WO2013054513A1 - ボールねじの製造方法、ボールねじ - Google Patents

ボールねじの製造方法、ボールねじ Download PDF

Info

Publication number
WO2013054513A1
WO2013054513A1 PCT/JP2012/006495 JP2012006495W WO2013054513A1 WO 2013054513 A1 WO2013054513 A1 WO 2013054513A1 JP 2012006495 W JP2012006495 W JP 2012006495W WO 2013054513 A1 WO2013054513 A1 WO 2013054513A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
hole
nut
seal
peripheral surface
Prior art date
Application number
PCT/JP2012/006495
Other languages
English (en)
French (fr)
Inventor
大輔 黒岩
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2013538437A priority Critical patent/JP5725195B2/ja
Priority to EP12840818.4A priority patent/EP2767731A1/en
Priority to US14/351,014 priority patent/US20140260747A1/en
Priority to CN201280050217.2A priority patent/CN103874869B/zh
Priority to KR1020147008702A priority patent/KR20140057377A/ko
Priority to TW101137728A priority patent/TWI504823B/zh
Publication of WO2013054513A1 publication Critical patent/WO2013054513A1/ja
Priority to US15/202,225 priority patent/US10113621B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H25/2418Screw seals, wipers, scrapers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H2025/2481Special features for facilitating the manufacturing of spindles, nuts, or sleeves of screw devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49963Threaded fastener
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19698Spiral
    • Y10T74/19702Screw and nut
    • Y10T74/19744Rolling element engaging thread

