WO2013051615A1 - 半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置 - Google Patents

半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置 Download PDF

Info

Publication number
WO2013051615A1
WO2013051615A1 PCT/JP2012/075666 JP2012075666W WO2013051615A1 WO 2013051615 A1 WO2013051615 A1 WO 2013051615A1 JP 2012075666 W JP2012075666 W JP 2012075666W WO 2013051615 A1 WO2013051615 A1 WO 2013051615A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
semiconductor light
emitting device
mass
formula
Prior art date
Application number
PCT/JP2012/075666
Other languages
English (en)
French (fr)
Inventor
直之 師岡
直希 小糸
伸介 徳岡
裕介 飯塚
大林 達彦
森人 池田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013051615A1 publication Critical patent/WO2013051615A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the present invention relates to a sealing agent for a semiconductor light emitting device, a sealing material for a semiconductor light emitting device using the same, and a semiconductor light emitting device.
  • Semiconductor light-emitting devices are expected as next-generation light sources to replace incandescent lamps and fluorescent lamps, and technological developments such as improved output are being actively promoted in Japan and overseas.
  • the range of application is wide-ranging, and its use is expanding not only for indoor lighting but also as a backlight for liquid crystal display devices.
  • FIG. 1 shows an example of a surface mount type.
  • the semiconductor light emitting element 1 is mounted in a reflector package substrate 2 molded from ceramic or resin. Electricity is supplied to the semiconductor element 1 through the electrode 4, the conductive adhesive 8, and the bonding wire 6.
  • the cavity (concave space) W is sealed with a resin (sealing material) 3 such as epoxy or silicone in which a phosphor is dispersed.
  • the surface inside the cavity is provided with a function of a reflecting plate so that a lot of light can be extracted.
  • Patent Document 1 discloses a resin raw material composition for a semiconductor light-emitting device using an alicyclic hydrocarbon-based acrylic compound.
  • the performance required for the sealing resin of the semiconductor light-emitting device is transparency, and further includes heat-resistant coloring, thermal shock resistance (crack resistance), and gas barrier properties.
  • the simultaneous achievement of these properties is unique to this application, and even if other product fields are included, it is not easy to find one that can satisfy and transfer them simultaneously. Therefore, the present invention enriches the material by proposing a material different from the above-mentioned conventional resin, and also has transparency, heat resistance, heat shock resistance (crack resistance / resistance) required for semiconductor light emitting device applications.
  • the present inventors have searched for various materials and materials suitable for the sealant for semiconductor light-emitting devices when blending them. As a result, it was felt that a specific isocyanurate compound may satisfy the required characteristics. However, it has been found that satisfactory performance cannot be obtained by simply using an isocyanurate compound, and that all of the above required characteristics are satisfied at a high level by using it as a specific concentration range and, if necessary, a specific formulation. It was. The present invention has been completed based on such findings.
  • R 1 , R 2 and R 3 are each independently a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 24 carbon atoms, or a carbon number
  • La represents a single bond or an alkylene group having 1 to 4 carbon atoms. Wherein at least one of R 1 , R 2 , and R 3 is the acryloyloxy group.
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. * Represents a bond.
  • the isocyanurate compound comprises at least one compound represented by the following formula (1-1), (1-2), or (1-3), and the isocyanurate compound is 100% by mass.
  • the compound represented by the formula (1-1) is 0% by mass to 35% by mass
  • the compound represented by the formula (1-2) is 65% by mass to 100% by mass
  • the formula (1-3) is a sealing agent for semiconductor light-emitting devices according to [1], wherein the compound is 0% by mass or more and 25% by mass or less.
  • R 4 , R 5 , and R 6 are each independently a hydrogen atom or a methyl group.
  • R 7 is a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or an aryloxy group having 6 to 24 carbon atoms.
  • .L a is any one or more acyloxy groups of the formula (II) are as defined for formula (1).
  • a sealing material for a semiconductor light emitting device obtained by curing the sealing agent for a semiconductor light emitting device according to any one of [1] to [8].
  • a sealing material made of a cured product obtained by curing the sealing agent for a semiconductor light-emitting device according to any one of [1] to [8], and a semiconductor light-emitting element sealed with the sealing material;
  • a semiconductor light emitting device comprising:
  • the sealant of the present invention enriches the material by proposing a material different from the conventional resin.
  • a sealing material encapsulating a semiconductor light-emitting element or a semiconductor light-emitting device including the same is used, transparency, heat-resistant coloring, thermal shock resistance (crack / peel resistance), and discoloration resistance (gas barrier property) Can be exerted in a well-balanced manner and, if necessary, water absorption resistance can be imparted.
  • the encapsulant for a semiconductor light emitting device of the present invention contains a specific concentration of a specific acrylate compound having an isocyanurate structure (hereinafter sometimes referred to as a specific isocyanurate compound), and if necessary, a plurality of compounds are specified in a specific mixing ratio. It is made to contain.
  • a specific acrylate compound having an isocyanurate structure hereinafter sometimes referred to as a specific isocyanurate compound
  • R 1 , R 2 , R 3 R 1 , R 2 and R 3 in the formula are each independently a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 24 carbon atoms, or 6 carbon atoms.
  • La represents a single bond or an alkylene group having 1 to 4 carbon atoms. However, at least one of R 1 , R 2 , and R 3 is the acryloyloxy group.
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. * Represents a bond.
  • R 12 represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 24 carbon atoms. * Represents a bond.
  • examples of the alkyl group having 1 to 10 carbon atoms include a straight chain alkyl group, a branched alkyl group, and a cyclic alkyl group.
  • a linear alkyl group, a branched alkyl group having 6 to 10 carbon atoms, or a cyclic alkyl group having 6 to 10 carbon atoms is preferable.
  • the aryl group may be monocyclic or multicyclic, but is preferably a phenyl group.
  • the alkyl group and aryl group may be further accompanied by a substituent, and examples thereof include the substituent T described later.
  • L a is a single bond or an alkylene group having 1 to 4 carbon atoms, and among them ethylene group or an isopropylene group (N-CH 2 -CH (CH 3) -R orientation: R is R 1, R 2, or R 3 ) is preferable, and an ethylene group is more preferable.
  • the alkylene group may be linear or branched, and may be further substituted. Examples of the substituent T include the examples of the substituent T described later.
  • the specific isocyanurate compound preferably has a hydroxyl group.
  • the isocyanurate compound represented by the formula (1) at least one of R 1 , R 2 and R 3 is used. It is preferable that one is a hydroxyl group.
  • the bonded structure through the hydrolysis and dehydration condensation can be formed with the alkoxy group of the specific alkoxysilyl compound described later, and a hardened and stable cured product can be obtained.
  • 5 to 100% by mass is preferably a compound having a hydroxyl group, more preferably 20 to 100% by mass. preferable.
  • concentration of the compound represented by said Formula (1) is more than 70 mass% with respect to the organic hardening component whole quantity of a sealing agent, and it is preferable that it is 80 mass% or more. 90% by mass or more, more preferably 95% by mass or more. There is no particular upper limit, and it is particularly preferably about 100% by mass.
  • substantially, residual solvent such as toluene may be mixed in a ratio of about 0 to 10% by mass, and such inevitable contaminants are included within a range not impairing the effect of the present invention. It allows existence. Alternatively, when it is necessary to lower the viscosity of the sealant, a necessary amount of additive may be added.
  • the sealant of the present invention may contain optional components such as a polymerization inhibitor, as necessary, but the solvent amount is preferably 10% or less, and preferably used without a solvent. .
  • the solvent amount is preferably 10% or less, and preferably used without a solvent.
  • the organic curing component of the sealant refers to a curing component composed of a compound containing a carbon atom (a component that contributes directly to curing by polymerization or the like), but even if it contains a carbon atom, a phosphor, a polymerization initiator, toluene, etc. This means that the organic solvent is not included. In addition, when it is necessary to make a strict comparison, it is meant to exclude trace components such as water and inorganic salts.
  • the viscosity of the sealant is not particularly limited, but is preferably from 0.1 to 100 Pa ⁇ s, more preferably from 0.5 to 20 Pa ⁇ s, and more preferably from 1.0 to 10 Pa ⁇ s from the viewpoint of potting properties and stable phosphor dispersion. s is more preferable.
  • the viscosity means a value measured by the method shown in the examples unless otherwise specified.
  • the sealant of the present invention preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it is usually applied to this type of polymerizable compound, and specific examples thereof will be described later.
  • the amount of the polymerization initiator is not particularly limited, but is preferably 0.1 parts by mass or more and 5 parts by mass or less, and 0.5 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of the organic curing component. More preferably. By setting it to the above lower limit or more, the polymerization reaction can be favorably started. On the other hand, by setting it to the upper limit value or less, it is preferable because the excellent effect of the sealant due to the application of the specific isocyanurate compound can be sufficiently obtained.
  • the specific isocyanurate compound represented by the formula (1) is preferably a compound represented by the following formula (1-1), (1-2), or (1-3).
  • the compound represented by the formula (1-1), (1-2), or (1-3) is referred to as an isocyanurate compound [A] as a general term.
  • R 4 , R 5 , R 6 , R 7 are each independently a hydrogen atom or a methyl group.
  • R 7 is at least one of a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 24 carbon atoms, and an acyloxy group represented by the formula (II).
  • ⁇ L a L a is as defined for formula (1), and preferred ranges are also the same synonymous.
  • the isocyanurate compound [A] is preferably contained in a specific ratio with respect to the compounds of the above formulas.
  • the compound represented by the formula (1-1) is preferably 0% by mass to 35% by mass, and 0% by mass to 25% by mass. More preferably, it is particularly preferably 0% by mass or more and 10% by mass or less.
  • the compound represented by the formula (1-2) is preferably 65% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and 80% by mass to 100% by mass. It is particularly preferred.
  • the compound represented by the formula (1-3) is preferably 0% by mass to 25% by mass, more preferably 0% by mass to 15% by mass, and 0% by mass to 10% by mass. It is particularly preferred.
  • the specific isocyanurate compound preferably includes a compound represented by the following formula (1-4).
  • the compound represented by the formula (1-4) is referred to as an isocyanurate compound [B].
  • R 4 , R 5 , and R 12 have the same meanings as in Formula (1-1) and Formula (II).
  • L a is as defined for formula (1).
  • the addition amount of the isocyanurate compound [B] is not particularly limited, but is preferably 1% by mass or more and less than 50% by mass in the organic curing component of the composition, and is preferably 3% by mass or more and 40% by mass or less. More preferably, it is 5 mass% or more and 30 mass% or less.
  • the isocyanurate compound [B] within the above range, it is possible to reduce the water absorption rate without deteriorating the thermal shock resistance (crack resistance) and heat resistance colorability of the cured product. (For example, moisture absorption reflow cracks generated when reflow treatment is performed in a state of water absorption) can be reduced, and as a result, a highly reliable semiconductor light emitting element can be provided.
  • alkoxysilyl compounds In the sealing agent of this invention, it is preferable to contain the alkoxy silyl compound which has a cyclic functional group and an alkoxy silyl group in addition to the said specific isocyanurate compound.
  • the cyclic functional group is preferably a cyclic ether group, and more preferably an epoxy group or an oxetane group.
  • the alkoxysilyl compound is preferably a compound represented by any of the following formulas (a) to (c).
  • ⁇ L b L b represents a single bond or a linking group.
  • the linking group include an alkylene group, an arylene group, an alkenylene group, an oxy group, a carbonyl group, an amino group (—NR—: R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), or a combination thereof. It is preferable that it is group which concerns on. Among these, a single bond, an alkylene group, an oxy group, or a combination thereof is preferable, and a single bond, an alkylene group having 1 to 6 carbon atoms, or a group in which an oxy group is interposed is more preferable.
  • R a , R b , R c R a , R b and R c represent a hydrogen atom or a substituent.
  • substituents include the substituent T described later. Of these, a hydrogen atom or an alkyl group having 1 to 6 carbon atoms is preferable, and a hydrogen atom is more preferable.
  • nb represents an integer of 1 to 3.
