WO2013054526A1 - コークスの製造方法 - Google Patents

コークスの製造方法 Download PDF

Info

Publication number
WO2013054526A1
WO2013054526A1 PCT/JP2012/006526 JP2012006526W WO2013054526A1 WO 2013054526 A1 WO2013054526 A1 WO 2013054526A1 JP 2012006526 W JP2012006526 W JP 2012006526W WO 2013054526 A1 WO2013054526 A1 WO 2013054526A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
coke
interfacial tension
blended
surface tension
Prior art date
Application number
PCT/JP2012/006526
Other languages
English (en)
French (fr)
Inventor
深田 喜代志
広行 角
下山 泉
孝思 庵屋敷
藤本 英和
山本 哲也
勇介 土肥
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to RU2014119377/05A priority Critical patent/RU2570875C1/ru
Priority to CN201280061737.3A priority patent/CN103987812B/zh
Priority to JP2013538441A priority patent/JP5505567B2/ja
Priority to EP12839478.0A priority patent/EP2767574B1/en
Priority to US14/351,745 priority patent/US9463980B2/en
Priority to IN818MUN2014 priority patent/IN2014MN00818A/en
Priority to EP20171300.5A priority patent/EP3722393A1/en
Priority to KR1020147009261A priority patent/KR101580855B1/ko
Publication of WO2013054526A1 publication Critical patent/WO2013054526A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders

Definitions

  • the present invention relates to a method for producing high strength blast furnace coke.
  • Blast furnace coke is used as a reducing material, heat source, and support material for maintaining air permeability in the blast furnace, and in recent years, it has been operated stably under a low reducing material ratio. In order to achieve this, the production of high-strength coke is directed.
  • coke strength estimation methods manufactured using blended coal (blended coal) as a raw material have been studied. It has been. For example, the following methods (a) to (c) are known.
  • (C) Coke strength estimation method using blending effect coefficient as an index Coal has different properties in the country of origin, coal mine, and coal seam, but when coke is produced by blending different types of coal, there is an interaction between the coals. Has been pointed out.
  • the coke strength when two types of coal are blended is estimated by the weighted average value of each physical property value.
  • the improvement effect that is, the blending effect is often not included.
  • the coke characteristics of a blended coal composed of multiple types of coal which is a method for estimating the blending effect, is a set of two types of combinations of each coal, and the weighted average of the coke characteristics and each single coal coke characteristic.
  • a method of creating a coke strength estimation formula using a deviation from the blending effect coefficient as known see, for example, Patent Document 2).
  • the blending effect coefficient can be obtained by actual measurement or estimation.
  • JP 2002-294250 A JP-A-9-255966
  • the above-described method has been proposed as a method for estimating coke strength for producing high-strength coke.
  • the vitrinite average maximum reflectance (Ro) ) And Gieseller Plastometer high coal (MF) high coal is required.
  • Ro vitrinite average maximum reflectance
  • MF Gieseller Plastometer high coal
  • the method (b) focuses on the fluidity and viscosity of coal, and is ultimately an index that improves the detection sensitivity of the maximum fluidity (MF). Problems arise. Further, the device itself is expensive and special, and lacks simplicity.
  • the method (c) it is possible to estimate the coke strength more accurately by using the blending effect coefficient.
  • the range of the conventional method is still used. It's not a way to get rid of, but it can't solve the cost problem.
  • the evaluation of coal particle interaction is not based on physical properties related to coal adhesion, the strength estimation accuracy is not sufficient, and the blending effect coefficient is obtained by actual measurement. Has the problem of lack of simplicity.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a coke production method capable of suppressing an increase in raw material cost of coal blend and simultaneously increasing coke strength. That is.
  • the features of the present invention for solving such problems are as follows. (1) In a method for producing coke in which two or more kinds of coal are blended to form a blended coal and carbonize the blended coal, the interfacial tension between the coals is determined to determine the blending ratio of the coal during the blending. A method for producing coke, which is used as an index. (2) Determination of the blending ratio of the coal derives the interfacial tension between the coals using the surface tension of each coal, and the interfacial tension of the blended coal in which two or more kinds of coal are blended in advance, and the coal blend is carbonized. And determining the blending ratio of coal so that the interfacial tension of the blended coal is within the range showing the desired coke strength (1).
  • a method for producing coke according to (1) A method for producing coke according to (1).
  • (3) The surface tension of the coke according to (2) is obtained by measuring the coal cooled in an inert atmosphere as a sample after heating to a softening and melting start temperature or higher and a coking temperature or lower. Production method.
  • (4) The method for producing coke according to (3) which is obtained by measuring the surface tension of the coal at 350 ° C. to 800 ° C. and then cooling the coal under an inert atmosphere as a sample.
  • the derivation of the interfacial tension between the coals comprises deriving the interfacial tension ⁇ inter from the following equation (1) using the surface tension of each coal: (2) to (4) Coke production method.
  • Deriving the interfacial tension between the coals includes deriving the interfacial tension ⁇ inter from the following equation (2) using the surface tension of each coal: (2) to (4) Coke production method. (7) The method for producing coke according to (5) or (6), wherein the blending ratio of coal is determined so that the interfacial tension ⁇ inter is 0.03 mN / m or less. (8) A blended coal in which the weighted average Ro of the blended coal is in the range of 0.90 to 1.30% and the weighted average log MF of the blended coal is in the range of 2.3 to 2.8 (7) A method for producing coke as described in 1. Here, Ro is an average maximum reflectance, and MF is a Gieseler maximum fluidity.
  • the coke strength is estimated in consideration of the adhesive strength due to the surface tension between coal particles, and the blending ratio of coal for each brand is determined using this estimation method. That is, the method of the present invention produces coke using an index different from the conventional one. Therefore, it has the following effects.
  • A) The estimation accuracy of the coke strength estimation formula is increased, and coke can be produced under blending conditions that cannot be recalled with conventional coal property parameters.
  • C Furthermore, since the method of the present invention can also be applied to non-slightly caking coal with low fluidity that is difficult to evaluate using a Gisela plastometer, the degree of freedom of blending raw coal can be further increased. .
  • Coal is softened and melted by dry distillation and fused together to produce coke. Therefore, it is considered that the adhesive strength between the coal particles has an influence on the coke strength.
  • the adhesion strength between coal particles improves as the interfacial tension at the adhesion interface decreases.
  • Interfacial tension can be considered as free energy existing at the interface, as can be seen from the fact that the unit is mN / m. Therefore, the presence of interfacial tension means that there is free energy that can act as a force at the interface. Therefore, a large interfacial tension leads to easy breakage at the adhesive interface.
  • the present invention considers that the interfacial tension has an influence on the bond strength between coal particles, and evaluates the bond strength between coal particles using the interfacial tension as an index, but it is difficult to measure the interfacial tension. Is a problem.
  • the method of estimating interfacial tension based on the surface tension of each brand coal shown below is adopted, and the blending ratio of coal is determined using the interfacial tension.
  • the conditions for measuring surface tension suitable for the purpose of coke strength estimation, the method for estimating the interfacial tension from the surface tension, and the degree of influence on the coke strength have yet to be elucidated. The inventors have studied these factors, found an effective method for estimating coke strength, and completed the present invention.
  • the interfacial tension can be derived from the surface tension of the substance to be bonded.
  • the interfacial tension between the substances A and B can be obtained from the surface tension of the substances A and B.
  • equation (3) can be used using the Gifalco-Good equation: Is required.
  • ⁇ A and ⁇ B are the surface tensions of the substances A and B
  • ⁇ AB is the interfacial tension between the substances AB
  • is the interaction coefficient.
  • can be obtained by experiment and is known to vary depending on the substances A and B.
  • Lee and Newman D. Li, A. W. Neumann et al. Assume that the value of ⁇ increases as the values of ⁇ A and ⁇ B increase, and the following equation (4) is extended from equation (3). Has proposed.
  • is a constant.
  • is a value derived from experiments, and Lee and Newman et al. calculated 0.0001247 (m 2 / mJ) 2 (see Non-Patent Document 1). Therefore, the interfacial tension between the coals A and B can be derived by measuring the surface tension of the coals A and B and substituting it into the equation (3) or (4).
  • the value of ⁇ must be obtained from an experiment. Therefore, it is desirable to use the equation (4) that estimates the value of ⁇ in the sense of simplifying the derivation of the interfacial tension.
  • the adhesive strength between coal particles in the coking process is influenced by the surface tension of the coal from the start of softening and melting until coking. Therefore, it is desirable to measure the surface tension of coal in the softened and melted state. However, it is difficult to measure the surface tension when coal is actually softened and melted.
  • the inventors examined the surface tension of a sample that was shut down at a cooling rate of 10 ° C / sec or higher after the air was shut off to a temperature at which the coal softened and melted, that is, the coal was heated in an inert atmosphere. It was found that the surface tension of soft and molten coal can be estimated by measuring.
  • the heating temperature of the coal is a temperature range from the idea that surface tension has an influence on the adhesion between coal particles, until the coal begins to soften and melt, adhere and solidify, and coking is completed. That is, it is appropriate to set the temperature range to 350 ° C. or higher at which softening and melting starts and up to 800 ° C. at which coking is completed.
  • the temperature particularly contributing to adhesion is the temperature at the time of softening and melting, but the softening and melting temperature range of coal used for coke production is 350 to 500 ° C.
  • the heating temperature is preferably 480 to 520 ° C., particularly around 500 ° C.
  • the surface tension of the heat-treated coal has a certain degree of correlation with the surface tension of the coal, the interfacial tension can be obtained using the surface tension of the coal.
  • the reason why the heated coal is rapidly cooled is to maintain the molecular structure in the softened and melted state, and it is preferable to rapidly cool at a cooling rate of 10 ° C./sec or more, which is considered to be unchanged.
  • Examples of the rapid cooling method include a method using an inert gas such as liquid nitrogen, ice water, water, and nitrogen gas. Gas cooling takes time to cool down to the inside of the sample, and distribution of the cooling rate occurs, and cooling with ice water or water affects the measurement of surface tension due to moisture adhesion, so liquid nitrogen is used. It is desirable to use and quench rapidly.
  • Methods for measuring surface tension include sessile drop method, capillary rise method, maximum bubble pressure method, liquid weight method, hanging drop method, ring ring method, plate (Wilhelmy) method, expansion / contraction method
  • a sliding method, a film floatation method, and the like are known.
  • Coal is composed of various molecular structures, and its surface tension is expected to be non-uniform, so use the film flotation method (see Non-Patent Document 2) that can be expected to evaluate the surface tension distribution. Is particularly preferred.
  • the film flotation method is a technique that can measure the surface tension of a solid.
  • the surface tension distribution as shown in FIG. 2 is obtained by dropping the sample particles into various liquids having different surface tensions, obtaining the mass ratio of the suspended sample particles with respect to the respective liquids, and expressing the result in a frequency distribution curve. Can be obtained.
  • the surface tension directly required by the film flotation method is the critical surface tension (liquid surface tension when the contact angle is 0 °). The tension can be determined.
  • ⁇ S surface tension of solid (coal)
  • ⁇ L surface tension of liquid
  • ⁇ SL interfacial tension
  • ⁇ C critical surface tension
  • Equation (6) is obtained from Young's equation.
  • ⁇ S ⁇ L cos ⁇ + ⁇ SL (6)
  • equation (9) is obtained.
  • the surface tension ⁇ S of coal can be obtained from the critical surface tension ⁇ C and ⁇ in equation (9).
  • the structure of liquid and coal used in the film flotation method is greatly different, but compared to the difference, the difference depending on the type of coal (coal type) is considered to be small.
  • the interaction coefficient ⁇ is a parameter affected by the mutual molecular structure
  • the surface tension ⁇ S is expressed only by the critical surface tension ⁇ C when the interaction coefficient ⁇ is assumed to be constant regardless of the coal brand. Therefore, it can be said that the surface tension of coal can be evaluated only by the critical surface tension.
  • the interaction coefficient ⁇ is considered to be 1
  • the value of the surface tension ⁇ S of coal is considered to be equal to the critical surface tension ⁇ C.
  • the conditions for the surface tension measurement by the film flotation method are described below.
  • the liquid used in the film flotation method has a surface tension value in the range of 20 to 73 mN / m in coal and coal when softened and melted. Good.
  • an organic solvent such as ethanol, methanol, propanol, tert-butanol, or acetone
  • a liquid having a surface tension of 20 to 73 mN / m can be prepared from an aqueous solution of these organic solvents.
  • the particle size of the sample for measuring the surface tension it is desirable to measure the surface tension when the contact angle is almost equal to 0 ° from the measurement principle, and the contact angle increases as the particle size of the crushed sample particles increases.
  • the sample particles are less than 53 ⁇ m, the sample particles are likely to agglomerate, so the sample particles are preferably pulverized to a particle size of 53 to 150 ⁇ m.
  • the film flotation method uses floating of a substance due to surface tension, it is necessary to perform measurement under conditions where the gravity of the substance can be ignored. This is because if the density of the substance is high, the contact angle becomes large due to the influence of gravity. Therefore, it is desirable to measure a substance having a density of 2000 kg / m 3 or less, which is considered that gravity does not affect the contact angle.
  • the surface tension of all types of coal can be measured regardless of the type of coal, such as strongly caking coal, non-slightly caking coal, and anthracite coal. Further, additives such as pitch, oil coke, powder coke, dust, waste plastic, and other biomass can be measured in the same manner.
  • coal is pulverized to a particle size of 200 ⁇ m or less, heated to 500 ° C. at 3 ° C./min, rapidly cooled with liquid nitrogen, pulverized to a particle size of 150 ⁇ m or less, and dried. There is a method of drying at 120 ° C. for 2 hours in the inert gas stream, and this method can be used.
  • the pulverized particle size of coal is preferably 250 ⁇ m or less, which is the pulverized particle size in the industrial analysis of coal described in JIS M8812, from the viewpoint of producing a homogeneous sample from coal having a non-uniform structure and properties.
  • the heating rate is 3 ° C./min because the heating rate when coke is produced in a coke oven is about 3 ° C./min. However, the heating rate when coke to be evaluated by interfacial tension is produced. It is desirable to change according to. Any drying method can be used as long as it can remove moisture adhering to the surface. In addition to the method of heating to 100 to 200 ° C. in an inert gas such as nitrogen or argon, drying is performed under reduced pressure. It is possible to adopt a method to do so.
  • Table 1 shows the results of measuring the surface tension by changing the cooling atmosphere in this measurement method.
  • the cooling atmosphere was performed in two ways: cooling in an air atmosphere (20 ° C.) and cooling in an inert (nitrogen gas) atmosphere (20 ° C.).
  • the difference between the two measurement results of cooling in the inert atmosphere (20 ° C.) is as small as 0.3, but the difference between the two measurement results of cooling in the air atmosphere (20 ° C.) is It turns out that it is 1.2 and big.
  • the measurement error of this measurement method is 0.4
  • cooling in an inert atmosphere using nitrogen gas is also effective in reducing variation. desirable.
  • an atmosphere using a rare gas such as argon gas or nitrogen gas can be used, but nitrogen gas is usually used.
  • the index indicating the surface tension includes the average value of the surface tension distribution, the standard deviation of the surface tension distribution, the surface tension of the peak value of the surface tension distribution, and the maximum surface tension distribution. Examples include surface tension, minimum surface tension, and distribution function of surface tension distribution.
  • the average value of the surface tension distribution (shown with ⁇ overlined) is expressed, for example, by the following equation (10).
  • the surface tension at the peak value of the surface tension distribution and the minimum and maximum surface tensions of the surface tension distribution are as shown in 5, 6 and 7 of FIG.
  • Examples of the distribution function of the surface tension include distributions similar in shape to the surface tension distribution, such as normal distribution, lognormal distribution, F distribution, chi-square distribution, exponential distribution, gamma distribution, and beta distribution.
  • the measurement time of the surface tension is preferably measured within 7 days before the date of coal blending for coke production, and more preferably, just before the coke production if possible. This is because the surface tension is affected by the molecular structure of the coal, and the measured value of the surface tension may change depending on the storage state or weathering of the coal. Therefore, it is desirable that the time from measurement to blending is short. In addition, even with the same type of coal, the surface tension may vary depending on the property adjustment at the base and the degree of blending of the coal. Therefore, it is desirable to measure the surface tension at each arrival.
  • the interfacial tensions of Coal A and Coal B are the interfacial tensions of the aa interface, the bb interface, and the ab interface.
  • the value needs to be aggregated. Therefore, the interfacial tension of blended coal composed of A coal and B coal is defined as the sum of the product of the interfacial tension of each interface and the existence probability of each interface.
  • a specific derivation formula is shown in the following formula (12).
  • ⁇ AB p aa ⁇ aa + p ab ⁇ ab + p bb ⁇ bb (12)
  • ⁇ AB Interfacial tension of blended coal consisting of A coal and B coal
  • paa existence probability of aa interface
  • pab existence probability of ab interface
  • pbb existence probability of bb interface
  • ⁇ aa the interfacial tension at the aa interface
  • ⁇ ab the interfacial tension at the ab interface
  • ⁇ bb the interfacial tension at the bb interface.
  • the interfacial tension of each interface can be derived by substituting the average value of the surface tension distribution of coal A and coal B into equation (4).
  • the existence probability of each interface is considered to change depending on the blending ratio of A coal and B coal. Therefore, the existence probability of each interface is derived from the product of the blending ratio of A coal and B coal. Details are shown below.
  • aa interface Derived by multiplying A coal blending ratio and A coal blending ratio. Since A charcoal and B charcoal are blended 1: 1, the blending ratio is 50% for both. Therefore, the existence probability of the interface is 25% from the following equation (13).
  • 0.5 ⁇ 0.5 0.25 (13)
  • ab interface derived by multiplying the blending ratio of coal A and blending ratio of coal B. The ab interface and the ba interface are regarded as the same interface. The existence probability of the interface is 50% from the following equation (14).
  • 0.5 ⁇ 0.5 + 0.5 ⁇ 0.5 0.5 (14)
  • bb interface Derived by multiplying B charcoal blending ratio and B charcoal blending ratio. The existence probability of the interface is 25% from the following equation (15).
  • w i: 1,2, ⁇ , i is a blended rate of ⁇ n charcoal.
  • the existence probability of the ij interface formed by i char and j char is represented by the product of w i and w j . Since the total sum of the product of the existence probability of the interface and the interfacial tension of the interface is defined as the interfacial tension of the blended coal, the interfacial tension of the blended coal is expressed as in equation (18).
  • the present inventors have found a method for estimating the interfacial tension from the dispersion of the surface tension of each coal constituting the blended coal instead of using the equation (20).
  • This is an application of the extremely high correlation between the interfacial tension derived from equation (20) and the dispersion of the surface tension of each coal that makes up the blended coal, compared to the blend that was adopted in actual operation in the past two years. It is.
  • a correlation diagram is shown in FIG.
  • an equation for deriving the dispersion of the surface tension of each coal constituting the blended coal is shown in the following equation (24), and a correlation equation is shown in the following equation (25).
  • the problem is how to control the interfacial tension value of the blended coal, which is determined by the blending composition of the coal used. Theoretically, it is desirable to minimize the interfacial tension in order to increase the bond strength between coals and improve the coke strength. However, in actual operation, a desired coke strength may be obtained even if it is not necessarily the minimum value. Therefore, a plurality of blends with different interfacial tensions are prepared, a coke strength test is performed, a relationship between the interfacial tension and the coke strength is obtained in advance, and the interface of the blended coal is within the range of the interfacial tension that provides the desired coke strength.
  • the method of configuring the blending so that the tension value can be accommodated is suitable as a method of producing high strength coke by using the interfacial tension, since the degree of freedom of the blending configuration is high.
  • the weighted average of vitrinite average maximum reflectance (Ro) of coal used for blending is in the range of 0.90 to 1.30, and the maximum fluidity (log MF) of the Gisela plastometer is The weighted average value by the blending ratio is controlled within the range of 2.3 to 2.8 to determine the blending. By further controlling the interfacial tension within this control range, it becomes possible to increase the accuracy of coke strength estimation and produce coke with higher strength.
  • the present inventors derived by using the equation (20) while keeping the blended coal average value of the vitrinite average maximum reflectance (Ro) and the blended coal average value of the maximum fluidity (log MF) of the Gisela plastometer constant. It was found that when the interfacial tension ⁇ inter increased, when ⁇ inter exceeded 0.03 mN / m, the coke strength decreased as ⁇ inter increased. Therefore, when the blended coal average value of vitrinite average maximum reflectance (Ro) and the blended coal average value of maximum flow rate (log MF) of the Gisela plastometer are used as blending indices, the coke strength is improved as compared with the conventional method. Therefore, it can be said that it is preferable to keep ⁇ inter at 0.03 mN / m or less.
  • the present inventors specifically have a ratio of coal having a log MF value of 1.4 or less of 30 mass% or more. In the case of, it was found that the influence of interfacial tension on coke strength is increased. This cause will be described below.
  • coal type classification by brand name sold by Yamamoto can be used. However, depending on the mountain, there are cases where coals mined from different production locations and coal seams are sold as the same brand, and when the production locations and coal seams are different, the coal properties generally differ, so in the present invention the production location It is preferable to treat the coal as different types for each coal bed.
  • the “coal type (coal type)” referred to in the present invention is not limited to the brand name, and various types of coal, even one brand coal sold by Yamamoto.
  • the present invention can be applied by treating it as two or more kinds of coals.
  • the coal seam refers to each layer of coal that is generally divided into a plurality of layers in the formation at a certain point and exists in layers. If the coal is produced from a coal seam close to a nearby point and it is judged that there is no substantial difference in its properties, it may be evaluated as the same type of coal.
  • the method of the present invention can be applied not only to blending of ordinary coal but also to blending of coal.
  • the method of the present invention can be similarly applied when a small amount of pitch, oil coke, powdered coke, dust, waste plastic, other biomass, or the like is added as an additive.
  • the addition of a small amount means that an additive is added at a maximum of about 10 mass%, usually 5 mass% or less, with respect to the total amount of coal. Since it is a small amount of addition, in carrying out the method of the present invention, it is possible to obtain a management index for determining the blending ratio of coal from only the interfacial tension between coals regardless of the presence or absence of the additive.
  • the interfacial tension of coal can be suitably used as an index for evaluating the adhesion strength between coals and further the coke strength.
  • the relationship between interfacial tension and coke strength is determined in advance, and the coal is blended so that the interfacial tension of the blended coal is within the range of interfacial tension exhibiting the desired coke strength, thereby increasing the bond strength between the coals.
  • Coke strength can be improved.
  • this interfacial tension as a new parameter into the coke strength estimation formula, it is possible to estimate the coke strength from a viewpoint different from the conventional index. Therefore, by considering the interfacial tension, it becomes possible to produce high-strength coke without significantly increasing the cost.
  • Example 1 The example which manufactured the high intensity
  • experiments were conducted under the condition that the conventional coal property parameters were kept constant. 13 types of coal (coal types A to M) are prepared.
  • a property test is performed on these coals, and the conventional coal property parameters, vitrinite average maximum reflectance (Ro), the highest of the Gisela plastometer The fluidity (log MF) and the surface tension by the film flotation method were measured.
  • the average maximum reflectance was measured by the method of JISM8816 (average maximum reflectance of coal vitrinite) and the Gieseler maximum fluidity was measured by the method of JISM8801.
  • coal is pulverized to a particle size of 200 ⁇ m or less, heated to 500 ° C. at 3 ° C./min, quenched with liquid nitrogen, pulverized to 150 ⁇ m or less, and in a dry nitrogen stream A sample dried in vacuum at 120 ° C. for 2 hours was used.
  • the liquid used for the surface tension measurement by the film flotation method was ethanol that was inexpensive and easy to handle.
  • An average value of the surface tension distribution was derived from the measured surface tension distribution using the equation (10), and this average value of the surface tension distribution was used as an index of the surface tension of coal ( ⁇ ). Based on the results of the property test, four levels of blending (blending AD) with different interfacial tension values were determined. In order to exclude the influence of other parameters that affect the coke strength, the blended weight weighted average value of Vitrinite average maximum reflectance (Ro), which is a parameter conventionally used for coke strength estimation, the maximum flow of the Gieseler plastometer The blending ratio of coal from A to M was adjusted so that the weighted average value of blended coal in degrees (log MF) was constant at each level.
  • Ro Vitrinite average maximum reflectance
  • Equation (20) was used to derive the interfacial tension ( ⁇ inter ).
  • Table 2 shows the properties of the 13 types of coal
  • Table 3 shows the blending ratio
  • Table 4 shows the properties of the blended coal.
  • the strength of coke after CO 2 reaction is, for example, 64.5 for formulation B and 63.4 for formulation C, with the strength exceeding the interfacial tension of 0.03 mN / m. Declined. Therefore, it can be seen that in order to sufficiently improve the coke strength by the interfacial tension, at least the interfacial tension should be controlled to 0.03 mN / m or less. That is, when producing coke by blending a plurality of coals, by adjusting the conventional coal property parameters and blending at least 0.03 mN / m or less so as to reduce the interfacial tension of the blended coal, It was shown that coke with higher strength than before can be produced. From the above results, it became clear that coke having higher strength than conventional can be produced by determining the blending conditions using the method of the present invention.
  • Example 2 An example in which high-strength coke is produced by controlling the interfacial tension under blending conditions with a high blending ratio of low MF charcoal will be shown.
  • Eight types of coal were prepared, and a property test was first performed on these coals.
  • the measurement items were Ro (maximum average reflectance), log MF, and surface tension, as in [Example 1] above.
  • the measurement method is the same as in [Example 1].
  • An average value of the surface tension distribution was derived from the measured surface tension distribution using the equation (10), and the average value of the surface tension distribution was used as an index of the surface tension of coal ( ⁇ ). Based on the property test results, five levels of blending (blending E to I) with different interfacial tensions were determined.
  • the blended coal weighted average value of Ro and the log MF blended coal weighted average value which are parameters conventionally used for coke strength estimation, are constant at each level.
  • the blending ratio of each coal was adjusted. Further, the formulation was determined so that the proportion of coal with a log MF value of 1.4 or less was 30 mass% or more.
  • the value of the blended coal weighted average value of the average value of Ro and the value of the blended coal weighted average value of log MF were the values adopted in the actual operation.
  • ⁇ inter defined by equation (20) was used as the interfacial tension. Table 5 shows the properties of the eight types of coal, Table 6 shows the blending ratio, and Table 7 shows the properties of the blended coal.
  • FIG. 6 shows the relationship between the interfacial tension ( ⁇ inter ) and the drum strength.
  • Example 3 An example is shown in which high-strength coke is manufactured by estimating the interfacial tension from the dispersion of the surface tension of each coal constituting the blended coal and controlling the interfacial tension.
  • equation (25) is used only for deriving the interfacial tension.
  • Table 8 shows the results of deriving the interfacial tension using the formula (25) in the blends A to I.
  • Table 8 also shows ⁇ inter derived by equation (20) for reference.
  • (20) the derived gamma inter and (25) gamma inter derived in equation be substantially matched can be confirmed from Table 8 in formula. Therefore, it is considered that the relationship between the interfacial tension and the drum strength estimated by the equation (25) is almost the same as [Example 1] and [Example 2]. From the above results, it was clarified that coke having higher strength than conventional can be produced by estimating the interfacial tension by the equation (25) and determining the blending conditions.
  • Example 4 The effect of the blended coal surface tension on the coke strength under the condition that the fluidity of the blended coal was low was investigated using 18 kinds of coals of different brands or different lots from Examples 1 to 3. Table 9 shows the properties of the coal used.
  • the log MF blended coal average values are 2.00, 2.30, and 2.50, respectively, and the interfacial tension is 0.01 to 0.02 mN / m for each level.
  • a total of 6 blending levels from 0.04 to 0.05 mN / m were determined.
  • ⁇ inter defined by the equation (1) was used as the interfacial tension.
  • the blended coal average value of vitrinite average reflectance (Ro) which is a parameter conventionally used for coke strength estimation, is made constant at each level.
  • the blending ratio of coal from P charcoal to g charcoal was adjusted.
  • the weighted average value of Ro or log MF of the blended coal is obtained by Expression (26).
  • Coke was produced in the same manner as in the above examples, and the coke strength was evaluated.
  • Example 5 In the same manner as in Examples 1 to 4, a plurality of types of coal were combined to prepare blended coals having various weighted average Ro, weighted average logMF, and interfacial tension, and coke was produced to evaluate the coke strength. At this time, the interfacial tension of the blended coal was calculated based on the formula (2). Table 11 shows the blended charcoal properties and the strength measurement results of the obtained coke.
  • Example 6 When the heat treatment temperature of the coal was changed and a sample of the heat treated coal was prepared in the same manner as in the method of Example 1 and the surface tension was measured, the higher the heat treatment temperature, the higher the surface tension value in the temperature range above the softening and melting temperature. A tendency to increase was observed.
  • the heat treatment temperature is 400 ° C., 450 ° C., 500 ° C., 600 ° C., and 800 ° C.
  • the surface tension of C charcoal is 33.0, 35.5, 41.1
  • the surface tension of M coal was 30.4, 32.4, 37.6, 42.2, 48.7 mN / m.
  • the other coals shown in Table 2 also had values between the surface tensions of C and M coals at each temperature.
  • the surface tension of the heat-treated coal tends to increase monotonously with the increase of the heat-treatment temperature.
  • Accompanied by a monotonically increasing tendency of surface tension prone to a first-order correlation with temperature.
  • the accuracy of surface tension at any temperature within the range of the heat treatment temperature can be determined from the correlation between the surface tension measured with a sample prepared at two or more heat treatment temperatures and the heat treatment temperature. It is possible to estimate well. Therefore, the surface tension of a heat-treated coal may be estimated in this way.
  • the interfacial tension ⁇ inter of the blended coal when the heat treatment temperature is changed is calculated, as shown in Table 13, from the surface tension value of each coal obtained from the heat treated coal treated at 400 ° C., the equation (20)
  • the interfacial tension ⁇ inter of the obtained blended coal B is 0.023 mN / m, and 0.023 mN / m, 0.025 mN / m, and 0.026 mN / m in the case of 450 ° C., 600 ° C., and 800 ° C. heat treatment, respectively.
  • a large difference depending on the heat treatment temperature was not recognized.
  • the interfacial tensions of the blended coal obtained from the surface tension of the heat-treated coal at 400 ° C., 450 ° C., 600 ° C., and 800 ° C. are 0.034 mN / m, 0.036 mN / m, and. 039 mN /, 0.039 mmN / m, and no significant difference depending on the heat treatment temperature was observed. That is, even when the heat treatment temperature is changed, it can be seen that high strength coke can be produced by blending the blended coal with the interfacial tension of 0.03 mN / m or less. Since the surface tension value of the heat-treated coal is affected by the heat treatment temperature as described above, the interfacial tension of the blended coal was calculated for samples treated at the same heat treatment temperature for all brands of coal, or It is necessary to calculate using the estimated surface tension value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Coke Industry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

