ステップSb12)。
 次に、起動停止時の積算時間DSを第3データ記憶部263に格納し(ステップSb13)、第3データ記憶部263が格納している最大値Dmax、最小値Dmin及び平均値AVB、接点情報とエラー有無情報とのオン回数DTE1及びオン時間DTE2並びにエラーコード及び起動時と起動停止時との積算時間DSを遠隔監視装置130に送信し(ステップSb14)、処理を終了する。このとき、位置情報記憶部233が格納している起動開始時及び起動停止時の位置情報及び日時も遠隔監視装置130に送信する。
 以上説明した稼動情報送信機能によれば、農業機械110の起動スイッチSWのオフ操作を受け付けたときに、起動時から最新データ取得時までの農業機械110の稼動状態に関するデータの最小値、最大値、平均値及び積算情報並びに所定のイベントの発生回数及び発生時間といった稼動状態を利用者に把握させるために必要なデータを遠隔監視装置130へ送信することができる。従って、農業機械110の各センサの最大値、最小値、平均値、スイッチのオン回数などの稼動状態を利用者に把握させることが可能となる。これにより、利用者は、情報蓄積による長期的な農業機械110の運転管理(例えば、作業日報、計画的なメンテナンス、市場での使用状況の把握、長期データの解析による部品の診断(経年劣化)などの運転管理)を行うことができる。また、稼動情報送信制御部242により、最小値、最大値、平均値、イベントの発生回数及び発生時間並びに積算情報といった、検出値情報を要約した稼動情報を遠隔監視装置130へ送信するので、遠隔監視装置130で集計しやすく、しかも遠隔監視装置130における記憶部(図示せず)の記憶容量や通信網140の通信負荷を軽減させることができる。
 [イベント情報送信機能]
 図13は、制御部240におけるイベント情報送信制御部243によるイベント情報送信機能の動作過程を模式的に示す動作図である。なお、図13において、GPSセンサ231、位置検出部232及び位置情報記憶部233は図示を省略している。
 制御部240は、所定のイベントの発生時(図13のα3参照)にイベント情報を遠隔監視装置130に送信するイベント情報送信制御部(データ記憶制御部の一例)243を備えている。
 詳しくは、イベント情報送信制御部243は、接続端子T,…を介して入力された農業機械110の稼動状態に関するデータ(図4及び図6参照)を予め定めた所定周期TA(例えば0.1秒)毎に取得するデータ取得部243aと、データ取得部243aにて取得した所定周期毎のデータを最新分から直近の予め定めた所定回数(ポイント)分(例えば600回(ポイント))だけ第1データ記憶部(具体的にはリングバッファ)261に一時的に格納させる第1データ格納制御部243bと、農業機械110における予め定めた所定のイベントの発生を検出するイベント検出部243cと、イベント検出部243cにて検出した所定のイベントの発生時を条件として、所定のイベントが発生した時点のデータを含む所定回数(ポイント)分(具体的には600回(ポイント))のデータを第4データ記憶部264に格納させる第2データ格納制御部243dとを含む動作部として機能する構成とされている。
 ここで、「所定のイベントの発生時を条件として、第4データ記憶部264に格納した、所定のイベントが発生した時点のデータを含む所定回数(ポイント)分のデータ」は、第4データ記憶部264において、所定イベントの発生時点のデータが最新の格納位置のデータ(最新のデータ)とされていてもよいし、所定イベントの発生時点のデータが最も古い格納位置のデータ(最も古いデータ)とされていてもよく、また、所定イベントの発生時点のデータが最新の格納位置と最も古い格納位置との間の格納位置のデータ(最新のデータと最も古いデータとの間のデータ)とされていてもよい。なお、第2データ格納制御部243dは、所定イベントの発生時点のデータを、最も古い格納位置のデータ、又は、最新の格納位置と最も古い格納位置との間の格納位置のデータとする場合には、所定のイベントが発生した後も、必要な回数(ポイント)分のデータを第4データ記憶部264に格納させる。
 また、「所定のイベントが発生した時点のデータ」の格納位置は、設定変更可能とされていてもよい。この場合、「所定のイベントが発生した時点のデータ」の格納位置は、遠隔監視端末装置200で設定変更するようにしてもよいし、遠隔監視装置130で設定変更するようにしてもよい。また、遠隔監視端末装置200は、遠隔監視装置130からの「所定のイベントが発生した時点のデータ」の格納位置の設定値変更に対する指示の許可を行うことができるようになっていてもよい。
 また、「イベント情報」は、所定周期毎の農業機械110の位置情報(具体的には経度、緯度)及び日時(具体的には国際標準の西暦、年、月、日、時、分、秒)、所定周期毎の所定周期TA毎の二値情報(具体的には接点情報及びエラー有無情報)、所定周期毎の検出値情報(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速、エラーコード、基板温度、バッテリー電圧など)、所定周期毎の積算情報、所定周期毎のエラー情報とされている。なお、位置情報は、農業機械110の速度や方位を含んでいてもよい。
 すなわち、第1データ記憶部261には、所定周期TA毎の瞬時データとして、位置情報及び日時、二値情報(具体的には接点情報及びエラー有無情報)、検出値情報(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速、エラーコード、基板温度、バッテリー電圧など)、積算情報及びエラー情報が格納される。
 また、「予め定めた所定周期TA」は、稼動情報送信機能で説明した所定周期TAと同じであり、ここでは説明を省略する。
 また、「所定のイベントの発生」は、稼動情報送信機能で説明したイベントの発生と同じであり、ここでは説明を省略する。
 そして、イベント情報送信制御部243は、イベント検出部243cによる所定のイベントの検出によって、検出した所定のイベントを示す情報と、第4データ記憶部264が格納している所定回数(ポイント)分の全てのデータとを通信部210から遠隔監視装置130へ送信するデータ送信部243eを含む動作部としても機能する構成とされている。
