WO2013047423A1 - 蒸気タービン - Google Patents

蒸気タービン Download PDF

Info

Publication number
WO2013047423A1
WO2013047423A1 PCT/JP2012/074366 JP2012074366W WO2013047423A1 WO 2013047423 A1 WO2013047423 A1 WO 2013047423A1 JP 2012074366 W JP2012074366 W JP 2012074366W WO 2013047423 A1 WO2013047423 A1 WO 2013047423A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
drive mechanism
closing drive
steam turbine
steam
Prior art date
Application number
PCT/JP2012/074366
Other languages
English (en)
French (fr)
Inventor
誠 片懸
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to EP12836140.9A priority Critical patent/EP2765276A4/en
Priority to CN201280046096.4A priority patent/CN103827447B/zh
Priority to US14/346,992 priority patent/US9638054B2/en
Publication of WO2013047423A1 publication Critical patent/WO2013047423A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/106Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • F05D2260/57Kinematic linkage, i.e. transmission of position using servos, independent actuators, etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/90Braking
    • F05D2260/903Braking using electrical or magnetic forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/40Type of control system
    • F05D2270/46Type of control system redundant, i.e. failsafe operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/62Electrical actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements

Definitions

  • the present invention relates to a steam turbine that is rotationally driven by steam.
  • the steam turbine is used for driving a machine or the like, and includes a turbine body having a rotor that is rotatably supported. The rotor is rotationally driven by supplying steam as a working fluid to the turbine body.
  • steam supplied to the turbine body or steam extracted from the turbine body flows through the steam flow path.
  • An adjustment valve is provided in the steam flow path, and the adjustment valve adjusts the flow rate of the steam by adjusting the opening and closing of the steam flow path.
  • a hydraulic servo mechanism is widely used to drive the adjustment valve (see, for example, Patent Document 1).
  • FIG. 11 is a schematic diagram showing a configuration of a conventional steam turbine 80.
  • the steam turbine 80 includes a turbine body 81 that drives the compressor, a steam passage 82 that supplies steam to the turbine body 81, an adjustment valve 83 that is provided in the steam passage 82 and adjusts opening and closing thereof, and rotation A lever member 84 that is supported and fixed at one end of the adjustment valve 83, a hydraulic servo mechanism 85 that drives the adjustment valve 83 via the lever member 84, and a rotational speed and operation panel detected by the turbine body 81.
  • an electronic governor 86 for controlling the operation of the hydraulic servomechanism 85 based on the instruction inputted from the above.
  • the hydraulic servo mechanism 85 includes a piston 87 whose one end is fixed to the lever member 84, a hydraulic cylinder 88 that houses the piston 87, and a pilot that supplies hydraulic oil to the hydraulic cylinder 88. It has a valve 89 and an actuator 90 that drives the pilot valve 89.
  • the hydraulic servo mechanism 85 configured as described above, when the hydraulic oil is supplied from the pilot valve 89 to the lower side of the piston 87 in the hydraulic cylinder 88, the piston 87 moves upward, whereby the lever member 84 is moved. It rotates to raise its tip. Thereby, the regulating valve 83 fixed to the lever member 84 is also raised, and the steam passage 82 is opened, whereby steam is supplied from the steam passage 82 to the turbine body 81.
  • FIG. 12 is a schematic perspective view showing an installed state of the conventional hydraulic servomechanism 85.
  • FIG. Usually, most of the equipment installation space in the equipment building is occupied by the machine to be driven and the turbine body.
  • the hydraulic servo mechanism 85 requires a space below the lever member 84 for the convenience of operating the lever member 84 up and down. However, since most of the installation space is occupied by the machine to be driven and the turbine body as described above, it is difficult for only the hydraulic servo mechanism 85 to occupy the space below the lever member 84.
  • the bearing cover 91 accommodates a bearing that serves to rotatably support the rotating shaft that forms the rotor of the turbine body 81.
  • the use of oil as the working fluid of the hydraulic servo mechanism 85 provides a large output and quick response, but a relatively high hydraulic pressure is required, so that the hydraulic cylinder 88 and various pipes can withstand the hydraulic pressure. Only sufficient strength is required. As a result, there is a problem that the overall size and weight of the steam turbine 80 are increased, and the cost is increased due to an increase in material costs.
  • the steam turbine 80 is continuously operated for a long time. Therefore, the packing that seals each part of the hydraulic servo mechanism 85 may deteriorate over time, and the joint that connects each part of the hydraulic servo mechanism 85 may also loosen over time. For this reason, it is necessary to take measures to prevent leakage of hydraulic oil due to these, and to take fire prevention measures. Therefore, a mechanism that reliably drives the regulating valve 83 without being affected by the long-term operation of the steam turbine 80 is required.
  • the hydraulic servomechanism 85 has its pilot valve 89 and actuator 90 installed on the bearing cover 91 as shown in FIG. Therefore, every time the bearing cover 91 is opened to perform maintenance work on a bearing (not shown) accommodated in the bearing cover 91, the pilot valve 89 and the actuator 90 are separated from the lever member 84, and then they are removed. The operation
  • the hydraulic oil supplied to the hydraulic servo mechanism 85 requires a high hydraulic pressure although the amount of oil is small compared to the oil supplied to the bearing. Therefore, the oil console that manages the oil for the hydraulic servo mechanism 85 and the oil for the bearing collectively boosts the oil of the entire flow rate to the high hydraulic pressure for the hydraulic servo mechanism 85 and then reduces the pressure to the low hydraulic pressure for the bearing. It is a line to do. As a result, the oil console requires a high-power pump and motor, which increases the cost and increases the size and weight of the steam turbine 80 as a whole.
  • the present invention provides a steam turbine in which a regulating valve for regulating the amount of steam can be driven stably over a long period of time, and the opening / closing drive mechanism of the regulating valve does not interfere with the maintenance work of the bearing.
  • a steam turbine includes a turbine body having blades that are rotatably supported, a steam passage that is connected to the turbine body and through which steam flows, and the steam flow by linearly moving.
  • An adjustment valve that adjusts the opening and closing of the road; and an opening and closing drive mechanism that drives the adjustment valve, wherein the opening and closing drive mechanism rotates the electric motor that is supplied with electric power and rotates the electric motor.
  • a conversion mechanism that converts the linear motion of the valve; and a brake that operates by regenerative energy of the electric motor.
  • the adjustment valve can be opened and closed by converting rotation by the electric motor into linear motion by the conversion mechanism. For this reason, a hydraulic servo mechanism becomes unnecessary, and means for preventing leakage of hydraulic oil becomes unnecessary. Further, since an actuator for supplying hydraulic oil, a valve mechanism for sealing, and the like are not required, it is not necessary to use the space above the bearing cover as an installation space. In addition, since the hydraulic oil can be used only for the bearing, the pressure can be relatively low, and the oil console can be downsized. Here, when the power supply to the electric motor is stopped, the regulating valve operates in a direction forcibly closing by the mechanical means.
  • the conversion mechanism converts the linear motion that operates in the direction of closing the regulating valve into the rotational motion, and the electric motor rotates in the direction opposite to the rotational direction during normal driving.
  • the opening / closing drive mechanism includes a brake that is operated by regenerative energy of the electric motor. For this reason, when the electric power supply to the electric motor is stopped and the electric motor rotates in the reverse direction, regenerative energy is generated in the electric motor, and the brake is operated using this regenerative energy as power. For this reason, it is suppressed that the rotational speed of an electric motor becomes excessive. As a result, it is possible to prevent the occurrence of seizing due to excessive heat generated in the conversion mechanism that converts the rotational motion of the electric motor into the linear motion of the regulating valve.
  • the conversion mechanism includes a ball screw that is rotationally driven by the electric motor, a nut that is screwed to the ball screw and connected to the adjustment valve, May be provided.
  • the nut screwed to the ball screw moves linearly along the ball screw, and the adjusting valve connected to the nut also moves linearly.
  • the rotational motion of the electric motor can be converted into the linear motion of the regulating valve with a simple configuration of the ball screw and the nut.
  • the installation space can be reduced by using a simple configuration for the opening / closing drive mechanism.
  • the nut moves linearly in the corresponding direction by operating in the direction in which the regulating valve is closed, whereby the ball screw and the ball screw to which the nut is screwed are connected.
  • the motor rotates in the direction opposite to the direction of rotation for forcibly normal driving. At this time, since the rotation of the electric motor is limited by the brake, even if the ball screw is rotated by the linear motion of the nut, it is possible to prevent the ball screw and the nut from being seized.
  • the electric motor may be accommodated in a motor accommodating portion whose inside is sealed.
  • the steam turbine according to the fourth aspect of the present invention may further include a preliminary opening / closing drive mechanism that drives the adjustment valve when the opening / closing drive mechanism fails.
  • the preliminary opening / closing drive mechanism drives the regulating valve instead, so that the steam turbine can be continuously operated.
  • the steam turbine can be operated with high reliability.
  • the steam turbine according to the fifth aspect of the present invention may further include a controller unit that controls the operation of the opening / closing drive mechanism or the preliminary opening / closing drive mechanism.
  • the configuration of the steam turbine can be simplified by controlling the operations of the open / close drive mechanism and the preliminary open / close drive mechanism with the common controller unit.