2種以上の石炭を配合して配合炭を形成し、前記配合炭を乾留し、コークスを製造する。石炭間の界面張力をが、前記配合の際の石炭の配合割合を決定する管理指標として用いられる。配合炭の原料コストを増加させること無くコークス強度を高めることが可能である。

Description

コークスの製造方法
 本発明は、強度の高い高炉用コークスの製造方法に関するものである。
 高炉用コークス(blast furnace coke)は、高炉内において還元材、熱源、そして通気性を保つための支持材として用いられており、近年では低還元材比(low reducing agent rate)下での安定操業を実現させるため、高強度コークスの製造が指向されている。高炉用コークスを製造する際には、通常複数種類(10品種以上)の石炭を配合して用いており、このため従来から、配合炭(blended coal)を原料として製造したコークス強度推定法が検討されてきた。例えば、以下の(イ)~(ハ)の方法が知られている。
 (イ)基質強度(strength of coke matrix)と流動性を指標としたコークス強度推定法
石炭性状としてビトリニット平均最大反射率(Roの平均値、以下単にRoと記す)とギーセラープラストメーターの最高流動度(MF)の2つの指標をパラメータとしてコークス強度を推定する配合理論であり、現在一般的に使用されている。
 (ロ)NMRを用いたコークス強度推定法
NMR(Nuclear Magnetic Resonance)により測定した石炭の粘結成分量を示す指標と石炭の粘結成分の粘度を示す指標を用いたコークス強度推定法である(例えば、特許文献1参照)。
 (ハ)配合効果係数を指標としたコークス強度推定法
石炭は産出国、炭鉱、炭層においてその性質が異なるが、異種石炭を配合してコークスを製造した際、石炭間には相互作用があることが指摘されている。
上記(イ)、(ロ)等で用いている通常のコークス強度推定式では、2種類の石炭を配合したときのコークス強度は各物性値の加重平均値で推定されるため、相互作用による強度向上効果、つまり配合効果は含まれない場合が多い。これに対して、配合効果を推定する方法である、複数種の石炭からなる配合炭のコークス特性を各石炭の2種類の組み合わせの集合として、そのコークス特性と各単味炭コークス特性の加重平均からのずれを配合効果係数としてコークス強度推定式を作成する方法が知られている(例えば、特許文献2参照)。配合効果係数は実測または推測して求めることができる。
特開2002-294250号公報 特開平9-255966号公報
J.K.Spelt and D.Li,「The equation of state approach to interfacial tentions,in Applied Surface Thermodynamics」,A.W.Neumann and J.K.Spelt(Eds),Advances in Chemistry Series,vol.63,Marcel Dekker,New York,1996年、p.239-292 D.W.Fuerstenau 「Internatinal Journal of Mineral Processing,20」1987年、p.153
 高強度コークスを製造するためのコークス強度推定法として上記のような方法が提案されているが、(イ)の方法を用いて高強度コークスを製造するためには、ビトリニット平均最大反射率(Ro)とギーセラープラストメーターの最高流動度(MF)の高い石炭が必要である。このような石炭は値段が高く、コストが上昇する点が問題となる。また、流動性の乏しい非微粘結炭を使用する際には、流動性を示す指標の検出感度が低下するため測定そのものが困難になり、また測定値が意味を持たなくなるという問題もある。
 また、(ロ)の方法は、石炭の流動性や粘度に着目するものであり、結局は最高流動度(MF)の検出感度を向上させた指標であるため、(イ)と同様にコストの問題が生じる。また、装置自体が高価で特殊であり、簡便性に欠ける。
 さらに、(ハ)の方法は、配合効果係数を用いることで、より正確にコークス強度を推定することが可能であるが、従来のコークス強度式のパラメータを用いているため、やはり従来法の域を脱する方法ではなく、コストの問題を解決することができない。また、石炭粒子の相互作用を評価するとはいっても、石炭の接着性に関わる物性に基づいた評価ではないために、強度の推定精度は十分ではなく、また、配合効果係数を実測して求める場合には簡便性に欠けるという問題がある。
 本発明は上記のような問題を解決するためになされたもので、その目的は、配合炭の原料コストの増加を抑えると同時にコークス強度を高めることが可能である、コークスの製造方法を提供することである。
 このような課題を解決するための本発明の特徴は以下の通りである。
(1)2種以上の石炭を配合して配合炭を形成し、前記配合炭を乾留するコークスの製造方法において、石炭間の界面張力を、前記配合の際の石炭の配合割合を決定する管理指標として用いることを特徴とするコークスの製造方法。
(2)前記石炭の配合割合の決定が、石炭間の界面張力を各石炭の表面張力を用いて導出し、予め2種以上の石炭を配合した配合炭の界面張力と、前記配合炭を乾留して製造したコークスのコークス強度との関係を求め、該関係を用いて配合炭の界面張力が所望のコークス強度を示す範囲内となるように、石炭の配合割合を決定することからなる(1)に記載のコークスの製造方法。
(3)前記石炭の表面張力が、軟化溶融開始温度以上、コークス化温度以下に加熱後、不活性雰囲気下で冷却した前記石炭を試料として測定することで得られる(2)に記載のコークスの製造方法。
(4)前記石炭の表面張力が、350℃~800℃に加熱後、不活性雰囲気下で冷却した石炭を試料として測定することで得られる(3)に記載のコークスの製造方法。
(5)前記石炭間の界面張力の導出が、各石炭の表面張力を用いて下記(1)式より界面張力γinterを導出することからなる(2)ないし(4)のいずれかに記載のコークスの製造方法。
Figure JPOXMLDOC01-appb-M000001
(6)前記石炭間の界面張力の導出が、各石炭の表面張力を用いて下記(2)式より界面張力γinterを導出することからなる(2)ないし(4)のいずれかに記載のコークスの製造方法。
Figure JPOXMLDOC01-appb-M000002
(7)前記界面張力γinterが0.03mN/m以下となるように石炭の配合割合を決定することを特徴とする(5)または(6)に記載のコークスの製造方法。
(8)配合炭の加重平均Roが0.90~1.30%の範囲であり、かつ配合炭の加重平均logMFが2.3以上2.8以下の範囲である配合炭を用いる(7)に記載のコークスの製造方法。ここで、Roは平均最大反射率であり、MFはギーセラー最高流動度である。
(9)配合炭の加重平均Roが0.90~1.30%の範囲であり、かつ配合炭の加重平均logMFが2.0以上2.3未満の範囲である配合炭の場合には、界面張力γinterが0.02mN/m以下となるように前記石炭の配合割合を決定することを特徴とする(5)または(6)に記載のコークスの製造方法。ここで、Roは平均最大反射率であり、MFはギーセラー最高流動度である。
(10)logMF値が1.4以下の石炭の配合率が30mass%以上の場合には、界面張力γinterが0.01mN/m以下となるように前記石炭の配合割合を決定することを特徴とする(5)または(6)に記載のコークスの製造方法。ここで、MFはギーセラー最高流動度である。
 本発明方法は、石炭粒子間の表面張力に起因する接着強度を考慮してコークス強度を推定し、この推定方法を用いて各銘柄毎の石炭の配合割合を決定する。つまり、本発明方法は、従来とは異なる指標を用いてコークスを製造する。したがって、下記のような効果を有する。
(a)コークス強度推定式の推定精度が高まり、従来の石炭性状パラメータでは想起できない配合条件でコークスを製造することができる。
(b)また、石炭性状パラメータが増えることにより原料購買の自由度が高まり、原料コストを増加させることなくコークス強度を高めることが可能となる。
(c)またさらに、本発明方法はギーセラープラストメーターを用いた評価が困難である流動性の低い非微粘結炭にも適用できるので、原料炭配合の自由度をより一層高めることができる。
フィルム・フローテーション法による表面張力測定の原理を示す図である。 表面張力の分布を頻度分布曲線で示したグラフである。 2種類の石炭を1:1で配合した際の、コークス内部のある平面の模式図である。 配合炭を構成する各石炭の表面張力の分散と界面張力の関係を示すグラフである。 ドラム強度に及ぼす界面張力の影響を示すグラフである。 低MF炭多配合時のドラム強度に及ぼす界面張力の影響を示すグラフである。 実施例4で製造したコークスのドラム強度と配合炭logMFとの関係を示す図である。
 石炭は乾留により軟化溶融して互いに融着し、コークスが製造される。そのため、石炭粒子間の接着強度がコークス強度に影響を与えていると考えられる。
 一般的に石炭粒子間の接着強度は、接着界面の界面張力が小さくなるほど向上する。界面張力とは、その単位がmN/mであることからもわかるように界面に存在する自由エネルギーと考えることができる。従って、界面張力が存在するということは界面に力として働きうる自由エネルギーが存在するということである。それゆえに、界面張力が大きいことは接着界面での破壊のし易さにつながる。本発明は、石炭粒子間の接着強度に界面張力が影響を及ぼしていると考え、界面張力を指標として石炭粒子間の接着強度を評価するものであるが、界面張力の測定が困難である点が問題である。
 界面張力は異なる銘柄の石炭粒子間の界面において直接測定することが望ましいが、その測定は既存技術では非常に困難である。よって本発明では以下に示す各銘柄の石炭の表面張力に基づいて界面張力を推定する方法を採用し、その界面張力を用いて石炭の配合割合を決定する。しかし、コークス強度推定の目的のための好適な表面張力の測定条件や、表面張力から界面張力を推定する方法、さらには、それらのコークス強度への影響度などが未解明であった。発明者らはこれらの因子について研究を行ない、コークス強度の推定に効果的な方法を見出し、本発明を完成させた。
 界面張力は接着する物質の表面張力より導出することができる。異なる物質A、Bについて、物質A-B間の界面張力は物質A、物質Bの表面張力から求めることができ、例えば、グリファルコ-グッド(Girifalco-Good)の式を用いて下記(3)式で求められる。
Figure JPOXMLDOC01-appb-M000003
但し、γA、γB:物質A、Bの表面張力、γAB:物質AB間の界面張力、φ:相互作用係数である。φは実験によって求めることができ、物質A、Bによって異なることが知られている。
また、リーとニューマン(D.Li、A.W.Neumann)らは、φの値がγ、γの値が離れるほど大きくなると仮定し、(3)式を拡張した下記(4)式を提案している。
Figure JPOXMLDOC01-appb-M000004
但し、β:定数である。βは実験によって導出される値であり、リーとニューマンらは0.0001247(m2/mJ)2と計算している(非特許文献1参照)。よって、石炭A、B間の界面張力は、石炭A、Bの表面張力を測定し、(3)式、または(4)式に代入することによって導出することができる。(3)式を用いる場合はφの値を実験から求めなければならないため、界面張力の導出を簡便にするという意味で、φの値を推定している(4)式を用いることが望ましい。
 コークス化過程における石炭粒子間の接着強度は、軟化溶融を開始してコークス化するまでの石炭の表面張力の影響を受けていると考えられる。よって、軟化溶融状態での石炭の表面張力を測定することが望ましい。しかし、石炭が実際に軟化溶融して融着しているときの表面張力を測定することは困難である。本発明者らは検討の結果、石炭が軟化溶融する温度まで空気を遮断して、つまり不活性雰囲気中で石炭を加熱した後、10℃/sec以上の冷却速度で急冷した試料の表面張力を測定することで、軟化溶融状態の石炭の表面張力を推定可能であることを見出した。
 前記石炭の加熱温度は、石炭粒子間の接着に表面張力が影響を及ぼしているという考えから、石炭が軟化溶融を開始し、接着、固化し、コークス化が完了するコークス化温度までの温度域、つまり軟化溶融を開始する350℃以上で、かつ、コークス化が完了する800℃までの温度域とすることが適当である。加熱温度である350℃~800℃において、特に接着に寄与している温度は軟化溶融時の温度であるが、コークス製造に用いられる石炭の軟化溶融温度域は350~500℃であり、全ての種類の石炭が軟化溶融しているといえる温度は500℃となるので、加熱温度としては特に500℃近傍として480~520℃が好ましい。なお、熱処理した石炭の表面張力は石炭の表面張力とある程度の相関があるため、石炭の表面張力を用いて界面張力を求めることも可能である。
 加熱した石炭を急冷する理由は軟化溶融状態での分子構造を保つためであり、分子構造が変化しないと考えられる10℃/sec以上の冷却速度で急冷するのが好ましい。急冷方法としては、液体窒素、氷水、水、窒素ガスのような不活性ガスを用いる方法などがある。ガス冷却は試料の内部まで冷却するのに時間を費やし、冷却速度に分布が生じる点から、また、氷水、水による冷却では水分の付着により表面張力の測定に影響を与える点から、液体窒素を用いて急冷することが望ましい。
 表面張力の測定方法として、静滴法(sessile drop method)、毛管上昇法、最大泡圧法、液重法、懸滴法、輪環法(ring method)、プレート(Wilhelmy)法、拡張/収縮法、滑落法、フィルム・フローテーション(Film Flotation)法などが知られている。石炭は様々な分子構造で構成されており、その表面張力も一様ではないことが予想されるため、表面張力分布の評価が期待できるフィルム・フローテーション法(非特許文献2参照)を用いることが特に好ましい。フィルム・フローテーション法は固体の表面張力を測定できる手法である。
フィルム・フローテーション法の基本原理を図1を用いて説明する。フィルム・フローテーション法は、粉砕した試料粒子3を気相1中から液体2の表面上に落下させて、試料粒子3が液体2にまさに浸漬する時(図1の中央の試料粒子の場合であり、接触角がほぼ0°に等しい時)、試料粒子と液体の表面張力が等しいとする考え方を応用した手法である。図1の矢印4は試料粒子3の表面張力を示している。図1中央の白矢印は浸漬の向きを、水平方向の矢印は、左側(H側)が液体の表面張力が高く、右側(L側)が液体の表面張力が低い場合であることを示している。表面張力が異なる種々の液体に試料粒子を落下させ、それぞれの液体に対して浮遊した試料粒子の質量割合を求め、その結果を頻度分布曲線に表すことで、図2に示すような表面張力分布を得ることができる。なお、フィルム・フローテーション法で直接求められる表面張力は、臨界表面張力(critical surface tension)(接触角が0°の時の液体表面張力)であり、以下のように臨界表面張力から石炭の表面張力を求めることができる。γS:固体(石炭)の表面張力、γL:液体の表面張力、γSL:界面張力、γC:臨界表面張力、φ:(石炭と液体の)相互作用係数とした場合、上記(3)式より、(5)式が得られる。