Definitions

  • the present invention relates to a ball screw used as a machine element such as a steering device, a device for moving heavy objects, a machine for processing, a precision positioning device, and a manufacturing method thereof.
  • a ball screw (ball screw device) includes a nut having a spiral groove formed on the inner peripheral surface, a screw shaft having a spiral groove formed on the outer peripheral surface, a spiral groove of the nut and a spiral groove of the screw shaft. And a ball return path that returns the ball from the end point of the track to the start point, and the nut moves relative to the screw shaft by rolling the ball in the track. .
  • FIG. 24 shows a conventional example of a ball screw provided with a seal (FIG. 4 of Patent Document 1).
  • the ring-shaped seal 40 is fixed to the inner peripheral surface of the axial end portion of the nut 20 by a set screw 60 having no head.
  • FIG. 25 (a) shows this state.
  • the through hole 28 is threaded to form a female screw hole 29.
  • FIG. 25B shows this state.
  • a drill hole is formed in the outer peripheral surface of the seal 40 through a drill through the female screw hole 29.
  • FIG. 25 (c) shows this state.
  • This seal fixing method requires a step of threading the through hole 28, a step of removing burrs after the processing, and the like.
  • a flange is not formed on the end portion in the axial direction which is a seal attaching portion of the nut 20 (an end portion shown in FIG. 24) and a case where a flange is formed.
  • the thickness (diameter dimension) of the seal mounting portion of the nut differs depending on the product.
  • FIG. 26A when the thickness TN of the seal mounting portion of the nut 20 is thin, only the female screw hole 29 is formed in the seal mounting portion.
  • FIG. 26 (b) when the thickness TN of the seal mounting portion of the nut 20 is thick, the time required for tapping is shortened by providing a drill hole 29a on the outer peripheral side.
  • the ball screw has a small production lot and various dimensions. For this reason, the processing and formation of the pilot hole 402 of the seal 40, the through hole 28 of the nut 20 and the drill hole 29a are performed using a manual drilling machine without using a dedicated jig. Further, in processing and forming the pilot holes 402, operations as shown in FIGS. 27A to 27D are performed in order to make the depths of the pilot holes 402 equal.
  • FIG. 27A a through hole 290 including a female screw hole 29 and a drill hole 29 a is provided in the flange 22 at one axial end portion of the nut 20.
  • a drill 71 that is not driven to rotate is inserted into the through-hole 290 until the tip of the drill blade 72 reaches the outer peripheral surface of the seal 40, and the drill 71 advances into the drill 71.
  • a stopper 170 that regulates the above is mounted.
  • a gauge 173 having the same thickness as the depth dimension of the pilot hole 402 to be processed into the seal 40 is disposed, and the stopper 170 is attached to the gauge 173. Set so that it touches the top. Thereafter, as shown in FIG. 27C, the gauge 173 is extracted, the drill blade 72 is driven to rotate, and the pilot hole 402 is formed by drilling. The drill 71 drills the seal 40 inward from the outer peripheral surface side until the progress is restricted by the stopper 170.
  • a pilot hole 402 is formed in the seal 40 as shown in FIG.
  • each pilot hole 402 By such processing, it is possible to always form the pilot hole 402 having the same depth as the gauge thickness on the outer peripheral surface side of the seal 40. That is, the depth of the prepared pilot hole 402 can be managed.
  • This operation is also performed at the other axial end of the nut 20. Since the flange 20 is not formed at the other axial end of the nut 20, only the female screw hole 29 is formed.
  • the female screw hole 29 is regarded as a through hole 290 and the above-described operation is performed.
  • the depth of the pilot hole 402 is adjusted by the gauge 173 and the stopper 170 in accordance with the thickness of the seal mounting portion of the nut 20.
  • An object of the present invention is to generate heat due to friction between a seal and a screw shaft in a seal fixing process in which a ring-shaped seal is fixed to a mounting portion provided at an axial end portion of a nut using a fixing member. It is to avoid.
  • a first aspect of the present invention is a ball screw having a seal fixing step of fixing a ring-shaped seal to a mounting portion provided at an axial end portion of a nut using a fixing member.
  • the manufacturing method is characterized by having the following configurations (1-1) to (1-2).
  • (1-1) The mounting portion has an inner peripheral surface having a larger diameter than an inner peripheral surface on which the spiral groove of the nut is formed, and penetrates the mounting portion in a radial direction from the outer peripheral surface to the inner peripheral surface.
  • a through hole is provided.
  • a ball screw manufacturing method including a seal fixing step of fixing a ring-shaped seal to a mounting portion provided at an axial end portion of a nut using a fixing member, (1-1) and the following configurations (1-3) to (1-5).
  • (1-3) A screw having a head is used as the fixing member.
  • the through hole has a seating surface for receiving the head of the screw.
  • (1-5) In the seal fixing step, the screw is passed through the through hole and engaged with the outer peripheral portion of the seal, so that the head presses the seat surface with a force that presses the seat surface radially outward. An directional force is generated to secure the seal to the nut.
  • the method of manufacturing the ball screw of the second aspect can further have the following configuration (1-6).
  • (1-6) A mounting hole extending in a radial direction from the outer peripheral surface is provided in the seal, and in the seal fixing step, the mounting hole and the through hole are aligned, and the screw is passed through the through hole to the mounting hole. Engage.
  • the mounting hole is a recess extending in the radial direction from the outer peripheral surface of the seal.
  • the through hole is composed of a large-diameter portion on the outer peripheral side, a small-diameter portion on the inner peripheral side, and a conical portion communicating these, and the diameter of the large-diameter portion is the diameter of the head of the screw.
  • the diameter of the small diameter portion is larger than the outer diameter of the male screw portion of the screw, and the inclined surface of the conical portion is a seating surface that receives the head portion.
  • a third aspect of the present invention is a ball screw having the following configurations (1-11) to (1-13).
  • (1-11) An orbit formed by a nut having a spiral groove formed on the inner peripheral surface, a screw shaft having a spiral groove formed on the outer peripheral surface, and the spiral groove of the nut and the spiral groove of the screw shaft.
  • the mounting portion has an inner peripheral surface having a larger diameter than an inner peripheral surface in which the spiral groove of the nut is formed, and the mounting portion penetrates in a radial direction from the outer peripheral surface to the inner peripheral surface.
  • the through hole has a seating surface for receiving the head of the screw.
  • the ball screw of the third aspect can further have the following configuration (1-14) or (1-15).
  • the screw is a tapping screw, and the seal has a mounting hole extending in a radial direction from an outer peripheral surface at a position corresponding to the through hole, and the mounting hole has a hole diameter of the tapping screw. This is a pilot hole not having a female thread formed below the root diameter of the male screw part, and the male screw part of the tapping screw passing through the through hole is coupled to the position of the pilot hole of the seal in a threaded state.
  • the screw is a drill screw (self-tapping screw), and a male screw portion of the drill screw passing through the through hole is coupled to an outer peripheral portion of the seal in a threaded state.
  • a fourth aspect of the present invention is a method for manufacturing a ball screw device, the ball screw device having the following configurations (2-1) to (2-2), which includes the following configurations (2-3 ) To (2-5).
  • (2-1) A screw shaft having a spiral groove formed on the outer peripheral surface and a groove facing the spiral groove on the inner peripheral surface, and disposed between the groove and the spiral groove A nut that engages with the screw shaft via a plurality of rolling elements, and a dust-proof component that is provided on the inner diameter side of the nut and seals a gap between the nut and the screw shaft.
  • a plurality of radial through-holes penetrating from the outer peripheral surface to the inner peripheral surface of the nut are provided at the axial end portion of the nut, and the dust-proof component is disposed in each of the plurality of through-holes.
  • the fixing member for fixing to a nut is arrange
  • the through hole is formed so as to include a step portion between the portion and the small diameter portion.
  • the plurality of recesses are processed and formed by a drill having a diameter smaller than that of the large diameter portion. (2-5) During the formation of the recess, the drill is inserted into the through hole until the shank portion contacts the stepped portion of the through hole.
  • the stepped portion regulates the progress of the drill when the shank portion comes into contact with the stepped portion at the time of forming the recess.
  • the processing distance of the drill to the dust-proof component is defined so that the depths of the plurality of recesses after the processing and formation are all the same.
  • the method for manufacturing a ball screw device according to the fourth aspect is preferably characterized in that the depth dimension of the small diameter portion is formed to be the same in any of the through holes.
  • the length of the blade portion has a sum total of the depth size of the small diameter portion and the depth size of the concave portion after the process formation.
  • the plurality of recesses are processed and formed by the drill.
  • a drill for carrying out the method of manufacturing the ball screw device according to the fourth aspect includes a shank portion and a blade portion provided at the tip of the shank portion, and the blade portion has a smaller diameter than the shank portion.
  • the shank portion has a diameter larger than the small diameter portion and smaller than the large diameter portion.
  • the length of the blade part is such that the depth dimension of the small diameter part and the depth dimension of the concave part after the work formation It is characterized by having a total dimension. According to the fourth aspect, it is possible to provide a ball screw device manufacturing method, a ball screw device, and a tool used in the ball screw device manufacturing method capable of reducing the time required for attaching dustproof parts.
  • the ball screw device according to the fifth aspect is obtained by the method for manufacturing the ball screw device according to the fourth aspect.
  • a sixth aspect of the present invention is a dustproof component having the following configurations (3-1) to (3-2).
  • (3-1) Used in a ball screw device having a nut, a screw shaft inserted into the nut, and a rolling element that rolls between the nut and the screw shaft, and an axial end of the nut It is an annular dust-proof part that is fitted to the inner periphery of the part and is screwed from the radially outer side of the nut toward the radially inner side to close the gap between the nut and the screw shaft.
  • the pair of screw receiving projections are arranged with a gap in the axial direction so as to allow the screw to be screwed in.
  • the width of the gap in the axial direction is equal to or less than the diameter of the valley of the male screw portion of the screw.
  • the axial width of the radially inner portion of the gap is equal to or less than the diameter of the valley of the male screw portion of the screw, and the axial width of the radially outer portion of the gap is The radial inner portion is wider than the width in the axial direction.
  • the width of the widest portion of the gap is equal to or smaller than the outer diameter of the male screw portion of the screw and equal to or larger than the diameter of the valley of the male screw portion of the screw. is there.
  • the screw receiving projection is formed over the entire circumference of the outer peripheral surface of the main body.
  • the dust-proof component of the sixth aspect is more preferably formed from an elastomer.
  • a ball screw device is the ball screw device including a nut, a screw shaft that is inserted into the nut, and a rolling element that rolls between the nut and the screw shaft. It is provided with 6 types of dustproof parts. According to the sixth and seventh aspects, it is possible to provide a dust-proof component that reduces the labor required for assembling the dust-proof component and a ball screw device including the dust-proof component.
  • An eighth aspect of the present invention is a dust-proof component having the following configurations (4-1) to (4-2).
  • (4-1) Used in a ball screw device having a nut, a screw shaft inserted into the nut, and a rolling element that rolls between the nut and the screw shaft, and an axial end of the nut And a dust-proof part that is screwed from the radially outer side of the nut toward the radially inner side to close a gap between the nut and the screw shaft.
  • (4-2) a donut-shaped main body formed on the inner side in the radial direction, a screw receiving projection that protrudes radially outward from the outer peripheral surface of the main body and extends in the axial direction, and an outer peripheral surface of the main body
  • a shielding portion that protrudes radially outward and extends in the circumferential direction, and a plurality of the screw receiving projections are formed with a gap in the circumferential direction of the outer peripheral surface of the main body, The shielding portion is formed at an axial end of the screw receiving projection and the gap.
  • the width of the gap in the circumferential direction is equal to or less than the diameter of the valley of the male screw portion of the screw.
  • the screw receiving projection is formed over the entire circumference of the outer peripheral surface of the main body.
  • the dust-proof component of the eighth aspect is more preferably molded from an elastomer.
  • a ball screw device according to a ninth aspect is the ball screw device including a nut, a screw shaft inserted into the nut, and a rolling element that rolls between the nut and the screw shaft. Eight modes of dustproof parts are provided.
  • the eighth and ninth aspects it is possible to provide a dust-proof component that reduces the labor required for assembling the dust-proof component, and a ball screw device including the dust-proof component.
  • the dust-proof parts of the sixth and eighth aspects can be used as a seal for the method of manufacturing the ball screw of the first and second aspects and as a seal constituting the ball screw of the third aspect.
  • a radially outward force is generated in the seal in the seal fixing step of fixing the ring-shaped seal to the mounting portion provided at the axial end of the nut using a fixing member.
  • FIG. 3 is a view showing a ball screw according to an embodiment of the first to third aspects, in which a nut and a seal are shown in cross section. It is a fragmentary sectional view of Drawing 1, and shows the state (a) before fixation of a seal, and the state (b) after fixation. It is a figure which shows the seal
  • FIG. 1 is a view showing a ball screw according to an embodiment of the first to third aspects, in which a nut and a seal are shown in cross section. It is a fragmentary sectional view of Drawing 1, and shows the state (a) before fixation of a seal, and the state (b) after fixation.
  • FIG. 6 is a partial cross-sectional view showing a state in which the ball screw device according to the fourth to fifth embodiments is viewed from the radial direction of the screw shaft.
  • FIG. 6 is a view showing a dust-proof component according to an embodiment of the fourth to fifth aspects, and is an external view (a) when viewed from the axial direction of the screw shaft, and a cross-sectional view (b) when viewed from the radial direction of the screw shaft. And (b) is a partially enlarged view (c).
  • FIG. 7 is an external view of a drill used for manufacturing a ball screw device according to embodiments of the fourth to fifth aspects.
  • FIG. 7 is a partial cross-sectional view of a main part of a ball screw device being manufactured in the fourth to fifth embodiments.
  • FIG. 8 is a partial cross-sectional view of a main part of a ball screw device being manufactured and a drill in the fourth to fifth embodiments, and shows a state in which a through hole is formed in a nut.
  • it is a partial cross-sectional view of the main part of the ball screw device being manufactured, showing a state in which a pilot hole for tapping is formed.
  • FIG. 10 is a cross-sectional view showing the first half of the method of assembling the dust-proof component of the ball screw device, corresponding to the problems of the sixth to ninth aspects, wherein (a) shows the step of temporarily fitting the dust-proof component to the spigot portion of the nut.
  • FIG. 10 is a cross-sectional view showing the latter half of the method of assembling the dust-proof component of the ball screw device, corresponding to the problems of the sixth to ninth aspects, wherein (a) shows the step of blowing off the shavings by air blow, (b) (C) shows the process of confirming the fixing state of the tapping screw with a caliper.
  • FIG. 7 is a cross-sectional view of the ball screw device according to the first embodiment of the sixth to seventh aspects.
  • FIG. 8 is a plan view (a) showing a dust-proof component used in the ball screw device according to the first embodiment of the sixth to seventh aspects, an AA sectional view (b) of (a), and an enlarged sectional view (c). .
  • FIG. 7 is a cross-sectional view showing a process of assembling the dustproof part of the ball screw device according to the first embodiment of the sixth to seventh aspects, wherein (a) is a process of fitting the dustproof part into the end of the nut; Shows a step of fixing the dust-proof component to the nut with a tapping screw, and (c) shows a step of confirming the fixing state of the tapping screw with a caliper.
  • FIG. 7 is a cross-sectional view showing a process of assembling the dustproof part of the ball screw device according to the first embodiment of the sixth to seventh aspects, wherein (a) is a process of fitting the dustproof part into the end of the nut; Shows a step of fixing the dust-proof component to the nut with
  • FIG. 6 is a plan view (a) showing a dustproof component used in a ball screw device according to a second embodiment of the sixth to seventh aspects, a BB sectional view (b) of (a), and an enlarged sectional view (c).
  • FIG. 7 is a plan view (a) showing a dustproof component used in a ball screw device according to a third embodiment of the sixth to seventh aspects, a CC sectional view (b) of (a), and an enlarged sectional view (c).
  • FIG. 7 is a plan view (a) showing a dustproof component used in a ball screw device according to a fourth embodiment of the sixth to seventh aspects, a DD sectional view (b) of (a), and an enlarged sectional view (c). .
  • FIG. 9 is a view showing the ball screw device according to the first embodiment of the eighth to ninth aspects, where (a) shows a cross section of the nut cut in the axial direction and a side surface of the screw shaft, and (b) shows a dust-proof component.
  • FIG. 5C is a plan view of the nut screwed into the nut as viewed from the outside in the axial direction of the nut
  • FIG. 8C is a plan view of the dustproof component screwed into the dust-proof part as viewed from the axially inside of the nut.
  • FIG. 5C is a plan view of the nut screwed into the nut as viewed from the outside in the axial direction of the nut
  • FIG. 8C is a plan view of the dustproof component screwed into the dust-proof part as viewed from the axially inside of the nut.
  • FIG. 8 is a plan view (a) showing a dust-proof component used in the ball screw device according to the first embodiment of the eighth to ninth aspects, an AA sectional view (b) of (a), and an enlarged sectional view (c). .
  • FIG. 9 is a cross-sectional view showing a process of assembling the dustproof part of the ball screw device according to the first embodiment of the eighth to ninth aspects, wherein (a) shows a process of fitting the dustproof part into the end of the nut; (B) shows a step of fixing the dust-proof component to the nut with a tapping screw, and (c) shows a step of confirming the fixing state of the tapping screw with a caliper.
  • FIG. 8 is a plan view (a) showing a dustproof component used in a ball screw device according to a second embodiment of the eighth to ninth aspects, a BB sectional view (b) of (a), and an enlarged sectional view (c). .
  • It is a fragmentary sectional view which shows the prior art example of the ball screw provided with the seal
  • (A) is sectional drawing of a through-hole when the thickness of a nut is thin
  • (b) is sectional drawing of a through-hole when the thickness of a nut is thick. It is a figure explaining the method (conventional method) which forms a pilot hole in the outer peripheral surface of a seal
  • the ball screw of this embodiment includes a screw shaft 1, a nut 2, a ball 3, a ring-shaped seal (dust-proof component) 4, and a tapping screw that fixes the seal 4 to the nut 2 ( And a screw 5 having a head.
  • a spiral groove 11 is formed on the outer peripheral surface of the screw shaft 1, and a spiral groove 21 is formed on the inner peripheral surface of the nut 2.
  • the ball 3 is disposed between the tracks formed by the spiral groove 11 of the screw shaft 1 and the spiral groove 21 of the nut 2.
  • a flange 22 is formed at one axial end of the nut 2.
  • the diameter of the inner peripheral surface of the nut 2 is formed larger than the portion where the spiral groove 21 is formed at both axial end portions.
  • a portion where the expanded inner peripheral surface 23 is formed is a seal mounting portion 24 of the nut 2.
  • Each seal mounting portion 24 is formed with two through holes 25 penetrating in the radial direction from the outer peripheral surface to the inner peripheral surface.
  • the two through holes 25 are formed at positions facing each other on the inner peripheral surface 23 of the seal mounting portion 24 (positions where the central angle is 180 °).
  • the tapping screw 5 has a countersunk head 51.
  • An angle (slope angle) ⁇ 5 formed by a conical slope forming the head 51 and a line perpendicular to the axis of the tapping screw 5 is 30 °.
  • the through hole 25 provided in the seal mounting portion 24 includes a large-diameter portion 25a on the outer peripheral side, a small-diameter portion 25b on the inner peripheral side, and a conical portion 25c that communicates these.
  • the diameter of the large diameter portion 25 a is larger than the diameter of the head 51 of the tapping screw 5.
  • the diameter of the small diameter portion 25 b is larger than the outer diameter of the male screw portion of the tapping screw 5.
  • An angle (slope angle) ⁇ 2 formed by the slope of the conical portion 25c and a line perpendicular to the axis of the through hole 25 is 30 °.
  • the inclined surface of the conical portion 25 c is a seating surface that receives the head 51 of the tapping screw 5.
  • the through hole 25 is easily formed by, for example, a method of forming a hole having a diameter of the large diameter portion 25a on the outer peripheral side of the through hole after forming a through hole having a diameter of the small diameter portion 25b by a drill. Can do.
  • a protrusion 41 corresponding to the spiral groove 11 of the screw shaft 1 is formed on the inner peripheral surface of the seal 4.