 なお、第4データ記憶部264には、起動スイッチSWのオン・オフ操作を1オン・オフ操作回数として過去の予め定めたオン・オフ操作回数分(例えば4オン・オフ操作回数分)のイベント情報が保持される。
 (イベント情報送信制御部による動作例)
 次に、イベント情報送信制御部243による動作例について図14及び図15を参照しながら以下に説明する。図14及び図15は、それぞれ、イベント情報送信制御部243による動作例の前半部分及び後半部分を示すフローチャートである。なお、本実施の形態では、第1データ記憶部261は、既述したように、記憶領域が直列的に並んだバッファの両端を論理的に繋げてリング状に扱うことでデータを格納するリングバッファとして使用される。
 図14に示すフローチャートでは、起動スイッチSWのオン操作を受け付けると(ステップSc1:Yes)、リングバッファとして使用される第1データ記憶部261をオールクリアする(ステップSc2)。
 次に、出力要素Q,…で農業機械110の稼動情報を検出し(ステップSc3)、所定周期TA(ここでは0.1秒)のタイミングか否かを判断し(ステップSc4)、所定周期TAのタイミングでない場合には(ステップSc4:No)、ステップSc3に移行する。一方、ステップSc4で所定周期TAのタイミングである場合には(ステップSc4:Yes)、GPSセンサ231及び位置検出部232(図3参照)により農業機械110の位置情報及び日時を取得して第1データ記憶部261に格納し(ステップSc5)、出力要素Q,…から二値情報、検出値情報、積算情報及びエラー情報を取得して第1データ記憶部261に格納する(ステップSc6)。
 次に、所定のイベントが発生したか否かを判断し(ステップSc7)、所定のイベントが発生していない場合には(ステップSc7:No)、ステップSc3へ移行する。一方、ステップSc7で所定のイベントが発生した場合には(ステップSc7:Yes)、図15に示すように、第1データ記憶部261から所定数回分(例えば600回分)の位置情報、日時、二値情報、検出値情報、積算情報及びエラー情報を取得し(ステップSc8)、取得した所定数回分の位置情報、日時、二値情報、検出値情報、積算情報及びエラー情報を第4データ記憶部264に格納し(ステップSc9)、第4データ記憶部264が格納している所定数回分の位置情報、日時、二値情報、検出値情報、積算情報及びエラー情報を所定のイベントを示す情報と共に遠隔監視装置130に送信する(ステップSc10)。
 次に、起動スイッチSWのオフ操作を受け付けたか否かを判断し(ステップSc11)、オフ操作を受け付けていない場合には(ステップSc11:No)、図14に示すステップSc3に移行する。一方、ステップSc11でオフ操作を受け付けた場合には(ステップSc11:Yes)、処理を終了する。
 以上説明したイベント情報送信機能によれば、所定のイベントの発生時を条件として、所定のイベントが発生した時点のデータを含む所定回数(ポイント)分のデータといった、所定のイベントが発生した農業機械110の稼動状態を利用者に精度良く把握させるために必要なデータを遠隔監視装置130へ送信することができる。従って、農業機械110において所定のイベントが発生した場合に所定のイベントが発生した農業機械110の稼動状態を利用者に精度良く把握させることが可能となる。例えば、所定のイベントの発生時が農業機械110の異常を検知した時である場合には、農業機械110の異常検知時での稼動状態を利用者に精度良く把握させることが可能となる。また、所定のイベントの発生時が農業機械110の予め定めた所定の動作を指示する操作スイッチ(具体的には走行操作スイッチ、刈り取り操作スイッチ、脱穀操作スイッチ)によるオン操作又はオフ操作を受け付けた時である場合には、農業機械110の操作スイッチによるオン操作又はオフ操作の受け付け時での稼動状態を利用者に精度良く把握させることが可能となる。これにより、所定のイベント(特に異常等の不都合)が発生したことを即時通知することができ、従って、該所定のイベント(特に異常等の不都合)に対して迅速な対応を行うことができる。また、所定のイベントの発生前、発生後或いは発生前後での農業機械110の稼動状態を詳細に解析でき、これにより、原因究明に有効に寄与することができる。
 なお、送信部243cは、所定のイベントの発生時を条件として、所定のイベントを示す情報と、第1データ記憶部261が格納している所定回数(ポイント)分のデータのうち何れか1回分のデータ(例えばイベントの発生時点のデータ)とを遠隔監視装置130に送信し、この1回(ポイント)分のデータにより、遠隔監視装置130から、第1データ記憶部261が格納している所定回数(ポイント)分のデータの送信要求があれば、第1データ記憶部261が格納している所定回数(ポイント)分の全てデータを前記遠隔監視装置に送信するようにしてもよい。
 図16は、図14及び図15に示すイベント情報送信制御部243による動作の他の例を示すフローチャートである。
 図16に示すフローチャートは、図15に示すイベント情報送信制御部243による動作の一例において、ステップSc8の前に、ステップSc71~ステップSc74を設けたフローチャートである。
 図16に示すフローチャートでは、図14に示すステップSc7で所定のイベントが発生した場合には(ステップSc7:Yes)、第1データ記憶部261から所定数回分(ここでは600回分)のうち何れか1回分(例えば所定のイベントが発生した時点)の位置情報、日時、二値情報、検出値情報、積算情報及びエラー情報を取得し(ステップSc71)、取得した1回分の位置情報、日時、二値情報、検出値情報、積算情報及びエラー情報を所定のイベントを示す情報と共に遠隔監視装置130に送信する(ステップSc72)。
 次に、遠隔監視装置130から所定回数(ポイント)分のデータの送信要求があるか否かを判断し(ステップSc73)、送信要求がなく(ステップSc73:No)、予め定めた所定時間経過した場合には(ステップSc74:Yes)、ステップSc11へ移行する。一方、所定時間内に(ステップSc74:No)送信要求があれば(ステップSc73:Yes)、図15に示すステップSc8以降の処理と同じ処理を行う。