  • nc represents 1 or 2.
  • the plurality of substituents defined therein may be different from each other.
  • ⁇ Rs represents an alkoxysilyl group, preferably an alkoxysilyl group having 1 to 6 carbon atoms.
  • the alkoxysilyl group Rs is preferably represented by the following formula (d). * -L c -Si (Rd) nd (Re) ne (d)
  • L c L c represents a single bond or a linking group. Its preferred range is the same as the L b.
  • R d represents an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group may be linear or cyclic, and may be linear or branched.
  • an oxy group (-0-) may be present in the alkyl group.
  • ⁇ Re R e represents an alkoxy group, preferably an alkoxy group having 1 to 6 carbon atoms, and more preferably a methoxy group, an ethoxy group, or a propoxy group.
  • ne nd represents an integer of 0 to 2
  • ne represents an integer of 1 to 3.
  • nd + ne is 3.
  • ne is preferably an integer of 2 to 3, and ne is more preferably 3.
  • the plurality of substituents defined therein may be different from each other.
  • the content of the specific alkoxysilyl compound can be 0.1 parts by mass or more, more preferably 1.0 parts by mass or more, with respect to 100 parts by mass of the specific isocyanurate compound. It is particularly preferable that the content is 0.0 part by mass or more. As an upper limit, 20 mass parts or less are preferable, 15 mass parts or less are more preferable, and 10 mass parts or less are especially preferable.
  • the effect can be sufficiently exhibited without applying a large amount of the specific alkoxysilyl compound. The reason for the above effect is not clear, but is considered as follows.
  • the specific alkoxysilyl compound is not compatible with the isocyanurate compound and is unevenly distributed on the surface while being repelled.
  • the epoxy group has an effect of being bonded to the casing resin and silver layer of the reflector package base material to enhance adhesion.
  • the silyl group introduced into the alkoxysilyl compound forms a strong siloxane structure by hydrolytic polycondensation and increases heat resistance.
  • an acrylic component or the like has a hydroxyl group, this is condensed with an alkoxysilyl group to be united and integrated, and the effect is considered to be more remarkable.
  • the acid value of the sealant of the present invention is preferably 0.10 mgKOH / g or less, more preferably 0.05 mgKOH / g or less, and particularly preferably 0.02 mgKOH / g or less. It is preferable that the heat resistance colorability is further improved by setting the amount to the upper limit or less. Although a lower limit is not specifically limited, It is practical that it is 0.001 mgKOH / g or more.
  • the method for adjusting the acid value of the sealant is not particularly limited, but after mixing the adsorbent such as activated carbon and silica with the isocyanurate compound of the present invention and leaving it to stand, the adsorbent is removed by filtration. The acid value of the nurate compound can be lowered.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
  • the specific isocyanurate compound may be synthesized by a conventional method, and the synthesis method is not particularly limited.
  • the synthesis method is not particularly limited.
  • JP-A-2003-213159 For information on such commercial products, reference can be made to, for example, JP-A-2003-213159.
  • the sealing agent of the present invention preferably contains a polymerization initiator.
  • a radical polymerization initiator is added.
  • thermal radical polymerization initiators that generate initiation radicals by cleavage by heat include ketone peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1 Hydroperoxides such as 1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide and t-butyl hydroperoxide; diisobutyryl peroxide, bis-3,5,5-trimethylhexanoyl peroxide, lauroyl Diacyl peroxides such as peroxide, benzoyl peroxide and m-toluyl benzoyl peroxide; dicumyl peroxide
  • azo compound used as an azo-based (AIBN or the like) polymerization initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2, 2'-azobis (2,4-dimethylvaleronitrile), 1,1'-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2'-azobisisobutyrate, 4,4'-azobis-4-cyano Examples include valeric acid, 2,2′-azobis- (2-amidinopropane) dihydrochloride, and the like (see JP 2010-189471 A).
  • radical polymerization initiator in addition to the thermal radical polymerization initiator, a radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation can be used.
  • radical polymerization initiators include benzoin ether, 2,2-dimethoxy-1,2-diphenylethane-1-one [IRGACURE651, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 1-hydroxy-cyclohexyl -Phenyl-ketone [IRGACURE 184, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-hydroxy-2-methyl-1-phenyl-propan-1-one [DAROCUR 1173, manufactured by Ciba Specialty Chemicals Co., Ltd., Trademarks], 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one [IRGACURE2959, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2
  • radical polymerization initiators can be used singly or in combination of two or more.
  • a peroxide compound is preferable, and perbutyl O (t-butylperoxy-2-ethylhexanoate (PBO), manufactured by NOF Corporation) can be used.
  • PBO t-butylperoxy-2-ethylhexanoate
  • the content of the polymerization initiator is preferably applied in the amount described above.
  • a polymerization inhibitor may be added to the sealant of the present invention.
  • the polymerization inhibitor include phenols such as hydroquinone, tert-butylhydroquinone, catechol and hydroquinone monomethyl ether; quinones such as benzoquinone and diphenylbenzoquinone; phenothiazines; copper and the like.
  • the content of the polymerization inhibitor is not particularly limited, but it is preferably 0 to 20000 ppm (based on parts by mass), preferably 100 to 10000 ppm, more preferably 300 to 8000 ppm based on 1 part of the organic curing component.
  • the addition amount of the polymerization inhibitor is too small, the polymerization occurs while generating heat abruptly at the time of sealing and curing, so that the adhesiveness with the reflector package substrate is lowered and the sealing material is applied when a thermal shock is applied. / Peeling easily occurs at the substrate interface.
  • the addition amount of the polymerization inhibitor is too large, when the sealant is cured in the air, the curing rate is remarkably reduced, resulting in poor surface curing.
  • [Phosphor] in the present invention, it is preferable that 1 to 40 parts by mass of the phosphor is blended with 100 parts by mass of the sealant (organic curing component as defined above), and it is preferably 2 parts by mass or more and 30 parts by mass or less. More preferably, it is 5 parts by mass or more and 20 parts by mass or less.
  • the phosphor is not particularly limited as long as it absorbs light from the semiconductor light emitting element and emits fluorescence to convert the wavelength, and is a nitride-based phosphor mainly activated by a lanthanoid-based element such as Eu or Ce.
  • (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce, (Ca, Sr, Ba) 2 SiO 4 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, CaAlSiN 3 : Eu or the like is used.
  • the sealant of the present invention preferably contains an antioxidant as necessary.
  • antioxidants include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, thioether antioxidants, vitamin antioxidants, lactone antioxidants, and amine antioxidants. .
  • phenolic antioxidants examples include Irganox 1010 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), Irganox 1076 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), Irganox 1330 (produced by Ciba Specialty Chemicals Co., Ltd.), Trademark), Irganox 3114 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), Irganox 3125 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), ADK STAB AO-20 (ADEKA Corporation, Trademark), ADK STAB AO-50 ( ADEKA Corporation (trademark), ADK STAB AO-60 (ADEKA Corporation), ADK STAB AO-80 (ADEKA Corporation), ADK STAB AO-30 (ADEKA Corporation), A Castab AO-40 (ADEKA, Inc., Trademark), BHT (Takeda Pharmaceutical Co., Ltd., Trademark), Cyanox 1790 (Cyanamide, Trade
  • Examples of phosphorus compounds include IRAGAFOS 168 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), IRAGAFOS 12 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), IRAGAFOS 38 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), IRAGAFOS P-EPQ (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), IRAGAFOS 126 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), ADKSTAB 329K (ADEKA, trademark), ADKSTAB PEP-36 (trade name) ADEKA, trademark), ADKSTAB PEP-8 (ADEKA, trademark), ADKSTAB HP-10 (ADEKA, trademark), ADKSTAB 2112 (ADEKA, quotient) ), ADKSTAB 260 (ADEKA, trademark), ADKSTAB 522A (ADEKA, trademark), Weston 618 (manufactured by GE, trademark
  • sulfur-based antioxidants examples include DSTP (Yoshitomi) (trademark), DLTP (Yoshitomi) (trademark, produced by Yoshitomi Corporation), DLTOIB (trademark, produced by Yoshitomi Corporation), DMTP (Yoshitomi). ) [Produced by Yoshitomi Co., Ltd., trademark], Seenox 412S (produced by Sipro Kasei Co., Ltd., trademark), Cyanox 1212 (produced by Cyanamid Co., Ltd.) and TP-D, TPS, TPM, TPL-R [Sumitomo Chemical Co., Ltd. ), Trade name, etc.).
  • vitamin-based antioxidants examples include tocopherol (trade name, manufactured by Eisai Co., Ltd.) and Irganox E201 (trade name, compound name: 2,5,7,8-tetramethyl-2 (4) manufactured by Ciba Specialty Chemicals Co., Ltd. Commercial products such as ', 8', 12'-trimethyltridecyl) coumarone-6-ol].
  • Examples of the thioether-based antioxidant include commercially available products such as ADK STAB AO-412S (trademark, manufactured by ADEKA Corporation) and ADK STAB AO-503 (trademark, manufactured by ADEKA Corporation).
  • As the lactone antioxidant those described in JP-A-7-233160 and JP-A-7-247278 can be used.
  • HP-136 [trade name, compound name; 5,7-di-t-butyl-3- (3,4-dimethylphenyl) -3H-benzofuran-2-one, manufactured by Ciba Specialty Chemicals Co., Ltd.] And other commercial products.
  • amine-based antioxidants examples include commercially available products such as Irgastab FS042 [trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.] and GENOX EP [trade name, compound name; dialkyl-N-methylamine oxide] manufactured by CLOMPTON. Can do. These antioxidants can be used singly or in combination of two or more.
  • the content of the antioxidant is usually 0.01 to 10 mass with respect to 100 mass parts of the total amount of the organic curing component from the viewpoint of suppressing the transparency of the sealant (resin material) and the reduction of yellowing. Parts, preferably 0.01 to 5 parts by weight, more preferably 0.02 to 2 parts by weight.
  • the sealant of the present invention includes a lubricant, a light stabilizer, an ultraviolet absorber, a plasticizer, an antistatic agent, an inorganic filler, a colorant, and an antistatic agent as necessary.
  • a lubricant e.g., a lubricant, a light stabilizer, an ultraviolet absorber, a plasticizer, an antistatic agent, an inorganic filler, a colorant, and an antistatic agent as necessary.
  • Mold release agents, flame retardants, components for the purpose of improving adhesion with inorganic compounds such as titanium oxide and silicon oxide, and the like can be blended.
  • the lubricant higher dicarboxylic acid metal salts, higher carboxylic acid esters, and the like can be used.
  • the light stabilizer a known one can be used, but a hindered amine light stabilizer is preferred.
  • Specific examples of the hindered amine light stabilizer include ADKSTAB LA-77, LA-57, LA-52, LA-62, LA-67, LA-68, LA-63, and LA-94.
  • LA-94, LA-82 and LA-87 (above, manufactured by ADEKA Corporation), Tinuvin 123, 144, 440 and 662, Chimassorb 2020, 119, 944 (above, manufactured by CSC), Hostavin N30 (manufactured by Hoechst), Cyasorb UV-3346, UV-3526 (manufactured by Cytec), Uval 299 (GLC), and SanduvorPR-31 (Clariant).
  • These light stabilizers can be used singly or in combination of two or more.
  • the amount of the light stabilizer used is usually 0.005 to 5 parts by mass, preferably 0.02 to 2 parts by mass with respect to 100 parts by mass of the total amount of the organic curing components.
  • the component for improving the adhesion with inorganic compounds such as titanium oxide and silicon oxide include silane coupling agents containing a methacryloyloxy group or an acryloyloxy group of the silane compound. This may be contained in the sealing agent, and polymerized and molded.
  • sealing method As a sealing method of the sealing agent, a method usually used for sealing a semiconductor light emitting element or a method similar to a general thermosetting resin molding can be used. Examples thereof include potting (dispensing), printing, coating, injection molding, compression molding, transfer molding, and insert molding. Potting represents an operation of discharging the sealing agent into a cavity (concave space) of the package to fill the interior. In addition, printing represents an operation of disposing a sealant at a target site using a mask, and a so-called vacuum printing method in which the surrounding pressure is reduced according to the purpose can be employed. Various types of coating methods can be used for coating.
  • a method of preparing a weir called a dam material for holding a sealing agent in advance and coating the sealing agent on the inside thereof can also be used.
  • the method of filling the sealing agent inside a mold and thermosetting as it is is mentioned.
  • curing after sealing can be performed by heat curing, UV curing, or a combination thereof.
  • the semiconductor light-emitting device in preferable embodiment of this invention comprises the sealing material produced by hardening said sealing agent.
  • a method similar to the molding of a normal thermosetting resin can be used.
  • the above-mentioned sealing agent (raw material composition) or a prepolymer thereof may be used for polymerization / molding by injection molding, compression molding, transfer molding or insert molding of these liquid resins.
  • a molded object can also be obtained by a potting process or a coating process.
  • a molded body can be obtained by a method similar to the molding of a photo-curing resin such as UV curing molding.
  • the semiconductor light emitting device or its member of the present embodiment is manufactured by a liquid resin molding method.