  • a recess pilot hole
  • Mounting holes 42 are formed on the outer peripheral surface of the seal.
  • the recess 42 is shown by a two-dot chain line in FIG.
  • this ball screw is assembled by the following method. First, the ball 3 and the screw shaft 1 are assembled into the nut 2. Next, the seal 4 is fitted to the axial end of the screw shaft 1, and the seal 4 is rotated while being pushed in the axial direction of the screw shaft 1. As a result, the seal 4 is moved and placed in the inner peripheral surface 23 of the seal mounting portion 24 of the nut 2. Then, after aligning the thread groove 11 and the protrusion 41 of the seal 4, the seal 4 is slightly separated from the axial end surface 24 a of the seal mounting portion 24 in order to prevent contact between the screw shaft 1 and the seal 4.
  • FIG. 2A shows this state. In this state, a gap exists between the inner peripheral surface 23 of the seal mounting portion 24 and the seal 4. The diameter of the recess 42 is smaller than the root diameter of the male thread portion of the tapping screw 5.
  • the tapping screw 5 is put into the through hole 25, the tip thereof is brought into contact with the concave portion 42 of the seal 4, and the tapping screw 5 is rotated with a screwdriver. Accordingly, the tapping screw 5 enters the seal 4 while threading the periphery of the recess 42 with the male screw portion.
  • the slope of the head 51 comes into contact with the slope (seat surface) 25c of the through hole 25, the slope of the head 51 faces the seal 4 radially outward by the force pressing the slope 25c of the through hole 25.
  • the power of is generated.
  • the seal 4 is fixed to the seal mounting portion 24 of the nut 2 with the tapping screw 5.
  • FIG. 2B shows this state. In this state, the seal 4 comes into contact with the inner peripheral surface 23 of the seal mounting portion 24, and a gap is generated between the seal 4 and the screw shaft 1.
  • the seal 4 is pressed against the screw shaft 1 because a force in a direction away from the screw shaft 1 is applied to the seal 4 in a state where the seal 4 is fixed to the nut 2. Therefore, heat generation due to friction between the seal 4 and the screw shaft 1 is prevented. Further, since the tightening torque of the tapping screw 5 changes before and after the inclined surface of the head 51 comes into contact with the inclined surface 25c of the through hole 25, the tightening torque is managed to fix the seal 4 to the nut 2 by the tapping screw 5. You know the completion point. That is, when the tapping screw 5 is tightened until the tightening torque changes, the seal 4 is securely fixed to the nut 2. Therefore, it is easy to know whether or not the seal 4 is securely fixed to the nut 2, and it is necessary to measure the depth to the upper end of the screw in the through hole 25 with a caliper or the like in order to confirm the fixed state. Absent.
  • the slope angle ⁇ 5 of the head 51 of the tapping screw 5 is 30 °
  • the above-described tightening torque is compared with the case where the tapping screw having the slope angle ⁇ 5 of 45 ° is used. Can be easily managed. Since the rotation direction of the tightening of the tapping screw 5 and the rotation direction of the drill when forming the inclined surface (seat surface) 25c of the through hole 25 are the same, the inclined surface of the head 51 and the inclined surface 25c of the through hole 25 are the same. Even if the surface roughness is not reduced, the tightening torque of the tapping screw 5 can be managed without any problem.
  • the recess (preparation hole) 42 of the seal 4 is preferably formed to a depth where a gap 42a is formed before the tip of the tapping screw 5 in the state of FIG. Thereby, the above-mentioned tightening torque can be easily managed.
  • the depth of the recess 42 is preferably as deep as possible.
  • the pilot hole of the seal 4 may be a through hole extending from the outer peripheral surface to the inner peripheral surface.
  • a drill screw 6 is used instead of the tapping screw 5.
  • the drill screw 6 has a cutting edge 62 formed at the tip of the tapping screw, and has a head 61 having a slope angle ⁇ 6 of 30 °, similar to the head 51 of the tapping screw 5.
  • the manufacturing cost can be reduced.
  • the seal 4 is fixed to the nut 2 with the tapping screw 5 or the drill screw 6 that is a screw having a head, by using a screw with a small shaft portion diameter, It can cope with the fixing of the thin seal 4 (small dimension in the axial direction).
  • the external thread is not formed on the outer peripheral portion of the seal 4, and the seal 4 is threaded by the male screw portion of the tapping screw 5 or the drill screw 6, and the male screw portion is engaged with the seal 4.
  • a radially outward force is generated on the seal 4, and the seal 4 is fixed to the nut 2.
  • a radially outward force is generated on the seal 4 and the seal 4 is fixed to the nut 2. May be.
  • a screw having a head is used as the fixing member.
  • the fixing member of the method according to the first aspect is engaged with the outer peripheral portion of the seal through the through hole of the seal mounting portion. As long as it can generate a radially outward force on the seal, it may be other than “a screw having a head”.
  • FIG. 5 is a partial cross-sectional view of the ball screw device according to the present embodiment as viewed from the radial direction of the screw shaft.
  • 6 (a), 6 (b), and 6 (c) are external views of the dust-proof component viewed from the axial direction of the screw shaft, and cross-sectional views of the dust shaft viewed from the radial direction of the screw shaft, respectively.
  • the ball screw device 101 according to this embodiment includes a screw shaft 104 having a circular cross section and a nut 107 through which the screw shaft 104 is disposed.
  • a spiral thread groove 110 is formed on the outer peripheral surface of the screw shaft 104, and a groove 113 facing the thread groove 110 is spirally formed on the inner peripheral surface of the nut 107.
  • the thread groove 110 on the outer peripheral surface of the screw shaft 104 and the groove 113 on the inner peripheral surface of the nut 107 form a rolling path of the ball 116 that is a rolling element.
  • the nut 107 is engaged with the screw shaft 104 via a large number of balls 116 rolling on the rolling path.
  • Each end portion of the nut 107 is provided with a dustproof part 119 for sealing a gap between the nut 107 and the screw shaft 104.
  • the dust-proof component 119 is an annular seal member.
  • the nut 107 used in the ball screw device 101 according to the present embodiment has a flange portion 122 formed at one end. Therefore, the thickness of the nut 107 is different between one end portion where the flange portion 122 is formed and the other end portion where the flange portion 122 is not formed.
  • the inner diameter of both ends of the nut 107 is enlarged, and an annular step 125 is formed in the vicinity of each end of the inner peripheral surface.
  • the enlarged inner diameters at both ends are formed to have the same diameter.
  • a housing portion 128 of the dust-proof component 119 is formed by the inner circumferential surface of the portion whose inner diameter is enlarged and the annular step portion 125.
  • the dust-proof component 119 is disposed by being fitted into the accommodating portions 128 at both ends of the inner peripheral surface, and the outer peripheral surface of the dust-proof component 119 is opposed to the inner peripheral surface of the accommodating portion 128. Yes.
  • the inner peripheral surface of the dust-proof component 119 has a male-female shape with the surface shape of the screw shaft 104.
  • a protrusion 131 corresponding to the shape of the thread groove 110 formed on the surface of the screw shaft 104 is formed on the inner peripheral surface of the dust-proof component 119. Is formed.
  • the gap between the screw shaft 104 and the nut 107 is reliably sealed to prevent foreign matters such as dust from entering.
  • a plurality of through holes 134 are formed at both ends of the nut 107 and extend in the radial direction through the outer peripheral surface of the nut 107 and the inner peripheral surface of the accommodating portion 128.
  • a plurality of through holes 134 are provided along the circumferential direction at each end, and the same number (two in this embodiment) is provided at both ends.
  • each through-hole 134 is a hole having a large diameter (hereinafter referred to as “large-diameter portion 137”) extending from the outer peripheral surface side of the nut 107 to the vicinity of the inner peripheral surface of the accommodating portion 128.
  • a two-stage hole formed from a small diameter hole hereinafter referred to as “small diameter part 143”) extending from the bottom of the large diameter part 137 to the inner peripheral surface of the nut 107.
  • a step portion 140 is formed by a large diameter portion 137 and a small diameter portion 143.
  • the diameter of the large-diameter portion 137 is slightly larger than the shank portion of the machining drill described later.
  • the diameter of the small diameter part 143 is formed smaller than this shank part, and is formed larger than the diameter of the blade edge
  • a tapping process is applied to the inner peripheral surface of the small diameter portion 143, and a female screw (not shown) is formed.
  • the through hole 134 formed at the end portion on the flange portion 122 side and the through hole 134 formed at the end portion on the side where the flange portion 122 is not formed are the central axis of the nut 107.
  • the distance in the radial direction from the step portion 140 of the through hole 134 is formed to be equal. That is, the distance from the central axis of the nut 107 to the stepped portion 140 of each through hole 134 is the same.
  • the thickness from the inner peripheral surface of the accommodating portion 128 to the stepped portion 140 of the through hole 134, that is, the radial distance is the same for both end portions of the nut 107. In other words, the depth dimension of the small diameter portion 143 of each through hole 134 is the same.
  • Screw fixing holes 146 are provided at positions corresponding to the through-holes 134 formed at both ends of the nut 107 on the outer peripheral surface side of the dust-proof component 119 fitted in each housing portion 128 of the nut 107. Yes.
  • a female thread (not shown) is formed on the inner peripheral surface of the screw fixing hole 146 by tapping.
  • a fastening member 149 is screwed into the through hole 134 from the outer peripheral surface side of the nut 107.
  • the fastening member 149 is a screw member.
  • the large diameter portion 137 has a diameter larger than the diameter of the fastening member 149, and serves as a guide when the fastening member 149 is screwed.
  • the shaft portion of the fastening member 149 is engaged with the female screw of the small diameter portion 143 of the through hole 134, and the tip portion is engaged with the screw fixing hole 146 of the dust-proof component 119. With these engagements, the dust-proof component 119 is fixed to the housing portion 128 of the nut 107.
  • FIG. 7 is an external view of a drill 152 used for manufacturing the ball screw device 101 according to the present embodiment.
  • the drill 152 is a tapping pilot hole 155 (see FIGS. 6A, 6 ⁇ / b> B, and 6 ⁇ / b> C) for forming a screw fixing hole 146 on the outer peripheral surface side of the dust-proof component 119. Used for processing formation.
  • the drill 152 includes a shank 158 and a blade edge portion 61 attached to the tip of the shank 158.
  • the diameter DS of the shank 158 is formed larger than the diameter DB of the blade edge portion 61.
  • the machining by the drill 152 is performed by attaching the shank 158 to the rotation drive unit 64 (see FIG. 9) of a machining apparatus (not shown).
  • the diameter DS of the shank 158 is larger than the diameter of the small diameter portion 143 of the through hole 134 formed in the nut 107 and slightly smaller than the diameter DH of the large diameter portion 137 (see FIG. 9). Specifically, it is formed 0.2 to 0.3 (mm) smaller than the diameter (mm) of the large diameter portion 137 of the through hole 134.
  • the diameter DB of the blade edge portion 61 is the same as the inner diameter of the screw fixing hole 146 of the dust-proof component 119, that is, the inner diameter of the female screw formed on the inner peripheral surface of the screw fixing hole 146.
  • the length LB of the blade edge portion 61 is a total dimension of the depth dimension of the formed screw fixing hole 146 and the depth dimension of the small diameter portion 143 of the through hole 134.
  • the shank 158 has a sufficient length as compared with the thickness of the nut 107.
  • FIG. 8 is a partial cross-sectional view of a main part of the ball screw device 167 during manufacture.
  • the ball screw device 167 being manufactured here refers to a state in which the dust-proof component 28 is fitted in the housing portion 128 of the nut 107. First, from this state, the through holes 134 are formed at both ends of the nut 107.
  • the through-hole 134 is formed using a known drill with a processing device (not shown) such as a drilling machine.
  • the through hole 134 includes a large diameter portion 137 having a diameter larger than the diameter of the fastening member 149, a small diameter portion 143 with which the fastening member 149 is engaged, and a stepped portion 140 between the large diameter portion 137 and the small diameter portion 143. It forms so that it may consist of.
  • the thickness from the inner peripheral surface of the accommodating portion 128 of the nut 107 to the stepped portion 140, that is, the radial distance is set to be the same in all the through holes 134.
  • the depth dimension of the small diameter portion 143 is made equal in all the through holes 134.
  • the through hole 134 is formed as follows. Measure the thickness of the end of the nut 107 on the flange portion 122 side and the end of the end on which the flange portion 122 is not formed in advance, that is, the dimension from the inner peripheral surface of the housing portion 128 to the outer peripheral surface of the nut 107. deep. Then, the difference between the thickness dimension and the depth dimension of the small diameter portion 143 is drilled at each end portion of the nut 107 with a known drill for forming the large diameter portion 137 from the outer peripheral surface side of the nut 107. To do. Then, after the drilling, a thickness corresponding to the depth dimension of the small diameter portion 143 remains on the inner peripheral surface side of the nut 107.
  • FIG. 9 shows a state where the through holes 134 are formed in the nut 107 in this way. Further, FIG. 9 shows a drill 152 used for processing the pilot hole 155 for tapping which is the next step. Machining of the tapping pilot hole 155 using the drill 152 is performed as follows.
  • the drill 152 and the ball screw device 167 being manufactured are each set in a processing device (not shown) such as a drilling machine.
  • the drill 152 is rotated and the blade edge portion 61 is inserted into the through hole 134 from the outer diameter side of the nut 107.
  • the shank 158 advances inward in the radial direction of the nut 107 along the large diameter portion 137, and the tip of the blade edge portion 61 reaches the small diameter portion 143 of the through hole 134.
  • the tip of the blade edge portion 61 passes through the small diameter portion 143 and reaches the inner peripheral surface of the accommodating portion 128, that is, the outer peripheral surface of the dust-proof component 119 in contact with the inner peripheral surface. In this state, the tip 159 of the shank 158 has not yet reached the bottom of the large diameter portion 137, that is, the stepped portion 140.
  • the blade edge portion 61 cuts the dust-proof component 119 from the outer peripheral surface side to form a hole extending inward in the radial direction of the nut 107.
  • the drill 152 When the tip portion 159 of the shank 158 reaches the stepped portion 140 of the through hole 134, the drill 152 is restricted in its progress because the diameter DS of the shank 158 is larger than the diameter of the small diameter portion 143. That is, the stepped portion 140 of the through hole 134 serves as a stopper for the drill 152.
  • the drill 152 is advanced to this state, the drill 152 is pulled out from the large diameter portion 137. Then, a concave portion having a predetermined depth is formed on the outer peripheral surface side of the dust-proof component 119. That is, the concave portion is a pilot hole 155 for tapping shown in FIGS. 6 (a), 6 (b) and 6 (c).
  • FIG. 6 is a partial cross-sectional view of the main part of the ball screw device 167 in a state where all the tapping holes 155 are formed from the state of FIG.
  • the thickness dimension (indicated by ⁇ in FIGS. 9 and 10) from the inner peripheral surface of the housing portion 128 to the stepped portion 140 of the through hole 134 is the same at both ends of the nut 107.
  • the depth dimension of the small diameter portion 143 is the same in any through hole 134.
  • the tip part 159 of the shank 158 of the drill 152 will be inserted in the through-hole 134 until it contact
  • the depth of 155 has the same depth dimension in all of the through holes 134 processed. That is, the stepped portion 140 of the through-hole 134 defines the processing distance of the drill 152 with respect to the dust-proof component 119 so that the depths of the tap processing pilot holes 155 are the same.
  • tapping is performed on the small diameter portion 143 of the through hole 134 and the pilot hole 155, and a female screw (not shown) is formed in each.
  • the pilot hole 155 is formed into the screw fixing hole 146.
  • a fastening member 149 for fastening the dust-proof component 119 and the nut 107 is screwed into the through hole 134.
  • the large-diameter portion 137 of the through hole 134 guides the fastening member 149 to the fastening position.
  • the fastening member 149 has a shaft portion that engages with a female screw of the small diameter portion 143 of the through hole 134 and a tip portion that engages with a screw fixing hole 146 of the dust-proof component 119.
  • the dust-proof component 119 is fixed to the housing portion 128 of the nut 107 by these engagements.
  • the depth is equal to the dust-proof component 119.
  • a tapping hole 155 can be formed.
  • the nut 107 is manufactured according to the customer's request for the outer diameter of the portion other than the flange portion 122 and the flange portion 122, the thickness of the nut 107 varies depending on the nut 107 used.
  • the thickness dimension from the inner peripheral surface of the accommodating portion 128 of the dust-proof component 119 to the stepped portion 140 of the through-hole 134 is the same as that of this embodiment. If fixed to the same ⁇ and processed using the drill 152 according to the present embodiment, the outer peripheral surface of the dust-proof component 119 regardless of the thickness dimension from the inner peripheral surface of the housing portion 128 to the outer peripheral surface of the nut 107.
  • a tapping hole 155 having the same depth can be formed on the side.
  • FIGS. 11A An example of a method for fixing the seal to the nut after determining the position of the pilot hole to be formed in the seal in accordance with the through hole provided in the seal mounting portion of the nut, and forming the pilot hole at that position, is shown in FIGS. It explains using.
  • the end of the screw shaft 203 is passed through the inside of the donut-shaped dust-proof component 202, and the dust-proof component 202 is rotated so that the dust-proof component 202 faces the nut 201.
  • the nut is moved on the screw shaft 203 and fitted into the spigot formed at the end of the nut 201.
  • a drill 205 fitted with a special tool (stopper) is inserted so as to be stopped at a depth of 5 mm, and a drill hole is drilled radially inward from the outer peripheral surface of the dust-proof component 202.
  • the nut 201, the dust-proof component 202, and the screw shaft 203 are disassembled, and as shown in FIG. 12 (a), the nut 201 and the dust-proof component 202 are air blown using an air blower 206. Blow away the shavings generated during drilling.
  • the nut 201, the dust-proof component 202 and the screw shaft 203 are reassembled, and the tapping screw 7 is inserted from the screw hole 204 into the drill hole drilled in the dust-proof component 202.
  • the dust-proof component 202 is fixed to the nut 201.
  • FIG. 13 shows a ball screw device 211 according to this embodiment, and shows a cross section of the nut 212 cut in the axial direction and a side surface of the screw shaft 213.
  • the ball screw device 211 according to this embodiment includes a nut 212, a screw shaft 213 inserted through the nut 212, and a large number of balls 221 interposed between the nut 212 and the screw shaft 213.
  • the nut 212 includes a cylindrical metal cylindrical portion 214 and a flange 215 that is formed of metal integrally with the cylindrical portion 214 and has an outer diameter dimension larger than that of the cylindrical portion at the axial end of the cylindrical portion. is doing.
  • a spiral outer rolling surface 216 is formed on the inner peripheral surface of the cylindrical portion 214, and an inlay portion 217 a is formed at the end opposite to the flange 215.
  • the cross-sectional shape of the outer rolling surface 216 is a Gothic arc shape.
  • the inlay part 217a is configured by a cylindrical inner peripheral surface parallel to the axial direction and an annular surface formed on the inner side of the nut and perpendicular to the axial direction.
  • a screw hole 218a penetrating in the radial direction is formed in a cylindrical portion forming the inner peripheral surface of the inlay portion 217a. Two screw holes 218a are provided at opposite positions in the radial direction.
  • the screw hole 218a is formed of a countersink portion formed on the radially outer side and a female screw portion formed on the radially inner side of the countersink portion.
  • a donut-shaped dustproof part 219a made of elastomer is fitted into the inlay part 217a, and is fixed to the cylindrical part 214 by a tapping screw 220a.
  • the tapping screw 220a is screwed into the dust-proof component 219a, and the male screw portion of the tapping screw 220a and the dust-proof component 219 are in close contact with each other to prevent the dust-proof component 219a from shifting in the axial direction due to the shear resistance of the male screw portion.
  • the spigot part 217b is also formed in the outer edge part of the flange 215.
  • the inlay portion 217b is configured by a cylindrical inner peripheral surface parallel to the axial direction and an annular surface formed on the inner side of the nut and perpendicular to the axial direction.
  • a screw hole 218b penetrating in the radial direction is formed in a cylindrical portion of a donut shape that constitutes a radially outer portion of the inlay portion 217b.
  • Two screw holes 218b are provided at opposite positions in the radial direction.
  • the screw hole 218b is formed of a countersink part formed on the radially outer side and a female screw part formed on the radially inner side of the countersink part.
  • a countersink portion deeper in the radial direction than the screw hole portion 218a is formed by the thickness of the flange 215 in the radial direction.
  • the screw holes 218a and 218b are not limited to two each, and three or more may be provided as necessary.
  • a donut-shaped dustproof part 219b made of an elastomer is fitted into the inlay part 217b, and is fixed to the inlay part 217b by a tapping screw 220b.
  • the dust-proof components 219a and 219b can be manufactured in the same shape and size and used for both the inlay portions 217a and 217b.
  • the dustproof parts 219a and 219b may be formed of an elastic body other than an elastomer. Further, the dustproof parts 219a and 219b may be provided with a metal core in order to maintain the shape and increase the strength.