 図16に示すイベント情報送信制御部243による動作例では、第1データ記憶部261における所定回数(ポイント)分のデータのうちの1回(ポイント)分のデータにより、遠隔監視装置130側で必要に応じて第1データ記憶部261が格納している所定回数(ポイント)分の全てのデータを遠隔監視装置130に送信することができる。
 [トレンド情報送信機能]
 図17は、制御部240におけるトレンド情報送信制御部246によるトレンド情報送信機能の動作過程を模式的に示す動作図である。なお、図17において、GPSセンサ231、位置検出部232及び位置情報記憶部233は図示を省略している。
 制御部240は、イベント情報を第1データ記憶部261に一時的に格納するデータ記憶制御部244と、遠隔監視装置130からの要求時(図17のα4参照)に、第2データ記憶部262が格納している全てのサンプリングデータを遠隔監視装置130に送信するサンプリングデータ記憶制御部245とを含むトレンド情報送信制御部246を備えている。
 詳しくは、データ記憶制御部244は、接続端子T,…を介して入力された農業機械110の稼動状態に関するデータ(図4及び図6参照)を予め定めた所定周期TA(例えば0.1秒)毎に取得する第1データ取得部244aと、第1データ取得部244aにて取得した所定周期毎のデータを最新分から直近の予め定めた所定回数(ポイント)分(例えば600回)だけ第1データ記憶部(具体的にはリングバッファ)261に一時的に格納させる第1データ格納制御部244bとを含む動作部として機能する構成とされている。
 サンプリングデータ記憶制御部245は、第1データ記憶部261が格納している所定回数分(例えば600回(ポイント))のデータから所定周期TA(例えば0.1秒)に対する2以上の整数倍(例えば600倍)のサンプリング周期TC(例えば1分)毎のサンプリングデータ(具体的には位置情報、日時、二値情報、検出値情報、積算情報、エラー情報)を取得する第2データ取得部245aと、第2データ取得部245aにて取得したサンプリングデータのうち平均値の演算対象となるサンプリングデータの平均値(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速などの検出値情報の平均値)を演算するデータ演算部245bと、第2データ取得部245aにて取得したサンプリングデータ(具体的には二値情報、検出値情報、積算情報、エラー情報)及びデータ演算部245bにて演算したサンプリングデータの平均値(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速などの検出値情報の平均値)を第2データ記憶部262に一時的に格納させる第2データ格納制御部245cとを含む動作部として機能する構成とされている。
 ここで、「トレンド情報」は、サンプリング周期TC毎の農業機械110の位置情報(具体的には経度、緯度)及び日時(具体的には国際標準の西暦、年、月、日、時、分、秒)、サンプリング周期TC毎の二値情報、検出値情報、検出値情報の平均値、積算情報、エラー情報とされている。なお、位置情報は、農業機械110の速度や方位を含んでいてもよい。
 また、「予め定めた所定周期TA」は、稼動情報送信機能で説明した所定周期TAと同じであり、ここでは説明を省略する。
 また、トレンド情報送信制御部246によるサンプリングデータ(具体的には検出値情報)の平均値の算出は、例えば、次のようにして行うことができる。
 なお、図17に示す要求検出部245d及びデータ送信部245eについては、後述する。
 図18は、トレンド情報送信制御部246によって平均値を算出する算出例を説明するための説明図である。
 図18に示すトレンド情報送信制御部246による算出例では、データ記憶制御部244において、データ取得部244aは、農業機械110の起動スイッチSWのオン操作時から所定周期TA(例えば0.1秒)でデータDT(1)~DT(n)(nは2以上の整数)を第1データ格納制御部244bにより第1データ記憶部261に一時的に格納していく。このとき、第1データ記憶部261には、出力要素(Qa,…),(Qe,…)で検知した所定周期毎の二値情報(具体的には接点情報及びエラー有無情報)、出力要素(Qb,…),(Qf,…)で検知した所定周期毎の検出値情報(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速、エラーコード、基板温度、バッテリー電圧など))が第1データ格納制御部244bにより格納される。また、第1データ記憶部261には、出力要素(Qc,…)で検知した所定周期毎の積算情報(積算時間)、出力要素(Qd,…)で検知した所定周期毎のエラー情報も第1データ格納制御部244bにより格納される。
 次に、サンプリングデータ記憶制御部245において、データ演算部245bは、第2データ取得部245aで第1データ記憶部261から取得した個々のデータDT(1)~DT(n)(nは2以上の整数)の所定周期TA(例えば0.1秒)に対する2以上の整数倍m(例えばm=10倍)の平均化周期TB(例えばTA×m=0.1秒×10=1秒)毎のサンプリングデータDTA(1)(=DT(1)),DTA(2)(=DT(11)),DTA(3)(=DT(21)),…,DTA(i)(=DT(n-9))(i=n/m)のうち、最新の所定個数分j(例えばj=60)を第2データ格納制御部245cにより中間記憶部(具体的にはリングバッファ)261aに一時的に格納していく。
 次に、データ演算部245bは、個々のサンプリングデータDTA(1)~DTA(i)の平均化周期TBに対する2以上の整数倍j(例えばj=60)のサンプリング周期TC(例えばTB×j=1秒×60=1分)毎の総和TLA(1)(=DTA(1)+…+DTA(j)),…,TLA(k)(=DTA(i-(j-1))+…+DTA(i))(k=i/j)をそれぞれ整数倍j(例えばj=60)で割った値(TLA(1)/j,…,TLA(k)/j)を1分平均値AVA(1),…,AVA(k)とし、こうして得られた1分平均値AVA(1),…,AVA(k)を第2データ格納制御部245cによりサンプリング周期TC毎に第2データ記憶部262に一時的に格納していく。
 なお、サンプリングデータ記憶制御部245は、1分平均値の第2データ記憶部262へのサンプリング周期TC毎の平均値格納動作と、瞬時データの検出値情報の第2データ記憶部262へのサンプリング周期TC毎の瞬時データ格納動作とを選択的に切り替える構成とされていてもよい。