  • Liquid resin molding methods include liquid resin injection molding in which a liquid sealant or a prepolymer thereof is injected into a high-temperature mold and cured by heating, and a liquid sealant is placed in a mold and pressed by a press. Examples thereof include compression molding for pressing and curing, transfer molding for curing the sealant by applying pressure to a heated liquid sealant and press-fitting it into a mold.
  • the sealing agent of the present invention has appropriate fluidity or viscosity as described above, it is preferably used for potting.
  • Potting represents an operation of discharging the sealing liquid into the cavity (concave space) W (FIG. 1) of the reflector package base material to fill the interior.
  • the curing process can be performed by placing a reflector package filled with sealing liquid after potting (a package containing a reflector package base material, a device, a bonding wire, and an electrode) in a general heating device such as an oven. Requires only a very simple configuration with only a dispenser and a heating device.
  • Liquid discharge methods include mechanical dispensing methods such as screw type, air pulse dispensing, non-contact jet dispensing, and the like.
  • the dispenser which is a potting device, specifically, for example, devices provided by Musashi Engineering Co., Sanei Tech Co., etc. are used.
  • the sealant that can be used for potting needs to be liquid at room temperature, and it is preferable to use a liquid having a viscosity of about 1 mPa ⁇ s to 1000 Pa ⁇ s.
  • a blue light emitting LED chip made of a gallium nitride (GaN) based semiconductor, an ultraviolet light emitting LED chip, a laser diode, or the like is used.
  • a substrate in which a nitride semiconductor such as InN, AlN, InGaN, AlGaN, InGaAlN or the like is formed as a light emitting layer on a substrate by MOCVD or the like can be used.
  • a semiconductor light-emitting element that is mounted face-up or a semiconductor light-emitting element that is flip-chip mounted can be used.
  • the semiconductor light emitting device is an example of a semiconductor light emitting device having an n-side electrode and a p-side electrode on the same plane, but a semiconductor light-emitting device having an n-side electrode on one surface and a p-side electrode on the opposite surface is also used. be able to.
  • the package As the package, a package in which electrodes are integrally formed, and a package in which electrodes are provided as circuit wiring by plating after the package is molded can be used.
  • the shape of the package any shape such as a cylinder, an elliptical column, a cube, a rectangular parallelepiped, a shape between a rectangular parallelepiped and an elliptical column, or a combination thereof can be adopted.
  • the shape of the inner wall portion an arbitrary angle can be selected with respect to the bottom portion, and a box shape that is perpendicular to the bottom surface or a mortar shape that is obtuse can be selected.
  • any shape such as a flat shape or a concave shape can be selected.
  • a package corresponding to an arbitrary mounting method such as a top view or a side view can be used as a mounting method.
  • an electrically insulating material excellent in light resistance and heat resistance is suitably used.
  • a thermoplastic resin such as polyphthalamide (PPA), a thermosetting resin such as an epoxy resin, Glass epoxy, ceramics, etc.
  • PPA polyphthalamide
  • white pigments such as a titanium oxide
  • a method for molding the package insert molding, injection molding, extrusion molding, transfer molding, or the like performed by previously setting the electrode in a mold can be used.
  • the electrode is electrically connected to the semiconductor light emitting element, and may be, for example, a plate-like electrode inserted into a package or a conductive pattern formed on a substrate such as glass epoxy or ceramic.
  • a plate-like electrode inserted into a package or a conductive pattern formed on a substrate such as glass epoxy or ceramic.
  • the material of the electrode there can be used silver or an alloy containing silver, or a material in which silver or an alloy containing silver is plated on a part of an electrode containing copper or iron as a main component.
  • the semiconductor light emitting device can be evaluated by a conventional test method. For example, electrical characteristics, optical characteristics, temperature characteristics, thermal characteristics, lifetime, reliability, safety, and the like can be given.
  • a technique for example, the technique and standard described in pages 71 to 84 of Chapter 2 of the book “LED Lighting Handbook, LED Lighting Promotion Council Edition” published by Ohm Co., Ltd. can be adopted.
  • the semiconductor light-emitting device can be used for various applications that require maintenance of luminous intensity, for example, a backlight of a liquid crystal display, a mobile phone or an information terminal, an LED display, a flashlight, and indoor / outdoor lighting.
  • Compound ex3 (Formula 1-3: the following compound) Obtained by Aronix M-215 a (manufactured by Toagosei Co., Ltd.) is purified by column chromatography, (L a is ethylene group in the above formula (1-3), R 5 is a hydrogen atom, R 7 is a hydroxyl group) compound ex3 the It was.
  • the sealing agent for semiconductor light emitting device shown in Table 1 was potted and sealed in an LED package having the alumina reflector package (Al 2 O 3 package, manufactured by Kyocera Corporation) shown in FIG. Minutes, 130 ° C. for 30 minutes, 150 ° C. for 5 hours, and after thermosetting, the LED package sealed with the semiconductor light emitting device sealant is placed in a reflow furnace equipped with an IR heater, and 260 ° C. for 30 seconds.
  • the evaluation light emitting diode was manufactured by performing the heat treatment of 3 times.
  • 150 ° C. heat resistance (1) was ranked according to the following criteria. AA: 150 ° C. heat resistance (1) is 85 or more A: 150 ° C. heat resistance (1) is 80 or more and less than 85 B: 150 ° C. heat resistance (1) is 70 or more and less than 80 C: 150 ° C. heat resistance (1) is Less than 70
  • the LED package sealed with the sealant was placed in a reflow furnace equipped with an IR heater, and a light emitting diode for evaluation was fabricated by performing heat treatment at 260 ° C. for 30 seconds three times.
  • a light emitting diode for evaluation was fabricated by performing heat treatment at 260 ° C. for 30 seconds three times.
  • an external quantum efficiency measurement device C9920-12 manufactured by Hamamatsu Photonics the emission spectrum of the light emitting diode for evaluation when a constant current of 1 mA was injected at room temperature was measured, and the emission amount at 450 nm was analyzed. The initial light emission amount was measured. (Because this apparatus measures with an integrating sphere, the amount of light emitted does not depend on the angle of light emission can be measured.)
  • 150 ° C. heat resistance (2) was ranked according to the following criteria. AA: 150 ° C. heat resistance (2) is 80 or more A: 150 ° C. heat resistance (2) is 75 or more and less than 80 B: 150 ° C. heat resistance (2) is 65 or more and less than 75 C: 150 ° C. heat resistance (2) Less than 65
  • the potting agent shown in Table 1 was potted and sealed in an LED package having the polyphthalamide (PPA) resin package (trade name: FLASH LED 6PIN BASE, manufactured by Enomoto Co., Ltd.) shown in FIG. After applying heat at 70 ° C. for 30 minutes, 130 ° C. for 30 minutes, 150 ° C. for 5 hours and thermosetting, the LED package sealed with the semiconductor light emitting device sealant is placed in a reflow furnace equipped with an IR heater, A light emitting diode for evaluation was produced by performing heat treatment at 260 ° C. for 30 seconds three times. Subsequently, this evaluation light-emitting diode was subjected to a thermal shock of -40 ° C.
  • PPA polyphthalamide
  • the number of evaluations is 50, The number of peels after the thermal shock test was used as an index of peel resistance, and ranking was performed according to the following criteria.
  • AA The number of peeled is 0
  • A The number of peeled is 1 or more and less than 5
  • B The number of peeled is 5 or more and less than 10
  • C The number of peeled is 10 or more
  • the sealing agent shown in Table 1 is used as a polyphthalamide (PPA) resin package (trade name: manufactured by Ichijo Seimitsu Co., Ltd., SMD008T, side view package) [cavity size: depth 0.65 mm, width 2 .2 mm, depth 0.36 mm] after potting and sealing, after applying heat at 70 ° C. for 30 minutes, 130 ° C. for 30 minutes, 150 ° C. for 5 hours in the atmosphere, and thermosetting the IR heater, The LED package sealed with the curable resin composition was put in the reflow oven provided, and a light emitting diode for evaluation was produced by performing heat treatment at 260 ° C. for 30 seconds three times.
  • PPA polyphthalamide
  • this evaluation light-emitting diode was subjected to 300 cycles of thermal shock at ⁇ 40 ° C. for 30 minutes to 100 ° C. for 30 minutes, and a peeling failure between the sealing material and the adjacent member was observed with a microscope.
  • the number of evaluations is 50, The number of peels after the thermal shock test was used as an index of peel resistance, and ranking was performed according to the following criteria.
  • AA The number of peeled is 0
  • the number of peeled is 1 or more and less than 5
  • B The number of peeled is 5 or more and less than 10
  • the number of peeled is 10 or more
  • the sealing agent shown in Table 1 is applied to an LED package including the polyphthalamide (PPA) resin package (trade name: manufactured by Ichijo Seimitsu Co., Ltd., SMD008T, side view package) shown in FIG.
  • PPA polyphthalamide
  • the reflow furnace equipped with an IR heater was placed in the reflow furnace.
  • An LED package sealed with a sealant was put and a heat treatment at 260 ° C. for 30 seconds was performed three times to produce a light emitting diode for evaluation.
  • the initial light emission amount of ASP1010 was set to 100, the initial light emission amount was ranked according to the following criteria.
  • C With respect to the initial light emission amount 100 of ASP1010, When the initial light emission is 5% or more lower
  • Alkoxysilyl compound introduction rate (Amount of alkoxysilyl compound introduced into isocyanurate compound containing hydroxyl group (via alcohol exchange reaction) / Amount of alkoxysilyl compound before reaction ⁇ 100 [%]
  • the semiconductor light-emitting device sealing agent is placed in a reflow furnace equipped with an IR heater.
  • the LED package sealed with was put in, and a light emitting diode for evaluation was produced by performing heat treatment at 260 ° C. for 30 seconds three times.
  • the sealed can was placed in an oven set at 80 ° in advance and allowed to react for 48 hours. At this time, by heating the sulfur powder, a compound in which sulfur atoms are connected is released in a gaseous state. When this sulfur gas permeates the sealing material, the silver of the reflector is sulfided and turned black, and the amount of light emission is reduced. The presence or absence of discoloration was confirmed with an optical microscope.
  • Tg Glass transition temperature
  • the sealing agent shown in Table 1 was sandwiched between glass plates, heat was applied at 70 ° C. for 30 minutes, 130 ° C. for 30 minutes, and 150 ° C. for 5 hours to thermally cure, thereby producing a sealing material having a thickness of 0.2 mm. Subsequently, after cutting into a strip shape having a width of 5 mm, a length of 15 mm, and a thickness of 0.2 mm, using a Rheogel-E4000 (manufactured by UBM Co., Ltd., dynamic viscoelasticity measuring device), a tensile mode, a frequency of 10 Hz, a strain The storage elastic modulus and tan ⁇ from 25 ° C.
  • the storage elastic modulus at 25 ° C. was defined as the elastic modulus
  • the peak value of tan ⁇ existing from 25 ° C. to 300 ° C. was defined as the glass transition temperature.
  • Viscosity measurement> The viscosity of the sealant shown in Table 1 was measured using a vibration viscometer (manufactured by Seconic Corporation, VM-100A (trade name)). The measurement temperature was 25 ° C.
  • Formula (1-2) compounding ratio ratio (% by mass) of the compound represented by formula (1-2) in the isocyanurate compound [A]
  • the formula (1-4) is included in the formula (1-2)
  • the blending ratio of the formula (1-2) is obtained in a form including the formula (1-4).
  • -The formulation of c11 was based on Example 3 of WO06-051803.
  • -The formulation of c12 was referred to Example 1 of JP-A-2003-213159.
  • -For c13 a commercially available silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd., ASP1010) was used.
  • ⁇ MEHQ 4-methoxyphenol (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • OH isosylate compounding ratio ratio of isocyanurate compound having a hydroxyl group in the isocyanurate compound (mass%)
  • Compound ex6a 3-glycidyloxypropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • Compound ex6b 3-glycidyloxypropyl (dimethoxy) methylsilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • Compound ex6c 3-glycidyloxypropyltriethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • Compound ex6d Diethoxy (3-glycidyloxypropyl) methylsilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • the sealing agent of the present invention containing a specific amount of a compound represented by a specific isocyanurate compound is richer in materials by proposing different ones from conventional resins, as compared with the comparative example. Furthermore, it can be seen that when a sealing material encapsulating a semiconductor light emitting device is used, transparency, heat resistance coloring property, heat shock resistance (crack resistance), and color change resistance (gas barrier property) are exhibited in a well-balanced manner. In addition, it can be seen that the compound with the increased amount of the compound of formula (1-2) or the compound with the isocyanurate compound [B] added exhibits higher performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 下記式(1)で表されるイソシアヌレート化合物を含む半導体発光装置用の封止剤であって、前記イソシアヌレート化合物を封止剤の有機硬化成分全量に対し70質量%超で含有させた半導体発光装置用封止剤。 (式(1)中のR、R、Rは、特定の置換基を表す。ただし、R、R、及びRの少なくとも1つは前記アクリロイル基である。Lは炭素数1~4のアルキレン基を表す。)