  • a spiral inner rolling surface 222 is formed opposite to the outer rolling surface 216 formed on the inner peripheral surface of the cylindrical portion 214.
  • the cross-sectional shape of the inner rolling surface 222 is substantially arc-shaped, and has a shape in which a relief groove (not shown) is arranged at the bottom.
  • a rolling path is formed by an outer rolling surface 216 formed on the inner peripheral surface of the cylindrical portion 214 and an inner rolling surface 222 formed on the screw shaft 213, and a ball 221 is interposed in the rolling path. Has been. In FIG.
  • the illustration of the ball 221 interposed on the front side of the screw shaft 213 is omitted.
  • the ball 221 supports the nut 212 on the screw shaft 213.
  • the screw shaft 213 rotates relative to the nut 212, the ball 221 rolls in the rolling path and moves the nut 212 in the axial direction.
  • the ball 221 moves relative to the nut 212 in a direction opposite to the direction in which the nut 212 moves relative to the screw shaft 213 while performing a spiral motion.
  • the nut 212 is moved.
  • the ball circulation mechanism (not shown) included in the ball is deviated from the spiral trajectory of the rolling path and enters the ball circulation path (not shown).
  • the ball 221 is pushed by the subsequent ball 221 in the ball circulation path, and moves relative to the nut 212 in the same direction as the nut 212 moves relative to the screw shaft 213. The circulation of returning to and rolling in the rolling path is repeated.
  • an end deflector type As a circulation mechanism, an end deflector type, a tube type, a top type, an end cap type, or the like can be used.
  • the nut 212 is provided with a lubricant supply mechanism (not shown) for supplying a lubricant to the rolling path. It is preferable that an appropriate preload is applied between the nut 212, the screw shaft 213, and the ball 221.
  • a preloading method overball preloading, integral preloading, double nut preloading, or the like can be used.
  • FIG. 14 is a plan view and a cross-sectional view showing the dust-proof component 219b.
  • FIG. 14A shows a plan view of a dustproof component 219b used in the ball screw device according to the first embodiment, and the outer peripheral surface of the main body 223 is indicated by a broken line.
  • FIG. 14B is a cross-sectional view showing the AA cross section shown in FIG.
  • FIG. 14C is an enlarged cross-sectional view of the dust-proof component 219b.
  • the dust-proof component 219 b includes a doughnut-shaped main body 223 formed radially inside, a seal lip 225 formed on the inner peripheral side of the main body 223, and a radially outer side from the outer peripheral surface of the main body 223.
  • the dust-proof component 219b has an axial dimension smaller than the axial depth of the spigot part 217b formed on the nut 212, and an outer diameter dimension slightly smaller than the inner diameter dimension of the spigot part 217b.
  • the seal lip 225 is a portion projecting spirally inward in the radial direction corresponding to the spiral trajectory of the inner rolling surface 222 of the screw shaft 213, and is formed integrally with the main body 223.
  • the seal lip 225 has a shape corresponding to the inner rolling surface 222 and prevents foreign matter from entering the nut 212 from the inner rolling surface 222 and leakage of the lubricant from the nut 212 to the outside.
  • the portion other than the seal lip 225 has a shape corresponding to the outer peripheral surface other than the inner rolling surface 222 of the screw shaft 213, and prevents the intrusion of foreign matter and the leakage of the lubricant.
  • the screw receiving projections 224a and 24b are arranged side by side in the axial direction on the outer peripheral surface of the main body 223 with a gap therebetween.
  • the tapping screw 220b is screwed into the gap between the screw receiving projections 224a and 224b, and the dust-proof component 219b is fixed to the nut 212.
  • a pair of screw receiving projections are formed over the entire circumference of the outer peripheral surface of the main body 223, so that the seal lip 225 rolls on the inner side of the screw shaft 213 by field matching as will be described later. It can be fixed in accordance with the spiral trajectory of the surface 222. As shown in FIG.
  • the axial dimensions of the screw receiving projections 224a and 224b are the same, and the gap formed therebetween is formed in the center of the dustproof component 219b in the axial direction.
  • the axial dimensions of the screw receiving projections 224a and 224b may be different, and the gap formed between them may not be formed at the axial center of the dustproof component 219b.
  • the axial width ⁇ of the gap between the screw receiving projections 224a and 224b shown in FIG. 14C is preferably equal to or smaller than the diameter of the valley of the male screw portion of the tapping screw 220b. Thereby, it is possible to obtain a sufficient fixing force.
  • the screw receiving projections 224a and 224b are not only used to fix the tapping screw 220b, but also fill the gap between the main body 223 and the spigot part 217b and enter the nut 212 on the center side of the nut 212 of the foreign matter dustproof part 219b.
  • the surface of the main body 223 and the screw receiving projection 224a constitutes a surface perpendicular to the axial direction, and the surface of the dust-proof component 219b opposite to the center of the nut 212 is also the main body 223 and the screw receiving projection.
  • the part 224b forms a surface perpendicular to the axial direction.
  • the outer peripheral surface of the dust-proof component 219b forms a cylindrical surface in which the screw receiving projections 224a and 224b are parallel to the axial direction.
  • the dust-proof component 219b can be manufactured by resin molding such as injection molding or by cutting. In resin molding, a portion for molding a gap between the screw receiving projections 224a and 224b is provided in the mold, thereby enabling manufacturing without increasing the cost. Even in the case of machining, by providing a groove in the manufacturing process of the dust-proof member 19b, it is possible to manufacture at a lower cost than when the pilot hole is machined during the assembly process of the entire ball screw device.
  • the dustproof component 219b has been described above, but the dustproof component 219a has the same configuration and exhibits the same functions and effects.
  • the screw shaft 213 is rotated by passing the end of the screw shaft 213 through the dust-proof component 219b and pressing the dust-proof component 219b in the axial direction of the screw shaft 213.
  • the upper part is moved toward the nut 212, and the dust-proof component 219b is fitted into the spigot part 217b.
  • the tapping screw 220b is inserted from the screw hole 218b formed in the flange 215 and screwed into the gap between the screw receiving projections 224a and 224b of the dust-proof component 219b. Enter.
  • the depth from the outer peripheral surface of the flange 215 to the tapping screw 220b is measured with a caliper 227, and the fixing state by the tapping screw 220b is confirmed to complete the assembling operation.
  • FIG. 16A shows a plan view of the dust-proof component 230b according to the second embodiment, and the outer peripheral surface of the main body 31 of the dust-proof component 230b and the reduced diameter step portions 232a and 232b are indicated by broken lines.
  • FIG. 16B is a cross-sectional view showing a BB cross section shown in FIG.
  • FIG. 16C is an enlarged cross-sectional view of the dust-proof component 230b.
  • Reduced diameter step portions 232a and 232b each having a diameter reduced from the surface are formed.
  • the outer diameter of the male threaded portion of the tapping screw is d1
  • the diameter of the valley of the male threaded portion of the tapping screw is d2
  • FIG. 17A shows a plan view of the dust-proof component 240b according to this embodiment, and the outer peripheral surface of the main body 41 of the dust-proof component 240b is indicated by a broken line.
  • FIG. 17B is a cross-sectional view showing the CC cross section shown in FIG.
  • FIG. 17C is an enlarged cross-sectional view of the dust-proof component 240b.
  • a radially outer gap is formed at the radially outer ends of the mutually opposing surfaces of the pair of screw receiving projections 243a and 243b.
  • the outer diameter of the male threaded portion of the tapping screw is d1
  • the diameter of the valley of the male threaded portion of the tapping screw is d2
  • conditional expressions (1) and (2) are satisfied, where ⁇ is the width in the axial direction of the narrow part and ⁇ is the width in the axial direction of the widest part formed on the outermost side in the radial direction: It is desirable. ⁇ ⁇ d2 (1) d2 ⁇ ⁇ d1 (2) Thereby, the biting of the tapping screw can be improved and a sufficient fixing force by the tapping screw can be obtained.
  • FIG. 18A shows a plan view of the dust-proof component 50b used in the ball screw device according to this embodiment, and the boundary between the screw receiving projection 252a and the main body 251 is indicated by a broken line.
  • FIG. 18B is a cross-sectional view showing a DD cross section shown in FIG.
  • FIG. 18C is a cross-sectional view showing the EE cross section shown in FIG.
  • the screw receiving projections 252a and 252b are arranged only on a part of the outer peripheral surface of the main body 251.
  • the portion where the screw receiving projections 252a and 252b are not arranged has the same outer circumference as the radially outer surface of the screw receiving projections 252a and 252b.
  • the main body 231 is extended radially outward so as to be formed above.
  • the screw-in part is designed to be screwed in in consideration of the mounting direction of the dust-proof component 250b and the manufacturing accuracy without designing the screw receiving protrusions 252a and 252b over the entire circumference.
  • the screw receiving protrusions 252a and 252b may be arranged in a necessary range before and after the front and rear of the screw. Also in this case, as in the first to third embodiments of the sixth to seventh aspects, the dustproof parts can be easily assembled.
  • FIG. 19A shows a ball screw device 311 according to this embodiment.
  • disconnected the nut 312 to the axial direction and the side surface of the screw shaft 313 are shown.
  • the ball screw device 311 according to this embodiment includes a nut 312, a screw shaft 313 inserted through the nut 312, and a large number of balls 321 interposed between the nut 312 and the screw shaft 313.
  • the nut 312 has a cylindrical metal cylindrical portion 314 and a flange 315 that is integrally formed with the cylindrical portion 314 and has a larger outer diameter than the cylindrical portion at the axial end of the cylindrical portion. is doing.
  • a spiral outer rolling surface 316 is formed on the inner peripheral surface of the cylindrical portion 314, and an inlay portion 317 a is formed at the end opposite to the flange 315.
  • the cross-sectional shape of the outer rolling surface 316 has a Gothic arc shape.
  • the inlay portion 317a includes a cylindrical inner peripheral surface parallel to the axial direction and a surface perpendicular to the axial direction formed inside the nut.
  • a screw hole 318a penetrating in the radial direction is formed in a cylindrical portion that forms the inner peripheral surface of the spigot portion 317a at the end of the cylindrical portion 314 opposite to the flange 315.
  • Two screw holes 318a are provided at opposite positions in the radial direction.
  • the screw hole 318a is formed of a countersink portion formed on the radially outer side and a female screw portion formed on the radially inner side of the countersink portion.
  • a donut-shaped dust-proof component 319a made of an elastomer is fitted into the inlay portion 317a, and is fixed to the cylindrical portion 314 by a tapping screw 320a.
  • An inlay portion 317 b is also formed at the axial end of the flange 315.
  • the inlay portion 317b includes a cylindrical surface that is parallel to the axial direction and a surface that is formed inside the nut and is perpendicular to the axial direction.
  • the donut-shaped cylindrical portion constituting the radially outer portion of the inlay portion 317b is provided with a screw hole portion 318b penetrating in the radial direction. Two screw holes 318b are provided at radially opposing positions.
  • the screw hole 318b is formed of a countersink formed on the radially outer side and a female screw formed on the radially inner side of the countersink.
  • a countersink portion deeper in the radial direction than the screw hole portion 318a is formed by the thickness of the flange 315 in the radial direction.
  • the screw hole portions 318a and 318b are not limited to two each, and may be provided in three or more locations as necessary.
  • a donut-shaped dustproof part 319b made of an elastomer is fitted into the inlay part 317b, and is fixed to the inlay part 317b by a tapping screw 320b.
  • the dustproof parts 319a and 319b are manufactured to have the same shape and size, and the assembling direction is reversed to form both the inlay portions 317a and 317b.
  • the dustproof parts 319a and 319b may be formed of an elastic body other than an elastomer. Further, the dust-proof components 319a and 319b may be provided with a core bar in order to maintain the shape and increase the strength.
  • a spiral inner rolling surface 322 is formed on the outer peripheral surface of the screw shaft 313 so as to face the outer rolling surface 316 formed on the inner peripheral surface of the cylindrical portion 314.
  • the cross-sectional shape of the inner rolling surface 322 is a substantially arc shape, and has a shape in which a relief groove (not shown) is arranged at the bottom.
  • a rolling path is formed by an outer rolling surface 316 formed on the inner peripheral surface of the cylindrical portion 314 and an inner rolling surface 322 formed on the screw shaft 313, and a ball 321 is interposed in the rolling path. Has been. In FIG.
  • the display of the ball 321 interposed on the front side of the screw shaft 313 is omitted.
  • the ball 321 supports the nut 312 on the screw shaft 313.
  • the screw shaft 313 rotates relative to the nut 312, the ball 321 rolls in the rolling path and moves the nut 312 in the axial direction.
  • the ball 321 moves relative to the nut 312 in a direction opposite to the direction in which the nut 312 moves relative to the screw shaft 313 while performing a spiral motion.
  • the ball circulation mechanism (not shown) included in the ball is deviated from the spiral trajectory of the rolling path and enters the ball circulation path (not shown).
  • the ball 321 is pushed by the subsequent ball 33321 in the ball circulation path, and moves relative to the nut 312 in the same direction as the nut 312 moves relative to the screw shaft 313. The circulation of returning to and rolling in the rolling path is repeated.
  • an end deflector type As a circulation mechanism, an end deflector type, a tube type, a top type, an end cap type, or the like can be used.
  • the nut 312 is provided with a lubricant supply mechanism (not shown) for supplying a lubricant to the rolling path. It is preferable that an appropriate preload is applied between the nut 312, the screw shaft 313, and the ball 321.
  • a preloading method overball preloading, integral preloading, double nut preloading, or the like can be used.
  • FIG. 19B is a plan view of a state in which the tapping screw 320 b is screwed into the dust-proof component 319 b according to the first embodiment, as viewed from the outside in the axial direction of the nut 312.
  • the outer surface in the axial direction of the nut 312 is an annular smooth surface, and a tapping screw 320b is screwed in from the upper and lower sides on the back side in FIG.
  • FIG. 19C is a plan view of a state in which the tapping screw is screwed into the dust-proof component 319b according to this embodiment, as viewed from the inner side in the axial direction of the nut 312.
  • the tapping screws 320a and 20b are screwed into the gaps between the screw receiving projections 324 that are formed radially outside the dust-proof component 319a.
  • FIG. 20 is a plan view and a cross-sectional view showing the dust-proof component 319b.
  • FIG. 20A is a plan view showing a smooth surface.
  • a screw receiving projection 324 formed on the far side of the figure is indicated by a broken line.
  • FIG. 20B is a cross-sectional view showing the AA cross section shown in FIG.
  • FIG. 20C is a plan view showing the surface on which the screw receiving projection 324 is formed.
  • the dust-proof component 319 b includes a doughnut-shaped main body 326 formed radially inward, a seal lip 323 formed on the inner peripheral side of the main body 326, and a radially outer side from the outer peripheral surface of the main body 326.
  • the dust-proof component 319b has an axial dimension smaller than the axial depth of the spigot part 317b formed on the nut 312 and an outer diameter dimension slightly smaller than the spigot part.
  • the seal lip 323 is a portion protruding in a spiral shape radially inward corresponding to the spiral trajectory of the inner rolling surface 322 of the screw shaft 313, and is formed integrally with the main body 326.
  • the seal lip 323 has a shape corresponding to the inner rolling surface 322 and prevents foreign matter from entering the nut 312 from the inner rolling surface 322 and leakage of the lubricant from the nut 312 to the outside.
  • the portion other than the seal lip 323 has a shape corresponding to the outer peripheral surface other than the inner rolling surface 322 of the screw shaft 313, and prevents intrusion of foreign matter and leakage of the lubricant.
  • a large number of screw receiving projections 324 are arranged on the outer peripheral surface of the main body 326 with a gap therebetween.
  • the tapping screw 320b is screwed into the gap between the screw receiving projections 324, and the dust-proof component 319b is fixed to the nut 312.
  • a large number of screw receiving projections 324 are provided on the outer peripheral surface of the main body 326, and a large number of gaps are formed between them.
  • the number and dimensions of the screw receiving projections 324 are not limited to those described in FIG. 20C, and appropriate numbers and dimensions according to the size and material of the dust-proof component 319b, the size of the tapping screw 320b, and the like. can do.
  • the circumferential dimension ⁇ of the gap between the screw receiving projections 324 shown in FIG. 20C is preferably equal to or less than the diameter of the valley of the male thread portion of the tapping screw 320b. Thereby, it is possible to obtain a sufficient fixing force. Moreover, when screwing in the position which opposes radial direction like this 1st Embodiment, it is preferable to provide the protrusion part 324 for screw reception so that each may oppose radial direction. As a result, the gap between the screw receiving projections 324 is also opposed in the radial direction, and is easily screwed at a position opposed in the radial direction.
  • the shielding portion 325 protrudes radially outward from the outer peripheral surface of the main body 326 with the same radial dimension as the screw receiving projection 324, and a gap between the screw receiving projection 324 and the screw receiving projection 324 is formed. Covers the axial end. This prevents foreign matter from entering the nut 312 from the gap between the screw receiving projections 324.
  • the shielding portion 325 is formed integrally with the screw receiving projection 324, and when the tapping screw is screwed into the gap between the screw receiving projection 324, the screw receiving on both sides of the tapping screw is received.
  • the protrusions 324 for use are prevented from elastically deforming so as to be separated from each other, and a sufficient fixing force by the tapping screw 320b can be obtained.
  • the side of the dust-proof component 319b facing the center of the nut 312 forms a surface perpendicular to the axial direction with the main body 326 and the screw receiving projection 324, and the center of the nut 312 of the dust-proof component 319b.
  • the surface opposite to the side is a surface perpendicular to the axial direction by the main body 326 and the shielding portion 325.
  • the outer peripheral surface of the dust-proof component 319b forms a surface parallel to the axial direction by the screw receiving projection 2 and the shielding portion 325.
  • the dust-proof component 319b can be manufactured by injection molding an elastomer. Although the dust-proof component 319b has been described above, the dust-proof component 319a has the same shape and exhibits the same functions and effects.
  • the tapping screw 320b is inserted from the screw hole 318b formed in the flange 315 and screwed into the gap between the screw receiving projections 324 of the dust-proof component 319b. .
  • the depth from the outer peripheral surface of the flange 315 to the tapping screw 320b is measured with a caliper 327, the fixed state by the tapping screw 320b is confirmed, and the assembling operation is completed.
  • the tip of the tapping screw 320b When the tapping screw 320b is screwed into the gap between the screw receiving projections 324, the tip of the tapping screw 320b abuts against the radially outer surface of the screw receiving projection 324 and cannot be screwed in. In this case, the dust-proof component 319b may be rotated relative to the nut 312 in the circumferential direction. As a result, the tip of the tapping screw 320b can be screwed into the gap between the screw receiving projections 324 while avoiding the radially outer surface of the screw receiving projection 324.
  • the dust-proof component 319b moves relative to the nut 312 in the axial direction.
  • the dustproof part 319b is inserted and rotated until it contacts the surface perpendicular to the axial direction of the spigot part 317b, a gap is generated between the surface perpendicular to the axial direction of the spigot part 317b and the dustproof part 319b. It becomes.
  • the axial dimension of the dust-proof component 319 is sufficiently smaller than the axial depth of the spigot part 317b with respect to the movement amount ⁇ .
  • the component 319b is prevented from protruding from the end face of the nut 5.
  • the gap between the screw receiving projections 324 into which the tapping screw 320b is screwed takes a length in the axial direction so as to allow movement in the axial direction.
  • FIG. 23A is a plan view showing a smooth side surface of the dust-proof component 330b used in the ball screw device according to this embodiment.
  • a screw receiving projection 332 formed on the back side of the figure is indicated by a broken line.
  • FIG. 23B is a cross-sectional view showing the BB cross section shown in FIG.
  • FIG. 23C is a plan view showing a surface on which the screw receiving projection 332 is formed.
  • the screw receiving projection 332 and the shielding portion 333 are arranged only on a part of the outer peripheral surface of the main body 331.
  • the portion where the screw receiving projection 332 is not disposed has the same outer surface in the radial direction as the outer surface in the radial direction of the screw receiving projection 332.
  • the main body 331 extends radially outward so as to be formed on the circumference.
  • the screw receiving projections 332 are not arranged over the entire circumference, the front and rear of the portion into which the screw is screwed in the design in consideration of the mounting direction of the dust-proof component 330 and the manufacturing accuracy at the time of design.
  • the screw receiving projections 332 may be disposed only in a range necessary for the above. Also in this case, as in the first embodiment of the eighth to ninth aspects, the dust-proof parts can be easily assembled.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Sealing Devices (AREA)