  • the steam turbine according to the sixth aspect of the present invention may further include a spare controller unit that controls the operation of the opening / closing drive mechanism or the spare opening / closing drive mechanism when the controller unit fails.
  • the spare controller unit controls the operation of the opening / closing drive mechanism or the spare opening / closing drive mechanism instead, so that the steam turbine can be continuously operated. As a result, the steam turbine can be operated with high reliability.
  • the brake is fixed when the peripheral speed of the ball screw exceeds a threshold value or when the supply of electric power to the electric motor is stopped. It may operate for hours only.
  • the brake when electric power is supplied to the electric motor during normal operation, the brake operates only when the peripheral speed of the ball screw becomes excessive, so that the rotational speed of the electric motor is reduced. It is suppressed. As a result, it is possible to prevent occurrence of seizing due to excessive heat generated in the conversion mechanism.
  • the steam turbine according to an eighth aspect of the present invention further includes a coupling that detachably connects the nut and the regulating valve, and a lock mechanism that locks the regulating valve so as not to move. Also good.
  • the opening / closing drive mechanism when a failure or the like occurs in the opening / closing drive mechanism and the replacement becomes necessary, after the steam flow path is opened, the adjustment valve is locked by the lock mechanism so that the cup cannot be moved. Disconnect the ring and release the connection between the nut and the regulating valve. Accordingly, the opening / closing drive mechanism can be removed and replaced or repaired while the operation of the steam turbine is continued.
  • the steam turbine according to the ninth aspect of the present invention includes an auxiliary opening / closing drive mechanism that drives the adjustment valve together with the opening / closing drive mechanism when a large output exceeding a reference value is required for driving the adjustment valve. Furthermore, you may provide.
  • the regulating valve when a large output is required to drive the regulating valve, such as when opening of the steam flow path is started, the regulating valve is configured using both the opening / closing driving mechanism and the auxiliary opening / closing driving mechanism. Drive.
  • the adjustment valve when a large output is not required for driving the adjustment valve, such as during steady operation or when the steam flow path is closed, the adjustment valve may be driven only by the opening / closing drive mechanism. In this way, energy can be saved by driving the regulating valve with a necessary output according to the operating state.
  • the steam turbine of the present invention it is possible to stably drive the regulating valve for adjusting the steam amount over a long period of time, and the opening / closing drive mechanism of the regulating valve does not interfere with the maintenance work of the bearing.
  • FIG. 1 is a schematic diagram illustrating a configuration of a steam turbine 10 according to the first embodiment.
  • the steam turbine 10 of the present embodiment includes a turbine main body 11, a steam flow path 12, an adjustment valve 13, a lever member 14, an opening / closing drive mechanism 15, and a lock mechanism 16 (see FIGS. 4 and 4). 6) and an electronic governor 17 are provided.
  • the turbine body 11 includes a cylindrical casing 111, a bearing 112 provided in the casing 111, a rotor 113 rotatably supported by the bearing 112 and disposed inside the casing 111, And a speed detection sensor 114 that detects the rotational speed of the rotor 113.
  • the rotor 113 includes a rotating shaft 115 and a blade 116 fixed to the rotating shaft 115. The blade 116 configured in this manner is rotated by steam, and the compressor 18 is driven by the rotational force.
  • the steam flow path 12 serves to supply steam to the turbine body 11. As shown in FIG. 1, the steam is introduced from the steam inlet 121 into the steam channel 12, and the steam supply port 122 is connected to the turbine body 11. Further, between the steam introduction port 121 and the steam supply port 122, a throttle hole 123 whose channel width is narrowed is provided.
  • steam channel a channel through which steam supplied to the turbine main body 11 flows will be described as an example.
  • the steam channel 12 is not limited to this, for example, from the turbine main body 11 It may be a flow path through which the extracted steam flows.
  • the regulating valve 13 plays a role of regulating the amount of steam supplied to the turbine body 11.
  • a substantially semicircular sealing member 132 is provided at one end of a rod-shaped arm member 131, and the other end of the arm member 131 is connected to the lever member 14. It is fixed to the middle part in the longitudinal direction.
  • the sealing member 132 at the tip thereof is placed in the throttle hole 123 of the steam flow path 12. Mates or separates. Thereby, the opening diameter of the throttle hole 123 is changed, and the flow rate of the steam supplied to the turbine body 11 through the throttle hole 123 is changed.
  • the lever member 14 plays a role of transmitting the output of the opening / closing drive mechanism 15 to the adjustment valve 13.
  • the longitudinal base end portion of the lever member 14 is rotatably supported, and one end portion of the lever side rod 19 is fixed to the longitudinal distal end portion.
  • the other end portion of the arm member 131 constituting the adjustment valve 13 is fixed to the middle portion in the longitudinal direction of the lever member 14.
  • one end of a tension spring 20 as a forced closing means for forcibly closing the adjustment valve 13 is attached to the distal end side of the lever member 14 from the fixed position of the arm member 131.
  • the other end is fixed so as not to move, and when no external force is applied, the tension spring 20 pulls the lever member 14 in a direction in which the lever member 14 is rotated counterclockwise in FIG. 1. Is granted.
  • the opening / closing drive mechanism 15 plays a role of driving the adjustment valve 13. As shown in FIG. 1, the opening / closing drive mechanism 15 is held by a pair of brackets 21 fixedly installed, a holding member 22 rotatably supported by the brackets 21, and the holding member 22. And an electric actuator 23.
  • FIG. 2 is a schematic perspective view showing the periphery of the opening / closing drive mechanism 15.
  • the pair of brackets 21 constituting the opening / closing drive mechanism 15 has a substantially L-shaped cross section, and is fixed and installed on a pedestal 25 provided close to the bearing cover 24.
  • the bearing cover 24 accommodates the bearing 112 that serves to rotatably support the rotating shaft 115 of the rotor 113 shown in FIG.
  • the holding member 22 constituting the opening / closing drive mechanism 15 plays a role of holding the electric actuator 23.
  • the holding member 22 has a substantially U shape in a side view and is rotatably supported by the pair of brackets 21.
  • FIG. 3 is a schematic cross-sectional view showing the internal configuration of the electric actuator 23.
  • the electric actuator 23 includes an electric motor 26, a conversion mechanism 27, and a brake 28.
  • the electric motor 26 rotates upon receiving power. As shown in FIG. 3A, the electric motor 26 is housed in a motor housing portion 29 that is provided at the base end portion of the electric actuator 23 and is sealed inside. Thereby, the explosion-proof structure is formed by isolating the electric motor 26 from the oil existing around it.
  • the conversion mechanism 27 plays a role of converting the rotational motion of the electric motor 26 into the linear motion of the regulating valve 13. As shown in FIG. 3A, the conversion mechanism 27 includes a ball screw 30 connected to the drive shaft of the electric motor 26 and a piston unit 31 that moves forward and backward as the ball screw 30 rotates.
  • the ball screw 30 is a long screw member, and a male screw is cut on the outer peripheral surface thereof.
  • One end of the ball screw 30 is connected to the drive shaft of the electric motor 26, and the ball screw 30 is driven to rotate as the electric motor 26 rotates.
  • the piston unit 31 reciprocates along the ball screw 30.
  • the piston unit 31 is a member having a substantially annular shape, and has a nut 311 in which an internal thread is cut and screwed into a ball screw 30, and the nut 311.
  • a cylindrical piston rod 312 that is fixed to one end surface of the ball screw 30 and covers the outside of the ball screw 30; a rod end connector 313 fitted and attached to the tip of the piston rod 312; and the rod end connector 313 And an actuator-side rod 314 having one end portion in the longitudinal direction fixed thereto.
  • the piston unit 31 configured in this way, when the ball screw 30 rotates around the axis, the nut 311 screwed to the ball screw 30 moves along the axis as shown in FIG.
  • the piston rod 312, the rod end connector 313, and the actuator side rod 314 fixed to the nut 311 also move along the axis of the ball screw 30 together with the nut 311.
  • the brake 28 is a so-called regenerative brake. As shown in FIG. 3A, the brake 28 is provided at a position opposite to the ball screw 30 with the electric motor 26 interposed therebetween, and is operated by regenerative energy of the electric motor 26 to brake the rotation of the electric motor 26. Multiply.
  • the operation of the brake 28 is controlled by the electronic governor 17 shown in FIG. More specifically, when the peripheral speed of the ball screw 30 exceeds the threshold value, the electronic governor 17 brakes the rotation of the electric motor 26 by operating the brake 28. In addition, when the supply of power to the electric motor 26 is stopped due to a power failure or the like, the electronic governor 17 operates the brake 28 for a certain time from the stop of the power supply, thereby braking the rotation of the electric motor 26.
  • FIG. 4 is a schematic perspective view showing the periphery of the electric actuator 23.
  • the electric actuator 23 configured as described above is fixed to the holding member 22, and the actuator-side rod 314 is inserted into the holding member 22.
  • the actuator side rod 314 is connected to the lever side rod 19 via the coupling 32.
  • the electric actuator 23 installed in this manner is in a state in which slight rotation is allowed with the position where the bracket 21 supports the holding member 22 as a fulcrum.
  • FIG. 5 is a schematic front view showing the configuration of the coupling 32.
  • the coupling 32 is a substantially cylindrical member, and has a screw hole 321 formed on one end face and a rod insertion hole 322 formed on the other end face.
  • the fixing bolt 315 attached to the actuator side rod 314 is screwed into the screw hole 321 of the coupling 32 so that the coupling 32 and the actuator side rod 314 are connected.
  • the lever side rod 19 is inserted into the rod insertion hole 322 of the coupling 32, and the two pins 33 orthogonal to each other are inserted, whereby the coupling 32 and the lever side rod 19 are connected. Thereby, the actuator side rod 314 and the lever side rod 19 are connected via the coupling 32. Further, by removing the two pins 33, the lever side rod 19 can be extracted from the rod insertion hole 322, and thereby the connection between the actuator side rod 314 and the lever side rod 19 can be released.
