WO2013044792A1 - 烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用 - Google Patents

烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用 Download PDF

Info

Publication number
WO2013044792A1
WO2013044792A1 PCT/CN2012/081977 CN2012081977W WO2013044792A1 WO 2013044792 A1 WO2013044792 A1 WO 2013044792A1 CN 2012081977 W CN2012081977 W CN 2012081977W WO 2013044792 A1 WO2013044792 A1 WO 2013044792A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
nadh
protein
homologous
ydih
Prior art date
Application number
PCT/CN2012/081977
Other languages
English (en)
French (fr)
Inventor
杨弋
金晶
赵玉政
呼庆勋
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Priority to US14/347,575 priority Critical patent/US9606121B2/en
Publication of WO2013044792A1 publication Critical patent/WO2013044792A1/zh
Priority to US15/426,621 priority patent/US9945860B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • G01N33/5735Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes co-enzymes or co-factors, e.g. NAD, ATP
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7023(Hyper)proliferation
    • G01N2800/7028Cancer

Definitions

  • the present invention relates to a detection probe for nicotinamide adenine dinucleotide, and in particular to a recombinant fluorescent fusion protein detection probe for nicotinamide adenine dinucleotide.
  • the invention relates to a recombinant fluorescent fusion protein detection probe for reduced nicotinamide adenine dinucleotide (NADH); and in another specific aspect, the invention relates to oxidized nicotinamide adenine dinucleotide ( Recombinant Fluorescent Fusion Protein Detection Probe of NAD+);
  • the present invention relates to a recombinant fluorescent fusion protein detection probe of a reduced and oxidized nicotinamide adenine dinucleotide ratio.
  • the present invention also relates to a method of preparing the above-described detection probe and its use in detecting ratios of NADH, NAD+ and NADH/NAD+, respectively. Background
  • NAD+ and NADH are important components of the respiratory chain and participate in the electron transport process in the respiratory chain (Rich, P.R. et al., Biochem Soc Trans. 2003, V.31(6), ⁇ .1095-1105).
  • NAD+ acts as a proton carrier. When it accepts an electron from another molecule, it changes from the initial oxidation state to the reduced state.
  • the final product of the reaction is NADH, and NADH can be used as The reducing agent supplies electrons to other molecules (Belenky, P. et al., Trends in Biochemical Sciences. 2007, V. 32(l), pp. 12-19).
  • NAD(H) not only participates in energy metabolism, substance synthesis and antioxidant effects, but also involves calcium homeostasis, gene expression, immunity, and cell senescence and death in vivo, among which NAD(H) is involved. They all play a vital role, so NAD(H) itself and the many enzymes involved in its metabolism have also become targets for drug design (Sauve, AA et al, J Pharmacol Exp Ther. 2008, V.324(3), Pp.883-893).
  • the total amount of NAD(H) in most living cells is about 1 ( ⁇ 6 ⁇ 1 ( ⁇ 3 ⁇ , and
  • the ratio of NAD+/NADH is also different depending on the intracellular state (Lin, SJ et al, Current Opinion in Cell Biology. 2003, V. 15(2), pp. 241-246), so this gives NAD (H)
  • the measurement has brought great inconvenience.
  • the earlier detection method is mainly to use NADH in Characteristic absorption 340nm ultraviolet region, whereby the establishment of a UV spectrophotometry, the presence of two major disadvantage of this method: 1, the effective sensitivity is limited by the precision of the instrument, from about 10- 7 M; 2, in the complex system , can not effectively distinguish between NADH and NADPH.
  • NADH autofluorescence data essentially reflects the concentration of protein-bound NADPH (Zhang, QH et al, Science.
  • fluorescent protein detection technology Compared to traditional small molecule dye detection technology and rapidly developing quantum dot detection technology, fluorescent protein detection technology has a unique overwhelming overwhelming majority of living cell imaging. Sexual advantage, it can be introduced into cells, tissues and even entire organs by genetics, so fluorescent proteins can act as an indicator of the activation of a whole cell marker or gene.
  • the green fluorescent protein was originally extracted from the Victorian multi-tube luminescent jellyfish 4 equorea victoria.
  • the wild-type vGFP consists of 238 amino acids with a molecular weight of approximately 26 kD.
  • the current study confirms that the three amino acids Ser-Tyr-Gly at positions 65-67 of the native GFP protein spontaneously form a fluorescent chromophore: p-hydroxybenzylidene imidazolinone (-hydroxybenzylideneimidazolinone)
  • the main illuminating position The spectral characteristics of wild-type vGFP are very complex.
  • the main peak of fluorescence excitation is at 395 nm, and there is another peak at 475 nm.
  • excitation at 395 nm produces an emission at 508 nm
  • excitation at 475 nm produces a maximum emission wavelength at 503 nm (Heim, R. et al., Proc Natl Acad Sci US A. 1994, V.91 ( 26), pp. l2501 - 12504).
  • GFP GFP
  • Type GFP S65T, F64L
  • YFP T203Y
  • CFP Y66W
  • the original amino acid portion 145-238 was used as the N-terminus of the new protein
  • the original 1-144 amino acid was used as the C-terminus of the new protein
  • the two fragments were short-lived through a small segment.
  • the peptide chain is joined to form a circular permutation fluorescent protein sensitive to spatial changes.
  • the point mutation of the original protein T203Y forms a circularly arranged yellow fluorescent protein cpYFP (Nagai, T Etc., Proc Natl Acad Sci US A. 2001, V.98(6), pp. 3197-3202).
  • FRET fluorescence resonance energy transfer
  • FRET is a non-radiative energy transition that transfers the excited state energy of the donor to the excited state of the acceptor through the interaction of the electric dipole between the molecules, which reduces the fluorescence intensity of the donor, and the receptor can emit stronger than itself.
  • the characteristic fluorescence may also not fluoresce (fluorescence quenching).
  • Current green Further studies of chromophorin found that cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) derived from green fluorescent protein mutants are a pair of excellent donor/acceptor pairs.
  • CFP cyan fluorescent protein
  • YFP yellow fluorescent protein
  • the chromophore group of CFP will transfer energy efficiently to the chromophore group of YFP. Therefore, the emission fluorescence of CFP will be weakened or disappeared, and the main emission will be the fluorescence of YFP.
  • the energy conversion efficiency between the two chromophores is inversely proportional to the 6th power of the spatial distance between them, and is very sensitive to changes in spatial position. Therefore, the existing research reports that the two ends of the protein gene expected to be studied are fused with CFP and YFP to express a completely new fusion protein by genetic engineering recombination. The spatial change caused by the binding of the protein to its specific target molecule is passed. The change in fluorescence is visually apparent.
  • the fluorescent protein sequence used in this article can be derived from the renovated multi-tube luminescent jellyfish.
  • YFP yellow fluorescent protein
  • GFP green fluorescent protein
  • CFP cyan fluorescent protein
  • YFP yellow fluorescent protein
  • cpYFP circularly arranged yellow fluorescent protein
  • the YdiH protein (also known as Rex protein) is a bacterial transcriptional repressor protein known in the art having a molecular weight of 23 kDa which regulates fermentation and anaerobic respiration.
  • the common YdiH protein is from the thermophilic bacteria (73 ⁇ 4 « m « aquaticus) (SEQ ID NO: 1 NCBI GenBank: AF061257.1), Sfreptowycra coe/ co/or (SEQ ID NO: 2 NCBI) GenBank: AL9391 Subtilis) (SEQ ID NO: 3 NCBI GenBank: AL009126.3), the first identification of the YdiH protein was discovered by Brekasis and Paget et al.
  • each Rossmann domain can only bind to one nucleotide molecule, there are two pairs of Rossmann moieties in the domain of a dinucleotide-binding protein like NAD.
  • Current research shows Streptomyces coelicolor YdiH(Rex) protein can directly induce changes in cytoplasmic NADH/NAD+ ratio, while in aerobic environment, YdiH(Rex) protein can inhibit its target gene (cydABC, nuoA) when the intracellular NADH/NAD+ ratio is low.
  • Rex protein is a good candidate for intracellular NADH detection probes.
  • Wang et al. recently crystallized the Bacillus subtilis YdiH (Rex) protein and studied its mechanism and function.
  • the YdiH(Rex) protein derived from Bacillus subtilis is a homodimeric protein. , consisting of two functional domains, wherein the N-terminal domain (1-85 residues) is a DNA binding domain, and the C-terminal domain (86-215 residues) is a typical Rossmann fold, which is capable of Binding to NADH (Wang, E. et al, Mol Microbiol. 2008, V. 69(2), pp. 466-478).
  • the YdiH(Rex) protein itself is sensitive to the redox state in the environment, its own changes cannot be visually displayed and captured by the outside world. With the aid of fluorescent protein, we can pass The two are fused and expressed, and a new gene-encoded fluorescent probe is obtained.
  • the YdiH(Rex) protein is used to sense the change of the redox state in the environment and transmit the change to the fluorescent protein, and the fluorescence is generated by the fluorescent protein and fluorescence. The strength of the redox state, real-time and intuitive description of the redox state changes in the environment.
  • the invention provides a genetically encoded NADH fluorescent probe comprising a polypeptide that is sensitive to NADH in the environment, and a portion that exhibits NADH in the environment by changes in spectral properties.
  • the portion of the environmentally-performing NADH that is altered by changes in spectral properties is a fluorescent protein sequence or a derivative thereof.
  • the NADH-sensitive polypeptide is a polypeptide having the following characteristics, or a functional fragment thereof or a NADH binding domain: (1) a Rossman domain having NADH binding properties; and/or
  • the NADH sensitive polypeptide may have the following characteristics:
  • a polypeptide comprising a transcriptional regulatory factor Rex protein gene ydiH derived from bacteria, the coding sequence of which may be SEQ ID No: 1, 2 or 3;
  • the fluorescent probe of the present invention may comprise a Rossman domain B having NADH binding properties and a fluorescent protein sequence of eight, A1 and/or A2, which may be in combination of: (1) B-A-B;
  • A1-B-A2 wherein A1 and A2 may be the same or different;
  • A1 may be the amino acid sequence of a fluorescent protein or derivative thereof from Victoria multi-tube luminescent jellyfish, and A2 may be from Victoria multi-tube luminescent jellyfish.
  • the fluorescent probe of the present invention may also have the following structure:
  • YdiH domain protein preferably comprising the genus Bacillus subtilis amino acid sequence of the protein YdiH 1-84: amino acid (SEQ ID NO 14), or the amino acid sequence of the genus Stenotrophomonas hot raw protein YdiH 1-79 (SEQ ID NO: 15) or a variant thereof; is a second domain of the YdiH protein, preferably amino acid 85-194 (SEQ ID NO: 16) or thermophilic comprising the amino acid sequence of the B.
  • subtilis YdiH protein Amino acid sequence 80-189 (SEQ ID NO: 17) or variant thereof of the amino acid sequence of the aquatic genus YdiH protein;
  • B 2 is the third domain of the YdiH protein, preferably an amino acid comprising the amino acid sequence of the Bacillus subtilis YdiH protein 120-215 (SEQ ID NO: 18) or amino acid 114-211 (SEQ ID NO: 19) of the amino acid sequence of the Thermophilic YdiH protein or variant thereof;
  • FM is a fluorophore, which may be YFP, GFP, CFP, etc., and variants based on these proteins, preferably YFP, more preferably cpYFP;
  • the linker i may or may not be present; in the presence, the linker i may be of any amino acid sequence, preferably no more than 4 amino acids in length, for example comprising amino acids 1 ⁇ S, A, G or consisting of any one of the four amino acids Any combination, such as the amino acid sequence SAG or TS, etc., but is not limited to this combination.
  • Linker 2 may or may not be present; in the presence, linker 2 may be of any amino acid sequence, preferably no more than 3 amino acids in length, for example comprising amino acids 0, T, G or any one or four of any of these four amino acids Combinations, for example, include the amino acid sequence GTG, but are not limited to such combinations.
  • the invention also provides a fluorescent probe comprising a fluorophore and any fragment, derivative or analog of a YdiH protein or a YdiH protein. In another embodiment, the invention also provides a fluorescent probe comprising a fluorophore and a variant of a YdiH protein. The present invention also provides a fluorescent probe comprising a fluorophore and a soluble fragment of a YdiH protein.
  • the invention provides a fluorescent probe comprising the amino acid sequence of SEQ ID NO: 4, 5, 6, 7, or 8.
  • the present invention provides a fluorescent probe having 99%, 95%, 90% of any amino acid sequence SEQ ID NO: 4, 5, 6, 7 or 8 in at least 85 amino acid residues. 80%, 70% or 50% identical homologous or non-homologous sequences.
  • the invention provides a fluorescent probe comprising any homologous or non-homologous or substantially identical amino acid sequence of SEQ ID NO: 4, 5, 6, 7, or 8 within at least 85 amino acid residues Homologous sequence.
  • the invention provides a fluorescent probe comprising a variant or derivative of the amino acid sequence of SEQ ID NO: 4, 5, 6, 7 or 8.
  • the invention also provides a genetically encoded NAD+ fluorescent probe comprising a polypeptide that is sensitive to NAD+ in the environment, and a portion that exhibits NAD+ in the environment by changes in spectral properties.
  • the NAD+ fluorescent probe comprises SEQ ID NO: 129.
  • the present invention also provides a genetically encoded NADH/NAD+ ratio fluorescent probe comprising a polypeptide sensitive to the ratio of NADH/NAD+ in the environment, and to NADH/ in the environment by changes in spectral properties. The portion of the NAD+ ratio that is expressed.
  • the NADH/NAD+ ratio fluorescent probe comprises SEQ ID NO: 148.
  • the invention provides a fusion protein comprising a fluorescent probe of the invention.
  • the fusion protein comprises a fluorescent probe of the invention and various specific subcellular localization signals that localize the protein of interest to a designated subcellular organelle.
  • the invention provides a nucleic acid sequence comprising a nucleotide sequence encoding a fluorescent probe or fusion protein of the invention.
  • the invention provides a nucleic acid sequence comprising a nucleotide sequence encoding a fluorescent protein and a nucleotide sequence encoding a protein sensitive to NADH.
  • the nucleotide sequence encoding the NADH-sensitive protein is a nucleotide sequence encoding a polypeptide having the following characteristics or a functional fragment thereof or a NADH binding domain:
  • the nucleic acid sequence of the present invention may comprise the coding sequence b of the Rossman domain having NADH binding properties and the coding sequences a, al and/or a2 of the fluorescent protein, which may be in combination of:
  • al-b-a2 where al and a2 may be the same or different; al may be from Victoria a coding sequence for a fluorescent protein or a derivative thereof of the multi-tube luminescent jellyfish, a2 may be a coding sequence of another fluorescent protein or derivative thereof derived from Victoria multi-tube luminescent jellyfish;
  • the invention provides a nucleic acid sequence comprising the nucleotide sequence of SEQ ID NO: 9, 10, 11, 12 or 13.
  • the invention provides a nucleic acid sequence comprising 99%, 95%, 90 of any nucleotide sequence SEQ ID NO: 9, 10, 11, 12 or 13 over at least 85 bases in length Homologous or non-homologous sequences of %, 80%, 70% or 50% identity.
  • the invention provides a nucleic acid sequence comprising a nucleotide substantially identical or identical to at least 85 bases to nucleotide sequence SEQ ID NO: 9, 10, 11, 12 or 13. Sequence;
  • the invention provides a nucleic acid sequence comprising a variant or derivative of the nucleotide sequence of SEQ ID NO: 9, 10, 11, 12 or 13.
  • the present invention also relates to complementary sequences and variants of the above nucleic acid sequences, which may comprise a nucleic acid sequence encoding a fragment, analog, derivative, soluble fragment and variant of the fluorescent probe or fusion protein of the present invention or a complement thereof.
  • the invention also provides an expression vector comprising a nucleic acid sequence of the invention operably linked to an expression control sequence.
  • the expression control sequence may be an origin of replication, a promoter, an enhancer, an operon, a terminator, a ribosome binding site, and the like.
  • the invention also provides a host cell comprising an expression vector of the invention.
  • the present invention also provides a method of preparing a fluorescent probe or fusion protein of the present invention, comprising the steps of:
  • the invention also provides the use of a fluorescent probe or fusion protein of the invention for detecting NADH.
  • the invention provides a fluorescent probe or fusion protein of the invention for detection in vitro or in vivo
  • the invention provides the use of a fluorescent probe or fusion protein of the invention for detecting NADH at the subcellular level. In one embodiment, the invention provides the use of a fluorescent probe or fusion protein of the invention for detecting NADH in situ. In another embodiment, the invention provides the use of a fluorescent probe or fusion protein of the invention in screening a medicament for use in modulating a subject's level of NADH. In another embodiment, the invention provides the use of a fluorescent probe or fusion protein of the invention in the diagnosis of a disease associated with NADH levels.
  • the present invention also provides a kit for detecting NADH comprising the fluorescent probe or fusion protein of the present invention.
  • the detection can be performed in vivo, in vitro, subcellular or in situ.
  • the invention also provides a kit for screening a medicament for use in modulating a level of NADH in a subject, the kit comprising an effective amount of a fluorescent probe or fusion protein of the invention.
  • the invention also provides a kit for detecting a disease associated with NADH levels, the kit comprising an effective amount of a fusion protein of the invention. In use, one skilled in the art will be able to readily determine the effective amount based on the activity of the fusion protein.
  • the protein and nucleic acid sequences of the invention are preferably provided in isolated form, more preferably purified to homogeneity.
  • Figure 3 shows the basic spectral characteristics of the nicotinamide adenine dinucleotide fluorescent probe F-rexl.
  • Figure 4 shows the basic spectral characteristics of the nicotinamide adenine dinucleotide fluorescent probe F-rex2.
  • Figure 5 is a graph showing the response of a reduced nicotinamide adenine dinucleotide fluorescent probe F-rexl to a pyridine nucleotide analog under physiological conditions simulated in vitro.
  • Figure 6 is a graph showing the response of a derivatized reduced nicotinamide adenine dinucleotide fluorescent probe to a pyridine nucleotide analog under physiological conditions simulated in vitro.
  • Figure 7 shows the reduced nicotinamide adenine dinucleotide changes in HEK293FT cells after treatment with the drug 3-NP, AOA.
  • Figure 8-1 shows the real-time determination of changes in intracellular NADH levels by exogenous NADH addition by a reducing and oxidative nicotinamide adenine dinucleotide ratio probe.
  • Figure 8-2 shows the real-time determination of changes in intracellular NADH levels by glucose, pyruvate, and lactate using a reducing and oxidizing nicotinamide adenine dinucleotide ratio probe.
  • Figure 8-3 shows real-time detection of changes in NADH levels in mitochondria by reducing and oxidizing nicotinamide adenine dinucleotide ratio probes.
  • Figure 9-1 shows the detection of NAD+ changes in the cytosol by the NAD+ probe.
  • Figure 9-2 shows the response of the NAD+ probe to NAD+ in vitro.
  • Figure 9-3 shows the response of the NAD+ probe to pyridine nucleotide analogs under simulated physiological conditions in vitro.
  • Figure 10-1 shows the reducing and oxidizing nicotinamide adenine dinucleotide ratio probe pair NADH,
  • Figure 10-2 shows the results of the determination of the ratio of different NADH to NAD+ by the probe of the reducing and oxidizing nicotinamide adenine dinucleotide ratio.
  • Figure 10-3 shows the effect of each pyridine nucleotide analog on the probe of NADH/NAD+ ratio probes under simulated physiological conditions in vitro.
  • Figure 11 is a high throughput drug screen based on a reduced and oxidized nicotinamide adenine dinucleotide ratio fluorescent probe.
  • Figure 12 shows the real-time determination of tumor NADH/NAD+ ratio metabolic levels by a reduced- and oxidized nicotinamide adenine dinucleotide ratio fluorescent probe.
  • composition of X may consist solely of X or may contain other substances. , for example X+Y.
  • YdiH protein means that the YdiH protein (also known as Rex protein) is a bacterial transcriptional repressor protein known in the art having a molecular weight of 23 kDa which regulates fermentation and anaerobic respiration. This is a redox-sensitive regulatory protein that is widely present in Gram-positive bacteria. And it is a typical NAD (H) binding protein containing the Rossmann domain.