Abstract

 この発明のボールねじの製造方法は、ボールねじのナット(2)の軸方向端部に設けた取付部(24)に、固定部材(5)を使用してリング状のシール(4)を固定するシール固定工程を有する。前記取付部は、前記ナットの螺旋溝が形成されている内周面より径が大きな内周面を有する。前記取付部に外周面から内周面まで径方向に貫通する貫通穴(25a~25c)を設ける。前記シール固定工程では、前記固定部材を前記貫通穴に通して前記シールの外周部に係合することにより前記シールに径方向外向きの力を生じさせて、前記シールを前記ナットに固定する。

Description

ボールねじの製造方法、ボールねじ
 この発明は、例えばステアリング装置や重量物移動用装置、加工用機械、精密位置決め装置などの機械要素として使用されるボールねじと、その製造方法に関する。
 ボールねじ(ボールねじ装置)は、内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動する装置である。
 このようなボールねじは、ナットの内部に潤滑剤を供給して使用される。また、ねじ軸に付着した塵埃や摩耗粉などの異物がナット内に入り込むと、ボールや螺旋溝に焼付きなどの損傷が生じる原因となるため、ナット内部への異物の侵入を防ぐ必要がある。そのため、ナット内部に供給された潤滑剤の外部への排出防止とナット内部への異物の侵入防止を目的として、ナットの軸方向端部にリング状のシール(防塵部品)が取り付けられている。
 シールを備えたボールねじの従来例(特許文献1の図4)を図24に示す。このボールねじでは、リング状のシール40が、頭部を有さない止めネジ60により、ナット20の軸方向端部の内周面に固定されている。
 このボールねじのシール固定方法を図25を用いて説明する。
 先ず、ナット20の軸方向端部に貫通孔28をドリル等で形成する。図25(a)はこの状態を示す。次に、この貫通孔28にねじ切り加工を施して雌ねじ穴29とする。図25(b)はこの状態を示す。次に、シール40の外周面をナット20の内周面に嵌め込んだ状態で、雌ねじ穴29にドリルを通してシール40の外周面に下穴402を形成する。図25(c)はこの状態を示す。
 次に、ナット20の雌ねじ穴29に止めネジ60を螺合し、止めねじ60の先端の軸部をシール40の下穴402に入れることで、シール40をナット20に固定する。このシール固定方法では、貫通穴28にねじ切り加工を施す工程や加工後にバリを除去する工程などが必要である。
 ナット20のシール取付部である軸方向端部には、フランジが形成されてない場合(図24で示した端部)と、フランジが形成されている場合がある。また、ナットのシール取付部の厚さ(径方向寸法)は、ナットの外径およびフランジの外径を顧客の要求に合わせて製作しているため、製品毎に異なる。
 図26(a)に示すように、ナット20のシール取付部の肉厚TNが薄い場合は、シール取付部に雌ねじ穴29のみが形成される。図26(b)に示すように、ナット20のシール取付部の肉厚TNが厚い場合は、外周側にキリ穴29aを設けることで、タップ加工にかかる時間を短縮している。
 また、ボールねじは生産ロットが小さく、寸法が様々である。このため、シール40の下穴402とナット20の貫通孔28およびキリ穴29aの加工形成は、専用治具を用いず、手動のボール盤を用いて行っている。さらに下穴402の加工形成においては、各下穴402の深さを等しくするために、図27(a)~(d)に示すような作業を行っている。
 この作業の説明を、軸方向一端部にフランジが形成され、他端部にはフランジが形成されていないナットを例にとって説明する。この例では、図27(a)に示すように、ナット20の軸方向一端部では、フランジ22に雌ねじ穴29とキリ穴29aからなる貫通穴290が設けられている。
 先ず、この貫通穴290に、図27(b)に示すように、回転駆動していないドリル71をドリル刃72の先端がシール40の外周面に達するまで挿入し、ドリル71にドリル71の進行を規制するストッパ170を装着する。
 次に、ドリル刃72の周囲または近傍のナット20の外周面上に、シール40に加工する下穴402の深さ寸法と同じ寸法の厚さを有するゲージ173を配置し、ストッパ170をゲージ173上に接するようにセットする。その後、図27(c)に示すように、ゲージ173を抜き取り、ドリル刃72を回転駆動させ、ドリル加工により下穴402の加工形成を行う。ドリル71は、ストッパ170によって進行が規制されるまで、シール40を外周面側から内方に向かって削孔する。
 このような加工により、図27(d)に示すように、シール40に下穴402が形成される。各下穴402をこのような加工で形成することにより、シール40の外周面側に、常にゲージ厚と同じ深さの下穴402を形成することが出来る。つまり、形成される下穴402の深さの管理が出来る。
 この作業を、ナット20の軸方向他端部でも行う。ナット20の軸方向他端部にはフランジが形成されていないため、雌ねじ穴29のみが形成されている。この雌ねじ穴29を貫通穴290と見做して上述の作業を行う。また、ゲージ173およびストッパ170による下穴402の深さの調節は、ナット20のシール取付部の厚さに対応させて行う。
特開2002-349664号公報
 上記従来のシール固定方法では、止めねじを締め付け過ぎると、シールがねじ軸に押し付けられて、シールとねじ軸との摩擦が大きくなり、発熱が生じる恐れがある。この発熱はねじ軸を膨張させる原因になるため、これを防止する必要がある。
 この発明の課題は、ナットの軸方向端部に設けた取付部に、固定部材を使用してリング状のシールを固定するシール固定工程で、シールとねじ軸との摩擦に起因する発熱が生じないようにすることである。
 上記課題を解決するために、この発明の第1態様は、ナットの軸方向端部に設けた取付部に、固定部材を使用してリング状のシールを固定するシール固定工程を有するボールねじの製造方法であって、下記の構成(1-1) ~(1-2) を有することを特徴とする。
(1-1) 前記取付部は、前記ナットの螺旋溝が形成されている内周面より径が大きな内周面を有し、前記取付部に外周面から内周面まで径方向に貫通する貫通穴を設ける。
(1-2) 前記シール固定工程では、前記固定部材を前記貫通穴に通して前記シールの外周部に係合することにより前記シールに径方向外向きの力を生じさせて、前記シールを前記ナットに固定する。
  この発明の第2態様は、ナットの軸方向端部に設けた取付部に、固定部材を使用してリング状のシールを固定するシール固定工程を有するボールねじの製造方法であって、前記構成(1-1) と下記の構成(1-3) ~(1-5) を有することを特徴とする。
(1-3) 前記固定部材として、頭部を有するねじを用いる。
(1-4) 前記貫通穴は前記ねじの頭部を受ける座面を有する。
(1-5) 前記シール固定工程では、前記ねじを前記貫通穴に通して前記シールの外周部に係合することにより、前記頭部が前記座面を押圧する力で前記シールに径方向外向きの力を生じさせて、前記シールを前記ナットに固定する。
 第2態様のボールねじの製造方法は、更に下記の構成(1-6) を有することができる。
(1-6) 前記シールに外周面から径方向に延びる取付穴を設け、前記シール固定工程で、前記取付穴と前記貫通穴を合わせて、前記ねじを前記貫通穴に通して前記取付穴に係合する。
 第2態様のボールねじの製造方法が前記構成(1-6) と下記の構成(1-7) (1-8) を有する場合、下記の構成(1-9) (1-10)を有することが好ましい。
(1-7) 前記取付穴は、前記シールの外周面から径方向に延びる凹部である。
(1-8) 前記貫通穴は、外周側の大径部と、内周側の小径部と、これらを連通させる円錐部とからなり、前記大径部の直径は前記ねじの頭部の直径より大きく、前記小径部の直径は前記ねじの雄ねじ部の外径より大きく、前記円錐部の斜面が前記頭部を受ける座面である。
(1-9) シャンク部の先端に刃部を有し、前記刃部の直径は前記シャンク部の直径よりも小さく、前記シャンク部の直径は前記貫通穴の前記小径部の直径よりも大きくかつ前記大径部の直径よりも小さく、前記シャンク部の前記刃部との境界部に前記貫通穴の前記斜面に対応する斜面を有するドリルを使用する。
(1-10)前記シールを前記取付部に配置し、前記シャンク部の前記斜面が前記貫通穴の前記斜面に当接する位置まで、前記ドリルを前記貫通穴に挿入することで、前記シールに前記凹部を形成する。
 この発明の第3態様は、下記の構成(1-11)~(1-13)を有することを特徴とするボールねじである。
(1-11)内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、前記ナットの螺旋溝と前記ねじ軸の螺旋溝とで形成される軌道の間に配置されたボールと、前記ナットの軸方向端部に設けた取付部に固定されたリング状のシールと、頭部を有するねじと、を有する。
(1-12)前記取付部は、前記ナットの螺旋溝が形成されている内周面より径が大きな内周面を有し、前記取付部は、外周面から内周面まで径方向に貫通する貫通穴を有し、前記貫通穴は前記ねじの頭部を受ける座面を有する。
(1-13)前記ねじを前記貫通穴に通して前記シールの外周部に係合することにより、前記頭部が前記座面を押圧する力で前記シールに径方向外向きの力を生じさせて、前記シールが前記ナットに固定されている。
 第3態様のボールねじでは、前記ねじの前記シールの外周部に対する係合中に、前記シールの外周面が前記ナットの取付部に接触してシールに径方向外向きの力が生じると、前記ねじの締め付けトルクが変化する。この変化で前記シールが前記ナットに固定された状態を認識できるため、前記ねじの締め付けトルクを管理することで、シールのナットへの固定完了を判断することができる。
 第1~第3態様における係合には、タッピングねじやドリルねじの雄ねじ部によるねじ切り状態での結合、雌ねじと雄ねじの螺合などが含まれる。
 第3態様のボールねじは、さらに、下記の構成(1-14)または(1-15)を有することができる。
(1-14)前記ねじはタッピングねじであり、前記シールは、外周面から径方向に延びる取付穴を前記貫通穴に対応する位置に有し、前記取付穴は、穴径が前記タッピングねじの雄ねじ部の谷径以下で、雌ねじが形成されていない下穴であり、前記貫通穴を通った前記タッピングねじの雄ねじ部が、前記シールの前記下穴の位置にねじ切り状態で結合されている。
(1-15)前記ねじはドリルねじ(セルフタッピングねじ)であり、前記貫通穴を通った前記ドリルねじの雄ねじ部が、前記シールの外周部にねじ切り状態で結合されている。
[第4~5態様]
 この発明の第4態様はボールねじ装置の製造方法であって、そのボールねじ装置は下記の構成(2-1) ~ (2-2)を有し、この方法は下記の構成(2-3) ~(2-5) を有することを特徴とする。
(2-1) 外周面に螺旋状の溝が形成されたねじ軸と、前記螺旋状の溝に対向する溝を内周面に有し、該溝と前記螺旋状の溝との間に配置された複数の転動体を介して前記ねじ軸に係合するナットと、前記ナットの内径側に設けられ、前記ナットと前記ねじ軸との隙間をシールするための防塵部品とを備える。
(2-2) 前記ナットの軸方向端部には該ナットの外周面から内周面まで貫通する径方向の貫通孔が複数設けられ、前記複数の貫通孔のそれぞれには前記防塵部品を前記ナットに固定するための固定部材が配置され、前記防塵部品の外周面側には、前記複数の貫通孔のそれぞれに対応して前記固定部材が係合する複数の凹部が設けられている。
(2-3) 前記ナットの外周面側に前記固定部材の径よりも大きな径を有する大径部と、前記ナットの内周面側に前記固定部材が係合する小径部と、前記大径部と前記小径部との間の段部とからなるように前記貫通孔を形成する。
(2-4) シャンク部と該シャンク部の先端に設けられた刃部とから構成され、前記刃部は前記シャンク部よりも小さい径を有し、前記シャンク部は前記小径部よりも大きくかつ前記大径部よりも小さい径を有するドリルにより、前記複数の凹部を加工形成する。
(2-5) 前記凹部の前記加工形成の際、前記シャンク部が前記貫通孔の前記段部に当接する位置まで、前記ドリルを前記貫通孔に挿入する。
 第4態様のボールねじ装置の製造方法は、好適には、前記凹部の前記加工形成の際、前記段部は、前記シャンク部が該段部に当接することで前記ドリルの進行を規制するとともに、前記複数の凹部の前記加工形成後における深さが全て同じになるように前記ドリルの前記防塵部品に対する加工距離を規定することを特徴とする。
 第4態様のボールねじ装置の製造方法は、好適には、前記小径部の深さ寸法を、何れの前記貫通孔においても同一となるように形成することを特徴とする。
 第4態様のボールねじ装置の製造方法は、好適には、前記刃部の長さが、前記小径部の深さ寸法と前記加工形成後の前記凹部の深さ寸法とを合計した寸法を有する前記ドリルにより前記複数の凹部を加工形成することを特徴とする。
 第4態様のボールねじ装置の製造方法を実施するためのドリルは、シャンク部と該シャンク部の先端に設けられた刃部とから構成され、前記刃部は前記シャンク部よりも小さい径を有し、前記シャンク部は前記小径部よりも大きくかつ前記大径部よりも小さい径を有することを特徴とする。
 第4態様のボールねじ装置の製造方法を実施するためのドリルは、好適には、前記刃部の長さが、前記小径部の深さ寸法と前記加工形成後の前記凹部の深さ寸法とを合計した寸法を有することを特徴とする。
 第4態様によれば、防塵部品の取付け作業の所要時間を短縮することが出来るボールねじ装置の製造方法、ボールねじ装置、およびボールねじ装置の製造方法に用いる工具を提供することができる。
 第5態様のボールねじ装置は、第4態様のボールねじ装置の製造方法によって得られることを特徴とする。
[第6~7態様]
 この発明の第6態様は下記の構成(3-1) ~ (3-2)を有する防塵部品である。
(3-1) ナットと、該ナット内に挿通したねじ軸と、前記ナットと前記ねじ軸との間を転動する転動体とを有するボールねじ装置に用いられ、前記ナットの軸方向の端部内周に嵌合され、前記ナットの径方向外側から径方向内側へ向かってねじ止めされ、前記ナットと前記ねじ軸との隙間を塞ぐ環状の防塵部品である。
(3-2) 径方向内側に形成された環状の本体と、該本体の外周面から径方向外方へ突出して円周方向に延在した一対のねじ受け用突起部と、を有し、該一対のねじ受け用突起部が、前記ねじの螺入を許すように軸方向に隙間を空けて配置されている。
 第6態様の防塵部品において、好ましくは、前記隙間の軸方向の幅は、前記ねじの雄ねじ部の谷の径以下である。また好ましくは、前記隙間のうち径方向内側の部分の軸方向の幅は、前記ねじの雄ねじ部の谷の径以下であって、前記隙間のうち径方向外側の部分の軸方向の幅は、前記径方向内側の部分の軸方向の幅方向の幅よりも広い。
 第6態様の防塵部品において、さらに好ましくは、前記隙間のうち最も幅の広い部分の幅は、前記ねじの雄ねじ部の外径以下、かつ、前記ねじの雄ねじ部の谷の径以上の幅である。さらに好ましくは、前記ねじ受け用突起部が前記本体の外周面の全周にわたって形成されている。第6態様の防塵部品は、さらに好ましくは、エラストマーから形成されている。
 第7態様のボールねじ装置は、ナットと、該ナット内に挿通したねじ軸と、前記ナットと前記ねじ軸との間を転動する転動体とを有するボールねじ装置において、上記いずれかの第6態様の防塵部品を備えることを特徴とする。
 第6および第7態様によれば、防塵部品の組付けにかかる手間を軽減する防塵部品及び該防塵部品を備えたボールねじ装置を提供することができる。
[第8~9態様]
 この発明の第8態様は下記の構成(4-1) ~ (4-2)を有する防塵部品である。
(4-1) ナットと、該ナット内に挿通したねじ軸と、前記ナットと前記ねじ軸との間を転動する転動体とを有するボールねじ装置に用いられ、前記ナットの軸方向の端部に於いて、前記ナットの径方向外側から径方向内側へ向かってねじ止めされ、前記ナットと前記ねじ軸との隙間を塞ぐ防塵部品である。
(4-2) 径方向内側に形成されたドーナツ状の本体と、該本体の外周面から径方向外方へ突出して軸方向に延在したねじ受け用突起部と、前記本体の外周面から径方向外方へ突出して円周方向に延在した遮蔽部と、を有し、前記ねじ受け用突起部が、前記本体の外周面の円周方向に隙間を空けて多数形成してあり、前記遮蔽部は、前記ねじ受け用突起部及び前記隙間の軸方向の端部に形成されている。
 第8態様の防塵部品において、好ましくは、前記隙間の円周方向の幅は、前記ねじの雄ねじ部の谷の径以下である。また好ましくは、前記ねじ受け用突起部が前記本体の外周面の全周にわたって形成されている。第8態様の防塵部品は、さらに好ましくは、エラストマーから成形されている。
 第9態様のボールねじ装置は、ナットと、該ナット内に挿通したねじ軸と、前記ナットと前記ねじ軸との間を転動する転動体とを有するボールねじ装置において、上記いずれかの第8態様の防塵部品を備えることを特徴とする。
 第8および第9態様によれば、防塵部品の組付けにかかる手間を軽減する防塵部品及び該防塵部品を備えたボールねじ装置を提供することができる。
 なお、第6および第8態様の防塵部品は、第1および第2態様のボールねじの製造方法のシールや、第3態様のボールねじを構成するシールとして使用できる。
 この発明の方法によれば、ナットの軸方向端部に設けた取付部に、固定部材を使用してリング状のシールを固定するシール固定工程で、シールに径方向外向きの力を生じさせてシールをナットに固定することにより、シールがねじ軸に押し付けられないため、シールとねじ軸との摩擦に伴う発熱が防止される。
第1~3態様の実施形態に係るボールねじを示す図であって、ナットとシールが断面で示されている。 図1の部分断面図であって、シールの固定前の状態(a)と固定後の状態(b)を示す。 図1のボールねじに取り付けるシールを示す図であって、正面図(a)と断面図(b)である。 タッピングねじに代えてドリルねじを使用した例を示す図であって、シールの固定前の状態(a)と固定後の状態(b)を示す。 第4~5態様の実施形態に係るボールねじ装置をねじ軸の径方向から見た状態を示す部分断面図である。 第4~5態様の実施形態に係る防塵部品を示す図であって、ねじ軸の軸方向から見た状態の外観図(a)と、ねじ軸の径方向から見た状態の断面図(b)と、(b)の部分拡大図(c)である。 第4~5態様の実施形態に係るボールねじ装置の製造に用いるドリルの外観図である。 第4~5態様の実施形態で、製造中のボールねじ装置の要部の部分断面図である。 第4~5態様の実施形態で、製造中のボールねじ装置の要部の部分断面図およびドリルを示す図であり、ナットに貫通孔が形成された状態を示している。 第4~5態様の実施形態で、製造中のボールねじ装置の要部の部分断面図であり、タップ加工用下穴が形成された状態を示している。 第6~9態様の課題に対応する、ボールねじ装置の防塵部品の組付け方法の前半の工程を示す断面図であって、(a)はナットのインロー部に防塵部品を仮嵌めする工程を、(b)は防塵部品にねじ穴を穿設する工程を、(c)はナット、ねじ軸及び防塵部品を分解する工程を示している。 第6~9態様の課題に対応する、ボールねじ装置の防塵部品の組付け方法の後半の工程を示す断面図であって、(a)はエアブローによって削り屑を吹き飛ばす工程を、(b)はタッピングねじによって防塵部品をナットに固定する工程を、(c)はノギスによってタッピングねじの固定状態を確認する工程を示している。 第6~7態様の第1実施形態に係るボールねじ装置の断面図である。 第6~7態様の第1実施形態に係るボールねじ装置に用いる防塵部品を示す平面図(a)と、(a)のA-A断面図(b)と、拡大断面図(c)である。 第6~7態様の第1実施形態に係るボールねじ装置の防塵部品を組付ける工程を示す断面図であって、(a)はナットの端部に防塵部品を嵌め込む工程を、(b)はタッピングねじによって防塵部品をナットに固定する工程を、(c)はノギスによってタッピングねじの固定状態を確認する工程を示している。 第6~7態様の第2実施形態に係るボールねじ装置に用いる防塵部品を示す平面図(a)と、(a)のB-B断面図(b)と、拡大断面図(c)である。 第6~7態様の第3実施形態に係るボールねじ装置に用いる防塵部品を示す平面図(a)と、(a)のC-C断面図(b)と、拡大断面図(c)である。 第6~7態様の第4実施形態に係るボールねじ装置に用いる防塵部品を示す平面図(a)と、(a)のD-D断面図(b)と、拡大断面図(c)である。 第8~9態様の第1実施形態に係るボールねじ装置を示す図であって、(a)はナットを軸方向に切断した断面とねじ軸の側面を示しており、(b)は防塵部品にタッピングねじを螺入した状態をナットの軸方向外側から見た平面図であり、(c)は防塵部品にタッピングねじを螺入した状態をナットの軸方向内側から見た平面図である。 第8~9態様の第1実施形態に係るボールねじ装置に用いる防塵部品を示す平面図(a)と、(a)のA-A断面図(b)と、拡大断面図(c)である。 第8~9態様の第1実施形態に係るボールねじ装置の防塵部品を組付ける工程を示す断面図であって、(a)はナットの端部に防塵部品を嵌め込む工程を示しており、(b)はタッピングねじによって防塵部品をナットに固定する工程を示しており、(c)はノギスによってタッピングねじの固定状態を確認する工程を示している。 第8~9態様の第1実施形態に係るボールねじ装置において、ナットのインロー部と防塵部品との間に軸方向に開いた隙間を示す断面図である。 第8~9態様の第2実施形態に係るボールねじ装置に用いる防塵部品を示す平面図(a)と、(a)のB-B断面図(b)と、拡大断面図(c)である。 シールを備えたボールねじの従来例を示す部分断面図である。 図24のボールねじのシール固定方法を説明する図である。 (a)はナットの肉厚が薄い場合の貫通孔の断面図であり、(b)はナットの肉厚が厚い場合の貫通孔の断面図である。 シールの外周面に下穴を形成する方法(従来法)を説明する図である。
 以下、この発明の実施形態について説明するが、この発明はこの実施形態に限定されない。
[第1~3態様の実施形態]
 この実施形態のボールねじは、図1に示すように、ねじ軸1と、ナット2と、ボール3と、リング状のシール(防塵部品)4と、シール4をナット2に固定するタッピングねじ(頭部を有するねじ)5と、で構成されている。
 ねじ軸1の外周面に螺旋溝11が形成され、ナット2の内周面に螺旋溝21が形成されている。ボール3は、ねじ軸1の螺旋溝11とナット2の螺旋溝21で形成される軌道の間に配置されている。
 ナット2の軸方向一端部にフランジ22が形成されている。
 ナット2の内周面の径は、軸方向両端部で螺旋溝21が形成されている部分より大きく形成されている。この拡径された内周面23が形成されている部分が、ナット2のシール取付部24になっている。各シール取付部24には、外周面から内周面まで径方向に貫通する貫通穴25が2個ずつ形成されている。2個の貫通穴25は、シール取付部24の内周面23で互いに対向する位置(中心角が180°となる位置)に形成されている。
 図2(a)に示すように、タッピングねじ5は、皿状の頭部51を有する。頭部51をなす円錐の斜面とタッピングねじ5の軸に垂直な線とのなす角度(斜面角度)θ5は30°である。
 図2(a)に示すように、シール取付部24に設けた貫通穴25は、外周側の大径部25aと、内周側の小径部25bと、これらを連通させる円錐部25cとからなる。大径部25aの直径はタッピングねじ5の頭部51の直径より大きい。小径部25bの直径は、タッピングねじ5の雄ねじ部の外径より大きい。円錐部25cの斜面と貫通穴25の軸に垂直な線とのなす角度(斜面角度)θ2は30°である。円錐部25cの斜面が、タッピングねじ5の頭部51を受ける座面である。
 貫通穴25は、例えば、小径部25bの直径の貫通穴をドリルで形成した後、その貫通穴の外周側に大径部25aの直径の穴をドリルで形成する方法によって、容易に形成することができる。