 また、第2データ記憶部262には、サンプリング周期TC毎の瞬時データとして、二値情報(具体的には接点情報及びエラー有無情報)、検出値情報(具体的には単位時間当たりのエンジン112の回転数、エンジン負荷率、車速、エラーコード、基板温度、バッテリー電圧など)、積算情報及びエラー情報が第2データ格納制御部245cにより格納される。
 そして、サンプリングデータ記憶制御部245は、遠隔監視装置130からの要求を検出する要求検出部245dと、要求検出部245dにて遠隔監視装置130から要求を受けた時、及び、作業が終了した時(具体的には起動スイッチSWのオフ操作を受け付けた時)のうち少なくとも一方の時(ここでは双方の時)に、第2データ記憶部262が格納しているサンプリングデータを通信部210から遠隔監視装置130へ送信するデータ送信部245eとを含む動作部としても機能する構成とされている。
 ここで、第2データ記憶部262に格納されるサンプリング周期TC(具体的には1分)毎のデータの容量は、予め定めた所定回数(ポイント)(具体的には720回(ポイント))分の容量とされている。
 また、第2データ記憶部262には、起動スイッチSWのオン・オフ操作を1オン・オフ操作回数として過去の予め定めたオン・オフ操作回数分(例えば1オン・オフ操作回数分)のトレンド情報が保持される。
 また、平均化周期TB及びサンプリング周期TC並びに平均値格納動作と瞬時データ格納動作との切り替え設定は、設定変更可能とされていてもよい。この場合、平均化周期TB及びサンプリング周期TC並びに平均値格納動作と瞬時データ格納動作との切り替え設定は、遠隔監視端末装置200で設定変更するようにしてもよいし、遠隔監視装置130で設定変更するようにしてもよい。また、遠隔監視端末装置200は、遠隔監視装置130からの平均化周期TB及びサンプリング周期TC並びに平均値格納動作と瞬時データ格納動作との切り替え設定の設定値変更に対する指示の許可を行うことができるようになっていてもよい。
 本実施の形態では、データ送信部245eは、第1データ記憶部261へのデータの格納回数が所定回数(例えば記憶容量の限界に相当する回数)に到達したときに、第1データ記憶部261が格納している所定回数(ポイント)分の全てのデータを通信部210から遠隔監視装置130へ送信し、格納回数を初期化する(具体的には格納回数を0にする)。
 (トレンド情報送信制御部による動作例)
 次に、トレンド情報送信制御部246による動作例について図19及び図20を参照しながら以下に説明する。図19及び図20は、それぞれ、トレンド情報送信制御部246による動作例の前半部分及び後半部分を示すフローチャートである。なお、本実施の形態では、第1データ記憶部261は、既述したとおり、記憶領域が直列的に並んだバッファの両端を論理的に繋げてリング状に扱うことでデータを格納するリングバッファとして使用される。
 図19に示すフローチャートでは、起動スイッチSWのオン操作を受け付けると(ステップSd1:Yes)、第1データ記憶部261へのデータの格納回数を0にして、リングバッファとして使用される第1データ記憶部261をオールクリアする(ステップSd2)。
 次に、出力要素Q,…で農業機械110の稼動情報を検出し(ステップSd3)、所定周期TA(ここでは0.1秒)のタイミングか否かを判断し(ステップSd4)、所定周期TAのタイミングでない場合には(ステップSd4:No)、ステップSd3に移行する。一方、ステップSd4で所定周期TAのタイミングである場合には(ステップSd4:Yes)、GPSセンサ231及び位置検出部232(図3参照)により農業機械110の位置情報及び日時を取得して第1データ記憶部261に格納し(ステップSd5)、出力要素Q,…から二値情報、検出値情報、積算情報及びエラー情報を取得して第1データ記憶部261に格納する(ステップSd6)。このとき格納回数に1を加算する。
 次に、サンプリング周期TC(ここでは1分)のタイミングか否かを判断し(ステップSd7)、サンプリング周期TCのタイミングでない場合には(ステップSd7:No)、ステップSd3に移行する。一方、ステップSd7でサンプリング周期TCのタイミングである場合には(ステップSd7:Yes)、第1データ記憶部261が格納している所定回数(ポイント)分(ここでは600回(ポイント))のデータからサンプリング周期TC毎の二値情報、検出値情報、積算情報及びエラー情報(サンプリングデータ)を取得し(ステップSd8)、検出値情報の平均値(サンプリングデータの平均値)を算出し(ステップSd9)、取得したサンプリングデータ及び算出したサンプリングデータの平均値を第2データ記憶部262に格納する(ステップSd10)。
 次に、図20に示すように、遠隔監視装置130から要求を受けたか否かを判断し(ステップSd11)、遠隔監視装置130から要求を受けた場合には(ステップSd11:Yes)、第2データ記憶部262が格納しているサンプリングデータ及びサンプリングデータの平均値を全て遠隔監視装置130に送信する(ステップSd12)。
 そして、起動スイッチSWがオフ操作されたか否かを判断し(ステップSd13)、オフ操作されていない場合には(ステップSd13:No)、図19に示すステップSd2に移行する。また、ステップSd13でオフ操作された場合には(ステップSd13:Yes)、第2データ記憶部262が格納しているサンプリングデータ及びサンプリングデータの平均値を全て遠隔監視装置130に送信し(ステップSd14)、処理を終了する。
 一方、ステップSd11で遠隔監視装置130から要求を受けていない場合には(ステップSd11:No)、第1データ記憶部261へのデータの格納回数が所定回数(ここでは記憶容量の限界に相当する回数)に到達したか否かを判断し(ステップSd14)、第1データ記憶部261へのデータの格納回数が所定回数に到達していない場合には(ステップSd14:No)、そのままステップSd13に移行する。一方、ステップSd14で第1データ記憶部261へのデータの格納回数が所定回数に到達した場合には(ステップSd14:Yes)、第1データ記憶部261へのデータの格納回数を0にして、第1データ記憶部261が格納している所定回数(ポイント)分の全てのデータを遠隔監視装置130に送信し(ステップSd15)、ステップSd13に移行する。