  • the key Rossmann domain is a protein super-secondary structure mainly present in nucleotide-binding proteins. It is a typical active region that binds to the cofactor NAD(H) and is represented by various cofactor NAD-binding proteins.
  • This structure is mainly composed of 6 ⁇ -sheets in the form of ordered ⁇ - ⁇ - ⁇ - ⁇ by 2 pairs of ⁇ -helices. Since each Rossmann domain can only bind to one nucleotide molecule, there are two pairs of Rossmann moieties in the domain of a dinucleotide binding protein such as NAD. YdiH(Rex) protein can directly induce changes in cytoplasmic NADH/NAD+ ratio, while in aerobic environment, YdiH(Rex) protein can inhibit its target gene (cydABC, nuoA) when the intracellular NADH/NAD+ ratio is low.
  • cydABC target gene
  • YdiH protein may comprise the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2 or SEQ ID NO: 3.
  • the "flexible region” referred to in the present invention refers to a specific structure such as a Loop domain existing in a high-order structure of a protein, which has higher mobility and flexibility than other protein advanced structures, and is capable of This leads to dynamic changes in the domains, and there is also a tendency for proteins to undergo spatial conformational changes in these regions.
  • the flexible region to which the present invention relates mainly refers to the V1 13-G1 19 region in the T-rex (ie, the protein Rex derived from the thermophilic bacteria (73 ⁇ 4er m « ⁇ wat o ⁇ ), and the region D188-G192).
  • fluorescent probe refers to a polypeptide fused to a fluorescent protein that is sensitive to NADH in the environment, and the polypeptide sensitive to NADH in the environment may specifically be a YdiH protein, which utilizes a specific NADH binding structure in the YdiH.
  • the conformational change of the fluorescent protein caused by the conformational change of the domain combined with NADH, which leads to the change of fluorescence or fluorescence generated or disappeared, and the standard curve of the fluorescent protein measured by different NADH concentrations is used to detect the standard curve. And analyze the presence and / or level of NADH.
  • fusion protein refers to an amino acid sequence comprising a first polypeptide or protein or a fragment, analog or derivative thereof, and a heterologous polypeptide or protein. (ie, a polypeptide or protein of an amino acid sequence that is different from the second polypeptide or protein of the first polypeptide or protein or a fragment, analog or derivative thereof, or a fragment, analog or derivative thereof).
  • the fusion protein comprises a heterologous protein A fluorescent protein that is fused to a peptide, peptide or peptide.
  • the heterologous protein, polypeptide or peptide may or may not be a different type of fluorescent protein.
  • the fusion protein retains or enhances activity compared to the activity of the original polypeptide or protein prior to fusion to the heterologous protein, polypeptide or peptide.
  • the fusion protein comprises a fluorescent probe fused to a heterologous protein, polypeptide or peptide, which may be a specific subcellular localization signal.
  • fluorophore as used herein, synonymous with “fluorescent protein”, refers to a protein that fluoresces itself or fluoresces under irradiation. Fluorescent proteins are often used as detection means, such as the green fluorescent protein GFP commonly used in the field of biotechnology, and BFP, CFP, YFP, cpYFP derived from the mutation of the protein.
  • GFP green fluorescent protein
  • Wild-type vGFP consists of 238 amino acids with a molecular weight of approximately 26 kD and the amino acid sequence of SEQ ID No: 20.
  • the current study confirms that the three amino acids Ser-Tyr-Gly at positions 65-67 of the native GFP protein spontaneously form a fluorescent chromophore: X-hydroxybenzylidazolidone?-hydroxybenzylideneimidazolinone, Its main illuminating position.
  • the spectral characteristics of wild-type vGFP are very complex.
  • the main peak of fluorescence excitation is at 395 nm, and there is another peak at 475 nm.
  • the amplitude of the latter is about 1/3 of the former.
  • excitation at 395 nm produces an emission at 508 nm
  • excitation at 475 nm produces a maximum emission wavelength at 503 nm.
  • YFP refers to a yellow fluorescent protein derived from the green fluorescent protein GFP, whose amino acid sequence is more than 90% homologous to GFP.
  • the key change of YFP compared to GFP is that the amino acid at position 203 is a mutation of threonine. Is tyrosine (T203Y).
  • T203Y tyrosine
  • a site-directed mutagenesis (S65T) of the 65th amino acid of YFP can obtain a fluorescent-enhanced yellow fluorescent protein EYFP
  • the typical EYFP amino acid sequence is SEQ ID No: 21.
  • the original 145-238 amino acid portion was used as the N-terminus of the new protein, and the original 1-144 amino acid was used as the C-terminus of the new protein, and a short flexible peptide was passed between the two fragments.
  • the chain VDGGSGGTG is ligated to form a circular permutation yellow fluorescent protein, which is sensitive to spatial changes.
  • the typical cpYFP amino acid sequence is SEQ ID No: 22.
  • the YdiH protein fused to the fluorophore may be isolated from Bacillus subtilis or The full length or a fragment thereof of the natural YdiH protein of the thermophilic bacteria or Streptomyces coelicolor, preferably amino acids 1-215 of the natural B. subtilis YdiH protein or amino acids 1-21 of the thermophilic YdiH protein. Or amino acid 1-259 of the Streptomyces coli YdiH protein, more preferably amino acids 1-215 of the B. subtilis YdiH protein or amino acids 1-211 of the Thermosporic YdiH protein.
  • Linker refers to an amino acid or nucleic acid sequence that joins two moieties in a polypeptide, protein or nucleic acid of the invention.
  • the length of the linker is not more than 6 amino acids, preferably not more than 4 amino acids, more preferably 3 amino acids.
  • the linker is no more than 18 nucleotides in length, preferably no more than 12 nucleotides, and more preferably 9 nucleotides.
  • variants having the same function as the polypeptide or protein but differing in sequence.
  • variants include, but are not limited to, one or more of the deletions, insertions and/or substitutions in the sequence of the polypeptide or protein (typically from 1 to 30, preferably from 1 to 20, more preferably 1-10, optimally 1-5) amino acids, and one or more (usually 20 or less, preferably 10 or less, more preferably 5) at the C-terminus and/or N-terminus thereof The sequence obtained by the amino acid.
  • the function of the polypeptide or protein is generally not altered.
  • Amino acids having similar properties are often referred to in the art as families of amino acids having similar side chains and are well defined in the art. These families include amino acids with basic side chains (eg lysine, arginine, histidine), amino acids with acidic side chains (eg aspartic acid, glutamic acid), with uncharged polarity Side chain amino acids (eg glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg alanine, valine, Leucine, isoleucine valine, phenylalanine, methionine, tryptophan), amino acids with ⁇ -branched side chains (eg threonine, valine, isoleucine) And amino acids with aromatic side chains (eg tyrosine, phenylalanine, tryptophan, histidine).
  • amino acids with basic side chains eg lysine, arginine, his
  • the addition of one or more amino acids at the C-terminus and/or the terminus does not generally alter the function of the polypeptide or protein. It is well known to those skilled in the art that in gene cloning operations, it is often necessary to design a suitable cleavage site, which necessarily introduces one or more irrelevant residues at the end of the expressed polypeptide or protein, without affecting the purpose. The activity of a polypeptide or protein. In addition, in order to construct a fusion protein, promote expression of a recombinant protein, obtain a recombinant protein that is automatically secreted outside the host cell, or facilitate purification of the recombinant protein, it is often necessary to add some amino acids.
  • N-terminus, C-terminus of the recombinant protein or other suitable region within the protein for example, including, but not limited to, suitable linker peptides, signal peptides, leader peptides, terminal extensions, glutathione S-transfers Enzyme (GST), maltose E-binding protein, protein A, a tag such as 6His or Flag, or a factor Xa or a proteolytic enzyme site of thrombin or enterokinase.
  • variants of a polypeptide or protein may include: homologous sequences, conservative variants, allelic variants, natural mutants, induced mutants, capable of hybridizing to the DNA of the polypeptide or protein under high or low stringency conditions.
  • the variants may further comprise a sequence identity to the polypeptide or protein of at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98. %, at least about 99% or 100% of the polypeptide or protein.
  • identity refers to a comparison window or a specified region, using methods known in the art, such as sequence comparison algorithms, by manual comparison and visual inspection.
  • sequence comparison algorithms by manual comparison and visual inspection.
  • two or more sequences or subsequences are identical or have a certain percentage of amino acid residues or nucleotides in the specified region (eg, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical).
  • preferred algorithms for determining percent sequence identity and percent sequence similarity are the BLAST and BLAST 2.0 algorithms, respectively, see Altschul et al. (1977) Nucleic Acids Res. 25:3389 and Altschul et al. (1990) J. Mol. Biol. 215:403.
  • soluble fragment generally refers to at least about 10 contiguous amino acids having the full length sequence of the protein, typically at least about 30 contiguous amino acids, preferably at least about 50 contiguous amino acids, more preferably at least about 80 contiguous. Amino acid, preferably a fragment of at least about 100 contiguous amino acids.
  • a functional fragment, derivative or analog of YdiH of the present invention may be (i) a protein having one or more conservative or non-conservative amino acid residues (preferably conservative amino acid residues) substituted, and such substituted amino acids
  • the residue may or may not be encoded by the genetic code, or (ii) a protein having a substituent in one or more amino acid residues, or (iii) a mature protein and another compound (such as a compound that extends the half-life of the protein) , for example, polyethylene glycol) fusion of the formed protein, or (iv) additional amino acid sequence fused to the protein
  • a protein formed by a sequence such as a leader sequence or a secretory sequence or a sequence or proprotein sequence used to purify the protein, or a fusion protein with an antigen IgG fragment).
  • the difference between the analog and the natural YdiH protein may be a difference in amino acid sequence, or may be a difference in the modification form which does not affect the sequence, or both.
  • These proteins include natural or induced genetic variants. Induced variants can be obtained by a variety of techniques, such as random mutagenesis by irradiation or exposure to a mutagen, or by site-directed mutagenesis or other known molecular biology techniques.
  • the analogs also include analogs having residues other than the natural L-amino acid (e.g., D-amino acids), and analogs having non-naturally occurring or synthetic amino acids (e.g., ⁇ , ⁇ -amino acids).
  • L-amino acid e.g., D-amino acids
  • non-naturally occurring or synthetic amino acids e.g., ⁇ , ⁇ -amino acids
  • the YdiH protein of the present invention is not limited to the representative proteins, fragments, derivatives and analogs listed above.
  • Modifications include: chemically derived forms of proteins such as acetylation or carboxylation in vivo or in vitro. Modifications also include glycosylation, such as those produced by glycosylation modifications in the synthesis and processing of proteins or in further processing steps.
  • Modified forms can be accomplished by exposing the protein to an enzyme that performs glycosylation, such as a mammalian glycosylation enzyme or a deglycosylation enzyme.
  • Modified forms also include sequences having phosphorylated amino acid residues (e.g., phosphotyrosine, phosphoserine, phosphothreonine). Also included are proteins that have been modified to increase their resistance to proteolytic properties or to optimize solubility properties.
  • nucleic acid as used in the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • the DNA can be a coding strand or a non-coding strand.
  • the coding region sequence encoding the mature protein may be identical to the coding region sequence shown in SEQ ID NO: 9, 10, 11, 12 or 13, or may be a degenerate variant thereof.
  • degenerate variant refers to a nucleic acid sequence encoding a fluorescent fusion protein of the invention, but differing from the coding region sequence set forth in SEQ ID NO: 9, 10, 11, 12 or 13.
  • nucleic acid when referring to a nucleic acid, the term "variant" as used herein may be a naturally occurring allelic variant or a non-naturally occurring variant. These nucleotide variants include degenerate variants, substitution variants, deletion variants, and insertion variants. As is known in the art, an allelic variant is an alternative form of a nucleic acid that may be a substitution, deletion or insertion of one or more nucleotides, but does not substantially alter the function of the protein encoded thereby.
  • the nucleic acid of the present invention may comprise a sequence corresponding to the nucleic acid sequence
  • the homologous is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99% or 100% of the nucleotide sequence.
  • hybridization under stringent conditions is used to describe typical mutual interactions.
  • stringent conditions are those under which conditions having at least 65%, more preferably at least 70%, and even more preferably at least 80% or more homology to each other will generally still hybridize to each other.
  • stringent conditions are well known to those of ordinary skill in the art.
  • a preferred, non-limiting example of a stringent condition is:
  • Hybridization and elution at lower ionic strength and higher temperature such as 0.2xSSC, 0.1% SDS, 0 °C; or (2) addition of denaturant at 50% (v/v) Amide, 0.1% calf serum/0.1% Ficoll, 42 °C, etc.; or (3) hybridization occurs only when the identity between the two sequences is at least 90% or more, more preferably 95% or more.
  • the protein encoded by the hybridizable nucleic acid has the same biological function and activity as the mature protein represented by SEQ ID NO: 4, 5, 6, 7, or 8.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” is at least 15 nucleotides in length, preferably at least 30 nucleotides, more preferably at least 50 nucleotides, and most preferably at least 100 nucleotides or more.
  • Nucleic acid fragments can be used in nucleic acid amplification techniques (eg
  • the full length sequence of the fluorescent probe or fusion protein of the present invention or a fragment thereof can usually be obtained by a PCR amplification method, a recombinant method or a synthetic method.
  • primers can be designed in accordance with the disclosed nucleotide sequences, particularly open reading frame sequences, and can be prepared using commercially available cDNA libraries or conventional methods known to those skilled in the art.
  • the library is used as a template to amplify the relevant sequences. When the sequence is long, it is often necessary to perform two or more PCR amplifications, and then the amplified fragments are spliced together in the correct order.
  • the recombination method can be used to obtain the relevant sequences in large quantities. This is usually carried out by cloning into a vector, transferring it to a cell, and then separating and purifying the polypeptide or protein from the proliferated host cells by a conventional method.
  • synthetic sequences can be used to synthesize related sequences, especially when the fragment length is short.
  • a long sequence of segments can be obtained by first synthesizing a plurality of small segments and then connecting them.
  • DNA sequence of a derivative, analog or variant can then be introduced into various existing DNA molecules (e.g., vectors) and cells known in the art. Mutations can be introduced into the protein sequences of the invention by methods such as mutant PCR or chemical synthesis.
  • expression vector and "recombinant vector” as used herein are used interchangeably and refer to prokaryotic or eukaryotic vectors well known in the art, such as bacterial plasmids, bacteriophage, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, Retroviruses or other vectors that are capable of replicating and stabilizing in a host, an important feature of these recombinant vectors is that they typically contain expression control sequences.
  • expression control sequence refers to an element that operably linked to a gene of interest, which regulates transcription, translation and expression of a gene of interest, and may be an origin of replication, a promoter, a marker gene or a translational control element, including enhancers, operons. , terminator, ribosome binding site, etc., the choice of expression control sequences depends on the host cell used.
  • Recombinant vectors suitable for use in the present invention include, but are not limited to, bacterial plasmids.
  • "operably linked" means that the nucleotide sequence of interest is linked to a regulatory sequence in a manner that allows expression of the nucleotide sequence.
  • the expression vector also includes a ribosome binding site for translation initiation and a transcription terminator.
  • the design of the recombinant expression vector can depend on factors such as the choice of host cell to be transformed, the level of protein expression desired, and the like.
  • the recombinant expression vector preferably comprises one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase for eukaryotic cells, neomycin resistance, Or for tetracycline or ampicillin resistance in E. coli.
  • the coding sequence of the fluorescent probe or fusion protein of the present invention is ligated to the pRSET b vector double-digested with a H/he ⁇ Hindlll by a H/W H «t /// double digestion. , an E. coli recombinant expression vector was obtained.
  • the expression vector of the present invention can be transferred into a host cell, To produce a protein or peptide comprising a fusion protein. Such transfer procedures can be carried out using conventional techniques well known to those skilled in the art, such as transformation or transfection.
  • the term "host cell”, also referred to as a recipient cell, refers to a cell that is capable of receiving and containing a recombinant DNA molecule and is a site for amplification of the recombinant gene. Ideal recipient cells should satisfy both conditions of easy access and proliferation.
  • the "host cell” of the present invention may include prokaryotic cells and eukaryotic cells, and specifically includes bacterial cells, yeast cells, insect cells, and mammalian cells.
  • the expression vector of the present invention can be used to express the fluorescent probe or fusion protein of the present invention in prokaryotic or eukaryotic cells.
  • the present invention relates to a host cell, preferably Escherichia coli, into which the expression vector of the present invention has been introduced.
  • the host cell can be any prokaryotic or eukaryotic cell, representative examples are: Escherichia coli, Streptomyces, Salmonella typhimurium bacterial cells, Fungal cells such as yeast, Plant cells, Drosophila S2 or S insect cells, CHO, COS 293 cells, or animal cells of Bowes melanoma cells, and the like, including but not limited to those described above.
  • the host cell is preferably a variety of cells which facilitate gene product expression or fermentation production, such cells are well known and commonly used in the art, such as various E. coli cells and yeast cells.
  • E. coli BL21 is selected to construct a host cell expressing a fusion protein of the invention. It will be apparent to one of ordinary skill in the art how to select appropriate vectors, promoters, enhancers and host cells.
  • transformation and “transfection,””engagement,” and “transduction” as used herein mean various exogenous nucleic acids (eg, linear DNA or RNA (eg, linearized or uncarriered) that are well known in the art.
  • Techniques for introducing a nucleic acid eg, a plasmid, cosmid, phage, phagemid, phagemid, transposon, or other DNA
  • a nucleic acid eg, a plasmid, cosmid, phage, phagemid, phagemid, transposon, or other DNA
  • a host cell either alone or in a vector form, including calcium phosphate or calcium chloride Precipitation, DEAE-mannan-mediated transfection, lipofection, natural competence, chemically mediated transfer or electroporation.
  • the host is a prokaryote such as E.
  • competent cells capable of absorbing DNA can be harvested after the exponential growth phase and treated by the CaCl 2 method, and the procedures used are well known in the art. Another method is to use MgCl 2 . Conversion can also be carried out by electroporation if desired.
  • DNA transfection methods can be used: calcium phosphate coprecipitation, conventional mechanical methods such as microinjection, electroporation, liposome packaging, and the like.
  • the obtained transformed cells can be cultured in a conventional manner suitable for expression of the host cell to express the fusion protein of the present invention.
  • the medium used in the culture may be various conventional medium depending on the host cell used.
  • the cultivation is carried out under conditions suitable for the growth of the host cell.
  • the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a further period of time.