 図3に示すように、シール4の内周面に、ねじ軸1の螺旋溝11に対応させた突起部41が形成されている。なお、シール4の外周面には、後述のように、シール4がナット2のシール取付部24に配置された後に、シール取付部24の貫通穴25の位置に径方向に延びる凹部(下穴、取付穴)42が形成される。この凹部42を図3(a)に二点鎖線で示す。
 この実施形態では、このボールねじを以下の方法で組み立てる。
 先ず、ナット2にボール3とねじ軸1を組み込む。次に、ねじ軸1の軸方向端部にシール4を嵌め、シール4をねじ軸1の軸方向に押しながら回転させる。これにより、シール4を移動させて、ナット2のシール取付部24の内周面23内に入れる。そして、ねじ溝11とシール4の突起41を合わせた後、ねじ軸1とシール4との接触を防止するために、シール取付部24の軸方向端面24aからシール4を少し離す。
 次に、後述の図7~10に示す方法で、各シール4の外周面の全ての貫通穴25の位置に、径方向に延びる断面が円形の凹部42を形成する。図2(a)はこの状態を示す。この状態でシール取付部24の内周面23とシール4との間に隙間が存在する。凹部42の直径はタッピングねじ5の雄ねじ部の谷径より小さい。
 次に、タッピングねじ5を貫通穴25に入れて、その先端をシール4の凹部42に接触させ、ドライバでタッピングねじ5を回転する。これにより、タッピングねじ5は、雄ねじ部で凹部42の周囲をねじ切りしながら、シール4内に進入する。その際に、頭部51の斜面が貫通穴25の斜面(座面)25cに接触した後は、頭部51の斜面が貫通穴25の斜面25cを押圧する力でシール4に径方向外向きの力が生じる。その結果、シール4がタッピングねじ5でナット2のシール取付部24に固定される。図2(b)はこの状態を示す。この状態で、シール4がシール取付部24の内周面23に接触し、シール4とねじ軸1との間に隙間が生じる。
 このようにして組み立てられたボールねじは、シール4がナット2に固定された状態で、シール4にねじ軸1から離れる方向の力が付与されているため、シール4はねじ軸1に押し付けられず、シール4とねじ軸1との摩擦に伴う発熱が防止される。
 また、頭部51の斜面が貫通穴25の斜面25cに接触する前後でタッピングねじ5の締め付けトルクが変化するため、締め付けトルクを管理することで、タッピングねじ5によるシール4のナット2への固定完了時点が分かる。 つまり、タッピングねじ5の締め付けを締め付けトルクが変化するまで行えば、シール4がナット2に確実に固定された状態になる。よって、シール4がナット2に確実に固定された状態になっているかどうかが容易に分かり、固定状態の確認のために貫通穴25内のねじ上端までの深さをノギス等で測定する必要がない。
 また、この実施形態の方法では、タッピングねじ5の頭部51の斜面角度θ5が30°であるため、斜面角度θ5が45°であるタッピングねじを使用した場合と比較して、上述の締め付けトルクの管理を容易に行うことができる。なお、タッピングねじ5の締め付けの回転方向と、貫通穴25の斜面(座面)25cを形成する際のドリルの回転方向が同じであるため、頭部51の斜面および貫通穴25の斜面25cの表面粗さを小さくしなくても、タッピングねじ5の締め付けトルクの管理を問題なく行うことができる。
 シール4の凹部(下穴)42は、図2(b)の状態で、タッピングねじ5の先端より先に隙間42aができる深さに形成することが好ましい。これにより、上述の締め付けトルクの管理を容易に行うことができる。凹部42の深さは深いほど好ましい。また、シール4の下穴を外周面から内周面に至る貫通穴としてもよい。
 図4に示す例では、タッピングねじ5の代わりにドリルねじ6を使用している。ドリルねじ6は、タッピングねじの先端に切り刃62が形成されたものであり、タッピングねじ5の頭部51と同様に、斜面角度θ6が30°である頭部61を有する。この場合は、図2に示す例のようにシール4に凹部42を形成する必要がないため、製造コストが低減できる。
 また、この実施形態の方法では、頭部を有するねじであるタッピングねじ5またはドリルねじ6で、シール4をナット2に固定しているため、軸部の径の小さいねじを使用することにより、薄い(軸方向寸法が小さい)シール4の固定に対応できる。
 なお、この実施形態では、シール4の外周部に雌ねじの形成を行わず、タッピングねじ5またはドリルねじ6の雄ねじ部でシール4がねじ切りされて、雄ねじ部がシール4に係合することにより、シール4に径方向外向きの力が生じて、シール4がナット2に固定されている。しかし、シール4の外周部に雌ねじを形成して、頭部を有するねじの雄ねじ部を螺合させることで、シール4に径方向外向きの力を生じさせて、シール4をナット2に固定してもよい。
 また、この実施形態では、固定部材として頭部を有するねじを使用しているが、第1態様の方法の固定部材は、「シール取付部の貫通穴に通してシールの外周部に係合することにより、シールに径方向外向きの力を生じさせることができるもの」であれば、「頭部を有するねじ」以外のものであってもよい。
[第4~5態様の実施形態]
 図5は本実施形態に係るボールねじ装置をねじ軸の径方向から見た状態の部分断面図である。また、図6(a)、(b)、(c)はそれぞれ、防塵部品をねじ軸の軸方向から見た状態の外観図、ねじ軸の径方向から見た状態の断面図、(b)の部分拡大図である。
 図5に示すように、本実施形態に係るボールねじ装置101は、断面が円形のねじ軸104と、該ねじ軸104が貫通して配置されるナット107とを備えている。ねじ軸104の外周面には螺旋状のねじ溝110が形成され、ナット107の内周面には前記ねじ溝110と対向する溝113が螺旋状に形成されている。
 ねじ軸104の外周面のねじ溝110とナット107の内周面の溝113とで転動体であるボール116の転走路を形成している。ナット107は、転走路を転走する多数のボール116を介してねじ軸104と係合している。ナット107の両端部のそれぞれには、ナット107とねじ軸104との間隙をシールするための防塵部品119が備えられている。防塵部品119は、図6(a)および(b)に示すように、環状のシール部材である。
 本実施形態に係るボールねじ装置101に用いられているナット107は、一方側の端部にフランジ部122が形成されている。従ってナット107の肉厚は、フランジ部122が形成された一方側の端部とフランジ部122が形成されていない他方側の端部とでは異なっている。ナット107は両端部の内径が拡大されており、内周面のそれぞれの端部近傍に環状の段部125が形成されている。拡大された両端部の内径は同じ径寸法に形成されている。内径が拡大された部分の内周面と環状の段部125とで防塵部品119の収容部128を形成している。
 防塵部品119は、図5に示すように、内周面の両端部の収容部128に嵌め込まれて配置され、防塵部品119の外周面は収容部128の内周面に対向して接触している。防塵部品119の内周面は、ねじ軸104の表面形状と雌雄関係の形状となっている。具体的には、図6(b)、(c)に示すように、防塵部品119の内周面には、ねじ軸104の表面に形成されたねじ溝110の形状に対応する突起部131が形成されている。これにより、ねじ軸104とナット107との隙間を確実にシールして、塵等の異物の混入を防止している。
 ナット107の両端部にはそれぞれ、ナット107の外周面と収容部128の内周面とを貫通して径方向に延在する複数の貫通孔134が形成されている。貫通孔134は各端部にそれぞれ周方向に沿って複数が設けられ、両端部とも同数(本実施形態では2つずつ)が設けられている。
 各貫通孔134は、図5に示すように、ナット107の外周面側から収容部128の内周面の近傍まで延在する、径の大きい孔(以後「大径部137」という。)と、大径部137の底部からナット107の内周面まで延在する径の小さい孔(以後「小径部143」という。)とから形成された2段孔となっている。
 貫通孔134の内壁には、大径部137と小径部143とによって段部140が形成されている。大径部137の径は、後述する加工用ドリルのシャンク部よりも僅かに大きく形成されている。また、小径部143の径は、該シャンク部よりも小さく形成され、かつ加工用ドリルの刃先部の径よりも大きく形成されている。小径部143の内周面にはタップ加工が施され、雌ねじ(図示省略)が形成されている。
 また、本実施形態では、フランジ部122側の端部に形成された貫通孔134と、フランジ部122が形成されていない側の端部に形成された貫通孔134とは、ナット107の中心軸から貫通孔134の段部140までの径方向の距離は等しく形成されている。つまり、ナット107の中心軸から各貫通孔134の段部140までの距離は、何れも同じである。また、ナット107の両端部とも、収容部128の内周面から貫通孔134の段部140までの肉厚、すなわち径方向の距離は、同じである。言い換えると、各貫通孔134の小径部143の深さ寸法は、何れも同じである。
 ナット107の各収容部128に嵌合された防塵部品119の外周面側には、ナット107の両端部に形成された貫通孔134のそれぞれと対応する位置に、ねじ固定穴146が設けられている。ねじ固定穴146の内周面にはタップ加工により雌ねじ(図示省略)が形成されている。貫通孔134にはナット107の外周面側から締結部材149がねじ込まれている。
 本実施形態では、締結部材149はねじ部材である。大径部137は締結部材149の径よりも大きい径を有し、締結部材149をねじ込む際のガイドとなっている。締結部材149の軸部が貫通孔134の小径部143の雌ねじに係合し、先端部が防塵部品119のねじ固定穴146に係合している。これらの係合により、防塵部品119はナット107の収容部128に固定されている。
 次に、本実施形態に係るボールねじ装置101の製造に用いられる工具について説明する。図7は本実施形態に係るボールねじ装置101の製造に用いられるドリル152の外観図である。ドリル152は、具体的には、防塵部品119の外周面側にねじ固定穴146を形成するためのタップ加工用下穴155(図6(a)、(b)、および(c)参照)の加工形成に用いられる。
 図7に示すように、ドリル152は、シャンク158とシャンク158の先端に取付けられた刃先部61とから構成されている。シャンク158の径DSは刃先部61の径DBに比べて大きく形成されている。当該ドリル152による加工は、シャンク158を加工装置(図示省略)の回転駆動部64(図9参照)に取付けて行われる。
 シャンク158の径DSはナット107に形成された貫通孔134の小径部143の径よりも大きく、大径部137の径DH(図9参照)よりも僅かに小さく形成されている。具体的には、貫通孔134の大径部137の径(mm)よりも0.2~0.3(mm)小さく形成されている。
 また、刃先部61の径DBは、防塵部品119のねじ固定穴146の内径、すなわち、ねじ固定穴146の内周面に形成された雌ねじの内径と同じ寸法である。刃先部61の長さLBは、形成されるねじ固定穴146の深さ寸法と貫通孔134の小径部143の深さ寸法とを合計した寸法となっている。また、シャンク158はナット107の肉厚に比べて充分な長さを有している。
 次に、このような構成のドリル152を用いた、本実施形態に係るボールねじ装置101の製造方法について説明する。図8は、製造中のボールねじ装置167の要部の部分断面図である。ここで製造中のボールねじ装置167とは、ナット107の収容部128に防塵部品28が嵌合されている状態をいう。まずこの状態から、ナット107の両端部に貫通孔134を形成する。
 貫通孔134はボール盤等の加工装置(図示省略)で公知のドリルを用いて形成する。貫通孔134は、締結部材149の径よりも大きな径を有する大径部137と、締結部材149が係合する小径部143と、大径部137と小径部143との間の段部140とからなるように形成する。本実施形態においては、ナット107の収容部128の内周面から段部140までの肉厚、すなわち径方向の距離は、全ての貫通孔134において同じ寸法となるようにする。言い換えると、小径部143の深さ寸法を全ての貫通孔134において等しくなるようにする。
 このように小径部143の深さ寸法を全て等しくするために、例えば次のように貫通孔134を形成する。予めナット107のフランジ部122側の端部およびフランジ部122が形成されていない側の端部の肉厚寸法、すなわち収容部128の内周面からナット107の外周面までの寸法を測定しておく。そして、これらの肉厚寸法と小径部143の深さ寸法との差分を、ナット107のそれぞれの端部において、ナット107の外周面側から大径部137形成用の公知のドリルでそれぞれドリル加工する。そうすると、当該ドリル加工後には、ナット107の内周面側には小径部143の深さ寸法分の肉厚が残る。
 その後、各大径部137の底部から、小径部143形成用の公知のドリルで残った肉厚部分をそれぞれドリル加工する。図9は、このようにしてナット107に各貫通孔134が形成された状態を示している。また、図9には、次の工程であるタップ加工用下穴155の加工に用いるドリル152を示している。当該ドリル152を用いたタップ加工用下穴155の加工は以下のように行う。
 ドリル152および製造中のボールねじ装置167をそれぞれボール盤等の加工装置(図示省略)にセットする。ドリル152を回転駆動させ、刃先部61をナット107の外径側から貫通孔134に挿入する。貫通孔134に挿入されたドリル152は、シャンク158が大径部137に沿ってナット107の径方向内方に進み、刃先部61の先端が貫通孔134の小径部143に達する。
 さらにドリル152が進行すると、刃先部61の先端が小径部143を通過し、収容部128の内周面、すなわち該内周面に接触している防塵部品119の外周面に達する。この状態において、シャンク158の先端部159はまだ大径部137の底部すなわち段部140には達していない。さらにドリル152が進行すると、刃先部61は防塵部品119を外周面側から削孔し、ナット107の径方向で内方に延在する穴を形成する。
 そしてドリル152は、シャンク158の先端部159が貫通孔134の段部140に達すると、シャンク158の径DSは小径部143の径よりも大きいので、そこで進行が規制される。つまり、貫通孔134の段部140はドリル152のストッパとなっている。ドリル152をこの状態まで進行させたら、ドリル152を大径部137から引き抜く。すると、防塵部品119の外周面側に所定の深さの凹部が形成される。この凹部がすなわち、図6(a)、(b)および(c)に示すタップ加工用の下穴155である。
 同様の作業を他の全ての貫通孔134でも行う。図6は、図5の状態から全てのタップ加工用下穴155が形成された状態のボールねじ装置167の要部の部分断面図である。上述したように、ナット107の両端部において収容部128の内周面から貫通孔134の段部140までの肉厚の寸法(図9および図10において、αで示す)は同じ寸法である。言い換えると小径部143の深さ寸法は何れの貫通孔134でも同じである。
 そうすると、ドリル152のシャンク158の先端部159が、貫通孔134の段部140に当接するまで、貫通孔134に差し込まれることによって、防塵部品119の外周面側に形成されるタップ加工用下穴155の深さは、どの貫通孔134における加工でも全て同じ深さ寸法となる。つまり、貫通孔134の段部140は、各タップ加工用下穴155の深さが同一となるようにドリル152の防塵部品119に対する加工距離を規定している。
 防塵部品119へのタップ加工用下穴155の加工形成が終了したら、貫通孔134の小径部143と当該下穴155とにタップ加工を施し、それぞれに雌ねじ(図示省略)を形成する。こうして下穴155をねじ固定穴146に成形する。その後、貫通孔134に防塵部品119とナット107とを締結するための締結部材149をねじ込む。その際、貫通孔134の大径部137は締結部材149を締結位置までガイドする。締結部材149は軸部が貫通孔134の小径部143の雌ねじに係合し、先端部が防塵部品119のねじ固定穴146に係合する。これらの係合によって防塵部品119がナット107の収容部128に固定される。
 このように、本実施形態では、ドリル152を回転駆動させてシャンク158の先端部159が貫通孔134の段部140に達するまで貫通孔134に差し込みさえすれば、防塵部品119に深さの等しいタップ加工用下穴155を形成することが出来る。
 また、ナット107は、フランジ部122およびフランジ部122以外の部分の外径を顧客の要求に合わせて製作しているため、ナット107の肉厚は用いるナット107ごとに寸法が異なっている。
 このような様々な肉厚のナット107について、何れのナット107についても、防塵部品119の収容部128の内周面から貫通孔134の段部140までの肉厚寸法を、例えば本実施形態と同じαに固定し、本実施形態に係るドリル152を用いて加工を行えば、収容部128の内周面からナット107の外周面までの肉厚の寸法に関わりなく、防塵部品119の外周面側に同じ深さのタップ加工用下穴155を形成することが出来る。
 すなわち、従来様々な寸法の肉厚のナットごとに行い、手間の掛かっていたタップ加工用下穴の深さ管理を容易に行うことが可能となる。
 その結果、ゲージと、ドリルに取付けるタイプのストッパとを用いた従来の加工方法よりも防塵部品の取付けに要する時間を短縮することが出来る。実際には、背景技術の欄で説明したような従来の加工方法による防塵部品の取付け作業に比べ、所要時間を半分以下まで短縮することが可能である。さらに、従来のようにベテラン作業員が行わなくとも誰でも簡単、迅速に確実な防塵部品のナットへの取付け、固定が可能となる。
[第6~9態様の課題の説明]
 ナット2にシール4を固定する工程で、シール取付部24に設けた貫通穴25に合わせて、シール4に下穴42を形成する方法は、第4~5態様の実施形態で説明した方法であっても多くの手間がかかる。第6~9態様が解決しようとする課題は、この手間を軽減することである。
 ナットのシール取付部に設けた貫通穴に合わせてシールに形成する下穴の位置を決め、その位置に下穴を形成した後に、シールをナットに固定する方法の一例を、図11と12を用いて説明する。
 まず初めに、図11(a)に示すように、ドーナツ状の防塵部品202の内部にねじ軸203の端部を通し、防塵部品202を回転させることにより、防塵部品202をナット201に向けてねじ軸203上で移動させ、ナット201の端部に形成されたインロー部に嵌め込む。
 そして、防塵部品202とねじ軸203の位相(周方向の位置)を合わせた後に、図11(b)に示すように、ナット201にあらかじめ径方向に穿設したねじ用穴部204から、任意の深さで止められるように特殊工具(ストッパー)を取り付けたドリル205を挿入し、防塵部品202の外周面から径方向内方に向けてドリル穴を穿設する。
 このように、現場合わせによってドリル穴の位置を決めることで、部品の製造段階で生じる部品ごとのわずかな寸法のばらつきに拘わらず、精度の高いシール性能を得られるようにする。
 さらにその後、図11(c)に示すように、ナット201、防塵部品202、ねじ軸203を分解し、図12(a)に示すように、エアブロワ206を用いてエアブローによってナット201及び防塵部品202から穿設の際に生じた削り屑を吹き飛ばす。そして、図12(b)に示すように、ナット201、防塵部品202及びねじ軸203を再度組み立て、ねじ用穴部204からタッピングねじ7を挿入して防塵部品202に穿設したドリル穴に螺入することで、防塵部品202をナット201に固定する。
 最後に、図12(c)に示すように、ノギス208により、ナット201の外周面からタッピングねじ7までの深さを測定し、タッピングねじ7による固定状態を確認して組付け作業が完了する。
 上記の方法では、防塵部品の組付けに多くの手間がかかる。
[第6~7態様の実施形態]
(第1実施形態)
 以下、第6~7態様の実施形態について図13ないし図15を参照しつつ説明する。図13は、この実施形態に係るボールねじ装置211を示しており、ナット212を軸方向に切断した断面とねじ軸213の側面を示している。
 この実施形態に係るボールねじ装置211は、ナット212と、ナット212に挿通したねじ軸213と、ナット212とねじ軸213との間に介装された多数のボール221と、から構成されている。
 ナット212は、円筒状をした金属製の円筒部214と、円筒部214と一体に金属から形成され、円筒部の軸方向の端部で円筒部よりも外径寸法の大きいフランジ215とを有している。
 円筒部214の内周面には螺旋状の外側転動面216が形成され、フランジ215と反対側の端部には、インロー部217aが形成されている。外側転動面216の断面形状はゴシックアーク形状をしている。インロー部217aは、軸方向と平行な円柱面状の内周面と、ナット内側に形成された軸方向に対して垂直な環状面とから構成されている。
 インロー部217aの内周面を形成する円筒状の部分には径方向に貫通したねじ用穴部218aが形成されている。ねじ用穴部218aは、径方向の対向する位置に2ヶ所設けられている。ねじ用穴部218aは、径方向外側に形成された座繰り部と、座繰り部よりも径方向内側において形成された雌ねじ部とから形成されている。
 インロー部217aには、エラストマーから形成されたドーナツ状の防塵部品219aが嵌め込まれ、タッピングねじ220aによって円筒部214に固定されている。タッピングねじ220aは防塵部品219aに螺入してあり、タッピングねじ220aの雄ねじ部と防塵部品219とが密着して、雄ねじ部のせん断抵抗によって防塵部品219aが軸方向にずれるのを防いでいる。
 フランジ215の外側の端部にもインロー部217bが形成してある。インロー部217bは、軸方向と平行な円柱面状の内周面と、ナット内側に形成された軸方向に対して垂直な環状面とから構成されている。インロー部217bの径方向外側の部分を構成するドーナツ状の円筒状部分には、径方向に貫通したねじ用穴部218bが穿設されている。ねじ用穴部218bは、径方向の対向する位置に2ヶ所設けられている。ねじ用穴部218bは、径方向外側において形成された座繰り部と、座繰り部よりも径方向内側において形成された雌ねじ部とから形成されている。ねじ用穴部218bにおいては、フランジ215の径方向の厚みの分、ねじ用穴部218aよりも径方向に深い座繰り部が形成されている。なお、ねじ用穴部218a、218bはそれぞれ2ヶ所ずつに限らず、必要に応じて3ヶ所以上設けても良い。
 インロー部217bには、エラストマーから形成されたドーナツ状の防塵部品219bが嵌め込まれ、タッピングねじ220bによってインロー部217bに固定されている。インロー部217aと217bの形状及び大きさを同一のものとすることで、防塵部品219a、219bを同じ形状及び大きさのものを製造して、両インロー部217a、217bに用いることができる。なお、防塵部品219a及び219bは、エラストマー以外の弾性体から形成されていも良い。また、防塵部品219a及び219bは、形状を保持し、強度を上げるため、芯金を備えていてもよい。
 ねじ軸213の外周面には、円筒部214の内周面に形成された外側転動面216に対向する螺旋状の内側転動面222が形成されている。内側転動面222の断面形状は、略円弧状であり、底部に逃げ溝(不図示)を配した形状をしている。なお、シール性能を高めるため、逃げ溝の無い構成とすることも可能である。
 円筒部214の内周面に形成された外側転動面216と、ねじ軸213に形成された内側転動面222とで転動路が形成され、該転動路にはボール221が介装されている。図1においては、ねじ軸213の図面手前側に介装されたボール221の表示を省略している。ボール221は、ナット212をねじ軸213に支持しており、ねじ軸213がナット212に対して相対回転することにより、転動路内を転動してナット212を軸方向に移動させる。