 なお、図19及び図20のフローチャートにおいて、図20のステップSd14,Sd15の処理を除去し、図19のステップSd6とステップSd7との間にステップSd14,Sd15の処理を設けてもよい。
 以上説明したトレンド情報送信機能によれば、遠隔監視装置130から要求を受けた時、及び/又は、作業が終了した時(具体的には起動スイッチSWのオフ操作を受け付けた時)に、第2データ記憶部262の記憶容量を抑えつつ、所定周期TA毎のデータからサンプリング周期TC毎に大まかに取得したサンプリングデータといった、農業機械110の全稼動期間を通じた稼動状態に関するデータをより多く第2データ記憶部262に格納して遠隔監視装置130へ送信することができる。ここで、本実施の形態では、第2データ記憶部262に格納されるサンプリング周期TC(具体的には1分)毎のデータの容量は、所定回数(ポイント)(具体的には720回(ポイント))分の容量(12時間(=720分)分の容量)とされており、よって、通常は、起動スイッチSWが12時間を超えて連続してオン状態となることは少ないために、実質的には、第2データ記憶部262には、農業機械110の全稼動期間を通じた稼動状態に関するデータを格納して遠隔監視装置130へ送信することができる。
 従って、農業機械110の全稼動期間を通じた稼動状態(例えば異常等の不都合)を利用者に把握させやすくすることが可能となる。また、農業機械110の初期安定管理、モニタや試験等に好適に利用することができる。
 しかも、第1データ記憶部261へのデータの格納回数が所定回数に到達したときに、第1データ記憶部261が格納している所定回数(ポイント)分の全てのデータを遠隔監視装置130へ送信することで、遠隔監視装置130から要求を受けたか否かに拘わらず、格納回数が所定回数に到達したときに、第1データ記憶部261における所定回数(ポイント)分の全てのデータを遠隔監視装置130へ送信することができる。従って、第1データ記憶部261の記憶容量を所定回数(ポイント)分に抑えつつ、農業機械110の全稼動期間を通じた稼動状態に関するデータを全て遠隔監視装置130へ送信することができ、これにより、農業機械110の全稼動期間を通じた稼動状態を利用者に確実に把握させることが可能となる。
 [位置情報送信機能]
 図21は、制御部240における位置情報送信制御部247による位置情報送信機能の動作過程を模式的に示す動作図である。
 制御部240は、農業機械110の起動スイッチSWのオフ操作(図21のα5参照)を受け付けたときに、位置情報(具体的には経度、緯度)及び日時(具体的には国際標準の西暦、年、月、日、時、分、秒)を位置情報記憶部233に格納し、起動スイッチSWのオフのときに格納した位置情報と、起動スイッチSWのオフの期間に検出した位置情報とが異なる場合に、検出した位置情報及び日時を遠隔監視装置130に送信する位置情報送信制御部247を備えている。
 詳しくは、位置情報送信制御部247は、農業機械110の起動スイッチSWのオフ操作を受け付けるオフ操作受付部247aと、オフ操作受付部247aにて受け付けたときに、GPSセンサ231及び位置検出部232により位置情報及び日時を検出して取得するデータ取得部247bと、データ取得部247bにて取得した位置情報及び日時を位置情報記憶部233に一時的に格納させるデータ格納制御部247cと、起動スイッチSWのオフの期間には、予め定めた所定周期TD(例えば30分)毎にGPSセンサ231及び位置検出部232にて位置情報及び日時を検出するデータ検出部247dとを含む動作部として機能する構成とされている。
 位置情報記憶部233(図6参照)には、農業機械110の起動スイッチSWのオフ操作を受け付けたときの位置情報(緯度、経度)及び日時(具体的には国際標準の西暦、年、月、日、時、分、秒)がデータ格納制御部247cにより格納される。ここで、位置情報は、農業機械110の速度や方位を含んでいてもよい。
 詳しくは、データ検出部247dは、起動スイッチSWのオフの期間に、電源制御部220により所定周期TD(例えば30分)毎に電源がオンされて農業機械110の位置情報及び日時を検出する。
 そして、起動情報送信制御部241は、位置情報記憶部233が格納している(起動スイッチSWのオフ時に格納した)位置情報と、データ検出部247dにより所定周期TD(例えば30分)毎に検出した位置情報とが異なる場合に、GPSセンサ及び位置検出部232で検出した位置情報及び日時を通信部210から遠隔監視装置130へ送信するデータ送信部247eを含む動作部としても機能する構成とされている。
 ここで、所定周期TDは、設定変更可能とされていてもよい。この場合、所定周期TDは、遠隔監視端末装置200で設定変更するようにしてもよいし、遠隔監視装置130で設定変更するようにしてもよい。また、遠隔監視端末装置200は、遠隔監視装置130からの所定周期TDの設定値変更に対する指示の許可を行うことができるようになっていてもよい。
 ここで、制御部240は、起動スイッチSWのオフ操作がなされても、電源制御部220により電源がオフされることはなく、データ格納制御部247cにて位置情報及び日時を位置情報記憶部233に格納した後に、電源制御部220により電源がオフされるようになっている。
 (位置情報送信制御部による動作例)
 次に、位置情報送信制御部247による動作例について図22を参照しながら以下に説明する。図22は、位置情報送信制御部247による動作例を示すフローチャートである。
 図22に示すフローチャートでは、起動スイッチSWのオフ操作を受け付けると(ステップSe1)、GPSセンサ231及び位置検出部232により農業機械110の位置情報及び日時を検出して取得し(ステップSe2)、取得した位置情報及び日時を位置情報記憶部233に格納し(ステップSe3)、電源制御部220により電源をオフする(ステップSe4)。
 次に、所定周期TD(ここでは30分)のタイミングか否かを判断し(ステップSe5)、所定周期TDのタイミングになるまで待機する(ステップSe5:No)。一方、ステップSe5で所定周期TDのタイミングである場合には(ステップSe5:Yes)、電源制御部220によるオフ制御を解除して電源をオンし(ステップSe6)、GPSセンサ231及び位置検出部232により農業機械110の位置情報及び日時を検出して取得する(ステップSe7)。