Description

半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置
 本発明は半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置に関する。
 半導体発光装置は、白熱灯や蛍光灯に代わる次世代の光源として期待されており、国内外で出力向上等の技術開発が活発に進められている。その適用範囲も多岐に渡っており、屋内照明のみならず、液晶表示装置のバックライトとしてもその利用が広がっている。特に、近年、省エネへの意識の高まりを受けて、消費電力の低い半導体発光装置に注目が集まっており、各企業や研究機関がLED照明の技術開発を加速している。
 半導体発光装置の種類を構造別にみると、砲弾型、表面実装型(SMD)、チップオンボード(COB)等が挙げられる。図1は表面実装型の1例を挙げたものである。この例では、セラミックや樹脂などで成型したリフレクターパッケージ基材2の中に半導体発光素子1を実装している。この半導体素子1には電極4、導電性接着剤8、及びボンディングワイヤー6を介して電気が供給される構造となっている。そのキャビティ(凹状空間)Wは蛍光体を分散させたエポキシやシリコーンなどの樹脂(封止材)3で封止されている。キャビティ内側の面には反射板の機能を付与してあり、多くの光を取り出せる構造とされている。
 上記の構造からも分かるとおり、半導体発光装置には、従来の白熱電球や蛍光灯とは異なる構造及び部材が必要であり、その開発は未だ十分になされているとはいえない。上述した封止材についても同様であり、現在エポキシ系もしくはシリコーン系の樹脂が主流であるが、さらなる性能向上のための開発検討、材料探索が求められている。例えば、特許文献1には脂環式炭化水素系のアクリル化合物を用いた半導体発光装置の樹脂原料組成物が開示されている。
国際公開公報2006/051803号パンフレット
 半導体発光素子の封止樹脂に求められる性能として、透明性があり、その上で耐熱着色性、耐熱衝撃性(耐クラック性)、ガスバリア性を有することが挙げられる。これらの特性の同時達成はこのアプリケーションに特有のものであり、他の製品分野を含めてみても、それらを同時に満足し転用できるものが容易に見当たる状況ではない。
 そこで、本発明は、上記従来の樹脂とは異なるものを提案することにより材料を豊富化し、しかも半導体発光装置用途において要求される、透明性、耐熱着色性、耐熱衝撃性(耐クラック性・耐剥離性)、耐変色性(ガスバリア性)をバランスよく満足する半導体発光装置用封止剤、これを用いた半導体発光装置の封止材及び半導体発光装置の提供を目的とする。
 上記課題認識のもと、本発明者らは様々な物質やその配合にあたり半導体発光装置用封止剤に適した材料の探索を行った。その結果、特定のイソシアヌレート化合物がその要求特性を満たす可能性があるという感触を得た。しかしながら、単にイソシアヌレート化合物を用いたのでは満足な性能が得られず、特定の濃度領域として用い、必要により特定の配合とすることで、上記要求特性のすべてを高いレベルで満足することを見出した。本発明はかかる知見に基づいて完成されたものである。
 すなわち本発明は、前記の課題を解決するものとして下記手段を提供するものである。
〔1〕下記式(1)で表されるイソシアヌレート化合物を含む半導体発光装置用の封止剤であって、前記イソシアヌレート化合物を封止剤の有機硬化成分全量に対し70質量%超で含有させた半導体発光装置用封止剤。
Figure JPOXMLDOC01-appb-C000006
(式中のR、R、Rは、それぞれ独立に、水酸基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~24のアリールオキシ基、炭素数6~24のアリール基、下記式(I)で表されるアクリロイルオキシ基、又は下記式(II)で表されるアシルオキシ基を表す。Lは単結合または炭素数1~4のアルキレン基を表す。ただし、R、R、及びRの少なくとも1つは前記アクリロイルオキシ基である。)
Figure JPOXMLDOC01-appb-C000007
(式中、R11は水素原子又は炭素数1~3のアルキル基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000008
(式中、R12は炭素数1~10のアルキル基又は炭素数6~24のアリール基を表す。*は結合手を表す。)
〔2〕前記イソシアヌレート化合物が、下記式(1-1)、(1-2)、又は(1-3)で表される化合物の少なくとも1種からなり、前記イソシアヌレート化合物を100質量%としたとき、式(1-1)で表される化合物が0質量%以上35質量%以下、式(1-2)で表される化合物が65質量%以上100質量%以下、式(1-3)で表される化合物が0質量%以上25質量%以下である〔1〕に記載の半導体発光装置用封止剤。
Figure JPOXMLDOC01-appb-C000009
(式中、R、R、及びRはそれぞれ独立に、水素原子又はメチル基である。Rは、水酸基、炭素数1~10のアルコキシ基、炭素数6~24のアリールオキシ基、および式(II)で表されるアシルオキシ基のいずれか1種以上である。Lは式(1)と同義である。)
〔3〕前記イソシアヌレート化合物が、下記式(1-4)で表される化合物を1質量%以上50質量%未満含む〔1〕又は〔2〕に記載の半導体発光装置用封止剤。
Figure JPOXMLDOC01-appb-C000010
(式中、R、R、R12は、式(1-1)及び式(II)と同義である。Lは式(1)と同義である。)
〔4〕さらに、前記イソシアヌレート化合物100質量部に対し、環状官能基およびアルコキシシリル基を有するアルコキシシリル化合物を0.1~20質量部で配合する〔1〕~〔3〕のいずれか1項に記載の半導体発光装置用封止剤。
〔5〕前記式(1)で表されるイソシアヌレート化合物100質量%のうち、その5~100質量%が水酸基をもつイソシアヌレート化合物である〔1〕~〔4〕のいずれか1項に記載の半導体発光装置用封止剤。
〔6〕封止剤の硬化に際し、前記イソシアヌレート化合物がもつ水酸基と前記アルコキシシリル化合物のアルコキシシリル基とをアルコール交換反応により結合させる〔4〕または〔5〕に記載の半導体発光装置用封止剤。
〔7〕酸価が0.10mgKOH/g以下である〔1〕~〔6〕のいずれか1項に記載の半導体発光装置用封止剤。
〔8〕さらに、半導体発光装置用封止剤100質量部に対し蛍光体1~40質量部を配合してなる〔1〕~〔7〕のいずれか1項に記載の半導体発光装置用封止剤。
〔9〕〔1〕~〔8〕のいずれか1項に記載の半導体発光装置用封止剤を硬化してなる半導体発光装置用封止材。
〔10〕〔1〕~〔8〕のいずれか1項に記載の半導体発光装置用封止剤を硬化した硬化物からなる封止材と、該封止材で封止された半導体発光素子とを具備する半導体発光装置。
 本発明の封止剤は、上記従来の樹脂とは異なるものを提案することにより材料を豊富化するものである。しかも半導体発光素子を封止した封止材もしくはこれを具備する半導体発光装置としたときに、透明性、耐熱着色性、耐熱衝撃性(耐クラック・耐剥離性)、耐変色性(ガスバリア性)をバランスよく発揮し、さらに必要により耐吸水性を付与することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
本発明の半導体発光装置の一例を模式的に示した断面図である。
 本発明の半導体発光装置用封止剤は、イソシアヌレート構造を有する特定のアクリレート化合物(以下、特定イソシアヌレート化合物ということがある。)を特定濃度含有させ、必要により複数のものを特定の混合比で含有させてなる。以下、本発明について、その好ましい実施態様を中心に詳細に説明する。
[式(1)で表される化合物]
 本発明においては、下記式(1)で表される特定イソシアヌレート化合物を用いる。
Figure JPOXMLDOC01-appb-C000011
・R、R、R
 式中のR、R、Rは、それぞれ独立に、水酸基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~24のアリールオキシ基、炭素数6~24のアリール基、下記式(I)で表されるアクリロイルオキシ基、又は下記式(II)で表されるアシルオキシ基を表す。Lは単結合または炭素数1~4のアルキレン基を表す。ただし、R、R、及びRの少なくとも1つは前記アクリロイルオキシ基である。
Figure JPOXMLDOC01-appb-C000012
 式中、R11は水素原子又は炭素数1~3のアルキル基を表す。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000013
 式中、R12は炭素数1~10のアルキル基又は炭素数6~24のアリール基を表す。*は結合手を表す。
 R、R、R、R12において、炭素数1~10のアルキル基としては直鎖のアルキル基、分岐のアルキル基、環状アルキル基が上げられるが、中でも、炭素数3~10の直鎖のアルキル基、炭素数6~10の分岐のアルキル基、又は炭素数6~10の環状アルキル基が好ましい。
 R、R、R、R12がアリール基の場合、アリール基としては、単環でも複環でもよいが、中でもフェニル基が好ましい。
 前記アルキル基及びアリール基はさらに置換基を伴っていてもよく、その例としては後記置換基Tが挙げられる。
 Lは単結合または炭素数1~4のアルキレン基であるが、中でもエチレン基又はイソプロピレン基(N-CH-CH(CH)-Rの向き:RはR、R、又はR)が好ましく、エチレン基がより好ましい。アルキレン基は直鎖でも分岐でもよく、さらに置換基を伴ってもよい。当該置換基としては後記置換基Tの例が挙げられる。
 本発明の硬化性組成物においては、特定のイソシアヌレート化合物が水酸基を有していることが好ましく、式(1)で表されるイソシアヌレート化合物においては、R、R、Rの少なくとも1つが水酸基であることが好ましい。これにより、後記特定アルコキシシリル化合物のアルコキシ基と加水分解及び脱水縮合を介した結合構造を形成することができ、より強固で安定した硬化物とすることができる。
 上記の観点から、前記式(1)で表されるイソシアヌレート化合物100質量%のうち、その5~100質量%が水酸基をもつ化合物であることが好ましく、20~100質量%であることがより好ましい。
[封止剤の成分組成]
 本発明の封止剤においては、上記式(1)で表される化合物の濃度は、封止剤の有機硬化成分全量に対して70質量%超であり、80質量%以上であることが好ましく、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。上限は特になく、実質的に100質量%程度であることが特に好ましい。ここで実質的にとしたのは、トルエンなどの残溶媒が、0~10質量%程度の割合で混入してしまうことがあり、本発明の効果を損ねない範囲でそのような不可避混入物の存在を許容するものである。あるいは、封止剤の粘度を下げる必要がある場合などには、必要量の添加剤を付与してもよい。また、本発明の封止剤は、必須成分に加え後記重合禁止剤など必要に応じて任意成分を含んでもよいが、溶媒量が10%以下であることが好ましく、無溶媒で用いることが好ましい。このように無溶媒もしくは少量の溶媒でありながら十分な流動性と好適な粘性を有するため、半導体発光素子の封止剤の成形性に優れる。とりわけポッティングによる成形に効果的に対応することができ、モールド成形などと比し、大幅な製造効率の改善にも資するものである。なお、封止剤の有機硬化成分とは炭素原子を含む化合物からなる硬化成分(重合等により直接硬化に寄与する成分)をさすが、炭素原子を含んでいても蛍光体や重合開始剤、トルエンなどの有機溶媒は含まない意味である。その他、厳密に対比する必要がある場合には、水や無機塩などの微量成分も除く意味である。
 封止剤の粘度は特に限定されないが、ポッティング性および蛍光体安定分散性の観点で、0.1~100Pa・sが好ましく、0.5~20Pa・sがより好ましく、1.0~10Pa・sが更に好ましい。本発明において粘度は特に断らない限り、実施例で示した方法で測定した値を言う。
 本発明の封止剤は重合開始剤を有してなることが好ましい。重合開始剤はこの種の重合性化合物に通常適用されるものであればよく、その具体的なものは後述する。重合開始剤の量は特に限定されないが、有機硬化成分100質量部に対して、0.1質量部以上5質量部以下であることが好ましく、0.5質量部以上2.0質量部以下であることがより好ましい。上記下限値以上とすることで重合反応を良好に開始させることができる。一方、上記上限値以下とすることで、上記特定イソシアヌレート化合物を適用したことによる封止剤の優れた効果を十分に引き出すことができ好ましい。
(イソシアヌレート化合物[A])
 前記式(1)で表される特定イソシアヌレート化合物は、下記式(1-1)、(1-2)、又は(1-3)で表されるものであることが好ましい。本明細書では、この式(1-1)、(1-2)、又は(1-3)で表される化合物の総称としてイソシアヌレート化合物[A]と呼ぶ。
Figure JPOXMLDOC01-appb-C000014
・R、R、R、R
 式中、R、R、及びRはそれぞれ独立に、水素原子又はメチル基である。Rは、水酸基、炭素数1~10のアルコキシ基、炭素数6~24のアリールオキシ基、および式(II)で表されるアシルオキシ基の何れか1種以上である。
・L
 Lは式(1)と同義であり、好ましい範囲もそれと同義である。
 上記イソシアヌレート化合物[A]は、上記各式の化合物について特定の比率で含有させることが好ましい。前記イソシアヌレート化合物[A]を100質量%としたとき、式(1-1)で表される化合物が0質量%以上35質量%以下であることが好ましく、0質量%以上25質量%以下であることがより好ましく、0質量%以上10質量%以下であることが特に好ましい。
 式(1-2)で表される化合物が65質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましく、80質量%以上100質量%以下であることが特に好ましい。
 式(1-3)で表される化合物が0質量%以上25質量%以下であることが好ましく、0質量%以上15質量%以下であることがより好ましく、0質量%以上10質量%以下であることが特に好ましい。
 イソシアヌレート化合物[A]をそれぞれ上記の比率で含有させることで、透明性と、耐熱着色性と、耐熱衝撃性と、ガスバリア性を一層高いレベルで満足することができる。その理由は定かではないが、本発明において、このような組成が好適に作用することは本発明者らが見出した重要な技術的知見の一つである。
(イソシアヌレート化合物[B])
 本発明においては、前記特定イソシアヌレート化合物として、下記式(1-4)で表される化合物を含むことが好ましい。本明細書では、この式(1-4)で表される化合物をイソシアヌレート化合物[B]と呼ぶ。
Figure JPOXMLDOC01-appb-C000015