  γSL=γS+γL-2φ(γSγL0.5   ・・・(5)
ヤング(Young)の式より、(6)式が得られる。
  γS=γLcosθ+γSL        ・・・(6)
(5)、(6)式より、(7)式が導かれる。
  1+cosθ=2φ(γS/γL0.5  ・・・(7)
(7)式にθ=0°とγL=γCを代入すると、(8)式が得られる。
  1+1=2φ(γS/γC0.5       ・・・(8)
(8)式の両辺を2乗すると、(9)式が得られる。
  φγ=γ   ・・・(9)
(9)式の臨界表面張力γCとφより石炭の表面張力γSを求めることができる。フィルム・フローテーション法で用いる液体と石炭の構造は大きく異なるが、その違いに比べると石炭の種類(炭種)による違いは小さいものと考えられる。相互作用係数φは互いの分子構造に影響を受けるパラメータであるため、相互作用係数φは石炭銘柄によらず一定と仮定すると、表面張力γSは臨界表面張力γCのみで表される。よって、石炭の表面張力は臨界表面張力のみでも評価できると言える。本発明においては、相互作用係数φを1と考え、石炭の表面張力γSの値は臨界表面張力γCと等しいと考える。
 フィルム・フローテーション法による表面張力測定についての諸条件を以下に述べる。フィルム・フローテーション法で用いる液体は、石炭、また軟化溶融時の石炭の表面張力値が20~73mN/mの範囲に分布していることから、この範囲内の表面張力を持つ液体を用いればよい。例えば、エタノール、メタノール、プロパノール、tert-ブタノール、アセトンなどの有機溶媒を用いて、これらの有機溶媒の水溶液から20~73mN/mの表面張力を持つ液体を作製することが可能である。表面張力を測定するサンプルの粒径については、測定原理より接触角がほぼ0°に等しいときの表面張力を測定することが望ましく、粉砕した試料粒子の粒径が大きくなるにつれて接触角が増加するため、粒径は小さいほど望ましい。しかし、試料粒子の粒径が53μm未満の場合は凝集しやすいため、試料粒子は粒径53~150μmに粉砕することが好ましい。また、フィルム・フローテーション法は表面張力による物質の浮遊を利用するため、物質の重力が無視できる条件下で測定を行う必要がある。物質の密度が高いと重力の影響を受け、接触角が大きくなってしまうからである。よって、重力が接触角に影響を及ぼさないと考えられる、密度が2000kg/m3以下の物質を測定することが望ましい。様々な種類の石炭はこの条件を満たすことから、強粘結炭、非微粘結炭、無煙炭など、炭種を問わず、あらゆる石炭の表面張力を測定できる。さらには、ピッチ、オイルコークス、粉コークス、ダスト、廃プラスチック、その他バイオマスなどの添加材も同様に測定可能である。
 フィルム・フローテーション法に用いる試料作成方法の一例として、石炭を粒径200μm以下に粉砕し、3℃/minで500℃まで加熱し、液体窒素で急冷後、粒径150μm以下に粉砕し、乾燥された不活性ガス気流中120℃で2時間乾燥する方法があり、この方法を用いることができる。石炭の粉砕粒度は、組織や性状などが不均一である石炭から均質な試料を作製するという観点から、JIS M8812に記載されている石炭の工業分析における粉砕粒度である250μm以下が望ましい。加熱速度は、コークス炉においてコークスが製造されるときの加熱速度が約3℃/minであるので3℃/minとしたが、界面張力による評価の対象となるコークスが製造されるときの加熱速度に応じて変えることが望ましい。乾燥方法については表面に付着した水分を除去できる方法ならばどのような方法でも構わず、窒素、アルゴンなどの不活性ガス中で100~200℃に加熱する方法の他にも、減圧下で乾燥する方法なども採用できる。
 試料を500℃程度まで加熱後、不活性雰囲気下で冷却する理由は、表面張力測定誤差を減少させるためである。加熱直後の石炭は高温であり、含酸素雰囲気で冷却した場合表面が部分的に酸化して構造変化を起こし、表面張力測定値に誤差が生じるからである。本測定方法において、冷却雰囲気を変えて表面張力を測定した結果を表1に示す。表1は、ある石炭を加熱し、冷却雰囲気のみを変えて、各方法で2回ずつ(n=1、2)表面張力平均値を求めた結果である。冷却雰囲気は、大気雰囲気(20℃)での冷却、不活性(窒素ガス)雰囲気(20℃)での冷却の2通りで行った。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、不活性雰囲気(20℃)での冷却の2回の測定結果の差は0.3と小さいが、大気雰囲気(20℃)での冷却の2回の測定結果の差は1.2と大きいことがわかる。本測定方法の測定誤差(同一サンプルでの測定結果の標準偏差)が0.4であることを考慮すると、バラツキを小さくするという点でも、窒素ガスを用いるような不活性雰囲気下での冷却が望ましい。不活性雰囲気としては、アルゴンガス等の希ガスまたは窒素ガスを用いた雰囲気が使用可能であるが、通常は窒素ガスを用いる。
 単一銘柄の石炭(単味炭)の場合に表面張力を示す指標としては、表面張力分布の平均値、表面張力分布の標準偏差、表面張力分布のピーク値の表面張力、表面張力分布の最大表面張力と最小表面張力、表面張力分布の分布関数などが挙げられる。表面張力分布の平均値(γにオーバーラインをつけて示す)は、例えば下記(10)式のように表される。
Figure JPOXMLDOC01-appb-M000005
但し、γ:表面張力、f(γ):表面張力分布の頻度である。表面張力分布の標準偏差(σγ)についても、例えば(11)式のように表される。
Figure JPOXMLDOC01-appb-M000006
 表面張力分布のピーク値の表面張力、表面張力分布の最小表面張力と最大表面張力については図2の5、6、7に示すとおりである。表面張力の分布関数については、表面張力分布と形状の似ている分布、例えば、正規分布、対数正規分布、F分布、χ2乗分布、指数分布、ガンマ分布、ベータ分布などが挙げられる。
 表面張力の測定時期については、コークス製造のため石炭を配合する日の前、7日以内に測定することが望ましく、可能であればコークスを製造する直前に測定することがより望ましい。表面張力は石炭の分子構造に影響を受けるため、石炭の保存状態や風化により表面張力測定値が変化する可能性があるので、測定から配合までの時間が短いことが望ましいためである。また、同一種類の石炭でも、山元での性状調整や石炭のブレンドの程度により表面張力が変化する可能性があるため、入荷ごとに表面張力を測定することが望ましい。
 表面張力を示す指標として(10)式により導出される表面張力分布の平均値を用い、配合炭の界面張力を(4)式を用いて導出する場合の一例を以下に示す。ここにA炭、B炭という表面張力の異なる2種類の石炭があるとする。図3に示すように、A炭8、B炭9を1:1で均一に配合してコークスを作成した場合、コークス内部のある平面11では、A炭8同士の界面10a、B炭9同士の界面10d、A炭8とB炭9由来の界面10b、10cが存在することが考えられる。これらの界面をそれぞれa-a界面、b-b界面、a-b界面とすると、A炭、B炭の界面張力は、a-a界面、b-b界面、a-b界面の界面張力の影響を集約した値である必要がある。そこでA炭、B炭からなる配合炭の界面張力を、各界面の界面張力と各界面の存在確率を乗じたものの総和と定義する。具体的な導出式を下記(12)式に示す。
 γAB=paaγaa+pabγab+pbbγbb ・・・(12)
 但し、γAB:A炭、B炭からなる配合炭の界面張力、paa:a-a界面の存在確率、pab:a-b界面の存在確率、pbb:b-b界面の存在確率、γaa:a-a界面の界面張力、γab:a-b界面の界面張力、γbb:b-b界面の界面張力である。各界面の界面張力はA炭、B炭の表面張力分布の平均値を(4)式に代入して導出できるものとする。各界面の存在確率はA炭、B炭の配合率により変化するものと考えられる。そこで各界面の存在確率をA炭、B炭の配合率の積より導出されるものとした。以下に詳細を示す。
 a-a界面:A炭配合率とA炭配合率を乗じて導出する。A炭とB炭は1:1で配合しているので、配合率は両者とも50%である。よって界面の存在確率は以下の(13)式より25%となる。
  0.5×0.5=0.25 ・・・(13)
 a-b界面:A炭配合率とB炭配合率を乗じて導出する。a-b界面とb-a界面を同じ界面とみなす。界面の存在確率は以下の(14)式より50%となる。
  0.5×0.5+0.5×0.5=0.5 ・・・(14)
 b-b界面:B炭配合率とB炭配合率を乗じて導出する。界面の存在確率は以下の(15)式より25%となる。
  0.5×0.5=0.25 ・・・(15)
 以上をまとめ、(12)式中の界面の存在確率を配合率に書き改めた、界面張力の導出式を下記(16)式に示す。
  γAB=waaγaa+wbbγbb+2wabγab ・・・(16)
但し、wa:A炭の配合率、wb:b炭の配合率である。
 この考え方を2種以上の石炭の配合炭に拡張する。n種類の石炭を配合する場合、各石炭の配合率の関係は下記(17)式で表される。
Figure JPOXMLDOC01-appb-M000007
但し、wi:1、2、・・・、i、・・・n炭の配合率である。i炭とj炭により形成されるi-j界面の存在確率は、wiとwjの積で表される。界面の存在確率とその界面の界面張力との積の総和を配合炭の界面張力と定義しているので、配合炭の界面張力は(18)式のように表される。
Figure JPOXMLDOC01-appb-M000008
但し、γinter:配合炭の界面張力である。また、
γij=γji ・・・(19)
である。(18)式を行列で書き表すと、(20)式~(22)式になる。 なお、tは転置行列を表す記号である。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 最初に述べたように、界面の接着強度は界面張力が小さいほど大きくなる。(4)式において、γABを最小にするときの条件は、
   γA=γB ・・・(23)
である。つまり表面張力が等しい石炭を配合した場合、界面張力が最小となる。これより、(20)式を用いて界面張力の小さい配合を決定することは、石炭表面張力値の炭種による差が小さくなるように配合を決定することと同じことであるといえる。
 さらに、本発明者らは(20)式を用いる代わりに、配合炭を構成する各石炭の表面張力の分散から界面張力を推定する方法を見出した。これは過去2年間に実操業で採用された配合に対し、(20)式より導出した界面張力と、配合炭を構成する各石炭の表面張力の分散の相関が非常に高いことを応用したものである。相関図を図4に示す。また配合炭を構成する各石炭の表面張力の分散を導出する式を下記(24)式に、相関式を下記(25)式に示す。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 但し、σγ 2:配合炭を構成する各石炭の表面張力の分散、γi:1、2、・・・、i、・・・n炭の表面張力、wi:1、2、・・・、i、・・・n炭の配合率で(17)式を満たすものである。実操業において配合計算をする場合にはしばしば表計算ソフトが用いられるが、(20)式を用いて界面張力を計算する方法は、行列計算を含むため同一シート上での計算が難しく、計算が煩雑になる。しかし、(25)式を用いる方法ならば表計算ソフト上での計算式が簡略化されるため、界面張力の管理をより一層容易に行うことができる。
 界面張力を用いて高強度コークスを製造するためには、使用する石炭の配合構成により決定される、配合炭の界面張力の値をどのような値に制御すべきかが問題となる。理論上、界面張力を最小値とすることが石炭間の接着強度を高め、コークス強度を向上させる上で望ましい。しかし、実操業上は必ずしも最小値でなくとも所望のコークス強度が得られる場合が考えられる。よって、界面張力を変化させた配合を複数作成してコークス強度試験を行い、界面張力とコークス強度の関係を予め求めておき、所望のコークス強度が得られる界面張力の範囲内に配合炭の界面張力値が収まるよう配合を構成する方法が、界面張力を用いて高強度コークスを製造する方法として、配合構成の自由度が高く、好適である。
 界面張力を制御して高強度コークスを製造する際には、従来の石炭性状パラメータであるビトリニット平均最大反射率(Ro)、ギーセラープラストメーターの最高流動度(logMF)の制御と併用することが望ましい。これは、これら従来の石炭性状パラメータによるコークス強度推定がある程度の効果を与えるからであり、さらに、本発明によるコークス強度向上法がこれら従来の石炭性状パラメータとは異なる原理に基づくものだからである。実操業では配合に用いる石炭のビトリニット平均最大反射率(Ro)を配合率で加重平均した値を0.90から1.30の範囲に、また、ギーセラープラストメーターの最高流動度(logMF)を配合率で加重平均した値を、2.3から2.8の範囲に制御して配合を決定している。この制御範囲内において、さらに界面張力の制御を加えることにより、コークス強度推定精度をより高め、より高強度なコークスを製造することが可能となる。
 本発明者らは、ビトリニット平均最大反射率(Ro)の配合炭平均値とギーセラープラストメーターの最高流動度(logMF)の配合炭平均値を一定に保ちつつ、(20)式を用いて導出した界面張力γinterを増加させた場合、γinterが0.03mN/mを超えると、γinterが増加するに伴いコークス強度が低下することを見出した。このことから、ビトリニット平均最大反射率(Ro)の配合炭平均値とギーセラープラストメーターの最高流動度(logMF)の配合炭平均値を配合の指標とする場合、従来よりもコークス強度を向上させるためには、γinterを0.03mN/m以下に保つことが好ましいといえる。
 また、本発明者らは上記の操業範囲内において、配合に用いる石炭のうち、低MF炭の配合率が高い場合、具体的にはlogMF値が1.4以下の石炭の割合が30mass%以上の場合には、界面張力のコークス強度に及ぼす影響が大きくなることを見出した。この原因について以下に述べる。