 ボール221は、螺旋運動をしながら、ナット212がねじ軸213に対して相対移動する向きとは逆の向きに、ナット212に対して相対移動し、転動路の終端に達すると、ナット212に備えられた不図示のボール循環機構によって転動路の螺旋軌道から逸れてボール循環路(不図示)に入る。ボール221は、ボール循環路内で後続のボール221に押されて、ナット212がねじ軸213に対して相対移動している向きと同じ向きにナット212に対して相対移動し、再度転動路に戻って転動路内を転動するという循環が繰り返される。循環機構の方式としては、エンドデフレクタ式、チューブ式、こま式、エンドキャップ式等を用いることができる。
 ナット212には、転動路に潤滑剤を供給する潤滑剤供給機構(不図示)が設けられている。
 ナット212、ねじ軸213及びボール221の間には適切な予圧が与えられることが好ましい。予圧の方式としては、オーバーボール予圧、インテグラル予圧、ダブルナット予圧等を用いることができる。
 図14は、防塵部品219bを示す平面図及び断面図である。図14(a)は、本第1実施形態に係るボールねじ装置に用いる防塵部品219bの平面図を示しており、本体223の外周面を破線で示している。図14(b)は、図14(a)に記すA-A断面を示す断面図である。図14(c)は、防塵部品219bの拡大断面図である。
 図14に示すように、防塵部品219bは、径方向内側に形成されたドーナツ状の本体223と、本体223の内周側に形成されたシールリップ225と、本体223の外周面から径方向外側に突出し円周方向に延びる一対のねじ受け用突起部224a、224bとから構成されている。防塵部品219bは、軸方向の寸法がナット212に形成されたインロー部217bの軸方向の深さよりも小さく、外径寸法はインロー部217bの内径寸法よりも僅かに小さい。
 シールリップ225は、ねじ軸213の内側転動面222の螺旋軌道に対応して径方向内方に螺旋状に突出した部分であり、本体223と一体的に形成されている。シールリップ225は、内側転動面222に対応した形状となっていて、内側転動面222からのナット212への異物の侵入やナット212から外部への潤滑材の漏出を防止する。本体223の内周面のうちシールリップ225以外の部分は、ねじ軸213の内側転動面222以外の外周面に対応した形状となっていて、異物の侵入や潤滑材の漏出を防止する。
 ねじ受け用突起部224a及び24bは、図14(c)に示すように、本体223の外周面において、互いに隙間を空けて軸方向に並べて配置されている。これにより、タッピングねじ220bがねじ受け用突起部224a、224bの間の隙間に螺入され防塵部品219bがナット212に固定される。
 図14(a)に示すように、本体223の外周面の全周にわたって一対のねじ受け用突起部が形成さることにより、後述のように現場合わせによってシールリップ225をねじ軸213の内側転動面222の螺旋軌道に合わせて固定することが可能となる。図14(c)に示すように、ねじ受け用突起部224a及び224bの軸方向の寸法は同一であり、その間に形成される隙間は防塵部品219bの軸方向の中央に形成されている。なお、ねじ受け用突起部224a及び224bの軸方向の寸法は異なっていても良く、その間に形成される隙間が防塵部品219bの軸方向の中央に形成されていなくても良い。
 図14(c)に示すねじ受け用突起部224aと224bとの間の隙間の軸方向の幅αは、タッピングねじ220bの雄ねじ部の谷の径以下とすることが好ましい。これにより、十分な固定力を得ることが可能となる。
 ねじ受け用突起部224a、224bは、タッピングねじ220bの固定に用いられるだけでなく、本体223とインロー部217bとの間の隙間を埋めてナット212内に異物 防塵部品219bのナット212中心側の面は、本体223とねじ受け用突起部224aとで軸方向に対して垂直な面を構成しており、防塵部品219bのナット212中心側と反対側の面も、本体223とねじ受け用突起部224bとで軸方向に対して垂直な面を構成している。
 また、防塵部品219bの外周面は、ねじ受け用突起部224a、224bが軸方向と平行な円柱面を構成している。防塵部品219bは、射出成形等の樹脂成形や削り出しによって製造することができる。樹脂成形においては、ねじ受け用突起部224a、224bの間の隙間を成形する部分を型に設けることで、コストアップさせることなく製造が可能となる。また、削り出しの場合においても、防塵部材19bの製造過程で溝を設けることで、ボールねじ装置全体の組立工程時に下穴加工を行うよりコストを抑えた製作が可能となる。
 以上、防塵部品219bについて説明したが、防塵部品219aも同一の構成をしており、同一の作用及び効果を奏するものである。
 次に、図15を参照しつつ本第1実施形態に係るボールねじ装置211の製造における防塵部品219bのナット212への組付けについて説明する。
 まず初めに、図15(a)に示すように、防塵部品219bの内部にねじ軸213の端部を通し、防塵部品219bをねじ軸213の軸方向に押し付けながら回転させることにより、ねじ軸213上をナット212に向けて移動させ、防塵部品219bをインロー部217bに嵌め込む。
 次に、図15(b)に示すように、タッピングねじ220bをフランジ215に形成されたねじ用穴部218bから挿入して防塵部品219bのねじ受け用突起部224a、224bの間の隙間に螺入する。
 最後に、図15(c)に示すように、ノギス227によってフランジ215の外周面からタッピングねじ220bまでの深さを測定し、タッピングねじ220bによる固定状態を確認して組付け作業が完了する。このように、本発明によれば、タッピングねじを螺入するための下穴加工を施す必要が無く、また、下穴加工に伴う削り屑が発生しないため、その除去をする必要も無く、下穴とタッピングねじの間に削り屑が侵入する危険性も排除することができる。
(第2実施形態)
 次に、図16を参照しつつ第6~7態様の第2実施形態に係る防塵部材について説明する。この実施形態に係る防塵部材を用いるボールねじ装置は、第6~7態様の第1実施形態と同様の構成である。
 図16(a)は、本第2実施形態に係る防塵部品230bの平面図を示しており、防塵部品230bの本体31の外周面と縮径段部232a、232bを破線で示している。図16(b)は、図16(a)に記すB-B断面を示す断面図である。図16(c)は、防塵部品230bの拡大断面図である。
 この実施形態に係る防塵部品230bにおいては、図16(c)に示すように、一対のねじ受け用突起部233a、233bの互いに対向する面の径方向外側の端部において、防塵部品230bの外周面から縮径した縮径段部232a、232bがそれぞれ形成されている。これにより、タッピングねじの挿入口が軸方向に広くなり、タッピングねじが食い付き易くなり、より容易に防塵部品を組付けることができるようになる。
 タッピングねじの雄ねじ部の外径をd1、タッピングねじの雄ねじ部の谷の径をd2、ねじ受け用突起部233aと233bとの間に形成された隙間のうち、径方向内側に形成された幅の狭い方の軸方向の幅をα、径方向外方に形成された幅の広い方の軸方向の幅をβとした場合、以下の条件式(1) および(2) を満足することが望ましい。
 α≦d2…(1)
 d2<β≦d1…(2)
 これにより、タッピングねじの食い付きを良くして、かつ、タッピングねじによる十分な固定力を得ることができる。
(第3実施形態)
 次に、図17を参照しつつ第6~7態様の第3実施形態に係る防塵部材について説明する。この実施形態に係る防塵部材を用いるボールねじ装置は、第6~7態様の第1実施形態と同様の構成である。
 図17(a)は、この実施形態に係る防塵部品240bの平面図を示しており、防塵部品240bの本体41の外周面を破線で示している。図17(b)は、図17(a)に記すC-C断面を示す断面図である。図17(c)は、防塵部品240bの拡大断面図である。
 この実施形態に係る防塵部品240bにおいては、図17(c)に示すように、一対のねじ受け用突起部243a、243bの互いに対向する面の径方向外側の端部に、径方向外側の隙間が広くなるように円弧状に形成されたアール部242a、242bが形成されている。これにより、タッピングねじの挿入口が軸方向に広くなり、タッピングねじが食い付き易くなり、より容易に防塵部品240bを組付けることができるようになる。
 タッピングねじの雄ねじ部の外径をd1、タッピングねじの雄ねじ部の谷の径をd2、ねじ受け用突起部243aと243bとの間に形成された隙間のうち、径方向内側に形成された幅の狭い部分の軸方向の幅をα、径方向で最も外側に形成された最も幅の広い部分の軸方向の幅をβとした場合、以下の条件式(1) と(2) を満足することが望ましい。
 α≦d2…(1)
 d2<β≦d1…(2)
 これにより、タッピングねじの食い付きを良くして、かつ、タッピングねじによる十分な固定力を得ることができる。
(第4実施形態)
 次に、図18を参照しつつ第6~7態様の第4実施形態に係る防塵部材について説明する。この実施形態に係る防塵部材を用いるボールねじ装置は、第6~7態様の第1実施形態と同様の構成である。
 図18(a)は、この実施形態に係るボールねじ装置に用いる防塵部品50bの平面図を示しており、ねじ受け用突起部252aと本体251との境界を破線で示している。図18(b)は、図18(a)に記すD-D断面を示す断面図である。図18(c)は、図18(a)に記すE-E断面を示す断面図である。
 この実施形態に係る防塵部品250bにおいては、図18(a)に示すように、ねじ受け用突起部252a、252bが本体251の外周面の一部にのみ配置されている。ねじ受け用突起部252a、252bが配置されていない部分は、図18(b)に示すように、径方向外側の面がねじ受け用突起部252a、252bの径方向外側の面と同一円周上に形成されるように本体231を径方向外方へ延在させている。
 このように、ねじ受け用突起部252a、252bを全周にわたって配置しなくても、設計の時点で防塵部品250bの取付け向きと製造の精度を考慮して、設計上ねじが螺入される部分の前後に必要な範囲だけねじ受け用突起部252a、252bを配置しても良い。この場合も、第6~7態様の第1ないし第3実施形態と同様に、容易に防塵部品の組付けを行うことができる。
[第8~9態様の実施形態]
(第1実施形態)
 以下、第8~9態様の第1実施形態について図19ないし図22を参照しつつ説明する。図19(a)は、この実施形態に係るボールねじ装置311を示している。ナット312を軸方向に切断した断面とねじ軸313の側面を示している。
 この実施形態に係るボールねじ装置311は、ナット312と、ナット312に挿通したねじ軸313と、ナット312とねじ軸313との間に介装された多数のボール321と、から構成されている。
 ナット312は、円筒状をした金属製の円筒部314と、円筒部314と一体に金属から形成され、円筒部の軸方向の端部で円筒部よりも外径寸法の大きいフランジ315とを有している。
 円筒部314の内周面には螺旋状の外側転動面316が形成され、フランジ315と反対側の端部には、インロー部317aが形成されている。外側転動面316の断面形状はゴシックアーク形状をしている。インロー部317aは、軸方向と平行な円柱面状の内周面と、ナット内側に形成された軸方向に対して垂直な面とから構成されている。
 円筒部314のフランジ315とは反対側の端部でインロー部317aの内周面を形成する円筒状の部分には径方向に貫通したねじ用穴部318aが形成されている。ねじ用穴部318aは、径方向の対向する位置に2ヶ所設けられている。ねじ用穴部318aは、径方向外側において形成された座繰り部と、座繰り部よりも径方向内側において形成された雌ねじ部とから形成されている。
 インロー部317aには、エラストマーから形成されたドーナツ状の防塵部品319aが嵌め込まれ、タッピングねじ320aによって円筒部314に固定されている。
 フランジ315の軸方向端部にもインロー部317bが形成してある。インロー部317bは、軸方向と平行な円柱面状の円周面と、ナット内側に形成された軸方向に対して垂直な面とから構成されている。インロー部317bの径方向外側の部分を構成するドーナツ状の円筒状部分には、径方向に貫通したねじ用穴部318bが穿設されている。ねじ用穴部318bは、径方向の対向する位置に2ヶ所設けられている。
 ねじ用穴部318bは、径方向外側において形成された座繰り部と、座繰り部よりも径方向内側において形成された雌ねじ部とから形成されている。ねじ用穴部318bにおいては、フランジ315の径方向の厚みの分、ねじ用穴部318aよりも径方向に深い座繰り部が形成されている。なお、ねじ用穴部318a、318bはそれぞれ2ヶ所ずつ限らず、必要に応じて3箇所以上設けても良い。
 インロー部317bには、エラストマーから形成されたドーナツ状の防塵部品319bが嵌め込まれ、タッピングねじ320bによってインロー部317bに固定されている。インロー部317aと317bの形状及び大きさを同一のものとすることで、防塵部品319a及び319bを同じ形状及び大きさのものを製造し、組付け向きを反転させて両インロー部317a、317bに用いることができる。なお、本発明において、防塵部品319a及び319bは、エラストマー以外の弾性体から形成されていも良い。また、防塵部品319a及び319bは、形状を保持し、強度を上げるため、芯金を備えていてもよい。
 ねじ軸313の外周面には、円筒部314の内周面に形成された外側転動面316に対向する螺旋状の内側転動面322が形成されている。内側転動面322の断面形状は、略円弧状であり、底部に逃げ溝(不図示)を配した形状をしている。なお、シール性能を高めるため、逃げ溝を廃した構成とすることも可能である。
 円筒部314の内周面に形成された外側転動面316と、ねじ軸313に形成された内側転動面322とで転動路が形成され、該転動路にはボール321が介装されている。図19(a)においては、ねじ軸313の図面手前側に介装されたボール321の表示を省略している。ボール321は、ナット312をねじ軸313に支持しており、ねじ軸313がナット312に対して相対回転することにより、転動路内を転動してナット312を軸方向に移動させる。
 ボール321は、螺旋運動をしながら、ナット312がねじ軸313に対して相対移動する向きとは逆の向きに、ナット312に対して相対移動し、転動路の終端に達すると、ナット312に備えられた不図示のボール循環機構によって転動路の螺旋軌道から逸れてボール循環路(不図示)に入る。ボール321は、ボール循環路内で後続のボール33321に押されて、ナット312がねじ軸313に対して相対移動している向きと同じ向きにナット312に対して相対移動し、再度転動路に戻って転動路内を転動するという循環が繰り返される。循環機構の方式としては、エンドデフレクタ式、チューブ式、こま式、エンドキャップ式等を用いることができる。
 ナット312には、転動路に潤滑剤を供給する潤滑剤供給機構(不図示)が設けられている。
 ナット312、ねじ軸313及びボール321の間には適切な予圧が与えられることが好ましい。予圧の方式としては、オーバーボール予圧、インテグラル予圧、ダブルナット予圧等を用いることができる。
 図19(b)は、本第1実施形態に係る防塵部品319bにタッピングねじ320bを螺入した状態をナット312の軸方向外側から見た平面図である。ナット312の軸方向外側の面は環状の平滑な面であり、この面の図19(b)奥側で上下からタッピングねじ320bが螺入されている。
 図19(c)は、この実施形態に係る防塵部品319bにタッピングねじを螺入した状態をナット312の軸方向内側から見た平面図である。タッピングねじ320a、20bは、防塵部品319aの径方向外側に放射状に形成されたねじ受け用突起部324間の隙間に螺入されている。
 図20は、防塵部品319bを示す平面図及び断面図である。図20(a)は、平滑な側の面を示す平面図である。図の奥側に形成されているねじ受け用突起部324を破線で示している。図20(b)は、図20(a)に記すA-A断面を示す断面図である。図20(c)は、ねじ受け用突起部324が形成された側の面を示す平面図である。
 図20に示すように、防塵部品319bは、径方向内側に形成されたドーナツ状の本体326と、本体326の内周側に形成されたシールリップ323と、本体326の外周面から径方向外方に突出し軸方向に延びる多数のねじ受け用突起部324と、本体326の外周面から径方向外方に突出し、円周方向に延び、ねじ受け用突起部324及びねじ受け用突起部324の間の隙間の端部に配置された遮蔽部325とから構成されている。防塵部品319bは、軸方向の寸法がナット312に形成されたインロー部317bの軸方向の深さよりも小さく、外径寸法はインロー部よりも僅かに小さい。
 シールリップ323は、ねじ軸313の内側転動面322の螺旋軌道に対応して径方向内方に螺旋状に突出した部分であり、本体326と一体的に形成されている。シールリップ323は、内側転動面322に対応した形状となっていて、内側転動面322からのナット312への異物の侵入やナット312から外部への潤滑材の漏出を防止する。本体326の内周面のうちシールリップ323以外の部分は、ねじ軸313の内側転動面322以外の外周面に対応した形状となっていて、異物の侵入や潤滑材の漏出を防止する。
 ねじ受け用突起部324は、図20(c)に示すように、互いに隙間を空けて本体326の外周面に多数配置されている。これにより、タッピングねじ320bがねじ受け用突起部324の間の隙間に螺入され防塵部品319bがナット312に固定される。図20(c)に示すように、本体326の外周面に、ねじ受け用突起部324を多数設け、その間に隙間が多数形成されていることにより、後述のように、現場合わせによってシールリップ323をねじ軸313の内側転動面322の螺旋軌道に合わせて配置することが可能となる。なお、ねじ受け用突起部324の数及び寸法は、図20(c)に記載したものに限らず、防塵部品319bのサイズや材料、タッピングねじ320bのサイズ等に応じて適切な数及び寸法とすることができる。
 図20(c)に示すねじ受け用突起部324間の隙間の円周方向の寸法αは、タッピングねじ320bの雄ねじ部の谷の径以下とすることが好ましい。これにより、十分な固定力を得ることが可能となる。また、本第1実施形態のように、径方向に対向する位置でねじ止めする場合、ねじ受け用突起部324は、それぞれが径方向に対向するように設けることが好ましい。これにより、ねじ受け用突起部324の間の隙間も径方向に対向することとなり、径方向に対向する位置でねじ止めし易くなる。
 遮蔽部325は、本体326の外周面からねじ受け用突起部324と同じ径方向寸法で径方向外方に突出しており、ねじ受け用突起部324及びねじ受け用突起部324の間の隙間の軸方向端部を覆っている。これにより、ねじ受け用突起部324の間の隙間からナット312内に異物が侵入することを防止する。
 また、遮蔽部325は、ねじ受け用突起部324と一体的に形成されており、ねじ受け用突起部324の間の隙間にタッピングねじが螺入された際に、タッピングねじの両側のねじ受け用突起部324が互いに離反するように弾性変形するのを抑制し、タッピングねじ320bによる十分な固定力を得られるようにしている。
 防塵部品319bの、ナット312の中心部に面する側は、本体326とねじ受け用突起部324とで軸方向に対して垂直な面を構成しており、防塵部品319bのナット312の中心部側と反対側の面は、本体326と遮蔽部325とで軸方向に対して垂直な面を構成している。また、防塵部品319bの外周面は、ねじ受け用突起部2と遮蔽部325とで軸方向と平行な面を構成している。防塵部品319bは、エラストマーを射出成形することによって製造することができる。
 以上、防塵部品319bについて説明したが、防塵部品319aも同一の形状をしており、同一の作用及び効果を奏するものである。
 次に、図21を参照しつつ、この実施形態に係るボールねじ装置311の製造における防塵部品319bのナット312への組付けについて説明する。
 まず初めに、図21(a)に示すように、防塵部品319bの内部にねじ軸313の端部を通し、防塵部品319bをねじ軸313の軸方向に押し付けながら回転させることによりねじ軸313上をナット312に向けて移動させ、防塵部品319bをインロー部317bに嵌め込む。
 次に、図21(b)に示すように、タッピングねじ320bをフランジ315に形成されたねじ用穴部318bから挿入して防塵部品319bのねじ受け用突起部324の間の隙間に螺入する。
 最後に、図21(c)に示すように、ノギス327によってフランジ315の外周面からタッピングねじ320bまでの深さを測定し、タッピングねじ320bによる固定状態を確認して組付け作業が完了する。このように、本発明によれば、タッピングねじを螺入するための下穴加工を施す必要が無く、また、下穴加工に伴う削り屑が発生しないため、その除去をする必要も無く、下穴とタッピングねじの間に削り屑が侵入する危険性も排除することができる。
 タッピングねじ320bをねじ受け用突起部324の間の隙間に螺入する際に、タッピングねじ320bの先端がねじ受け用突起部324の径方向外側の面に当接して螺入することが出来ない場合には、防塵部品319bをナット312に対して円周方向に相対回転させれば良い。これにより、タッピングねじ320bの先端がねじ受け用突起部324の径方向外側の面を避けて、ねじ受け用突起部324の間の隙間に螺入することが可能となる。
 このように防塵部品319bを回転させた場合、防塵部品319bがナット312に対して軸方向に相対移動する。特に、インロー部317bの軸方向と垂直な面に接するまで防塵部品319bを嵌め込んだ後に回転させる場合、インロー部317bの軸方向と垂直な面と、防塵部品319bとの間に隙間が生じることとなる。しかし、その場合であっても、図22に示すようにその移動量βに対して、防塵部品319の軸方向の寸法は、インロー部317bの軸方向の深さよりも十分に小さいものとして、防塵部品319bがナット5の端面から突出しないようにしている。また、タッピングねじ320bが螺入されるねじ受け用突起部324の隙間も軸方向に長さをとって、軸方向の移動を許容できるようにしている。
(第2実施形態)
 次に、図23を参照しつつ、第8~9態様の第2実施形態に係る防塵部材について説明する。この実施形態に係る防塵部材を用いるボールねじ装置は、第8~9態様の第1実施形態と同様の構成をしている。
 図23(a)は、この実施形態に係るボールねじ装置に用いる防塵部品330bの平滑な側の面を示す平面図である。図の奥側に形成されているねじ受け用突起部332を破線で示している。図23(b)は、図23(a)に記すB-B断面を示す断面図である。図23(c)は、ねじ受け用突起部332が形成された側の面を示す平面図である。
 この実施形態に係る防塵部品330bにおいては、図23(a)に示すように、ねじ受け用突起部332及び遮蔽部333が本体331の外周面の一部にのみ配置されている。ねじ受け用突起部332が配置されていない部分は、図23(b)、(c)に示すように、その径方向外側の面がねじ受け用突起部332の径方向外側の面と同一円周上に形成されるように本体331を径方向外側へ延在させている。
 このように、ねじ受け用突起部332を全周にわたって配置しなくても、設計の時点で防塵部品330の取付け向きと製造の精度を考慮して、設計上ねじが螺入される部分の前後に必要な範囲だけねじ受け用突起部332を配置してもよい。この場合も、第8~9態様の1実施形態と同様に防塵部品の組付けが容易になる。
 1 ねじ軸
 11 ねじ軸の螺旋溝
 2 ナット
 21 ナットの螺旋溝
 22 ナットのフランジ
 23 シール取付部の内周面
 24 シール取付部
 25 シール取付部の貫通穴
 25a 貫通穴の大径部
 25b 貫通穴の小径部
 25c 貫通穴の円錐部(座面)
 3 ボール
 4 シール(防塵部品)
 42 凹部(下穴、取付穴)
 5 タッピングねじ(頭部を有するねじ)
 51 頭部
 6 ドリルねじ(頭部を有するねじ)
 61 頭部