  • FIG. 6 is a schematic plan view showing the configuration of the lock mechanism 16.
  • the lock mechanism 16 includes a support bar 161 having a lower end fixed and extending upward, a holding plate 162 supported by the support bar 161 and extending in the horizontal direction, and a pair of fixing bolts. And a pressing member 164 that can be attached to and detached from the distal end portion of the holding plate 162 via 163.
  • a fitting groove 162 a having a substantially semicircular shape in plan view is formed at the tip of the holding plate 162.
  • a substantially triangular notch 164a is formed on the side of the pressing member 164 facing the holding plate 162 in a plan view.
  • the pressing member 164 is applied to the distal end portion of the holding plate 162 using the fixing bolt 163. Fix it. Thereby, the lever side rod 19 is locked so as not to move by being sandwiched between the holding plate 162 and the pressing member 164.
  • the electronic governor 17 controls the operation of the opening / closing drive mechanism 15. As shown in FIG. 1, a process control result is input to the electronic governor 17 based on the pressure and temperature detection results in the compressor 18. Further, the rotation speed of the blade 116 detected by the speed detection sensor 114 constituting the turbine body 11 is input to the electronic governor 17. Further, an instruction from the user input from the operation panel 34 is input to the electronic governor 17. Based on these inputs, the electronic governor 17 controls the operation of the opening / closing drive mechanism 15, more specifically, the operation of the electric motor 26 constituting the electric actuator 23.
  • FIG. 7 is a schematic diagram showing control of the electric actuator 23 for the steam turbine 10 according to the first embodiment.
  • the controller unit 35 controls the operation of the electric actuator 23 based on the control by the electronic governor 17.
  • the controller unit 35 includes a controller 351 and a servo drive 352. According to such a configuration, under the control of the electronic governor 17, the controller 351 issues a command for the rotational speed to the servo drive 352, and the servo drive 352 applies power to the electric motor 26 based on this command. .
  • the rotational speed, current value, temperature of each part, etc. detected in the electric motor 26 are input to the controller 351 via the servo drive 352.
  • the controller 351 notifies the electronic governor 17 that a serious or minor failure has occurred in the electric motor 26.
  • the opening / closing drive mechanism 15 for driving the regulating valve 13 has a brake 28 that is actuated by regenerative energy of the electric motor 26 to brake its rotation.
  • the lever member 14 that has received the pulling force of the pulling spring 20 rotates counterclockwise in FIG. 13 closes the steam flow path 12.
  • the conversion mechanism 27 converts this linear movement into a rotational movement, whereby the electric motor 26 rotates in the normal driving direction. And rotate in the opposite direction.
  • the electric actuator 23 constituting the opening / closing drive mechanism 15 includes a brake 28 that is operated by regenerative energy of the electric motor 26. For this reason, when the power supply to the electric motor 26 is stopped and the electric motor 26 rotates in the reverse direction, the electric motor 26 rotates in the reverse direction to generate regenerative energy, and the brake 28 is driven by this regenerative energy as power. Will be activated. For this reason, it is suppressed that the rotational speed of the electric motor 26 becomes excessive. As a result, it is possible to prevent occurrence of seizing due to excessive heat generated in the conversion mechanism 27 that converts the rotational motion of the electric motor 26 into the linear motion of the regulating valve 13.
  • the electric actuator 23 using the electric motor 26 as a drive source is used as the opening / closing drive mechanism 15 that drives the regulating valve 13. Therefore, the hydraulic servo mechanism 85 conventionally used for driving the regulating valve 13 is not required, and means for preventing the hydraulic oil from leaking is not required. Further, since an actuator for supplying hydraulic oil (actuator 90 shown in FIG. 12), a valve mechanism for sealing, etc. (pilot valve 89 shown in FIG. 12) is not required, the space above the bearing cover 24 is opened and closed. It is not necessary to use as 15 installation spaces. Thereby, it is not necessary to remove the opening / closing drive mechanism 15 from the top of the bearing cover 24 every time maintenance work of the bearing 112 is performed, and labor required for maintenance work of the bearing 112 can be reduced.
  • the hydraulic oil is used only for the bearing 112 shown in FIG. 1, it can be at a relatively low pressure. This eliminates the need for a high-output pump or motor, and allows the oil console to be downsized.
  • a lateral force acting on the electric actuator 23 that is, a force in a direction substantially orthogonal to the axial direction of the ball screw 30 is released, so that a broken line in FIG. As shown, the electric actuator 23 is in a state where slight rotation is allowed. If it demonstrates in detail, since the lever member 14 shown in FIG. 1 will rotate using the base end part as a fulcrum, the front-end
  • the lever side rod 19 and the actuator side rod 314 are detachably connected via the coupling 32, and the lever side rod 19 is moved using the lock mechanism 16. It can be locked impossible. According to such a configuration, when the electric actuator 23 has a failure or the like and needs to be replaced, after the lever-side rod 19 is locked by the lock mechanism 16 in a state where the adjustment valve 13 opens the steam flow path 12, Then, the coupling 32 is disconnected and the connection between the lever side rod 19 and the actuator side rod 314 is released. As a result, the electric actuator 23 can be removed and replaced or repaired while the operation of the turbine body 11 is continued.
  • FIG. 8 is a schematic diagram showing control of the electric actuator 23 for the steam turbine 40 according to the second embodiment.
  • the steam turbine 40 of this embodiment is different from the steam turbine 40 of the first embodiment shown in FIG. 7 in that the opening / closing drive mechanism 15 and the controller unit 35 are made redundant. Since the other configuration is the same as that of the first embodiment, the same reference numerals as those in FIG.
  • the steam turbine 40 includes not only the opening / closing drive mechanism 15 but also a preliminary opening / closing drive mechanism 41 as means for driving the regulating valve 13.
  • the preliminary opening / closing drive mechanism 41 drives the regulating valve 13 instead.
  • the steam turbine 40 includes not only the controller unit 35 but also a spare controller unit 42 as means for controlling the operation of the opening / closing drive mechanism 15 or the spare opening / closing drive mechanism 41.
  • the spare controller unit 42 controls the operation of the opening / closing drive mechanism 15 or the spare opening / closing drive mechanism 41 instead.
  • both the opening / closing drive mechanism 15 and the controller unit 35 are made redundant.
  • the present invention is not limited to this, and only the opening / closing drive mechanism 15 can be made redundant.
  • the operations of both the opening / closing drive mechanism 15 and the preliminary opening / closing drive mechanism 41 may be controlled by a single controller unit 35. Further, it is possible to make only the controller unit 35 redundant. In this case, the operation of the single opening / closing drive mechanism 15 may be controlled by either the controller unit 35 or the spare controller unit 42.
  • FIG. 9 is a schematic perspective view showing the periphery of the tip of the lever member 14 in the steam turbine 50 according to the third embodiment.
  • the steam turbine 50 of the present embodiment further includes an auxiliary opening / closing drive mechanism 51 in addition to the opening / closing drive mechanism 15 as means for driving the regulating valve 13. Is different.
  • the structure of the auxiliary opening / closing drive mechanism 51 is the same as that of the opening / closing drive mechanism 15, the same reference numerals are given to the same members, and the description thereof is omitted.
  • Other configurations are the same as those in the first embodiment, and thus the same reference numerals are given and description thereof is omitted here.
  • one end of the first lever side rod 52 is fixed to one side of the lever member 14, and one end of the second lever side rod 53 is fixed to the other side. The part is fixed.
  • the other end of the first lever side rod 52 is connected to the actuator side rod 314 of the opening / closing drive mechanism 15 via the coupling 32.
  • the other end of the second lever side rod 53 is connected to the actuator side rod 511 of the auxiliary opening / closing drive mechanism 51 via the coupling 32.
  • FIG. 10 is a diagram for explaining the effect of the steam turbine 50 according to the third embodiment, in which the horizontal axis indicates the lift of the lever, that is, the lift amount, and the vertical axis indicates the output required for driving the regulating valve 13.
  • the steam turbine 50 normally has a plurality of regulating valves 13, and the regulating valves 13 have different output magnitudes necessary for driving them. Further, the necessary output in each of the regulating valves 13 needs to be the maximum when the regulating valve 13 starts to open the steam passage 12, and the necessary output gradually decreases as the operation proceeds to the steady operation. .
  • the reason why the maximum output is required when the opening of the steam flow path 12 is started is that the lever member 14 needs to be pushed up against the pulling force of the pulling spring 20 shown in FIG.
  • the opening / closing drive mechanism 15 and the auxiliary opening / closing drive mechanism 51 are properly used according to the required output.
  • the first regulating valve (not shown) starts the opening operation of the steam flow path 12 at the point O shown in FIG. 10, an output of approximately 95% is necessary.
  • the first regulating valve 13 is driven using both of the mechanisms 51. After the output reaches approximately 95% at point A, the required output gradually decreases as the operation proceeds to steady operation, and after the output exceeds approximately 70% of the predetermined reference value, The auxiliary opening / closing drive mechanism 51 is stopped and the first adjustment valve 13 is driven using only the opening / closing drive mechanism 15.
  • the present invention relates to a steam turbine that is rotationally driven by steam.
  • the adjustment valve for adjusting the amount of steam can be driven stably over a long period of time, and the opening / closing drive mechanism of the adjustment valve does not disturb the maintenance work of the bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Turbines (AREA)
  • Transmission Devices (AREA)