 次に、位置情報記憶部233が格納している位置情報が検出した位置情報と異なるか否かを判断し(ステップSe8)、位置情報記憶部233が格納している位置情報が検出した位置情報と同じ場合には(ステップSe8:No)、ステップSe5に移行する。一方、ステップSe8で位置情報記憶部233が格納している位置情報が検出した位置情報と異なる場合には(ステップSe8:Yes)、検出した位置情報及び日時を遠隔監視装置130に送信し(ステップSe9)、電源制御部220によるオフ制御を戻して電源をオフする(ステップSe10)。
 次に、起動スイッチSWのオン操作を受け付けたか否かを判断し(ステップSe11)、オン操作を受け付けていない場合には(ステップSe11:No)、ステップSe5に移行する。一方、ステップSe11でオン操作を受け付けた場合には(ステップSe11:Yes)、処理を終了する。
 以上説明した位置情報送信機能によれば、農業機械110の起動スイッチSWのオフ操作を受け付けたときに、GPSセンサ231で位置情報及び日時を検出して位置情報記憶部233に格納し、起動スイッチSWのオフの期間には、所定周期TD毎に定期的に電源を起動してGPSセンサ231で位置情報及び日時を検出し、位置情報記憶部233が格納している位置情報と所定周期TD毎に定期的に検出した位置情報とが異なる場合に、GPSセンサ231で検出した位置情報及び日時を遠隔監視装置130に送信することで、バッテリーの消費電力を抑えながら農業機械110の位置情報を監視でき、起動スイッチSWをオフした時点の位置から前記走行作業機械又は前記船舶が移動させられたか否かを利用者に把握させることが可能となる。これにより、起動スイッチSWをオフした時点の位置から、盗難等により農業機械110が移動させられた場合に対応させることが可能となる。
 (他の実施の形態について)
 本実施の形態に係る遠隔監視端末装置200は、コンバイン、耕耘機や田植機等の走行作業機械に適用したが、それに限定されるものではなく、トラクター、ショベルカー、ホイルローダやキャリヤ等の建設作業機械といった走行作業機や、プレジャーボート、漁船といった船舶にも好適に適用することができる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 なお、この出願は、日本で2011年10月12日に出願された特願2011-225241号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。
100  遠隔監視システム
110  農業機械(走行作業機械の一例)
120  遠隔監視センター
130  遠隔監視装置
140  通信網
200  遠隔監視端末装置
210  通信部
220  電源制御部
231  GPSセンサ(位置センサの一例)
232  位置検出部
233  位置情報記憶部
240  制御部
241  起動情報送信制御部
242  稼動情報送信制御部(データ要約制御部の一例)
243  イベント情報送信制御部(データ記憶制御部の一例)
244  データ記憶制御部
245  サンプリングデータ記憶制御部
246  トレンド情報送信制御部
247  位置情報送信制御部
250  処理部
260  記憶部(データ記憶部の一例)
261  第1データ記憶部
262  第2データ記憶部
263  第3データ記憶部
264  第4データ記憶部
BT   バッテリー
SW   起動スイッチ
T,…  接続端子
TA   所定周期
TB   平均化周期
TC   サンプリング周期
TD   所定周期

Claims (4)

  1.  走行作業機械又は船舶に備えられ、遠隔監視装置との間で通信を行うことにより前記遠隔監視装置で遠隔監視される走行作業機械又は船舶の遠隔監視端末装置であって、
     前記走行作業機械又は前記船舶の稼動状態に関するデータが入力される複数の接続端子と、
     前記接続端子を介して入力された前記データを予め定めた所定周期毎に最新分から直近の予め定めた所定回数分だけデータ記憶部に一時的に格納するデータ記憶制御部と、
     前記遠隔監視装置と通信する通信部と
     を備え、
     前記データ記憶制御部は、前記走行作業機械又は前記船舶における予め定めた所定のイベントの発生時を条件として、前記所定のイベントが発生した時点のデータを含む前記所定回数分のデータを前記データ記憶部に格納し、前記所定のイベントを示す情報と、前記データ記憶部が格納している前記所定回数分のデータとを前記通信部から前記遠隔監視装置へ送信する構成とされていることを特徴とする走行作業機械又は船舶の遠隔監視端末装置。
  2.  請求項1に記載の走行作業機械又は船舶の遠隔監視端末装置であって、
     前記データ記憶制御部は、前記所定のイベントの発生時を条件として、前記所定のイベントを示す情報と、前記データ記憶部が格納している前記所定回数分のデータのうち何れか1回分のデータとを前記遠隔監視装置に送信し、前記遠隔監視装置から前記所定回数分のデータの送信要求があれば、前記所定回数分のデータを前記通信部から前記遠隔監視装置へ送信することを特徴とする走行作業機械又は船舶の遠隔監視端末装置。
  3.  請求項1又は請求項2に記載の走行作業機械又は船舶の遠隔監視端末装置であって、
     前記所定のイベントの発生時は、前記走行作業機械又は前記船舶の異常を検知した時であることを特徴とする走行作業機械又は船舶の遠隔監視端末装置。
  4.  請求項1又は請求項2に記載の走行作業機械又は船舶の遠隔監視端末装置であって、
     前記所定のイベントの発生時は、前記走行作業機械又は前記船舶の予め定めた所定の動作を指示する操作部材によるオン操作又はオフ操作を受け付けた時であることを特徴とする走行作業機械又は船舶の遠隔監視端末装置。
PCT/JP2012/075603 2011-10-12 2012-10-03 走行作業機械又は船舶の遠隔監視端末装置 WO2013054707A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280050139.6A CN103917932B (zh) 2011-10-12 2012-10-03 行驶作业机械或者船舶的远程监视终端装置