 石炭間の接着には界面張力だけでなく、流動性も影響を及ぼすことが知られている。低MF炭の配合率が低い場合には各石炭が流動して互いに溶融し合うため、接着には界面張力だけでなくこの溶融性も大きく影響を及ぼす。低MF炭の配合率が高いときには、一方の石炭が溶融しても、もう一方の石炭が低MF炭だと溶融しないため、流動性による接着効果が小さくなり、結果として界面張力が接着に寄与する割合が大きくなると考えられる。これが原因となり、低MF炭の配合率が高い場合においては、界面張力のコークス強度に及ぼす影響が大きくなっていると考えられる。近年強粘結炭価格の高騰を受けMFの低い非微粘結炭の使用量が増加しており、logMF値が1.4以下の石炭の割合が30mass%以上の配合になることが従来以上に多くなっている。したがって近年の石炭需給状況を鑑みると、本技術は非微粘結炭多量配合下でのコークス強度向上技術として非常に効果的である。同様の傾向は、配合炭のMFが通常よりも低い場合にも認められた。具体的には配合炭の加重平均logMFが2.0以上、2.3未満の範囲では、コークス強度の低下を抑止するためにはγinterを0.02mN/m以下に保つことが好ましい。
 「石炭の種類」という場合、山元が販売している銘柄名での分類を用いることができる。ただし、山元によっては異なる産出場所や炭層から採掘した石炭を配合したものを同一銘柄として販売することがあり、産出場所や炭層が異なる場合には一般に石炭性状も異なるため、本発明においては産出場所や炭層毎に石炭の種類が異なるものとしてとして扱うことが好ましい。このような場合には、本発明で言う「石炭の種類(炭種)」とは、銘柄名にとらわれないものとし、山元が販売している一つの銘柄の石炭であっても、様々な種類の石炭を配合した配合炭とみなして2種以上の石炭として扱い本発明を適用することができる。なお、炭層とは、ある地点において地層中に一般に複数の層に分かれて層状に存在する石炭のそれぞれの層のことを指す。近接した地点の近接した炭層から産出された石炭であって、その性状に実質的な差がないと判断される場合には、同じ種類の石炭として評価してもよい。
 本発明方法は、通常の石炭の配合だけでなく成型炭配合にも適用することができる。また、2種以上の石炭の他に、ピッチ、オイルコークス、粉コークス、ダスト、廃プラスチック、その他バイオマスなどを添加材として少量添加するときにも同様に本発明方法を適用できる。ここで少量添加とは、添加材を総石炭量に対して最大10mass%程度、通常は5mass%以下を添加することである。少量の添加であるので、本発明方法の実施にあたっては、添加材の存否に拘らず石炭間の界面張力のみから石炭の配合割合を決定する管理指標を得ることもできる。
 以上のように、石炭の界面張力は石炭間の接着強度、さらにはコークス強度を評価できる指標として好適に利用できる。例えば、界面張力とコークス強度の関係を予め求めておき、配合炭の界面張力が所望のコークス強度を示す界面張力の範囲内となるように石炭を配合することによって、石炭間の接着強度を高め、コークス強度を向上させることができる。また、この界面張力を新しいパラメータとしてコークス強度推定式に導入することにより、従来の指標とは異なる観点からのコークス強度の推定が可能である。従って、界面張力を考慮することにより、コストを大幅に増加させること無く、高強度コークスの製造が可能となる。
 [実施例1]
 界面張力に基づき高強度コークスを製造した例を示す。従来の石炭性状パラメータには依存しない高強度コークスの製造条件を明らかにするため、従来の石炭性状パラメータを一定にした条件下で実験を行った。13種類の石炭(炭種A~M)を用意し、まずこれらの石炭に対して性状試験を実施し、従来の石炭性状パラメータであるビトリニット平均最大反射率(Ro)、ギーセラープラストメーターの最高流動度(logMF)、そしてフィルム・フローテーション法による表面張力を測定した。平均最大反射率はJISM8816(石炭ビトリニットの平均最大反射率)、ギーセラー最高流動度はJISM8801の方法で測定した。フィルム・フローテーション法による表面張力の測定には、石炭を粒径200μm以下に粉砕し、3℃/minで500℃まで加熱し、液体窒素で急冷後、150μm以下に粉砕し、乾燥窒素気流中120℃で2時間真空乾燥した試料を用いた。フィルム・フローテーション法での表面張力測定に利用する液体には安価かつ取り扱いが簡便なエタノールを用いた。測定した表面張力分布より(10)式を用いて表面張力分布の平均値を導出し、この表面張力分布の平均値を石炭の表面張力の指標とした(γ)。性状試験結果を元に、界面張力値の異なる4水準の配合(配合A~D)を決定した。コークス強度に影響を及ぼす他のパラメータの影響を除外するため、従来コークス強度推定に利用されているパラメータであるビトリニット平均最大反射率(Ro)の配合炭加重平均値、ギーセラープラストメーターの最高流動度(logMF)の配合炭加重平均値が各水準で一定となるよう、AからMまでの石炭の配合率を調整した。Roの配合炭平均値、logMFの配合炭平均値の値は、実操業で採用されている値とした。界面張力(γinter)の導出には(20)式を用いた。13種類の石炭の性状を表2、配合率を表3、配合炭の性状を表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 界面張力のコークス強度に及ぼす影響を検証するため、試験コークス炉でコークスを製造し、評価を行なった。表3に記した4水準の配合炭16kgを、粒度3mm以下100mass%、水分8mass%に調整し、嵩密度750kg/m3に充填し、電気炉で乾留した。炉壁温度1100℃で6時間乾留後、窒素冷却し、ドラム強度試験を実施した。JIS K2151の回転強度試験法に基づき、15rpm、150回転後の粒径15mm以上のコークスの質量割合を測定し、回転前との質量比×100をドラム強度DI150/15として算出した。
 界面張力(γinter)とドラム強度の関係を図5に示す。図5によれば、界面張力が小さいほどドラム強度が高くなる傾向があることが分かる。ただし、界面張力が0.03mN/m以下の場合は界面張力の変化に対し強度はほぼ一定であった。本実施例における4水準の配合においては従来コークス強度推定に利用されているパラメータ(Roの配合炭加重平均値、logMFの配合炭加重平均値)はほぼ等しいため、この結果は従来知見では推測不可能であったといえる。また、コークスのCO反応後強度(ISO18894法に準拠して測定)も、例えば配合Bで64.5、配合Cで63.4と、界面張力が0.03mN/mを超える条件で強度が低下した。よって界面張力によりコークス強度を充分に向上させるためには、少なくとも界面張力を0.03mN/m以下に制御すればよいことがわかる。すなわち、複数の石炭を配合してコークスを製造する場合、従来の石炭性状パラメータを調整するとともに、配合炭の界面張力が小さくなるように、少なくとも0.03mN/m以下にして配合することで、従来以上に高強度のコークスを製造可能であることが示された。以上の結果より、本発明方法を用いて配合条件を決定することで、従来以上に高強度を有するコークスが製造できることが明らかとなった。
 [実施例2]
 低MF炭配合率が高い配合条件下において、界面張力を制御することによって高強度コークスを製造した例を示す。8種類の石炭を用意し、まずこれらの石炭に対して性状試験を実施した。測定項目は、上記の[実施例1]と同様に、Ro(最大平均反射率)、logMF、表面張力とした。測定方法も[実施例1]と同様である。測定した表面張力分布より(10)式を用いて表面張力分布の平均値を導出し、この表面張力分布の平均値を石炭の表面張力の指標とした(γ)。性状試験結果を元に、界面張力の異なる5水準の配合(配合E~I)を決定した。コークス強度に影響を及ぼす他のパラメータの影響を除外するため、従来コークス強度推定に利用されているパラメータであるRoの配合炭加重平均値、logMFの配合炭加重平均値は各水準で一定となるよう、各石炭の配合率を調整した。また、logMF値が1.4以下の石炭の割合が30mass%以上となるよう配合を決定した。Roの平均値の配合炭加重平均値、logMFの配合炭加重平均値の値は、実操業で採用されている値とした。界面張力として、(20)式で定義されるγinterを用いた。8種類の石炭の性状を表5、配合率を表6、配合炭の性状を表7に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 界面張力のコークス強度に及ぼす影響を検証するため、[実施例1]と同様に乾留試験を行い、ドラム強度試験を実施した。界面張力(γinter)とドラム強度の関係を図6に示す。
 図6によれば、低MF炭を30mass%以上多量に配合した時も、[実施例1]と同じく界面張力が小さいほどドラム強度が高くなる傾向が読み取れる。図6には参考までに[実施例1]の結果もlogMF1.4以下の石炭配合率30mass%未満として併せて示してある。なお、コークスのCO反応後強度(ISO18894法に準拠して測定)もドラム強度と同様の傾向を示し、例えば配合Iで63.6に対し、配合Gで62.5と界面張力が高くなると強度が低下する結果となった。[実施例1]の結果を[実施例2]の結果、つまりlogMFが1.4以下の石炭配合率が30mass%以上の結果と比較すると、logMF1.4以下の石炭配合率を高めることで、強度を低下させない界面張力の範囲が0.03mN/mから0.01mN/mと狭くなっている。したがって、低MF炭の配合率が高い場合、具体的にはlogMF値が1.4以下の石炭の割合が30mass%以上の場合には、従来のコークス性状パラメータの最適化に加え、配合炭の界面張力が小さくなるように、少なくとも0.01mN/m以下にして配合することで、従来以上に高強度のコークスを製造可能であることが示された。以上の結果より、本発明方法を用いて配合条件を決定することで、従来以上に高強度を有するコークスが製造できることが明らかとなった。
 [実施例3]
 配合炭を構成する各石炭の表面張力の分散から界面張力を推定し、その界面張力を制御することによって高強度コークスを製造した例を示す。測定項目、強度試験結果は[実施例1]、[実施例2]と同じ値を用い、界面張力の導出のみ(25)式を用いるものとする。配合AからIにおいて、(25)式を用いて界面張力を導出した結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8には(20)式で導出したγinterも参考までに併せて示している。(20)式で導出したγinterと(25)式で導出したγinterはほぼ一致することが表8より確認できた。よって(25)式により推定した界面張力とドラム強度の関係も[実施例1]、[実施例2]とほぼ一致すると考えられる。以上の結果より、(25)式により界面張力を推定し、配合条件を決定することで、従来以上に高強度を有するコークスが製造できることが明らかとなった。
[実施例4]
実施例1~3とは異なる銘柄または異なるロットの18種類の石炭を用いて配合炭の流動性が低い条件でのコークス強度への配合炭表面張力の影響を調査した。用いた石炭の性状を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 
表9の性状試験結果を元に、logMF配合炭平均値がそれぞれ2.00、2.30、2.50で、かつ各水準に対し界面張力が0.01~0.02mN/mの配合と0.04~0.05mN/mの計6水準の配合を決定した。また、界面張力として、(1)式で定義されるγinterを用いた。そして、コークス強度に影響を及ぼす他のパラメータの影響を除外するため、従来コークス強度推定に利用されているパラメータであるビトリニット平均反射率(Ro)の配合炭平均値は各水準で一定となるよう、P炭からg炭までの石炭の配合率を調整した。配合炭のRoまたはlogMFの加重平均値は、例えばlogMFの場合、式(26)で求められる。
Figure JPOXMLDOC01-appb-M000014
但し、mi:石炭iのlogMF値(ギーセラー最高流動度の対数値)、wi:石炭iの配合率、mc:配合炭のlogMF値(最高流動度の対数値)であり、かつ式(17)を満たす。石炭の配合率と配合炭の性状を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 
上記の実施例と同様にコークスを製造し、コークス強度を評価した。表10に記した6水準の配合に対しドラム強度測定試験を実施した。MFとドラム強度の関係を図7に示す。図7によれば、界面張力が0.01~0.02mN/mの水準ではMFがlog(MF/[ddpm])=2.0でもlog(MF/[ddpm])=2.5の場合に比べてコークス強度はほとんど低下していないが、0.04~0.05mN/mの水準ではlog(MF/[ddpm])=2.0で低下した。これより、配合炭の界面張力を0.01~0.02mN/mにすることによって、流動性の低下によってコークス強度が低下し始める点(流動性遷移点)がlog(MF/[ddpm])=2.0まで低下することが明らかである。よって、従来の配合では十分な強度のコークスが得られないlog(MF/[ddpm])=2.0の配合でも、配合炭の界面張力を0.02mN/m以下にすることによって、強度低下を抑止できることが示された。なお、この時、コークスのCO反応後強度(ISO18894法に準拠して測定)も同様の傾向を示し、log(MF/[ddpm])=2.0の配合でも、界面張力を0.02mN/m以下にすることによって強度の低下を抑止できた。以上の結果より、本発明を用いて配合条件を決定することで、従来水準よりも流動性遷移点を低下させ、従来高強度コークスが製造できなかった水準まで配合炭のMFを低下しても高強度コークスが製造できることが明らかとなった。
[実施例5]
 実施例1~4と同様に、複数種類の石炭を組み合わせて種々の加重平均Ro、加重平均logMF、界面張力を持つ配合炭を調製し、コークスを製造してコークス強度の評価を行なった。この時配合炭の界面張力は(2)式に基づいて計算した。配合炭性状と、得られたコークスの強度測定結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 
この結果より、広い範囲の配合炭組成において、配合炭の界面張力値(γinter)が0.30を超えるとコークス強度の低下が起こることが認められ、配合炭の界面張力を0.03mN/m以下にすることが好ましいことがわかる。
[実施例6]
石炭の熱処理温度を変えて実施例1の方法と同様に熱処理石炭の試料を調製し、その表面張力を測定すると、軟化溶融温度以上の温度域において、熱処理温度が高くなるほど、表面張力の値が大きくなる傾向が認められた。例えば、表12に示すように、熱処理温度を、400℃、450℃、500℃、600℃、800℃とした時、C炭の表面張力はそれぞれ33.0、35.5、41.1、45.2、52.3mN/mとなり、M炭の表面張力は、30.4、32.4、37.6、42.2、48.7mN/mとなった。表2に示した他の石炭も各温度において概ねC炭とM炭の表面張力の間の値となった。
Figure JPOXMLDOC01-appb-T000012
 