  • the recombinant protein in the above method can be expressed intracellularly, or on the cell membrane, or secreted outside the cell. If desired, the recombinant protein can be isolated or purified by various separation methods using its physical, chemical, and other properties. These methods are well known to those skilled in the art. Examples of such methods include, but are not limited to: conventional renaturation treatment, treatment with a protein precipitant (salting method), centrifugation, osmotic sterilizing, ultra-treatment, ultra-centrifugation, molecular sieve chromatography (gel filtration), adsorption layer Analysis, ion exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment treatment with a protein precipitant (salting method), centrifugation, osmotic sterilizing, ultra-treatment, ultra-centrifugation, molecular sieve chromatography (gel filtration), adsorption layer Analysis, ion exchange
  • the fluorescent probe or fusion protein of the present invention is produced by Escherichia coli comprising the fusion protein coding sequence of the present invention, and purified by ammonium sulfate sedimentation, ion exchange chromatography and gel chromatography to obtain a pure form of the present invention.
  • Inventive fluorescent probes or fusion proteins are produced by Escherichia coli comprising the fusion protein coding sequence of the present invention, and purified by ammonium sulfate sedimentation, ion exchange chromatography and gel chromatography to obtain a pure form of the present invention.
  • Inventive fluorescent probes or fusion proteins are produced by Escherichia coli comprising the fusion protein coding sequence of the present invention, and purified by ammonium sulfate sedimentation, ion exchange chromatography and gel chromatography to obtain a pure form of the present invention.
  • the use of the fluorescent probe or fusion protein of the present invention includes, but is not limited to, detection of NADH, detection of NADH in a physiological state, detection of NADH at a subcellular level, detection of NADH in situ, screening of a drug, diagnosis of a disease associated with NADH levels, and the like.
  • pMD19-cpYFP (Nagai, T. et al., Proc Natl Acad Sci US A. 2001, V.98(6), PP.3197-3202X obtained from East China University of Science and Technology Protein Chemistry Laboratory (Shanghai, China) as a template
  • the PCR reaction system is
  • the PCR reaction conditions are:
  • Bacillus subtilis 0 ⁇ «7/ subtilis) was obtained from the China General Microorganisms Collection Management Center (catalog number 1.1656).
  • the solution is layered.
  • the upper aqueous phase accounts for about 40%, contains RNA, and the lower organic phase accounts for about 60%. It contains DNA and protein, and carefully absorbs and removes the upper aqueous phase.
  • the DNA precipitated with 50 ⁇ l of 8 mM NaOH solution was stored at 4 °C or -20 V.
  • ydiH IF BamHI CCGOH CATGAATAAGGATCAATCAAAAATTC (SEQ ID NO: 25)
  • ydiH 1R Spel GCTGTTGTA ⁇ CTA G7TTCGATTTCCTCTAAAACT (SEQ ID NO: 26)
  • ydiH(D2) 2F Kpnl CGGGG73 ⁇ 4CCATGACAGACGTCATCTTGATTGGTG (SEQ ID NO: 27)
  • PCR reaction system is j
  • the PCR reaction conditions are:
  • the PCR amplification product was electrophoresed on a 1% agarose gel for 30 minutes to obtain a ydiH 1 fragment of about 700 bp in size and a ydiH(D2) 2 fragment of about 450 bp in size, and the purification kit was recovered by using the Shanghai DNA fragment. (Shanghai Bioengineering Co., Ltd., Shanghai, China) Recovered and purified ydiH 1 and ydiH(D2) 2 fragments according to the manufacturer's instructions.
  • PCR was carried out using ydiH IF and cpYFP 1R as primers using eddiH 1 and cpYFP as templates.
  • the PCR system was:
  • the initial reaction system does not contain positive and negative primers, and the reaction is carried out for 10 cycles before the primers are added to the reaction system.
  • the PCR amplification product was electrophoresed on a 1% agarose gel for 40 minutes to obtain a ydiH-cpYFP fragment having a size of about 1400 bp.
  • the purified PCR fragment ydiH-YFP and the vector plasmid pRSET b were separately digested, and the system was as follows:
  • the reaction was stopped by adding 10 ⁇ l of a 6 Torr loading buffer to the 50 ⁇ l reaction system. Then, the target fragment was separated by agarose gel electrophoresis, and the fragment was recovered and purified using Shanghai Biochip DNA Fragment Purification Kit (Shanghai Bioengineering Co., Ltd., Shanghai, China) according to the manufacturer's instructions.
  • the reaction was stopped by adding ⁇ 6x loading buffer to the 50 ⁇ l reaction system.
  • the target fragment was then separated by agarose gel electrophoresis, and the fragment was recovered and purified using Shanghai Biochip DNA Fragment Purification Kit (Shanghai Bioengineering Co., Ltd., Shanghai, China) according to the manufacturer's instructions.
  • the recovered digested products of ydiH(D2) 2 and pRSET b -ydiH-YFP were ligated as described above to form the final ligation product pRSET b -ydiH-YFP-ydiH (D2).
  • Colonies identified as positive by PCR were sequenced by universal primers and sequenced by Beijing Liuhe Huada Gene Technology Co., Ltd. Shanghai Branch. The determined sequences were subjected to data alignment analysis using Vector NTI 8.0. The result showed that the nucleotide sequence of ydiH-cpYFP-ydiH(D2) was indeed inserted into the plasmid (as shown in SEQ ID NO: 9 in the sequence listing), and the sequence encodes the protein shown by SEQ ID NO: 4 in the sequence listing. . 4. Conversion
  • the recombinant plasmid pRSETb-ydiH-cp YFP-ydiH (D2) was transformed into competent E. coli ⁇ E.coli) BL21 (DE3) pLysS (purchased from Tiangen Biochemical Co., Beijing, China) to obtain recombinant BL-Frex.
  • the specific method is as follows:
  • primers cpYFP F and cpYFP R were used to amplify the coding sequence of yellow fluorescent protein (cpYFP).
  • the primer sequence (primer synthesized by Shanghai Shenggong Bioengineering Co., Ltd. (Shanghai, China)) was as follows:
  • the PCR reaction system is
  • the PCR amplification product was electrophoresed on a 1% agarose gel for 20 minutes to obtain a bp FP fragment of about 750 bp.
  • the cpYFP fragment was recovered and purified from the gel using the Shanghai Biochip DNA Fragment Recovery and Purification Kit (Shanghai Bioengineering Co., Ltd., Shanghai, China) according to the manufacturer's instructions.
  • thermophilic YdiH protein gene T-ydiH was commissioned by Shanghai Jierui Bioengineering Co., Ltd. (Shanghai, China) for synthesis (according to The full sequence of the genes recorded in the NCBI Genbank data was synthesized, NCBI Genbank AF061257.1).
  • primers ydiH IF and ydiH 2R were used to amplify the full length of the YdiH protein gene (T-ydiH) of the thermophilic bacteria, in which the primers ydiH IF and ydiH 2R were amplified to obtain the N-terminal Sa H/ restriction enzyme.
  • the T-YdiH protein gene (T-ydiH) full-length fragment T-yidH containing the Hindlll restriction site at the C-terminus of the site, the primers ydiH 1 F and ydiH 2R sequences are as follows:
  • the PCR reaction system is
  • the PCR amplification product was electrophoresed on a 1% agarose gel for 30 minutes to obtain a ydiHl fragment of about 700 bp in size, and the Shanghai Biotech DNA Fragment Recovery and Purification Kit (Shanghai Bioengineering Co., Ltd., Shanghai, China) was used according to the manufacturer's instructions.
  • the T-ydiH fragment was recovered and purified.
  • the purified PCR fragment T-ydiH and the vector plasmid pRSET b were separately digested, and the system was as follows:
  • the reaction was stopped by adding 10 ⁇ l of a 6 Torr loading buffer to the 50 ⁇ l reaction system. Then, the target fragment was separated by agarose gel electrophoresis, and the fragment was recovered and purified using Shanghai Biochip DNA Fragment Purification Kit (Shanghai Bioengineering Co., Ltd., Shanghai, China) according to the manufacturer's instructions.
  • the recovered T-ydiH double-cut product and the vector plasmid pRSET b double-digested product are linked, and the system is as follows
  • a ligation product pRSET b -ydiH is formed.
  • the full length of the pRSET b -ydiH sequence was amplified using the primers T-ydiH(L190) F and T-ydiH(F189) R , wherein the primers T-ydiH(L190) F and T -ydiH(F189) R amplification of the full length fragment yidH-pRSET b of the pRSET b -ydiH sequence containing the Kpnl restriction site at the C-terminus of the Pstl cleavage site, primers T-ydiH(L190) F and T- The ydiH(F189) R sequence is as follows:
  • P6 Pstl ATAC GCiGAGAAGTCCACGTTCTCCACGGCCACCTC (SEQ ID NO: 34)
  • DNA fragment cpYFP 15 ⁇ 1 DNA fragment yidH-pRSET b ⁇ ⁇
  • the reaction was stopped by adding ⁇ 6x loading buffer to the 50 ⁇ l reaction system.
  • the target fragment was then separated by agarose gel electrophoresis, and the fragment was recovered and purified using Shanghai Biochip DNA Fragment Purification Kit (Shanghai Bioengineering Co., Ltd., Shanghai, China) according to the manufacturer's instructions.
  • the clones identified as positive by colony PCR were sequenced by universal primers and sequenced by Beijing Liuhe Huada Gene Technology Co., Ltd. Shanghai Branch. The determined sequences were subjected to data alignment analysis using Vector NTI 8.0. The result indicated that the nucleotide sequence of ydiH(189)-YFP-ydiH(190) was indeed inserted into the plasmid (as shown in SEQ ID NO: 13 in the sequence listing), which encodes the sequence of SEQ ID NO: 8 in the sequence listing. The protein shown. 4. Conversion
  • Recombinant plasmid pRSET b -ydiH( 189)-YFP-ydiH( 190) was transformed into competent E. coli CE.co/ ) BL21 (DE3) pLysS (purchased from Tiangen Biochemical, Beijing, China) to obtain recombinant strain BL -Frex, the specific method is as follows:
  • the intermediate transition plasmid of pRSET b- ydiH-YFP-ydiH was used as a template to construct a derivative probe according to the principle of site-directed mutagenesis.
  • the truncation mutation sequence is illustrated as follows:
  • Truncated mutations and site-directed mutagenesis were performed using site-directed mutagenesis PCR.
  • Mutation PCR amplification system (primers, enzymes, dNTPs, etc. from Enzymes):
  • the PCR amplified fragment was first treated with Dpnl enzyme (from Enzymes) for 3 hours at 37 °C to remove potential template plasmid contamination. Then, the reaction system was denatured and denatured at 80 ° C for 20 minutes. The denatured inactivated reaction mixture can be used directly in subsequent molecular biology experiments.
  • Dpnl enzyme from Enzymes
  • T4 polynucleotide kinase T4 polynucleotide kinase, T4 ⁇ from Richases
  • the phosphorylated DNA fragment (mutated DNA fragment pRSET b -ydiH-YFP or pRSET b -YFP-ydiH) was subjected to circular self-ligation using T4 DNA ligase (from Enzymes) (16 ° C, overnight). Mutant series plasmid double digestion
  • the reaction was stopped by adding 10 ⁇ l of a 6 Torr loading buffer to the 50 ⁇ l reaction system.
  • the target fragment is then separated by agarose gel electrophoresis, and the fragment is recovered and purified by column adsorption.
  • Shanghai Biochip DNA Fragment Recovery and Purification Kit See "Shanghai Biochip DNA Fragment Recovery and Purification Kit”.
  • the restriction fragment pRSET b -ydiH-YFP of the mutant plasmid pRSET b -ydiH-YFP series was ligated to the normal sequence fragment YFP-ydiH fragment which was not mutated as needed.
  • the restriction fragment pRSET b -ydiH-YFP of the mutant plasmid pRSET b -ydiH-YFP was selected for ligation with the restriction fragment YFP-ydiH of the pRSET b - YFP-ydiH series which also caused site-directed mutagenesis.
  • the recovered purified fragment pRSET b -ydiH-YFP was ligated to the YFP-ydiH segment, and the system was as follows:
  • the ligated product was identified as pRSET b -ydiH- YFP-ydiH True v2.xx or pRSET b -ydiH-YFP-ydiH mutant plasmid identification
  • Colonies that were positive for PCR screening were sequenced by universal primers and completed by Beijing Liuhe Huada Gene Technology Co., Ltd. Shanghai Branch. The sequence of the assay was subjected to data alignment analysis using Vector NTI 8.0. Build probe series
  • the intermediate transition plasmids of probes such as pRSET b- ydiH(189)-YFP-ydiH(190) were used as plates, and the construction of the derivative series probes was carried out according to the principle of site-directed mutagenesis.
  • the truncation mutation sequence is illustrated as follows: Establishment of a mutant library
  • Truncated mutations and site-directed mutagenesis were performed using site-directed mutagenesis PCR.
  • Mutation PCR amplification system (primers, enzymes, dNTPs, etc. from Enzymes):
  • Prime Star enzyme 0.5 ⁇ 10 minute dNTP mixture (l OmM) 4 ⁇
  • the PCR amplified fragment was first treated with Dpnl enzyme (from Enzymes) for 3 hours at 37 °C to remove potential template plasmid contamination. Then, the reaction system was denatured and denatured at 80 ° C for 20 minutes. The denatured inactivated reaction mixture can be used directly in subsequent molecular biology experiments.
  • Dpnl enzyme from Enzymes
  • T4 polynucleotide kinase (from Enzymes) was treated at 37 ° C for 1 hour to phosphorylate the 5'-OH of the DNA ribose ring. In order to facilitate the fragmentation of the segments. Then, the reaction system was denatured and deactivated at 75 ° C for 10 minutes. The denatured inactivated reaction mixture can be used directly in subsequent molecular biology experiments. Connection
  • the phosphorylated DNA fragment (mutated DNA fragment pRSET b -ydiH-YFP or pRSET b -YFP-ydiH) was subjected to circular self-ligation (16 V, overnight) using T4 DNA ligase (from Enzymes) ). Mutant plasmid identification
  • Example 5 Spectral characteristics of reduced nicotinamide adenine dinucleotide fluorescent probe
  • the fluorescent probe prepared as described above was dissolved in assay buffer (100 mM KPi (potassium phosphate), pH 7.4) to prepare a final A fluorescent probe solution having a concentration of ⁇ .
  • the absorption spectra were determined using a versatile fluorescent microplate reader (Cooperative Type 2 (8 1 1 ⁇ 2 2)) (Berton (8 0 1 ⁇ , Vermont, USA) (Fig. 3 ⁇ ).
  • the excitation and emission spectra were measured using a fluorescence spectrophotometer (Cary Eclipse Fluorescence spectrophotometer) (Varian) (Fig. 3B).
  • the experimental results of spectral characterization indicate that the F-rexl protein has two excitation peaks of 400 nm and 490 nm, respectively, of which the amplitude intensity of the latter is five times that of the former, while the F-rexl protein has only one emission peak of 521 nm.
  • the F-rex2 protein has two excitation peaks of 410 nm and 500 nm, respectively, of which the amplitude of the latter is about one-half of that of the former, while the F-rex2 protein has only one emission peak of 518 nm (Fig. 4).
  • Example 6 Response characteristics of reduced nicotinamide adenine dinucleotide fluorescent probe to pyridine nucleotide analogs under physiological conditions
  • the fluorescent probe prepared as described above was dissolved in assay buffer (100 mM KPi, pH 7.4) to prepare a protein solution having a final concentration of ⁇ .
  • assay buffer 100 mM KPi, pH 7.4
  • the pyridine nucleotide analogues NAD+, NADH, ATP, ADP, NADP+ and NADPH (Merck, Darmstadt, Germany) were each formulated to a final concentration of 8 mM using assay buffer (100 mM KPi, pH 7.4).
  • the stock solution was diluted to 80 ⁇ m before use for measurement.
  • Reductive nicotinamide adenine dinucleotide fluorescent probe localized expression in different subcellular organelles using pRSET b -ydiH-cpYFP-ydiH(D2) as a template, using BamHI and ⁇ Hindlll double digestion
  • a reduced nicotinamide adenine dinucleotide fluorescent probe gene (Frex) was obtained, and the fragment was recovered and further ligated into pcDNA3.1-Hygro-Cyto, pcDNA3.1-Hygro-Mito, pcDNA3.1- Hygro-Nuc, pcDNA3.1-Hygro-Mem, pcDNA3.1-Hygro-Golgi, pcDNA3.1-Hygro-ER, pcDNA3.1-Hygro-Peroxi vector (Renovation of Protein Chemistry Laboratory, East China University of Science and Technology, Shanghai, China) .
  • Preparation method All the primers in this method were synthesized by Shanghai Shenggong (Shanghai Labor, Shanghai, China) without special statement. First, the pcDNA3.1-Hygro-Cyto vector was constructed, and two primers, Cyto primer F and Cyto primer R, were designed based on pcDNA3.1-Hygro(+) (Invitrogen, California, USA).
  • Cyto Primer F CTA GCATGGCGGATCCACTAGTAA GCTTAAGC (SEQ ID No 80) Cyto Primer R: TCGA GCTTAA GCTTACTAGTGGATCCGCCATG (SEQ ID No 81)
  • This set of primers contains the cleavage site and the initiation codon ATG, and the structure is "NheI-ATG-GC".
  • -BamHI-HindIII-XhoI the obtained bow 1 was subjected to double primer annealing as follows:
  • the pair of primers to be annealed, equimolar mixed, the total volume is not more than 500 ⁇ 1
  • GGCCGTCGCCGCG (SEQ ID No 88)
  • ATAGCAGCGCCATG (SEQ ID No 89)
  • Peroxi Primer F A GC77 CCAAGCTGTAAC (SEQ ID No 90)
  • the resulting recombinant plasmid was separately transfected, HEK293 cells, HEK293FT cells and Cos7 cells, and the transfected cells were observed by laser confocal microscopy (from Nikon, Japan).
  • the excitation wavelengths of the two groups were 405 nm and 488 nm, respectively.
  • the emitted light has a wavelength of 500-550 nm.
  • Example 8 uses this series of probes to indicate changes in intracellular reduced nicotinamide adenine dinucleotide
  • the reduced nicotinamide adenine dinucleotide fluorescent probe was expressed in different subcellular organelles of 293FT cells according to Example 7. The results showed that the series of probes can detect the NADH level in the cell culture medium plus NADH in real time. Effect (Fig. 8-1A), when NADH was added to the cell culture medium, the transfected cells were observed by a laser confocal microscope (from Nikon, Japan), and the results showed that the probe was excited at 485 nm under 528 nm.
  • Figure 8-1B shows the results in the nucleus
  • Figure 8-1C shows the results in the mitochondria.
  • the results show that the nicotinamide adenine dinucleotide fluorescent probe can well indicate the NADH transmembrane into the lactation Animal cells cause an increase in intracellular NADH levels.
  • Nicotinamide adenine dinucleotide fluorescent probe for real-time determination of glucose, pyruvate, and lactic acid regulation of NADH levels in different subcellular compartments.
  • Glycolysis is an important pathway for the production of small NADH molecules in cells, which plays a crucial role in the regulation of intracellular NADH levels.
  • the effects of pyruvic acid and lactic acid on the indoor NADH levels in different subcellular regions were tested.
  • Figure 8-2A shows intracytoplasmic results
  • Figure 8-2D shows mitochondrial results. Above The results indicate that glucose, as one of the sources of cellular energy, can lead to an increase in NADH levels in cytoplasm and mitochondria. Pyruvate and lactic acid are products of the glycolytic pathway. There is a dynamic balance between the two in the cytoplasm.
  • NADH produced via the glycolytic pathway and the tricarboxylic acid cycle pathway is oxidized via the mitochondrial respiratory chain oxidative phosphorylation pathway, which produces ATP to power various life activities of the cell.
  • Figure 8-3A shows the expression of 3-NP treatment in mitochondria.
  • Figure 8-3B shows a 6 min dynamic map of the 3-NP treated expression of the mitochondrial control protein cpYFP.
  • the time interval of each of the above figures is lmin.
  • the cells before and after treatment were observed by a laser confocal microscope (from Nikon, Japan).
  • Example 9 Determination of intracellular NAD+ levels by oxidized nicotinamide adenine dinucleotide fluorescent probe
  • the structure of the oxidized nicotinamide adenine dinucleotide fluorescent probe is F189 and L190 in Trex
  • the cpYFP was inserted between the two amino acids, and the sequence of this probe was SEQ ID NO: 129, which was prepared in the same manner as in Example 4.
  • the structure of the reduced and oxidized nicotinamide adenine dinucleotide ratio fluorescent probe is such that cpYFP is inserted between the amino acids F189 and L190 of Trex.
  • the sequence of this probe is SEQ ID NO: 148, and the preparation method is the same.
  • Example 4 The probe is only responsive to NADH and NAD+, and has no response to NADH analogues. When 485nm excitation is used, both NAD and NADH binding can result in enhanced fluorescence at 528nm, but 420nm excitation, only NADH binding. Can cause the probe to respond.
  • the fluorescence intensity of different wavelengths can be used to determine the intensity ratio of the two at 528nm (420nm/485nm).
  • the response to the probe fluorescence ratio is increased, while the binding of NAD+ causes its response to decrease ( Figure 10-1).
  • NADH and NAD maintain the same total concentration and adjust the mutual ratio of the two, the trend change is more obvious and does not change with the total concentration ( Figure 10-2).
  • the probe can be used as both a reduced-type and oxidized nicotinamide adenine dinucleotide ratio probe, and can also be used as a reduced nicotinamide adenine dinucleotide probe alone.
  • Example 11 High-throughput drug screening based on reduced and oxidized nicotinamide adenine dinucleotide ratio fluorescent probes
  • H1299 monoclonal stable cell line (H1299-superFrex) with high expression of superFrex was obtained by flow sorting.
  • 5-6 weeks old male nude mice were injected subcutaneously with 200 ⁇ H1299-superFrex cell suspension (1.OxlO 7 cells).
  • the tumors of nude mice grew to 0.6-1.0 cm.
  • 300 ⁇ of sodium pyruvate (100 mM) was injected through the tail vein, and the effect of the drug on tumor metabolism was immediately observed using a Kodak multifunctional living imaging system (Carestream, USA).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用。其中,本发明分别公开了还原型和氧化型烟酰胺腺嘌呤二核苷酸的重组荧光融合蛋白检测探针,以及检测还原型和氧化型烟酰胺腺嘌呤二核苷酸比率的重组荧光融合蛋白检测探针。