Abstract

 この蒸気タービン(10)は、回転可能に支持されたブレードを有するタービン本体(11)と、前記タービン本体に接続されて蒸気が流通する蒸気流路(12)と、直線運動することで前記蒸気流路の開閉を調整する調整弁(13)と、前記調整弁を駆動する開閉駆動機構(15)と、を備え、前記開閉駆動機構が、電力が供給されて回転する電動モータと、前記電動モータの回転運動を前記調整弁の直線運動に変換する変換機構と、前記電動モータの回生エネルギーによって作動するブレーキと、を備える。

Description

蒸気タービン
 本発明は、蒸気によって回転駆動する蒸気タービンに関する。
 本願は、2011年9月28日に出願された特願2011-211826号について優先権を主張し、その内容をここに援用する。
 蒸気タービンは、機械駆動用などに用いられ、回転可能に支持されたロータを有するタービン本体を備え、このタービン本体に対して作動流体としての蒸気が供給されることによってロータが回転駆動される。この蒸気タービンでは、タービン本体へ供給する蒸気やタービン本体から抽気した蒸気が蒸気流路を流れる。この蒸気流路には調整弁が設けられ、調整弁が蒸気流路の開閉を調整することによって蒸気の流量を調整する。この調整弁の駆動には、油圧サーボ機構が広く用いられている(例えば、特許文献1を参照)。
 ここで、図11は、従来の蒸気タービン80の構成を示す模式図である。蒸気タービン80は、圧縮機を駆動するタービン本体81と、このタービン本体81に蒸気を供給する蒸気流路82と、蒸気流路82に設けられてその開閉を調整する調整弁83と、回動可能に支持されて調整弁83の一端部が固定されたレバー部材84と、レバー部材84を介して調整弁83を駆動する油圧サーボ機構85と、タービン本体81で検出された回転速度や操作盤から入力された指示に基づいて油圧サーボ機構85の動作を制御する電子ガバナ86と、を備えるものである。
 ここで、油圧サーボ機構85は、図11に示すように、レバー部材84に一端部が固定されたピストン87と、ピストン87を収容する油圧シリンダ88と、油圧シリンダ88に作動油を供給するパイロット弁89と、パイロット弁89を駆動するアクチュエータ90とを有している。このように構成される油圧サーボ機構85によれば、油圧シリンダ88におけるピストン87より下側にパイロット弁89から作動油が供給されると、ピストン87が上方へ移動することにより、レバー部材84がその先端部を上昇させるように回動する。これにより、レバー部材84に固定された調整弁83も上昇し、蒸気流路82が開放されることにより、蒸気流路82からタービン本体81に蒸気が供給される。
 一方、油圧シリンダ88におけるピストン87より上側にパイロット弁89から作動油が供給されると、ピストン87が下方へ移動することにより、レバー部材84がその先端部を下降させるように回動する。これにより、レバー部材84に固定された調整弁83も下降し、蒸気流路82が閉止されることにより、蒸気流路82からタービン本体81への蒸気の供給が停止する。
 ここで、図12は、従来の油圧サーボ機構85の設置状態を示す概略斜視図である。通常、設備建屋内の設備設置スペースの大部分は、駆動対象の機械とタービン本体とで占められてしまう。油圧サーボ機構85は、そのレバー部材84を上下に操作する都合上、レバー部材84の下方にスペースを必要とする。しかしながら、上記のとおり設置スペースの大部分が駆動対象の機械とタービン本体で占められていることから、油圧サーボ機構85のみがレバー部材84の下方のスペースを占有することは困難である。このため、レバー部材84を直接操作するピストン87及び油圧シリンダ88を、レバー部材84の直下に配置しつつ、それ以外のパイロット弁89とアクチュエータ90とを、軸受カバー91の上に設置して、設置スペースを確保している。この軸受カバー91は、タービン本体81のロータを構成する回転軸を回転可能に支持する役割を果たす軸受を収容する。
特開平7-19006号公報
 しかし、特許文献1に記載されるように調整弁83の駆動に油圧サーボ機構85を用いる蒸気タービン80には、以下に示すような問題がある。
 まず、油圧サーボ機構85の作動流体として油を使用することで大出力や速い応答性が得られるが、比較的高い油圧が必要となるため、油圧シリンダ88や各種の配管には油圧に耐え得るだけの十分な強度が必要とされる。これにより、蒸気タービン80全体としての大型化や重量の増加を招くとともに、材料費の増加に伴うコストアップにもつながるという問題がある。
 また、蒸気タービン80は長期に渡って連続的に運転される。従って、油圧サーボ機構85の各部を封止するパッキンには、経年的な劣化が生じるおそれがあり、また、油圧サーボ機構85の各部を接続する継手にも経年的な緩みが生じるおそれがある。このため、これらに起因する作動油の漏れ出しを防止するための対策を講じる必要があり、また防火の対策を講じる必要がある。従って、蒸気タービン80の長期に渡る運転に影響を受けることなく、調整弁83を確実に駆動し続ける機構が要求される。
 更に、油圧サーボ機構85は、図12に示すように、そのパイロット弁89とアクチュエータ90とが軸受カバー91の上にそれぞれ設置される。従って、軸受カバー91の内部に収容された不図示の軸受の保守作業を行うために軸受カバー91を開放する度に、パイロット弁89及びアクチュエータ90をレバー部材84から切り離した後、それらを軸受カバー91の上から取り外す作業が必要となる。これにより、軸受の保守作業に多大な手間が掛かるという問題がある。
 また、油圧サーボ機構85に供給する作動油は、軸受に供給する油と比較すると、その油量は少ないものの、高い油圧が必要とされる。従って、油圧サーボ機構85用の油と軸受用の油とをまとめて管理する油コンソールは、全流量の油を油圧サーボ機構85用の高い油圧まで昇圧した後、軸受用の低い油圧へと減圧するラインになっている。これにより、油コンソールでは大出力のポンプ及びモータが必要となり、コストアップ及び蒸気タービン80全体としての大型化や重量の増加につながるという問題がある。
 本発明は、蒸気量を調整する調整弁の長期に渡る安定した駆動が可能であって、且つ、調整弁の開閉駆動機構が軸受の保守作業の邪魔にならない蒸気タービンを提供する。
 本発明の第一の態様に係る蒸気タービンは、回転可能に支持されたブレードを有するタービン本体と、前記タービン本体に接続されて蒸気が流通する蒸気流路と、直線運動することで前記蒸気流路の開閉を調整する調整弁と、前記調整弁を駆動する開閉駆動機構と、を備え、前記開閉駆動機構が、電力が供給されて回転する電動モータと、前記電動モータの回転運動を前記調整弁の直線運動に変換する変換機構と、前記電動モータの回生エネルギーによって作動するブレーキと、を備える。
 このような構成によれば、電動モータによる回転を変換機構で直線運動に変換することで、調整弁を開閉させることができる。このため、油圧サーボ機構が不要となり、作動油の漏れを防止する手段が不要となる。また、作動油を供給するアクチュエータや、封止する弁機構等が不要となるため、軸受カバーの上方のスペースを設置スペースとして利用する必要がなくなる。また、作動油は、軸受のみの利用とすることが可能となるため、比較的低圧とすることができ油コンソールの小型化を図ることができる。ここで、電動モータへの電力供給が停止した場合、調整弁は、機械的な手段によって強制的に閉塞する方向に動作する。これに応じて、変換機構は、調整弁を閉塞する方向に動作する直線運動を回転運動へと変換させ、電動モータは通常駆動する際の回転方向と逆方向に回転する。ここで、開閉駆動機構は電動モータの回生エネルギーによって作動するブレーキを備えている。このため、電動モータへの電力供給が停止して電動モータが逆方向に回転した場合、電動モータに回生エネルギーが発生し、この回生エネルギーを動力としてブレーキが作動することとなる。このため、電動モータの回転速度が過大になることが抑制される。これにより、電動モータの回転運動を調整弁の直線運動に変換する変換機構に過大な熱が発生して焼き付きが生じることを未然に防止することができる。
 また、本発明の第二の態様に係る蒸気タービンにおいては、前記変換機構が、前記電動モータによって回転駆動されるボールネジと、前記ボールネジに螺合されるとともに前記調整弁に接続されたナットと、を備えていてもよい。
 このような構成によれば、ボールネジの回転に伴ってそれに螺合されたナットがボールネジに沿った直線運動をし、このナットに接続された調整弁もまた直線運動をする。これにより、ボールネジとナットという簡略な構成によって、電動モータの回転運動を調整弁の直線運動に変換できる。また、開閉駆動機構を簡略な構成とすることにより、その設置スペースを削減できる。また、電動モータへの電力供給が停止した場合、調整弁が閉塞する方向に動作することで、ナットは対応する方向に直線運動し、これによりナットが螺合するボールネジとボールネジが接続された電動モータとは、強制的に通常駆動する際の回転方向と逆方向に回転する。この際、電動モータの回転はブレーキによって制限されることとなるから、ナットの直線運動によってボールネジが回転したとしても、ボールネジとナットとが焼き付いてしまうことを防止することができる。
 また、本発明の第三の態様に係る蒸気タービンにおいては、前記電動モータは、内部が密閉されたモータ収容部に収容されていてもよい。
 このような構成によれば、電動モータが周囲の油等と隔絶されるため、防爆構造にできる。
 また、本発明の第四の態様に係る蒸気タービンは、前記開閉駆動機構の故障時に前記調整弁を駆動する予備開閉駆動機構を更に備えていてもよい。
 このような構成によれば、開閉駆動機構の故障時にもこれに代わって予備開閉駆動機構が調整弁を駆動するので、蒸気タービンの連続運転が可能となる。これにより、信頼性の高い蒸気タービンの運転が可能となる。
 また、本発明の第五の態様に係る蒸気タービンは、前記開閉駆動機構または前記予備開閉駆動機構の動作を制御するコントローラユニットを更に備えていてもよい。
 このような構成によれば、開閉駆動機構と予備開閉駆動機構の動作を共通のコントローラユニットで制御することにより、蒸気タービンの構成を簡略化することができる。
 また、本発明の第六の態様に係る蒸気タービンは、前記コントローラユニットの故障時に、前記開閉駆動機構または前記予備開閉駆動機構の動作を制御する予備コントローラユニットを更に備えていてもよい。
 このような構成によれば、コントローラユニットの故障時にも、これに代わって予備コントローラユニットが開閉駆動機構または予備開閉駆動機構の動作を制御するので、蒸気タービンの連続運転が可能となる。これにより、信頼性の高い蒸気タービンの運転が可能となる。
 また、本発明の第七の態様に係る蒸気タービンにおいては、前記ブレーキは、前記ボールネジの周速が閾値を超えて大きくなった時、または前記電動モータに対する電力の供給が停止してから一定の時間だけ作動してもよい。
 このような構成によれば、通常運転時であって電動モータに電力が供給されている時は、ボールネジの周速が過大になった時のみブレーキが作動することにより、電動モータの回転速度が抑制される。これにより、変換機構において過大な熱が発生して焼き付きが生じることを未然に防止することができる。
 一方、停電時等であって電動モータに対する電力の供給が停止した時には、蒸気流路を閉止することで蒸気タービンを直ちに停止させるフェールセーフ機能が働く。そして、調整弁が閉止動作を開始した直後に、ボールネジの周速が大きくなる。従って、電力の供給が停止してから一定の時間だけブレーキを作動させて電動モータの回転速度を抑制することにより、変換機構において焼き付きが生じることを未然に防止することができる。更に、電力の供給が停止してから一定の時間が経過してボールネジの周速が低下した後には、ブレーキが停止することで調整弁による蒸気流路の閉止動作が迅速に行われる。これにより、蒸気流路の閉止が遅延することに起因して蒸気タービンの停止動作に危険が生じることを防止することができる。
 また、本発明の第八の態様に係る蒸気タービンは、前記ナットと前記調整弁とを切り離し可能に接続するカップリングと、前記調整弁を移動不能にロックするロック機構と、を更に備えていてもよい。