このように、熱処理石炭の表面張力は熱処理温度の上昇に伴い単調に増加する傾向があることが見出されたが、特に、450℃以上では測定したすべての石炭において、軟化溶融温度の上昇に伴う表面張力の単調増加傾向(温度に対し一次の相関に近い傾向)が認められた。この傾向を利用すると、ある石炭について、2点以上の熱処理温度で調製した試料で測定した表面張力と熱処理温度の相関関係から、その熱処理温度の範囲内に入る任意の温度での表面張力を精度よく推算することが可能となる。従って、ある熱処理石炭の表面張力はこのように推算してもよい。熱処理温度を変えた場合の配合炭の界面張力の値γinterを計算すると、表13に示すように、400℃に処理した熱処理石炭から求められた各石炭の表面張力の値から(20)式により求められた配合炭Bの界面張力γinterは0.023mN/mであり、450℃、600℃、800℃熱処理の場合でもそれぞれ、0.023mN/m、0.025mN/m、0.026mN/mとなり、熱処理温度による大きな違いは認められなかった。配合炭Cの場合も同様に、400℃、450℃、600℃、800℃の熱処理石炭の表面張力からもとめた配合炭の界面張力はそれぞれ0.034mN/m、0.036mN/m、0.039mN/、0.039mmN/mであり、やはり熱処理温度による大きな違いは認められなかった。すなわち、熱処理温度を変えた場合でも配合炭の界面張力を0.03mN/m以下にして配合することで、高強度のコークスを製造可能であることがわかる。なお、上述のように熱処理石炭の表面張力の値は熱処理温度の影響を受けるため、配合炭の界面張力の計算にあたっては、すべての銘柄の石炭について同じ熱処理温度で処理した試料について求めた、あるいは推算した表面張力の値を用いて計算する必要がある。
Figure JPOXMLDOC01-appb-T000013
 
