WO2013051574A1 - 耐熱絶縁層付セパレータ - Google Patents

耐熱絶縁層付セパレータ Download PDF

Info

Publication number
WO2013051574A1
WO2013051574A1 PCT/JP2012/075548 JP2012075548W WO2013051574A1 WO 2013051574 A1 WO2013051574 A1 WO 2013051574A1 JP 2012075548 W JP2012075548 W JP 2012075548W WO 2013051574 A1 WO2013051574 A1 WO 2013051574A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
insulating layer
resistant insulating
separator
resistant
Prior art date
Application number
PCT/JP2012/075548
Other languages
English (en)
French (fr)
Inventor
珠生 平井
美由紀 中井
本田 崇
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020147008619A priority Critical patent/KR101766950B1/ko
Priority to US14/349,262 priority patent/US9847518B2/en
Priority to CN201280049285.7A priority patent/CN103843172B/zh
Priority to EP12837904.7A priority patent/EP2765629B1/en
Publication of WO2013051574A1 publication Critical patent/WO2013051574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a separator with a heat-resistant insulating layer.
  • lithium ion secondary batteries are considered suitable for electric vehicles due to their high energy density and high durability against repeated charging and discharging, and there is a tendency for higher capacity to be further promoted, and ensuring safety is increasingly important. It has become.
  • a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector. It is connected via the electrolyte layer holding the gel and has a configuration of being housed in a battery case.
  • a polyolefin microporous film having a thickness of about 20 to 30 ⁇ m is often used.
  • a microporous polyolefin membrane is used, there is a possibility that thermal contraction due to temperature rise in the battery and a short circuit associated therewith may occur.
  • Patent Document 1 describes that by using such a separator for a wound lithium ion battery, thermal contraction due to an increase in battery temperature is suppressed.
  • Patent Document 1 when the separator described in Patent Document 1 is applied to, for example, a flat laminated nonaqueous electrolyte secondary battery such as a large lithium secondary battery, the separator with a heat-resistant insulating layer is manufactured.
  • the heat-resistant particles constituting the heat-resistant insulating layer tend to fall off. As a result, the production efficiency of the secondary battery decreases.
  • the present invention has been made in view of such problems of the conventional technology. And the objective aims at providing the separator with a heat-resistant insulating layer by which the powder-off of the heat-resistant particle
  • the heat-resistant insulating layer separator includes a resin porous substrate and a heat-resistant insulating layer containing heat-resistant particles and a binder formed on at least one surface of the resin porous substrate.
  • the heat-resistant particles contain ⁇ -alumina, and the parameter X represented by the following formula 1 is 0.018 to 0.336.
  • C ⁇ is the proportion of ⁇ -alumina in the heat-resistant particles
  • R zjis is the surface roughness ( ⁇ m) of the surface of the heat-resistant insulating layer opposite to the resin porous substrate
  • D is the heat-resistant insulating layer. Thickness ( ⁇ m).
  • FIG. 1 is a schematic cross-sectional view schematically showing an outline of a flat plate type non-bipolar lithium ion secondary battery which is a typical embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the external appearance of a flat plate type non-bipolar lithium ion secondary battery which is a typical embodiment of the present invention.
  • FIG. 3 is a graph showing the relationship between the value of parameter X and peel strength for the separators produced in the examples and comparative examples.
  • the electrical device of the present embodiment only needs to include a separator with a heat-resistant insulating layer for the electrical device of the present embodiment described below, and the other components are not particularly limited. .
  • a lithium ion battery will be described as an example of the electric device.
  • a lithium ion battery As a usage form of a lithium ion battery, it may be used for either a lithium ion primary battery or a lithium ion secondary battery. Since it is preferably excellent in high cycle durability, it is desirable to use it as a lithium ion secondary battery for a vehicle driving power source or for portable devices such as a mobile phone.
  • the separator with a heat-resistant insulating layer is not particularly limited, and can be suitably applied to a flat plate type (flat type) battery.
  • a flat plate type (flat type) battery structure long-term reliability can be ensured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
  • a solution electrolyte type battery using a solution electrolyte such as a non-aqueous electrolyte in the electrolyte layer and a gel electrolyte type battery using a polymer gel electrolyte in the electrolyte layer It can also be applied to an electrolyte layer such as.
  • FIG. 1 is a schematic cross-sectional view schematically showing the overall structure of a flat plate type (flat type) lithium ion secondary battery, which is a typical embodiment of the present invention.
  • a flat plate type (flat type) lithium ion secondary battery may be simply referred to as a “stacked battery”.
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body.
  • the power generation element 21 includes a positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, an electrolyte layer 17 in which an electrolyte solution or an electrolyte gel is held in a separator, and a negative electrode current collector 12. It has the structure which laminated
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode current collector 13 on the outermost layer located on both outermost layers of the power generating element 21 is provided with the positive electrode active material layer 13 only on one side, but the active material layer may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector.
  • the arrangement of the positive electrode and the negative electrode is reversed from that of FIG. An active material layer may be arranged.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 which are electrically connected to the positive electrode and the negative electrode, respectively, and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • the lithium ion secondary battery described above is characterized by a separator.
  • main components of the battery including the separator will be described.
  • the current collectors 11 and 12 are made of a conductive material.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
  • the lithium ion battery of the present embodiment is preferably a large battery, and the size of the current collector used is, for example, a long side of 100 mm or more, preferably 100 mm ⁇ 100 mm or more, more preferably 200 mm ⁇ It is 200 mm or more.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited. In the laminated battery 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (such as an expanded grid) can be used.
  • a metal can be preferably used.
  • Specific examples include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, and copper are preferable from the viewpoints of electronic conductivity and battery operating potential.
  • the positive electrode active material layer 13 or the negative electrode active material layer 15 contains an active material, and further contains other additives as necessary.
  • the positive electrode active material layer 13 includes a positive electrode active material.
  • a positive electrode active material for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Co—Mn) O 2, and lithium—such as those in which some of these transition metals are substituted with other elements
  • Examples include transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds.
  • two or more positive electrode active materials may be used in combination.
  • a lithium-transition metal composite oxide is used as the positive electrode active material.
  • positive electrode active materials other than those described above may be used.
  • the negative electrode active material layer 15 includes a negative electrode active material.
  • the negative electrode active material include carbon materials such as graphite (graphite), soft carbon, and hard carbon, for example, lithium-transition metal composite oxides such as Li 4 Ti 5 O 12 , metal materials, and lithium alloy negative electrode materials Etc.
  • carbon materials such as graphite (graphite), soft carbon, and hard carbon
  • lithium-transition metal composite oxides such as Li 4 Ti 5 O 12 , metal materials, and lithium alloy negative electrode materials Etc.
  • two or more negative electrode active materials may be used in combination.
  • a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material.
  • negative electrode active materials other than those described above may be used.
  • the average particle diameter of each active material contained in each active material layer is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of increasing output.
  • the positive electrode active material layer 13 and the negative electrode active material layer 15 include a binder.
  • the binder used in the active material layer is not particularly limited.
  • polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.
  • These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the active material layer.
  • These binders may be used independently and may use 2 or more types together.
  • the amount of the binder contained in the active material layer is not particularly limited as long as it is an amount capable of binding the active material, but is preferably 0.5 to 15% by mass with respect to the active material layer. More preferably, it is 1 to 10% by mass.
  • additives examples include a conductive additive, an electrolyte, and an ion conductive polymer.
  • the conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • the conductive auxiliary agent include carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber.
  • Examples of the electrolyte (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about non-aqueous electrolyte secondary batteries.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to. As an example, the thickness of each active material layer is about 2 to 100 ⁇ m.
  • the electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of the separator of the present embodiment as a base material.
  • the separator includes a resin porous substrate and a heat resistant insulating layer including heat resistant particles and a binder formed on at least one surface of the resin porous substrate.
  • the heat-resistant particles include ⁇ -alumina, and a separator with a heat-resistant insulating layer having a parameter X expressed by the above formula 1 of 0.018 to 0.336 is used.
  • the peel strength of the heat-resistant insulating layer is improved. Therefore, when the separator of this embodiment is used, generation
  • the value of the parameter X is less than 0.018 or greater than 0.36, the peel strength is lowered, and the heat-resistant particles are likely to fall off. This is presumably because the adhesion between the heat-resistant particles or between the heat-resistant insulating layer and the resin porous substrate is reduced.
  • the parameter X is preferably 0.04 to 0.33, and particularly preferably 0.07 to 0.30.
  • the C ⁇ means the ratio of the peak area measured by the X-ray diffraction method (XRD) of ⁇ -alumina contained in the entire heat-resistant particles. That is, it can be obtained as a relative value of the peak area of ⁇ -alumina when the peak area of the entire heat-resistant particle is 1.
  • the C ⁇ is preferably 0.06 or more. When C ⁇ is 0.06 or more, the cohesiveness of ⁇ -alumina is increased, and the adhesion between the heat-resistant particles constituting the heat-resistant insulating layer and between the heat-resistant insulating layer and the resin porous substrate is improved.
  • the C ⁇ is more preferably 0.11 or more, and particularly preferably 0.28 or more.
  • the surface roughness R zjis is preferably 1.3 to 1.75 ⁇ m, more preferably 1.3 to 1.7 ⁇ m, and particularly preferably 1.3 to 1.6 ⁇ m. It is.
  • the surface roughness is 1.3 to 1.75 ⁇ m, the adhesion between the separator, the positive electrode active material, and the negative electrode active material is improved.
  • the parameter Y represented by the following mathematical formula 2, which is the mass ratio of the heat-resistant particles and the binder contained in the heat-resistant insulating layer, is 5.6 to 99.
  • A is the mass (g) of the heat-resistant particles contained in the heat-resistant insulating layer
  • B is the mass (g) of the binder contained in the heat-resistant insulating layer.
  • the adhesion between the heat resistant particles constituting the heat resistant insulating layer and between the heat resistant insulating layer and the resin porous substrate is improved, and the heat resistant insulating layer is improved.
  • the peel strength is improved.
  • the resin porous substrate examples include a porous sheet, a woven fabric, or a nonwoven fabric containing an organic resin that absorbs and holds the electrolytic solution.
  • the porous sheet is a microporous film composed of a microporous polymer.
  • polymers include polyolefins such as polyethylene (PE) and polypropylene (PP); laminates having a three-layer structure of PP / PE / PP, polyimide, and aramid.
  • PE polyethylene
  • PP polypropylene
  • laminates having a three-layer structure of PP / PE / PP, polyimide, and aramid polyimide
  • aramid a polyolefin-based microporous membrane is preferable because it has a property of being chemically stable with respect to an organic solvent and can reduce the reactivity with an electrolytic solution.
  • the thickness of the porous sheet cannot be uniquely defined because it varies depending on the application. However, in the use of a secondary battery for driving a motor of a vehicle, it is desirable that the thickness is 4 to 60 ⁇ m in a single layer or multiple layers.
  • the fine pore diameter of the porous sheet is preferably 1 ⁇ m or less (usually a pore diameter of about 10 nm), and the porosity is preferably 20 to 80%.
  • polyesters such as polyethylene terephthalate (PET); polyolefins such as PP and PE; conventionally known materials such as polyimide and aramid can be used.
  • the bulk density of the woven fabric or the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated electrolytic solution.
  • the porosity of the woven or non-woven fabric is preferably 50 to 90%.
  • the thickness of the woven or non-woven fabric is preferably 5 to 200 ⁇ m, particularly preferably 5 to 100 ⁇ m. If the thickness is 5 ⁇ m or more, the electrolyte retainability is good, and if it is 100 ⁇ m or less, the resistance is difficult to increase excessively.
  • the method for preparing the resin porous substrate is not particularly limited.
  • a polyolefin-based microporous membrane for example, first, polyolefin is dissolved in a solvent such as paraffin, liquid paraffin, paraffin oil, tetralin, ethylene glycol, glycerin, or decalin. Then, it can be prepared by a method of extruding into a sheet, removing the solvent, and performing uniaxial stretching or biaxial stretching.
  • Heat resistant insulation layer As the material of the heat-resistant particles constituting the heat-resistant insulating layer, a material having a high heat resistance having a melting point or a heat softening point of 150 ° C. or higher, preferably 240 ° C. or higher is used. By using such a material having high heat resistance, it is possible to effectively prevent the separator from contracting even when the battery internal temperature reaches close to 150 ° C. As a result, it is possible to prevent the short-circuit between the electrodes of the battery, so that a battery in which performance deterioration due to temperature rise hardly occurs can be obtained.
  • the heat-resistant particles have electrical insulation properties, are stable to a solvent used in the production of an electrolytic solution and a heat-resistant insulating layer, and are electrochemically stable that are not easily oxidized and reduced in a battery operating voltage range. It is preferable that it is a thing.
  • the heat-resistant particles may be organic particles or inorganic particles, but are preferably inorganic particles from the viewpoint of stability.
  • the heat-resistant particles are preferably fine particles from the viewpoint of dispersibility, and fine particles having a secondary particle diameter of 500 nm to 3 ⁇ m can be preferably used.
  • the form of the heat-resistant particles is not particularly limited, and may be spherical or nearly elliptical, plate-like, rod-like, needle-like, or a form in which these forms are fused.
  • Examples of the shape close to the spherical shape or the elliptical shape include a rugby ball shape, a spindle shape, a bispherical shape, and a grape bunch shape.
  • the inorganic particles (inorganic powder) having a melting point or thermal softening point of 150 ° C. or higher may contain at least ⁇ -alumina and may contain other inorganic particles.
  • Other inorganic particles are not particularly limited, but, for example, iron oxide represented by Fe x O y such as Fe 2 O 3 and Fe 3 O 4 , SiO 2 , other than ⁇ alumina such as ⁇ alumina and ⁇ alumina, for example Inorganic oxides such as alumina (Al 2 O 3 ), aluminosilicate, TiO 2 , BaTiO 2 , ZrO 2 ; inorganic nitrides such as aluminum nitride and silicon nitride; difficulties such as calcium fluoride, barium fluoride and barium sulfate Examples thereof include particles such as soluble ionic crystals; covalent bonds such as silicon and diamond; clays such as montmorillonite;
  • the inorganic oxide may be a mineral resource-derived substance
  • the inorganic particles may be particles that have electrical insulation properties by covering the surface of the conductive material with a material having electrical insulation properties.
  • the conductive material include metals; conductive oxides such as SnO 2 and tin-indium oxide (ITO); carbonaceous materials such as carbon black and graphite;
  • ITO tin-indium oxide
  • the inorganic oxide particles can be easily applied as a water-dispersed slurry on the resin porous substrate, and therefore, a separator can be produced by a simple method, which is preferable.
  • alumina is more preferable, and ⁇ -alumina is particularly preferable.
  • the form containing ⁇ -alumina as the inorganic particles is not particularly limited.
  • the individual alumina particles contained in the inorganic particles may contain both ⁇ -alumina and other aluminas ( ⁇ -alumina, ⁇ -alumina, etc.).
  • a mixture of alumina particles made only of ⁇ -alumina and alumina particles made only of alumina other than ⁇ -alumina may be used as inorganic particles.
  • inorganic particles other than alumina may be further included. In any of these cases, according to the method described above, it is possible to measure the proportion of ⁇ -alumina in the inorganic particles (C ⁇ ).
  • Organic particles (organic powder) having a melting point or thermal softening point of 150 ° C. or higher include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenol
  • crosslinked polymer particles such as resin, benzoguanamine-formaldehyde condensate, and organic resin particles such as heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, and thermoplastic polyimide.
  • the organic resin (polymer) constituting these organic particles is a mixture of the above-exemplified materials, a modified body, a derivative, a random copolymer, an alternating copolymer, a block copolymer, a graft copolymer, or the like.
  • a crosslinked product may be used.
  • grains may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the thickness of the heat-resistant insulating layer composed of the heat-resistant particles is appropriately determined according to the type of battery and the use, and is not particularly limited.
  • the total thickness of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate is about 5 to 200 ⁇ m.
  • the total thickness of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate is, for example, 4 to It can be 200 ⁇ m.
  • the thickness is preferably 4 to 20 ⁇ m, more preferably 4.5 to 10 ⁇ m.
  • the porosity of the heat-resistant insulating layer composed of the heat-resistant particles is not particularly limited, but is preferably 40% or more, more preferably 50% or more from the viewpoint of ion conductivity. Moreover, if the porosity is 40% or more, the retainability of the electrolytic solution and the electrolyte gel is improved, and a high-power battery can be obtained.
  • the porosity of the heat-resistant insulating layer is preferably 70% or less, more preferably 60% or less. When the porosity of the heat-resistant insulating layer is 70% or less, sufficient mechanical strength is obtained, and the effect of preventing a short circuit due to foreign matter is high.
  • the manufacturing method of the separator of this embodiment is not particularly limited. For example, a method of drying after applying a slurry-like composition for forming a heat-resistant insulating layer containing heat-resistant particles having a melting point or a heat softening point of 150 ° C. or more on both surfaces of a resin porous substrate can be used.
  • the heat-resistant insulating layer forming composition is obtained by dispersing heat-resistant particles in a solvent, and may further contain an organic binder or the like as necessary.
  • organic binder for enhancing the shape stability of the heat resistant insulating layer include carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, and the like.
  • the amount of the organic binder used is preferably 10% by mass or less, more preferably 5% by mass or less, with respect to the total mass of the heat-resistant particles and the organic binder.
  • the solvent is not particularly limited as long as it can uniformly disperse the heat-resistant particles.
  • a heat-resistant insulating layer can be easily produced by preparing an aqueous dispersion slurry using water as a solvent. Further, the composition for forming a heat resistant insulating layer is preferably prepared to a solid content concentration of 30 to 60% by mass.
  • the basis weight (weight (g) per m 2 ) when applying the heat-resistant insulating layer forming composition to the resin porous substrate is not particularly limited, but is preferably 5 to 20 g / m 2 , more preferably 9 ⁇ 13 g / m 2 . If it is the said range, the heat resistant insulating layer which has a suitable porosity and thickness can be obtained.
  • the coating method is not particularly limited, and examples thereof include a knife coater method, a gravure coater method, a screen printing method, a Mayer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method.
  • the method for drying the heat-resistant insulating layer forming composition after coating is not particularly limited, and for example, a method such as warm air drying may be used.
  • the drying temperature is, for example, 30 to 80 ° C.
  • the drying time is, for example, 2 seconds to 50 hours.
  • the total thickness of the separator thus obtained is not particularly limited, but it can be generally used if it is about 5 to 30 ⁇ m. In order to obtain a compact battery, it is preferable to make it as thin as possible within a range in which the function as an electrolyte layer can be ensured, and in order to contribute to improvement of battery output by reducing the film thickness, the total thickness of the separator is preferably 20 to It is 30 ⁇ m, more preferably 20 to 25 ⁇ m.
  • the electrolyte layer is not particularly limited as long as it is formed using the separator of the present embodiment.
  • an electrolyte-containing separator having excellent ionic conductivity can be used as an electrolyte layer, and an electrolyte layer formed by impregnating, coating, spraying, etc., a polymer gel electrolyte can be suitably used. can do.
  • Electrolyte-containing separator As an electrolyte that can be infiltrated into the separator of this embodiment, as an electrolyte, LiClO 4 , LiAsF 6 , LiPF 5 , LiBOB, LiC ⁇ e 3 SO 3 and Li (CF 3 SO 2) ) Using at least one kind of 2 , as a solvent, ethylene carbonate (EC), propylene carbonate, diethyl carbonate (DEC), dimethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran At least one of ethers consisting of 1,3-dioxolane and ⁇ -butyllactone was used. The concentration of the electrolyte is adjusted to 0.5 to 2M by dissolving the electrolyte in the solvent, but the present invention should not be limited to these.
  • the amount of the electrolytic solution retained in the separator by impregnation or the like may be impregnated or applied to the separator's liquid retention capacity range, but may be impregnated beyond the liquid retention capacity range. This is because, for example, in the case of a bipolar battery, a resin can be injected into the electrolyte seal portion to prevent the electrolyte solution from exuding from the electrolyte layer, so that it can be impregnated as long as it can be retained in the separator of the electrolyte layer. is there.
  • the battery element can be enclosed in the battery exterior material to prevent the electrolyte from leaking out from the inside of the battery exterior material, impregnation is performed as long as the liquid can be retained inside the battery exterior material.
  • the electrolyte can be impregnated in the separator by a conventionally known method, for example, the electrolyte can be completely sealed after being injected by a vacuum injection method or the like.
  • the gel electrolyte has a configuration in which the above liquid electrolyte (electrolytic solution) is injected into a matrix polymer made of an ion conductive polymer.
  • the ion conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
  • electrolyte salts such as lithium salts can be well dissolved.
  • the ratio of the liquid electrolyte (electrolytic solution) in the gel electrolyte is not particularly limited, but is preferably about several mass% to 98 mass% from the viewpoint of ionic conductivity.
  • the gel electrolyte having a large amount of electrolytic solution having a ratio of the electrolytic solution of 70% by mass or more is particularly effective.
  • the matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • the thickness of the electrolyte layer is not particularly limited, but is basically about the same as or slightly thicker than the thickness of the separator of the present embodiment, and can usually be used if it is about 5 to 30 ⁇ m.
  • the electrolyte solution in the electrolyte layer may contain various conventionally known additives as long as the effects of the present invention are not impaired.
  • a current collecting plate may be used for the purpose of taking out the current outside the battery.
  • the current collector plate is electrically connected to the current collector and the lead, and is taken out of the laminate sheet that is a battery exterior material.
  • the material constituting the current collector plate is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a lithium ion secondary battery can be used.
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable, and aluminum is more preferable from the viewpoint of light weight, corrosion resistance, and high conductivity. Copper or the like is preferable. Note that the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.
  • ⁇ Use positive terminal lead and negative terminal lead as required.
  • a terminal lead used in a known lithium ion secondary battery can be used.
  • the part taken out from the battery outer packaging material 29 has a heat insulating property so as not to affect the product (for example, automobile parts, particularly electronic devices) by contacting with peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
  • Battery exterior material As the battery exterior material 29, a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.
  • a laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • said lithium ion secondary battery can be manufactured with a conventionally well-known manufacturing method.
  • FIG. 2 is a perspective view showing the appearance of a flat plate type lithium ion secondary battery.
  • the flat plate-type lithium ion secondary battery 10 has a rectangular flat shape, and a positive current collector plate 25 and a negative current collector plate for taking out power from both sides thereof. 27 is pulled out.
  • the power generation element 21 is wrapped by a battery outer packaging material 29 of the lithium ion secondary battery 10 and the periphery thereof is heat-sealed. The power generation element 21 pulls out the positive electrode current collector plate 5825 and the negative electrode current collector plate 27 to the outside. Sealed.
  • the removal of the current collector plates 25 and 27 shown in FIG. 2 is not particularly limited.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be drawn out from the same side, or the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be divided into a plurality of parts and taken out from each side. It is not limited to the one shown in FIG.
  • the lithium ion secondary battery is exemplified as the electrical device.
  • the present invention is not limited to this, and can be applied to other types of secondary batteries and further to primary batteries. Moreover, it can be applied not only to batteries but also to capacitors.
  • the ratio of ⁇ alumina to the heat-resistant particles constituting each separator with a heat-resistant insulating layer (C ⁇ ) and the surface roughness of each separator with a heat-resistant insulating layer (10-point average roughness (R zjis) )) was measured as follows.
  • ⁇ Surface roughness measurement> A laser microscopic image of the surface of the heat-resistant insulating layer on the side opposite to the resin porous substrate of the separator with the heat-resistant insulating layer was taken using a LEXT-OLS3000 manufactured by Olympus Corporation, and an average roughness of 10 points ( Rzjis ) was calculated.
  • R zjis The average of the highest mountain height from the highest peak to the fifth highest in the roughness curve, Sum of valley depth averages from deepest valley bottom to fifth deepest Z pj : jth peak height from highest peak to highest in roughness curve Z vj : jth deepest from deepest valley bottom in roughness curve Valley depth
  • the dispersion was applied to one side of polyethylene (PE, film thickness 17.8 ⁇ m), which is a resin porous substrate, using a gravure coater to obtain a coating film.
  • the coating film was dried with warm air to prepare a separator with a heat-resistant insulating layer having a heat-resistant insulating layer thickness of 5.3 ⁇ m and a 10-point average roughness of the heat-resistant insulating layer of 1.45 ⁇ m.
  • Example 2> C alpha is repeated except for using the alumina particles is from 0.1 to prepare a separator with a heat resistant insulating layer in the same manner as in Example 1.
  • Example 3 A separator with a heat-resistant insulating layer was produced in the same manner as in Example 1 except that alumina particles having C ⁇ of 0.15 were used.
  • Example 4 A separator with a heat-resistant insulating layer was produced in the same manner as in Example 1 except that alumina particles having C ⁇ of 0.2 were used.
  • Example 6 A separator with a heat-resistant insulating layer was produced in the same manner as in Example 1 except that alumina particles having C ⁇ of 0.43 were used.
  • Example 7 The heat-resistant insulating layer was the same as in Example 1 except that alumina particles having C ⁇ of 0.68 were used and that the ten-point average roughness of the heat-resistant insulating layer of the separator with the heat-resistant insulating layer was 1.46 ⁇ m. An attached separator was produced.
  • Example 8 Example 1 except that alumina particles having C ⁇ of 1 were used, the thickness of the heat-resistant insulating layer of the separator with a heat-resistant insulating layer was 7.9 ⁇ m, and the ten-point average roughness of the heat-resistant insulating layer was 1.38 ⁇ m. Similarly, a separator with a heat-resistant insulating layer was produced.
  • Example 9 A separator with a heat-resistant insulating layer was produced in the same manner as in Example 8 except that the thickness of the heat-resistant insulating layer of the separator with a heat-resistant insulating layer was 5.3 ⁇ m and the ten-point average roughness of the heat-resistant insulating layer was 1.325 ⁇ m. .
  • Example 10 A separator with a heat-resistant insulating layer was produced in the same manner as in Example 9 except that the ten-point average roughness of the heat-resistant insulating layer of the separator with a heat-resistant insulating layer was 1.58 ⁇ m.
  • Example 11 A separator with a heat-resistant insulating layer was produced in the same manner as in Example 8 except that the thickness of the heat-resistant insulating layer of the separator with a heat-resistant insulating layer was 4.8 ⁇ m and the ten-point average roughness of the heat-resistant insulating layer was 1.48 ⁇ m. .
  • Example 12 A separator with a heat-resistant insulating layer was produced in the same manner as in Example 9 except that the ten-point average roughness of the heat-resistant insulating layer of the separator with a heat-resistant insulating layer was 1.7 ⁇ m.
  • Example 13 A separator with a heat-resistant insulating layer was produced in the same manner as in Example 9 except that the ten-point average roughness of the heat-resistant insulating layer of the separator with a heat-resistant insulating layer was 1.749 ⁇ m.
  • Example 1 A separator with a heat-resistant insulating layer as in Example 1 except that alumina particles having C ⁇ of 0.04 are used and the ten-point average roughness of the heat-resistant insulating layer of the separator with a heat-resistant insulating layer is 1.95 ⁇ m. Was made.
  • the side surface of the heat-resistant insulating layer of the separator with the heat-resistant insulating layer produced in Examples 1 to 13 and Comparative Example 1 or 2 was reinforced with cellophane tape (manufactured by Nichiban Co., Ltd.) and cut to a length of about 150 mm with a width of 10 mm.
  • the separator with a heat-resistant insulating layer was fixed to a metal base with a double-sided tape (manufactured by Nichiban Co., Ltd.). Thereafter, 10 mm of the cellophane tape on the side surface of the heat-resistant insulating layer was peeled off and attached to a measuring instrument (STA-1150; manufactured by ORIENTEC). Under the conditions of a tensile speed of 100 mm / min and a peel distance of 80 mm, the heat-resistant insulating layer for 80 mm was peeled off, and the peel strength was measured.
  • STA-1150 manufactured by ORIENTEC
  • Table 1 shows the measurement results of C ⁇ , heat-resistant insulating layer thickness D, surface roughness R zjis , parameter X, and peel strength of each example and comparative example.
  • FIG. 3 shows the relationship between the parameter X and the peel strength.
  • C ⁇ was greater than 0.06
  • parameter X was in the range of 0.018 to 0.336
  • the peel strength of the heat-resistant insulating layer was greater than 30 mN / mm. Therefore, powder-off of the heat-resistant particles in the heat-resistant insulating layer was not observed.
  • C ⁇ was larger than 0.11
  • the parameter X was in the range of 0.04 to 0.33
  • the peel strength of the heat resistant insulating layer was larger than 50 mN / mm.
  • C ⁇ was greater than 0.28
  • parameter X was in the range of 0.07 to 0.30
  • the peel strength of the heat-resistant insulating layer was greater than 70 mN / mm.
  • Comparative Examples 1 and 2 the parameter X was not in the range of 0.018 to 0.336.
  • C ⁇ was 1, but the peel strength was small, and it was confirmed that the heat-resistant particles in the heat-resistant insulating layer had fallen off.
  • ⁇ -alumina is included as the heat-resistant particles, the proportion of ⁇ -alumina in the heat-resistant particles, the thickness of the heat-resistant insulating layer, and the surface roughness of the surface of the heat-resistant insulating layer opposite to the resin porous substrate.
  • a balanced separator with a heat-resistant insulating layer was used. For this reason, it is possible to suppress the occurrence of powdering of the heat-resistant particles constituting the heat-resistant insulating layer during the production of the separator with the heat-resistant insulating layer as well as the suppression of a short circuit occurring in the battery.
  • Lithium ion secondary battery (stacked battery) DESCRIPTION OF SYMBOLS 11 Positive electrode collector 12 Negative electrode collector 13 Positive electrode active material layer 15 Negative electrode active material layer 17 Electrolyte layer 19 Single cell layer 21 Power generation element 25 Positive electrode current collector plate 27 Negative electrode current collector plate 29 Battery exterior material (laminate film)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の電気デバイス用耐熱絶縁層付セパレータは、樹脂多孔質基体と、前記樹脂多孔質基体の少なくとも一方の面に形成された、耐熱粒子及びバインダを含む耐熱絶縁層とを備える。前記耐熱粒子がαアルミナを含み、下記数式1で表されるパラメータXが、0.018~0.336である。 式中、Cαは前記耐熱粒子に占めるαアルミナの割合であり、Rzjisは前記耐熱絶縁層の前記樹脂多孔質基体とは反対側の表面の表面粗さ (μm) であり、Dは前記耐熱絶縁層の厚み(μm)である。【数1】X= Cα × Rzjis /D 

Description

耐熱絶縁層付セパレータ
 本発明は、耐熱絶縁層付セパレータに関する。
 近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
 特に、リチウムイオン二次電池はそのエネルギー密度の高さや繰り返し充放電に対する耐久性の高さから、電動車両に好適と考えられ高容量化が更に進む傾向にあり、安全性の確保がますます重要となってきている。
 リチウムイオン二次電池は、一般に、正極活物質等を正極集電体の両面に塗布した正極と、負極活物質等を負極集電体の両面に塗布した負極とが、セパレータに電解液または電解質ゲルを保持した電解質層を介して接続され、電池ケースに収納される構成を有する。
 セパレータとしては、例えば、厚みが20~30μm程度のポリオレフィン微多孔膜が多く用いられている。しかしながら、このようなポリオレフィン微多孔膜を用いた場合には、電池内温度上昇による熱収縮と、これに伴う短絡が生じる可能性がある。
 そのため、セパレータの熱収縮を抑制するために、樹脂の微多孔膜の表面に、耐熱性多孔質層を積層させた耐熱絶縁層付セパレータが開発されている。例えば、特許文献1には、このようなセパレータを巻回型リチウムイオン電池に用いることで、電池内温度上昇による熱収縮が抑制されたことが記載されている。
国際公開第2007/066768号
 しかしながら、特許文献1に記載されるようなセパレータを、例えば、大型のリチウム二次電池のような平板積層型非水電解質二次電池に適用した場合には、耐熱絶縁層付セパレータの製造時などに耐熱絶縁層を構成する耐熱粒子の粉落ちが発生しやすい。その結果、二次電池の生産効率は低下する。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、その目的は、耐熱絶縁層を構成する耐熱粒子の粉落ちが抑制された耐熱絶縁層付セパレータを提供することを目的とする。
 すなわち、本発明の態様に係る耐熱絶縁層セパレータは、樹脂多孔質基体と、樹脂多孔質基体の少なくとも一方の面に形成された耐熱粒子及びバインダを含む耐熱絶縁層と、を備える。そして、耐熱粒子がαアルミナを含み、下記数式1で表されるパラメータXが0.018~0.336であることを特徴とする。
Figure JPOXMLDOC01-appb-M000003
 式中、Cαは耐熱粒子に占めるαアルミナの割合であり、Rzjisは耐熱絶縁層の樹脂多孔質基体とは反対側の表面の表面粗さ(μm)であり、Dは耐熱絶縁層の厚み(μm)である。
図1は、本発明の代表的な一実施形態である平板積層型の非双極型リチウムイオン二次電池の概要を模式的に表した断面概略図である。 図2は、本発明の代表的な一実施形態である平板積層型の非双極型リチウムイオン二次電池の外観を模式的に表した斜視図である。 図3は、実施例及び比較例で作製したセパレータについて、パラメータXの値と剥離強度との関係を示すグラフである。
 以下、図面を参照しながら、本発明の電気デバイス用の耐熱絶縁層付セパレータ及びこれを備える電気デバイスの実施形態を説明する。但し、本発明の技術的範囲は、特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、本願において耐熱絶縁層付セパレータを単に「セパレータ」と称する場合がある。
 本発明の代表的な一実施形態である電気デバイス用の耐熱絶縁層付セパレータ及びこれを備える電気デバイスでは、大型の平板積層型の電気デバイスであっても各要素の積層時に不具合を生じにくく、二次電池の生産効率の低下を防ぐことができる。
 すなわち、本実施形態の電気デバイスは、以下に説明する本実施形態の電気デバイス用の耐熱絶縁層付セパレータを備えるものであればよく、他の構成要素に関しては、特に制限されるべきものではない。本実施形態では、電気デバイスとしてリチウムイオン電池を例示して説明する。
 例えば、リチウムイオン電池の使用形態としては、リチウムイオン一次電池及びリチウムイオン二次電池のいずれに用いてもよい。好ましくは高サイクル耐久性にも優れることから、リチウムイオン二次電池として車両の駆動電源用等や携帯電話などの携帯機器向け等に利用するのが望ましい。
 上記耐熱絶縁層付セパレータは、特に制限されず、平板積層型(平型)電池にも好適に適用し得るものである。平板積層型(平型)電池構造を採用する場合は、特に、簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
 また、リチウムイオン電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池及び双極型(内部直列接続タイプ)電池のいずれにも適用し得るものである。
 リチウムイオン電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子ゲル電解質を用いたゲル電解質型電池などの電解質層にも適用し得る。
 以下の説明では、本実施形態のリチウムイオン電池用の耐熱絶縁層付セパレータを用いてなる非双極型(内部並列接続タイプ)リチウムイオン二次電池につき図面を用いて簡単に説明する。但し、本発明の技術的範囲がこれらに制限されるべきものではない。
 <電池の全体構造>
 図1は、本発明の代表的な一実施形態である、平板積層型(平型)のリチウムイオン二次電池の全体構造を模式的に表した断面概略図である。なお、本願において平板積層型(平型)のリチウムイオン二次電池を単に「積層型電池」と称する場合がある。
 図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、セパレータに電解液または電解質ゲルが保持された電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層及び正極がこの順に積層されている。
 これにより、隣接する正極、電解質層及び負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極及び負極の配置を逆にすることで、発電要素21の両最外層に負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
 正極集電体11及び負極集電体12は、正極及び負極の各電極と導通される正極集電板25及び負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25及び負極集電板27は、それぞれ必要に応じて正極リード及び負極リード(図示せず)を介して、各電極の正極集電体11及び負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 上記で説明したリチウムイオン二次電池は、セパレータに特徴を有する。以下、当該セパレータを含めた電池の主要な構成部材について説明する。
 (集電体)
 集電体11、12は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。本実施形態のリチウムイオン電池は、好ましくは大型の電池であり、用いられる集電体の大きさは、例えば長辺が100mm以上であり、好ましくは100mm×100mm以上であり、より好ましくは200mm×200mm以上である。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
 集電体を構成する材料に特に制限はないが、好適には金属が採用されうる。具体的には、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。中でも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。
 (活物質層)
 正極活物質層13または負極活物質層15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
 正極活物質層13は、正極活物質を含む。正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Co-Mn)O及びこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が、正極活物質として用いられる。なお、上記以外の正極活物質が用いられてもよいことは勿論である。
 負極活物質層15は、負極活物質を含む。負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、例えば、LiTi12のようなリチウム-遷移金属複合酸化物、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム-遷移金属複合酸化物が、負極活物質として用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。
 各活物質層に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。
 好ましくは、正極活物質層13及び負極活物質層15は、バインダを含む。
 活物質層に用いられるバインダとしては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く、正極電位、負極電位双方に安定であり活物質層に使用が可能となる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。
 活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%である。
 活物質層に含まれうるその他の添加剤としては、例えば、導電助剤、電解質、イオン伝導性ポリマー等が挙げられる。
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 電解質(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系及びポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極活物質層及び負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水電解質系二次電池についての公知の知見を適宜参照することにより、調整されうる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、2~100μm程度である。
 (電解質層)
 電解質層17は、基材としての本実施形態のセパレータの面方向中央部に電解質が保持されてなる構成を有する。本実施形態のセパレータを用いることで、積層時の端部のカールの発生を抑制することができるため、信頼性の高い電池を安定的に製造することができる。
 [耐熱絶縁層付セパレータ(セパレータ)]
 本実施形態では、セパレータとして、樹脂多孔質基体と、前記樹脂多孔質基体の少なくとも一方の面に形成された、耐熱粒子及びバインダを含む耐熱絶縁層と、を備える。前記耐熱粒子がαアルミナを含み、上記数式1で表されるパラメータXが0.018~0.336である耐熱絶縁層付セパレータを用いることを特徴とする。
 本実施形態のセパレータによれば、耐熱絶縁層の剥離強度が向上する。そのため、本実施形態のセパレータを用いると、平板積層型の電池の製造工程において、耐熱粒子の粉落ちの発生を抑制できる。一方、上記パラメータXの値が0.018未満の場合、または0.36より大きい場合は、前記剥離強度が低下し、耐熱粒子の粉落ちが発生しやすくなる。これは、耐熱粒子間または耐熱絶縁層と樹脂多孔質基体の密着力が小さくなるからであると考えられる。
 本実施形態のセパレータにおいて、上記パラメータXは好ましくは、0.04~0.33であり、特に好ましくは、0.07~0.30である。
 本実施形態のセパレータによれば、前記Cαは、耐熱粒子全体に含まれるαアルミナのX線回析法(XRD)によって測定されるピーク面積の割合を意味する。すなわち、前記耐熱粒子全体のピーク面積を1とした場合のαアルミナのピーク面積の相対値として求めることができる。前記Cαは、好ましくは、0.06以上である。前記Cαが0.06以上である場合は、αアルミナの凝集性が高くなり、耐熱絶縁層を構成する耐熱粒子間及び耐熱絶縁層と樹脂多孔質基体の密着力が向上する。前記Cαは、より好ましくは0.11以上であり、特に好ましくは0.28以上である。
 本実施形態のセパレータにおいて、前記表面粗さRzjisは1.3~1.75μmであることが好ましく、より好ましくは1.3~1.7μmであり、特に好ましくは1.3~1.6μmである。表面粗さが1.3~1.75μmのとき、セパレータと正極活物質、及び負極活物質との密着性が向上する。
 本実施形態のセパレータにおいて、前記耐熱絶縁層に含まれる耐熱粒子とバインダの質量比である下記数式2で表されるパラメータYは5.6~99であるのが好ましい。
Figure JPOXMLDOC01-appb-M000004
 式中、Aは前記耐熱絶縁層に含まれる耐熱粒子の質量(g)であり、Bは前記耐熱絶縁層に含まれるバインダの質量(g)である。
 本実施形態のセパレータにおいて、上記パラメータYが、5.6~99である場合は、耐熱絶縁層を構成する耐熱粒子間及び耐熱絶縁層と樹脂多孔質基体の密着力が向上し、耐熱絶縁層の剥離強度が向上する。
 以下、本実施形態のセパレータについてさらに詳細に説明する。
 [樹脂多孔質基体]
 樹脂多孔質基体としては、例えば、上記電解液を吸収保持する有機樹脂を含む多孔性シート、織布または不織布を挙げることができる。好ましくは、前記多孔性シートは微多孔質のポリマーで構成される微多孔質膜である。このようなポリマーとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;PP/PE/PPの3層構造をした積層体、ポリイミド、アラミドなどが挙げられる。特に、ポリオレフィン系微多孔質膜は、有機溶媒に対して化学的に安定であるという性質があり、電解液との反応性を低く抑えることができることから好ましい。
 前記多孔性シートの厚みとしては、用途により異なることから一義的に規定することはできない。しかし、車両のモータ駆動用二次電池の用途においては、単層あるいは多層で4~60μmであることが望ましい。前記多孔性シートの微細孔径は、最大で1μm以下(通常、10nm程度の孔径である)、その空隙率は20~80%であることが望ましい。
 織布または不織布としては、ポリエチレンテレフタレート(PET)などのポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものが用いられうる。織布または不織布のかさ密度は、含浸させた電解液により十分な電池特性が得られるものであればよく、特に制限されない。織布または不織布の空隙率は50~90%であることが好ましい。さらに、織布または不織布の厚さは、好ましくは5~200μmであり、特に好ましくは5~100μmである。厚さが5μm以上であれば電解質の保持性が良好であり、100μm以下であれば抵抗が過度に増大しにくい。
 樹脂多孔質基体の調製方法は特に制限されない。ポリオレフィン系微多孔質膜の場合、例えば、まず、ポリオレフィンをパラフィン、流動パラフィン、パラフィン油、テトラリン、エチレングリコール、グリセリン、デカリンなどの溶剤に溶解させる。その後、シート状に押し出し、溶剤を除き、一軸延伸または二軸延伸を行う方法によって調製されうる。
 [耐熱絶縁層]
 本実施形態では、耐熱絶縁層を構成する耐熱粒子の材質としては、融点または熱軟化点が150℃以上、好ましくは240℃以上である耐熱性の高いものを用いる。このような耐熱性の高い材質を用いることで、電池内部温度が150℃近くに達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池が得られる。
 また、前記耐熱粒子は、電気絶縁性を有し、電解液や耐熱絶縁層の製造の際に用いる溶媒に対して安定であり、さらに電池の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであることが好ましい。前記耐熱粒子は、有機粒子であっても無機粒子であってもよいが、安定性の観点から無機粒子であることが好ましい。また、前記耐熱粒子は、分散性の観点から微粒子であることが好ましく、二次粒子径が500nm~3μmの微粒子が好ましく用いられうる。前記耐熱粒子の形態も特に制限されず、球状もしくは楕円球状に近い形態、板状、棒状、針状の形態、または、それらの形態が融合した形態であってもよい。前記球状もしくは楕円球状に近い形態には、例えば、ラグビーボール状、紡錘状、双球状、ブドウ房状などの形態が含まれる。
 融点または熱軟化点が150℃以上の無機粒子(無機粉末)としては、少なくともαアルミナを含んでいればよく、他の無機粒子を含んでいてもよい。他の無機粒子は、特に制限されないが、例えば、例えば、Fe,FeなどFeで表される酸化鉄、SiO、例えば、βアルミナ、γアルミナなどαアルミナ以外のアルミナ(Al)、アルミノシリケート、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶;シリコン、ダイヤモンドなどの共有結合性結晶;モンモリロナイトなどの粘土;などの粒子が挙げられる。前記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などであってもよい。また、前記無機粒子は、導電性材料の表面を電気絶縁性を有する材料で被覆することにより、電気絶縁性を持たせた粒子であってもよい。前記導電性材料は、例えば金属;SnO、スズ-インジウム酸化物(ITO)などの導電性酸化物;カーボンブラック、グラファイトなどの炭素質材料;などで例示され、前記電気絶縁性を有する材料は、例えば上記の無機酸化物である。中でも、無機酸化物の粒子は水分散スラリーとして容易に樹脂多孔質基体上に塗工することができるため、簡便な方法でセパレータを作製することができ、好適である。無機酸化物の中でも、アルミナがさらに好ましく、αアルミナが特に好ましい。
 無機粒子としてαアルミナを含む形態は特に制限されない。例えば、無機粒子に含まれる個々のアルミナ粒子がαアルミナ及びその他のアルミナ(βアルミナ、γアルミナなど)の双方を含むものであってもよい。また、αアルミナのみからなるアルミナ粒子と、αアルミナ以外のアルミナのみからなるアルミナ粒子との混合物が、無機粒子として用いられてもよい。さらに、上述した形態を満たす限り、アルミナ以外の無機粒子がさらに含まれてもよい。これらのいずれの場合であっても、上述した手法によれば、無機粒子に占めるαアルミナの割合(Cα)を測定することが可能である。
 融点または熱軟化点が150℃以上である有機粒子(有機粉末)としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子粒子や、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子などの有機樹脂の粒子が例示できる。また、これらの有機粒子を構成する有機樹脂(高分子)は、上記例示の材料の混合物、変性体、誘導体、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体のような共重合体、上記の耐熱性高分子微粒子の場合は架橋体であってもよい。中でも、工業的生産性、電気化学的安定性から、有機粒子として架橋ポリメタクリル酸メチル、ポリアラミドの粒子を用いることが望ましい。このような有機樹脂の粒子を用いることで、樹脂を主体とするセパレータを作製できるため、全体として軽量な電池が得られうる。
 なお、上述のような耐熱粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記耐熱粒子を用いて構成される耐熱絶縁層の厚みとしては、電池の種類や用途などに応じて適宜決定されるものであり、特に制限されるべきものではない。例えば、樹脂多孔質基体の両面に形成される耐熱絶縁層の厚みの合計が5~200μm程度である。特に、電気自動車(EV)やハイブリッド電気自動車(HEV)などのモータ駆動用二次電池などの用途においては、樹脂多孔質基体の両面に形成される耐熱絶縁層の厚みの合計を、例えば4~200μmとすることができる。好ましくは4~20μmであり、より好ましくは4.5~10μmである。耐熱絶縁層の厚みが、かかる範囲にあることで、厚さ方向の機械的強度を高めつつ、高出力性を確保できる。
 上記耐熱粒子を用いて構成される耐熱絶縁層の空隙率は、特に制限されるものではないが、イオン伝導性の観点から、好ましくは40%以上であり、より好ましくは50%以上である。また、空隙率が40%以上であれば、電解液、電解質ゲルの保持性が高められ、高出力の電池が得られうる。また、前記耐熱絶縁層の空隙率は、好ましくは70%以下であり、より好ましくは60%以下である。前記耐熱絶縁層の空隙率が70%以下であれば、十分な機械的強度が得られ、異物による短絡を防止する効果が高い。
 [製造方法]
 本実施形態のセパレータの製造方法は特に制限されない。例えば、樹脂多孔質基体の両面に、融点または熱軟化点が150℃以上である耐熱粒子を含有する、スラリー状の耐熱絶縁層形成用組成物を塗布した後、乾燥する方法が用いられうる。
 耐熱絶縁層形成用組成物は、耐熱粒子を溶媒に分散させたものであり、必要に応じてさらに有機バインダなどを含んでもよい。耐熱絶縁層の形状安定性を高めるための有機バインダとしては、例えば、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドンなどが挙げられる。有機バインダを含む場合、前記有機バインダの使用量は、前記耐熱粒子と前記有機バインダとの合計質量に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下である。溶媒としては耐熱粒子を均一に分散できるものであれば特に制限されない。例えば、水、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。これらの溶媒に、界面張力を制御する目的で、エチレングリコール、プロピレングリコール、モノメチルアセテートなどを適宜添加してもよい。特に前記耐熱粒子として無機酸化物粒子を用いる場合には溶媒として水を用いて水分散スラリーを作製することで、簡便に耐熱絶縁層を作製することができる。また、耐熱絶縁層形成用組成物は、固形分濃度30~60質量%に調製することが好ましい。
 前記樹脂多孔質基体に耐熱絶縁層形成用組成物を塗布する際の目付け(1m当たりの重量(g))は特に制限されないが、好ましくは5~20g/mであり、より好ましくは9~13g/mである。上記範囲であれば、適当な空隙率及び厚みを有する耐熱絶縁層が得られうる。塗工方法も特に制限はなく、例えば、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。
 塗布した後の耐熱絶縁層形成用組成物を乾燥させる方法も特に制限されないが、例えば、温風乾燥などの方法が用いられうる。乾燥温度は、例えば、30~80℃であり、乾燥時間は、例えば、2秒~50時間である。
 このようにして得られたセパレータの総厚みとしては、特に制限されないが、通常5~30μm程度であれば使用可能である。コンパクトな電池を得るためには、電解質層としての機能が確保できる範囲で極力薄くすることが好ましく、薄膜化して電池出力の向上に寄与するためには、セパレータの総厚みは、好ましくは20~30μmであり、より好ましくは20~25μmである。
 電解質層としては、本実施形態のセパレータを用いて形成されているものであれば、特に制限されるものではない。その使用目的に応じて、イオン伝導性に優れる電解液含有セパレータを電解質層として用いることができるほか、高分子ゲル電解質等をセパレータに含浸、塗布、スプレーなどして形成した電解質層も好適に利用することができる。
 (a)電解液含有セパレータ
 本実施形態のセパレータに染み込ませることのできる電解液としては、電解質として、LiClO、LiAsF、LiPF、LiBOB、LiC・eSO及びLi(CFSOの少なくとも1種類を用い、溶媒として、エチレンカーボネート(EC)、プロピレンカーボネート、ジエチルカーボネート(DEC)、ジメチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキソラン及びγ-ブチルラクトンよりなるエーテル類から少なくとも1種類を用いた。そして、前記電解質を前記溶媒に溶解させることにより、電解質の濃度が0.5~2Mに調整されているものであるが、本発明はこれらに何ら制限されるべきものではない。
 上記セパレータとしては、既に説明した本実施形態のセパレータを用いるものであるため、ここでの説明は省略する。
 上記セパレータに含浸などにより保持させる電解液量は、セパレータの保液能力範囲まで含浸、塗布などさせればよいが、当該保液能力範囲を超えて含浸させてもよい。これは、例えば、双極型電池の場合、電解質シール部に樹脂を注入して電解質層からの電解液の染み出しを防止できるため、該電解質層のセパレータに保液できる範囲であれば含浸可能である。同様に、非双極型電池の場合、電池要素を電池外装材に封入して電池外装材内部からの電解液の染み出しを防止できるため、該電池外装材内部に保液できる範囲であれば含浸可能である。該電解液は、真空注液法などにより注液した後、完全にシールすることができるなど、従来公知の方法でセパレータに電解液を含浸させることができる。
 (b)ゲル電解質層
 本発明のゲル電解質層では、本実施形態のセパレータにゲル電解質を含浸、塗布などにより保持させてなるものである。
 ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質(電解液)が注入されてなる構成を有する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。
 ゲル電解質中の上記液体電解質(電解液)の割合としては、特に制限されるべきものではないが、イオン伝導度などの観点から、数質量%~98質量%程度とするのが望ましい。本実施形態では、電解液の割合が70質量%以上の、電解液が多いゲル電解質について、特に効果がある。
 ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 電解質層の厚さは、特に限定するものではないが、基本的には本実施形態のセパレータの厚さと略同等かあるいは若干厚い程度であり、通常5~30μm程度であれば使用可能である。
 尚、本発明では、上記電解質層の電解液中には、本発明の作用効果を損なわない範囲内であれば、従来公知の各種添加剤を含有していてもよい。
 (集電板及びリード)
 電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
 集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましく、より好ましくは軽量、耐食性、高導電性の観点からアルミニウム、銅などが好ましい。なお、正極集電板と負極集電板とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。
 正極端子リード及び負極端子リードに関しても、必要に応じて使用する。正極端子リード及び負極端子リードの材料は、公知のリチウムイオン二次電池で用いられる端子リードを用いることができる。なお、電池外装材29から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
 (電池外装材)
 電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
 なお、上記のリチウムイオン二次電池は、従来公知の製造方法により製造することができる。
 <リチウムイオン二次電池の外観構成>
 図2は、平板積層型リチウムイオン二次電池の外観を表した斜視図である。
 図2に示すように、平板積層型リチウムイオン二次電池10は、長方形状の平な形状を有しており、その両側部からは電力を取り出すための正極集電板25、負極集電板27が引き出されている。発電要素21は、リチウムイオン二次電池10の電池外装材29によって包まれ、その周囲は熱融着されており、発電要素21は、正極集電板5825及び負極集電板27を外部に引き出した状態で密封されている。
 また、図2に示す集電板25、27の取り出しに関しても、特に制限されるものではない。正極集電板25と負極集電板27とを同じ辺から引き出すようにしてもよいし、正極集電板25と負極集電板27をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。
 なお、上記実施形態では、電気デバイスとしてリチウムイオン二次電池を例示したが、これに制限されるわけではなく、他のタイプの二次電池、さらには、一次電池にも適用できる。また、電池だけではなく、キャパシタにも適用できる。
 以下、本発明を実施例に基づいて具体的に説明する。なお、本発明の技術的範囲は、これらの実施例のみに限定されることはない。
 本発明の実施例では、各耐熱絶縁層付セパレータを構成する耐熱粒子に占めるαアルミナの割合(Cα)及び各耐熱絶縁層付セパレータの表面の表面粗さ(10点平均粗さ(Rzjis))を以下のように測定した。
 <Cαの測定>
 Cαは、X線回析装置(マックサイエンス社製MTP18VAHF)を用いて測定した。測定条件としては、X線としてCuKα線を用い、電圧を40kV、電流を200mAとし、耐熱絶縁層を構成する耐熱粒子全体に含まれるαアルミナのピーク面積の割合(Cα)を算出した。
 <表面粗さ測定>
 耐熱絶縁層付セパレータの樹脂多孔質基体とは反対側の耐熱絶縁層の表面のレーザー顕微画像を、オリンパス社製LEXT-OLS3000を用いて撮影し、下記数式3を用いて10点平均粗さ(Rzjis)を算出した。
Figure JPOXMLDOC01-appb-M000005
 Rzjis:粗さ曲線で最高の山頂から高い順に5番目までの山高さの平均と、
 最深の谷底から深い順に5番目までの谷深さ平均の和
 Zpj:粗さ曲線で最高の山頂から高い順にj番目の山高さ
 Zvj:粗さ曲線で最深の谷底から深い順にj番目の谷深さ
 <実施例1>
 耐熱粒子であるアルミナ粒子(Cα=0.07)95質量部とカルボキシメチルセルロース(ダイセル化学工業社製)5質量部とを適量の水に均一に分散させて分散液を得た。当該分散液を、樹脂多孔質基体であるポリエチレン(PE、膜厚17.8μm)の片面にグラビアコーターを用いて塗布して塗膜を得た。当該塗膜を温風乾燥し、耐熱絶縁層の厚みが5.3μm及び耐熱絶縁層の十点平均粗さが1.45μmである耐熱絶縁層付セパレータを作製した。
 <実施例2>
 Cαが0.1であるアルミナ粒子を用いたことを除いては実施例1と同様に耐熱絶縁層付セパレータを作製した。
 <実施例3>
 Cαが0.15であるアルミナ粒子を用いたことを除いては実施例1と同様に耐熱絶縁層付セパレータを作製した。
 <実施例4>
 Cαが0.2であるアルミナ粒子を用いたことを除いては実施例1と同様に耐熱絶縁層付セパレータを作製した。
 <実施例5>
 Cαが0.33であるアルミナ粒子を用い、耐熱絶縁層付セパレータの耐熱絶縁層の厚みを8.9μm及び耐熱絶縁層の十点平均粗さを2.97μmとしたことを除いては実施例1と同様に耐熱絶縁層付セパレータを作製した。
 <実施例6>
 Cαが0.43であるアルミナ粒子を用いたことを除いては実施例1と同様に耐熱絶縁層付セパレータを作製した。
 <実施例7>
 Cαが0.68であるアルミナ粒子を用いたこと及び耐熱絶縁層付セパレータの耐熱絶縁層の十点平均粗さを1.46μmとしたことを除いては実施例1と同様に耐熱絶縁層付セパレータを作製した。
 <実施例8>
 Cαが1であるアルミナ粒子を用い、耐熱絶縁層付セパレータの耐熱絶縁層の厚みを7.9μm及び耐熱絶縁層の十点平均粗さを1.38μmとしたことを除いては実施例1と同様に耐熱絶縁層付セパレータを作製した。
 <実施例9>
 耐熱絶縁層付セパレータの耐熱絶縁層の厚みを5.3μm及び耐熱絶縁層の十点平均粗さを1.325μmとしたことを除いては実施例8と同様に耐熱絶縁層付セパレータを作製した。
 <実施例10>
 耐熱絶縁層付セパレータの耐熱絶縁層の十点平均粗さを1.58μmとしたことを除いては実施例9と同様に耐熱絶縁層付セパレータを作製した。
 <実施例11>
 耐熱絶縁層付セパレータの耐熱絶縁層の厚みを4.8μm及び耐熱絶縁層の十点平均粗さを1.48μmとしたことを除いては実施例8と同様に耐熱絶縁層付セパレータを作製した。
 <実施例12>
 耐熱絶縁層付セパレータの耐熱絶縁層の十点平均粗さを1.7μmとしたことを除いては実施例9と同様に耐熱絶縁層付セパレータを作製した。
 <実施例13>
 耐熱絶縁層付セパレータの耐熱絶縁層の十点平均粗さを1.749μmとしたことを除いては実施例9と同様に耐熱絶縁層付セパレータを作製した。
 <比較例1>
 Cαが0.04であるアルミナ粒子を用い、耐熱絶縁層付セパレータの耐熱絶縁層の十点平均粗さを1.95μmとしたことを除いては実施例1と同様に耐熱絶縁層付セパレータを作製した。
 <比較例2>
 耐熱絶縁層付セパレータの耐熱絶縁層の十点平均粗さを1.79μmとしたことを除いては実施例9と同様に耐熱絶縁層付セパレータを作製した。
 [セパレータの評価]
 耐熱絶縁層付セパレータの評価として、180°剥離試験を以下のように行った。結果を表1に示す。
 <180°剥離試験>
 実施例1~13及び比較例1または2において作製した耐熱絶縁層付セパレータの耐熱絶縁層側面をセロハンテープ(ニチバン社製)で補強し、10mm幅で約150mm長さに裁断した。当該耐熱絶縁層付セパレータを両面テープ(ニチバン社製)により金属土台に貼り付け固定した。その後、前記耐熱絶縁層側面のセロハンテープを10mm剥がし、測定器(STA-1150;ORIENTEC社製)に取り付けた。引張速度100mm/min、剥離距離80mmの条件で、80mm分の前記耐熱絶縁層を剥がし、剥離強度を測定した。
Figure JPOXMLDOC01-appb-T000006
 <結果>
 各実施例及び比較例のCα、耐熱絶縁層の厚さD、表面粗さRzjis、パラメータX、及び剥離強度の測定結果を表1に示す。また、パラメータXと、剥離強度との関係を図3に示す。
 実施例1~13は、いずれもCαは0.06よりも大きく、パラメータXが0.018~0.336の範囲内にあり、耐熱絶縁層の剥離強度は30mN/mmより大きかった。そのため、耐熱絶縁層の耐熱粒子の粉落ちはみられなかった。
 実施例3~13は、いずれもCαは0.11よりも大きく、パラメータXが0.04~0.33の範囲内にあり、耐熱絶縁層の剥離強度は50mN/mmより大きかった。
 実施例5~11は、いずれもCαは0.28よりも大きく、パラメータXが0.07~0.30の範囲内であり、耐熱絶縁層の剥離強度は70mN/mmより大きかった。
 一方、比較例1及び2は、パラメータXが0.018~0.336の範囲内にはなかった。比較例2においては、Cαは1であるが、剥離強度は小さく耐熱絶縁層の耐熱粒子の粉落ちを確認した。
 以上の結果から、耐熱絶縁層付セパレータの製造時などに耐熱絶縁層を構成する耐熱粒子の粉落ちの発生を抑制するため、耐熱絶縁層の剥離強度を大きくする必要があることがわかった。また、耐熱絶縁層の剥離強度を大きくするには、前記耐熱粒子に占めるαアルミナの割合を大きくするだけでなく、耐熱絶縁層の厚み及び耐熱絶縁層の樹脂多孔質基体とは反対側の表面の表面粗さのバランスをとることが必要であることがわかった。
 特願2011-221243号(出願日:2011年10月5日)の全内容は、ここに援用される。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明によれば、耐熱粒子としてαアルミナを含み、前記耐熱粒子に占めるαアルミナの割合、耐熱絶縁層の厚み、及び耐熱絶縁層の樹脂多孔質基体とは反対側の表面の表面粗さのバランスをとった耐熱絶縁層付セパレータを用いた。そのため、電池内に生じる短絡の抑制は勿論のこと、耐熱絶縁層付セパレータの製造時などに耐熱絶縁層を構成する耐熱粒子の粉落ちの発生を抑制することが可能となる。
  10 リチウムイオン二次電池(積層型電池)
  11 正極集電体
  12 負極集電体
  13 正極活物質層
  15 負極活物質層
  17 電解質層
  19 単電池層
  21 発電要素
  25 正極集電板
  27 負極集電板
  29 電池外装材(ラミネートフィルム)

Claims (6)

  1.  樹脂多孔質基体と、
     前記樹脂多孔質基体の少なくとも一方の面に形成された、耐熱粒子及びバインダを含む耐熱絶縁層と、を備え、
     前記耐熱粒子がαアルミナを含み、
     下記数式1で表されるパラメータXが0.018~0.336であることを特徴とする耐熱絶縁層付セパレータ:
    Figure JPOXMLDOC01-appb-M000001
    式中、Cαは前記耐熱粒子に占めるαアルミナの割合であり、Rzjisは前記耐熱絶縁層の前記樹脂多孔質基体とは反対側の表面の表面粗さ(μm)であり、Dは前記耐熱絶縁層の厚み(μm)である。
  2.  前記パラメータXが0.04~0.33であることを特徴とする請求項1に記載の耐熱絶縁層付セパレータ。
  3.  前記パラメータXが0.07~0.30であることを特徴とする請求項1または2に記載の耐熱絶縁層付セパレータ。
  4.  前記Cαが0.06以上であることを特徴とする請求項1~3のいずれか1項に記載の耐熱絶縁層付セパレータ
  5.  下記数式2で表されるパラメータYが5.6~99であることを特徴とする請求項1~4のいずれか1項に記載の耐熱絶縁層付セパレータ:
    Figure JPOXMLDOC01-appb-M000002
     式中、Aは前記耐熱粒子の質量(g)であり、Bは前記バインダの質量(g)である。
  6.  正極及び負極の間に介在し、請求項1~5のいずれか1項に記載の耐熱絶縁層付セパレータを備えることを特徴とする電気デバイス。
PCT/JP2012/075548 2011-10-05 2012-10-02 耐熱絶縁層付セパレータ WO2013051574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147008619A KR101766950B1 (ko) 2011-10-05 2012-10-02 내열 절연층을 갖는 세퍼레이터
US14/349,262 US9847518B2 (en) 2011-10-05 2012-10-02 Separator with heat-resistant insulation layer
CN201280049285.7A CN103843172B (zh) 2011-10-05 2012-10-02 带耐热绝缘层的隔板
EP12837904.7A EP2765629B1 (en) 2011-10-05 2012-10-02 Separator with heat-resistant insulating layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011221243A JP6336703B2 (ja) 2011-10-05 2011-10-05 耐熱絶縁層付セパレータ
JP2011-221243 2011-10-05

Publications (1)

Publication Number Publication Date
WO2013051574A1 true WO2013051574A1 (ja) 2013-04-11

Family

ID=48043731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075548 WO2013051574A1 (ja) 2011-10-05 2012-10-02 耐熱絶縁層付セパレータ

Country Status (6)

Country Link
US (1) US9847518B2 (ja)
EP (1) EP2765629B1 (ja)
JP (1) JP6336703B2 (ja)
KR (1) KR101766950B1 (ja)
CN (1) CN103843172B (ja)
WO (1) WO2013051574A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428612B2 (ja) * 2013-10-15 2018-11-28 株式会社村田製作所 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10770743B2 (en) 2014-12-26 2020-09-08 Sekisui Chemical Co., Ltd. Electrode manufacturing method, electrode, and secondary battery
US20200303706A1 (en) * 2016-03-29 2020-09-24 Celgard, Llc Depositions or layers for microporous membranes, improved membranes, improved lithium battery separators, improved batteries, improved high voltage lithium batteries, and related methods
KR102630617B1 (ko) 2016-06-24 2024-01-29 (주) 에이치엔에이파마켐 페오포르비드 a 및 폴리에틸렌글리콜의 지질 유도체의 결합체를 함유하는 항균 리포좀 조성물
US10084178B2 (en) * 2016-09-22 2018-09-25 Grst International Limited Method of preparing electrode assemblies
KR102209826B1 (ko) * 2018-03-06 2021-01-29 삼성에스디아이 주식회사 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
DE102020119727A1 (de) 2020-07-27 2021-04-01 Carl Freudenberg Kg Verwendung eines Absorbermaterials zur Aufnahme und/oder Verteilung von Flüssigkeiten in einem aktiv und/oder passiv gekühlten stromführenden System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066768A1 (ja) 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
WO2008062727A1 (fr) * 2006-11-20 2008-05-29 Teijin Limited Séparateur pour batterie auxiliaire non aqueuse, procédé de production associé, et batterie auxiliaire non aqueuse
JP2009238752A (ja) * 2008-03-27 2009-10-15 Samsung Sdi Co Ltd 電極組立体及びこれを具備する二次電池
JP2010244875A (ja) * 2009-04-07 2010-10-28 Panasonic Corp リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
JP2011131470A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 積層フィルムおよび非水電解質二次電池
JP2011216257A (ja) * 2010-03-31 2011-10-27 Teijin Ltd 非水系二次電池用セパレータ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418091A (en) * 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
JP2004042653A (ja) * 2002-07-12 2004-02-12 Nitto Denko Corp ハードコートフィルム
JP4401685B2 (ja) * 2003-05-29 2010-01-20 帝人株式会社 凹凸を有する硬化樹脂層付き高分子基板
JP2005035167A (ja) * 2003-07-15 2005-02-10 Daicel Chem Ind Ltd ガスバリア性フィルム
JP4602254B2 (ja) * 2003-09-18 2010-12-22 パナソニック株式会社 リチウムイオン二次電池
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
JP5128786B2 (ja) * 2005-05-31 2013-01-23 パナソニック株式会社 電池モジュール
KR100821442B1 (ko) 2005-05-31 2008-04-10 마쯔시다덴기산교 가부시키가이샤 비수전해질 2차전지 및 전지모듈
EP2517879B2 (en) * 2007-06-06 2020-03-18 Asahi Kasei Kabushiki Kaisha Multilayer porous film
US20090098446A1 (en) * 2007-09-25 2009-04-16 Yukihiro Okada Secondary battery
JP2009143060A (ja) * 2007-12-12 2009-07-02 Asahi Kasei Chemicals Corp 多層多孔膜
KR20090103010A (ko) * 2008-03-27 2009-10-01 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 리튬 이차 전지
JP5134526B2 (ja) * 2008-12-24 2013-01-30 帝人株式会社 コーティング膜の製造方法及び非水系二次電池用セパレータの製造方法
US8771859B2 (en) 2009-03-13 2014-07-08 Hitachi Maxell, Ltd. Separator for battery and nonaqueous electrolyte battery using same
CN102422461B (zh) 2009-05-08 2014-07-09 丰田自动车株式会社 电池隔膜的制造方法
JP5525193B2 (ja) * 2009-06-23 2014-06-18 旭化成イーマテリアルズ株式会社 多層多孔膜および塗布液
JP5462016B2 (ja) * 2010-02-08 2014-04-02 日本エイアンドエル株式会社 二次電池耐熱保護層用バインダーおよび耐熱保護層用組成物
JP5499758B2 (ja) * 2010-02-22 2014-05-21 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP2012004103A (ja) 2010-02-25 2012-01-05 Sumitomo Chemical Co Ltd 無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法
JP5545508B2 (ja) * 2010-10-13 2014-07-09 トヨタ自動車株式会社 非水電解液リチウム二次電池
WO2012120608A1 (ja) * 2011-03-07 2012-09-13 日立マクセル株式会社 電池用セパレータおよび電池
JP5829042B2 (ja) * 2011-04-13 2015-12-09 旭化成ケミカルズ株式会社 多層多孔膜用共重合体組成物
JP2013014017A (ja) * 2011-06-30 2013-01-24 Sumitomo Chemical Co Ltd 積層多孔質フィルム
KR101998014B1 (ko) * 2011-08-31 2019-07-08 스미또모 가가꾸 가부시끼가이샤 도포액, 적층 다공질 필름 및 적층 다공질 필름의 제조 방법
US9343719B2 (en) * 2011-09-22 2016-05-17 Mitsubishi Plastics, Inc. Method for producing laminated porous film, and laminated porous film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066768A1 (ja) 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
WO2008062727A1 (fr) * 2006-11-20 2008-05-29 Teijin Limited Séparateur pour batterie auxiliaire non aqueuse, procédé de production associé, et batterie auxiliaire non aqueuse
JP2009238752A (ja) * 2008-03-27 2009-10-15 Samsung Sdi Co Ltd 電極組立体及びこれを具備する二次電池
JP2010244875A (ja) * 2009-04-07 2010-10-28 Panasonic Corp リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
JP2011131470A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 積層フィルムおよび非水電解質二次電池
JP2011216257A (ja) * 2010-03-31 2011-10-27 Teijin Ltd 非水系二次電池用セパレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765629A4

Also Published As

Publication number Publication date
KR101766950B1 (ko) 2017-08-09
EP2765629B1 (en) 2016-03-30
CN103843172A (zh) 2014-06-04
JP2013080676A (ja) 2013-05-02
EP2765629A4 (en) 2015-03-11
US9847518B2 (en) 2017-12-19
CN103843172B (zh) 2016-06-15
JP6336703B2 (ja) 2018-06-06
KR20140067083A (ko) 2014-06-03
US20140242443A1 (en) 2014-08-28
EP2765629A1 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
KR101639923B1 (ko) 내열 절연층을 갖는 세퍼레이터
JP5966285B2 (ja) 耐熱絶縁層付セパレータ
JP6003041B2 (ja) 耐熱絶縁層付セパレータ
KR101529408B1 (ko) 비수 전해질 2차 전지
JP5920638B2 (ja) 非水電解質二次電池
KR101689496B1 (ko) 비수 전해액계 이차 전지
JP5748108B2 (ja) リチウム二次電池
JP5761582B2 (ja) 二次電池
US20160064715A1 (en) Non-aqueous electrolyte secondary battery
WO2013051574A1 (ja) 耐熱絶縁層付セパレータ
WO2013051416A1 (ja) 電気デバイス
WO2016079581A1 (en) Nonaqueous electrolyte secondary battery
JP2014137985A (ja) 二次電池
JP6740011B2 (ja) 非水電解質二次電池
JP2019016522A (ja) リチウムイオン二次電池素子およびリチウムイオン二次電池
JP7096978B2 (ja) 非水電解質二次電池
JP2017152175A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837904

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20147008619

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14349262

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012837904

Country of ref document: EP