・R、R、R12は、式(1-1)及び式(II)と同義である。Lは式(1)と同義である。
 イソシアヌレート化合物[B]の添加量は特に限定されないが、組成物の有機硬化成分中で、1質量%以上50質量%未満で含むことが好ましく、3質量%以上40質量%以下であることがより好ましく、5質量%以上30質量%以下であることが特に好ましい。上記の範囲でイソシアヌレート化合物[B]を適用することで、硬化物の耐熱衝撃性(耐クラック性)、および耐熱着色性を悪化させることなく吸水率を低下させることができ、吸水起因による故障(例えば、吸水した状態でリフロー処理を行った際に発生する吸湿リフロークラックなど)を低下させることが可能であり、結果、信頼性の高い半導体発光素子を提供することができる。
(アルコキシシリル化合物)
 本発明の封止剤においては、前記特定イソシアヌレート化合物に加え、環状官能基とアルコキシシリル基とを有するアルコキシシリル化合物を含有させることが好ましい。前記環状官能基は環状エーテル基であることが好ましく、エポキシ基又はオキセタン基であることがより好ましい。アルコキシシリル化合物は下記式(a)~(c)のいずれかで表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
・L
 Lは単結合または連結基を表す。連結基としては具体的には、アルキレン基、アリーレン基、アルケニレン基、オキシ基、カルボニル基、アミノ基(-NR-:Rは水素原子または炭素数1~4のアルキル基)、またはこれらの組合せに係る基であることが好ましい。なかでも、単結合、アルキレン基、オキシ基、またはそれらの組合せが好ましく、単結合または炭素数1~6のアルキレン基もしくはそこにオキシ基が介在した基がより好ましい。
・R、R、R
 R、R、Rは水素原子もしくは置換基を表す。置換基としては後記置換基Tが挙げられる。中でも水素原子または炭素数1~6のアルキル基が好ましく、水素原子がより好ましい。
・nb、nc
 nbは1~3の整数を表す。ncは1または2を表す。nb及びncが2以上のとき、そこで規定される複数の置換基は互いに異なっていてもよい。
・Rs 
 アルコキシシリル基を表し、炭素数1~6のアルコキシシリル基が好ましい。
 前記アルコキシシリル基Rsは、下記式(d)で表されることが好ましい。
  *-L-Si(Rd)nd(Re)ne    (d)
・L
 Lは単結合または連結基を表す。その好ましい範囲は前記Lと同様である。
・R
 Rはアルキル基を表し、炭素数1~6のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。アルキル基は鎖状でも環状でもよく、直鎖でも分岐でもよい。また、アルキル基にはオキシ基(-0-)が介在してもよい。
・R
 Rは、アルコキシ基を表し、炭素数1~6のアルコキシ基が好ましく、メトキシ基、エトキシ基、プロポキシ基がより好ましい。
・nd、ne
 ndは0~2の整数、neは1~3の整数を表す。nd+neは3である。neは2~3の整数が好ましく、neは3がより好ましい。nb及びncが2以上のとき、そこで規定される複数の置換基は互いに異なっていてもよい。
 *は結合手を表す。
 前記特定アルコキシシリル化合物の含有量は、前記特定イソシアヌレート化合物100質量部に対して、0.1質量部以上で含有させることができ、1.0質量部以上で含有させることがより好ましく、5.0質量部以上で含有させることが特に好ましい。上限としては、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が特に好ましい。本発明においては、この特定アルコキシシリル化合物と前記特定イソシアヌレート化合物とを組み合わせて適用した相乗効果として、特定アルコキシシリル化合物を多量に適用せずに、その効果を十分に発揮させることができる。
上記の効果を発現する理由は定かではないが、以下のように考えられる。前記特定アルコキシシリル化合物はイソシアヌレート化合物に対して相溶せず、はじかれながら表面に偏在すると考えられる。そのエポキシ基はリフレクターパッケージ基材の筐体樹脂や銀層と結合し密着性を高める効果がある。他方、アルコキシシリル化合物に導入されたシリル基は加水分解重縮合することにより強固なシロキサン構造を形成し耐熱性を増す。アクリル成分等が水酸基をもつときこれがアルコキシシリル基と縮合することで結合一体化し、その効果は一層顕著になると考えられる。
 本発明の封止剤は、その酸価が0.10mgKOH/g以下であることが好ましく、0.05mgKOH/g以下であることがより好ましく、0.02mgKOH/g以下であることが特に好ましい。上記上限値以下とすることで耐熱着色性がよりいっそう向上するという利点があり好ましい。下限値は特に限定されないが、0.001mgKOH/g以上であることが実際的である。封止剤の酸価の調節方法は特に限定されないが、活性炭やシリカ等の吸着剤と本発明のイソシアヌレート化合物とを混ぜ合わせ、静置した後、ろ過により吸着剤を除去することにより、イソシアヌレート化合物の酸価を低下させることができる。
 なお、本明細書において「化合物」という語を末尾に付して呼ぶとき、あるいは特定の名称ないし化学式で示すときには、当該化合物そのものに加え、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の形態で修飾された誘導体を含む意味である。また、本明細書において置換・無置換を明記していない置換基ないし連結基については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルホンアミド、N-フェニルスルホンアミド等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、シアノ基、ヒドロキシル基、又はハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基又はハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基又はシアノ基が挙げられる。
 上記特定イソシアヌレート化合物は定法により合成すればよく、特にその合成方法は限定されない。その市販品等の情報は、例えば、特開2003-213159号公報を参照することができる。
[重合開始剤]
 本発明の封止剤には、重合開始剤を含有させることが好ましい。
 なかでもラジカル重合開始剤を配合することが挙げられる。
 熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド及びメチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルハイドロパーオキサイドなどのハイドロパーオキサイド類;ジイソブチリルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド及びm-トルイルベンゾイルパーオキサイドなどのジアシルパーオキサイド類;ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキセンなどのジアルキルパーオキサイド類;1,1-ジ(t-ブチルペルオキシ-3,5,5-トリメチル)シクロヘキサン、1,1-ジ-t-ブチルペルオキシシクロヘキサン及び2,2-ジ(t-ブチルペルオキシ)ブタンなどのパーオキシケタール類;t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、ジ-t-ブチルペルオキシヘキサヒドロテレフタレート、1,1,3,3-テトラメチルブチルペルオキシ-3,5,5-トリメチルヘキサネート、t-アミルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート及びジブチルペルオキシトリメチルアジペートなどのアルキルパーエステル類;1,1,3,3-テトラメチルブチルペルオキシネオジカーボネート、α-クミルペルオキシネオジカーボネート、t-ブチルペルオキシネオジカーボネート、ジ-3-メトキシブチルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ビス(1,1-ブチルシクロヘキサオキシジカーボネート)、ジイソプロピルオキシジカーボネート、t-アミルペルオキシイソプロピルカーボネート、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート及び1,6-ビス(t-ブチルペルオキシカルボキシ)ヘキサンなどのパーオキシカーボネート類;1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン及び(4-t-ブチルシクロヘキシル)パーオキシジカルボネートなどが挙げられる。
 アゾ系(AIBN等)の重合開始剤として使用するアゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス-1-シクロヘキサンカルボニトリル、ジメチル-2,2’-アゾビスイソブチレート、4,4’-アゾビス-4-シアノバレリック酸、2,2’-アゾビス-(2-アミジノプロパン)ジハイドロクロライド等が挙げられる(特開2010-189471など参照)。
 ラジカル重合開始剤として、上記の熱ラジカル重合開始剤の他に、光、電子線又は放射線で開始ラジカルを生成するラジカル重合開始剤を用いることができる。
 このようなラジカル重合開始剤としては、ベンゾインエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン〔IRGACURE651、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン〔IRGACURE184、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン〔DAROCUR1173、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン〔IRGACURE2959、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン〔IRGACURE127、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔IRGACURE907、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1〔IRGACURE369、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モノホリニル)フェニル]-1-ブタノン〔IRGACURE379、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド〔DAROCUR TPO、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド〔IRGACURE819、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(η-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム〔IRGACURE784、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]〔IRGACURE OXE 01、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)〔IRGACURE OXE 02、チバ・スペシャルティ・ケミカルズ(株)製、商標〕などを挙げることができる。
 これらのラジカル重合開始剤は、一種を単独で又は二種以上を組み合わせて用いることができる。
 中でも好ましくは、パーオキサイド化合物が挙げられ、パーブチルO(t-ブチルペルオキシ-2-エチルヘキサノエート(PBO)、日油(株)社製)などを用いることができる。
 重合開始剤の含有量は先に述べた量で適用することが好ましい。
[重合禁止剤]
 本発明の封止剤には、重合禁止剤を添加してもよい。前記重合禁止剤としては、例えば、ハイドロキノン、tert-ブチルハイドロキノン、カテコール、ハイドロキノンモノメチルエーテル等のフェノール類;ベンゾキノン、ジフェニルベンゾキノン等のキノン類;フェノチアジン類;銅類等を用いることができる。
 重合禁止剤の含有量は特に限定されないが、有機硬化成分1部に対して0~20000ppm(質量部基準)、好ましくは100~10000ppm、更に好ましくは300~8000ppmで添加することが好ましい。重合禁止剤の添加量が少なすぎると、封止硬化時に、急激に発熱を生じながら重合が起こるため、リフレクターパッケージ基材との密着性が低下し、熱衝撃を与えた際に、封止材/基材界面で剥離が生じやすくなる。一方、重合禁止剤の添加量が多すぎると、大気下で封止剤を硬化する際、硬化速度を著しく低下させ、表面硬化不良を引き起こす。
[蛍光体]
 本発明においては、封止剤(前記で定義した有機硬化成分)100質量部に対し蛍光体1~40質量部を配合してなることが好ましく、2質量部以上30質量部以下であることがより好ましく、5質量部以上20質量部以下であることが特に好ましい。蛍光体としては、半導体発光素子からの光を吸収して蛍光を発することにより波長を変換するものであればよく、Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体または酸窒化物系蛍光体、Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類ハロゲンアパタイト蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類ケイ酸塩蛍光体、アルカリ土類硫化物蛍光体、アルカリ土類チオガレート蛍光体、アルカリ土類窒化ケイ素蛍光体、ゲルマン酸塩蛍光体、Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体、希土類ケイ酸塩蛍光体、又はEu等のランタノイド系元素で主に賦活される有機及び有機錯体等から選ばれる少なくとも1以上であることが好ましい。より好ましくは、(Y,Gd)(Al,Ga)12:Ce、(Ca,Sr,Ba)SiO:Eu、(Ca,Sr)Si:Eu、CaAlSiN:Euなどが使用される。
[酸化防止剤]
 本発明の封止剤には必要に応じて酸化防止剤を含有させることが好ましい。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、チオエーテル酸化防止剤、ビタミン系酸化防止剤、ラクトン系酸化防止剤及びアミン系酸化防止剤などが挙げられる。