KR1020147012691A KR101982369B1 (ko) 2011-10-12 2012-10-03 주행 작업 기계 또는 선박의 원격 감시 단말 장치
EP12840351.6A EP2749978B1 (en) 2011-10-12 2012-10-03 Remote monitoring terminal device for mobile work vehicle or vessel
US14/350,629 US9336631B2 (en) 2011-10-12 2012-10-03 Remote monitoring terminal device for mobile work vehicle or vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-225241 2011-10-12
JP2011225241A JP6059425B2 (ja) 2011-10-12 2011-10-12 走行作業機械又は船舶の遠隔監視端末装置

Publications (1)

Publication Number Publication Date
WO2013054707A1 true WO2013054707A1 (ja) 2013-04-18

Family

ID=48081764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075603 WO2013054707A1 (ja) 2011-10-12 2012-10-03 走行作業機械又は船舶の遠隔監視端末装置

Country Status (6)

Country Link
US (1) US9336631B2 (ja)
EP (1) EP2749978B1 (ja)
JP (1) JP6059425B2 (ja)
KR (1) KR101982369B1 (ja)
CN (1) CN103917932B (ja)
WO (1) WO2013054707A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2842813A1 (de) * 2013-08-30 2015-03-04 CLAAS Tractor SAS Landwirtschaftliches fahrzeug
WO2015099972A1 (en) * 2013-12-24 2015-07-02 Dresser, Inc. System and method for identifying data useful for valve diagnostics
CN105242659A (zh) * 2014-06-05 2016-01-13 北车大连电力牵引研发中心有限公司 机车运行数据记录方法、tcu终端和系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648962B2 (ja) * 2014-10-07 2020-02-19 ヤンマー株式会社 遠隔サーバ
JP6773709B2 (ja) 2018-03-26 2020-10-21 ファナック株式会社 収集装置、収集方法及び収集プログラム
JP7433030B2 (ja) * 2019-12-04 2024-02-19 アズビル株式会社 データ取得装置及びデータ取得方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011256B2 (ja) 1993-05-25 2000-02-21 日立建機株式会社 移動作業機械の管理システム
JP2007228373A (ja) * 2006-02-24 2007-09-06 Yanmar Co Ltd 冷凍コンテナの遠隔監視システム
JP2011176416A (ja) * 2010-02-23 2011-09-08 Yanmar Co Ltd 遠隔監視端末装置及び移動体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475597A (en) 1993-02-24 1995-12-12 Amsc Subsidiary Corporation System for mapping occurrences of predetermined conditions in a transport route
US5808907A (en) * 1996-12-05 1998-09-15 Caterpillar Inc. Method for providing information relating to a mobile machine to a user
JP3366837B2 (ja) * 1997-08-15 2003-01-14 株式会社小松製作所 機械の異常監視装置および方法
FR2819084A1 (fr) * 2000-12-29 2002-07-05 Sagem Dispositif embarque d'enregistrement de parametres de bord pour vehicule comprenant un emetteur
US20020116107A1 (en) * 2001-02-07 2002-08-22 Deere & Company Method of monitoring equipment of an agricultural machine
JP2003119831A (ja) * 2001-10-18 2003-04-23 Komatsu Ltd メンテナンス計画作成システム、メンテナンス計画作成方法、およびこの方法をコンピュータに実行させるプログラム
US20050267713A1 (en) * 2004-05-27 2005-12-01 Caterpillar Inc. Data acquisition system for generating operator-indexed information
WO2007022154A2 (en) 2005-08-15 2007-02-22 Report On Board Llc Driver activity and vehicle operation logging and reporting
US20070100760A1 (en) * 2005-10-31 2007-05-03 Caterpillar Inc. System and method for selling work machine projects
US7690569B2 (en) 2006-05-16 2010-04-06 Datafleet, Inc. Wireless data logging system and method
JP2008144435A (ja) * 2006-12-08 2008-06-26 Shin Caterpillar Mitsubishi Ltd 作業機械管理システム
JP2010014498A (ja) * 2008-07-02 2010-01-21 Toyota Motor Corp 車両用故障解析サーバ、車両用故障解析システム、規則情報記憶方法
CN201623999U (zh) * 2010-03-11 2010-11-10 洛阳文景机电科技有限公司 联合收割机车况无线远程监控及洒粮报警系统
CN201812174U (zh) * 2010-04-28 2011-04-27 西北农林科技大学 农业机械远程实时监控系统
JP5925462B2 (ja) * 2011-10-12 2016-05-25 ヤンマー株式会社 走行作業機械又は船舶の遠隔監視端末装置
JP5872238B2 (ja) * 2011-10-12 2016-03-01 ヤンマー株式会社 走行作業機械又は船舶の遠隔監視端末装置
JP5781426B2 (ja) * 2011-12-02 2015-09-24 ヤンマー株式会社 走行作業機械又は船舶の遠隔監視端末装置
JP5902930B2 (ja) * 2011-12-02 2016-04-13 ヤンマー株式会社 遠隔監視システムの管理サーバ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011256B2 (ja) 1993-05-25 2000-02-21 日立建機株式会社 移動作業機械の管理システム
JP2007228373A (ja) * 2006-02-24 2007-09-06 Yanmar Co Ltd 冷凍コンテナの遠隔監視システム
JP2011176416A (ja) * 2010-02-23 2011-09-08 Yanmar Co Ltd 遠隔監視端末装置及び移動体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749978A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2842813A1 (de) * 2013-08-30 2015-03-04 CLAAS Tractor SAS Landwirtschaftliches fahrzeug
WO2015099972A1 (en) * 2013-12-24 2015-07-02 Dresser, Inc. System and method for identifying data useful for valve diagnostics
US9797811B2 (en) 2013-12-24 2017-10-24 Dresser, Inc. System and method for identifying data useful for valve diagnostics
US10883899B2 (en) 2013-12-24 2021-01-05 Dresser, Llc System and method for identifying data useful for valve diagnostics
CN105242659A (zh) * 2014-06-05 2016-01-13 北车大连电力牵引研发中心有限公司 机车运行数据记录方法、tcu终端和系统

Also Published As

Publication number Publication date
EP2749978A4 (en) 2014-12-24
CN103917932B (zh) 2016-08-24
US20140257625A1 (en) 2014-09-11
US9336631B2 (en) 2016-05-10
JP2013085195A (ja) 2013-05-09
EP2749978B1 (en) 2016-01-13
KR101982369B1 (ko) 2019-05-27
EP2749978A1 (en) 2014-07-02
JP6059425B2 (ja) 2017-01-11
KR20140072202A (ko) 2014-06-12
CN103917932A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5925462B2 (ja) 走行作業機械又は船舶の遠隔監視端末装置
JP5872238B2 (ja) 走行作業機械又は船舶の遠隔監視端末装置
JP5781426B2 (ja) 走行作業機械又は船舶の遠隔監視端末装置
KR101951512B1 (ko) 원격 감시 시스템의 관리 서버
WO2013054707A1 (ja) 走行作業機械又は船舶の遠隔監視端末装置
JP6302391B2 (ja) 遠隔サーバ
WO2013080711A1 (ja) 遠隔監視システムの管理サーバ
WO2013054768A1 (ja) 走行作業機械又は船舶の遠隔監視端末装置
WO2015133241A1 (ja) 遠隔サーバ
WO2013080709A1 (ja) 遠隔監視システムの管理サーバ
WO2016056324A1 (ja) 作業機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012840351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14350629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147012691

Country of ref document: KR

Kind code of ref document: A