 1  気相
 2  液体
 3  試料粒子
 4  表面張力
 5  表面張力分布のピーク値
 6  表面張力分布の最小表面張力
 7  表面張力分布の最大表面張力
 8  石炭A
 9  石炭B
 10(10a、10b、10c、10d) 石炭同士の接触界面
 11 石炭A、石炭Bからなる配合炭で製造したコークス内部の断面模式図

Claims (10)

  1.  2種以上の石炭を配合して配合炭を形成し、前記配合炭を乾留するコークスの製造方法において、石炭間の界面張力を、前記配合の際の石炭の配合割合を決定する管理指標として用いることを特徴とするコークスの製造方法。
  2. 前記石炭の配合割合の決定が、石炭間の界面張力を各石炭の表面張力を用いて導出し、予め2種以上の石炭を配合した配合炭の界面張力と、前記配合炭を乾留して製造したコークスのコークス強度との関係を求め、該関係を用いて配合炭の界面張力が所望のコークス強度を示す範囲内となるように、石炭の配合割合を決定することからなる請求項1に記載のコークスの製造方法。
  3.  前記石炭の表面張力が、軟化溶融開始温度以上、コークス化温度以下に加熱後、不活性雰囲気下で冷却した前記石炭を試料として測定することで得られる請求項2に記載のコークスの製造方法。
  4.  前記石炭の表面張力が、350℃~800℃に加熱後、不活性雰囲気下で冷却した石炭を試料として測定することで得られる請求項3に記載のコークスの製造方法。
  5.  前記石炭間の界面張力の導出が、各石炭の表面張力を用いて下記(1)式より界面張力γinterを導出することからなる請求項2ないし請求項4のいずれかに記載のコークスの製造方法。
    Figure JPOXMLDOC01-appb-M000015
  6.  前記石炭間の界面張力の導出が、各石炭の表面張力を用いて下記(2)式より界面張力γinterを導出することからなる請求項2ないし請求項4のいずれかに記載のコークスの製造方法。
    Figure JPOXMLDOC01-appb-M000016
  7.  前記界面張力γinterが0.03mN/m以下となるように石炭の配合割合を決定することを特徴とする請求項5または請求項6に記載のコークスの製造方法。
     