 フェノール系酸化防止剤としては、Irganox1010(チバ・スペシャルティ・ケミカルズ(株)製、商標)、Irganox1076(チバ・スペシャルティ・ケミカルズ(株)製、商標)、Irganox1330(チバ・スペシャルティ・ケミカルズ(株)製、商標)、Irganox3114(チバ・スペシャルティ・ケミカルズ(株)製、商標)、Irganox3125(チバ・スペシャルティ・ケミカルズ(株)製、商標)、アデカスタブAO-20(株式会社ADEKA、商標)、アデカスタブAO-50(株式会社ADEKA、商標)、アデカスタブAO-60(株式会社ADEKA、商標)、アデカスタブAO-80(株式会社ADEKA、商標)、アデカスタブAO-30(株式会社ADEKA、商標)、アデカスタブAO-40(株式会社ADEKA、商標)、BHT(武田薬品工業(株)製、商標)、Cyanox1790(サイアナミド社製、商標)、SumilizerGP(住友化学(株)製、商標)、SumilizerGM(住友化学(株)製、商標)、SumilizerGS(住友化学(株)製、商標)及び、SumilizerGA-80(住友化学(株)製、商標)などの市販品を挙げることができる。
 リン系化合物としてはIRAGAFOS168(チバ・スペシャルティ・ケミカルズ(株)製、商標)、IRAGAFOS12(チバ・スペシャルティ・ケミカルズ(株)製、商標)、IRAGAFOS38(チバ・スペシャルティ・ケミカルズ(株)製、商標)、IRAGAFOS P-EPQ(チバ・スペシャルティ・ケミカルズ(株)製、商標)、IRAGAFOS126(チバ・スペシャルティ・ケミカルズ(株)製、商標)、ADKSTAB 329K(株式会社ADEKA、商標)、ADKSTAB PEP-36(株式会社ADEKA、商標)、ADKSTAB PEP-8(株式会社ADEKA、商標)、ADKSTAB HP-10(株式会社ADEKA、商標)、ADKSTAB 2112(株式会社ADEKA、商標)、ADKSTAB 260(株式会社ADEKA、商標)、ADKSTAB 522A(株式会社ADEKA、商標)、Weston 618(GE社製、商標)、Weston 619G(GE社製、商標)、及びWeston 624(GE社製、商標)などの市販品を挙げることができる。
 イオウ系酸化防止剤としては、DSTP(ヨシトミ)〔吉富(株)製、商標〕、DLTP(ヨシトミ)〔吉富(株)製、商標〕、DLTOIB〔吉富(株)製、商標〕、DMTP(ヨシトミ)〔吉富(株)製、商標〕、Seenox 412S〔シプロ化成(株)製、商標〕、Cyanox 1212(サイアナミド社製、商標)及びTP-D、TPS、TPM、TPL-R[住友化学(株)製、商標]等の市販品を挙げることができる。ビタミン系酸化防止剤としては、トコフェロール〔エーザイ(株)製、商標〕及びIrganoxE201〔チバ・スペシャルティ・ケミカルズ(株)製、商標、化合物名;2,5,7,8-テトラメチル-2(4’,8’,12’-トリメチルトリデシル)クマロン-6-オール〕などの市販品を挙げることができる。
 チオエーテル系酸化防止剤としては、アデカスタブAO-412S(株式会社ADEKA製、商標)、アデカスタブAO-503(株式会社ADEKA製、商標)などの市販品を挙げることができる。ラクトン系酸化防止剤としては、特開平7-233160号公報及び特開平7-247278号公報に記載されているものを使用することができる。また、HP-136〔チバ・スペシャルティ・ケミカルズ(株)製、商標、化合物名;5,7-ジ-t-ブチル-3-(3,4-ジメチルフェニル)-3H-ベンゾフラン-2-オン〕などの市販品を挙げることができる。
 アミン系酸化防止剤としては、IrgastabFS042〔チバ・スペシャルティ・ケミカルズ(株)製、商標〕及びGENOX EP〔クロンプトン社製、商標、化合物名;ジアルキル-N-メチルアミンオキサイド〕などの市販品を挙げることができる。これらの酸化防止剤は、一種を単独で又は二種以上を組み合わせて用いることができる。
 酸化防止剤の含有量は、封止剤(樹脂材料)の透明性、黄変性の低下を抑制する観点から、前記有機硬化成分の合計量100質量部に対して、通常0.01~10質量部、好ましくは0.01~5質量部、より好ましくは0.02~2質量部である。
[光安定剤等]
 本発明の封止剤には、前記の酸化防止剤の他に、必要に応じて、滑剤、光安定剤、紫外線吸収剤、可塑剤、帯電防止剤、無機充填剤、着色剤、帯電防止剤、離型剤、難燃剤、酸化チタンや酸化ケイ素などの無機化合物との密着性改良を目的とした成分などを配合することができる。滑剤としては、高級ジカルボン酸金属塩及び高級カルボン酸エステル等を使用することができる。
 光安定剤としては、公知のものを使用することができるが、好ましくはヒンダードアミン系光安定剤である。ヒンダードアミン系光安定剤の具体例としては、ADKSTAB LA-77、同LA-57、同LA-52、同LA-62、同LA-67、同LA-68、同LA-63、同LA-94、同LA-94、同LA-82及び同LA-87〔以上、株式会社ADEKA製〕、Tinuvin123、同144、同440及び同662、Chimassorb2020、同119、同944〔以上、CSC社製〕、Hostavin N30(Hoechst社製)、Cyasorb UV-3346、同UV-3526(以上、Cytec社製)、Uval 299(GLC)及びSanduvorPR-31(Clariant)などを挙げることができる。これらの光安定剤は、一種を単独で又は二種以上を組み合わせて用いることができる。
 光安定剤の使用量は、前記有機硬化成分の合計量100質量部に対して、通常、0.005~5質量部であり、好ましくは0.02~2質量部である。
 酸化チタンや酸化ケイ素などの無機化合物との密着性改良を目的とした成分としては、シラン化合物のメタクリロイルオキシ基またはアクリロイルオキシ基を含むシランカップリング剤などが挙げられる。これを上記封止剤に含有させ、重合、成形しても良い。
[半導体発光装置]
(封止方式)
 封止剤の封止方式としては通常半導体発光素子の封止で用いられている手法や一般的な熱硬化性樹脂の成形と同様の方法を用いることができる。例えば、ポッティング(ディスペンス)、印刷、コーティング、射出成形、圧縮成形、トランスファー成形及びインサート成形などが挙げられる。ポッティングとは、パッケージのキャビティ(凹状空間)の内部に前記封止剤を吐出して内部を埋める操作を表す。また、印刷とはマスクを用いて目的の部位に封止剤を配置する操作を表し、目的に応じて周囲の圧力を減圧するいわゆる真空印刷の方式も採用できる。コーティングは各種のコーティング方式を採用することができ、例えばダム材と呼ばれる封止剤を留める堰を予め作製しておき、その内側に封止剤をコーティングする方法も採用できる。また、各種モールド成形においてはモールドの内側に封止剤を充填しそのまま熱硬化する方法が挙げられる。また、封止後の硬化は熱硬化、UV硬化などやそれらを組み合わせて用いることができる。
 本発明の好ましい実施形態における半導体発光装置は、上記の封止剤を硬化することによって作製した封止材を具備してなる。硬化方法としては通常の熱硬化性樹脂の成形と同様の方法を用いることができる。例えば、上記の封止剤(原料組成物)又はその予備重合物を用い、これらの液状樹脂の射出成形、圧縮成形、トランスファー成形及びインサート成形などで、重合・成形する方法が挙げられる。また、ポッティング加工やコーティング加工で成形体を得ることもできる。さらに、例えばUV硬化成形など光硬化樹脂の成形と同様の方法によっても成形体を得ることができる。
 本実施形態の半導体発光装置ないしその部材は、液状樹脂成形法により製造されることが好ましい。液状樹脂成形法としては、常温で液状の封止剤又はその予備重合物を高温の金型に圧入して加熱硬化させる液状樹脂射出成形、液状の封止剤を金型に入れ、プレスによって加圧し、硬化させる圧縮成形、加温した液状の封止剤に圧力をかけて金型に圧入することにより封止剤を硬化させるトランスファー成形などが挙げられる。
 本発明の封止剤は上述のように適度な流動性ないし粘性を有するため、ポッティングに用いることが好ましい。
 ここでポッティングについて説明する。ポッティングとは、前記リフレクターパッケージ基材のキャビティー(凹状空間)W(図1)の内部に前記封止液を吐出して内部を埋める操作を表す。硬化プロセスはポッティング後に封止液を充填されたリフレクタパッケージ(リフレクタパッケージ基材のほか、素子、ボンディングワイヤ、電極を含むパッケージ)をオーブンなどの一般的な加熱装置に入れて硬化できるため、システムとしてはディスペンサと加熱装置だけの非常に単純な構成で済む。また、金型やマスクを必要としないため、デバイスの形状などの変更の際にも迅速かつ安価に対応することが可能であり、汎用性の高い封止方式といえる。更に、コンプレッションモールド成形やトランスファーモールド成形などのモールド成形方式においては金型に対する離型性の悪さ、封止液の廃棄率の高さ、粘度の制限などが問題であるが、ポッティング方式ではこれらの問題がない。
 液の吐出方式としては、スクリュータイプなどのメカニカルなディスペンス方式、エアパルス式ディスペンス、非接触ジェット式ディスペンスなどが挙げられる。ポッティング装置であるディスペンサとしては、例えば具体的には武蔵エンジニアリング社、サンエイテック社などから出されている装置が使用される。
 ポッティングで使用できる封止剤としては常温で液体である必要があり、粘度としてはおよそ1mPa・s~1000Pa・sの液を使用することが好ましい。
(半導体発光素子)
 半導体発光素子としては、窒化ガリウム(GaN)系半導体からなる青色発光のLEDチップや、紫外発光のLEDチップ、レーザダイオードなどが用いられる。その他、例えば、MOCVD法等によって基板上にInN、AlN、InGaN、AlGaN、InGaAlN等の窒化物半導体を発光層として形成させたものも使用できる。フェースアップ実装される半導体発光素子や、フリップチップ実装される半導体発光素子のいずれも使用することができる。半導体発光素子は、同一平面上にn側電極とp側電極を持つ半導体発光素子の例であるが、一方の面にn側電極、反対の面にp側電極を持つ半導体発光素子も使用することができる。
(パッケージ)
 パッケージとしては電極が一体成型されているもの、及びパッケージを成型した後にメッキなどにより回路配線として電極を設けたものを用いることができる。パッケージの形状としては、円柱、楕円柱、立方体、直方体、直方体と楕円柱の間の形状やこれらの組み合わせなど任意の形状を採用することができる。内壁部の形状は底部に対して任意の角度を選択でき底面に対して直角になる箱型形状や鈍角になるすり鉢形状を選択することができる。凹部の底の形状は平面状や凹み形状などの任意の形状が選択できる。また、実装方式としてトップビュー、サイドビューなど任意の実装方式に対応したパッケージを用いることができる。
 パッケージを構成する素材としては、耐光性、耐熱性に優れた電気絶縁性のものが好適に用いられ、例えばポリフタルアミド(PPA)などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂、ガラスエポキシ、セラミックスなどを用いることができる。また、半導体発光素子からの光を効率よく反射させるためにこれらの樹脂に酸化チタンなどの白色顔料などを混合させることができる。パッケージの成形法としては、前記電極を予め金型内に設置して行うインサート成形、射出成形、押出成形、トランスファ成型などを用いることができる。
(電極)
 電極は、半導体発光素子と電気的に接続され、例えば、パッケージにインサートされた板状の電極や、ガラスエポキシやセラミックなどの基板に形成された導電パターンであってよい。電極の材質は、銀若しくは銀を含有した合金の他、銅や鉄などを主成分とする電極の一部上に銀若しくは銀を含有した合金がメッキされているものを用いることができる。
(評価方法)
 半導体発光装置は従来の試験方法において評価することができる。例えば電気特性、光特性、温度特性、熱特性、寿命、信頼性、安全性などが挙げられる。手法としては、例えば書籍『LED照明ハンドブック LED照明推進協議会編 株式会社オーム社発行』の第2章71ページから84ページに記載の手法や基準を採用することができる。
(用途)
 半導体発光装置は、光度の維持が要求される各種用途、例えば液晶ディスプレイ、携帯電話または情報端末等のバックライト、LEDディスプレイ、フラッシュライト、及び屋内外照明などに利用することができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明は、以下の実施例により限定して解釈されるものではない。
化合物ex1(式1-1:下記の化合物)
 アロニックスM-215(東亞合成社製)をカラムクロマトグラフィーで精製することにより、化合物ex1(前記式(1-1)でLがエチレン基、R,R,Rが水素原子)を得た。
化合物ex2(式1-2:下記の化合物)
 アロニックスM-215(東亞合成社製)をカラムクロマトグラフィーで精製することにより、化合物ex2(前記式(1-2)でLがエチレン基、R,Rが水素原子、Rが水酸基)を得た。
化合物ex3(式1-3:下記の化合物)
 アロニックスM-215(東亞合成社製)をカラムクロマトグラフィーで精製することにより、化合物ex3(前記式(1-3)でLがエチレン基、Rが水素原子、Rが水酸基)を得た。
化合物ex4a(式1-4:下記の化合物)
 アロニックスM-215(東亞合成社製)80.0g、トリエチルアミン51.4gをテトラヒドロフラン1000.0gに溶解させた。反応溶液を氷冷し、10℃以下を保ちつつ、シクロヘキサン酸クロリド46.0gを滴下した。室温に戻した後、2時間攪拌した。反応溶液に炭酸水素ナトリウム水溶液を加えた後、酢酸エチルで抽出した。有機層を集め、MgSOを加え、ろ過、濃縮し、濃縮物をカラムクロマトグラフィーで精製することにより化合物ex4a(式1-4)を24.5g得た。
化合物ex4b(式1-4:下記の化合物)
 アロニックスM-215(東亞合成社製)80.0g、トリエチルアミン51.4gをテトラヒドロフラン1000.0gに溶解させた。反応溶液を氷冷し、10℃以下を保ちつつ、2-エチルヘキサン酸クロリド60.0gを滴下した。室温に戻した後、2時間攪拌した。反応溶液に炭酸水素ナトリウム水溶液を加えた後、酢酸エチルで抽出した。有機層を集め、MgSOを加え、ろ過、濃縮し、濃縮物をカラムクロマトグラフィーで精製することにより化合物ex4b(式1-4)を26.2g得た。
化合物ex4c(式1-4:下記の化合物)
 アロニックスM-215(東亞合成社製)80.0g、トリエチルアミン51.4gをテトラヒドロフラン1000.0gに溶解させた。反応溶液を氷冷し、10℃以下を保ちつつ、ベンゾイルクロリド45.0gを滴下した。室温に戻した後、2時間攪拌した。反応溶液に炭酸水素ナトリウム水溶液を加えた後、酢酸エチルで抽出した。有機層を集め、MgSOを加え、ろ過、濃縮し、濃縮物をカラムクロマトグラフィーで精製することにより化合物ex4c(式1-4)を23.2g得た。
<150℃耐熱性(1)(セラミックパッケージ評価)>