 このような構成によれば、開閉駆動機構に故障等が生じて交換が必要になった場合には、蒸気流路が開放された状態においてロック機構によって調整弁を移動不能にロックした後、カップリングを切り離してナットと調整弁との接続を解除する。これにより、蒸気タービンの運転を継続したまま、開閉駆動機構を取り外して交換または修理することができる。
 また、本発明の第九の態様に係る蒸気タービンは、前記調整弁の駆動に基準値を超えて大きな出力が必要な場合に、前記開閉駆動機構とともに前記調整弁を駆動する補助開閉駆動機構を更に備えていてもよい。
 このような構成によれば、蒸気流路の開放を開始する際のように調整弁の駆動に大きな出力が必要な場合には、開閉駆動機構と補助開閉駆動機構との両方を用いて調整弁を駆動する。一方、定常運転時や蒸気流路を閉止する際のように調整弁の駆動に大きな出力を必要としない場合には、開閉駆動機構のみで調整弁を駆動すればよい。このように、運転状態に応じて必要な出力で調整弁を駆動することにより、エネルギーの省力化を図ることができる。
 本発明に係る蒸気タービンによれば、蒸気量を調整する調整弁の長期に渡る安定した駆動が可能であって、且つ、調整弁の開閉駆動機構が軸受の保守作業の邪魔にならない。
本発明の第一実施形態に係る蒸気タービンの構成を示す模式図である。 開閉駆動機構の周辺を示す概略斜視図である。 電動アクチュエータの内部構成を示す概略断面図である。 電動アクチュエータの周辺を示す概略斜視図である。 カップリングの構成を示す概略正面図である。 ロック機構の構成を示す概略平面図である。 第一実施形態に係る蒸気タービンについて、電動アクチュエータの制御を示す模式図である。 第二実施形態に係る蒸気タービンについて、電動アクチュエータの制御を示す模式図である。 第三実施形態に係る蒸気タービンについて、レバー部材の先端部周辺を示す概略斜視図である。 第三実施形態に係る蒸気タービンの作用効果を説明する図である。 従来の蒸気タービンの構成を示す模式図である。 従来の油圧サーボ機構の設置状態を示す概略斜視図である。
(第一実施形態)
 以下、図面を参照し、本発明の実施の形態について説明する。まず、本発明の第一実施形態に係る蒸気タービンの構成について説明する。図1は、第一実施形態に係る蒸気タービン10の構成を示す模式図である。
 本実施形態の蒸気タービン10は、図1に示すように、タービン本体11と、蒸気流路12と、調整弁13と、レバー部材14と、開閉駆動機構15と、ロック機構16(図4及び図6に示す)と、電子ガバナ17と、を備える。
(タービン本体)
 タービン本体11は、図1に示すように、筒状のケーシング111と、ケーシング111に設けられた軸受112と、軸受112に回転可能に支持されてケーシング111内部に配されたロータ113と、このロータ113の回転速度を検出する速度検出センサ114と、を有している。ロータ113は、回転軸115と、この回転軸115に固定されたブレード116とを備えている。このように構成されるブレード116が蒸気により回転し、その回転力により、圧縮機18が駆動される。
(蒸気流路)
 蒸気流路12は、タービン本体11に対して蒸気を供給する役割を果たす。
この蒸気流路12には、図1に示すように、その蒸気導入口121から蒸気が導入されるとともに、その蒸気供給口122がタービン本体11に接続されている。また、蒸気導入口121と蒸気供給口122との間には、その流路幅が狭く絞られた絞り穴123が設けられている。
 本実施形態では、本発明に係る「蒸気流路」として、タービン本体11に供給する蒸気が流通する流路を例に説明するが、蒸気流路12はこれに限られず、例えばタービン本体11から抽気した蒸気が流通する流路であってもよい。
(調整弁)
 調整弁13は、タービン本体11に供給する蒸気の量を調整する役割を果たす。この調整弁13においては、図1に示すように、棒状のアーム部材131の一端部に略半円形状の封止部材132が設けられて、アーム部材131の他端部が前記レバー部材14の長手方向中間部に固定されている。このように構成される調整弁13によれば、蒸気流路12に沿ってアーム部材131が直線運動することに伴って、その先端部の封止部材132が蒸気流路12の絞り穴123に嵌合し、または離間する。これにより、絞り穴123の開口径が変化し、この絞り穴123を介してタービン本体11に供給される蒸気の流量が変化するようになっている。
(レバー部材)
 レバー部材14は、開閉駆動機構15の出力を調整弁13に伝達する役割を果たす。図1に示すように、このレバー部材14の長手方向基端部が回動可能に支持されるとともに、その長手方向先端部にはレバー側ロッド19の一端部が固定されている。また、前述のようにレバー部材14の長手方向中間部には、調整弁13を構成するアーム部材131の他端部が固定されている。更に、レバー部材14における前記アーム部材131の固定位置より先端側には、強制的に調整弁13を閉塞させる強制閉塞手段としての引きバネ20の一端が取り付けられている。この引きバネ20については、その他端が移動不能に固定され、外力が作用しない状態では、引きバネ20は、図1においてレバー部材14を反時計回りに回動させる方向へレバー部材14に引っ張り力を付与している。
(開閉駆動機構)
 開閉駆動機構15は、調整弁13を駆動する役割を果たす。この開閉駆動機構15は、図1に示すように、固定して設置された一対のブラケット21と、これらブラケット21によって回動可能に支持された保持部材22と、この保持部材22によって保持された電動アクチュエータ23と、を有している。
 図2は、開閉駆動機構15の周辺を示す概略斜視図である。図2ではタービン本体11等については図示を省略している。開閉駆動機構15を構成する一対のブラケット21は、断面略L字形状を有し、軸受カバー24に近接して設けられた台座25の上に固定されて設置されている。軸受カバー24は、図1に示すロータ113の回転軸115を回転可能に支持する役割を果たす軸受112を収容する。
 開閉駆動機構15を構成する保持部材22は、電動アクチュエータ23を保持する役割を果たす。この保持部材22は、図1及び図2に示すように、側面視で略U字形状を有し、前記一対のブラケット21によって回動可能に支持されている。
 開閉駆動機構15を構成する電動アクチュエータ23は、調整弁13を駆動するための駆動力を発生させる。図3は、電動アクチュエータ23の内部構成を示す概略断面図である。電動アクチュエータ23は、電動モータ26と、変換機構27と、ブレーキ28と、を備えている。
 電動モータ26は、電力の供給を受けて回転する。この電動モータ26は、図3(a)に示すように、電動アクチュエータ23の基端部に設けられて内部が密閉されたモータ収容部29に収容されている。これにより、電動モータ26が周囲に存在する油から隔絶されることにより、防爆構造が形成されている。
 変換機構27は、電動モータ26の回転運動を調整弁13の直線運動に変換する役割を果たす。この変換機構27は、図3(a)に示すように、電動モータ26の駆動軸に接続されたボールネジ30と、ボールネジ30の回転によって進退移動するピストンユニット31とを有している。
 ボールネジ30は、図3(a)に示すように、長尺なネジ部材であって、その外周面には雄ネジが切られている。このボールネジ30の一端部が電動モータ26の駆動軸に接続され、電動モータ26の回転に伴ってボールネジ30が回転駆動される。
 ピストンユニット31は、ボールネジ30に沿って往復動する。このピストンユニット31は、図3(a)に示すように、略円環形状を有する部材であって内周面に雌ネジが切られてボールネジ30に螺合されたナット311と、このナット311の一端面に固定されてボールネジ30の外側を覆う筒状のピストンロッド312と、このピストンロッド312の先端部に嵌合して装着されたロッドエンドコネクタ313と、このロッドエンドコネクタ313に対して長手方向一端部が固定されたアクチュエータ側ロッド314と、を有している。このように構成されるピストンユニット31によれば、ボールネジ30が軸線回りに回転すると、図3(b)に示すようにボールネジ30に螺合したナット311が軸線に沿って移動し、これに伴ってナット311に固定されたピストンロッド312、ロッドエンドコネクタ313、及びアクチュエータ側ロッド314も、ナット311と共にボールネジ30の軸線に沿って移動する。
 ブレーキ28は、いわゆる回生ブレーキである。このブレーキ28は、図3(a)に示すように、電動モータ26を挟んでボールネジ30と逆側の位置に設けられ、電動モータ26の回生エネルギーによって作動し、電動モータ26の回転に制動を掛ける。このブレーキ28の動作は、図1に示す電子ガバナ17によって制御されている。より詳細には、ボールネジ30の周速が閾値を超えて大きくなった場合に、電子ガバナ17はブレーキ28を作動させることにより、電動モータ26の回転に制動を掛ける。また、停電等によって電動モータ26に対する電力の供給が停止した場合に、電力の供給の停止から一定の時間だけ電子ガバナ17がブレーキ28を作動させることにより、電動モータ26の回転に制動を掛ける。
 図4は、電動アクチュエータ23の周辺を示す概略斜視図である。以上のように構成される電動アクチュエータ23は、保持部材22に固定されるとともに、アクチュエータ側ロッド314が保持部材22に挿通される。このアクチュエータ側ロッド314は、カップリング32を介して前記レバー側ロッド19に接続される。このように設置された電動アクチュエータ23は、図4に破線で示すように、ブラケット21が保持部材22を支持する位置を支点として、若干の回動が許容された状態となっている。
 図5は、カップリング32の構成を示す概略正面図である。カップリング32は、略円柱形状の部材であって、一方の端面にネジ穴321が形成されるとともに、他方の端面にロッド挿入穴322が形成されている。カップリング32のネジ穴321に、アクチュエータ側ロッド314に取り付けられた固定用ボルト315が螺合されることにより、カップリング32とアクチュエータ側ロッド314とが接続される。一方、カップリング32のロッド挿入穴322に、レバー側ロッド19が挿入され、互いに直交する2本のピン33が挿通されることにより、カップリング32とレバー側ロッド19とが接続される。これにより、アクチュエータ側ロッド314とレバー側ロッド19とがカップリング32を介して接続される。また、2本のピン33をそれぞれ取り外すことにより、ロッド挿入穴322からレバー側ロッド19を抜き取ることができ、これによりアクチュエータ側ロッド314とレバー側ロッド19との接続を解除することができる。
(ロック機構)
 ロック機構16は、調整弁13を移動不能にロックする役割を果たす。ここで、図6は、ロック機構16の構成を示す概略平面図である。ロック機構16は、図4及び図6に示すように、下端部が固定されて上方へ延びる支持棒161と、この支持棒161に支持されて水平方向に延びる保持板162と、一対の固定ボルト163を介して保持板162の先端部に着脱可能な押圧部材164と、を有している。ここで、図4に示すように、保持板162の先端部には、平面視で略半円形状の嵌合溝162aが形成されている。一方、押圧部材164における保持板162に対向する側には、平面視で略三角形状の切欠き164aが形成されている。
 このように構成されるロック機構16によれば、保持板162の嵌合溝162aにレバー側ロッド19を嵌合させた後、固定ボルト163を用いて保持板162の先端部に押圧部材164を固定する。これにより、レバー側ロッド19は、保持板162と押圧部材164とによって挟持されることにより移動不能にロックされる。
(電子ガバナ)
 電子ガバナ17は、開閉駆動機構15の動作を制御する。この電子ガバナ17には、図1に示すように、圧縮機18における圧力や温度の検出結果に基づいてプロセス制御の結果が入力される。また、電子ガバナ17には、タービン本体11を構成する速度検出センサ114によって検出されたブレード116の回転速度が入力される。更に、電子ガバナ17には、操作盤34から入力されたユーザからの指示が入力される。電子ガバナ17は、これらの入力に基づいて、開閉駆動機構15の動作、より詳細には電動アクチュエータ23を構成する電動モータ26の動作を制御する。