Claims (7)

  1.  ボールねじのナットの軸方向端部に設けた取付部に、固定部材を使用してリング状のシールを固定するシール固定工程を有し、
     前記取付部は、前記ナットの螺旋溝が形成されている内周面より径が大きな内周面を有し、
     前記取付部に外周面から内周面まで径方向に貫通する貫通穴を設け、
     前記シール固定工程では、
     前記固定部材を前記貫通穴に通して前記シールの外周部に係合することにより前記シールに径方向外向きの力を生じさせて、前記シールを前記ナットに固定するボールねじの製造方法。
  2.  ボールねじのナットの軸方向端部に設けた取付部に、固定部材を使用してリング状のシールを固定するシール固定工程を有し、
     前記取付部は、前記ナットの螺旋溝が形成されている内周面より径が大きな内周面を有し、
     前記固定部材として、頭部を有するねじを用い、
     前記取付部に外周面から内周面まで径方向に貫通する貫通穴を設け、前記貫通穴は前記ねじの頭部を受ける座面を有し、
     前記シール固定工程では、
     前記ねじを前記貫通穴に通して前記シールの外周部に係合することにより、前記頭部が前記座面を押圧する力で前記シールに径方向外向きの力を生じさせて、前記シールを前記ナットに固定するボールねじの製造方法。
  3.  前記シールに外周面から径方向に延びる取付穴を設け、
     前記シール固定工程で、前記取付穴と前記貫通穴を合わせて、前記ねじを前記貫通穴に通して前記取付穴に係合する請求項2記載のボールねじの製造方法。
  4.  請求項3記載のボールねじの製造方法において、
     前記取付穴は、前記シールの外周面から径方向に延びる凹部であり、
     前記貫通穴は、外周側の大径部と、内周側の小径部と、これらを連通させる円錐部とからなり、前記大径部の直径は前記ねじの頭部の直径より大きく、前記小径部の直径は前記ねじの雄ねじ部の外径より大きく、前記円錐部の斜面が前記頭部を受ける座面であり、
     前記シールを前記取付部に配置し、
     シャンク部の先端に刃部を有し、前記刃部の直径は前記シャンク部の直径よりも小さく、前記シャンク部の直径は前記貫通穴の前記小径部の直径よりも大きくかつ前記大径部の直径よりも小さく、前記シャンク部の前記刃部との境界部に前記貫通穴の前記斜面に対応する斜面を有するドリルを使用して、
     前記シャンク部の前記斜面が前記貫通穴の前記斜面に当接する位置まで、前記ドリルを前記貫通穴に挿入することで、前記シールに前記凹部を形成する工程を有するボールねじの製造方法。
  5.  内周面に螺旋溝が形成されたナットと、
     外周面に螺旋溝が形成されたねじ軸と、
     前記ナットの螺旋溝と前記ねじ軸の螺旋溝とで形成される軌道の間に配置されたボールと、
     前記ナットの軸方向端部に設けた取付部に固定されたリング状のシールと、
     頭部を有するねじと、を有し、
     前記取付部は、前記ナットの螺旋溝が形成されている内周面より径が大きな内周面を有し、
     前記取付部は、外周面から内周面まで径方向に貫通する貫通穴を有し、前記貫通穴は前記ねじの頭部を受ける座面を有し、
     前記ねじを前記貫通穴に通して前記シールの外周部に係合することにより、前記頭部が前記座面を押圧する力で前記シールに径方向外向きの力を生じさせて、前記シールが前記ナットに固定されているボールねじ。
  6.  前記ねじはタッピングねじであり、
     前記シールは、外周面から径方向に延びる取付穴を前記貫通穴に対応する位置に有し、
     前記取付穴は、穴径が前記タッピングねじの雄ねじ部の谷径以下で、雌ねじが形成されていない下穴であり、
     前記貫通穴を通った前記タッピングねじの雄ねじ部が、前記シールの前記下穴の位置にねじ切り状態で結合されている請求項5記載のボールねじ。
  7.  前記ねじはドリルねじであり、
     前記貫通穴を通った前記ドリルねじの雄ねじ部が、前記シールの外周部にねじ切り状態で結合されている請求項5記載のボールねじ。
PCT/JP2012/006495 2011-10-12 2012-10-10 ボールねじの製造方法、ボールねじ WO2013054513A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013538437A JP5725195B2 (ja) 2011-10-12 2012-10-10 ボールねじの製造方法
EP12840818.4A EP2767731A1 (en) 2011-10-12 2012-10-10 Method for manufacturing ball screw, and ball screw
US14/351,014 US20140260747A1 (en) 2011-10-12 2012-10-10 Method for Manufacturing Ball Screw and Ball Screw
CN201280050217.2A CN103874869B (zh) 2011-10-12 2012-10-10 滚珠丝杠的制造方法、滚珠丝杠
KR1020147008702A KR20140057377A (ko) 2011-10-12 2012-10-10 볼 나사의 제조방법, 볼 나사
TW101137728A TWI504823B (zh) 2011-10-12 2012-10-12 Ball screw manufacturing method and ball screw
US15/202,225 US10113621B2 (en) 2011-10-12 2016-07-05 Method for manufacturing ball screw and ball screw

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-225111 2011-10-12
JP2011225111 2011-10-12
JP2011-228920 2011-10-18
JP2011228920 2011-10-18
JP2011232988 2011-10-24
JP2011-232988 2011-10-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/351,014 A-371-Of-International US20140260747A1 (en) 2011-10-12 2012-10-10 Method for Manufacturing Ball Screw and Ball Screw
US15/202,225 Division US10113621B2 (en) 2011-10-12 2016-07-05 Method for manufacturing ball screw and ball screw

Publications (1)

Publication Number Publication Date
WO2013054513A1 true WO2013054513A1 (ja) 2013-04-18

Family

ID=48081581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006495 WO2013054513A1 (ja) 2011-10-12 2012-10-10 ボールねじの製造方法、ボールねじ

Country Status (7)

Country Link
US (2) US20140260747A1 (ja)
EP (1) EP2767731A1 (ja)
JP (1) JP5725195B2 (ja)
KR (1) KR20140057377A (ja)
CN (1) CN103874869B (ja)
TW (1) TWI504823B (ja)
WO (1) WO2013054513A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103141B3 (de) * 2014-03-10 2015-05-21 Hiwin Technologies Corp. Kugelgewindetrieb mit Abschabern

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822971B (zh) * 2012-11-30 2017-06-23 黑田精工株式会社 轴终端用转接器和滚珠丝杠组装体
CN104676005B (zh) * 2015-02-28 2017-11-24 北京精密机电控制设备研究所 丝杠的密封结构
CN106289022B (zh) * 2015-06-12 2018-09-04 全球传动科技股份有限公司 内螺纹内径的测量方法
CN105936459A (zh) * 2016-06-23 2016-09-14 袁望画 一种电梯
EP3392528B1 (en) * 2017-04-21 2020-04-08 Goodrich Actuation Systems Limited Ballscrew lubrication
EP3587864B1 (en) * 2018-06-27 2021-05-05 Goodrich Actuation Systems Limited Ballnut lubrication
JP7243819B2 (ja) * 2019-05-15 2023-03-22 日本精工株式会社 軸部材および雄軸の製造方法
CN112013092A (zh) * 2020-08-13 2020-12-01 上海贵蓉国际物流有限公司 一种基于物流信息扫描识别的高效分拣装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493548U (ja) * 1990-12-28 1992-08-13
JP2001280320A (ja) * 2000-03-30 2001-10-10 Wakai & Co Ltd ドリルねじ
JP2002349664A (ja) 2001-05-25 2002-12-04 Nsk Ltd ボールねじ装置
JP2003062827A (ja) * 2001-08-27 2003-03-05 Munehito Uchino アンカー固定孔穿孔用ドリル
JP2003097668A (ja) * 2001-09-20 2003-04-03 Ntn Corp ボールねじ
JP2007255661A (ja) * 2006-03-24 2007-10-04 Nsk Ltd ボールねじ装置
JP3141314U (ja) * 2008-02-15 2008-05-01 三郎 林 センタリング機能付きドリル
JP2010012561A (ja) * 2008-07-04 2010-01-21 Nec Saitama Ltd 加工寸法設定用治具、加工寸法設定用治具の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2757548A (en) * 1954-10-07 1956-08-07 Cleveland Pneumatic Tool Co Screw scraper and wiper
SE327871B (ja) * 1969-01-16 1970-08-31 Skf Svenska Kullagerfab Ab
US3851541A (en) * 1973-11-15 1974-12-03 Warner Electric Brake & Clutch Differential ball nut assembly
US4053167A (en) * 1976-10-18 1977-10-11 Parker-Hannifin Corporation Seal for ball bearing screws and the like
JPS58146753A (ja) * 1982-02-26 1983-09-01 Hiroshi Teramachi ボ−ルねじ
US4881419A (en) * 1984-01-30 1989-11-21 Weyer Paul P Fluid-power bearing actuator
JPH049471Y2 (ja) * 1986-05-19 1992-03-10
US4905533A (en) * 1988-12-27 1990-03-06 Thomson Saginaw Ball Screw Company, Inc. Seal and scraper assembly for ball bearing screws and the like
US5228353A (en) * 1990-12-25 1993-07-20 Nsk, Ltd. Ball screw device
US5178029A (en) * 1991-09-10 1993-01-12 Dana Corporation Ball screw seal
JPH06213299A (ja) * 1993-01-20 1994-08-02 Nippon Seiko Kk ナットの取付部材固定構造
JPH07305708A (ja) * 1994-05-11 1995-11-21 Miyagawa Kinzoku Kogyo Kk ドリルネジ
US6338285B2 (en) * 1996-06-17 2002-01-15 Nsk Ltd. Feed screw device
US6216821B1 (en) * 1997-07-24 2001-04-17 Nsk Ltd. Lubricating apparatus for ball screw
JPH11166608A (ja) * 1997-12-02 1999-06-22 Ntn Corp ボールねじ
JP4507368B2 (ja) * 2000-08-25 2010-07-21 日本精工株式会社 ボールねじ用シール、ボールねじ
US6588289B2 (en) * 2001-07-06 2003-07-08 Danaher Motion Technology, Llc Linear actuator with protective guide chassis enclosing the lead screw
CN2597761Y (zh) * 2002-12-27 2004-01-07 银泰科技股份有限公司 滚珠导螺杆的防尘润滑装置
EP1452256A1 (en) * 2003-02-27 2004-09-01 Munehito Uchino Drill for boring anchor fixing hole
US7128199B2 (en) * 2004-10-08 2006-10-31 Hiwin Technology Corp. Hooked dust scraper for ball screw unit
US20070227278A1 (en) * 2006-03-28 2007-10-04 Chien-Wei Tsou Clearance adjustable wiper
US9261179B2 (en) * 2014-02-20 2016-02-16 Hiwin Technologies Corp. End cap for ball screw device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493548U (ja) * 1990-12-28 1992-08-13
JP2001280320A (ja) * 2000-03-30 2001-10-10 Wakai & Co Ltd ドリルねじ
JP2002349664A (ja) 2001-05-25 2002-12-04 Nsk Ltd ボールねじ装置
JP2003062827A (ja) * 2001-08-27 2003-03-05 Munehito Uchino アンカー固定孔穿孔用ドリル
JP2003097668A (ja) * 2001-09-20 2003-04-03 Ntn Corp ボールねじ
JP2007255661A (ja) * 2006-03-24 2007-10-04 Nsk Ltd ボールねじ装置
JP3141314U (ja) * 2008-02-15 2008-05-01 三郎 林 センタリング機能付きドリル
JP2010012561A (ja) * 2008-07-04 2010-01-21 Nec Saitama Ltd 加工寸法設定用治具、加工寸法設定用治具の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103141B3 (de) * 2014-03-10 2015-05-21 Hiwin Technologies Corp. Kugelgewindetrieb mit Abschabern

Also Published As

Publication number Publication date
US20140260747A1 (en) 2014-09-18
JP5725195B2 (ja) 2015-05-27
KR20140057377A (ko) 2014-05-12
EP2767731A1 (en) 2014-08-20
TWI504823B (zh) 2015-10-21
JPWO2013054513A1 (ja) 2015-03-30
TW201331491A (zh) 2013-08-01
CN103874869B (zh) 2016-05-11
US20160312868A1 (en) 2016-10-27
US10113621B2 (en) 2018-10-30
CN103874869A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5725195B2 (ja) ボールねじの製造方法
JP3173764U (ja) 自己締付けドリルチャック
US8267631B2 (en) Fitting member positioning device
JP2005083549A (ja) ボールねじナットおよびその製造方法
TW201326609A (zh) 具潤滑結構之螺帽旋轉式滾珠螺桿
JP2007092932A (ja) 等速自在継手のシャフト抜け止め構造
US20080174169A1 (en) Rolling bearing apparatus for wheel
JP5903295B2 (ja) ボールねじ
JP5012833B2 (ja) ボールねじ
JP3173955U (ja) 電動リニアアクチュエータ
JP2008261403A (ja) ボールねじ装置
US11839920B2 (en) Modular drill and method for using a modular drill
JP2004270855A (ja) ドライブシャフトのナット脱落防止構造
JP5006278B2 (ja) 二軸回転機械の位置決め構造、及びそれを備えた二軸式ポンプ
CN215861586U (zh) 一种带返向功能的丝杠螺母
JP2007303567A (ja) ボールねじ装置
JP5990478B2 (ja) 穴加工工具
WO2016138867A1 (zh) 一种满滚动体轴连轴承及其制造方法
CN109108399B (zh) 一种丝锥板牙套件
US20140224051A1 (en) Ball Screw Apparatus
JP5804677B2 (ja) タップ
KR200432636Y1 (ko) 베어링 어셈블리
JP2024000174A (ja) 等速自在継手及びその製造方法
CN117428214A (zh) 一种具有定位螺纹销结构的车床主轴及其装配方法
JP5394427B2 (ja) 砥石台金、取外し治具、研削盤及び砥石台金の取外し方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280050217.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538437

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012840818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012840818

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147008702

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14351014

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE