WO2013051361A1 - 非接触電力伝送装置及び非接触電力伝送方法 - Google Patents

非接触電力伝送装置及び非接触電力伝送方法 Download PDF

Info

Publication number
WO2013051361A1
WO2013051361A1 PCT/JP2012/072604 JP2012072604W WO2013051361A1 WO 2013051361 A1 WO2013051361 A1 WO 2013051361A1 JP 2012072604 W JP2012072604 W JP 2012072604W WO 2013051361 A1 WO2013051361 A1 WO 2013051361A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
coil
resonance
frequency
Prior art date
Application number
PCT/JP2012/072604
Other languages
English (en)
French (fr)
Inventor
戸高義弘
田中淳史
宮内靖
Original Assignee
日立マクセルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセルエナジー株式会社 filed Critical 日立マクセルエナジー株式会社
Publication of WO2013051361A1 publication Critical patent/WO2013051361A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a non-contact power transmission apparatus and a non-contact power transmission method for performing power transmission between a power transmission coil and a power reception coil in a non-contact (wireless) manner through electromagnetic coupling.
  • electromagnetic coupling including electromagnetic induction using electromagnetic induction (several hundreds of kHz) and electric / magnetic resonance using transmission between LC resonances via electric field or magnetic resonance. It has been. Also known are a microwave power transmission type using radio waves (several GHz) or a laser power transmission type using electromagnetic waves (light) in the visible light region. Among them, the electromagnetic induction type has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.
  • FIG. 10 is a front view showing an outline of a configuration example of a non-contact power transmission apparatus that transmits power from the power transmission apparatus 101 to the power reception apparatus 102 using conventional magnetic field resonance.
  • the power transmission apparatus 101 includes a power transmission coil 105 that combines a loop coil 103 and a resonance coil 104
  • the power reception apparatus 102 includes a power reception coil 108 that combines a loop coil 106 and a resonance coil 107.
  • a high frequency power driver 109 is connected to the loop coil 103 of the power transmission apparatus 101 to convert the power of the AC power supply (AC 100 V) 110 into a high frequency power that can be transmitted and supply the power.
  • a load (for example, a rechargeable battery) 112 is connected to the loop coil 106 of the power receiving apparatus 102 via a rectifier 111.
  • the loop coil 103 is a dielectric element that is excited by an electrical signal supplied from the high-frequency power driver 109 and transmits the electrical signal to the resonance coil 104 by electromagnetic induction.
  • the resonance coil 104 generates a magnetic field based on the electrical signal output from the loop coil 103.
  • the electric power supplied to the resonance coil 104 is transmitted in a non-contact manner to the resonance coil 107 of the power receiving apparatus 102 by magnetic field resonance.
  • the transmitted power is transmitted from the resonance coil 107 to the loop coil 106 by electromagnetic induction, rectified by the rectifier 111 and supplied to the load 112.
  • the resonance frequencies of the resonance coil 104 and the resonance coil 107 are set to be the same.
  • a shielding material (including a radio wave absorber) is used to reduce the influence of electromagnetic waves between the power receiving coil 108 and the secondary battery pack. ) Is often inserted. In such a case, when the front and back sides of the surface where the power receiving coil 108 of the portable device is installed are mistakenly placed, a shielding material is interposed between the power transmitting coil 105 and the power receiving coil 108, so that transmission efficiency is improved. The power is greatly reduced and power transmission becomes difficult.
  • Patent Document 1 discloses a front / back detection unit (using a magnetic sensor) that detects whether a coil installation surface of a power receiving device is correctly facing the power transmitting device with respect to a power transmitting device that supplies power. And a charging system is disclosed in which the user is notified when they are not facing each other.
  • Patent Document 2 discloses an example of an energy supply device that transmits power between devices that are separated from each other.
  • the device disclosed in Patent Document 2 supplies power from outside the subject to a capsule endoscope swallowed by the subject, and electromagnetic induction from the coil wound outside the subject to the coil in the capsule To supply power.
  • This apparatus is configured to perform suitable power transmission with respect to the position of the capsule moving in the body by switching power feeding from a plurality of coils.
  • use of magnetic field resonance to increase power supply efficiency is not described.
  • Patent Document 2 it is described in Patent Document 3 that, in the power supply from outside the body, a resonance circuit is provided on the power receiving side to increase the transmission efficiency.
  • a resonance circuit is provided on the power receiving side to increase the transmission efficiency.
  • separate resonance frequencies are assigned to a plurality of power receiving devices, and the power is supplied selectively by changing the frequency of power supplied to a coil wound outside the body on the power transmission side. Supply power to the side equipment.
  • a resonance circuit composed of a coil and a capacitor on the power supply side for example, a configuration is used in which the capacitor is variable in capacity and the supply frequency is changed by changing the capacity.
  • FIG. 7 shows an example of a resonance system having two resonators, a power transmission side resonator arranged on the left side and a power reception side resonator arranged on the right side.
  • the power transmission side resonator is composed of a power transmission coil 5, a variable capacitor 6 (hereinafter abbreviated as a resonance variable capacitor), and a resistor 21, and a high frequency power source 22 that generates a specific frequency. It is connected.
  • the resistor 21 also functions as an output resistor of the high frequency power supply 22.
  • the power receiving side resonator includes a power receiving coil 7, a power receiving side resonance capacitor 8, and a resistor 23.
  • the resistor 23 also acts as a load resistance.
  • the coupling coefficient 24 indicates that the power transmission coil 5 and the power reception coil 7 are coupled.
  • Such a circuit having two resonance circuits is called a double resonance circuit, and a radio double tuning circuit has been conventionally used for signal processing of a high frequency circuit in order to improve isolation between radio stations.
  • the power of the signal itself was small. Therefore, using such a resonance system, a large amount of power is transmitted.
  • the two resonance circuits are separated and the power is transmitted from a distance. Until recently, it was not envisaged.
  • the magnetic lines 25 schematically represent that the power transmission coil 5 and the power reception coil 7 are coupled, and that the common magnetic lines 25 are linked to the coils 5 and 7, respectively.
  • the magnetic field energy is shared, and the energy generated in the power transmission coil 5 can be transmitted to the power reception side through the power reception coil 7.
  • magnetic field lines are mainly used for mediation of energy, but an electric field is also formed between the coils, and the electric field lines connect each other so that energy can be transmitted as a capacitor.
  • power transmission by a magnetic field is the main, the behavior by a magnetic field will be described.
  • the mutual inductance appears due to the coupling coefficient 24 of FIG. 7, and can be expressed as shown in FIG. 8 by rewriting it with an equivalent circuit.
  • the high-frequency power source 22 and the resistor 23 are not directly connected in a DC manner, but can be expressed in an alternating manner as shown in FIG.
  • 24b is a mutual inductance, which is an amount determined by determining the coupling coefficient 24 or determining the arrangement of the power transmission coil 5 and the power reception coil 7, and the like. Further, the new inductances 5c and 7c have the following inductance components.
  • Inductance 5c (Inductance of power transmission coil 5 alone ⁇ Mutual inductance 24b)
  • Inductance 7c (Inductance of receiving coil 7 alone-mutual inductance 24b)
  • the power transmission side and the power reception side have the same capacity.
  • Inductance 5c Inductance 7c
  • Capacitance of the resonance variable capacitor 6 capacitance of the resonance capacitor 8
  • Resistance value of the resistor 21 resistance value of the resistor 23, which is negligibly small
  • the high frequency power source 22 is an ideal power source Yes, impedance is 0
  • a resonance circuit is formed in which a series component of two capacitors 6 and 8 and a series component of two inductances 5c and 7c are connected. If the capacitance of the resonance variable capacitor 6 is C, the inductance of the power transmission coil 5c is L, and the mutual inductance 24b is M, the inductance 5c is LM.
  • the resonance frequency is a resonance in which three components are connected in series: a resonance variable capacitor 6 and a resonance capacitor 8 connected in parallel, an inductance 5c and an inductance 7c connected in parallel, and a mutual inductance 24b.
  • the power receiving system also has the same resonance frequency. This is schematically shown in FIG. 9A.
  • the horizontal axis represents the frequency, and the vertical axis represents the response.
  • the solid line is the frequency characteristic of the power transmission system, and the frequency characteristic of the power reception system is the same, so it is schematically shown by a broken line.
  • the frequency response viewed from the high-frequency power supply 22 is a single-peak characteristic having one peak, but if the coupling coefficient is close to 1, the influence of mutual inductance becomes large. In that case, a bimodal characteristic having two peaks is obtained as in the frequency characteristic shown in FIG. 9B. This has two peaks 28a and 29a located at the previously calculated frequencies f1 and f2, respectively.
  • the coupling coefficient is not 0, the influence of the mutual inductance M appears, and it has a bimodal characteristic, and has peaks at two points away from the original resonance frequency f0.
  • the coupling coefficient decreases, for example, by separating the distance between the coils, the two peaks approach and have a single peak characteristic. If the distance further increases and the coupling coefficient decreases, the unimodal characteristics remain, but the number of interlinkage of magnetic lines of force decreases, so the amount of power transmission decreases, and finally power transmission becomes impossible.
  • the present invention provides a non-contact power transmission apparatus and a non-contact power transmission method capable of suppressing a decrease in transmission power in response to a change in frequency response characteristics of a resonance system due to the arrangement of a power transmission coil and a power reception coil.
  • the purpose is to provide.
  • the non-contact power transmission device of the present invention includes, as a basic configuration, a power transmission device including a power transmission side resonator and a high frequency power generation circuit configured by a power transmission coil and a resonance capacitor, and a power reception device configured by a power reception coil and a resonance capacitor.
  • the contactless power transmission device has the basic configuration in which the resonance capacitor of the power transmission side resonator is configured by a variable capacitor, and the power transmission coil and the variable capacitor are the high frequency.
  • a resonance frequency adjustment circuit that is connected in series to a power generation circuit and changes the capacitance of the variable capacitor is provided, and the resonance frequency adjustment circuit includes the power transmission side resonator and the power reception side resonator in power transmission.
  • the resonance frequency characteristic of the transmission resonance system is adjusted by changing the capacitance of the variable capacitor so that the peak of the resonance frequency characteristic matches the frequency of the high-frequency power for power transmission supplied to the power transmission coil.
  • a non-contact power transmission method includes a power transmission device having a power transmission side resonator and a high frequency power generation circuit including a power transmission coil and a resonance capacitor, and a power reception side resonator including a power reception coil and a resonance capacitor.
  • a power transmission device having a power transmission side resonator and a high frequency power generation circuit including a power transmission coil and a resonance capacitor, and a power reception side resonator including a power reception coil and a resonance capacitor.
  • the resonance variable capacitor is adjusted to shift the frequency response characteristic itself,
  • the peak of the frequency response characteristic can be moved to a fixed frequency.
  • FIG. 6 is a characteristic diagram for explaining the operation of the contactless power transmission device of the present invention Schematic diagram showing the configuration of a conventional non-contact power transmission system
  • the contactless power transmission device of the present invention can take the following aspects based on the above configuration.
  • it further includes a power detection circuit that detects a power consumption parameter corresponding to the magnitude of the high-frequency power for power transmission supplied to the power transmission coil, and the resonance frequency adjustment circuit is based on the detected power consumption parameter.
  • the capacity of the variable capacitor can be changed so that the high-frequency power for power transmission is maximized.
  • the power transmission coil is divided into a plurality of partial power transmission coils connected to each other, and the plurality of partial power transmission coils are arranged to face each other so as to form a power reception space between them.
  • the power receiving coil may be arranged in the power receiving space.
  • a relay resonator configured to relay power transmission, the relay coil including a relay coil and a resonance capacitor, and the power transmission coil and the relay coil are opposed to each other and electromagnetically coupled so as to form a power receiving space between them; And the power receiving coil is disposed in the power receiving space.
  • the power receiving device may include a plurality of power receiving devices and a plurality of relay resonators, and the power receiving coil may be disposed in a power receiving space formed by the plurality of relay coils facing each other.
  • the power receiver having a plurality of power receiving coils can be arranged in the power receiving space.
  • the transmission characteristic from the power transmission apparatus to the power reception apparatus may have a bimodal characteristic.
  • a power consumption parameter corresponding to the magnitude of high-frequency power for power transmission supplied to the power transmission coil is detected, and the power transmission parameter is detected based on the detected power consumption parameter.
  • the capacity of the variable capacitor can be changed so that the high-frequency power is maximized.
  • FIG. 1 is a block diagram illustrating a configuration of a magnetic field resonance type non-contact power transmission apparatus according to the first embodiment.
  • This contactless power transmission device includes a power transmission device 1 and a power reception device 2, and transmits power in a contactless manner from a power transmission side resonator 3 included in the power transmission device 1 to a power reception side resonator 4 included in the power reception device 2. Is configured to do.
  • the power transmission side resonator 3 includes a power transmission coil 5 and a resonance variable capacitor 6, and the power reception side resonator 4 includes a power reception coil 7 and a resonance capacitor 8.
  • components having the same reference numerals as those in FIG. 7 are components having the same function.
  • the power transmission coil 5 and the resonance variable capacitor 6 are elements having the same function although they are described in blocks in FIG. 1 and in circuit symbols in FIG. The same applies to the power receiving coil 7 and the resonance capacitor 8.
  • a high frequency power generation circuit 9 that generates high frequency power for transmission is connected to the power transmission coil 5 (power transmission side resonator 3).
  • the high frequency power generation circuit 9 normally generates high frequency power having a fixed frequency f0.
  • a power detection circuit 10 is connected to the high frequency power generation circuit 9.
  • the power detection circuit 10 is a circuit that detects a power consumption parameter corresponding to the power consumed by the high-frequency power generation circuit 9.
  • the detection output by the power detection circuit 10 is supplied to the resonance frequency adjustment circuit 11, and the resonance frequency adjustment circuit 11 maximizes the power consumed by the high frequency power generation circuit 9 based on the detected power consumption parameter.
  • the capacitance value of the resonance variable capacitor 6 is adjusted.
  • the power consumption parameter means a parameter whose detected value corresponds to the amount of power consumed by the high frequency power generation circuit 9.
  • the power supplied from the high-frequency power generation circuit 9 to the power transmission side resonator 2, or a circuit that generates power in the high-frequency power generation circuit 9, for example, a high-frequency power amplification amplifier, or switching that generates power The current value of the direct current supplied to the circuit can be used.
  • a secondary coil (similar to the loop coil 106 in FIG. 10) is arranged facing the power receiving coil 7, and the high frequency power generated by the power receiving side resonator 4 is the secondary coil. Is taken out by The high frequency power taken out via the secondary coil is supplied to the detection circuit 12, converted from the high frequency power to DC power, and output from the output terminal 13.
  • the resonance frequency adjustment circuit 11 when the power is transmitted by the resonance frequency adjustment circuit 11, the peak of the resonance frequency characteristic of the resonance system (hereinafter referred to as the transmission resonance system) composed of the power transmission side resonator 3 and the power reception side resonator 4 is obtained. Control is performed to match the frequency of the high-frequency power for power transmission supplied by the high-frequency power generation circuit 9. That is, adjusting the resonance variable capacitor 6 so that the power consumption parameter detected by the power detection circuit 10 is maximized matches the peak of the resonance frequency characteristic of the transmission resonance system with the frequency of the high-frequency power for power transmission. Corresponds to
  • the frequency response characteristic itself is shifted so that the peak of the frequency response characteristic appears at the fixed frequency of the high frequency power. Can be moved. As a result, it is possible to suppress a decrease in transmission power. This is because the transmitted power value and the current value reach a peak at the peak of the characteristic curve of the frequency characteristic of the transmission resonance system, so that the amount of transmitted power is maximized by maximum value control.
  • the transmitted power value corresponds to the current and power consumed by the high frequency power generation circuit 9, for example, the current value is monitored and the current value is maximized as in the above configuration. Control is sufficient. In this way, the resonance frequency is adjusted by the maximum point tracking control.
  • the control circuit is configured using a microcomputer or the like, if the control software is created and implemented according to the control circuit, the resonance frequency adjustment is controlled. It is possible to easily construct a device that performs
  • FIG. 2 is a circuit diagram for explaining the operation of the non-contact power transmission apparatus having the above configuration. Elements that are the same as those in FIGS. 1 and 7 are given the same reference numerals, and description thereof will not be repeated. Further, illustration of the power detection circuit 10 and the resonance frequency adjustment circuit 11 shown in FIG. 1 is omitted. Although not shown, the capacitance value of the resonance variable capacitor 6 is controlled as described above by the operations of the power detection circuit 10 and the resonance frequency adjustment circuit 11.
  • the magnetic lines 14 and 14a schematically show that the power transmission coil 5 and the power reception coil 7 are coupled.
  • the coupling coefficient k or the mutual inductance M changes depending on the number of linkages between the magnetic lines 14 and 14a, and a bimodal characteristic appears in the frequency characteristic of the transmission resonance system including the power transmission side resonator 3 and the power reception side resonator 4. That was mentioned above.
  • the resonance frequency adjusting circuit 11 (see FIG. 1) adjusts the resonance variable capacitor 6 and moves the peak 28a having a low bimodal frequency to the high frequency side as shown in FIG. Control to be Thereby, resonance at the frequency f0 can be obtained, and the transmission power can be maximized.
  • the capacitance of the resonance variable capacitor 6 is changed and reduced, for example, C in the above equation (2) obtained for the resonance frequency f1 is decreased, and the resonance frequency f1 is increased. That is, the entire frequency characteristic moves to the high frequency side.
  • the original peak 28a of the high-frequency power generation circuit 9 is made to coincide with the frequency f0 as the peak 28b.
  • the transmission resonance system has a peak at the frequency f0 and resonates at the frequency f0. Accordingly, the resonance current resonating between the power transmission coil 5 and the power reception coil 7 is also increased and maximized, so that the amount of transmitted power is also maximized and the transmission efficiency is improved.
  • the entire bimodal characteristic is shifted by the resonance variable capacitor 6 regardless of where the peak point of the bimodal characteristic is located by various arrangements, and the peak of the oscillation frequency f0 of the high frequency power generation circuit 9 is obtained. Therefore, it is possible to perform suitable power transmission.
  • the capacity control of the resonance variable capacitor 6 may be performed by searching all the variable ranges and setting the capacity value at the maximum point, but it is desirable to perform the wobbling control.
  • a constant capacity change that is, a change direction in which a power value or a current value increases due to wobbling is detected, and the capacity is controlled in the direction of the maximum point.
  • maximum point control can be performed more smoothly while reducing fluctuations in transmission power. Since the configuration of a circuit or the like for carrying out such a control method can be easily constructed based on a known technique, detailed description thereof is omitted.
  • FIG. 3 is a circuit diagram showing a configuration of the magnetic field resonance type non-contact power transmission apparatus according to the second embodiment.
  • the power transmission coil 5 in the first embodiment is divided into two to form partial power transmission coils 5a and 5b, which are arranged facing each other.
  • the power receiving coil 7 is disposed between the partial power transmitting coils 5a and 5b.
  • components having the same reference numerals as those described in the first embodiment are components having the same function.
  • FIG. 3 shows only the elements necessary for understanding the configuration and operation showing the features of the present embodiment, and some of the elements shown in FIG. 1 are omitted.
  • Magnetic field lines 15 and 15a passing between the divided partial power transmission coils 5a and 5b are schematically shown. Since the same resonance current flows through the two partial power transmission coils 5a and 5b, the coil winding direction is configured in accordance with the direction of the magnetic force lines 15 and 15a. Also, when dividing in this way, there is also an inductance increase due to the wiring between the two coils, so that the inductance of each power transmission coil is reduced, and the resonance frequency on the power transmission side is kept the same as before the division. To.
  • the frequency of the high frequency power for power transmission generated by the high frequency power generation circuit 9 by the resonance frequency adjustment circuit 11 shown in FIG. By moving to f0, the transmission power can be maximized as in the first embodiment.
  • the magnetic force lines 15 and 15a therebetween can be kept substantially parallel.
  • the non-contact electric power transmission system with little dependence on the change of distance and the change of arrangement
  • FIG. 4 is a circuit diagram illustrating a configuration of the magnetic field resonance type non-contact power transmission apparatus according to the third embodiment.
  • components having the same reference numerals as those described in the above-described embodiments are components having the same action.
  • FIG. 4 only elements necessary for understanding the configuration and operation showing the features of the present embodiment are shown, and some of the elements shown in FIG. 1 are omitted.
  • the power transmission coil 5 is divided into two partial power transmission coils 5a and 5b. Then, a plurality of power receiving side resonators 4a and 4b having partial power receiving coils 7a and 7b, respectively, are arranged while the magnetic lines of force 15 and 15a are formed.
  • each of the power receiving side resonators 4a and 4b is arranged while the magnetic lines of force 15 and 15a are kept substantially parallel to each other, the characteristics of the power receiving side resonators 4a and 4b are less dependent on the change in the distance and the change in the arrangement.
  • a good contactless power transmission system can be constructed.
  • the diameter of the power receiving coil 7a is configured to be smaller than the diameter of the power transmission coil 5a, the coupling coefficient with the partial power transmission coils 5a and 5b can be kept low, so that the influence on the entire resonance system can be suppressed. Therefore, even if a plurality of power receiving side resonators are arranged, the amount of operation of the resonance variable capacitor 6 can be suppressed, so that a non-contact power transmission system that is easy to control can be constructed.
  • a power transmission system can be constructed.
  • FIG. 5 is a circuit diagram showing a configuration of a magnetic field resonance type non-contact power transmission apparatus according to the fourth embodiment.
  • components having the same reference numerals as those described in the above-described embodiments are components having the same action.
  • FIG. 5 shows only the elements necessary for understanding the configuration and operation showing the features of this embodiment, and some of the elements shown in FIG. 1 are omitted.
  • the power transmission coil 5 is divided into two so that the lines of magnetic force are kept substantially parallel, and a plurality of power receiving side resonators that are less dependent on changes in distance and changes in arrangement A contactless power transmission system is presented.
  • the present embodiment relates to a method for obtaining a similar effect by another configuration.
  • a magnetic field is generated as an electric field in the resonance capacitor of the resonance circuit or an external magnetic force line generated from the resonance coil.
  • a relay resonator 16 that is not connected to the power transmission side resonator 3 is arranged on the opposite side of the power transmission side resonator 3 with the power reception side resonator 4 interposed therebetween.
  • the relay resonator 16 includes a resonance coil 17 and a resonance capacitor 18.
  • the resonance variable capacitor 6 is adjusted as described above, the peak of the frequency characteristic is shifted to the high frequency f0 generated by the high frequency power generation circuit 9.
  • a resonance current flows through a resonance circuit constituted by the resonance capacitor 18 and the resonance coil 17 of the relay resonator 16, and magnetic lines 19 and 19a are generated.
  • the power receiving resonator 4 When the power receiving resonator 4 is arranged in such a magnetic field, the behavior is exactly the same as that of the second embodiment shown in FIG. Transmission is possible. And the wiring which connects the partial power transmission coils 5a and 5b like FIG. 3 is unnecessary, it becomes possible to reduce cost, improving a usability, and a favorable non-contact electric power transmission system can be constructed
  • FIG. 6 is a circuit diagram showing a configuration of the magnetic field resonance type non-contact power transmission apparatus according to the fifth embodiment.
  • components having the same reference numerals as those described in the above-described embodiments are components having the same action.
  • FIG. 6 shows only elements necessary for understanding the configuration and operation showing the features of the present embodiment, and some of the elements shown in FIG. 1 are omitted.
  • the resonance capacity of the resonator or an external It was shown that by storing energy in the magnetic field lines, the magnetic field lines 19 and 19a as shown in the figure are held during the resonance operation.
  • the present embodiment relates to a configuration that creates a region where a plurality of parallel lines of magnetic force are maintained by installing more resonant systems and placing them in a resonant relationship with each other.
  • relay resonators 16a and 16b are added.
  • the relay resonators 16a and 16b are constituted by resonance coils 17a and 17b and resonance capacitors 18a and 18b, respectively.
  • Magnetic field lines 20, 20a, 20b are linked to the resonance coil.
  • the resonance coils 17, 17 a and 17 b are arranged with respect to the power transmission coil 5.
  • the power transmission coil 5 and the resonance coil 17 are arranged so as to face each other, then the resonance coil 17a and the resonance coil 17b are arranged so as to face each other, and further, the two lines are arranged so as to be coupled to each other.
  • 20a and 20b are coupled to each other and resonated to transmit power.
  • the lines of magnetic force generated from the power transmission coil 5 start resonance at the high frequency f0 from the high frequency power generation circuit 9 by interlinking the resonance coils and adjusting the resonance variable capacitor 6.
  • the lines of magnetic force are linked between the power transmission coil 5 and the resonance coils 17, 17 a, 17 b, and coupled to resonate, thereby linking the partial power reception coils 7 a, 7 b placed in the magnetic field.
  • the power is also transmitted to the plurality of power receiving resonators arranged.
  • the resonance state is obtained by adjusting the variable capacitor, the resonance current flows and the power consumption increases. Therefore, the adjustment and control are performed based on the output of the circuit that detects the power consumption parameter. It is configured.
  • a detection method for judging a resonance state from the viewpoint of reflected power or transmitted power which is the basic of so-called S parameters, which is often used in microwave engineering or the like can be used. For example, the reflected power is observed, and if the reflected power is large, it is determined that no power is supplied to the resonance system. As a result, if the variable capacitor is adjusted to minimize the reflected power, resonance occurs and the power transmission efficiency can be improved.
  • a directional coupler is generally used, and in microwave engineering, measurement is mainly performed in a system having a characteristic impedance of 50 ⁇ .
  • the power consumption of the high-frequency power generation circuit is usually measured by measuring the power supply voltage and current of a circuit that is a direct current, with an inexpensive circuit configuration, low power loss, and high accuracy. Measurement is possible. Therefore, according to the configuration for measuring the power consumption parameter of the above-described embodiment, the power transmission circuit can be controlled by the measurement control circuit with less power loss, which is suitable for a low-cost and high-efficiency wireless power transmission system.
  • the magnetic resonance type non-contact power transmission apparatus in the sixth embodiment is configured by partially changing the elements of the apparatus shown in FIG.
  • the schematic diagram of the magnetic field lines is shown on the assumption that the surfaces of the resonance coils are parallel to each other. Changes in coupling coefficient due to changes in position and position. Therefore, if an initial adjustment capacitor is provided instead of the resonance variable capacitor 6 and the initial adjustment capacitor is adjusted first, the automatic adjustment by the resonance variable capacitor 6 is not required at the start of each power transmission. .
  • the peak of the resonance frequency characteristic of the transmission resonance system composed of the power transmission side resonator and the power reception side resonator matches the frequency of the high frequency power for power transmission supplied to the power transmission coil during power transmission.
  • the capacity of the initial adjustment capacitor can be set.
  • the power receiving side resonator is arranged in parallel magnetic field lines.
  • the power transmission coil 5 and the resonance coil 17 or the partial power transmission coil 5a and the partial power transmission coil are used. Since it can be easily realized by arranging 5b on both sides of the box so that the power receiving side coil is inserted therein, the detailed description is omitted.
  • a semi-fixed trimmer capacitor can be used as the initial adjustment capacitor.
  • a capacitor may be selected and mounted together with a capacity necessary for securing a mounting place where the capacitor itself can be additionally changed and adjusting variations and the like when manufacturing a non-contact power transmission device.
  • These specific values and the like vary depending on the inductance, capacitance, coupling coefficient, and the like that vary depending on the resonance coil and installation accuracy, but adjustments for adjusting them can be made within the scope of known techniques.
  • power transmission by magnetic field resonance can be satisfactorily and stably transmitted even when the arrangement of the power receiving device is changed or when the power receiving device is small, so that small devices such as mobile phones and hearing aids, TVs It is suitable for non-contact power transmission to electric vehicles and electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 送電コイル(5)と共振用容量(6)が構成する送電側共振器(3)及び高周波電力発生回路(9)を有する送電装置(1)と、受電コイル(7)と共振用容量(8)が構成する受電側共振器(4)を有する受電装置(2)とを備え、送電コイルと受電コイル間の電磁界結合を介して非接触で電力を伝送する装置。送電側の共振用容量は可変コンデンサにより構成され、送電コイルと可変コンデンサは高周波電力発生回路に直列に接続され、可変コンデンサの容量を変化させる共振周波数調整回路11を備える。共振周波数調整回路は、送電側共振器と受電側共振器で構成される伝送共振系の共振周波数特性を、可変コンデンサの容量を変化させることにより調整して、共振周波数特性のピークを送電コイルに供給される高周波電力の周波数に一致させる。送電コイルと受電コイルの配置による共振系の周波数応答特性の変化に対応して、伝送電力の低下を抑制できる。

Description

非接触電力伝送装置及び非接触電力伝送方法
 本発明は、送電コイルと受電コイル間の電力の伝送を、電磁界結合を介して非接触(ワイヤレス)で行う非接触電力伝送装置及び非接触電力伝送方法に関する。
 非接触で電力を伝送する方法として、電磁誘導(数100kHz)による電磁誘導型、及び電界または磁界共鳴を介したLC共振間伝送による電界・磁界共鳴型を含む電磁界結合を介した方法が知られている。また、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型も知られている。この中で既に実用化されているのは、電磁誘導型である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。
 そこで、最近になって近距離伝送(~2m)が可能な電界・磁界共鳴型の電力伝送が注目を浴びてきた。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる。この点から磁界共鳴型に対する注目度が上昇してきている。
 図10は、従来の磁界共鳴を利用して送電装置101から受電装置102へ電力を伝送する非接触電力伝送装置の構成例の概略を示した正面図である。送電装置101は、ループコイル103と共鳴コイル104を組み合わせた送電コイル105を備え、受電装置102は、ループコイル106と共鳴コイル107を組み合わせた受電コイル108を備えている。送電装置101のループコイル103には高周波電力ドライバー109が接続され、交流電源(AC100V)110の電力を送電可能な高周波電力に変換して供給する。受電装置102のループコイル106には、整流器111を介して負荷(例えば充電池)112が接続されている。
 ループコイル103は、高周波電力ドライバー109から供給される電気信号により励起され、電磁誘導により共鳴コイル104に電気信号を伝送する誘電素子である。共鳴コイル104はループコイル103から出力された電気信号に基づいて磁界を発生させる。この共鳴コイル104は、共振周波数f0=1/{2π(LC)1/2}(Lは送電側の共鳴コイル104のインダクタンスで、Cは浮遊容量を示す)において磁界強度が最大となる。共鳴コイル104に供給された電力は、磁界共鳴により受電装置102の共鳴コイル107に非接触で伝送される。伝送された電力は、共鳴コイル107から電磁誘導によりループコイル106へ伝送され、整流器111により整流されて負荷112に供給される。共鳴コイル104と共鳴コイル107の共振周波数は、同一に設定される。
 このような非接触で電力を送受電する場合、送電コイル105に対して受電コイル108が適正に載置されていないと、効率良く電力を伝送することができない場合が多い。また、携帯機器に受電装置102が設けられ、2次電池が搭載される場合には、受電コイル108と2次電池パックとの間に電磁波の影響を少なくするためにシールド材(電波吸収体含む)が挿入されていることが多い。このようなケースでは、携帯機器の受電コイル108が設置された面の裏表を間違って載置した時には、送電コイル105と受電コイル108との間にシールド材が介在することになり、伝送効率が大幅に低下し電力伝送が困難になる。そこで、特許文献1には、電力を供給する送電側の機器に対して受電側の機器のコイル設置面が正しく送電機器側に対向しているか否かを検出する表裏検出部(磁気センサ使用)を設け、対向していない場合には使用者に通知するようにした充電システムが開示されている。
 また、距離が離れた装置間で電力を伝送するエネルギー供給装置の例が、特許文献2に開示されている。特許文献2に開示された装置は、被験者が飲み込んだカプセル型内視鏡に、被験者の外部から電力を供給するものであり、被験者の外部に巻かれたコイルから、カプセル内のコイルに電磁誘導で電力を供給する。この装置は、複数のコイルからの給電を切換えることにより、体内を移動するカプセルの位置に対して好適な電力伝送を行うように構成されている。ただし、給電効率を上げるために磁界共鳴を利用することは記載されていない。
 この特許文献2のような体外からの電力供給において、受電側に共振回路を設けて伝送効率を上昇させることが特許文献3に記載されている。特許文献3の装置では、複数の受電側機器にそれぞれ別個の共振周波数を割り当てておき、送電側である体外に巻かれたコイルへ供給する供給電力の周波数を変更することにより、選択的に受信側機器に電力を供給する。同文献では、電力供給側のコイルとコンデンサからなる共振回路において、例えばコンデンサを容量可変とし、容量を変化させることにより供給周波数を変更する構成が用いられている。
特開2010-207017号公報 特開2009-125099号公報 特開2009-268181号公報
 ただし、特許文献3の発明では、送電側の共振回路と受電側の共振回路について、コイル間の相互インダクタンスによる影響、すなわち、2つの共振系が結合した場合の双峰特性に起因する問題点(後述する)は考慮されていない。これは、特許文献3が対象とする体外の給電用コイルとカプセル内の受電コイルでは、両コイルの直径が大幅に違い結合係数が非常に小さく、相互インダクタンスによる影響は考慮する必要が無かったためと考えられる。このことは、特許文献3では、受電側の共振回路での共振周波数は変化しないものとして説明されていることから明白である。
 しかし、大電力の伝送の場合、送電側及び受電側のコイルを大きくし、また、ある程度近い距離に配置する必要がある。そのため、結合係数も大きくなり、相対的な配置関係に応じて共振特性が変化する現象が生じ、共振周波数が固定されていることを前提とした構成を取ることは意味がなくなる。
 一方、上述のように、電磁誘導や磁界共鳴を利用して非接触で電力を送受電する場合、送電コイルに対して受電コイルが適正に配置されていないと、効率良く電力を伝送することができない場合が多い。すなわち、図10の構成で、4つのコイルが間隔をおいて並べられた形態が示されているように、送電側の共鳴コイル104と受電側の共鳴コイル107の共振周波数が同じで且つ高効率に電力伝送するためには、配置上の特定の条件を満足する必要があるからである。
 従って、種々の配置状態で電力伝送を行えるように、例えば、小型化のためにループコイル103を共鳴コイル104に密着させて配置する等の、実用化に際して望ましい構成を選択することは困難であった。何故ならば、特定の距離まで共鳴コイル104と共鳴コイル107とが離れて互いの結合係数が小さく、更に、ループコイル103による伝送のための結合も空間的に調整して配置する必要があるためである。
 以下、結合係数が大きい場合の問題点について、図7~図9Bを参照して説明する。図7は、左側に配置された送電側共振器と、右側に配置された受電側共振器の2つの共振器を有する共振系の一例を示す。
 送電側共振器は、送電コイル5、及び送電側の共振用容量である可変容量6(以下、共振用バリコンと略記する)、及び抵抗21から構成され、特定の周波数を発生する高周波電源22が接続されている。抵抗21は、高周波電源22の出力抵抗としても作用する。受電側共振器は、受電コイル7、受電側の共振用容量8、及び抵抗23を含む。抵抗23は、負荷抵抗としても作用する。結合係数24は、送電コイル5と受電コイル7が結合していることを示す。
 このような2つの共振回路をもつ回路を複共振回路と呼び、ラジオの複同調回路ではラジオ局間の分離度の向上等のために、従来から高周波回路の信号処理に利用されてきた。ただし、信号処理においては信号自体の電力が小さかったので、このような共振系を利用して、大きな電力を伝送すること、まして、2つの共振回路を離間させて、離れた距離から電力を伝送することに関しては、近年までは想定されていなかった。
 図7において、磁力線25は、送電コイル5と受電コイル7が結合しており、それぞれを共通な磁力線25が、各コイル5、7に鎖交していることを模式的に表している。このように鎖交する場合は磁界エネルギーを共有していると考えられ、送電コイル5で発生したエネルギーは受電コイル7を通じて受電側へと伝送できる。なお、コイルであるので、エネルギーの仲介に磁力線が利用されることが主であるが、コイル間には電場も形成されており、電気力線が互いを結んでおりコンデンサとしてエネルギーを伝送できることも勿論である。しかし、磁界による電力伝送が主であるので、磁界による挙動について説明する。
 図7の結合係数24により相互インダクタンスが現れ、それを等価回路で書き直すと図8の様に表すことができる。実際には、例えば、高周波電源22と抵抗23はDC的に直結していないが、交流的には図8のように書き表わせる。
 この等価回路において、24bは相互インダクタンスであり、結合係数24を決めれば、或いは送電コイル5と受電コイル7の配置等を決めれば決まる量である。また、新たなインダクタンス5c、7cは、次のようなインダクタンス分を持つ。
 インダクタンス5c=(送電コイル5単体のインダクタンス-相互インダクタンス24b)
 インダクタンス7c=(受電コイル7単体のインダクタンス-相互インダクタンス24b)
 以下、簡単のため、以下の条件を想定する。
(1)送電側と、受電側の容量が同一
(2)インダクタンス5c=インダクタンス7c
(3)共振用バリコン6のキャパシタンス=共振用容量8のキャパシタンス
(4)抵抗21の抵抗値=抵抗23の抵抗値、であり無視できるほどに小さい
(5)高周波電源22は理想的な電源であり、インピーダンスは0
 このような複共振回路では相互インダクタンスが大きく、結合係数が1に近い場合、2つの共振状態で共振する。一つは共振電流が相互インダクタンス24bを経由する共振モードであり、その共振電流の経路を26a、26bで示す。もう一つは相互インダクタンス24bを経由しない共振モードであり、その共振電流の経路を27で示す。
 先ず、相互インダクタンス24bを経由しない経路27の系では、2つの容量6、8の直列成分と2つのインダクタンス5c、7cの直列成分が繋がれた共振回路となる。共振用バリコン6のキャパシタンス=C、送電コイル5cのインダクタンス=L,相互インダクタンス24b=M、とすると、インダクタンス5c=L-Mとなる。この場合の共振周波数f2は、下記の式(1)で表わされる。
f2=1/{2×π×(2C×(L-M)/2)1/2
  =1/{2π(C・(L-M))1/2}     (1)
 次に、相互インダクタンス24bを経由する経路26a、または経路26bでは、2つの経路の挙動は全く同じとなり、送電コイル5と共振用バリコン6の結合部の電圧挙動と、受電コイル7と共振用容量8の結合部の電圧挙動は全く同一となるので、この2つの結合部を接続したものと考えることが出来る。その場合、共振周波数としては、共振用バリコン6と共振用容量8を並列接続にしたものと、インダクタンス5cとインダクタンス7cを並列接続したものと、相互インダクタンス24bの、3つの部品を直列接続した共振系となる。その共振周波数f1は、下記の式(2)で表わされる。
f1=1/{2×π×(2C×((L-M)/2+M))1/2
   =1/{2π(C・(L+M))1/2}     (2)
 2つの共振系が離れていて結合係数k=0の場合のそれぞれの周波数特性は、同一の素子値をもつので、高周波電源22から見た回路の共振周波数f0は、下記の式(3)で表わされる。
f0=1/{2π(C・L)1/2}   (3)
 受電系も同じ共振周波数をもつ。これを、図9Aに模式的に示す。横軸は周波数、縦軸は応答であり、例えば抵抗に発生する電圧の絶対値により得られる。同図で、実線は送電系の周波数特性であり、受電系の周波数特性も同じなので破線で模式的に示した。
 図9Aでは、高周波電源22から見た周波数応答は1つのピークを持つ単峰特性となるが、結合係数が1に近くなれば相互インダクタンスの影響が大きくなる。その場合、図9Bに示す周波数特性のように、2つの峰を持つ双峰特性となる。これは、先に算出した周波数f1、f2にそれぞれ位置する2つのピーク28a、29aを持つ。
 即ち、送電コイル5と受電コイル7を接近させると結合係数が0ではなくなり、相互インダクタンスMの影響が出現し双峰特性となり、元々の共振周波数f0から離れた2点でピークを持つ。逆に、コイル間の距離を離す等により結合係数が減少すれば、2つのピークが接近し単峰特性となる。更に距離が離れて、結合係数が減少すれば、単峰特性のままではあるが、磁力線の鎖交数が減っていくので電力を伝送する量が減少し、遂には電力伝送が不可となる。
 このように、送電コイル5と受電コイル7を近付けると双峰特性となるため、高周波電源22から元々のf0の周波数で電力を供給しても、その周波数は共振周波数ではなくなっており、応答が低下するため、伝送電力は低下することとなる。これは、コイル間の距離によって送電側からの電力供給の効率が変化することを意味する。これに対して、高周波電力の周波数は一定であるため、共振点から離れているので高効率の電力伝送が出来ない。しかし、法規により、高周波電力の周波数の可変は困難である。
 そこで、本発明は、送電コイルと受電コイルの配置による共振系の周波数応答特性の変化に対応して、伝送電力の低下を抑制することが可能な非接触電力伝送装置及び非接触電力伝送方法を提供することを目的とする。
 本発明の非接触電力伝送装置は、基本構成として、送電コイル及び共振用容量により構成された送電側共振器及び高周波電力発生回路を有する送電装置と、受電コイル及び共振用容量により構成された受電側共振器を有する受電装置とを備え、前記送電コイルと前記受電コイル間の電磁界結合を介して前記送電装置から前記受電装置へ電力を伝送する。
 上記課題を解決するために、本発明の非接触電力伝送装置は、上記基本構成において、前記送電側共振器の前記共振用容量は可変コンデンサにより構成され、前記送電コイルと前記可変コンデンサは前記高周波電力発生回路に直列に接続され、前記可変コンデンサの容量を変化させる共振周波数調整回路を備え、前記共振周波数調整回路は、電力伝送に際して、前記送電側共振器と前記受電側共振器で構成される伝送共振系の共振周波数特性を、前記可変コンデンサの容量を変化させることにより調整して、前記共振周波数特性のピークを前記送電コイルに供給される電力伝送用の高周波電力の周波数に一致させることを特徴とする。
 本発明の非接触電力伝送方法は、送電コイル及び共振用容量により構成された送電側共振器及び高周波電力発生回路を有する送電装置と、受電コイル及び共振用容量により構成された受電側共振器を有する受電装置とを用い、前記送電コイルと前記受電コイル間の電磁界結合を介して前記送電装置から前記受電装置へ電力を伝送する方法であって、前記送電側共振器の前記共振用容量を可変コンデンサにより構成し、前記送電コイルと前記可変コンデンサは前記高周波電力発生回路に直列に接続し、電力伝送に際して、前記送電側共振器と前記受電側共振器で構成される伝送共振系の共振周波数特性を、前記可変コンデンサの容量を変化させることにより調整して、前記共振周波数特性のピークを前記送電コイルに供給される電力伝送用の高周波電力の周波数に一致させることを特徴とする。
 本発明によれば、送電コイルと受電コイルの配置により周波数応答特性が変化し伝送電力が低下することがあっても、共振用可変コンデンサを調整して周波数応答特性自体をシフトさせ、高周波電力の固定された周波数に周波数応答特性のピークを移動させることができる。これにより、伝送電力を上昇させることが可能となり、配置依存性の少ない、使い勝手の優れた装置が得られる。
実施の形態1における非接触電力伝送装置の構成を示す模式図 同非接触電力伝送装置の動作を説明するための回路図 実施の形態2における非接触電力伝送装置の動作を説明するための回路図 実施の形態3における非接触電力伝送装置の動作を説明するための回路図 実施の形態4における非接触電力伝送装置の動作を説明するための回路図 実施の形態5における非接触電力伝送装置の動作を説明するための回路図 送電コイルと受電コイル間の磁界共鳴を介した非接触電力伝送装置の動作を説明するための回路図 同非接触電力伝送装置の動作を説明する等価回路図 同非接触電力伝送装置における2つの共振系が離れている場合の動作を説明する特性図 同非接触電力伝送装置における双峰特性の動作を説明する特性図 本発明の非接触電力伝送装置の動作を説明する特性図 従来例の非接触電力伝送システムの構成を示す模式図
 本発明の非接触電力伝送装置は、上記構成を基本として、以下のような態様を取ることができる。
 すなわち、前記送電コイルに供給される電力伝送用の高周波電力の大きさに対応する消費電力パラメータを検出する電力検出回路を更に備え、前記共振周波数調整回路は、検出された前記消費電力パラメータに基づき前記電力伝送用の高周波電力が極大となるように前記可変コンデンサの容量を変化させる構成とすることができる。
 これは、前記共振周波数調整回路により調整することで、複数の共振回路が結合している系にて共振状態に到達すると、共振系に共振電流が流れ高周波電力が消費されるため、電力検出回路の検出信号による制御が可能であることに基づく。
 また、上記いずれかの構成の装置において、前記送電コイルが互いに接続された複数の部分送電コイルに分割され、複数の前記部分送電コイルは相互間に受電空間を形成するように互いに対向して配置され、前記受電空間に前記受電コイルが配置されている構成とすることができる。
 また、中継コイルと共振用容量で構成され電力伝送を中継する中継用共振器を備え、前記送電コイルと前記中継コイルは相互間に受電空間を形成するように互いに対向し電磁的に結合するように配置され、前記受電空間に前記受電コイルが配置されている構成とすることができる。
 また、複数の前記受電装置と複数の前記中継用共振器を備え、複数の前記中継コイルどうしが対向して形成する受電空間にも、前記受電コイルが配置されている構成とすることができる。
 また、前記受電空間に、複数個の前記受電コイルを有する前記受電器が配置されている構成とすることができる。
 また、前記送電装置から前記受電装置への伝送特性が双峰特性を有する構成とすることができる。
 本発明の非接触電力伝送方法において、前記送電コイルに供給される電力伝送用の高周波電力の大きさに対応する消費電力パラメータを検出し、検出された前記消費電力パラメータに基づき前記電力伝送用の高周波電力が極大となるように前記可変コンデンサの容量を変化させることができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態の構成及び動作は、磁界共鳴型の非接触電力伝送装置の場合を例として記述されるが、電磁誘導も含めて、電磁界結合を介して非接触電力伝送を行う装置及び方法に対して同様に適用可能である。
 <実施の形態1>
 図1は、実施の形態1における磁界共鳴型の非接触電力伝送装置の構成を示すブロック図である。この非接触電力伝送装置は、送電装置1と受電装置2とを備え、送電装置1に含まれる送電側共振器3から受電装置2に含まれる受電側共振器4に、非接触で電力を伝送するように構成されている。
 送電側共振器3は、送電コイル5及び共振用バリコン6からなり、受電側共振器4は、受電コイル7及び共振用容量8からなる。なお、図1において、図7と同一の参照番号が付された構成要素は、同一の機能を有する構成要素である。例えば、送電コイル5及び共振用バリコン6は、図1ではブロックで記載され、図7では回路記号で記載されている表記の相違があるが、同一の機能を有する要素である。受電コイル7及び共振用容量8も同様である。
 送電装置1において、送電コイル5(送電側共振器3)には、伝送用の高周波電力を発生させる高周波電力発生回路9が接続されている。高周波電力発生回路9は、通常、固定周波数f0の高周波電力を発生させる。高周波電力発生回路9には、電力検出回路10が接続されている。電力検出回路10は、高周波電力発生回路9で消費される電力に対応する消費電力パラメータを検出する回路である。電力検出回路10による検出出力は共振周波数調整回路11に供給され、共振周波数調整回路11は、検出される消費電力パラメータに基づき、高周波電力発生回路9で消費される電力が極大になるように、共振用バリコン6の容量値を調整する。
 消費電力パラメータは、その検出値の大きさが、高周波電力発生回路9で消費される電力の大きさに対応するパラメータを意味する。消費電力パラメータとしては、高周波電力発生回路9が送電側共振器2に供給した電力、或いは、高周波電力発生回路9内で電力を生成する回路、例えば高周波電力増幅アンプ、或いは、電力を発生させるスイッチング回路に供給される直流電流の電流値等を用いることができる。
 受電装置2においては、図示は省略するが、受電コイル7に対向して2次コイル(図10のループコイル106と同様)が配置され、受電側共振器4で発生した高周波電力が2次コイルにより取り出される。2次コイルを介して取り出された高周波電力は検波回路12に供給されて、高周波電力から直流電力に変換されて出力端子13から出力される。
 上記構成によれば、共振周波数調整回路11により、電力伝送に際して、送電側共振器3と受電側共振器4で構成される共振系(以下、伝送共振系と称する)の共振周波数特性のピークを、高周波電力発生回路9が供給する電力伝送用の高周波電力の周波数に一致させる制御が行われる。すなわち、電力検出回路10で検出される消費電力パラメータが最大になるように共振用バリコン6を調整することは、伝送共振系の共振周波数特性のピークを、電力伝送用の高周波電力の周波数に一致させることに対応する。
 従って、送電コイル5と受電コイル7の配置により周波数応答が変化し伝送電力が低下することがあっても、周波数応答特性自体をシフトさせて、高周波電力の固定した周波数に周波数応答特性のピークを移動させることができる。これにより、伝送電力の低下を抑制することが可能となる。伝送共振系の周波数特性の特性曲線がピークの部分で、伝送される電力値や電流値がピークとなるので、最大値制御により、最も電力伝送量が増大するからである。
 伝送される電力値は、高周波電力発生回路9で消費される電流、電力に対応しているので、上記構成のように、例えば電流値をモニターしておき、その電流値を最大にするように制御すればよい。このように、共振周波数の調整は最大点追跡制御により行うことになり、制御回路を、マイコン等を利用して構成する場合は、これに従って制御ソフトを作成しインプリメントすれば、共振周波数調整の制御を行う装置を容易に構築できる。
 図2は、上記構成の非接触電力伝送装置の動作を説明するための回路図である。図1、図7の構成要素と同一の要素については、同一の参照番号を付して、説明の繰り返しを省略する。また、図1に示した電力検出回路10及び共振周波数調整回路11については、図示を省略する。図示はされていないが、電力検出回路10及び共振周波数調整回路11の動作により、共振用バリコン6は上述のように容量値が制御されるものとする。
 図2に於いて、磁力線14、14aは、送電コイル5と受電コイル7が結合していることを模式的に示したものである。この磁力線14、14aの鎖交数により、結合係数k、或いは相互インダクタンスMが変化し、送電側共振器3と受電側共振器4で構成される伝送共振系の周波数特性に双峰特性が現れることは上述した。
 共振周波数調整回路11(図1参照)は共振用バリコン6を調整し、図9Cに示すように、双峰特性の周波数の低いピーク28aを高周波側に移動させて、周波数f0に一致したピーク28bとなるように制御する。これにより、周波数f0での共振を得て、伝送電力の極大化を図ることが出来る。
 すなわち、共振用バリコン6のキャパシタンスを変更して、例えば減少させると、共振周波数f1を求めた上述の式(2)におけるCが減少し、共振周波数f1が高くなる。即ち周波数特性全体が高周波側へ移動する。この移動を移動量30で示すように制御することにより、高周波電力発生回路9の元々のピーク28aを、ピーク28bのように周波数f0に一致させる。これにより、伝送共振系は周波数f0でピークを持つようになり、周波数f0で共振することとなる。従って、送電コイル5と受電コイル7で共振する共振電流も増大し極大となるので、電力の伝送量も極大となり伝送効率が向上する。
 このような制御を行えば、種々の配置により双峰特性のピーク点が何処にあっても、共振用バリコン6により双峰特性全体をずらして、高周波電力発生回路9の発振周波数f0にピークを合わせることが可能となり、好適な電力伝送が可能となる。
 この双峰特性は2つのコイルの結合の程度で変化するので、電力伝送の開始や、伝送電力の変化や、一定周期毎、等を調整開始の開始点として、共振用バリコン6を調整すればよい。たとえば、受電側共振器4が、送電側共振器3から遠ざかる4Xで示す位置に移動した場合、磁力線の鎖交数が減少し、結合係数kが減少するので双峰特性のピーク間の距離が短くなり、周波数f1、f2の値も変化するので、それに応じて共振用バリコン6を制御する。
 なお、共振用バリコン6の容量制御は、一旦全ての可変範囲をサーチして、最大点に容量値を設定してもよいが、ウォブリング制御を行うことが望ましい。すなわち、その後の結合係数等の変化の追従のためには、一定の容量の変化、即ち、ウォブリングを起こして電力値や電流値の増大する変化方向を検知し、極大点の方向に容量を制御するウォブリング制御を行う。それにより、伝送電力の変動を少なくしつつ、よりスムーズに最大点制御を行うことができる。このような制御方法を実施するための回路等の構成は、周知の技術に基づいて容易に構築できるので、詳細な説明は省略する。
 <実施の形態2>
 図3は、実施の形態2における磁界共鳴型の非接触電力伝送装置の構成を示す回路図である。本実施の形態では、実施の形態1における送電コイル5が二つに分割されて、部分送電コイル5a、5bとなっており、相互に対面させて配置されている。部分送電コイル5a、5bの間に受電コイル7が配置される。なお、同図に於いて、実施の形態1で説明した構成要素と同一の参照符号を付したものは、同一の作用を持つ構成要素である。但し、図3では、本実施の形態の特徴を示す構成及び作用の理解に必要な要素のみを示し、図1に示した要素のうち一部の要素の図示が省略されている。
 分割された部分送電コイル5a、5bの間を通る磁力線15、15aが、模式的に表されている。2つの部分送電コイル5a、5bには同一の共振電流が流れるので、コイルの巻き線の方向を、磁力線15、15aの向きに合わせて構成しておく。また、このように分割する場合は、二つのコイル間の配線によるインダクタンス増加分などもあるので各送電コイルのインダクタンスを減少させるように構成し、送電側の共振周波数を分割前と同様に保つようにする。
 本実施の形態でも、2つの共振器3、4からなる伝送共振系のピークを、図1で示した共振周波数調整回路11により、高周波電力発生回路9が発生する電力伝送用の高周波電力の周波数f0に移動させることにより、実施の形態1と同様に伝送電力を最大にすることができる。
 なお、2つのコイルを接続する場合に、図3では直列に接続するように示したが、2つのコイルを並列に接続してもよい。その場合、2つのコイルを並列接続したものとコンデンサで共振回路を構成するので、2つのコイルには同位相の共振電流が流れる。従って、コイルの巻き線方向は同一方向で同一位相の磁界が出来るようにしておくことは言うまでもない。また、並列接続であるため、直列接続の場合に比べてインダクタンスが減少するので、共振用のコンデンサの値を増大させておく必要があるが、制御方法等は上述と同様であるので詳細は省略する。
 本実施の形態によれば、二つに分割した部分送電コイル5a、5bを配置することにより、その間の磁力線15、15aをほぼ平行に保つことができる。それにより、2つの部分送電コイル5a、5b間では、距離の変化や配置の変化への依存が少ない非接触電力伝送システムを構築できる。これについて、以下に説明する。
 図3の様に2つのコイルを対向させて配置し、ほぼ平行に保った磁力線の中では、受電コイル7が移動してもそのコイルに鎖交する磁力線の本数の変化が少なくなる。その為、相互インダクタンスの変化が少なくなり、それにより結合係数の変化が抑えられて双峰特性の形の変化も少なくなる。従って、距離の変化や配置の変化への依存性が少なくなり、バリコン6の変化も少なくて済むようになる。
 ただし、これは、受電側コイル7の面が、部分送電コイル5a、5bの面と平行に近く保ちつつ移動した場合であり、受電側コイル7の面が磁力線と直交する場合は磁力線の鎖交がなくなり、結合係数が0となり電力伝送が不可となることは言うまでない。このような場合は、受電側共振器4を磁界中に置いた際に、受電側コイル7の面が送電側コイルと対面するように受電側共振器4の外部形状を調整することにより、これを避けることが可能である。
 以上の様なことから、距離の変化や配置の変化による依存性が少なくなれば、一度、共振用バリコン6を調整して共振状態が得られた後は、受電コイル7の位置を動かしても共振用バリコン6の可変量を少なくできることが判る。更には、コイル径の設定や移動範囲制限を設ければ、最初にバリコン6の容量を調整するのみで、後は無調整化できることも可能である。
 <実施の形態3>
 図4は、実施の形態3における磁界共鳴型の非接触電力伝送装置の構成を示す回路図である。同図に於いて、上述の各実施の形態で説明した構成要素と同一の参照符号を付したものは、同一の作用を持つ構成要素である。但し、図4では、本実施の形態の特徴を示す構成及び作用の理解に必要な要素のみを示し、図1に示した要素のうち一部の要素の図示が省略されている。
 本実施の形態では、実施の形態2と同様に、送電コイル5を二つの部分送電コイル5a、5bに分割する。そして、磁力線15、15aが形成された中に、それぞれに部分受電コイル7a,7bを有する複数の受電側共振器4a、4bを配置する。
 それぞれの受電側共振器4a、4bは、磁力線15、15aがほぼ平行に保たれる中に配置されるため、距離の変化や配置の変化への依存が少ない特性となり、複数の受電側共振器に対する良好な非接触電力伝送システムを構築できる。
 また、受電コイル7aの径を送電コイル5aの径より小さく構成すれば、部分送電コイル5a、5bとの結合係数を低く抑えことができるので、全体の共振系に対する影響を抑えることが出来る。従って、複数の受電側共振器が配置されても、共振用バリコン6の動作量を抑えることが出来るので、制御しやすい非接触電力伝送システムを構築できる。
 以上のように、磁界を利用した電力伝送の場合は、受電コイルが複数あっても、互いに鎖交していればどの受電コイルにも電力伝送が可能となり、これを利用してより実用的な電力伝送システムを構築可能となる。
 <実施の形態4>
 図5は、実施の形態4における磁界共鳴型の非接触電力伝送装置の構成を示す回路図である。同図に於いて、上述の各実施の形態で説明した構成要素と同一の参照符号を付したものは、同一の作用を持つ構成要素である。但し、図5では、本実施の形態の特徴を示す構成及び作用の理解に必要な要素のみを示し、図1に示した要素のうち一部の要素の図示が省略されている。
 実施の形態2、3では、送電コイル5を二つに分割して、磁力線がほぼ平行に保たれるように構成し、距離の変化や配置の変化への依存が少ない複数の受電側共振器に対する非接触電力伝送システムを示した。これに対して、本実施の形態は、他の構成により同様の効果を得るための方法に関するものである。
 共振回路を複数持つ系で、互いに共振する場合、受電側にQの高い共振回路を配置すれば、共振回路の共振用容量の中に電界として、或いは、共振コイルから発せられる外部の磁力線に磁界として、相互にエネルギーを蓄えることにより、外部に強い磁界を継続的に発生できる。
 図5の構成では、受電側共振器4を挟んで送電側共振器3の反対側に、送電側共振器3とは接続されていない中継用共振器16が配置される。中継用共振器16は、共振コイル17、及び共振用容量18により構成される。送電コイル5に共振電流が流れて磁界が発生し、その磁力線19、19aが共振コイル17と鎖交すると、2つの共振器による複同調回路となる。
 この場合、2つの共振器の共振条件を満たすと、即ち、先に説明したように共振用バリコン6を調整して、高周波電力発生回路9の発生する高周波の周波数f0に周波数特性のピーク移動させるように調整すると、中継用共振器16の共振用容量18と共振コイル17で構成される共振回路に共振電流が流れ、磁力線19、19aが発生する。
 このような磁界の中に、受電側共振器4を配置すると、図3に示した実施の形態2の場合と全く同様な挙動を示し、受電側共振器4の位置や場所によらず電力の伝送が可能である。しかも、図3のような部分送電コイル5a、5bを接続する配線は不要であり、使い勝手を向上させつつ低コスト化が可能となり、良好な非接触電力伝送システムを構築できる。
 <実施の形態5>
 図6は、実施の形態5における磁界共鳴型の非接触電力伝送装置の構成を示す回路図である。同図に於いて、上述の各実施の形態で説明した構成要素と同一の参照符号を付したものは、同一の作用を持つ構成要素である。但し、図6では、本実施の形態の特徴を示す構成及び作用の理解に必要な要素のみを示し、図1に示した要素のうち一部の要素の図示が省略されている。
 図5に示した実施の形態4では、2つの共振系で互いに共振する場合に、受電側に共振器のQの高い共振系を配置すれば、共振器の共振用容量内、或いは、外部の磁力線に相互にエネルギーを蓄えることにより、同図に示すような磁力線19、19aが共振動作中は保持されることを示した。本実施の形態は、更に多くの共振系を設置し、互いに共振関係に置くことにより、複数の平行な磁力線が保たれる領域を創出する構成に関するものである。
 図6の構成では、中継用共振器16a、16bが追加されている。中継用共振器16a、16bはそれぞれ、共振コイル17a、17b、共振用容量18a、18bにより構成される。磁力線20、20a、20bが共振コイルに鎖交する。
 この構成では、送電コイル5に対して、共振コイル17、17a、17bが配置されている。先ず、送電コイル5と共振コイル17を対面して配置し、次に、共振コイル17aと共振コイル17bを対面して配置し、更に2つの組どうしを結合するように配置することにより、磁力線20、20a、20bにより互いに結合し、共振させ、電力の伝送を行わせるものである。
 元々、送電コイル5から発せられた磁力線は、各共振コイルを鎖交し、かつ、共振用バリコン6を調整することにより、高周波電力発生回路9からの高周波の周波数f0で共振を開始する。
 このように、送電コイル5と、共振コイル17、17a、17bの間で磁力線が鎖交し、結合して共振することにより、磁界中におかれた部分受電コイル7a,7bにも鎖交し、配置された複数の受電側共振器にも電力が伝送される。
 このような構成により、各コイル間の配線が不要で、また、受電側共振器の配置の自由度もある、低コストで使い勝手の良好な非接触電力伝送システムを構築できる。
 以上の各実施の形態に関して説明した構成に基づき、別の観点からの低コスト化や簡略化を達成するための改良について、以下に説明する。
 先ず、上述の各実施の形態では、可変コンデンサの調整により共振状態になれば、共振電流が流れて消費電力が増大するので、消費電力パラメータを検出する回路の出力に基づき調整、制御するように構成されている。これに対して、他の検出方法により構成することも可能である。一例としては、マイクロ波工学等でよく使用されている、いわゆるSパラメータの基本となる反射電力や透過電力の観点から共振状態を判断する検出方法を用いることができる。例えば、反射電力を観測し、反射電力が大きい場合は共振系に電力が供給されていないものと判断する。その結果、反射電力を最小にするように可変コンデンサを調整すれば、共振が発生して電力伝送効率を向上させることが出来る。
 但し、このような反射電力を測定する為には、方向性結合器を使用するのが一般的であり、マイクロ波工学では特性インピーダンスが50Ωの系での測定が主に行われる。
 しかし、電力の伝送を考える場合、高周波電力発生回路では出来るだけ出力インピーダンスの低い素子を用いて、回路でのロスを低くする必要がある。その為、通常、回路の出力インピーダンスは非常に低いものとなり、方向性結合器を構成する場合、反射電力の測定回路を含め、ロスの少ない回路設計が求められることになる。
 さらに、方向性結合器を使う場合、正確な検出値を得ようとするほど、入力電力、出力電力、反射電力等のポートではインピーダンス整合を取る必要があり、それによる電力ロスが増大し、高効率な電力伝送に適したシステムとは言い難くなる。
 これに対し、高周波電力発生回路の消費電力を測定することは、通常、直流である回路の電源電圧、電流を測定すればよく、安価な回路構成で且つ電力損失が少なく、更には高精度な測定が可能となる。従って、上述の実施の形態の消費電力パラメータを計測する構成によれば、電力損失が少ない計測制御回路で電力伝送回路を制御できることとなり、低コストで高効率な無線電力伝送システムに好適である。
 <実施の形態6>
 実施の形態6における磁界共鳴型の非接触電力伝送装置は、図3等に示した装置の要素を一部変更することにより構成されるので、図示は省略する。
 実施の形態2から実施の形態5に於いて、共振コイルの互いの面が平行であることを前提として磁力線の模式図を示したが、このような磁力線の中では、受電側共振器の距離の変化や位置の変化による結合係数の変化が少なくなる。従って、共振用バリコン6の代わりに、初期調整用コンデンサを設け、最初に初期調整用コンデンサを調整しておけば、毎回の電力伝送開始に於いて、共振用バリコン6による自動調整の必要が無くなる。
 すなわち、送電側共振器と受電側共振器で構成される伝送共振系の共振周波数特性のピークが、電力伝送に際して、送電コイルに供給される電力伝送用の高周波電力の周波数に一致するように、初期調整用コンデンサの容量が設定された構成とすることができる。
 この為には、平行な磁力線の中に受電側共振器を配置するような構造上の工夫が必要となるが、例えば、送電用コイル5と共振コイル17、或いは部分送電コイル5aと部分送電コイル5bを箱の両側に配置して、その中に受電側コイルが入るような構造とすれば容易に実現できるので、詳細についての記述は省略する。
 初期調整用コンデンサとしては、半固定のトリマーコンデンサを使用することができる。あるいは、コンデンサ自体を追加変更できる搭載場所を確保し、非接触電力伝送装置を製造する場合のバラツキ等を調整するために必要な容量分と共に、コンデンサを選択し搭載してもよい。これらの具体的な値等は、共振コイルや設置精度に依存して変化するインダクタンスやキャパシタンス、結合係数等で変化するが、それに適合させるための調整は、周知の技術の範囲で可能である。
 本発明によれば、磁界共鳴による電力伝送を、受電装置の配置が変化しても、或いは受電装置が小さい場合においても良好かつ安定に電力伝送できるので、携帯電話や補聴器等の小型機器、TVや電気自動車などへの非接触電力伝送に好適である。
1 送電装置
2 受電装置
3 送電側共振器
4 受電側共振器
5 送電コイル
5a、5b 部分送電コイル
5c、7c インダクタンス
6 共振用バリコン
7 受電コイル
7a、7b 部分受電コイル
8、18、18a、18b 共振用容量
9 高周波電力発生回路
10 電力検出回路
11 共振周波数調整回路
12 検波回路
13 出力端子
14、14a、15、15a、19、19a、20、20a、20b、25 磁力線
16、16a、16b 中継用共振器
17、17a、17b 共振コイル
21、23 抵抗
22 高周波電源
24 結合係数
24b 相互インダクタンス
26a、26b、27 経路
28a、28b、29a、29b ピーク
30 移動量

Claims (9)

  1.  送電コイル及び共振用容量により構成された送電側共振器及び高周波電力発生回路を有する送電装置と、
     受電コイル及び共振用容量により構成された受電側共振器を有する受電装置とを備え、
     前記送電コイルと前記受電コイル間の電磁界結合を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
     前記送電側共振器の前記共振用容量は可変コンデンサにより構成され、
     前記送電コイルと前記可変コンデンサは前記高周波電力発生回路に直列に接続され、
     前記可変コンデンサの容量を変化させる共振周波数調整回路を備え、
     前記共振周波数調整回路は、電力伝送に際して、前記送電側共振器と前記受電側共振器で構成される伝送共振系の共振周波数特性を、前記可変コンデンサの容量を変化させることにより調整して、前記共振周波数特性のピークを前記送電コイルに供給される電力伝送用の高周波電力の周波数に一致させることを特徴とする非接触電力伝送装置。
  2.  前記送電コイルに供給される電力伝送用の高周波電力の大きさに対応する消費電力パラメータを検出する電力検出回路を更に備え、
     前記共振周波数調整回路は、検出された前記消費電力パラメータに基づき前記電力伝送用の高周波電力が極大となるように前記可変コンデンサの容量を変化させる請求項1に記載の非接触電力伝送装置。
  3.  前記送電コイルが互いに接続された複数の部分送電コイルに分割され、複数の前記部分送電コイルは相互間に受電空間を形成するように互いに対向して配置され、前記受電空間に前記受電コイルが配置されている請求項1または2に記載の非接触電力伝送装置。
  4.  共振コイルと共振用容量で構成され電力伝送を中継する中継用共振器を備え、
     前記送電コイルと前記中継コイルは相互間に受電空間を形成するように互いに対向し電磁界結合するように配置され、
     前記受電空間に前記受電コイルが配置されている請求項1または2に記載の非接触電力伝送装置。
  5.  複数の前記受電装置と複数の前記中継用共振器を備え、
     複数の前記中継コイルどうしが対向して形成する受電空間にも、前記受電コイルが配置されている請求項4に記載の非接触電力伝送装置。
  6.  前記受電空間に、複数個の前記受電コイルを有する前記受電器が配置されている請求項3~5のいずれか1項に記載の非接触電力伝送装置。
  7.  前記送電装置から前記受電装置への伝送特性が双峰特性を有する請求項1~6のいずれか1項に記載の非接触電力伝送装置。
  8.  送電コイル及び共振用容量により構成された送電側共振器及び高周波電力発生回路を有する送電装置と、受電コイル及び共振用容量により構成された受電側共振器を有する受電装置とを用い、前記送電コイルと前記受電コイル間の電磁界結合を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送方法において、
     前記送電側共振器の前記共振用容量を可変コンデンサにより構成し、
     前記送電コイルと前記可変コンデンサは前記高周波電力発生回路に直列に接続し、
     電力伝送に際して、前記送電側共振器と前記受電側共振器で構成される伝送共振系の共振周波数特性を、前記可変コンデンサの容量を変化させることにより調整して、前記共振周波数特性のピークを前記送電コイルに供給される電力伝送用の高周波電力の周波数に一致させることを特徴とする非接触電力伝送方法。
  9.  前記送電コイルに供給される電力伝送用の高周波電力の大きさに対応する消費電力パラメータを検出し、
     検出された前記消費電力パラメータに基づき前記電力伝送用の高周波電力が極大となるように前記可変コンデンサの容量を変化させる請求項8に記載の非接触電力伝送方法。
PCT/JP2012/072604 2011-10-07 2012-09-05 非接触電力伝送装置及び非接触電力伝送方法 WO2013051361A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011222796A JP5801154B2 (ja) 2011-10-07 2011-10-07 非接触電力伝送装置及び非接触電力伝送方法
JP2011-222796 2011-10-07
JP2015122167A JP6009043B2 (ja) 2011-10-07 2015-06-17 非接触電力伝送装置

Publications (1)

Publication Number Publication Date
WO2013051361A1 true WO2013051361A1 (ja) 2013-04-11

Family

ID=56976844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072604 WO2013051361A1 (ja) 2011-10-07 2012-09-05 非接触電力伝送装置及び非接触電力伝送方法

Country Status (2)

Country Link
JP (2) JP5801154B2 (ja)
WO (1) WO2013051361A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501059A (zh) * 2013-09-27 2014-01-08 重庆大学 电场耦合式能量信号并行无线传输系统
JP2015076896A (ja) * 2013-10-04 2015-04-20 新電元工業株式会社 非接触給電システム
CN106537801A (zh) * 2014-07-18 2017-03-22 迪睿合株式会社 非接触通信装置、天线电路、天线驱动装置、非接触供电装置、电子设备、调谐方法、发现方法和实现这些方法的程序
US10141783B2 (en) 2014-07-07 2018-11-27 Kabushiki Kaisha Toshiba Transmitting device, receiving device, and power transmission system
CN113054759A (zh) * 2021-03-31 2021-06-29 维沃移动通信有限公司 无线电能接收装置、无线充电系统和电子设备
EP4080529A4 (en) * 2019-12-17 2023-05-24 Denso Corporation DEVICE FOR CONTACTLESS POWER SUPPLY

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116157B2 (ja) * 2012-08-22 2017-04-19 株式会社リューテック 機器給電装置、体内機器給電装置及び体内機器給電方法
JP6220609B2 (ja) * 2013-09-11 2017-10-25 シャープ株式会社 充電回路
JP6183671B2 (ja) * 2014-01-07 2017-08-23 パナソニックIpマネジメント株式会社 非接触給電装置の制御方法及び非接触給電装置
JP6176547B2 (ja) * 2014-01-07 2017-08-09 パナソニックIpマネジメント株式会社 非接触給電装置及び非接触給電装置の始動方法
CN104810935A (zh) * 2015-05-12 2015-07-29 南京信息工程大学 一种谐振耦合式无线电能多载传输方法
WO2017042962A1 (ja) * 2015-09-11 2017-03-16 中国電力株式会社 送電装置、給電システム
JP2017103860A (ja) * 2015-11-30 2017-06-08 オムロン株式会社 非接触給電装置
JP6108040B1 (ja) * 2016-02-16 2017-04-05 中国電力株式会社 無線給電測定装置、無線給電測定方法
JP6579009B2 (ja) * 2016-03-22 2019-09-25 Tdk株式会社 ワイヤレス電力伝送システム
CN111033940B (zh) 2017-03-07 2023-11-14 鲍尔马特技术有限公司 用于无线电力充电的系统
CN110785912B (zh) * 2017-03-07 2024-05-14 鲍尔马特技术有限公司 用于无线电力充电的系统
JP7124846B2 (ja) * 2019-07-25 2022-08-24 株式会社デンソー 非接触給電システム
CN114175452A (zh) * 2019-07-25 2022-03-11 株式会社电装 非接触供电系统
JP2021061698A (ja) * 2019-10-08 2021-04-15 大井電気株式会社 非接触給電装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159456A (ja) * 2002-11-07 2004-06-03 Iden Videotronics:Kk エネルギー供給装置
JP2010130800A (ja) * 2008-11-28 2010-06-10 Nagano Japan Radio Co 非接触型電力伝送システム
JP2010233442A (ja) * 2009-03-06 2010-10-14 Nissan Motor Co Ltd 非接触電力供給装置及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240098A (ja) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd 給電システム及び給電装置
CN102362408B (zh) * 2009-03-30 2015-01-21 富士通株式会社 无线供电系统、无线送电装置及无线受电装置
JP5387201B2 (ja) * 2009-07-23 2014-01-15 ソニー株式会社 非接触給電システム、非接触中継装置、非接触受電装置および非接触給電方法
JP2011050140A (ja) * 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
JP5526795B2 (ja) * 2010-01-15 2014-06-18 ソニー株式会社 ワイヤレス給電システム
JP2011151989A (ja) * 2010-01-22 2011-08-04 Sony Corp ワイヤレス給電装置およびワイヤレス給電システム
JP2011160505A (ja) * 2010-01-29 2011-08-18 Sony Corp ワイヤレス充電装置およびワイヤレス充電システム
MX2012009085A (es) * 2010-02-10 2012-12-17 Fujitsu Ltd Metodo de control de frecuencia resonante, dspositvos de transmision de potencia electrica, dispositivo de recuperacion de potencia electrica en sistema de transmision de potencia tipo resonante magnetico.
JP5211088B2 (ja) * 2010-02-12 2013-06-12 トヨタ自動車株式会社 給電装置および車両給電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159456A (ja) * 2002-11-07 2004-06-03 Iden Videotronics:Kk エネルギー供給装置
JP2010130800A (ja) * 2008-11-28 2010-06-10 Nagano Japan Radio Co 非接触型電力伝送システム
JP2010233442A (ja) * 2009-03-06 2010-10-14 Nissan Motor Co Ltd 非接触電力供給装置及び方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501059A (zh) * 2013-09-27 2014-01-08 重庆大学 电场耦合式能量信号并行无线传输系统
JP2015076896A (ja) * 2013-10-04 2015-04-20 新電元工業株式会社 非接触給電システム
US10141783B2 (en) 2014-07-07 2018-11-27 Kabushiki Kaisha Toshiba Transmitting device, receiving device, and power transmission system
CN106537801A (zh) * 2014-07-18 2017-03-22 迪睿合株式会社 非接触通信装置、天线电路、天线驱动装置、非接触供电装置、电子设备、调谐方法、发现方法和实现这些方法的程序
CN106537801B (zh) * 2014-07-18 2021-04-27 迪睿合株式会社 通信装置、电路、驱动装置、供电装置和调谐及发现方法
EP4080529A4 (en) * 2019-12-17 2023-05-24 Denso Corporation DEVICE FOR CONTACTLESS POWER SUPPLY
CN113054759A (zh) * 2021-03-31 2021-06-29 维沃移动通信有限公司 无线电能接收装置、无线充电系统和电子设备

Also Published As

Publication number Publication date
JP6009043B2 (ja) 2016-10-19
JP5801154B2 (ja) 2015-10-28
JP2013085350A (ja) 2013-05-09
JP2015164398A (ja) 2015-09-10

Similar Documents

Publication Publication Date Title
JP6009043B2 (ja) 非接触電力伝送装置
JP5365306B2 (ja) 無線電力供給システム
US8482159B2 (en) Wireless power apparatus and wireless power-receiving method
JP5580333B2 (ja) 無線電力伝送装置
KR101480658B1 (ko) 로컬 컴퓨팅 환경 내의 무선 전력 이용
US9425629B2 (en) Wireless power receiver
KR101697364B1 (ko) 공진 주파수 안정화 회로를 구비한 무선 전력 송수신 장치
US20110133569A1 (en) Wireless power transmission device and wireless power reception device
EP2413451B1 (en) Wireless feeding system
WO2011033660A1 (ja) 無線電力伝送装置
KR20130033867A (ko) 무선 전력 전송 시스템
CN104054229A (zh) 无线电力接收机系统
US20140035386A1 (en) Wireless power supply system
US20230016332A1 (en) Wireless power feeding system having tuning adjustment circuit
WO2018111416A1 (en) A charging pad and a method for charging one or more receiver devices
KR20140128469A (ko) 무선 전력 송신 장치, 무선 전력 수신 장치, 및 무선 전력 전송 시스템
KR20150039809A (ko) 무선 전력 전송 장치 및 무선 전력 전송 장치의 전력 공급 방법
JP2012034524A (ja) 無線電力伝送装置
KR20140094779A (ko) 무선 전력 송신기
JP2015109762A (ja) 非接触電力伝送装置及び非接触電力伝送方法
JP2015136274A (ja) 非接触電力伝送装置
KR101946848B1 (ko) 무선 전력 수신기
JP2013081331A (ja) 非接触電力伝送装置
KR20150055755A (ko) 공명 전력 신호 및 유도 전력 신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치 및 이를 포함하는 하이브리드 무선 전력 전송 시스템
KR102150521B1 (ko) 유도 전력 신호 및 공명 전력 신호를 송수신할 수 있는 무선 전력 전송 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838896

Country of ref document: EP

Kind code of ref document: A1