 表1に示す半導体発光装置用封止剤を、図1に示すアルミナ製リフレクターパッケージ(Alパッケージ、京セラ社製)を具備するLEDパッケージにポッティング封止した後、大気下で70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化した後、IRヒーターを具備したリフロー炉に前記半導体発光装置封止剤で封止されたLEDパッケージを入れ、260℃30秒の加熱処理を3回行うことにより評価用発光ダイオードを作製した。次に、浜松ホトニクス製 外部量子効率測定装置 C9920-12(商品名)を用いて、室温下で1mAの定電流を注入した際の評価用発光ダイオードの発光スペクトルを測定し、450nmにおける発光量を解析することにより、初期発光量を測定した。(なお、本装置では積分球にて測定を行っているため、発光角度に依存しない発光量が測定できる。)ついで、この評価サンプルを150℃、300時間の高温下に放置した後、再び、浜松ホトニクス製 外部量子効率測定装置 C9920-12を用いて、室温下で1mAの定電流を注入した際の評価用発光ダイオードの発光スペクトルを測定し、450nmにおける発光量を解析することにより、150℃エージング後発光量を測定した。
 上記150℃エージング後発光量/初期発光量×100=150℃耐熱性(1)とし、以下の基準でランクづけを行った。
AA:150℃耐熱性(1)が85以上
A :150℃耐熱性(1)が80以上85未満
B :150℃耐熱性(1)が70以上80未満
C :150℃耐熱性(1)が70未満
<150℃耐熱性(2)(PPA樹脂パッケージ評価)>
 表1に示す封止剤を、図1に示すポリフタルアミド(PPA)樹脂パッケージ(商品名:FLASH LED 6PIN BASE(トップビュー用円形パッケージ)、株式会社エノモト製)[キャビティサイズ:深さ0.65mm、幅4.4mm、直径4.4mm]を具備するLEDパッケージにポッティング封止した後、大気下で70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化した後、IRヒーターを具備したリフロー炉に前記封止剤で封止されたLEDパッケージを入れ、260℃30秒の加熱処理を3回行うことより評価用発光ダイオードを作製した。次に、浜松ホトニクス製 外部量子効率測定装置 C9920-12を用いて、室温下で1mAの定電流を注入した際の評価用発光ダイオードの発光スペクトルを測定し、450nmにおける発光量を解析することにより、初期発光量を測定した。(なお、本装置では積分球にて測定を行っているため、発光角度に依存しない発光量が測定できる。)ついで、この評価サンプルを150℃、300時間の高温下に放置した後、再び、浜松ホトニクス製 外部量子効率測定装置 C9920-12を用いて、室温下で1mAの定電流を注入した際の評価用発光ダイオードの発光スペクトルを測定し、450nmにおける発光量を解析することにより、150℃エージング後発光量を測定した。
 上記150℃エージング後発光量/初期発光量 × 100=150℃耐熱性(2)とし、以下の基準でランクづけを行った。
AA:150℃耐熱性(2)が80以上
A :150℃耐熱性(2)が75以上80未満
B :150℃耐熱性(2)が65以上75未満
C :150℃耐熱性(2)が65未満
<耐クラック・剥離性(1)>
 表1に示す封止剤を、図1に示すポリフタルアミド(PPA)樹脂パッケージ(商品名:FLASH LED 6PIN BASE、株式会社エノモト製)を具備するLEDパッケージにポッティング封止した後、大気下で70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化した後、IRヒーターを具備したリフロー炉に前記半導体発光装置用封止剤で封止されたLEDパッケージを入れ、260℃30秒の加熱処理を3回行うことより評価用発光ダイオードを作製した。続いて、この評価用発光ダイオードに、-40℃30分~100℃30分の熱衝撃を300サイクル施し、封止材に発生するクラック、および封止材と隣接する部材との剥離故障を顕微鏡観察した。評価数は50個とし、
 熱衝撃試験後に剥離が発生した個数=耐剥離性の指標とし、以下基準により、ランクづけをおこなった。
 AA: 剥離個数が0個
 A : 剥離個数が1個以上5個未満
 B : 剥離個数が5個以上10個未満
 C : 剥離個数が10個以上
<耐クラック・剥離性(2)>
 表1に示す封止剤を、図1に示すポリフタルアミド(PPA)樹脂パッケージ(商品名:一詮精密社製、SMD008T、サイドビュー用パッケージ)[キャビティサイズ:深さ0.65mm、幅2.2mm、奥行き0.36mm]を具備するLEDパッケージにポッティング封止した後、大気下で70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化した後、IRヒーターを具備したリフロー炉に前記硬化性樹脂組成物で封止されたLEDパッケージを入れ、260℃30秒の加熱処理を3回行うことより評価用発光ダイオードを作製した。続いて、この評価用発光ダイオードに、-40℃30分~100℃30分の熱衝撃を300サイクル施し、封止材と隣接する部材との剥離故障を顕微鏡観察した。評価数は50個とし、
 熱衝撃試験後に剥離が発生した個数=耐剥離性の指標とし、以下基準により、ランクづけをおこなった。
 AA: 剥離個数が0個
 A : 剥離個数が1個以上5個未満
 B : 剥離個数が5個以上10個未満
 C : 剥離個数が10個以上
<初期発光量>
 表1に示す封止剤を図1に示すポリフタルアミド(PPA)樹脂パッケージ(商品名:一詮精密社製、SMD008T、サイドビュー用パッケージ)を具備するLEDパッケージに、封止剤の液面高さが同じとなるようにポッティング封止した後、大気下で70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化した後、IRヒーターを具備したリフロー炉に前記封止剤で封止されたLEDパッケージを入れ、260℃30秒の加熱処理を3回行うことより評価用発光ダイオードを作製した。次に、浜松ホトニクス製 外部量子効率測定装置 C9920-12を用いて、室温下で1mAの定電流を注入した際の評価用発光ダイオードの発光スペクトルを測定し、450nmにおける発光量を解析することにより、初期発光量を測定した。
 ASP1010の初期発光量を100としたとき、以下基準により、初期発光量のランクづけをおこなった。
 A : ASP1010の初期発光量100に対し、初期発光量が高い、
     または0%以上3%未満で低い場合
 B : ASP1010の初期発光量100に対し、
     初期発光量が3%以上~5%未満の範囲で低い場合
 C : ASP1010の初期発光量100に対し、
     初期発光量が5%以上低い場合
<アルコール交換反応率>
 表1の試験No210~212に示す封止剤(重合開始剤を除く)を冷却管を具備するフラスコに入れ、120℃6時間加熱した。室温まで冷却し、反応物の1H-NMRを測定することにより、アルコキシシリル化合物が分子中に水酸基を含むイソシアヌレート化合物とアルコール交換反応により結合していることを確認した。アルコキシシリル化合物の導入率を以下に定義した。
アルコキシシリル化合物導入率=
(水酸基を含むイソシアヌレート化合物に(アルコール交換反応を介して)導入されたアルコキシシリル化合物量/反応前のアルコキシシリル化合物量 ×100 [%]
<ガスバリア性(耐変色性)>
 表1に示す封止剤を、銀パッケージ(商品名:KD-LA9R48(トップビュー用円形パッケージ)、京セラ株式会社製)[キャビティサイズ:深さ0.55mm、直径3.04mm]を具備するLEDパッケージにポッティング封止した後、大気下で70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化した後、IRヒーターを具備したリフロー炉に前記半導体発光装置封止剤で封止されたLEDパッケージを入れ、260℃30秒の加熱処理を3回行うことより評価用発光ダイオードを作製した。次に、23cm×16cm×23cm程度の密閉缶を準備し、その底部に0.5gずつ硫黄粉末を乗せたPFA製小型シャーレを5つ、均等にならべた。その上に約10cmの距離が空くように脚を付けた網板を取り付けた。評価用発光ダイオードをn=3ずつその網の隙間からパッケージが下向きに覗くように並べ、その状態で密閉缶の蓋をした。密閉缶を予め80°に設定しておいたオーブンに入れ、48時間反応させた。この時、硫黄粉末を熱することで硫黄原子が連なった化合物がガス状に放出される。この硫黄ガスが封止材を透過するとリフレクターの銀を硫化して黒変させ、発光量が低下する。変色の有無を光学顕微鏡にて確認した。
<樹脂組成物中の酸価>
 表1に示す封止剤の酸価を、JIS K2501の試験方法に準拠し、酸価(mgKOH/g)を測定した。
<透明性>
 表1に示す封止剤をガラス板で挟み、70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化することにより、厚み1mmの封止材を作製した。ついで、分光光度計(日立製作所社製、U-3400)を用いて、本封止材の透過率を測定し、450nmの透過率を透明性の指標として用いた。450nmにおける透過率が85%以上である場合を良好、それ以外を不良とした。
<吸水率>
 表1に示す封止剤をガラス板で挟み、70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化することにより、厚み1mmの封止材を作製した後、重量(Wi)を測定した。その後、85℃相対湿度85%に設定した環境試験機中に三週間保持した後の封止材の重量(Wf)を測定し、吸水率を下記の式より算出し、以下基準によりランクづけを行った。
  吸水率 = (Wf-Wi)/Wf×100 (%)
AA: 吸水率が3.0%未満
A : 吸水率が3%以上3.5%未満
B : 吸水率が3.5%以上
<線膨張係数測定>
 表1に示す封止剤をガラス板で挟み、70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化することにより、厚み1mmの封止材を作製した。ついで、熱機械分析装置(エスアイアイ・ナノテクノロジー社製、EXSTAR6000)を用いて、圧縮モードにより、得られた封止材の30℃から120℃における平均線膨張係数を測定した。
<ガラス転移温度(Tg)、弾性率測定>
 表1に示す封止剤をガラス板で挟み、70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化することにより、厚み0.2mmの封止材を作製した。続いて、幅5mm、長さ15mm、厚み0.2mmの短冊状に切り取った後、Rheogel-E4000(株式会社ユービーエム製、動的粘弾性測定装置)を用いて、引張りモード、周波数10Hz、歪み10μm(一定)の条件で、25℃から300℃までの貯蔵弾性率およびtanδを測定した。なお、25℃における貯蔵弾性率を弾性率、25℃から300℃に存在するtanδのピーク値をガラス転移温度と定義した。
<屈折率測定>
 表1に示す封止剤をガラス板で挟み、70℃30分、130℃30分、150℃5時間の熱を与え、熱硬化することにより、厚み1mmの半導体封止材を作製した。ついで、得られた封止材の589nmにおける屈折率をアッベ計(株式会社アタゴ社製)を用いて測定した。測定温度は25℃とした。屈折率は、1.51~1.54の範囲にあった。
<粘度測定>
 表1に示す封止剤の粘度を振動式粘度計(セコニック社製、VM-100A(商品名))を用いて測定した。測定温度は25℃とした。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
(表の注釈)
・試験101は、東亞合成社製アロニックスM-215を用いた。M-215をHPLCおよび1H-NMRで分析した結果、化合物ex1 34%, 化合物ex2 45%, 化合物ex3 21%の混合物であった。
・含有率単位: 硬化性化合物を100質量部としたときの質量部(ただし重合禁止剤はppm表示)
・配合量単位:質量%・・・有機硬化成分のうち、[A],[B],cypt1~3(硬化性化合物)以外は、これらの合計を100質量部とし、これに対する質量部で示している(MEHQは有機硬化成分1部に対する質量部(ppm))。
・式(1-2)配合率: イソシアヌレート化合物[A]中の式(1-2)で表される化合物の比率(質量%)
 ここで、式(1-4)が式(1-2)に含まれるため、式(1-2)配合率は式(1-4)を含む形で求めている。
・c11の配合はWO06-051803の実施例3を参考にした。
・c12の配合は特開2003-213159の実施例1を参考にした。
・c13は市販のシリコーン系封止剤(信越化学社製、ASP1010)を用いた。
・MEHQ: 4-メトキシフェノール(東京化成工業社製)
・OHイソシレート配合率:イソシアヌレート化合物中のヒドロキシル基をもつイソシアヌレート化合物の比率(質量%)
 化合物ex6a:3-グリシジルオキシプロピルトリメトキシシラン(東京化成工業社製)を用いた。
 化合物ex6b:3-グリシジルオキシプロピル(ジメトキシ)メチルシラン(東京化成工業社製)を用いた。
 化合物ex6c:3-グリシジルオキシプロピルトリエトキシシラン(東京化成工業社製)を用いた。
 化合物ex6d:ジエトキシ(3-グリシジルオキシプロピル)メチルシラン(東京化成工業社製)を用いた。
 表1の結果より、比較例のものに比し、特定イソシアヌレート化合物で表される化合物を特定量含む本発明の封止剤は、従来の樹脂とは異なるものを提案することにより材料を豊富化し、しかも半導体発光素子を封止した封止材としたときに、透明性、耐熱着色性、耐熱衝撃性(耐クラック性)、耐変色性(ガスバリア性)をバランスよく発揮することが分かる。また、式(1-2)の化合物を増量したもの、あるいはイソシアヌレート化合物[B]を添加したものでは、さらに高い性能を示すことが分かる。さらに、アルコキシシリル化合物を用いたものでは耐クラック性・剥離性について極めて高い性能を示すことが分かる。また、アルコキシシリル化合物と水酸基をもつイソシアヌレート化合物をあらかじめアルコール交換反応により結合させた封止剤は、初期発光量を低下させることなく、耐クラック・剥離性を高められていることが分かる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2011年10月7日に日本国で特許出願された特願2011-222653および2012年3月7日に日本国で特許出願された特願2012-051020に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1 半導体発光素子(Semiconductor Light Emitting Elememt)
2 リフレクターパッケージ基材
3 封止材
4 電極
6 ボンディングワイヤー
8 導電性接着剤
10 半導体発光装置(Semiconductor Light Emitting Device)