Description

烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用
技术领域
本发明涉及烟酰胺腺嘌呤二核苷酸的检测探针, 具体涉及烟酰胺腺嘌 呤二核苷酸的重组荧光融合蛋白检测探针。 在一个具体方面, 本发明涉及 还原型烟酰胺腺嘌呤二核苷酸 (NADH)的重组荧光融合蛋白检测探针; 在另 一个具体方面, 本发明涉及氧化型烟酰胺腺嘌呤二核苷酸 (NAD+)的重组荧 光融合蛋白检测探针; 在又一方面, 本发明涉及还原型和氧化型烟酰胺腺 嘌呤二核苷酸比率的重组荧光融合蛋白检测探针。 本发明也涉及上述检测 探针的制备方法及其分别在检测 NADH、 NAD+和 NADH/NAD+比率中的 应用。 背景技术
NAD+及 NADH作为辅酶, 是呼吸链的重要组成部分, 它参与了呼吸 链中的电子传递过程 (Rich, P.R.等, Biochem Soc Trans. 2003, V.31(6), ρρ.1095-1105)。 在呼吸链的氧化还原反应中, NAD+作为质子的载体, 当其 接受了其他分子传递过来的一个电子后, 由最初的氧化态转变为还原态, 该反应的最终产物为 NADH, 而 NADH可以作为还原剂向其他分子提供电 子 (Belenky,P.等, Trends in Biochemical Sciences. 2007, V.32(l), pp.12-19)。 近来的研究表明, NAD(H)不仅参与能量代谢、 物质合成以及抗氧化作用, 还涉及到体内的钙稳态、 基因表达、 免疫作用以及细胞衰老与死亡等等, 而 NAD(H)在其中均有着至关重要的作用, 因此 NAD(H)本身及其代谢所涉 及的众多酶类也成为了药物设计的靶标 (Sauve, A. A.等, J Pharmacol Exp Ther. 2008, V.324(3), pp.883-893)。
但是, 大多数活细胞内的 NAD(H)的总量大约为 1(Γ6Μ~1(Γ3Μ, 而且
NAD+/NADH 的比例也随着细胞内状态不同而不尽相同(Lin, S. J.等, Current Opinion in Cell Biology. 2003, V.15(2), pp.241-246) , 因此这给 NAD(H)的测定带来了极大的不便。 较早的检测方法主要是利用 NADH 在 340nm 紫外光区有特征吸收, 由此建立了紫外分光光度法, 该方法存在两 个主要的缺陷: 1、 有效灵敏度受仪器精密度所限, 约为 10—7M; 2、 在复杂 体系中, 不能有效地区分 NADH与 NADPH。 随后, 根据 NAD+作为辅酶, 在电子传递过程中接受电子转变为 NADH的特性, 发展出了一系列酶学检 测方法。 其他如 HPLC分析、 电化学法、 毛细管电泳、 荧光成像等方法也 常见诸于各种文献报道中。 然而, 大部分的方法或者对单个细胞中靶标分 子的灵敏度不足, 或者不能进行亚细胞器定位。 特别需要指出的是, 这些 现有方法均存在一个主要的缺陷, 即需要对样品进行裂解、 分离、 纯化等 操作,而 NADH本身又极易氧化,在一系列繁琐的操作中极易将误差引入, 导致最终显示的结果与实际存在出入。 另外, 这些现有方法不能应用于活 体动物或细胞, 不能进行实时地检测, 这限制了这些方法在临床疾病诊断 及药物前体研究等邻域的应用。 目前在活体或细胞上只能采用 NADH自发 荧光来检测 (Zhang, Q. H.等, Science. 2002, V.295(5561), pp.1895-1897), 而这种传统方法存在以下严重缺陷: 首先, 已知细胞对 NAD+/NADH 和 NADP+/NADPH的调控是相对独立的, 正常状态下 NAD+/NADH的比例大 约在 700: 1, 而 NADP+/NADPH的比例在 1 :200; 其次, 它们的氧化还原势 存在着巨大的区别, 这反映出 NADH与 NADPH分别在能量代谢与合成代 谢中扮演截然不同的角色; 第三, NADH与 NADPH 自发荧光完全不可区 分, 利用自发荧光进行成像测量获得的结果是 NADH与 NADPH之和, 鉴 于 NADH含量很低且大部分以蛋白质结合形式存在,所以 NADH自发荧光 数据实质反映的是蛋白质结合的 NADPH的浓度 (Zhang, Q. H.等, Science. 2002, V.295(5561), pp.1895-1897); 第四, 由于 NADH激发波长位于紫外 区 (340nm)且自发荧光较弱, 需要复杂昂贵的仪器如用于临床监测的仪器 CritiView, 再加上紫外光对组织的穿透力很弱并会造成细胞损伤, 这些光 学特性严重制约了自发荧光监测的应用。
因此, 本领域亟需发展一种特异性 NADH检测技术, 特别是一种适合 生理水平和亚细胞水平的特异性 NADH检测技术。
而相对于传统的小分子染料检测技术以及迅速发展的量子点检测技 术, 荧光蛋白检测技术在大多数的活体细胞成像方面具有独一无二的压倒 性优势, 它能够通过遗传导入至细胞、 组织乃至整个器官中, 因此荧光蛋 白能够作为一个全细胞标记物或基因启动激活的指示器。
绿色荧光蛋白最初是从维多利亚多管发光水母 4 equorea victoria)中提 取, 野生型的 vGFP由 238个氨基酸构成, 分子量约为 26kD。 当前的研究 确认, 天然 GFP蛋白中第 65~67位的三个氨基酸 Ser-Tyr-Gly能够自发形 成 一 个 荧 光 生 色 基 团 : 对 - 羟 基 苯 亚 甲 基 咪 唑 啉 酮 ( -hydroxybenzylideneimidazolinone) , 是其主要的发光位置。 野生型 vGFP 的光谱特征十分复杂, 其荧光激发的主峰在 395nm处, 而在 475nm处另有 一个附峰, 后者振幅强度约为前者的 1/3。 在标准的溶液条件下, 395nm处 的激发可产生 508nm处的发射, 而 475nm处的激发产生的最大发射波长位 于 503nm (Heim, R.等, Proc Natl Acad Sci U S A. 1994, V.91 (26), pp. l2501 - 12504)。
随着对 GFP蛋白突变的研究日渐深入, 利用分子生物学技术, 目前已 经发展出多种表现突出的 GFP衍生物,通过在野生型 GFP基础上进行不同 的单点突变或者组合, 可获得诸如增强型 GFP(S65T, F64L)、 YFP(T203Y)、 CFP(Y66W)等。 而借助对 GFP蛋白序列的重新排列, 将原第 145-238位氨 基酸部分作为新蛋白的 N端, 原第 1-144位氨基酸作为新蛋白的 C端, 两片段 间通过一小段具有柔性的短肽链连接, 形成一个对空间变化敏感的环状排列荧 光蛋白(circular permutation fluorescent protein), 在此基础上对原蛋白 T203Y进 行的点突变就形成了环状排列的黄色荧光蛋白 cpYFP(Nagai, T.等, Proc Natl Acad Sci U S A. 2001 , V.98(6), pp.3197-3202)。
由于对荧光蛋白研究日益深入, 相关的一些基于荧光的分析检测技术 也获得了进一步的发展。 例如当前常用的荧光共振能量转移 (FRET)技术, 该技术主要原理是当两个荧光发色基团在足够靠近时, 当供体分子吸收一 定频率的光子后被激发到更高的电子能态, 在该电子回到基态前, 通过偶 极子相互作用, 实现了能量向邻近的受体分子转移 (即发生能量共振转移)。
FRET是一种非辐射能量跃迁, 通过分子间的电偶极相互作用, 将供体激发 态能量转移到受体激发态的过程, 使供体荧光强度降低, 而受体可以发射 更强于本身的特征荧光 (敏化荧光), 也可以不发荧光 (荧光猝灭)。 当前对绿 色荧光蛋白的进一步研究发现, 衍生自绿色荧光蛋白突变体的青色荧光蛋 白 (CFP)和黄色荧光蛋白 (YFP)是一对表现出色的供体 /受体对。 CFP的发射 光谱与 YFP的吸收光谱有相当的重叠, 当它们足够接近时, 用 CFP的吸收 波长激发, CFP的发色基团将会把能量高效率地共振转移至 YFP的发色基 团上, 所以 CFP的发射荧光将减弱或消失, 主要发射将是 YFP的荧光。 两 个发色基团之间的能量转换效率与它们之间的空间距离的 6次方成反比, 对空间位置的改变非常灵敏。 因此现有研究报道利用基因工程重组手段将 期望研究的蛋白基因两端分别与 CFP与 YFP融合表达出一个全新的融合蛋 白, 该蛋白与其专一性的靶标分子的结合所产生的空间变化即通过荧光的 变化所直观地显现。
因此, 本文所用的荧光蛋白序列可以来自于维多利亚多管发光水母
( e^^rea Wcton'a)的荧光蛋白及其衍生物, 包括但不局限于这些突变体: 黄色 荧光蛋白 (YFP)、 绿色荧光蛋白 (GFP)、 青色荧光蛋白 (CFP)等的序列, 其中优 选黄色荧光蛋白 YFP的序列,更优选环状排列的黄色荧光蛋白 cpYFP的序列。
本技术中所涉及的另一蛋白, YdiH蛋白 (又称为 Rex蛋白)是一种本领域 已知的细菌转录抑制蛋白, 分子量为 23 kDa, 它能调控发酵和厌氧呼吸。 常见 的 YdiH 蛋白来自嗜热水生菌(7¾« m« aquaticus)(SEQ ID NO : 1 NCBI GenBank: AF061257.1), 天蓝色链霉菌 (Sfreptowycra coe/ co/or)(SEQ ID NO : 2 NCBI GenBank: AL9391
Figure imgf000005_0001
subtilis)(SEQ ID NO : 3 NCBI GenBank: AL009126.3) , YdiH蛋白首次获得鉴定是 Brekasis和 Paget 等人于 2003年在天蓝色链霉菌 (Strepto jc y coe/ co/or)中发现的, 这是一 种广泛存在于革兰氏阳性菌中的一种对氧化还原敏感的调控蛋白。 对于天 蓝色链霉菌 (S. coe/ co/or) YdiH(Rex)蛋白的研究显示,这是一种典型的含有 Rossmann结构域的 NAD(H)结合蛋白。 其中关键的 Rossmann结构域是一 种主要存在于核苷酸结合蛋白中的蛋白质超二级结构, 是典型的辅因子 NAD(H)结合结构域, 以各类辅因子 NAD结合蛋白为代表。 该结构主要由 6个 β折叠通过 2对 α螺旋以有序的 β-α-β-α-β形式组成。因为每个 Rossmann 结构域只能结合一个核苷酸分子,因此类似 NAD这类的二核苷酸结合蛋白 的结构域中存在两个成对的 Rossmann 部分。 当前研究显示天蓝色链霉菌 YdiH(Rex)蛋白能够直接感应胞质 NADH/NAD+比率的变化, 而在有氧环境 下, 当细胞内 NADH/NAD+比率处于低水平时, YdiH(Rex)蛋白可抑制其靶 基因 (cydABC、 nuoA-D和 rexhemA CD)的转录, 而 NADH/NAD+比率的升高 能够使 Rex从其操纵子位点解离, 在这一动态过程中 YdiH(Rex)蛋白的空 间构象会随着环境的变化而发生改变 (Brekasis , D.等, EMBO J. 2003, V.22(18), pp.4856-4865)。 因此 Rex蛋白是一个很好的细胞内 NADH检测 探针的候选者。 同时, 最近 Wang等人对枯草芽孢杆菌 YdiH(Rex)蛋白进行 结晶并对其作用机理和功能进行了部分研究, 结果显示源自枯草芽孢杆菌 的 YdiH(Rex)蛋白是一个同源二聚体蛋白, 由两个功能结构域构成, 其中 N 端结构域 (1 -85位残基)是一个 DNA结合域, 而 C端结构域 (86-215位残基) 是一个典型的 Rossmann 折叠, 它能够结合 NADH (Wang, E.等, Mol Microbiol. 2008, V.69(2), pp.466-478)。
虽然 YdiH(Rex)蛋白本身对环境内的氧化还原状态敏感, 但是其自身 发生的变化并不能直观的显示出并被外界所捕获, 而借助于荧光蛋白这一 工具, 我们可以很好地通过将两者进行融合表达, 获得一个全新的基因编 码的荧光探针,利用 YdiH(Rex)蛋白感受环境内氧化还原状态的变化并将这 一变化传递至荧光蛋白, 通过荧光蛋白产生荧光与否以及荧光的强弱, 对 环境中氧化还原状态改变进行实时且直观地描述。
综上所述, 我们认为, 利用包含 YdiH蛋白的重组荧光融合蛋白能够满足 在生理水平和亚细胞水平上检测 NADH的迫切需要。
不应认为对本文所述参考文献的引用或讨论意味着承认这些参考文献 是本发明的现有技术。 发明内容
—方面, 本发明提供一种遗传编码的 NADH荧光探针, 其内含有对环境 内 NADH敏感的多肽, 和通过光谱性质的改变对环境内 NADH进行表现的部 分。 在一个实施方式中, 所述通过光谱性质的改变对环境内 NADH进行表现 的部分是荧光蛋白序列或其衍生物。 在另一个实施方式中, 所述对 NADH敏 感的多肽是具有如下特征的多肽, 或其功能片段或 NADH结合结构域: (1) 具有 NADH结合特性的 Rossman结构域; 和 /或
(2) 来源于对 NADH敏感的转录调控因子 Rex家族蛋白。
在一个优选实施方式中, 所述对 NADH敏感的多肽可具有以下特征:
(1) 含有来自于细菌的转录调控因子 Rex蛋白基因 ydiH的多肽, 该多 肽的编码序列可以是 SEQ ID No: 1、 2或 3 ;
(2) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 95%相同性的同 源或非同源序列;
(3) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 90%相同性的同 源或非同源序列;
(4) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 70%相同性的同 源或非同源序列;
(5) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 50%相同性的同 源或非同源序列;
(6) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 40%相似性的同 源或非同源序列; 或
(7) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 35%相似性的同 源或非同源序列。
在另一实施方式中, 本发明荧光探针可以包含具有 NADH 结合特性的 Rossman结构域 B和荧光蛋白序列八、 A1和 /或 A2, 其组合形式可以是: (1) B-A-B;
(2) B-A-B-B;
(3) A1-B-A2, 其中 A1和 A2可以相同或不同; A1可以是来自于维多 利亚多管发光水母的荧光蛋白或其衍生物的氨基酸序列, A2 可以是来自于维 多利亚多管发光水母的另一荧光蛋白或其衍生物的氨基酸序列;
(4) B的第一部分 -A-B的第二部分; 其中 A插入在 B的柔性区域内, 因而将 B分割成 B的第一部分和 B的第二部分, B的第一部分和 B的第二部 分构成完整的 B结构域; 或
(5) B的第一部分 -A-B的第二部分 -B; 其中 A插入在 B的柔性区域内, 因而将 B分割成 B的第一部分和 B的第二部分, B的第一部分和 B的第二部 分构成完整的 B结构域。
在又一实施方式中, 本发明荧光探针也可以具有以下结构:
ArBr接头 rFM-接头 2-B2
其中, 八1是 YdiH蛋白的第一结构域, 优选包含枯草芽孢杆菌属 YdiH蛋 白的氨基酸序列的氨基酸 1-84(SEQ ID NO: 14)或嗜热水生菌属 YdiH蛋白的 氨基酸序列的氨基酸 1-79(SEQ ID NO: 15)或其变异体; 是 YdiH蛋白的第 二结构域, 优选包含枯草芽孢杆菌属 YdiH 蛋白的氨基酸序列的氨基酸 85-194(SEQ ID NO: 16)或嗜热水生菌属 YdiH 蛋白的氨基酸序列的氨基酸 80-189(SEQ ID NO: 17)或其变异体; B2是 YdiH蛋白的第三结构域, 优选包含 枯草芽孢杆菌属 YdiH蛋白的氨基酸序列的氨基酸 120-215 (SEQ ID NO: 18)或 嗜热水生菌属 YdiH蛋白的氨基酸序列的氨基酸 114-211 (SEQ ID NO: 19)或其 变异体;
FM是荧光团, 可以是 YFP、 GFP、 CFP等以及以这些蛋白为基础的变异 体, 优选 YFP, 更优选 cpYFP;
接头 i可以存在或不存在; 存在时, 接头 i可以是任何氨基酸序列, 优选 长度不超过 4个氨基酸, 例如包含氨基酸1\ S、 A、 G或由这四个氨基酸中任 意 1至 4个构成的任意组合, 例如氨基酸序列 SAG或 TS等, 但不限于此种组 合.
接头 2可以存在或不存在; 存在时, 接头 2可以是任何氨基酸序列, 优选 长度不超过 3个氨基酸, 例如包含氨基酸0、 T、 G或由这四个氨基酸中任意 1至 4个构成的任意组合, 例如包含氨基酸序列 GTG, 但不限于此种组合。
在一个实施方式中, 本发明还提供一种荧光探针, 其包含荧光团以及 YdiH蛋白或 YdiH蛋白的任何片段、衍生物或类似物。在另一实施方式中, 本发明还提供一种荧光探针, 其包含荧光团以及 YdiH蛋白的变异体。 本发 明还提供一种荧光探针, 其包含荧光团以及 YdiH蛋白的可溶性片段。
在一个实施方式中,本发明提供一种荧光探针,其包含氨基酸序列 SEQ ID NO: 4、 5、 6、 7或 8。 在优选实施方式中, 本发明提供一种荧光探针, 在至少 85个氨基酸残基内任何与氨基酸序列 SEQ ID NO: 4、 5、 6、 7或 8 具有 99%、 95%、 90%、 80%、 70%或 50%相同性的同源或非同源序列。 在优 选实施方式中, 本发明提供一种荧光探针,包含在至少 85个氨基酸残基内任 何与氨基酸序列 SEQ ID NO: 4、 5、 6、 7或 8实质上相似或相同的同源或非 同源序列。 在优选实施方式中, 本发明提供一种荧光探针, 包含氨基酸序列 SEQ ID NO: 4、 5、 6、 7或 8的变异体或衍生物。
在另一实施方式中, 本发明还提供了一种遗传编码的 NAD+荧光探针, 其内含有对环境内 NAD+敏感的多肽, 和通过光谱性质的改变对环境内 NAD+ 进行表现的部分。 在一个具体实施方式中, 所述 NAD+荧光探针包含 SEQ ID NO: 129。
在又一实施方式中, 本发明还提供了一种遗传编码的 NADH/NAD+比率 荧光探针, 其内含有对环境内 NADH/NAD+比率敏感的多肽, 和通过光谱性质 的改变对环境内 NADH/NAD+比率进行表现的部分。 在一个具体实施方式中, 所述 NADH/NAD+比率荧光探针包含 SEQ ID NO: 148。
另一方面, 本发明提供一种融合蛋白, 其包含本发明荧光探针。在一个实 施方式中, 所述融合蛋白包含本发明荧光探针和各种特异性亚细胞定位信号, 所述定位信号可将目标蛋白定位于指定的亚细胞器内。
另一方面, 本发明提供一种核酸序列, 其包含编码本发明荧光探针或 融合蛋白的核苷酸序列。 在一个具体实施方式中, 本发明提供一种核酸序列, 其包含编码荧光蛋白的核苷酸序列和编码对 NADH敏感的蛋白质的核苷酸序 列。
在一个优选实施方式中, 所述编码对 NADH敏感的蛋白质的核苷酸序列 是编码具有如下特征的多肽或其功能片段或 NADH结合结构域的核苷酸序列:
(1) 具有 NADH结合特性的 Rossman结构域; 和 /或
(2) 来源于对 NADH敏感的转录调控因子 Rex家族蛋白。
在另一个优选实施方式中, 本发明核酸序列可以包含具有 NADH结合特 性的 Rossman结构域的编码序列 b和荧光蛋白的编码序列 a、 al和 /或 a2, 其 组合形式可以是:
(1) b-a-b;
(2) b-a-b-b;
(3) al-b-a2, 其中 al和 a2可以相同或不同; al可以是来自于维多利亚 多管发光水母的荧光蛋白或其衍生物的编码序列, a2可以是来自于维多利亚多 管发光水母的另一荧光蛋白或其衍生物的编码序列;
(4) b的第一部分 -a-b的第二部分; 其中 a插入在 b的柔性区域内, 因 而将 b分割成 b的第 1部分和 b的第二部分, b的第一部分和 b的第二部分构 成完整的 b结构域;
(5) b的第一部分 -a-b的第二部分 -b;其中 a插入在 b的柔性区域内, 因 而将 b分割成 b的第 1部分和 b的第二部分, b的第一部分和 b的第二部分构 成完整的 b结构域。
在另一个优选实施方式中, 本发明提供一种核酸序列, 包含核苷酸序列 SEQ ID NO: 9、 10、 11、 12或 13。 在优选实施方式中, 本发明提供一种核 酸序列, 包含在至少 85个碱基长度内任何与核苷酸序列 SEQ ID NO: 9、 10、 11、 12或 13具有 99%、 95%、 90%、 80%、 70%或 50%相同性的同源或非同源 序列。 在另一优选实施方式中, 本发明提供一种核酸序列, 包含在至少 85 个碱基与核苷酸序列 SEQ ID NO: 9、 10、 11、 12或 13实质上相似或相同的 核苷酸序列; 在优选实施方式中, 本发明提供一种核酸序列, 包含核苷酸序 列 SEQ ID NO: 9、 10、 11、 12或 13的变异体或衍生物。
本发明还涉及上述核酸序列的互补序列和变异体, 其可包含编码本发 明荧光探针或融合蛋白的片段、 类似物、 衍生物、 可溶性片段和变异体的核 酸序列或其互补序列。
在又一方面, 本发明还提供一种表达载体,其包含与表达控制序列操作性 连接的本发明核酸序列。所述表达控制序列可以是复制起点、启动子、增强子、 操纵子、 终止子、 核糖体结合位点等。
在又一方面, 本发明还提供一种宿主细胞, 其包含本发明表达载体。 在又一方面, 本发明还提供一种制备本发明荧光探针或融合蛋白的方法, 包括以下步骤:
a. 将本发明表达载体转移到宿主细胞中,
b. 在适合所述宿主细胞表达的条件下培养所述宿主细胞, 和
c 由所述宿主细胞分离所述荧光探针或融合蛋白。
本发明还提供本发明荧光探针或融合蛋白在检测 NADH中的应用。在一 个实施方式中, 本发明提供本发明荧光探针或融合蛋白在体外或体内检测
NADH 中的应用。 在一个实施方式中, 本发明提供本发明荧光探针或融合蛋 白在亚细胞水平检测 NADH 中的应用。 在一个实施方式中, 本发明提供本发 明荧光探针或融合蛋白在原位检测 NADH中的应用。 在另一个实施方式中, 本发明提供本发明荧光探针或融合蛋白在筛选药物中的应用, 所述药物可用 于调节对象的 NADH水平。 在另一个实施方式中, 本发明提供本发明荧光探 针或融合蛋白在诊断疾病中的应用, 所述疾病与 NADH水平有关。
本发明还提供了一种检测 NADH的试剂盒, 其中包含本发明荧光探针 或融合蛋白。 所述检测可以在体内、 体外、 亚细胞或原位水平进行。 本发 明还提供一种筛选药物的试剂盒, 所述药物可用于调节对象的 NADH水平, 所述试剂盒包含有效量的本发明荧光探针或融合蛋白。 本发明还提供了一种 用于检测与 NADH水平有关的疾病的试剂盒,所述试剂盒包含有效量的本发 明融合蛋白。 在使用时, 本领域技术人员能够根据所述融合蛋白的活性方 便地确定所述的有效量。
本发明中的蛋白质和核酸序列优选以分离形式提供, 更优选地被纯化 至均质。 附图说明
下面结合附图和实施例对本发明作进一步说明。
图 1 SDS-PAGE鉴定从大肠杆菌 C&co/ )中分离纯化的 F-rexl。
图 2 SDS-PAGE鉴定从大肠杆菌 C&co/O中分离纯化的 F-rex2。
图 3为烟酰胺腺嘌呤二核苷酸荧光探针 F-rexl的基本光谱特性。
图 4为烟酰胺腺嘌呤二核苷酸荧光探针 F-rex2的基本光谱特性。
图 5为还原型烟酰胺腺嘌呤二核苷酸荧光探针 F-rexl在体外模拟的生理 条件下对吡啶核苷酸类似物的响应。
图 6 为衍生的还原型烟酰胺腺嘌呤二核苷酸荧光探针在体外模拟的生理 条件下对吡啶核苷酸类似物的响应。
图 7为经药物 3-NP、 AOA处理后, HEK293FT细胞内的还原型烟酰胺腺 嘌呤二核苷酸变化。 图 8-1 为还原性与氧化性烟酰胺腺嘌呤二核苷酸比率探针实时测定外源 NADH加入对细胞内 NADH水平的变化。
图 8-2 为还原性与氧化性烟酰胺腺嘌呤二核苷酸比率探针实时测定葡萄 糖、 丙酮酸、 乳酸对细胞内 NADH水平的变化。
图 8-3 为还原性与氧化性烟酰胺腺嘌呤二核苷酸比率探针实时检测线粒 体内 NADH水平变化。
图 9-1为 NAD+探针对胞浆中的 NAD+变化的检测。
图 9-2为 NAD+探针在体外对 NAD+的响应变化。
图 9-3为 NAD+探针在体外模拟生理条件下对吡啶核苷酸类似物的响应。 图 10-1 为还原性与氧化性烟酰胺腺嘌呤二核苷酸比率探针对 NADH、
NAD+结合的响应特性。
图 10-2为还原性与氧化性烟酰胺腺嘌呤二核苷酸比率探针对不同 NADH 与 NAD+比率的测定结果。