  8. 配合炭の加重平均Roが0.90~1.30%の範囲であり、かつ配合炭の加重平均logMFが2.3以上2.8以下の範囲である配合炭を用いる請求項7に記載のコークスの製造方法。ここで、Roは平均最大反射率であり、MFはギーセラー最高流動度である。
     
  9. 配合炭の加重平均Roが0.90~1.30%の範囲であり、かつ配合炭の加重平均logMFが2.0以上2.3未満の範囲である配合炭の場合には、界面張力γinterが0.02mN/m以下となるように前記石炭の配合割合を決定することを特徴とする請求項5または請求項6に記載のコークスの製造方法。ここで、Roは平均最大反射率であり、MFはギーセラー最高流動度である。
  10.  logMF値が1.4以下の石炭の配合率が30mass%以上の場合には、界面張力γinterが0.01mN/m以下となるように前記石炭の配合割合を決定することを特徴とする請求項5または請求項6に記載のコークスの製造方法。ここで、MFはギーセラー最高流動度である。
     
PCT/JP2012/006526 2011-10-14 2012-10-11 コークスの製造方法 WO2013054526A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2014119377/05A RU2570875C1 (ru) 2011-10-14 2012-10-11 Способ производства кокса
CN201280061737.3A CN103987812B (zh) 2011-10-14 2012-10-11 焦炭的制造方法
JP2013538441A JP5505567B2 (ja) 2011-10-14 2012-10-11 コークスの製造方法
EP12839478.0A EP2767574B1 (en) 2011-10-14 2012-10-11 Method for manufacturing coke
US14/351,745 US9463980B2 (en) 2011-10-14 2012-10-11 Method for manufacturing coke
IN818MUN2014 IN2014MN00818A (ja) 2011-10-14 2012-10-11
EP20171300.5A EP3722393A1 (en) 2011-10-14 2012-10-11 Method for manufacturing coke
KR1020147009261A KR101580855B1 (ko) 2011-10-14 2012-10-11 코크스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-226496 2011-10-14
JP2011226496 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013054526A1 true WO2013054526A1 (ja) 2013-04-18

Family

ID=48081593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006526 WO2013054526A1 (ja) 2011-10-14 2012-10-11 コークスの製造方法

Country Status (9)

Country Link
US (1) US9463980B2 (ja)
EP (2) EP3722393A1 (ja)
JP (1) JP5505567B2 (ja)
KR (1) KR101580855B1 (ja)
CN (1) CN103987812B (ja)
IN (1) IN2014MN00818A (ja)
RU (1) RU2570875C1 (ja)
TW (1) TWI486431B (ja)
WO (1) WO2013054526A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145680A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法
JP2014218648A (ja) * 2013-04-09 2014-11-20 Jfeスチール株式会社 配合炭の製造方法及びそれを用いたコークスの製造方法
CN114556079A (zh) * 2019-10-28 2022-05-27 杰富意钢铁株式会社 煤的惰质组组织的表面张力推定方法、煤的表面张力推定方法和焦炭的制造方法
JP7493121B1 (ja) 2023-03-28 2024-05-31 Jfeスチール株式会社 コークスの製造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623877B1 (ko) * 2012-03-27 2016-05-24 제이에프이 스틸 가부시키가이샤 코크스 제조용 석탄의 배합 방법 및 코크스의 제조 방법
WO2013145677A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 石炭間の接着性の評価方法
US9850441B2 (en) * 2012-03-27 2017-12-26 Jfe Steel Corporation Method for blending coals, and method for producing coke
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
CN104902984B (zh) 2012-12-28 2019-05-31 太阳焦炭科技和发展有限责任公司 用于去除排放物中的汞的系统和方法
WO2014105065A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Vent stack lids and associated systems and methods
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
AU2015317909B2 (en) 2014-09-15 2020-11-05 Suncoke Technology And Development Llc Coke ovens having monolith component construction
EP3240862A4 (en) 2015-01-02 2018-06-20 Suncoke Technology and Development LLC Integrated coke plant automation and optimization using advanced control and optimization techniques
KR102467182B1 (ko) * 2015-12-17 2022-11-17 주식회사 포스코 코크스 제조방법
EP3465369A4 (en) 2016-06-03 2020-01-15 Suncoke Technology and Development LLC METHODS AND SYSTEMS FOR AUTOMATICALLY GENERATING CORRECTIVE ACTION IN AN INDUSTRIAL INSTALLATION
WO2018217955A1 (en) 2017-05-23 2018-11-29 Suncoke Technology And Development Llc System and method for repairing a coke oven
WO2019017888A1 (en) * 2017-07-18 2019-01-24 Ekocoke, Llc ADAPTABLE COKE PRODUCTION
CN108048119B (zh) * 2017-11-16 2023-07-21 北京恒丰亚业科技发展有限公司 热解炉旋风除尘器下高温焦粉处理系统及方法
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
WO2020140079A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Decarbonizatign of coke ovens, and associated systems and methods
BR112021012455B1 (pt) 2018-12-28 2023-10-24 Suncoke Technology And Development Llc Forno de coque
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
CA3125585C (en) 2018-12-31 2023-10-03 Suncoke Technology And Development Llc Improved systems and methods for utilizing flue gas
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
CN110295049A (zh) * 2019-07-09 2019-10-01 鞍钢股份有限公司 一种高效利用复杂混煤的炼焦配煤方法
CN110724545B (zh) * 2019-10-22 2020-11-24 武汉钢铁有限公司 高硫焦煤参与炼焦的焦炭硫分控制方法
JP6984802B2 (ja) * 2019-10-28 2021-12-22 Jfeスチール株式会社 石炭の表面張力推定方法およびコークスの製造方法
WO2021140947A1 (ja) * 2020-01-07 2021-07-15 Jfeスチール株式会社 配合炭の製造方法およびコークスの製造方法
CA3177017C (en) 2020-05-03 2024-04-16 John Francis Quanci High-quality coke products
WO2023081821A1 (en) 2021-11-04 2023-05-11 Suncoke Technology And Development Llc Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176553A (ja) * 1994-12-22 1996-07-09 Kawasaki Steel Corp 非・微粘結炭の流動性等推定方法
JPH09255966A (ja) 1996-03-21 1997-09-30 Kawasaki Steel Corp 配合炭のコークス特性推定方法
JP2002294250A (ja) 2001-03-30 2002-10-09 Nippon Steel Corp 高炉用コークスの強度推定方法
JP2005281355A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 配合炭のコークス強度推定方法及びコークスの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU49473A1 (ru) * 1935-07-11 1936-08-31 И.В. Геблер Способ определени пластичности каменных углей при их нагревании
KR930702668A (ko) 1991-08-13 1993-09-09 완다 케이. 덴슨-로우 토양으로부터 화학적 오염물질의 추출을 위한 계면활성제의 선택법
JP2007063420A (ja) * 2005-08-31 2007-03-15 Kurita Water Ind Ltd コークス製造用原料炭の嵩密度向上剤と嵩密度向上方法、並びにコークス製造方法
UA86398C2 (ru) * 2006-08-07 2009-04-27 Днепродзержинский Государственный Технический Университет Способ получения кокса С заданнЫМ показателЕМ физико-механических свойств
JP5045039B2 (ja) 2006-09-14 2012-10-10 Jfeスチール株式会社 高強度コークスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176553A (ja) * 1994-12-22 1996-07-09 Kawasaki Steel Corp 非・微粘結炭の流動性等推定方法
JPH09255966A (ja) 1996-03-21 1997-09-30 Kawasaki Steel Corp 配合炭のコークス特性推定方法
JP2002294250A (ja) 2001-03-30 2002-10-09 Nippon Steel Corp 高炉用コークスの強度推定方法
JP2005281355A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 配合炭のコークス強度推定方法及びコークスの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.W. FUERSTENAU, INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 20, 1987, pages 153
J.K. SPELT; D. LI: "Advances in Chemistry Series", vol. 63, 1996, MARCEL DEKKER, article "The equation of state approach to interfacial tensions, in Applied Surface Thermodynamics", pages: 239 - 292

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145680A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法
JP5737473B2 (ja) * 2012-03-27 2015-06-17 Jfeスチール株式会社 コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法
US10144891B2 (en) 2012-03-27 2018-12-04 Jfe Steel Corporation Method for preparing coal mixture for cokemaking, coal mixture, and method for producing coke
JP2014218648A (ja) * 2013-04-09 2014-11-20 Jfeスチール株式会社 配合炭の製造方法及びそれを用いたコークスの製造方法
CN114556079A (zh) * 2019-10-28 2022-05-27 杰富意钢铁株式会社 煤的惰质组组织的表面张力推定方法、煤的表面张力推定方法和焦炭的制造方法
CN114556079B (zh) * 2019-10-28 2024-04-09 杰富意钢铁株式会社 煤的惰质组组织的表面张力推定方法、煤的表面张力推定方法和焦炭的制造方法
JP7493121B1 (ja) 2023-03-28 2024-05-31 Jfeスチール株式会社 コークスの製造方法

Also Published As

Publication number Publication date
EP2767574A4 (en) 2015-04-22
KR101580855B1 (ko) 2015-12-29
KR20140064937A (ko) 2014-05-28
CN103987812B (zh) 2015-09-09
EP3722393A1 (en) 2020-10-14
EP2767574A1 (en) 2014-08-20
US20150047961A1 (en) 2015-02-19
EP2767574B1 (en) 2020-06-10
JPWO2013054526A1 (ja) 2015-03-30
IN2014MN00818A (ja) 2015-06-12
JP5505567B2 (ja) 2014-05-28
RU2570875C1 (ru) 2015-12-10
CN103987812A (zh) 2014-08-13
TWI486431B (zh) 2015-06-01
TW201319239A (zh) 2013-05-16
US9463980B2 (en) 2016-10-11
RU2014119377A (ru) 2015-11-20

Similar Documents

Publication Publication Date Title
JP5505567B2 (ja) コークスの製造方法
JP5686223B2 (ja) 石炭の配合方法及び配合炭、並びに、コークス製造方法
JP5910659B2 (ja) 配合炭の製造方法及びそれを用いたコークスの製造方法
JP5582271B2 (ja) 石炭間の接着性の評価方法
TW201343890A (zh) 製造焦炭用煤炭的調合方法以及焦炭的製造方法
JP5737473B2 (ja) コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法
JP6044708B2 (ja) 石炭の風化度の評価方法、風化石炭のコークス化性の評価方法、及び、石炭の風化度の管理方法、並びに、コークスの製造方法
TWI759055B (zh) 摻合碳之製造方法及焦碳之製造方法
WO2021085146A1 (ja) 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法
CN114555759B (zh) 煤的表面张力推定方法和焦炭的制造方法
RU2803512C1 (ru) Способ оценки поверхностного натяжения инертных компонентов угля, способ оценки поверхностного натяжения угля и способ получения кокса
RU2794598C1 (ru) Способ оценки поверхностного натяжения угля и способ получения кокса

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538441

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147009261

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012839478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014119377

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14351745

Country of ref document: US