Claims (10)

  1.  下記式(1)で表されるイソシアヌレート化合物を含む半導体発光装置用の封止剤であって、前記イソシアヌレート化合物を封止剤の有機硬化成分全量に対し70質量%超で含有させた半導体発光装置用封止剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中のR、R、Rは、それぞれ独立に、水酸基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~24のアリールオキシ基、炭素数6~24のアリール基、下記式(I)で表されるアクリロイルオキシ基、又は下記式(II)で表されるアシルオキシ基を表す。Lは単結合または炭素数1~4のアルキレン基を表す。ただし、R、R、及びRの少なくとも1つは前記アクリロイルオキシ基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R11は水素原子又は炭素数1~3のアルキル基を表す。*は結合手を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R12は炭素数1~10のアルキル基又は炭素数6~24のアリール基を表す。*は結合手を表す。)
  2.  前記イソシアヌレート化合物が、下記式(1-1)、(1-2)、又は(1-3)で表される化合物の少なくとも1種からなり、前記イソシアヌレート化合物を100質量%としたとき、式(1-1)で表される化合物が0質量%以上35質量%以下、式(1-2)で表される化合物が65質量%以上100質量%以下、式(1-3)で表される化合物が0質量%以上25質量%以下である請求項1に記載の半導体発光装置用封止剤。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R、R、及びRはそれぞれ独立に、水素原子又はメチル基である。Rは、水酸基、炭素数1~10のアルコキシ基、炭素数6~24のアリールオキシ基、および式(II)で表されるアシルオキシ基のいずれか1種以上である。Lは式(1)と同義である。)
  3.  前記イソシアヌレート化合物が、下記式(1-4)で表される化合物を1質量%以上50質量%未満含む請求項1又は2に記載の半導体発光装置用封止剤。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R、R、R12は、式(1-1)及び式(II)と同義である。Lは式(1)と同義である。)
  4.  さらに、前記イソシアヌレート化合物100質量部に対し、環状官能基およびアルコキシシリル基を有するアルコキシシリル化合物を0.1~20質量部で配合する請求項1~3のいずれか1項に記載の半導体発光装置用封止剤。
  5.  前記式(1)で表されるイソシアヌレート化合物100質量%のうち、その5~100質量%が水酸基をもつ化合物である請求項1~4のいずれか1項に記載の半導体発光装置用封止剤。
  6.  封止剤の硬化に際し、前記イソシアヌレート化合物がもつ水酸基と前記アルコキシシリル化合物のアルコキシシリル基とをアルコール交換反応により結合させる請求項4または5に記載の半導体発光装置用封止剤。
  7.  酸価が0.10mgKOH/g以下である請求項1~6のいずれか1項に記載の半導体発光装置用封止剤。
  8.  さらに、半導体発光装置用封止剤100質量部に対し蛍光体1~40質量部を配合してなる請求項1~7のいずれか1項に記載の半導体発光装置用封止剤。
  9.  請求項1~8のいずれか1項に記載の半導体発光装置用封止剤を硬化してなる半導体発光装置用封止材。
  10.  請求項1~8のいずれか1項に記載の半導体発光装置用封止剤を硬化した硬化物からなる封止材と、該封止材で封止された半導体発光素子とを具備する半導体発光装置。
PCT/JP2012/075666 2011-10-07 2012-10-03 半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置 WO2013051615A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011222653 2011-10-07
JP2011-222653 2011-10-07
JP2012051020 2012-03-07
JP2012-051020 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013051615A1 true WO2013051615A1 (ja) 2013-04-11

Family

ID=48043769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075666 WO2013051615A1 (ja) 2011-10-07 2012-10-03 半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置

Country Status (3)

Country Link
JP (1) JP5810060B2 (ja)
TW (1) TW201323413A (ja)
WO (1) WO2013051615A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704415B (zh) * 2015-06-26 2020-09-11 日商日產化學工業股份有限公司 光硬化性樹脂組成物及使用其之膜形成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098519A (ja) * 2013-11-18 2015-05-28 住友ベークライト株式会社 樹脂組成物、部材、光学装置および電子装置
WO2015147097A1 (ja) * 2014-03-27 2015-10-01 リンテック株式会社 封止材、封止シート、有機デバイスの封止方法及び有機el素子
CN108781490B (zh) * 2016-10-19 2021-11-12 积水化学工业株式会社 有机el显示元件用密封剂
WO2023182283A1 (ja) * 2022-03-25 2023-09-28 デンカ株式会社 有機エレクトロルミネッセンス素子用封止剤、封止材及び有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス素子用封止剤の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134795A (en) * 1978-04-12 1979-10-19 Teijin Ltd Photosensitive resin composition for encapsulating material
JPS6032806A (ja) * 1983-07-30 1985-02-20 Matsushita Electric Works Ltd 光硬化型樹脂組成物
JPS6062106A (ja) * 1983-09-14 1985-04-10 松下電工株式会社 電解コンデンサの封止構造
JPS61209214A (ja) * 1985-03-14 1986-09-17 Matsushita Electric Works Ltd 紫外線硬化性樹脂組成物
JP2006089528A (ja) * 2004-09-21 2006-04-06 Nippon Shokubai Co Ltd Led封止剤、それを含む発光ダイオードおよび硬化性組成物
JP2006188559A (ja) * 2004-12-28 2006-07-20 Nippon Zeon Co Ltd 1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン類の組成物を重合して重合体を製造する方法
JP2006188561A (ja) * 2004-12-28 2006-07-20 Nippon Zeon Co Ltd 1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン類の組成物を重合して重合体を製造する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134795A (en) * 1978-04-12 1979-10-19 Teijin Ltd Photosensitive resin composition for encapsulating material
JPS6032806A (ja) * 1983-07-30 1985-02-20 Matsushita Electric Works Ltd 光硬化型樹脂組成物
JPS6062106A (ja) * 1983-09-14 1985-04-10 松下電工株式会社 電解コンデンサの封止構造
JPS61209214A (ja) * 1985-03-14 1986-09-17 Matsushita Electric Works Ltd 紫外線硬化性樹脂組成物
JP2006089528A (ja) * 2004-09-21 2006-04-06 Nippon Shokubai Co Ltd Led封止剤、それを含む発光ダイオードおよび硬化性組成物
JP2006188559A (ja) * 2004-12-28 2006-07-20 Nippon Zeon Co Ltd 1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン類の組成物を重合して重合体を製造する方法
JP2006188561A (ja) * 2004-12-28 2006-07-20 Nippon Zeon Co Ltd 1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン類の組成物を重合して重合体を製造する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704415B (zh) * 2015-06-26 2020-09-11 日商日產化學工業股份有限公司 光硬化性樹脂組成物及使用其之膜形成方法

Also Published As

Publication number Publication date
JP2013213182A (ja) 2013-10-17
JP5810060B2 (ja) 2015-11-11
TW201323413A (zh) 2013-06-16

Similar Documents

Publication Publication Date Title
JP5810060B2 (ja) 半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置
JP5798033B2 (ja) アクリレート系組成物
JP5580985B2 (ja) 光半導体封止材料
US8022126B2 (en) Encapsulating resin composition and light-emitting device
EP2028200A1 (en) Curable composition and fluorine-containing cured product
WO2007135707A1 (ja) 樹脂成形体及び表面実装型発光装置並びにそれらの製造方法
KR20110090945A (ko) 방향족 폴리에스테르 및/또는 전방향족 폴리에스테르로 제조된 반사체를 구비하는 파워 led 소자
JP5767552B2 (ja) 半導体発光装置及びその製造方法
JP5919903B2 (ja) 半導体発光装置用パッケージ及び該パッケージを有してなる半導体発光装置並びにそれらの製造方法
JP2013028706A (ja) 光学部品用硬化性樹脂原料組成物、これを用いた光学部品、及びこれに用いられる新規化合物
JP2006241462A (ja) 光学材料用組成物、光学材料、その製造方法、およびそれを用いた液晶表示装置
JP5318383B2 (ja) 光学部品封止材及び発光装置
JP5960021B2 (ja) 半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置
JP5810012B2 (ja) 硬化性組成物、これを用いた半導体発光装置用封止材及び半導体発光装置
JP5905332B2 (ja) 半導体発光素子用封止剤、これを用いた硬化膜及び半導体発光装置
JP2014189668A (ja) 樹脂、樹脂組成物、これらを用いた光学部材及びその形成剤
JP5972747B2 (ja) 半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置
JP2007327031A (ja) 樹脂組成物及びその硬化物を用いた光学部材
JP5987221B2 (ja) 硬化性組成物
WO2013027640A1 (ja) アクリレート系組成物
JP2013082648A (ja) 半導体発光装置用封止剤の製造方法及びイソシアヌレート化合物の精製方法、これを用いて調製した半導体発光装置用封止剤、これを用いた半導体発光装置用封止材及び半導体発光装置
CN102617828A (zh) 高折射率聚合物、包括其的光学元件及光电装置
JP2004002809A (ja) 光学材料用硬化性組成物、光学用材料、光学用材料の製造方法および光学材料を用いた発光ダイオード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839127

Country of ref document: EP

Kind code of ref document: A1