 図7は、第一実施形態に係る蒸気タービン10について、電動アクチュエータ23の制御を示す模式図である。本実施形態に係る蒸気タービン10では、電子ガバナ17による制御に基づいて、コントローラユニット35が電動アクチュエータ23の動作を制御する。コントローラユニット35は、コントローラ351と、サーボドライブ352とを有している。このような構成によれば、電子ガバナ17の制御の下、コントローラ351がサーボドライブ352に対して回転速度についての指令を発し、この指令に基づいてサーボドライブ352が電動モータ26に動力を付与する。一方、電動モータ26において検出された回転速度や電流値や各所の温度等が、サーボドライブ352を介してコントローラ351に入力される。コントローラ351は、検出値について異常が検知されると、電動モータ26において重度または軽度の故障が発生したことを電子ガバナ17に通知する。
 次に、本発明の第一実施形態に係る蒸気タービン10の作用効果について説明する。第一実施形態に係る蒸気タービン10では、調整弁13を駆動するための開閉駆動機構15が、電動モータ26の回生エネルギーによって作動してその回転を制動するブレーキ28を有している。このような構成によれば、電動モータ26への電力供給が停止した場合、引きバネ20の引っ張り力を受けたレバー部材14が図1において反時計回りに回動し、これに伴って調整弁13が蒸気流路12を閉止する。このレバー部材14の回動に応じて、レバー側ロッド19が下方へ直線運動し、変換機構27がこの直線運動を回転運動へと変換することにより、電動モータ26は通常駆動する際の回転方向と逆方向に回転する。ここで、開閉駆動機構15を構成する電動アクチュエータ23は、電動モータ26の回生エネルギーによって作動するブレーキ28を備えている。このため、電動モータ26への電力供給が停止して電動モータ26が逆方向に回転した場合、電動モータ26が逆方向に回転して回生エネルギーが発生し、この回生エネルギーを動力としてブレーキ28が作動することとなる。このため、電動モータ26の回転速度が過大になることが抑制される。これにより、電動モータ26の回転運動を調整弁13の直線運動に変換する変換機構27において過大な熱が発生して焼き付きが生じることを未然に防止することができる。
 また、第一実施形態に係る蒸気タービン10では、調整弁13を駆動する開閉駆動機構15として、電動モータ26を駆動源とする電動アクチュエータ23を用いている。従って、調整弁13の駆動用に従来用いていた油圧サーボ機構85が不要となり、作動油の漏れを防止する手段が不要となる。また、作動油を供給するアクチュエータ(図12に示すアクチュエータ90)や、封止する弁機構等(図12に示すパイロット弁89)が不要となるため、軸受カバー24の上方のスペースを開閉駆動機構15の設置スペースとして利用する必要がなくなる。これにより、軸受112の保守作業を行う度に軸受カバー24の上から開閉駆動機構15を取り外す必要がなく、軸受112の保守作業に要する手間を削減することができる。
 また、作動油は、図1に示す軸受112のみに利用されるため比較的低圧とすることができる。これにより、大出力のポンプやモータが不要であり、油コンソールの小型化を図ることができる。
 また、第一実施形態に係る蒸気タービン10では、電動アクチュエータ23に作用する横方向への力、すなわちボールネジ30の軸方向に対して略直交する方向への力を逃がすため、図4に破線で示すように電動アクチュエータ23は若干の回動が許容された状態となっている。より詳細に説明すると、図1に示すレバー部材14は、その基端部を支点として回動するため、その先端部は円弧軌道を描いている。従って、このレバー部材14に固定されたレバー側ロッド19及びそれに接続されたアクチュエータ側ロッド314もまた、軸方向に沿った単なる直線運動ではなく円弧軌道を描いている。そこで、電動アクチュエータ23に回動を許容して横方向に作用する力を逃がすことにより、故障等の発生を防止している。
 また、第一実施形態に係る蒸気タービン10では、レバー側ロッド19とアクチュエータ側ロッド314とがカップリング32を介して切り離し可能に接続されるとともに、ロック機構16を用いてレバー側ロッド19を移動不能にロックできるようになっている。
 このような構成によれば、電動アクチュエータ23に故障等が生じて交換が必要になった場合、調整弁13が蒸気流路12を開放した状態においてロック機構16によってレバー側ロッド19をロックした後、カップリング32を切り離してレバー側ロッド19とアクチュエータ側ロッド314との接続を解除する。これにより、タービン本体11の運転を継続したまま、電動アクチュエータ23を取り外して交換または修理する作業を行うことができる。
(第二実施形態)
 次に、本発明の第二実施形態に係る蒸気タービンについて説明する。図8は、第二実施形態に係る蒸気タービン40について、電動アクチュエータ23の制御を示す模式図である。本実施形態の蒸気タービン40では、図7に示す第一実施形態の蒸気タービン40と比較すると、開閉駆動機構15及びコントローラユニット35がそれぞれ冗長化されている点で異なっている。それ以外の構成は、第一実施形態と同じであるため、図1と同じ符号を付し、ここでは説明を省略する。
 より詳細に説明すると、蒸気タービン40は、図8に示すように、調整弁13を駆動する手段として開閉駆動機構15だけでなく予備開閉駆動機構41をも備えている。開閉駆動機構15の故障時等には、これに代えて予備開閉駆動機構41が調整弁13を駆動するようになっている。これにより、開閉駆動機構15の故障時にも蒸気タービン40を連続して運転することができるので、蒸気タービン40の信頼性を高めることができる。
 更に蒸気タービン40は、図8に示すように、開閉駆動機構15または予備開閉駆動機構41の動作を制御する手段として、コントローラユニット35だけでなく予備コントローラユニット42をも備えている。コントローラユニット35の故障時等には、これに代えて予備コントローラユニット42が開閉駆動機構15または予備開閉駆動機構41の動作を制御する。これにより、コントローラユニット35の故障時にも蒸気タービン40を連続して運転することができるので、蒸気タービン40の信頼性を更に高めることができる。
 本実施形態では、開閉駆動機構15とコントローラユニット35を共に冗長化したが、これに限られず、開閉駆動機構15だけを冗長化することも可能である。この場合、単一のコントローラユニット35により、開閉駆動機構15と予備開閉駆動機構41の両方の動作を制御すればよい。また、コントローラユニット35だけを冗長化することも可能である。この場合、コントローラユニット35または予備コントローラユニット42のいずれかにより、単一の開閉駆動機構15の動作を制御すればよい。
(第三実施形態)
 次に、本発明の第三実施形態に係る蒸気タービンについて説明する。図9は、第三実施形態に係る蒸気タービン50について、レバー部材14の先端部周辺を示す概略斜視図である。本実施形態の蒸気タービン50は、図2に示す第一実施形態の蒸気タービン10と比較すると、調整弁13を駆動する手段として、開閉駆動機構15に加えて補助開閉駆動機構51を更に備える点で異なっている。ここで、補助開閉駆動機構51の構成は開閉駆動機構15と同じであるため、同じ部材については同じ符号を付し、その説明を省略する。また、それ以外の構成は第一実施形態と同じであるため、同じ符号を付し、ここでは説明を省略する。
 より詳細に説明すると、図9に示すように、レバー部材14の一方の側部には第一レバー側ロッド52の一端部が固定され、他方の側部には第二レバー側ロッド53の一端部が固定されている。第一レバー側ロッド52の他端部は、カップリング32を介して開閉駆動機構15のアクチュエータ側ロッド314に接続されている。一方、第二レバー側ロッド53の他端部は、カップリング32を介して補助開閉駆動機構51のアクチュエータ側ロッド511に接続されている。これにより、開閉駆動機構15及び補助開閉駆動機構51の両方により、レバー部材14を介して調整弁13を駆動することが可能となっている。
 図10は、第三実施形態に係る蒸気タービン50の作用効果を説明する図であって、横軸はレバーのリフト、すなわち持ち上げ量を、縦軸は調整弁13の駆動に必要な出力をそれぞれ示している。蒸気タービン50は、通常は複数の調整弁13を有しており、これら調整弁13はその駆動に必要な出力大きさがそれぞれ異なっている。また、調整弁13それぞれにおいて必要な出力は、調整弁13が蒸気流路12の開放を開始する時点で最大の出力が必要であって、定常運転に移行するに従って必要な出力は徐々に小さくなる。蒸気流路12の開放を開始する時点で最大の出力が必要な理由は、図1に示す引きバネ20の引っ張り力に抗してレバー部材14を押し上げる必要がある。このように、調整弁13の駆動に必要な出力が時間の経過とともに変化するため、本実施形態では、必要な出力に応じて開閉駆動機構15と補助開閉駆動機構51とを適宜使い分けている。
 例えば、図10に示すO点において第一の調整弁(不図示)が蒸気流路12の開放動作を開始する場合、略95%の出力が必要であるため、開閉駆動機構15と補助開閉駆動機構51の両方を用いて第一の調整弁13を駆動する。A点で出力が略95%に達した後は、定常運転に移行するに従って必要な出力は徐々に小さくなり、予め定めた基準値である略70%のラインを超えて小さくなった後は、補助開閉駆動機構51を停止して開閉駆動機構15だけを用いて第一の調整弁13を駆動する。
 その後、B点において第二の調整弁(不図示)が蒸気流路12の開放動作を開始する場合、第一の調整弁13と同様に略95%の出力が必要であるため、開閉駆動機構15と補助開閉駆動機構51の両方を用いて第二の調整弁を駆動する。C点で出力が略95%に達した後は、定常運転に移行するに従って必要な出力は徐々に小さくなり、基準値である略70%を超えて小さくなった後は、開閉駆動機構15だけを用いて第二の調整弁を駆動する。
 その後、D点において第三の調整弁(不図示)が蒸気流路12の開放動作を開始する場合、略75%の出力が必要であるため、開閉駆動機構15と補助開閉駆動機構51の両方を用いて第三の調整弁を駆動する。E点で出力が略75%に達した後は、定常運転に移行するに従って必要な出力は徐々に小さくなり、基準値である略70%を超えて小さくなった後は、開閉駆動機構15だけを用いて第三の調整弁を駆動する。
 このように、開閉駆動機構15と補助開閉駆動機構51とを適宜使い分けて必要な出力だけを供給することにより、エネルギーの省力化を測ることができる。
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 本発明は、蒸気によって回転駆動する蒸気タービンに関する。本発明の蒸気タービンによれば、蒸気量を調整する調整弁の長期に渡る安定した駆動が可能であって、且つ、調整弁の開閉駆動機構が軸受の保守作業の邪魔にならない。
10 蒸気タービン
11 タービン本体
111 ケーシング
112 軸受
113 ロータ
114 速度検出センサ
115 回転軸
116 ブレード
12 蒸気流路
121 蒸気導入口
122 蒸気供給口
123 絞り穴
13 調整弁
131 アーム部材
132 封止部材
14 レバー部材
15 開閉駆動機構
16 ロック機構
161 支持棒
162 保持板
162a 嵌合溝
163 固定ボルト
164 押圧部材
164a 切欠き
17 電子ガバナ
18 圧縮機
19 レバー側ロッド
20 引きバネ
21 ブラケット
22 保持部材
23 電動アクチュエータ
24 軸受カバー
25 台座
26 電動モータ
27 変換機構
28 ブレーキ
29 モータ収容部
30 ボールネジ
31 ピストンユニット
311 ナット
312 ピストンロッド
313 ロッドエンドコネクタ
314 アクチュエータ側ロッド
315 固定用ボルト
32 カップリング
321 ネジ穴
322 ロッド挿入穴
33 ピン
34 操作盤
35 コントローラユニット
351 コントローラ
352 サーボドライブ
40 蒸気タービン
41 予備開閉駆動機構
42 予備コントローラユニット
50 蒸気タービン
51 補助開閉駆動機構
511 アクチュエータ側ロッド
52 第一レバー側ロッド
53 第二レバー側ロッド
80 蒸気タービン
81 タービン本体
82 蒸気流路
83 調整弁
84 レバー部材
85 油圧サーボ機構
86 電子ガバナ
87 ピストン
88 油圧シリンダ
89 パイロット弁
90 アクチュエータ
91 軸受カバー