图 10-3为 NADH/NAD+比率探针在体外模拟生理条件下各吡啶核苷酸类 似物对此探针的影响检测。
图 11为基于还原型和氧化型烟酰胺腺嘌呤二核苷酸比率荧光探针的高通 量药物筛选。
图 12为还原型和氧化型烟酰胺腺嘌呤二核苷酸比率荧光探针实时测定肿瘤 NADH/NAD+比率代谢水平。 具体实施方式
I. 定义:
在给出数值或范围时, 本文所用术语 "约"指该数值或范围在给定数值 或范围的 20%以内、 10%以内和 5%以内。
本文所用术语 "包含"、 "包括 "和其等同形式包括 "含有 "以及 "由 ......组 成"的含义, 例如"包含" X的组合物可仅由 X组成或可含有其它物质, 例如 X+Y。
在本发明中, 术语" YdiH蛋白"指 YdiH蛋白 (又称为 Rex蛋白)是一种本 领域已知的细菌转录抑制蛋白, 分子量为 23 kDa, 它能调控发酵和厌氧呼吸。 这是一种广泛存在于革兰氏阳性菌中的一种对氧化还原敏感的调控蛋白, 并且是一种典型的含有 Rossmann结构域的 NAD(H)结合蛋白。 其中关键的 Rossmann 结构域是一种主要存在于核苷酸结合蛋白中的蛋白质超二级结 构, 是典型的结合辅因子 NAD(H)的活性区域, 以各类辅因子 NAD结合蛋 白为代表。 该结构主要由 6个 β折叠通过 2对 α螺旋以有序的 β-α-β-α-β形 式组成。 因为每个 Rossmann 结构域只能结合一个核苷酸分子, 因此类似 NAD这类的二核苷酸结合蛋白的结构域中存在两个成对的 Rossmann部分。 YdiH(Rex)蛋白能够直接感应胞质 NADH/NAD+比率的变化, 而在有氧环境 下, 当细胞内 NADH/NAD+比率处于低水平时, YdiH(Rex)蛋白可抑制其靶 基因 (cydABC、 nuoA-D和 rexhemA CD)的转录, 而 NADH/NAD+比率的升高 能够使 Rex从其操纵子位点解离, 在这一动态过程中 YdiH(Rex)蛋白的空 间构象会随着环境的变化而发生改变。 本发明中所涉及的 " YdiH蛋白"可 以包含核苷酸序列 SEQ ID NO : 1或 SEQ ID NO : 2或 SEQ ID NO : 3编码 的氨基酸序列。 本发明中所涉及的 "柔性区域" 是指蛋白质高级结构中存 在的一些特定的如 Loop结构域等结构,这些结构域相比于其他的蛋白质高 级结构具有更高的移动性和柔性, 并且能够导致结构域发生动态变化, 而 蛋白质在这些区域也存在着极大地发生空间构象改变的趋势。 本发明所涉 及的柔性区域主要指 T-rex(即嗜热水生菌 (7¾er m« ^wat o^)来源的蛋白质 Rex)中的 V1 13-G1 19区域, 以及 D188-G192这段区域。
本文所用术语 "荧光探针"是指与荧光蛋白融合的对环境内 NADH敏感 的多肽, 所述对环境内 NADH敏感的多肽具体可以是 YdiH 蛋白, 其利用 YdiH中专一性的 NADH结合结构 Rossman结构域与 NADH结合后产生的 构象变化引起的荧光蛋白的构象变化, 进而导致产生或消失的荧光或产生 的荧光发生改变, 并借助不同 NADH浓度下测定的荧光蛋白的荧光绘制标 准曲线, 进而检测并分析 NADH的存在和 /或水平。
本文所用术语 "融合蛋白"与 "荧光融合蛋白"和 "重组荧光融合蛋白" 同义, 指包含第一种多肽或蛋白质或者其片段、 类似物或衍生物的氨基酸 序列, 以及异源多肽或蛋白质 (即,不同于第一种多肽或蛋白质或者其片段、 类似物或衍生物的第二种多肽或蛋白质或者其片段、 类似物或衍生物)的氨 基酸序列的多肽或蛋白质。 在一个实施方式中, 融合蛋白包含与异源蛋白 质、 多肽或肽融合的荧光蛋白。 按照这个实施方式, 异源蛋白质、 多肽或 肽可能是或不是不同类型荧光蛋白。 在一个实施方式中, 与融合于异源蛋 白质、 多肽或肽之前的原始多肽或蛋白质的活性相比, 融合蛋白保持或提 高了活性。 在一个具体实施方式中, 融合蛋白包含与异源蛋白质、 多肽或 肽融合的荧光探针, 所述异源蛋白质、 多肽或肽可以是特异性亚细胞定位信 号。
本文所用术语 "荧光团" 与 "荧光蛋白" 同义, 指自身发出荧光或在照 射下发出荧光的蛋白质。 荧光蛋白常常用作检测手段, 例如生物技术领域常用 的绿色荧光蛋白 GFP及由该蛋白突变衍生出的 BFP、 CFP、 YFP、 cpYFP等。
本文所用术语 "GFP"指绿色荧光蛋白, 最初是从维多利亚多管发光水 母 4egworea Wcton'a)中提取,野生型的 vGFP由 238个氨基酸构成, 分子量 约为 26kD, 其氨基酸序列为 SEQ ID No: 20。 当前的研究确认, 天然 GFP 蛋白中第 65~67位的三个氨基酸 Ser-Tyr-Gly能够自发形成一个荧光生色基 团: X寸-羟基苯亚甲基咪唑啉酮 ?-hydroxybenzylideneimidazolinone), 是其 主要的发光位置。 野生型 vGFP的光谱特征十分复杂, 其荧光激发的主峰 在 395nm处, 而在 475nm处另有一个附峰, 后者振幅强度约为前者的 1/3。 在标准的溶液条件下, 395nm处的激发可产生 508nm处的发射, 而 475nm 处的激发产生的最大发射波长位于 503nm。
本文所用术语 "YFP"指黄色荧光蛋白,该蛋白衍生自绿色荧光蛋白 GFP, 其氨基酸序列与 GFP同源性高达 90%以上, YFP相比于 GFP关键改变在于第 203位氨基酸由苏氨酸突变为酪氨酸 (T203Y)。 相比于原始的 vGFP, YFP的 主激发峰的波长红移至 514nm而发射波长则改变为 527nm。在此基础上对 YFP 第 65位氨基酸进行定点突变 (S65T)可获得荧光增强型黄色荧光蛋白 EYFP, 典 型的 EYFP氨基酸序列为 SEQ ID No: 21。 而对 EYFP蛋白序列的重新排列, 将原第 145-238位氨基酸部分作为新蛋白的 N端, 原第 1-144位氨基酸作为新 蛋白的 C端, 两片段间通过一小段具有柔性的短肽链 VDGGSGGTG连接, 形 成一个对空间变化敏感的环状排列黄色荧光蛋白 cpYFP(circular permutation yellow fluorescent protein), 典型的 cpYFP氨基酸序列为 SEQ ID No: 22。
在本发明中,与荧光团融合的 YdiH蛋白可以是分离自枯草芽孢杆菌或 嗜热水生菌或天蓝色链霉菌的天然 YdiH蛋白的全长或其片段, 优选是天然 枯草芽胞杆菌属 YdiH蛋白的氨基酸 1-215或嗜热水生菌属 YdiH蛋白的氨 基酸 1-21 1 或天蓝色链霉菌属 YdiH蛋白的氨基酸 1-259, 更优选枯草芽胞 杆菌属 YdiH蛋白的氨基酸 1-215或嗜热水生菌属 YdiH蛋白的氨基酸 1-211。
"接头"指在本发明多肽、蛋白质或核酸中连接两个部分的氨基酸或核酸 序列。 在本发明多肽或蛋白质中进行连接时, 接头的长度不大于 6个氨基酸, 优选不大于 4个氨基酸, 更优选是 3个氨基酸。 在本发明核酸中进行连接时, 接头的长度不大于 18个核苷酸, 优选不大于 12个核苷酸, 更优选是 9个核苷 酸。
提到某多肽或蛋白时, 本发明所用术语 "变异体 " 包括具有所述多肽 或蛋白相同功能、 但序列不同的变异体。 这些变异体包括 (但并不限于): 在 所述多肽或蛋白的序列中缺失、插入和 /或取代一个或多个 (通常为 1-30个, 较佳地 1-20个, 更佳地 1-10个, 最佳地 1-5个)氨基酸, 以及在其 C末端 和 /或 N末端添加一个或数个 (通常为 20个以内, 较佳地为 10个以内, 更 佳地为 5个以内)氨基酸获得的序列。 例如, 在本领域中, 用性能相近或相 似的氨基酸进行取代时, 通常不会改变多肽或蛋白的功能。 在本领域中, 性能相似的氨基酸往往指具有相似侧链的氨基酸家族, 在本领域已有明确 定义。这些家族包括具有碱性侧链的氨基酸 (例如赖氨酸、精氨酸、组氨酸)、 具有酸性侧链的氨基酸 (例如天冬氨酸、谷氨酸)、具有不带电荷的极性侧链 的氨基酸 (例如甘氨酸、 天冬酰胺、 谷氨酰胺、 丝氨酸、 苏氨酸、 酪氨酸、 半胱氨酸)、 具有非极性侧链的氨基酸 (例如丙氨酸、 缬氨酸、 亮氨酸、 异亮 氨酸脯氨酸、 苯丙氨酸、 甲硫氨酸、 色氨酸)、 具有 β-分支侧链的氨基酸 (例 如苏氨酸、 缬氨酸、 异亮氨酸)和具有芳香侧链的氨基酸 (例如酪氨酸、 苯丙 氨酸、 色氨酸、 组氨酸)。 又比如, 在 C末端和 /或 Ν末端添加一个或数个 氨基酸通常也不会改变多肽或蛋白的功能。 本领域技术人员公知, 在基因 克隆操作中, 常常需要设计合适的酶切位点, 这势必在所表达的多肽或蛋 白末端引入了一个或多个不相干的残基, 而这并不影响目的多肽或蛋白的 活性。 又如为了构建融合蛋白、 促进重组蛋白的表达、 获得自动分泌到宿 主细胞外的重组蛋白、 或利于重组蛋白的纯化, 常常需要将一些氨基酸添 加至重组蛋白的 N-末端、 C-末端或该蛋白内的其它合适区域内, 例如, 包 括但不限于, 适合的接头肽、 信号肽、 前导肽、 末端延伸、 谷胱甘肽 S-转 移酶 (GST)、 麦芽糖 E结合蛋白、 蛋白 A、 如 6His或 Flag的标签, 或 Xa 因子或凝血酶或肠激酶的蛋白水解酶位点。 多肽或蛋白的变异体可包括: 同源序列、 保守性变异体、 等位变异体、 天然突变体、 诱导突变体、 在高 或低的严谨条件下能与所述多肽或蛋白的 DNA杂交的 DNA所编码的多肽 或蛋白、 以及利用抗所述多肽或蛋白的抗血清获得的多肽或蛋白。 这些变 异体还可包含与所述多肽或蛋白的序列相同性为至少约 70%、至少约 75%、 至少约 80%、 至少约 85%、 至少约 90%、 至少约 95%、 至少约 98%、 至少 约 99%或 100%的多肽或蛋白。
在两种或多种多肽或核酸分子序列中, 术语"相同性 "或"相同性百分数 "指 在比较窗口或指定区域上, 采用本领域已知方法如序列比较算法, 通过手工比 对和目测检查来比较和比对最大对应性时, 两个或多个序列或子序列相同或其 中在指定区域有一定百分数的氨基酸残基或核苷酸相同 (例如, 60%、 65%、 70%、 75%、 80%、 85%、 90%、 91%、 92%、 93%、 94%、 95%、 96%、 97%、 98%、 99%或 100%相同)。 例如, 适合测定序列相同性百分数和序列相似性百 分数的优选算法是 BLAST和 BLAST 2.0算法, 分别可参见 Altschul等 (1977) Nucleic Acids Res. 25:3389和 Altschul等(1990) J. Mol. Biol. 215:403。
本文所用术语 "可溶性片段" 通常指具有所述蛋白全长序列的至少约 10个连续氨基酸, 通常至少约 30个连续氨基酸, 较佳地至少约 50个连续 氨基酸, 更佳地至少约 80个连续氨基酸, 最佳地至少约 100个连续氨基酸 的片段。
本文所用术语 "功能片段"、"衍生物"和"类似物 "是指基本上保持与本发 明天然 YdiH相同的生物学功能或活性的蛋白。本发明的 YdiH的功能片段、 衍生物或类似物可以是 (i)有一个或多个保守或非保守性氨基酸残基 (优选 保守性氨基酸残基)被取代的蛋白, 而这样的取代的氨基酸残基可以是也可 以不是由遗传密码编码的, 或 (ii)在一个或多个氨基酸残基中具有取代基团 的蛋白, 或 (iii)成熟蛋白与另一个化合物 (比如延长蛋白半衰期的化合物, 例如聚乙二醇)融合所形成的蛋白, 或 (iv)附加的氨基酸序列融合到此蛋白 序列而形成的蛋白(如前导序列或分泌序列或用来纯化此蛋白的序列或蛋 白原序列, 或与抗原 IgG片段的形成的融合蛋白)。 根据本文的教导, 这些 功能片段、 衍生物和类似物属于本领域熟练技术人员公知的范围。
所述类似物与天然 YdiH蛋白的差别可以是氨基酸序列上的差异,也可 以是不影响序列的修饰形式上的差异, 或者兼而有之。 这些蛋白包括天然 或诱导的遗传变异体。 诱导变异体可以通过各种技术得到, 如通过辐射或 暴露于诱变剂而产生随机诱变, 还可通过定点诱变法或其他已知分子生物 学的技术得到。
所述类似物还包括具有不同于天然 L-氨基酸的残基 (如 D-氨基酸)的类 似物, 以及具有非天然存在的或合成的氨基酸 (如 β、 γ-氨基酸)的类似物。 应理解, 本发明的 YdiH蛋白并不限于上述列举的代表性蛋白、 片段、 衍生 物和类似物。 修饰 (通常不改变一级结构)形式包括: 体内或体外的蛋白的化 学衍生形式如乙酰化或羧基化。 修饰还包括糖基化, 如那些在蛋白的合成 和加工中或进一步加工步骤中进行糖基化修饰而产生的蛋白。 这种修饰可 以通过将蛋白暴露于进行糖基化的酶 (如哺乳动物的糖基化酶或去糖基化 酶)而完成。修饰形式还包括具有磷酸化氨基酸残基 (如磷酸酪氨酸, 磷酸丝 氨酸, 磷酸苏氨酸)的序列。 还包括被修饰从而提高了其抗蛋白水解性能或 优化了溶解性能的蛋白。
本发明所用术语 "核酸"可以是 DNA形式或 RNA形式。 DNA形式包 括 cDNA、 基因组 DNA或人工合成的 DNA。 DNA可以是单链的或是双链 的。 DNA可以是编码链或非编码链。编码成熟蛋白的编码区序列可以与 SEQ ID NO: 9、 10、 11、 12或 13所示的编码区序列相同或者是其简并变体。 如 本文所用, "简并变体"在本发明中是指编码本发明荧光融合蛋白,但与 SEQ ID NO: 9、 10、 11、 12或 13所示的编码区序列有差别的核酸序列。
提到核酸时, 本文所用术语 "变异体" 可以是天然发生的等位变异体 或非天然发生的变异体。 这些核苷酸变异体包括简并变异体、 取代变异体、 缺失变异体和插入变异体。 如本领域所知的, 等位变异体是一个核酸的替 换形式, 它可能是一个或多个核苷酸的取代、 缺失或插入, 但不会从实质 上改变其编码的蛋白的功能。 本发明核酸可包含与所述核酸序列的序列相 同性为至少约 70%、 至少约 75%、 至少约 80%、 至少约 85%、 至少约 90%、 至少约 95%、 至少约 98%、 至少约 99%或 100%的核苷酸序列。
如此处所用, 术语"在严谨条件下杂交"是用来描述典型的相互间至少
60%同源的核苷酸序列仍可相互杂交的杂交和清洗条件。 优选的, 严谨条 件为这样的条件, 在此条件下相互间有至少 65%、 更优的至少 70%、 且甚 至更优选的至少 80%或更高同源性的序列一般仍可相互杂交。 此严谨条件 为本领域普通技术人员所公知。 严谨条件的一个优选, 非限制性实例为:
(1)在较低离子强度和较高温度下的杂交和洗脱,如 0.2xSSC,0.1%SDS,0°C ; 或 (2)杂交时加有变性剂, 50%(v/v)甲酰胺, 0.1%小牛血清 /0.1% Ficoll, 42 °C 等; 或 (3)仅在两条序列之间的相同性至少在 90%以上, 更好是 95%以上时 才发生杂交。 并且, 可杂交的核酸编码的蛋白与 SEQ ID NO: 4、 5、 6、 7 或 8所示的成熟蛋白有相同的生物学功能和活性。
本发明还涉及与上述的序列杂交的核酸片段。如本文所用, "核酸片段" 的长度至少含 15个核苷酸, 较好是至少 30个核苷酸, 更好是至少 50个核 苷酸, 最好是至少 100个核苷酸以上。 核酸片段可用于核酸的扩增技术 (如
PCR)。
本发明荧光探针或融合蛋白的全长序列或其片段通常可以用 PCR扩增 法、 重组法或人工合成的方法获得。 对于 PCR扩增法, 可根据本发明所公 开的有关核苷酸序列, 尤其是开放阅读框序列来设计引物, 并用市售的 cDNA库或按本领域技术人员已知的常规方法所制备的 cDNA库作为模板, 扩增而得有关序列。 当序列较长时, 常常需要进行两次或多次 PCR扩增, 然后再将各次扩增出的片段按正确次序拼接在一起。
一旦获得了有关的序列, 就可以用重组法来大批量地获得有关序列。 这通常是将其克隆入载体, 再转入细胞, 然后通过常规方法从增殖后的宿 主细胞中分离和纯化得到有关多肽或蛋白。
此外, 还可用人工合成的方法来合成有关序列, 尤其是片段长度较短 时。 通常, 通过先合成多个小片段, 然后再进行连接可获得序列很长的片 段。
目前, 已经可以完全通过化学合成来得到编码本发明蛋白 (或其片段、 衍生物、类似物或变异体)的 DNA序列。 然后可将该 DNA序列引入本领域 中已知的各种现有的 DNA分子 (如载体)和细胞中。可通过突变 PCR或化学 合成等方法将突变引入本发明蛋白序列中。
本文所用的术语"表达载体"和 "重组载体" 可互换使用, 指本领域熟 知的原核或真核载体, 例如细菌质粒、 噬菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如腺病毒、 逆转录病毒或其他载体, 这些载体能够在宿 主体内复制和稳定, 这些重组载体的一个重要特征是通常含有表达控制序 列。 本文所用术语 "表达控制序列" 指调控目的基因的转录、 翻译和表达 的可以与目的基因操作性连接的元件, 可以是复制起点、 启动子、 标记基 因或翻译控制元件, 包括增强子、 操纵子、 终止子、 核糖体结合位点等, 表 达控制序列的选择取决于所用的宿主细胞。 在本发明中适用的重组载体包括 但不限于细菌质粒。 在重组表达载体中, "操作性连接 "是指目的的核苷酸 序列与调节序列以允许核苷酸序列表达的方式连接。 本领域的技术人员熟 知能用于构建含本发明融合蛋白编码序列和合适的转录 /翻译控制信号的表 达载体的方法。 这些方法包括体外重组 DNA技术、 DNA合成技术、 体内 重组技术等。 所述的 DNA序列可有效连接到表达载体中的适当启动子上, 以指导 mRNA合成。 这些启动子的代表性例子有: 大肠杆菌的 lac或 trp启 动子; λ噬菌体 PL启动子; 真核启动子包括 CMV立即早期启动子、 HSV 胸苷激酶启动子、 早期和晚期 SV40启动子、 反转录病毒的 LTR和其他一 些已知的可控制基因在原核或真核细胞或其病毒中表达的启动子。 表达载 体还包括翻译起始用的核糖体结合位点和转录终止子。
本领域普通技术人员将理解重组表达载体的设计可取决于如欲转化的 宿主细胞的选择、 所需的蛋白质表达水平等因素。 此外, 重组表达载体优 选地包含一个或多个选择性标记基因, 以提供用于选择转化的宿主细胞的 表型性状, 如用于真核细胞的二氢叶酸还原酶、 新霉素抗性, 或用于大肠 杆菌的四环素或氨苄青霉素抗性。
在一种实施方式中, 将本发明荧光探针或融合蛋白的编码序列经 a H/禾卩 H «t ///双酶切后与 a H/禾卩 Hindlll双酶切的 pRSETb载体连接, 得到大肠杆菌重组表达载体。 可以将本发明的表达载体转移到宿主细胞中, 以产生包括融合蛋白的蛋白或肽。 此种转移过程可用转化或转染等本领域 技术人员熟知的常规技术进行。
本文在所用术语 "宿主细胞" 又称为受体细胞, 是指能够接收和容纳 重组 DNA分子的细胞, 是重组基因扩增的场所, 理想的受体细胞应该满足 易于获取和增殖两个条件。 本发明的 "宿主细胞" 可包括原核细胞和真核 细胞, 具体包括细菌细胞、 酵母细胞、 昆虫细胞和哺乳动物细胞。
本发明的表达载体可用于在原核或真核细胞中表达本发明荧光探针或 融合蛋白。 从而, 本发明涉及已导入本发明表达载体的宿主细胞、 优选大 肠杆菌。 宿主细胞可为任何原核或真核细胞, 代表性例子有: 大肠杆菌, 链霉菌属, 鼠伤寒沙门氏菌的细菌细胞, 真菌细胞如酵母, 植物细胞, 果 蝇 S2或 S 的昆虫细胞, CHO、 COS, 293细胞、 或 Bowes黑素瘤细胞的 动物细胞等, 其中包括但不限于上述的那些宿主细胞。 所述宿主细胞优选 各种利于基因产物表达或发酵生产的细胞, 此类细胞已为本领域熟知并常 用, 例如各种大肠杆菌细胞和酵母细胞。 在本发明的一个实施方式中, 选 用大肠杆菌 BL21构建表达本发明融合蛋白的宿主细胞。本领域一般技术人 员都清楚如何选择适当的载体、 启动子、 增强子和宿主细胞。
本文所用术语 "转化 "和"转染"、"接合"和"转导"意指本领域内公知的各 种将外源核酸 (例如, 线性 DNA或 RNA (例如, 线性化载体或无载体的单独 的基因构建体))或载体形式的核酸 (例如, 质粒、 粘粒、 噬菌体、 噬粒、 噬 菌粒、转座子或其它 DNA)导入宿主细胞的技术, 包括磷酸钙或氯化钙共沉 淀、 DEAE-甘露聚糖-介导的转染、 脂转染、 天然感受态、 化学介导的转移 或电穿孔。 当宿主为原核生物如大肠杆菌时, 能吸收 DNA的感受态细胞可 在指数生长期后收获, 用 CaCl2法处理, 所用的步骤在本领域众所周知。 另 一种方法是使用 MgCl2。 如果需要, 转化也可用电穿孔的方法进行。 当宿 主细胞是真核细胞时, 可选用如下的 DNA转染方法: 磷酸钙共沉淀法, 常 规机械方法如显微注射、 电穿孔、 脂质体包装等。
可以用适合所述宿主细胞表达的常规方法培养获得的转化细胞,表达本 发明融合蛋白。 根据所用的宿主细胞, 培养中所用的培养基可以是各种常 规培养基。 在适于宿主细胞生长的条件下进行培养。 当宿主细胞生长到适 当的细胞密度后, 用合适的方法 (如温度转换或化学诱导)诱导选择的启动 子, 将细胞再培养一段时间。
在上面的方法中的重组蛋白可在细胞内、 或在细胞膜上表达、 或分泌 到细胞外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分离 方法分离或纯化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这些 方法的例子包括但并不限于: 常规的复性处理、 用蛋白沉淀剂处理 (盐析方 法)、 离心、 渗透破菌、 超处理、 超离心、 分子筛层析 (凝胶过滤)、 吸附层 析、 离子交换层析、 高效液相层析 (HPLC)和其它各种液相层析技术及这些 方法的结合。
在一个实施方式中, 通过包含本发明融合蛋白编码序列的大肠杆菌发 酵生产本发明荧光探针或融合蛋白, 并通过硫酸铵沉降, 离子交换层析和 凝胶层析纯化得到了纯形式的本发明荧光探针或融合蛋白。
本发明荧光探针或融合蛋白的用途包括但不限于: 检测 NADH、 在生 理状态下检测 NADH、 在亚细胞水平检测 NADH、 原位检测 NADH、 筛选药 物、 诊断与与 NADH水平有关的疾病等。
在本文中, 浓度、 含量、 百分数和其它数值均可用范围的形式表示。 也应理解, 使用这种范围形式只是为了方便和简洁, 应该被弹性地借读为 包括范围上下限所明确提及的数值, 还应包括该范围内包括的所有单个数 值或子范围, 就好像明确提及各个数值和子范围那样。 实施例
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用 于说明本发明而不用于限制本发明的范围。
下列实施例中未注明具体条件的实验方法, 通常按照常规条件如 Sambrook等, 《分子克隆: 实验室指南》(美国纽约州: 冷泉港实验室出版 社 (Cold Spring Harbor Laboratory Press), 1989); 或按照制造厂商所建议的 条件进行。 在本文中, 除非另外说明, 百分比和份数均按重量计算。
I. 实验材料和试剂
试剂: 除特别标注, 其他均来自上海国药集团化学试剂有限公司 (中国上 海)。
PCR扩增所使用的 Taq酶、 缓冲液、 dNTP; 分子生物实验中所使用的蛋 白酶、 缓冲液、 T4 DNA连接酶、 T4 DNA连接酶缓冲液、 T4多聚核苷酸激酶 (PNK)、 T4 PNK缓冲液, 均来自立陶宛维尔纽斯的富酶泰斯公司 (Fermentas)。 实施例 1 pRSETb-ydiH-YFP-ydiH(D2)的构建和表达 1.扩增 cpYFP的核酸序列:
以 pMD19-cpYFP(Nagai, T.等, Proc Natl Acad Sci U S A. 2001 , V.98(6), PP.3197-3202X获自华东理工大学蛋白质化学实验室 (中国上海))为模板,利用引 物 cpYFP F禾 Π cpYFP R扩增黄色荧光蛋白 (cpYFP)的编码序列, 引物序列 (引物 由中国上海的上海生工生物工程有限公司合成)如下:
P1 : Spel GAAATCGAA^ CTA G7TACAACAGCCACAACGTCTATATC o o /刀
(SEQ ID NO: 23) ¾秒秒 :分
P2 : Kpnl CCAAGCTTCGGGG7¾CCGTTGTACT中C中CAGCTTGTG (SEQ ID NO: 24)
PCR反应体系为
PCR体系
模板 Ι μΐ
正向引物 0.5μ1
反向引物 0.5μ1
1 Ox Taq缓冲液 5μ1
Taq酶 Ι μΐ
dNTP (10mM) Ι μΐ
ddH2O 41 μΐ
心 v\ 50μ1
PCR反应条件为:
95 C
95 °C
30个循环 55 °C
Figure imgf000022_0001
72 °C 将 PCR扩增产物在 1%的琼脂糖凝胶中电泳 30分钟, 得到约 750bp 的 cpYFP片段。利用上海生工 DNA片段回收纯化试剂盒 (上海生物工程有限公司, 中国上海)按照厂商说明书从凝胶中回收和纯化 cpYFP片段。 2.从枯草芽孢杆菌 ( ««7/« subtilis)l68细胞中提取目的基因序列: a. 样品处理
(i)枯草芽孢杆菌 0δβ«7/ subtilis) 获自中国普通微生物菌种保藏管理 中心(目录编号为 1.1656)。
(ϋ) 根据上述条件, 取 100 μΐ培养的枯草芽孢杆菌 168, 测定培养液在 600nm处的光密度, OD6QQ=0.1 时细胞密度为 I x l07~5x l07个 /毫升, 据此计算 实际细胞数量, 进而对每 1 X 107个枯草芽孢杆菌细胞加入 1ml TRIzol试剂 (来 自英杰公司 (Invitrogen, 美国加州)进行处理。
(iii) 取一定量的菌液, 4°C、 5000rpm离心 10分钟, 弃上清液。
(iv) 菌体沉淀用 100 μ ΐ 1 Χ ΤΕ 缓冲液(10mM Tris-HCl, ImM EDTA pH8.0, 试剂来自艾玛思科公司 (Amresco, 美国俄亥俄州)清洗, 5000rpm离心
10分钟, 弃上清液。
(v) 用 ΙΟΟ μ Ι 1 X TE缓冲液 (含 2mg/ml溶菌酶 (来自美季生物, 中国上 海))重悬菌体沉淀, 37°C孵育 30分钟。
b. 相分离
(i)加入 1ml TRIzol试剂 (英杰公司),用移液器吹打混匀,室温静置 5分钟。
(ii) 加入 200 μ 1氯仿, 持续 15秒震荡混匀, 室温静置 2~3分钟, 4°C、 12, 000g离心 15分钟。
(iii) 离心后溶液分层, 上层水相约占 40%, 含有 RNA, 下层有机相约 占 60%, 含有 DNA和蛋白质, 小心地吸取并除去上层水相。
c 除杂质
有机相中加入 50 μ ΐ 10% SDS和 250 μ ΐ饱和食盐水, 震荡混匀, 4。C、 12,000g离心 5分钟, 弃去上层水相。
d. DNA乙醇沉淀
有机相加入 750 μ 1预冷的 95%乙醇, 翻转混匀, -80°C静置 15分钟以沉 淀 DNA。
e. DNA清洗
(i)倾去上层有机相。
(ii) 沉淀用 1ml 0.1M柠檬酸钠 /10%乙醇溶液清洗多次, 每次均 4°C、 12,000 g离心 5分钟。
(iii) 最后用 75%乙醇清洗一次, 4°C、 12, 000 g离心 5分钟。
(iv) 室温自然风干乙醇。
f. 溶解 DNA
用 50 μ 1 8mM NaOH溶液沉淀的 DNA, 4 °C或-20 V保存。
以如上所述抽提出的基因组为模板, 利用引物 ydiH 1F和 ydiH 1R、 ydiH
(D2) 2F和 ydiH 2R分别扩增枯草芽孢杆菌 168的 YdiH蛋白基因 (ydiH)全长和 部分 (氨基酸 85-215), 其中引物 ydiH IF和; ¾¾HR扩增获得 N端含有 Sa H/ 酶切位点 C端含有 Spe/酶切位点的 YdiH蛋白基因 (ydiH)全长片段 yidH 1, 引 物 ydiH(D2) 2F和 ydiH 2R扩增获得 N端含有 Kpnl酶切位点 C端含有 Hindlll 酶切位点的 YdiH蛋白基因 (ydiH)部分 (氨基酸 85-215)片段 ydiHf 2), 引物 ydiH 1F、 ydiH 1R、 ydiH(D2) 2F和 ydiH 2R序列如下:
ydiH IF: BamHI CCGOH CATGAATAAGGATCAATCAAAAATTC (SEQ ID NO: 25)
ydiH 1R: Spel GCTGTTGTA^ CTA G7TTCGATTTCCTCTAAAACT (SEQ ID NO: 26)
ydiH(D2) 2F: Kpnl CGGGG7¾CCATGACAGACGTCATCTTGATTGGTG (SEQ ID NO: 27)
ydiH 2R: Hindlll CCC 4GC7TCTATTCGATTTCCTCTAAAAC (SEQ ID NO: 28) PCR反应体系为 j
PCR体系
模板 Ιμΐ
正向引物 0.5μ1
反向引物 0.5μ1
lOx Taq缓冲液 5μ1
Taq酶 Ιμΐ
dNTP (10mM) Ιμΐ
dd¾0 41μ1
总计 50μ1
PCR反应条件为:
9 Ρ Ρ Ρ Ρ Ρ 5分钟
9 40秒
30个循环 40秒
Figure imgf000025_0001
7 1分钟
7 10分钟
将 PCR扩增产物在 1%的琼脂糖凝胶中电泳 30分钟,得到大小约为 700bp 的 ydiH 1片段和大小约为 450bp的 ydiH(D2) 2片段,利用上海生工 DNA片段 回收纯化试剂盒 (上海生物工程有限公司, 中国上海)按照厂商说明书回收和纯 化 ydiH 1和 ydiH(D2) 2片段。
3. 目的基因片段与载体的连接
利用重叠延伸 PCR技术以 ydiH 1和 cpYFP为模板以 ydiH IF和 cpYFP 1R 为引物进行 PCR, PCR体系为:
PCR加样体系
模板片段 Ι μΐ
模板片段 2(1) Ι μΐ
正向引物 (2) 0.5μ1
反向引物 (2) 0.5μ1
lOx pfu缓冲液 5μ1
pfu酶 Ι μΐ
dNTP (10mM) Ι μΐ
ddH2O 40 μΐ
心 v\ 50μ1 PCR条件为:
PCR反应条件
95 °C 5分钟
' 95 °C 40秒
10个循环 < 55 V 40秒
L 72V 1分 15秒
95 V 40秒
20个循环 58V 40秒
Figure imgf000026_0001
72V 2分 10秒
72V 10分钟
(1) 模板片段需经过纯化。
(2) 初始反应体系中不含正、 反向引物, 反应进行了 10个循环后再将引物加入反应体系中。
将 PCR扩增产物在 1%的琼脂糖凝胶中电泳 40分钟, 得到大小约为 1400bp的 ydiH-cpYFP片段。 将回收纯化的 PCR片段 ydiH-YFP以及载体 质粒 pRSETb分别进行双酶切, 体系如下:
双酶切体系 双酶切体系
DNA片段 ydiH-YFP 15μ1 载体质粒 pRSETb ΙΟμΙ
BamHI Ι μΐ BamHI Ι μΐ
Hindlll 2μ1 Hindlll 2μ1
10x BamHI缓冲液 5μ1 10x awH/缓冲液 5μ1
ddH2O 27 μΐ ddH2O 32μ1 心 v\ 50μ1 心 v\ 50μ1 反应条件: 37°C, 5小时。
反应结束后, 50μ1反应体系中加入 10μ1 6χ上样缓冲液终止反应。 然后 通过琼脂糖凝胶电泳分离目的片段,利用上海生工 DNA片段回收纯化试剂 盒 (上海生物工程有限公司, 中国上海)按照厂商说明书回收并纯化片段。
将回收到的 ydiH-cpYFP双酶切产物及载体质粒 pRSETb双酶切产物连 接, 体系如下:
连接体系
DNA片段 ydiH-YFP 4
载体片段 pRSETb 1
T4 DNA连接酶 0.5
10x T4 DNA连接酶缓冲液 1
ddH2O 3.5
心 ν\ 10
反应条件: 16°C, 过夜。 从而形成连接产物 pRSETb-ydiH-YFP。 最后 , 利用 以下条件对上述 ydiH(D2)
pRSETb-ydiH-YFP双酶切:
双酶切体系 双酶切体系
DNA片段 ydiH(D2) 2 15μ1 载体质粒 pRSETb-ydiH-YFP Ι ΟμΙ
Kpnl Ι μΐ Kpnl Ι μΐ
Hindlll 3μ1 Hindlll 2μ1
10x Kpnl ^ 5μ1 Ι ΟχΚρηΙ W^ 5μ1 ddH2O 26μ1 ddH2O 32μ1 心 v\ 50μ1 心 v\ 50μ1 反应条件: 37°C, 5小时。
反应结束后, 50μ1反应体系中加入 ΙΟμΙ 6x上样缓冲液终止反应。 然后通 过琼脂糖凝胶电泳分离目的片段,利用上海生工 DNA片段回收纯化试剂盒 (上 海生物工程有限公司, 中国上海)按照厂商说明书回收并纯化片段。
如上所述, 将回收到的 ydiH(D2) 2和 pRSETb-ydiH-YFP的双酶切产物 连接, 从而形成最终连接产物 pRSETb-ydiH-YFP-ydiH(D2)。
取菌落 PCR鉴定为阳性的克隆, 采用通用引物测序, 由北京六合华大 基因科技股份有限公司上海分公司进行测序。 测定的序列用 Vector NTI 8.0 进行数据比对分析。 结果表明该质粒中确实插入了 ydiH-cpYFP-ydiH(D2) 的核苷酸序列 (如序列表中 SEQ ID NO : 9所示), 该序列编码序列表中 SEQ ID NO : 4所示的蛋白。 4. 转化
将重组质粒 pRSETb-ydiH-cp YFP-ydiH(D2)转化入感受态的大肠杆菌 {E.coli) BL21 (DE3) pLysS (购自中国北京的天根生化)中, 获得重组菌 BL-Frex , 具体方法如下:
(i)在洁净条件下, 取 Ι μΐ质粒或 Ι ΟμΙ连接产物加入 Ι ΟΟμΙ感受态中, 冰浴 45分钟;
(ii)冰浴后, 迅速于 42 °C水浴中热激 90~120秒;
(iii)再冰浴 5分钟;
(iv)加入 800ul LB液体培养基, 37°C、 150rpm摇床复苏 1小时;
(v) 4000rpm、 常温离心 5分钟后, 弃去上清; (vi)用少量的新鲜 LB重悬沉淀,随后将全部菌液均匀涂布于所需的 LB 平板上, 37°C倒置培养过夜。
采用常规的菌落 PCR方法筛选阳性克隆, 并转入 5ml含有相应抗性的 LB液体培养基中, 37 °C、 220rpm过夜培养。 重组菌 BL-Perex在 LB培养 基中 37 °C培养至菌体浓度 OD为 0.8, 加入 O. lmM IPTG, 18 °C诱导表达 20 小时, 用 Ni2+亲和层析柱 (通用电气公司, 瑞典乌普萨拉)从菌体裂解液中分 离纯化 F-rexl蛋白, 经 SDS-PAGE鉴定, 只在约 66.5kD处有一条蛋白条 带, 为 F-rexl蛋白(图 1), 图 1中 1为 Ni2+亲和层析柱分离纯化的 F-rex蛋 白, 2为标记物。 实施例 2 pRSETb-ydiH(189)-YFP-ydiH(190)的构建和表达
1.扩增 cpYFP的核酸序列:
以 pMD 19-cpYFP为模板,利用引物 cpYFP F和 cpYFP R扩增黄色荧光蛋 白 (cpYFP)的编码序列,引物序列 (引物由上海生工生物工程有限公司(中国上海) 合成)如下:
PI : Pstl GAATC7UC4GGCTACAACAGCCACAACGTCTATATC (SEQ ID NO: 29)
P2 : Kpnl CCAAGCTTCGGGG7¾CCGTTGTACTCCAGCTTGTG (SEQ ID NO: 30)
PCR反应体系为
PCR体系
模板 Ι μΐ
正向引物 0.5μ1
反向引物 0.5μ1
l Ox Pfu缓冲液 5μ1
Pfu酶 Ι μΐ
dNTP (10mM) Ι μΐ
ddH2O 41 μΐ
心 v\ 50μ1 PCR反应条件为:
95 °C 5分钟
' 95 °C 30秒
30个循环 55 °C 30秒
72 °C 1分 15秒
72 °C 10分钟
将 PCR扩增产物在 1%的琼脂糖凝胶中电泳 20分钟, 得到约 750bp 的 cpYFP片段。利用上海生工 DNA片段回收纯化试剂盒 (上海生物工程有限公司, 中国上海)按照厂商说明书从凝胶中回收和纯化 cpYFP片段。
2.扩增嗜热水生菌 (7¾ ri«« aquaticus)U YdiH蛋白目的基因序列: 嗜热水生菌属 YdiH蛋白基因 T-ydiH委托上海捷瑞生物工程有限公司 (中 国上海)合成 (按照 NCBI Genbank数据中记录的基因全序列进行合成, NCBI GenbankAF061257.1)。
以上述基因为模板,利用引物 ydiH IF和 ydiH 2R扩增嗜热水生菌的 YdiH 蛋白基因 (T-ydiH)全长,其中引物 ydiH IF和 ydiH 2R扩增获得 N端含有 Sa H/ 酶切位点 C 端含有 Hindlll酶切位点的 T-YdiH 蛋白基因 (T-ydiH)全长片段 T-yidH, 引物 ydiH 1 F和 ydiH 2R序列如下:
P3: BamHI CCG04T CGATGAATAAGGATCAATCAAAAATTC (SEQ ID NO: 31)
P4: Hindlll CCC 4GC7TCTATTCGATTTCCTCTAAAAC (SEQ ID NO: 32)
PCR反应体系为
PCR体系
模板 Ιμΐ
正向引物 0.5μ1
反向引物 0.5μ1
lOx Pfu缓冲液 5μ1
Pfu酶 Ιμΐ
dNTP (10mM) Ιμΐ
ddH2O 41 μΐ
v\ 50μ1 PCR反应条件为:
95 °C 5分钟
r 95 °C 40秒
30个循环 55 °C 40秒
L 72 °C 1分钟
72 °C 10分钟
将 PCR扩增产物在 1%的琼脂糖凝胶中电泳 30分钟,得到大小约为 700bp 的 ydiHl片段, 利用上海生工 DNA片段回收纯化试剂盒 (上海生物工程有限公 司, 中国上海)按照厂商说明书回收和纯化 T-ydiH片段。
3. 目的基因与载体的连接
将回收纯化的 PCR片段 T-ydiH 以及载体质粒 pRSETb分别进行双酶 切, 体系如下:
双酶切体系 双酶切体系
DNA片段 T-ydiH 15μ1 载体质粒 pRSETb ΙΟμΙ
BamHI Ι μΐ BamHI Ιμΐ
Hindlll 2μ1 Hindlll 2μ1
10x awH/缓冲液 5μ1 10x BamHI缓冲液 5μ1 ddH2O 27μ1 ddH2O 32μ1 心 v\ 50μ1 心 v\ 50μ1 反应条件: 37°C , 5小时。
反应结束后, 50μ1反应体系中加入 10μ1 6χ上样缓冲液终止反应。 然后 通过琼脂糖凝胶电泳分离目的片段,利用上海生工 DNA片段回收纯化试剂 盒 (上海生物工程有限公司, 中国上海)按照厂商说明书回收并纯化片段。
将回收到的 T-ydiH双酶切产物及载体质粒 pRSETb双酶切产物连接, 体系如下
连接体系
DNA片段 ydiH-YFP 4
载体片段 pRSETb 1
T4 DNA连接酶 0.5
10x T4 DNA连接酶缓冲液 1
ddH2O 3.5
心 ν\ 10
反应条件: 16°C, 过夜。 从而形成连接产物 pRSETb-ydiH。 以上述经过验证的 pRSETb-ydiH 为模板, 利用引物 T-ydiH(L190) F 和 T-ydiH(F189) R扩增 pRSETb-ydiH 序列全长, 其中引物 T-ydiH(L190) F 和 T-ydiH(F189) R扩增获得 N端含有 Pstl酶切位点 C端含有 Kpnl酶切位点的 pRSETb-ydiH序列全长片段 yidH-pRSETb,引物 T-ydiH(L190) F和 T-ydiH(F189) R序列如下:
P5: Kpnl ATAGG7¾CCGGCCTGGCCGGCCTGACCCGGCTG (SEQ ID NO: 33)
P6: Pstl ATAC GCiGAGAAGTCCACGTTCTCCACGGCCACCTC (SEQ ID NO: 34)
最后, 利用以下条件对上述 yidH-pRSETb片段和经过验证的 cpYFP片 段双酶切:
双酶切体系 双酶切体系
DNA片段 cpYFP 15μ1 DNA片段 yidH-pRSETb Ι ΟμΙ
Kpnl 1.5μ1 Kpnl 1.5μ1
Pstl 1.5μ1 Pstl 1.5μ1
10x BamHI缓冲液 5μ1 l OxBamHI缓冲液 5μ1
ddH2O 27 μΐ ddH2O 32μ1 心 v\ 50μ1 心 v\ 50μ1 反应条件: 37°C, 5小时。
反应结束后, 50μ1反应体系中加入 ΙΟμΙ 6x上样缓冲液终止反应。 然后通 过琼脂糖凝胶电泳分离目的片段,利用上海生工 DNA片段回收纯化试剂盒 (上 海生物工程有限公司, 中国上海)按照厂商说明书回收并纯化片段。
如上所述, 将回收到的 yidH-pRSETb和 cpYFP的双酶切产物连接, 从 而形成最终连接产物 pRSETb-ydiH( 189)-YFP-ydiH( 190)。
取菌落 PCR鉴定为阳性的克隆, 采用通用引物测序, 由北京六合华大 基因科技股份有限公司上海分公司进行测序。 测定的序列用 Vector NTI 8.0 进行数据比对分析。结果表明该质粒中确实插入了 ydiH(189)-YFP-ydiH(190) 的核苷酸序列 (如序列表中 SEQ ID NO : 13所示),该序列编码序列表中 SEQ ID NO: 8所示的蛋白。 4. 转化
将重组质粒 pRSETb-ydiH( 189)-YFP-ydiH( 190)转化入感受态的大肠杆 菌 CE.co/ ) BL21 (DE3) pLysS (购自天根生化, 中国北京)中, 获得重组菌 BL-Frex, 具体方法如下:
(i)在洁净条件下, 取 Ιμΐ质粒或 ΙΟμΙ连接产物加入 ΙΟΟμΙ感受态中, 冰浴 45分钟;
(ii)冰浴后, 迅速于 42 °C水浴中热激 90~120秒;
(iii)再冰浴 5分钟;
(iv)加入 800ul LB液体培养基, 37°C、 220rpm摇床复苏 1小时; (v) 4000rpm、 常温离心 5分钟后, 弃去上清;
(vi)用少量的新鲜 LB重悬沉淀,随后将全部菌液均匀涂布于所需的 LB 平板上, 37°C倒置培养过夜。
采用常规的菌落 PCR方法筛选阳性克隆, 并转入 5ml含有相应抗性的 LB液体培养基中, 37°C、 220rpm过夜培养。 重组菌 BL-Perex在 LB培养 基中 37°C培养至菌体浓度 OD为 0.8, 加入 O. lmM IPTG, 18°C诱导表达 20 小时, 用 Ni2+亲和层析柱 (通用电气, 瑞典乌普萨拉)从菌体裂解液中分离纯 化 F-rex2蛋白, 经 SDS-PAGE鉴定, 只在约 50kD处有一条蛋白条带, 为 F-rex2蛋白(图 2), 图 2中 1为 Ni2+亲和层析柱分离纯化的 F-rex2蛋白, 2 为标记物。 实施例 3. ydiH-YFP-ydiH(D2)衍生系列探针 探针构建原理
利用构建 pRSETb-ydiH-YFP-ydiH等探针的中间过渡质粒为模板,根据 定点突变的原理, 进行衍生系列探针的构建。
截短突变序列示意如下:
Figure imgf000033_0001
突变文库的建立
1. 引物设计 (上海生工)
SEQ
ID 备注 序列 (5,-3,)
No
35 C9反向 GATTTCCTCTAAAACTGAATAATGCTTC
36 C8反向 TTCCTCTAAAACTGAATAATGCTTC
37 TAAAACTGAATAATGCTTCAAAAAATAA
C6反向
ACCAG
38 C5反向 AACTGAATAATGCTTCAAAAAATAAACCAG
39 C4反向 TGAATAATGCTTCAAAAAATAAACCAG
40 C3反向 ATAATGCTTCAAAAAATAAACCAGTG
41 C2反向 ATGCTTCAAAAAATAAACCAGTGACTG
42 C1反向 CTTCAAAAAATAAACCAGTGACTGAAGC
43 C9正向
(C系列通用 TACAACAGCGACAACGTC
正向引物)
44 C7反向 CTCTAAAACTGAATAATGCTTC
45 Del GT正向 ATGACAGACGTCATCTTGATTG
46 Del GT反向 GTTGTACTCCAGCTTGTGCC
47 Del TS正向 TACAACAGCGACAACGTCTATATCATG
48 Del TS反向 TTCGATTTCCTCTAAAACTGAATAATGC
49 Del T(l)正向 AGTTACAACAGCGACAACGTCTATATCATG
50 Del S缺失反向 AGTTTCGATTTCCTCTAAAACTGAATAATGC
51 Del G缺失正向 ACCATGACAGACGTCATCTTGATTG
52 Del T(2)缺失反向 ACCGTTGTACTCCAGCTTGTGCC 53 D 1 18K正向 TTTTAAGATAAATGAGAGTAAAATAGG
54 1 18/120突变反向 GCCATAGAAATTTTTGTGTTATTG
55 D 1 18R正向 TTTTCGGATAAATGAGAGTAAAATAGG
56 N120K正向 TTTTGATATAAAGGAGAGTAAAATAGG
57 N120R正向 TTTTGATATACGGGAGAGTAAAATAGG
58 N120E正向 TTTTGATATAGAAGAGAGTAAAATAGG
59 N120D正向 TTTTGATATAGATGAGAGTAAAATAGG
60 D193N正向 TAAATTTAGCAGTTGAGCTTCAG
61 193/194突变反向 TATGATGAATTCGAATGTGTTC
62 D193K正向 TAAAGTTAGCAGTTGAGCTTCAG
63 D193R正向 TACGGTTAGCAGTTGAGCTTCAG
64 L194E正向 TAGATGAAGCAGTTGAGCTTCAG
65 L194D正向 TAGATGATGCAGTTGAGCTTCAG
66 L194K正向 TAGATAAGGCAGTTGAGCTTCAG
67 L194R正向 TAGATCGGGCAGTTGAGCTTCAG
2. PCR扩增
利用定点突变 PCR进行截短突变及定点突变。
突变 PCR扩增体系(引物、 酶、 dNTP等来自富酶泰斯公司):
PCR加样体系 PCR反应条件
模板 0.1 μΐ 98 °C 5分钟 正向引物 0.5μ1 r 98 °C 10秒 反向引物 0.5μ1 30个循环 55 °C 5秒
5x Prime Star缓冲液 ΙΟμΙ L 72 °C 4分 30秒
Prime Star酶 0.5μ1 72 °C 10分钟 dNTP混合物(l OmM) 4μ1
ddH2O 33.5μ1
v\ 50μ1
3. DNA片段分离、 纯化
Dpnl消化
首先利用 Dpnl酶 (来自富酶泰斯公司)在 37°C处理上述 PCR扩增片段 3 小时, 以便去除潜在的模板质粒污染。 然后, 使反应体系在 80°C变性失活 20分钟。 经变性失活的反应混合物可以直接用于后续的分子生物学实验。 在 ATP存在下, 利用 T4多聚核苷酸激酶 (T4 polynucleotide kinase, T4 ΡΝΚΧ来自富酶泰斯公司)在 37°C处理 1 小时, 以使 DNA核糖环的 5'-OH 磷酸化, 以便于片段环化自连。然后,使反应体系在 75 °C变性失活 10分钟。 变性失活的反应混合物可以直接用于后续的分子生物学实验。 连接
用 T4 DNA连接酶 (来自富酶泰斯公司)将经过磷酸化处理的 DNA片段 (突变的 DNA片段 pRSETb-ydiH-YFP或 pRSETb-YFP-ydiH)进行环化自连 (16°C, 过夜)。 突变系列质粒双酶切
将抽提的 pRSETb-ydiH-YFP系列及 pRSETb-YFP-ydiH突变体质粒分别 进行双酶切, 体系如下:
双酶切体系 双酶切体系
突变质粒 突变质粒
ΙΟμΙ Ι ΟμΙ pRSETb-ydiH-YFP系列 pRSETb-YFP-ydiH系列
BsrGI Ι μΐ BsrGI Ι μΐ
Hindlll 2μ1 Hindlll 2μ1
10x Tango缓冲液 5μ1 10x Tango缓冲液 5μ1 ddH2O 32μ1 ddH2O 32μ1 心 v\ 50μ1 心 v\ 50μ1 反应条件: 37°C, 5小时。
反应结束后, 50μ1反应体系中加入 10μ1 6χ上样缓冲液终止反应。 然后 通过琼脂糖凝胶电泳分离目的片段, 利用柱吸附法回收并纯化片段, 详细 步骤见 "上海生工 DNA片段回收纯化试剂盒"。
对于截短突变, 根据需要选择突变质粒 pRSETb-ydiH-YFP系列的酶切 片段 pRSETb-ydiH-YFP与未发生突变的正常序列片段 YFP-ydiH片段连接。 对于定点突变, 根据根据需要选择突变质粒 pRSETb-ydiH-YFP系列的酶切 片段 pRSETb-ydiH-YFP与同样发生定点突变的 pRSETb- YFP-ydiH系列的酶 切片段 YFP-ydiH连接。 连接
将回收的纯化片段 pRSETb-ydiH-YFP与 YFP-ydiH段连接, 体系如下:
连接体系
片段 YFP-ydiH 4
片段 pRSETb-ydiH-YFP 1
T4 DNA连接酶 0.5
l Ox T4 DNA连接酶缓冲液 1
ddH2O 3.5
ν\ 10
反应条件: 16°C, 过夜。
连 接 产 物 标 记 为 pRSETb-ydiH- YFP-ydiH True v2.xx 或 pRSETb-ydiH-YFP-ydiH 突变体质粒鉴定
取菌落 PCR筛选为阳性的克隆, 采用通用引物测序, 由北京六合华大 基因科技股份有限公司上海分公司完成。测定的序列用 Vector NTI 8.0进行 数据比对分析。 构建探针系列
根据上述方法可进一步获得下述探针系列。
质粒 SEQ ID NO pRSETb-ydiH-YFP-ydiH(D2) C 1 C I 92
pRSETb-ydiH-YFP-ydiH(D2) C2 C2 93
pRSETb-ydiH-YFP-ydiH(D2)C3 C3 94
pRSETb-ydiH-YFP-ydiH(D2) C4 C4 95
pRSETb-ydiH-YFP-ydiH(D2) C5 C5 96
pRSETb-ydiH-YFP-ydiH(D2) C6 C6 97
pRSETb-ydiH-YFP-ydiH(D2) C7 C7 98
pRSETb-ydiH-YFP-ydiH(D2) C8 C8 99
pRSETb-ydiH-YFP-ydiH(D2) C9 C9 100
pRSETb-ydiH-YFP-ydiH(D2) Del T Del T(l) 101
pRSETb-ydiH-YFP-ydiH(D2) Del GT Del GT 102
pRSETb-ydiH-YFP-ydiH(D2) Del G Del G 103
pRSETb-ydiH-YFP-ydiH(D2) Del T Del T(2) 104 pRSETb- -ydiH-YFP-ydiH(D2) C3 D1 18R C3 D118R 105
pRSETb- -ydiH-YFP-ydiH(D2) C3 N120K C3 N120K 106
pRSETb- -ydiH-YFP-ydiH(D2)C3 N120R C3 N120R 107
pRSETb- -ydiH-YFP-ydiH(D2) C3 N120E C3 N120E 108
pRSETb- -ydiH-YFP-ydiH(D2) C3 N120D C3 N120D 109
pRSETb- -ydiH-YFP-ydiH(D2) C3 D193N C3 D193N 110
pRSETb- -ydiH-YFP-ydiH(D2) C3 D193K C3 D193K 11 1
pRSETb- -ydiH-YFP-ydiH(D2) C3 L194K C3 L194K 112
pRSETb- -ydiH-YFP-ydiH(D2) C3 L194R C3 L194R 113
pRSETb- -ydiH-YFP-ydiH(D2) C3 L194E C3 L194E 114
pRSETb- -ydiH-YFP-ydiH(D2) C3 L194D C3 L194D 115
pRSETb- -ydiH-YFP-ydiH(D2) C8 D1 18R C8 D118R 116
pRSETb- -ydiH-YFP-ydiH(D2) C8 N120K C8 N120K 117
pRSETb- -ydiH-YFP-ydiH(D2) C8 N120R C8 N120R 118
pRSETb- -ydiH-YFP-ydiH(D2) C8 N120E C8 N120E 119
pRSETb- -ydiH-YFP-ydiH(D2) C8 N120D C8 N120D 120
pRSETb- -ydiH-YFP-ydiH(D2) C8 D193N C8 D193N 121
pRSETb- -ydiH-YFP-ydiH(D2) C8 D193K C8 D193K 122
pRSETb- -ydiH-YFP-ydiH(D2) C8 L194K C8 L194K 123
pRSETb- -ydiH-YFP-ydiH(D2) C8 L194R C8 L194R 124
pRSETb- -ydiH-YFP-ydiH(D2) C8 L194E C8 L194E 125
实施例 4. ydiH (189) -YFP-ydiH (190)衍生系列探针 探针构建原理
利用构建 pRSETb-ydiH( 189)-YFP-ydiH( 190)等探针的中间过渡质粒为 板, 根据定点突变的原理, 进行衍生系列探针的构建。
截短突变序列示意如下:
Figure imgf000038_0001
突变文库的建立
1. 引物设计 (上海生工)
SEQ
ID 备注 序列 (5'-3')
No
68 189/190-N1正向 GCAGGCTACAACAGCGACAACGTC
69 189/190-N1反向 GAAGTCCACGTTCTCCACGGCCAC
70 189/190-N2正向 GGCTACAACAGCGACAACGTCTATATCATG
71 189/190-N3正向 TACAACAGCGACAACGTCTATATCATGGC
72 189/190-C1正向 CTGGCCGGCCTGACCCGGCTGAG
73 189/190-C1反向 GGTACCGTTGTACTCCAGCTTGTGCCCCAGG
74 189/190-C2反向 ACCGTTGTACTCCAGCTTGTGCCCCAGGATG
75 189/190-C3反向 GTTGTACTCCAGCTTGTGCCCCAGGATGTTGC
76 Trex(D2)正向 ATGAACCGGAAGTGGGGCCTG
77 Trex(D2)反向 CGGATCCTTATCGTCATCGTCGTAC
78 D112SV113H正向 CATGACCCCGAGAAGGTGGGC
79 D112SV113H反向 CGAGAAGAAGCCCCGCAGCTC 2. PCR扩增
利用定点突变 PCR进行截短突变及定点突变。
突变 PCR扩增体系(引物、 酶、 dNTP等来自富酶泰斯公司):
PCR加样体系 PCR反应条件
模板 0.1 μΐ 5分钟 正向引物 0.5 μΐ 10秒 反向引物 0.5 μΐ 30个循环 5秒
5x Prime Star缓冲液 10 μΐ 4分 30秒
Prime Star酶 0.5 μΐ
Figure imgf000039_0001
10分钟 dNTP混合物(l OmM) 4 μΐ
ddH2O 33.5 μΐ
v\ 50 μΐ 3. DNA片段分离、 纯化
Dpnl消化
首先利用 Dpnl酶 (来自富酶泰斯公司)在 37°C处理上述 PCR扩增片段 3 小时, 以便去除潜在的模板质粒污染。 然后, 使反应体系在 80°C变性失活 20分钟。 经变性失活的反应混合物可以直接用于后续的分子生物学实验。
DNA片段磷酸化
在 ATP存在下, 利用 T4多聚核苷酸激酶 (T4 polynucleotide kinase, T4 ΡΝΚ)(来自富酶泰斯公司)在 37°C处理 1 小时, 以使 DNA核糖环的 5'-OH 磷酸化, 以便于片段环化自连。然后,使反应体系在 75 °C变性失活 10分钟。 变性失活的反应混合物可以直接用于后续的分子生物学实验。 连接
用 T4 DNA连接酶 (来自富酶泰斯公司)将经过磷酸化处理的 DNA片段 (突变的 DNA片段 pRSETb-ydiH-YFP或 pRSETb-YFP-ydiH)进行环化自连(16 V, 过夜)。 突变体质粒鉴定
取菌落 PCR筛选为阳性的克隆, 采用通用引物测序, 由北京六合华大 基因科技股份有限公司上海分公司完成。测定的序列用 Vector NTI 8.0进行 数据比对分析。 构建探针系列
根据上述方法可进一步获得下述探针系列, 并予以分别编号。
Figure imgf000040_0001
实施例 5.还原型烟酰胺腺嘌吟二核苷酸荧光探针的光谱特性 将如上所述制备的荧光探针溶解于测定缓冲液 (lOOmM KPi (磷酸钾), pH 7.4)中配制成终浓度为 ΙΟμΜ的荧光探针溶液。 利用多功能荧光酶标仪 (协作 2 型 (8 1½ 2))(伯腾公司(8 0 1^, 美国佛蒙特州)测定吸收光谱 (图 3Α)。
用荧光分光光度计(CE 荧光分光光度计(Cary Eclipse Fluorescence spectrophotometer), (瓦里安公司 (Varian))测定激发和发射光谱 (图 3B)。
光谱特性测定的实验结果表明, F-rexl蛋白具有两个激发峰分别为 400nm 和 490nm,其中后者的振幅强度是前者的五倍, 而 F-rexl蛋白仅有一个发射峰 为 521nm。 F-rex2蛋白具有两个激发峰分别为 410nm和 500nm,其中后者的振 幅强度约是前者的二分之一, 而 F-rex2蛋白仅有一个发射峰为 518nm (图 4)。 实施例 6.还原型烟酰胺腺嘌吟二核苷酸荧光探针对生理条件下吡啶核苷酸类 似物响应特性
将如上所述制备的荧光探针溶解于测定缓冲液 (lOOmM KPi, pH 7.4)中配 制成终浓度为 ΙμΜ的蛋白溶液。 用测定缓冲液 (lOOmM KPi, pH 7.4)将吡啶核 苷酸类似物 NAD+、 NADH, ATP, ADP、 NADP+及 NADPH (默克公司(Merck, 德国达姆施塔特)分别配制成终浓度为 8mM的储液, 在测定前稀释至 80μΜ待 用。
取 200μ1 ΙμΜ的荧光探针溶液, 首先用 4μ1 80μΜ NAD+或 NADH或 ATP 或 ADP或 NADP+或 NADPH连续滴定 5次, 然后用 4μ1 8mM NAD+或 NADH 或 ATP或 ADP或 NADP+或 NADPH再连续滴定 5次, 每次滴定结束后振荡 5s待充分反应后, 测定蛋白的 485nm荧光激发后 528nm发射的荧光强度。 对 样品的荧光激发、发射测定利用多功能荧光酶标仪 (协作 2型, 伯腾公司)完成。
测定结果显示, 生理浓度(<100μM NADH)下还原型烟酰胺腺嘌呤二核苷 酸荧光探针仅对还原型烟酰胺腺嘌呤二核苷酸 (NADH)有明显响应, 而对于其 他吡啶类核苷酸并无明显响应 (如图 5和 6)。 实施例 7.还原型烟酰胺腺嘌吟二核苷酸荧光探针在不同亚细胞器内定位表达 以 pRSETb-ydiH-cpYFP-ydiH(D2)为模板, 利用 BamHI禾卩 Hindlll双酶切 获得还原型烟酰胺腺嘌呤二核苷酸荧光探针基因 (Frex), 酶切产物片段回收后 分 另 IJ 连 接 到 pcDNA3.1-Hygro-Cyto 、 pcDNA3.1-Hygro-Mito 、 pcDNA3.1 -Hygro-Nuc 、 pcDNA3.1 -Hygro-Mem 、 pcDNA3.1 -Hygro-Golgi 、 pcDNA3.1-Hygro-ER, pcDNA3.1-Hygro-Peroxi载体上(中国上海的华东理工大 学蛋白质化学实验室改造)。
制备方法: 未经特别声明, 本方法内所有引物均由上海生工合成(上海生 工,中国上海)。首先构建 pcDNA3.1 -Hygro-Cyto载体,以 pcDNA3.1 -Hygro(+) (英 杰公司 (Invitrogen), 美国加州) 为基础, 设计两条引物 Cyto引物 F和 Cyto引 物 R,
Cyto引物 F: CTA GCATGGCGGATCCACTAGTAA GCTTAAGC ( SEQ ID No 80 ) Cyto引物 R: TCGA GCTTAA GCTTACTAGTGGATCCGCCATG (SEQ ID No 81) 这组引物 中含有酶切位点及起始密码子 ATG, 结构为 "NheI-ATG-GC-BamHI-HindIII-XhoI ", 将获得的弓 1物按如下步骤操作进行双 引物退火:
1.将引物干粉用专用缓冲液 (10mMTris, pH7.5-8.0; 50mMNaCl, ImM
EDTA) 稀释至 ΙΟΟμΜ
2.将要退火的引物对, 等摩尔混合, 总体积不超 500μ1
3.加热到 95度, 然后缓慢冷却至室温 (低于 30°C), 产物至于 -20°C待用 对于定位信号 Mito(SEQ ID No 82)及 Golgi(SEQ ID No 83),采用人工合成 序列的方法, 在定位信号 N端设置 Nhel酶切位点在 C端设置 BamHI酶切位 点后, 通过双酶切的方发将定位信号介入 pcDNA3.1-Hygro(+)载体中。
双酶切体系 双酶切体系
DNA片断 ΙΟμΙ 载体 pcDNA3.1 -Hygro(+) Ι ΟμΙ
Nhel Ι μΐ Nhel Ι μΐ
BamHI Ι μΐ BamHI Ι μΐ
10x Tango缓冲液 5μ1 10x Tango缓冲液 5μ1 ddH2O 33 μΐ ddH2O 33μ1 心 v\ 50μ1 心 v\ 50μ1 对于定位信号 Nuc、 Mem, ER、 Peroxi 同样在定位信号两端分别设置一 组酶切位点后, 通过合成引物利用双引物退火成双链 DNA的方法直接获得含 有黏性末端的 DNA双链片段, 然后接入已双酶切的 pcDNA3.1-Hygro(+)载体 中。
Nuc引物 F:
Figure imgf000043_0001
Nuc引物 R:
TCGAGCTi
TACCTTTCTCTTCTTTTTTGGATQi (SEQ ID No 85)
Mem引物 F:
CTAGCAT ATGATGAGGACCAAAAGATCGC^(SEQ ID No 86)
Mem引物 R:
GATCCGC
CATACAGCACAGCGCCATG (SEQ ID No 87)
ER引物 F:
GGCCGTCGCCGCG (SEQ ID No 88)
ER引物 R:
GATCCGC
ATAGCAGCGCCATG (SEQ ID No 89)
Peroxi引物 F : A GC77 CCAAGCTGTAAC (SEQ ID No 90)
Peroxi引物 R: TCGA GTTACAGCTTGGA^ (SEQ ID No 91)
构建重组质粒 cDNA3.1 -Hygro-Cyto-Frex , pcDNA3.1 -Hygro-mito-Frex , pcDNA3.1 -Hygro-Frex-Nuc 、 pcDNA3.1 -Hygro-mem-Frex 、 pcDNA3.1 -Hygro-golgi-Frex 、 pcDNA3.1 -Hygro-Frex-ER 、 pcDNA3.1-Hygro-Frex-peroxi。 进行测序, 测序结果表明 Frex片段的核苷酸序 列如序列表中 SEQ ID NO: 9所示。 利用所得的重组质粒分别转染、 HEK293 细胞、 HEK293FT 细胞和 Cos7 细胞, 用激光共聚焦显微镜 (来自尼康公司 (Nikon, 日本)观察转染后的细胞, 两组激发光波长分别为 405nm和 488nm, 发射光波长为 500-550nm。
实验结果表明, Frex-Cyto在 HEK293FT细胞中高效、 准确定位于细胞浆 中(图 7A); Frex-Mito在 HEK293FT细胞中高效、准确定位于线粒体中(图 7B); Frex-Nuc在 HEK293FT细胞中高效、 准确定位于细胞核中(图 7C); Frex-Mem 在 HEK293FT 细胞中高效、 准确定位于细胞膜中(图 7D) ; Frex-Golgi 在 HEK293FT细胞中高效、准确定位于高尔基体中(图 7E); Frex-ER在 HEK293FT 细胞中高效、 准确定位于内质网中(图 7F); Frex-Pero在 HEK293FT细胞中高 效、 准确定位于过氧化物酶体中 (图 7G)。 实施例 8用该系列探针指示细胞内还原型烟酰胺腺嘌吟二核苷酸的变化
(1)还原型烟酰胺腺嘌呤二核苷酸荧光探针实时测定 NADH跨膜进入细胞 导致不同亚细胞区室内 NADH水平增加。
按照实施例 7将还原型烟酰胺腺嘌呤二核苷酸荧光探针于 293FT细胞不 同亚细胞器内标表达, 结果显示该系列探针能够实时地检测细胞培养基中外加 NADH对细胞内 NADH水平的影响 (图 8-1A), 当在细胞培养基中外加 NADH 时, 用激光共聚焦显微镜 (来自尼康公司 (Nikon, 日本)观察转染后的细胞, 结 果显示在 485nm荧光激发下探针 528nm下的发射荧光比对照组增强 2.5倍, 证明 NADH可以跨膜进入细胞导致细胞内 NADH水平立即增加; 图 8-1D和 图 8-1E显示还原型烟酰胺腺嘌呤二核苷酸荧光探针不受 NADH类似物 NAD+、 NADPH等影响。比照的对照实验组,单独存在的 cpYFP蛋白亦不受外加 NADH 影响。 由此可排除 pH和 cpYFP自身受环境变化对探针产生的影响。 我们进一 步利用该系列探针检测外加 NADH对其他细胞器内 NADH水平的影响, 结果 显示外加 NADH亦也可导致细胞核和线粒体内 NADH水平的增加, 图 8-1B 显示细胞核内结果, 图 8-1C显示线粒体内结果所示。 综上结果表明烟酰胺腺 嘌呤二核苷酸荧光探针可以很好指示出 NADH跨膜进入哺乳动物细胞内导致 细胞内 NADH水平的增加。
(2)烟酰胺腺嘌呤二核苷酸荧光探针实时测定葡萄糖、 丙酮酸、 乳酸对不 同亚细胞区室内 NADH水平的调节。
糖酵解作为细胞内产生 NADH小分子的重要途径, 其对细胞内 NADH水 平起着至关重要的调控作用, 我们利用烟酰胺腺嘌呤二核苷酸荧光探针对该途 径中重要代谢物葡萄糖、 丙酮酸、 乳酸对不同亚细胞区室内 NADH水平的影 响进行了测试。 图 8-2A显示细胞浆内结果, 图 8-2D显示线粒体内结果。 上述 结果表明, 葡萄糖作为细胞能量来源之一, 可导致细胞浆和线粒体内 NADH 水平的增加。 丙酮酸和乳酸作为糖酵解途径的产物, 二者在细胞浆中存在动态 的平衡, 当细胞内丙酮酸水平增加, 乳酸脱氢酶催化消耗 NADH, 生成乳酸和 NAD+, 进而导致细胞浆内 NADH水平减少; 当细胞内乳酸水平增加时, 乳酸 脱氢酶催化消耗 NAD+, 生成丙酮酸和 NADH, 进而导致细胞浆内 NADH水 平增加。 图 8-2B显示出丙酮酸可导致细胞浆内 NADH水平迅速减少, 但随着 时间的增加又回复正常水平过程, 而图 8-2C显示乳酸促使细胞浆内 NADH水 平迅速增加, 但随着时间的增加也能够回复正常水平, 这些结果表明烟酰胺腺 嘌呤二核苷酸荧光探针可以实时地显示细胞浆内 NADH水平这一动态平衡调 节过程。
(3)还原型烟酰胺腺嘌呤二核苷酸荧光探针实时测定氧化磷酸化途径对线 粒体内 NADH水平的调控。
经由糖酵解途径和三羧酸循环途径产生的 NADH经由线粒体呼吸链氧化 磷酸化途径氧化,生成 ATP为细胞各种生命活动提供能量。我们利用测试烟酰 胺腺嘌呤二核苷酸荧光探针对呼吸链上不同位点复合物被抑制后对线粒体内 NADH 水平的影响进行了测定, 图 8-3A 显示 3-NP 处理的表达于线粒体内 NADH探针蛋白的 6min动态图, 图 8-3B显示 3-NP处理的表达于线粒体内对 照蛋白 cpYFP的 6min动态图。上述每幅图时间间隔为 lmin。用激光共聚焦显 微镜 (来自尼康公司 (Nikon, 日本)观察处理前后的细胞, 结果表明复合体 II抑 制剂 3-NP由于抑制了三羧酸途径导致线粒体内 NADH水平极大地降低,对照 组中 cpYFP无显示变化。 图 8-3C显示利用测试烟酰胺腺嘌呤二核苷酸荧光探 针其他复合体抑制剂对线粒体内 NADH 水平影响的测定, 结果显示复合体 I 抑制剂鱼藤酮、 复合体 III抑制剂抗霉素 A、 复合体 IV抑制剂 NaCN处理细胞 30min后,探针 485nm激发 528nm发射荧光增加,表明复合体 I抑制剂鱼藤酮、 复合体 ΠΙ抑制剂抗霉素 A、复合体 IV抑制剂 NaCN由于抑制氧化磷酸化途径 阻止了 NADH的氧化, 从而导致线粒体内 NADH水平的增加 (图 8-3C)。 实施例 9氧化型烟酰胺腺嘌吟二核苷酸荧光探针测定细胞内 NAD+水平的变化 氧化型烟酰胺腺嘌呤二核苷酸荧光探针的结构是,在 Trex的 F189和 L190 这两处氨基酸中间插入 cpYFP, 此探针的序列是 SEQ ID NO: 129, 制备方法 同实施例 4。通过将氧化型烟酰胺腺嘌呤二核苷酸荧光探针在 293FT细胞细胞 浆中表达, 发现该系列探针可以很好地实时检测细胞培养基中外加 NAD+对细 胞内 NAD+水平的影响 (图 9-1),如图 9-1所示,当细胞培养基中外加 NAD+时, 485nm光激发探针 528nm荧光立即大大增加至 2.8倍左右,这说明氧化型烟酰 胺腺嘌呤二核苷酸荧光探针可以很好指示 NAD+跨膜进入哺乳动物细胞内导 致细胞内 NAD+水平增加。在蛋白检测时,单通道 485nm激发, 528nm发射时, Frex-2探针对 NAD+的响应约有 1000%倍 (如图 9-2)。 在单通道 485nm激发, 528nm发射时, Frex-2探针对 NADP、NADPH、 ADP和 ATP无响应(如图 9-3 )。 实施例 10还原型和氧化型烟酰胺腺嘌吟二核苷酸比率荧光探针测定 NADH/NAD+比率的变化
还原型和氧化型烟酰胺腺嘌呤二核苷酸比率荧光探针的结构是, 在 Trex的 F189和 L190这两处氨基酸中间插入 cpYFP, 此探针的序列是 SEQ ID NO: 148, 制备方法同实施例 4。 该探针仅对 NADH和 NAD+有响应, 对 NADH类似物没有任何响应, 当采用 485nm激发可发现 NAD和 NADH 结合均能导致探针 528nm发射荧光均有增强, 但是采用 420nm激发, 仅 NADH的结合能够致使探针发生响应。由于探针 420nm激发与 485nm激发, 均能于 528nm处产生发射荧光, 因此利用不同波长的荧光激发, 测定其这 两者在 528nm出发射荧光的强度比值 (420nm/485nm)可发现仅 NADH的结 合导致探针荧光比值的响应为上升, 而 NAD+的结合导致其响应为下降 (图 10-1)。 当 NADH和 NAD保持总浓度不变, 调整二者的相互比例时, 该趋 势变化更为明显, 且不随总浓度的变化而变化 (图 10-2)。
当含有 20 uM的 NADP, NADPH, ADP禾卩 ATP时, [NADH]/[NAD] 按照一定比例去滴定, 我们发现变化的响应倍数和变化趋势均没有受其影 响, 说明 NADP, NADPH, ADP和 ATP四种类似物对探针没有影响(如图 10-3)。
因此该探针既可以做还原型和氧化型烟酰胺腺嘌呤二核苷酸比率探 针, 还可以单独做还原型烟酰胺腺嘌呤二核苷酸探针。 实施例 11 基于还原型和氧化型烟酰胺腺嘌吟二核苷酸比率荧光探针 的高通量药物筛选
广泛认为胞浆中乳酸和丙酮酸的浓度与胞浆中游离的 NAD+和 NADH 水平存在一个动态的平衡。 在正常组织中, 糖酵解产生的丙酮酸主要进入 线粒体参与三羧酸循环, 并最终通过氧化磷酸化产生大量能量, 而在恶性 肿瘤组织中, 丙酮酸主要经乳酸脱氢酶还原为乳酸, 并伴随 NADH氧化为 NAD+。 我们利用还原型和氧化型烟酰胺腺嘌呤二核苷酸比率荧光探针 superFrex, 开发了一种基于代谢差异的高通量药物筛选新方法。
将表达 superFrex的稳定细胞株与不同药物混合, 添加到全黑的 384孔 板中, 利用多功能酶标仪测定 superFrex荧光的变化 (图 1 1 -A)。 以 Merck公 司的蛋白激酶抑制剂化合物库为例, 我们发现了 23-26 种化合物增加了细 胞内乳酸 /丙酮酸比率, 7-9种化合物降低了细胞内乳酸 /丙酮酸比率 (图 1 1 -B 和 1 1-C)。 通过进一步分析这些化合物对正常细胞和肿瘤细胞增殖的影响, 最终确定了几种先导化合物。 它们在一定剂量范围内, 能有效杀死肿瘤细 胞, 却对正常细胞没有毒害, 因此具有被开发成抗肿瘤药物的潜力。 实施例 12 利用还原型和氧化型烟酰胺腺嘌吟二核苷酸比率荧光探针 测定肿瘤 NADH代谢
将 pcDNA3.1 -cyt-superFrex 质粒转染进肿瘤细胞 HI 299 中, 经
Hygromycin B筛选 2周后, 通过流式分选获得高表达 superFrex的 H1299 单克隆稳定细胞株 (H1299-superFrex)。 5-6 周雄性裸鼠右侧腋窝皮下注射 200 μΐ H1299- superFrex细胞悬液(l .OxlO7细胞), SPF级动物房培养 3-4周 后,裸鼠肿瘤生长至 0.6-1.0 cm。 将裸鼠麻醉后, 通过尾静脉注射 300 μΐ丙 酮酸钠(lOO mM), 利用 Kodak 多功能活体成像系统 (Carestream, 美国)立即 观察药物对肿瘤代谢的影响。 实验结果显示丙酮酸导致裸鼠肿瘤组织 superFrex 420 nm通道荧光迅速降低,而 490 nm通道荧光迅速增加, 420/490 nm荧光比率降低 (图 12-A); 作为实验对照, 表达 cpYFP的肿瘤组织却基本 无影响(图 12-B), 这说明丙酮酸导致肿瘤组织 NADH/NAD+比率的下降。 随着时间的延长, 丙酮酸逐渐被代谢消耗, 肿瘤组织 NADH/NAD+比率又 回到初始水平 (图 12-C)。 综上实验结果表明还原型和氧化型烟酰胺腺嘌呤 二核苷酸比率荧光探针 superFrex可以很好地实时动态检测肿瘤组织 NADH 代谢情况。 其它实施方式
本说明书描述了许多实施方式。然而应理解,本领域技术人员通过阅读本 说明书获知不背离本发明的构思和范围的各种改进。 因此, 这些其他实施方式 也应包括在所附权利要求书的范围内。

Claims

1. 一种遗传编码的 NADH荧光探针, 其内含有对环境内 NADH敏感 的多肽, 和通过光谱性质的改变对环境内 NADH进行表现的部分。
2. 如权利要求 1所述的 NADH荧光探针,其特征在于,所述通过光谱 性质的改变对环境内 NADH进行表现的部分是荧光蛋白序列或其衍生物。
3. 如权利要求 1所述的 NADH荧光探针,其特征在于,所述对 NADH 敏感的多肽是具有如下特征的多肽, 或其功能片段或 NADH结合结构域:
(1) 具有 NADH结合特性的 Rossman结构域; 和 /或
(2) 来源于对 NADH敏感的转录调控因子 Rex家族蛋白。
4. 如权利要求 1或 3所述的 NADH荧光探针, 其特征在于, 所述对 NADH敏感的多肽包含:
(1) 来自于细菌的转录调控因子 Rex蛋白基因 ydiH的多肽, 该多肽可 以由 SEQ ID NO: 1、 2或 3编码;
(2) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 95%相同性的同 源或非同源序列;
(3) 在 85个氨基酸残基内任何与 (1)所述序列具有 90%相同性的同源或 非同源序列;
(4) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 70%相同性的同 源或非同源序列;
(5) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 50%相同性的同 源或非同源序列;
(6) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 40%相似性的同 源或非同源序列; 或
(7) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 35%相似性的同 源或非同源序列。
5. 如权利要求 1-4中任一项所述的 NADH荧光探针, 其特征在于, 所 述荧光探针可以包含具有 NADH结合特性的 Rossman结构域 B和荧光蛋白序 列八、 A1和 /或 A2, 其组合形式可以是: (1) B-A-B;
(2) B-A-B-B;
(3) A1-B-A2, 其中 Al和 A2可以相同或不同; A1可以是来自于维多 利亚多管发光水母的荧光蛋白或其衍生物的氨基酸序列, A2 可以是来自于维 多利亚多管发光水母的另一荧光蛋白或其衍生物的氨基酸序列;
(4) B的第一部分 -A-B的第二部分; 其中 A插入在 B的柔性区域内, 因而将 B分割成 B的第一部分和 B的第二部分, B的第一部分和 B的第二部 分构成完整的 B结构域; 或
(5) B的第一部分 -A-B的第二部分 -B; 其中 A插入在 B的柔性区域内, 因而将 B分割成 B的第一部分和 B的第二部分, B的第一部分和 B的第二部 分构成完整的 B结构域。
6. 如权利要求 5所述的 NADH荧光探针,其特征在于,所述荧光探针 包含:
(1) 氨基酸序列 SEQ ID NO: 4、 5、 6、 7或 8;
(2) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 95%相同性的同 源或非同源序列;
(3) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 90%相同性的同 源或非同源序列;
(4) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 70%相同性的同 源或非同源序列;
(5) 在至少 85个氨基酸残基内任何与 (1)所述序列具有 50%相同性的同 源或非同源序列;
(6) 在至少 85个氨基酸残基内与 (1)或 (2)或 (3)所述序列实质上相似或相 同的氨基酸序列; 或
(7) (1)或 (2)或 (3)或 (4)所述序列的变异体或衍生物。
7. 一种融合蛋白, 其包含权利要求 1所述的荧光探针。
8. 如权利要求 7所述的融合蛋白, 其特征在于, 所述融合蛋白是由权 利要求 1所述荧光探针与各种特异性亚细胞定位信号融合形成的, 所述定位信 号可将目标蛋白定位于指定的亚细胞器内。
9. 一种核酸序列, 其包含编码权利要求 1-6中任一项所述荧光探针的 核苷酸序列。
10. 一种核酸序列, 其包含编码权利要求 7-8中任一项所述融合蛋白的 核苷酸序列。
11. 一种编码 NADH荧光探针的核酸序列,其中含有编码荧光蛋白的核 苷酸序列和编码对 NADH敏感的蛋白质的核苷酸序列。
12. 如权利要求 11所述的核酸序列, 其特征在于, 所述编码对 NADH 敏感的蛋白质的核苷酸序列是编码具有如下特征的多肽或其功能片段或 NADH结合结构域的核苷酸序列:
(1) 具有 NADH结合特性的 Rossman结构域; 和 /或
(2) 来源于对 NADH敏感的转录调控因子 Rex家族蛋白。
13. 如权利要求 11或 12所述的核酸序列, 其特征在于, 所述荧光探针 的编码序列可以包含具有 NADH结合特性的 Rossman结构域的编码序列 b和 荧光蛋白的编码序列 a、 al和 /或 a2, 其组合形式可以是:
(1) b-a-b;
(2) b-a-b-b;
(3) al-b-a2, 其中 al和 a2可以相同或不同; al可以是来自于维多利亚 多管发光水母的荧光蛋白或其衍生物的编码序列, a2可以是来自于维多利亚多 管发光水母的另一荧光蛋白或其衍生物的编码序列;
(4) b的第一部分 -a-b的第二部分; 其中 a插入在 b的柔性区域内, 因 而将 b分割成 b的第 1部分和 b的第二部分, b的第一部分和 b的第二部分构 成完整的 b结构域;
(5) b的第一部分 -a-b的第二部分 -b;其中 a插入在 b的柔性区域内, 因 而将 b分割成 b的第 1部分和 b的第二部分, b的第一部分和 b的第二部分构 成完整的 b结构域。
14. 如权利要求 13所述的核酸序列, 其特征在于, 所述核酸序列包含:
(1) 核苷酸序列 SEQ ID NO: 9、 10、 11、 12或 13。
(2) 在至少 85个碱基长度内任何与 (1)所述序列具有 95%相同性的同源 或非同源序列; (3) 在至少 85个碱基长度内任何与 (1)所述序列具有 90%相同性的同源 或非同源序列;
(2) 在至少 85个碱基长度内任何与 (1)所述序列具有 70%相同性的同源 或非同源序列;
(3) 在至少 85个碱基长度内任何与 (1)所述序列具有 50%相同性的同源 或非同源序列;
(4) 在至少 85个碱基长度内与 (1)或 (2)或 (3)所述序列实质上相似或相同 的核苷酸序列;
(5) (1)或 (2)或 (3)或 (4)所述序列的变异体或衍生物。
15. 如权利要求 9-14中任一项所述的核酸序列的互补核酸序列。
16. 一种表达载体, 其包含与表达控制序列操作性连接的如权利要求 9-15中任一项所述的核酸序列。
17. 一种宿主细胞, 其包含权利要求 16所述的表达载体。
18. 一种制备权利要求 1-6中任一项所述荧光探针或权利要求 7-8中任 一项所述融合蛋白的方法, 包括以下步骤:
(1) 将权利要求 16所述的表达载体转移到宿主细胞中,
(2) 在适合所述宿主细胞表达的条件下培养所述宿主细胞, 和
(3) 由所述宿主细胞分离所述荧光探针或融合蛋白。
19. 一种遗传编码的 NAD+荧光探针, 其内含有对环境内 NAD+敏感的 多肽, 和通过光谱性质的改变对环境内 NAD+进行表现的部分。
20. 一种遗传编码的 NADH/NAD+比率荧光探针, 其内含有对环境内 NADH/NAD+比率敏感的多肽,和通过光谱性质的改变对环境内 NADH/NAD+ 比率进行表现的部分。
21. 权利要求 1-6中任一项所述的荧光探针或权利要求 7-8中任一项 所述的融合蛋白在检测 NADH、 筛选药物或诊断疾病中的应用。
22. 如权利要求 21所述的应用, 其特征在于, 所述筛选采用能表达 权利要求 1-6中任一项所述的荧光探针或权利要求 7-8中任一项所述的融合 蛋白的细胞, 筛选能改变所述细胞内乳酸 /丙酮酸比率的化合物为活性化合 物。
23. 如权利要求 22所述的应用, 其特征在于, 所述筛选以酶抑制剂 或激动剂化合物库为候选试剂库。
24. 权利要求 1-6中任一项所述的荧光探针或权利要求 7-8中任一项 所述的融合蛋白在测定 NADH代谢中的应用。
25. 如权利要求 24所述的应用, 其特征在于, 所述应用在哺乳动物 系统中进行。
26. 如权利要求 25所述的应用, 其特征在于, 所述系统为荷瘤哺乳 动物系统。
27. 一种用于检测 NADH、 筛选药物或诊断疾病的试剂盒, 其包含权 利要求 1-6中任一项所述的荧光探针或权利要求 7-8中任一项所述的融合蛋 白。
PCT/CN2012/081977 2011-09-26 2012-09-26 烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用 WO2013044792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/347,575 US9606121B2 (en) 2011-09-26 2012-09-26 Nicotinamide adenine dinucleotide gene encoding fluorescent probe, preparation method therefor and application thereof
US15/426,621 US9945860B2 (en) 2011-09-26 2017-02-07 Nicotinamide adenine dinucleotide indicators, methods of preparation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110288807.6 2011-09-26
CN201110288807.6A CN102344494B (zh) 2011-09-26 2011-09-26 烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/347,575 A-371-Of-International US9606121B2 (en) 2011-09-26 2012-09-26 Nicotinamide adenine dinucleotide gene encoding fluorescent probe, preparation method therefor and application thereof
US15/426,621 Division US9945860B2 (en) 2011-09-26 2017-02-07 Nicotinamide adenine dinucleotide indicators, methods of preparation and application thereof

Publications (1)

Publication Number Publication Date
WO2013044792A1 true WO2013044792A1 (zh) 2013-04-04

Family

ID=45543596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081977 WO2013044792A1 (zh) 2011-09-26 2012-09-26 烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用

Country Status (3)

Country Link
US (2) US9606121B2 (zh)
CN (1) CN102344494B (zh)
WO (1) WO2013044792A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344494B (zh) * 2011-09-26 2015-03-11 华东理工大学 烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用
EP2642276A1 (en) * 2012-03-22 2013-09-25 Inoviem Scientific Method of dynamic spectroscopy under physiological conditions
CN104910276B (zh) * 2014-03-14 2019-01-01 华东理工大学 基因编码的烟酰胺腺嘌呤二核苷酸磷酸荧光探针及其制备方法和应用
CN105524175B (zh) * 2014-09-28 2019-03-29 华东理工大学 一种基因编码的过氧化氢荧光探针及其制备方法和应用
CN104316585B (zh) * 2014-10-16 2017-05-24 上海交通大学 一种用于nadh电化学检测的复合电极及其制备方法
CN105646716A (zh) * 2014-11-14 2016-06-08 华东理工大学 一种基因编码的环腺苷酸荧光探针及其制备方法和应用
WO2016089633A1 (en) * 2014-12-02 2016-06-09 Oregon Health & Science University Biosensors that detect nad+
CN104789639B (zh) * 2015-04-21 2018-01-12 华东理工大学 用于对nadh依赖型酶底物进行检测的融合蛋白及其应用
CN108395484A (zh) * 2018-03-15 2018-08-14 华东理工大学 支链氨基酸荧光探针及其应用
CN110305917B (zh) * 2019-07-27 2022-10-14 湖北大学 芽胞杆菌rex基因在提高聚γ-谷氨酸产量中的应用
WO2021121417A1 (zh) * 2019-12-19 2021-06-24 华东理工大学 乳酸光学探针及其制备方法和应用
CN113336854B (zh) * 2020-02-18 2024-05-03 华东理工大学 一种精氨酸荧光探针及其制备方法和应用
CN111443119B (zh) * 2020-02-25 2022-08-09 无锡尔云科技有限公司 氧化还原状态检测探针及其应用
CN115028743B (zh) * 2022-06-28 2024-05-14 山东大学 一种检测d-2-羟基戊二酸的荧光传感器及其构建方法和应用
US20240026420A1 (en) * 2022-07-12 2024-01-25 Sartorius Bioanalytical Instruments, Inc. FRET Biosensor for Detecting and Reporting NAD+/NADH Ratio Changes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821751A (zh) * 2006-03-30 2006-08-23 湖南大学 一种用于检测nadh浓度的纳米生物传感器及其检测方法
CN102344494A (zh) * 2011-09-26 2012-02-08 华东理工大学 烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469154B1 (en) 1999-05-21 2002-10-22 The Regents Of The University Of California Fluorescent protein indicators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821751A (zh) * 2006-03-30 2006-08-23 湖南大学 一种用于检测nadh浓度的纳米生物传感器及其检测方法
CN102344494A (zh) * 2011-09-26 2012-02-08 华东理工大学 烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CEXIA MEI ET AL.: "Quantitative detection of NAD H by in vitro bacterial luciferase bioluminescent", ACTA MICROBIOLOGICA SINICA, September 2009 (2009-09-01), pages 1223 - 1228 *
LIU ZHOU-JUN ET AL.: "Determination of Human Red Blood Cells", NADH BY ENZYME CYCLING FLUORIMETRY, March 2010 (2010-03-01), pages 602 - 605 *

Also Published As

Publication number Publication date
CN102344494B (zh) 2015-03-11
US9945860B2 (en) 2018-04-17
US20140329718A1 (en) 2014-11-06
US20170219584A1 (en) 2017-08-03
CN102344494A (zh) 2012-02-08
US9606121B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
WO2013044792A1 (zh) 烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用
Chu et al. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions
WO2019174633A1 (zh) 支链氨基酸荧光探针及其应用
WO2010119721A1 (ja) 超高輝度で安定な人工生物発光酵素
JP2019065012A (ja) 蛍光特性を示す新規なポリペプチド、およびその利用
JP5570803B2 (ja) 蛍光タンパク質およびpH測定方法
US9365623B2 (en) Cyanochrome fluorophores
JP6025566B2 (ja) ホタル由来ルシフェラーゼ
EP3037534B1 (en) Polypeptide exhibiting fluorescent properties, and utilization of same
US20230203506A1 (en) Lactic acid optical probe, preparation method therefor and application thereof
WO2015106067A2 (en) Lucigen yellow (lucy), a yellow fluorescent protein
EP2104681A2 (en) A green fluorescent protein optimized for expression with self-cleaving polypeptides
JP6535483B2 (ja) 幼若ホルモンセンサー
WO2016038750A1 (ja) 分割型組換えルシフェラーゼ及びそれを用いた解析方法
JP2023515926A (ja) アルギニン蛍光プローブ及びその製造方法並びに使用
EP4108685A1 (en) Tryptophan optical probe, preparation method therefor and use thereof
WO2005030930A2 (en) Variants of cyan fluorescent protein with improved fluorescent properties
WO2016117135A1 (ja) 真核生物細胞の可視化方法、並びに真核生物細胞の可視化用の改変レポーター遺伝子及び発現ベクター
JP5796949B2 (ja) 蛍光タンパク質
CN117551208A (zh) 一种基于环状重排荧光蛋白的l-2-羟基戊二酸生物传感器及其应用
JP2012110283A (ja) 発光タンパク質およびカルシウム応答性セレンテラジン結合タンパク質並びにこれらを用いた研究方法
WO2012124799A1 (en) Star-worm luciferase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14347575

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12836433

Country of ref document: EP

Kind code of ref document: A1