Claims (9)

  1.  回転可能に支持されたブレードを有するタービン本体と、
     前記タービン本体に接続されて蒸気が流通する蒸気流路と、
     直線運動することで前記蒸気流路の開閉を調整する調整弁と、
     前記調整弁を駆動する開閉駆動機構と、を備え、
     前記開閉駆動機構が、
     電力が供給されて回転する電動モータと、
     前記電動モータの回転運動を前記調整弁の直線運動に変換する変換機構と、
     前記電動モータの回生エネルギーによって作動するブレーキと、
     を備える蒸気タービン。
  2.  前記変換機構が、
     前記電動モータによって回転駆動されるボールネジと、
     前記ボールネジに螺合されるとともに前記調整弁に接続されたナットと、
     を備える請求項1に記載の蒸気タービン。
  3.  前記電動モータは、内部が密閉されたモータ収容部に収容されている請求項1又は2に記載の蒸気タービン。
  4.  前記開閉駆動機構の故障時に前記調整弁を駆動する予備開閉駆動機構を更に備える請求項1から3のいずれか1項に記載の蒸気タービン。
  5.  前記開閉駆動機構または前記予備開閉駆動機構の動作を制御するコントローラユニットを更に備える請求項4に記載の蒸気タービン。
  6.  前記コントローラユニットの故障時に、前記開閉駆動機構または前記予備開閉駆動機構の動作を制御する予備コントローラユニットを更に備える請求項5に記載の蒸気タービン。
  7.  前記ブレーキは、前記ボールネジの周速が閾値を超えて大きくなった時、または前記電動モータに対する電力の供給が停止してから一定の時間だけ作動する請求項2から6のいずれか1項に記載の蒸気タービン。
  8.  前記ナットと前記調整弁とを切り離し可能に接続するカップリングと、前記調整弁を移動不能にロックするロック機構と、を更に備える請求項2から7のいずれか1項に記載の蒸気タービン。
  9.  前記調整弁の駆動に基準値を超えて大きな出力が必要な場合に、前記開閉駆動機構とともに前記調整弁を駆動する補助開閉駆動機構を更に備える請求項1から8のいずれか1項に記載の蒸気タービン。
PCT/JP2012/074366 2011-09-28 2012-09-24 蒸気タービン WO2013047423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12836140.9A EP2765276A4 (en) 2011-09-28 2012-09-24 STEAM TURBINE
CN201280046096.4A CN103827447B (zh) 2011-09-28 2012-09-24 蒸气涡轮
US14/346,992 US9638054B2 (en) 2011-09-28 2012-09-24 Steam turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-211826 2011-09-28
JP2011211826A JP5863362B2 (ja) 2011-09-28 2011-09-28 蒸気タービン

Publications (1)

Publication Number Publication Date
WO2013047423A1 true WO2013047423A1 (ja) 2013-04-04

Family

ID=47995455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074366 WO2013047423A1 (ja) 2011-09-28 2012-09-24 蒸気タービン

Country Status (5)

Country Link
US (1) US9638054B2 (ja)
EP (1) EP2765276A4 (ja)
JP (1) JP5863362B2 (ja)
CN (1) CN103827447B (ja)
WO (1) WO2013047423A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048742A (ja) * 2013-08-30 2015-03-16 三菱重工コンプレッサ株式会社 調整弁駆動機構、蒸気タービン
JP2015117640A (ja) * 2013-12-18 2015-06-25 三菱重工業株式会社 調整弁駆動機構、蒸気タービン
EP2990612A4 (en) * 2014-02-19 2016-05-18 Mitsubishi Heavy Ind Compressor Corp STEAM VALVE AND STEAM TURBINE

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6145398B2 (ja) 2013-12-18 2017-06-14 三菱重工業株式会社 直動機構、調整弁駆動装置、蒸気タービン
WO2015125236A1 (ja) * 2014-02-19 2015-08-27 三菱重工コンプレッサ株式会社 蒸気弁、および蒸気タービン
JP2016056725A (ja) * 2014-09-09 2016-04-21 三菱重工業株式会社 蒸気タービン、制御方法及びプログラム
JP2016109054A (ja) * 2014-12-08 2016-06-20 三菱重工業株式会社 弁装置及び蒸気タービン
JP6385006B2 (ja) * 2015-01-23 2018-09-05 三菱重工コンプレッサ株式会社 直動機構、弁装置、及び蒸気タービン
CN108674197B (zh) * 2018-07-09 2021-07-23 哈尔滨工程大学 一种适用于四驱电动汽车的动力装置及动力驱动方法
CN211343906U (zh) * 2019-11-08 2020-08-25 全球传动科技股份有限公司 直线传动系统
JP7379184B2 (ja) * 2020-01-28 2023-11-14 三菱重工コンプレッサ株式会社 弁駆動装置及び蒸気タービンシステム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719006A (ja) 1993-06-30 1995-01-20 Mitsubishi Heavy Ind Ltd 蒸気タービンの蒸気加減弁制御装置
JPH08232607A (ja) * 1994-12-24 1996-09-10 Abb Patent Gmbh 蒸気タービン用バルブ
JP2002507711A (ja) * 1998-03-23 2002-03-12 シーメンス アクチエンゲゼルシヤフト 弁の電気機械式アクチュエータ並びに蒸気タービン
JP2005106062A (ja) * 2004-10-22 2005-04-21 Toshiba Corp 蒸気タービン弁と蒸気タービン弁の開度制御装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US528483A (en) * 1894-10-30 Steam-pump governor
US677940A (en) * 1900-08-06 1901-07-09 Emory M Carr Steam-pump governor.
US3684237A (en) * 1970-05-04 1972-08-15 Westinghouse Electric Corp Variable force angle linkage
DE2326609C3 (de) * 1973-05-24 1978-06-22 Paul 5419 Doettesfeld Kunz Dampfschälanlage mit einem Druckbehälter
US4368520A (en) 1980-09-29 1983-01-11 Westinghouse Electric Corp. Steam turbine generator control system
JPS58186349A (ja) * 1982-04-23 1983-10-31 Toshiba Corp ブレ−キ付回転電機
JPS59221407A (ja) 1983-05-31 1984-12-13 Toshiba Corp 発電プラント用調節弁制御装置
JPS61215403A (ja) * 1985-03-20 1986-09-25 Mitsubishi Heavy Ind Ltd 蒸気タ−ビンの電動サ−ボモ−タ
EP0221495B1 (en) * 1985-10-31 1991-01-02 Mitsubishi Denki Kabushiki Kaisha Flywheel device
DE3907289A1 (de) * 1989-03-07 1990-09-13 Siemens Ag Stellantrieb fuer sicherheitsventile
US5074325A (en) * 1990-02-16 1991-12-24 Westinghouse Electric Corp. Pivoting control valve actuator and support assembly
JP2818322B2 (ja) 1991-07-05 1998-10-30 株式会社東芝 蒸気タービン制御装置
US5333989A (en) * 1992-12-23 1994-08-02 General Electric Company Electric actuators for steam turbine valves
CN1042138C (zh) 1993-08-04 1999-02-17 中国石油化工总公司 加氢精制催化剂的制备方法
US5823742A (en) * 1995-12-15 1998-10-20 Dresser-Rand Company Variable and bidirectional steam flow apparatus and method
KR100189556B1 (ko) * 1996-06-14 1999-06-01 정몽규 엔진 클램프 장치
US5967486A (en) * 1997-05-20 1999-10-19 Mccrory; Gene A. Automated actuator for pull-open, push-closed valves
CH693270A5 (fr) * 1999-04-01 2003-05-15 Bobsts A Dispositif pour déplacer alternativement et enopposition de phase deux organes d'alignement.
US6438962B1 (en) * 2000-09-11 2002-08-27 Hamilton Sundstrand Corporation System and method for starting an engine
DE50108933D1 (de) * 2000-10-20 2006-04-20 Siemens Ag Stellantrieb für ein Ventil, insbesondere ein Turbinenventil
GB0123469D0 (en) * 2001-10-01 2001-11-21 Siemens Ag Electromagnetical clutch,electromechanical actuator and turbine
AU2003266519A1 (en) * 2003-09-16 2005-04-11 Takahiro Morimoto Regenerated energy preservation motor
US20070075285A1 (en) * 2005-10-05 2007-04-05 Lovejoy Kim A Linear electrical drive actuator apparatus with tandem fail safe hydraulic override for steam turbine valve position control
JP4648211B2 (ja) * 2006-02-09 2011-03-09 三菱重工業株式会社 蒸気タービンの制御装置
GB0618572D0 (en) 2006-09-21 2006-11-01 Goodrich Actuation Systems Ltd Actuator
CN101145756B (zh) * 2007-08-09 2010-06-09 北京首科凯奇电气技术有限公司 一种垂直安装直线电机断电制动保护装置及方法
KR100965562B1 (ko) * 2008-04-25 2010-06-23 주식회사 에이디티 발전기-브레이크 일체형 회전기기
DE102008036980A1 (de) * 2008-08-08 2010-02-11 Robert Bosch Gmbh Stelleinrichtung und mit einer derartigen Stelleinrichtung ausgeführte Ventilanordnung
JP4954964B2 (ja) * 2008-10-31 2012-06-20 日本ムーグ株式会社 流体弁駆動機構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719006A (ja) 1993-06-30 1995-01-20 Mitsubishi Heavy Ind Ltd 蒸気タービンの蒸気加減弁制御装置
JPH08232607A (ja) * 1994-12-24 1996-09-10 Abb Patent Gmbh 蒸気タービン用バルブ
JP2002507711A (ja) * 1998-03-23 2002-03-12 シーメンス アクチエンゲゼルシヤフト 弁の電気機械式アクチュエータ並びに蒸気タービン
JP2005106062A (ja) * 2004-10-22 2005-04-21 Toshiba Corp 蒸気タービン弁と蒸気タービン弁の開度制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765276A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048742A (ja) * 2013-08-30 2015-03-16 三菱重工コンプレッサ株式会社 調整弁駆動機構、蒸気タービン
CN105264180A (zh) * 2013-08-30 2016-01-20 三菱重工压缩机有限公司 调整阀驱动机构及蒸气涡轮
EP2993308A4 (en) * 2013-08-30 2016-07-13 Mitsubishi Heavy Ind Compressor Corp REGULATING VALVE DRIVE MECHANISM AND STEAM TURBINE
CN105264180B (zh) * 2013-08-30 2017-06-13 三菱重工压缩机有限公司 调整阀驱动机构及蒸气涡轮
US9938851B2 (en) 2013-08-30 2018-04-10 Mitsubishi Heavy Industries Compressor Corporation Governing valve drive mechanism and steam turbine
JP2015117640A (ja) * 2013-12-18 2015-06-25 三菱重工業株式会社 調整弁駆動機構、蒸気タービン
WO2015093151A1 (ja) * 2013-12-18 2015-06-25 三菱重工業株式会社 調整弁駆動機構、蒸気タービン
CN105765171A (zh) * 2013-12-18 2016-07-13 三菱重工业株式会社 调整阀驱动机构、蒸汽涡轮
EP2990612A4 (en) * 2014-02-19 2016-05-18 Mitsubishi Heavy Ind Compressor Corp STEAM VALVE AND STEAM TURBINE
US9777843B2 (en) 2014-02-19 2017-10-03 Mitsubishi Heavy Industries Compressor Corporation Steam valve and steam turbine

Also Published As

Publication number Publication date
CN103827447A (zh) 2014-05-28
US9638054B2 (en) 2017-05-02
JP5863362B2 (ja) 2016-02-16
EP2765276A1 (en) 2014-08-13
CN103827447B (zh) 2016-03-02
JP2013072349A (ja) 2013-04-22
EP2765276A4 (en) 2015-09-30
US20140234084A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2013047423A1 (ja) 蒸気タービン
JP6033404B2 (ja) 蒸気タービン
US9938851B2 (en) Governing valve drive mechanism and steam turbine
EP2499411B1 (en) Electric actuators having internal load apparatus
EP2499410B1 (en) Coupling apparatus for use with electric actuators
US20100270485A1 (en) Valve Actuator
WO2013121603A1 (ja) 単車室型蒸気タービンおよび一軸型コンバインドサイクル発電装置
US6585228B1 (en) Electric valve actuator with eddy current clutch
CN108026763A (zh) 用于阻流阀的致动器
WO2007043143A1 (ja) 液体圧装置
CN102620027B (zh) 电磁弹簧式自动快速关断阀执行机构
KR101919136B1 (ko) 발전소용 유압액추에이터 및 이의 정비 방법
WO2016092939A1 (ja) 弁装置及び蒸気タービン
WO2017104035A1 (ja) 主塞止弁及びそれを備えた蒸気タービン
JP4640276B2 (ja) 蒸気止め弁用操作機
EP3992505A1 (en) Apparatus for controlling a valve
JP2005106062A (ja) 蒸気タービン弁と蒸気タービン弁の開度制御装置
KR20130039822A (ko) 긴급차단 어셈블리가 마련된 스톱 밸브
JPH10184524A (ja) 水力機械のガイドベーン開閉装置
KR20090120302A (ko) 리니어 액츄에이터 보강 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836140

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14346992

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012836140

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE