WO2016038750A1 - 分割型組換えルシフェラーゼ及びそれを用いた解析方法 - Google Patents

分割型組換えルシフェラーゼ及びそれを用いた解析方法 Download PDF

Info

Publication number
WO2016038750A1
WO2016038750A1 PCT/JP2014/074606 JP2014074606W WO2016038750A1 WO 2016038750 A1 WO2016038750 A1 WO 2016038750A1 JP 2014074606 W JP2014074606 W JP 2014074606W WO 2016038750 A1 WO2016038750 A1 WO 2016038750A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
firefly
terminal fragment
split
recombinant protein
Prior art date
Application number
PCT/JP2014/074606
Other languages
English (en)
French (fr)
Inventor
杉山 崇
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2014/074606 priority Critical patent/WO2016038750A1/ja
Priority to JP2016547651A priority patent/JPWO2016038750A1/ja
Publication of WO2016038750A1 publication Critical patent/WO2016038750A1/ja
Priority to US15/451,939 priority patent/US20170183637A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase

Definitions

  • the present invention relates to a recombinant protein, a gene encoding the same, and an analysis method using them.
  • reporter assay technology and cell imaging technology have been used for the purpose of observing various life phenomena.
  • a biological cell is modified using a gene encoding a fluorescent protein or a luminescent protein, and various life phenomena in the biological cell are analyzed using fluorescence or luminescence as an index.
  • cell imaging technology using fluorescent proteins has problems such as high background and low signal / noise ratio because cells emit autofluorescence, and a narrow range of available measurement targets due to a narrow dynamic range. is doing.
  • Patent Document 1 discloses a cell-specific gene expression imaging method using split luciferase derived from North American firefly (Photinus pyralis).
  • Patent Document 2 discloses a calcium indicator and an imaging method for changing luminescence intensity in a calcium concentration-dependent manner using a Luciferase gene derived from North American firefly (Photinus pyralis), and a calmodulin gene interacting with calcium and an M13 gene. Is disclosed.
  • Patent Document 3 discloses a calcium indicator that changes luminescence intensity in a calcium concentration-dependent manner, using a luciferase gene derived from North American firefly (Photinus pyralis) and a calmodulin gene whose structure changes in a calcium-dependent manner.
  • Patent Document 4 discloses split luciferase having various luminescence intensities using luciferase derived from North American firefly (Photinus pyralis).
  • firefly luciferase derived from North American firefly (Photlinus pyralis) used in the prior art has low emission intensity and single emission color, so imaging in cells with low expression of foreign genes, 1-cell imaging It was difficult to use for high-speed imaging and multicolor imaging.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a split-type recombinant protein, a gene encoding the same, and an analysis method using them.
  • the present inventor considered that the N-terminal side fragment divided into two so that the firefly luciferase activity is recovered by binding to each other and the N-terminal side from the split position where the firefly luciferase activity is recovered by being combined with each other.
  • the C-terminal fragment of firefly luciferase having 58 to 78 amino acids it clearly emits light compared to that of the firefly luciferase of North American firefly (Photinus pyralis) used in the prior art It was found that firefly luciferase activity with high strength can be recovered.
  • the present inventors have found that the recovered firefly luciferase activity can exhibit various emission colors depending on the type of fireflies, the number of amino acids held by the C-terminal fragment, and combinations thereof.
  • the present invention has been realized by conducting earnest research based on these findings.
  • the split recombinant protein of the present invention is An N-terminal fragment of firefly luciferase that has been split into two so that firefly luciferase activity is restored by binding to each other; A C-terminal fragment of firefly luciferase that retains 58 to 78 amino acids on the N-terminal side from the split position that can be divided into two so that the firefly luciferase activity is recovered by binding to each other; A split recombinant protein comprising a linker peptide, Firefly luciferase activity is recovered by binding of the N-terminal fragment and the C-terminal fragment.
  • the N-terminal fragment and the C-terminal fragment may be derived from different types of firefly luciferases.
  • the N-terminal side fragment and the C-terminal side fragment are respectively from Okinawa bombardment (Pyrocoelia matsusumurai), Kumejimami mizubotaru (Driluster Kumejimenissis) and Shibuirohigebotaru (Stenocladius flaviven). It is preferably derived from a firefly firefly luciferase selected from the group consisting of:
  • the N-terminal fragment is preferably derived from firefly luciferase derived from Pyrocoelia matsumurai.
  • the N-terminal fragment is preferably located on the C-terminal side, and the C-terminal fragment is preferably located on the N-terminal side.
  • the split recombinant protein of the present invention further includes a calcium binding region and an interaction region capable of reversibly binding or dissociating with the calcium binding region between the N-terminal fragment and the C-terminal fragment. It is preferable. More preferably, the calcium binding region is derived from calmodulin and the interaction region is an M13 peptide.
  • the gene of the present invention encodes the split recombinant protein.
  • the vector of the present invention comprises a promoter gene and the gene operably linked to the promoter gene.
  • the cell of the present invention contains the vector.
  • the method for analyzing intracellular calcium ions of the present invention comprises: Producing a cell comprising a vector comprising a promoter gene and a gene encoding a split recombinant protein operably linked to the promoter gene; Adding firefly luciferin from the outside of the cells to the cells; Measuring the amount of luminescence in the cells over time; Analyzing the variation of the calcium ion concentration in the cell based on the variation in the amount of luminescence detected in the luminescence measurement step; And the split recombinant protein comprises the calcium binding region and the interaction region.
  • two or more vectors containing a gene encoding the split recombinant protein having different luminescent colors can be used.
  • the analysis method can also analyze the fluctuation of the calcium ion concentration in one cell.
  • the method for analyzing intracellular gene expression of the present invention comprises: Producing a cell comprising a vector comprising a promoter gene, a target gene operably linked to the promoter gene, and a gene encoding the split recombinant protein; Adding firefly luciferin from the outside of the cells to the cells; Measuring the amount of luminescence in the cells over time; Analyzing the change in the expression level of the target gene in the cell based on the change in the amount of luminescence; including.
  • two or more vectors containing a gene encoding the split recombinant protein having different luminescent colors can be used.
  • the vector set of the present invention is A vector in which a gene encoding an N-terminal fragment of firefly luciferase that has been divided into two so that firefly luciferase activity is restored by binding to each other is operably linked to one promoter gene; A gene encoding a C-terminal fragment that retains 58 to 78 amino acids on the N-terminal side from the split position that can be divided into two so that the firefly luciferase activity can be recovered by binding to each other can be expressed with another promoter gene
  • a vector linked to It is characterized by including.
  • the N-terminal fragment and the C-terminal fragment may be derived from different types of firefly luciferase.
  • any one of the promoter genes may be an inducible promoter gene.
  • the method for analyzing intracellular gene expression of the present invention includes: Producing a cell containing the vector set, wherein any one of the promoter genes is an inducible promoter gene; Adding firefly luciferin from the outside of the cells to the cells; Adding an inducer that stimulates the inducible promoter gene from the outside of the cell; Measuring the amount of luminescence in the cells over time; Analyzing the change in the activity of the inducible promoter gene in the cell based on the change in the amount of luminescence; including.
  • the cell of the present invention includes the vector set of the present invention.
  • a novel split recombinant protein and a gene thereof having high emission intensity and various emission colors.
  • a method for analyzing intracellular calcium ions and a method for analyzing intracellular gene expression, using luminescence with a high signal / noise ratio as an index by using the split recombinant protein and its gene. can be provided. These analysis methods can be used for imaging in cells where expression of foreign genes is weak, 1-cell imaging, high-speed imaging, multicolor imaging, and the like.
  • NLuc N-terminal side fragment
  • CLuc C-terminal side fragment
  • the split recombinant protein of the present invention is An N-terminal fragment of firefly luciferase that has been split into two so that firefly luciferase activity is restored by binding to each other; A C-terminal fragment retaining 58 to 78 amino acids on the N-terminal side from the dividing position that can be divided into two so that the firefly luciferase activity is recovered by binding to each other; A split recombinant protein comprising ligated with a linker polypeptide, Firefly luciferase activity is recovered by binding of the N-terminal fragment and the C-terminal fragment.
  • Luciferase generally refers to an enzyme that catalyzes a chemical reaction in which luminescence occurs.
  • a substance that is a substrate for the enzyme is called luciferin.
  • ATP adenosine triphosphate
  • light is emitted when luciferin undergoes a chemical change due to the catalytic action of luciferase.
  • luciferases derived from fireflies and bacteria are obtained, but both are greatly different in protein structure, substrate and the like.
  • the present invention relates to firefly luciferase, which is a luciferase derived from fireflies.
  • the substrate for firefly luciferase is firefly luciferin.
  • the firefly luciferin is D-luciferin.
  • the luciferase activity means the ability to cause luminescence by catalyzing a chemical change caused by the substrate luciferin in the presence of ATP. That is, in the present invention, the firefly luciferase activity means the ability to cause light emission by catalyzing a chemical change caused by the substrate firefly luciferin in the presence of ATP.
  • N-terminal fragment and a C-terminal fragment at a specific position both these fragments do not show luciferase activity alone, but they recover luciferase activity when reconstituted by binding to each other.
  • the existence of luciferases that can be made is known (eg, Patent Documents 1 and 4).
  • the N-terminal fragment and the C-terminal fragment of luciferase thus divided are also collectively referred to as “split luciferase”.
  • the term “bond” used in the present invention is not particularly limited and may be a covalent bond or a non-covalent bond such as an ionic bond, hydrogen bond, van der Waals force, or hydrophobic bond. Good.
  • the “bond” between the N-terminal fragment and the C-terminal fragment is not particularly limited, and even a covalent bond, such as an ionic bond, a hydrogen bond, a van der Waals force, or a hydrophobic bond. It may be a non-covalent bond.
  • the mode of “binding” between the N-terminal fragment and the C-terminal fragment may include a mode of “approaching”, “contacting”, “associating” or “interacting” to such an extent that it can function as a luciferase. .
  • an embodiment in which the N-terminal fragment and the C-terminal fragment have only a linkage via a linker peptide is not included.
  • the firefly means an insect belonging to the arthropoda elegans class Coleoptera firefly family.
  • the type of firefly from which firefly luciferase that can be used in the present invention is derived is not particularly limited. North American fireflies (Photinus pyralis), Genji fireflies (Luciola cruciata), Heike fireflies (Luciola Lateralis), Eastern European fireflies (Luciola mingrelica), and Japanese fireflies (Lampyris noctica). Among these, Okinawan firefly, Kumejiminami firefly, Shiburohige firefly is preferable.
  • the amino acid sequence of firefly luciferase is generally specific to the type of firefly from which it is derived, it may vary depending on the type of firefly from which it is derived.
  • the “division position”, which is divided into N-terminal fragment and C-terminal fragment so that the firefly luciferase activity is restored by binding to each other, can be divided into two so that the firefly luciferase activity is recovered by binding to each other. If it is a position, it will not specifically limit, It may differ also with the kind of firefly from which the kind of firefly luciferase originates.
  • a person skilled in the art can determine the dividing position in firefly luciferase using a known method in this technical field.
  • amino acid sequences of the “N-terminal fragment” and “C-terminal fragment” contained in the split recombinant protein of the present invention may also differ depending on the type of firefly from which the firefly luciferase is derived.
  • the “N-terminal fragment” contained in the split recombinant protein of the present invention is an N-terminal fragment of firefly luciferase that has been split into two so that the firefly luciferase activity is recovered by binding to each other, and the firefly luciferase In the amino acid sequence from the first amino acid of the amino acid sequence encoding to the amino acid on the N-terminal side adjacent to the “division position”.
  • the “C-terminal fragment” contained in the split recombinant protein of the present invention is derived from a firefly luciferase derived from a different type of firefly from the firefly luciferase derived from the N-terminal fragment.
  • the “C-terminal side fragment” is a C-terminal side fragment that retains 53 to 78 amino acids on the N-terminal side from the splitting position so that firefly luciferase activity can be recovered by binding to each other.
  • These “N-terminal fragment” and “C-terminal fragment” may be derived from wild-type firefly luciferase, and may be one or more amino acids as long as the firefly luciferase activity can be recovered by binding to each other. It may have a mutation such as substitution, deletion or addition.
  • wild-type firefly luciferase derived from Pyrocoelia matsumurai is composed of 562 amino acids encoded by the base sequence of SEQ ID NO: 1 and has the amino acid sequence of SEQ ID NO: 2.
  • an N-terminal fragment having the 1st to 416th amino acids (SEQ ID NO: 3) and a C-terminal fragment having the 417th to 562nd amino acids so that the firefly luciferase activity is restored by binding to each other SEQ ID NO: 4
  • the “N-terminal fragment” derived from Okinawa firefly included in the split recombinant protein of the present invention may have the amino acid sequence from the 1st to the 416th amino acid of wild firefly luciferase of Okinawa firefly.
  • the “C-terminal fragment” derived from Okinawan firefly included in the split recombinant protein of the present invention has an amino acid sequence starting from the 339th to 359th amino acids of wild-type firefly luciferase and ending at the 562nd amino acid. Can have.
  • Wild-type firefly luciferase derived from Drumister Kumejimensis has 547 amino acids encoded by the nucleotide sequence of SEQ ID NO: 5, and has the amino acid sequence of SEQ ID NO: 6.
  • an N-terminal fragment (SEQ ID NO: 7) having the first to 416th amino acid sequence and a C-terminal side having the 417th to 547th amino acid sequence so that the firefly luciferase activity is recovered by binding to each other It can be divided into two fragments (SEQ ID NO: 8).
  • the “N-terminal fragment” derived from the scallop southern firefly contained in the split recombinant protein of the present invention can have the amino acid sequence from the 1st to the 416th amino acid of the wild firefly luciferase of the scallop southern firefly.
  • the “C-terminal fragment” derived from the scallop southern firefly contained in the split recombinant protein of the present invention is the 547th amino acid starting from the 339th to 359th amino acids of the wild firefly luciferase of the scallop southern firefly. It may have an amino acid sequence that ends.
  • Wild-type firefly luciferase derived from Stenocladius flavipennis consists of 555 amino acids encoded by the base sequence of SEQ ID NO: 9, and has the amino acid sequence of SEQ ID NO: 10. As an example, it has an N-terminal fragment having the 1st to 424th amino acids (SEQ ID NO: 11) and the 425th to 555th amino acids (SEQ ID NO: 12) so that the firefly luciferase activity is recovered by binding to each other The fragment can be divided into two, the C-terminal fragment.
  • the “N-terminal fragment” derived from the white bearded firefly included in the split recombinant protein of the present invention can have the amino acid sequence from the 1st to the 424th position of the wild firefly luciferase of the white bearded firefly.
  • the “C-terminal fragment” derived from the white butterfly firefly contained in the split recombinant protein of the present invention is the amino acid at the 555th amino acid starting from the 347th to 367th amino acids of the wild firefly luciferase. It may have an amino acid sequence that ends.
  • Wild-type firefly luciferase derived from North American firefly (Photinus pyralis) consists of 550 amino acids.
  • the “N-terminal fragment” derived from North American fireflies contained in the split recombinant protein of the present invention can have the amino acid sequence from the first to the 416th of the wild-type firefly luciferase of North American fireflies. .
  • the “C-terminal fragment” derived from North American fireflies contained in the split recombinant protein of the present invention is the 550th amino acid starting from amino acids 339 to 364 of wild-type firefly luciferase from North American fireflies. It may have an amino acid sequence that ends.
  • the split recombinant protein of the present invention is reconstituted by “binding” the “N-terminal fragment” and the “C-terminal fragment” to each other, the wild-type derived from North American firefly (Photinus pyralis) Compared with firefly luciferase, the firefly luciferase activity with a luminous intensity several times or more can be recovered.
  • the N-terminal fragment and the C-terminal fragment may be derived from the same type of firefly luciferase of the same species or may be derived from another type of firefly luciferase of the same type.
  • the combination of the firefly derived from the firefly luciferase of the N-terminal fragment and the firefly derived from the firefly luciferase of the C-terminal fragment is not particularly limited, but is selected from the group consisting of Okinawan firefly, Kumejiminami firefly and Shibuihige firefly It is preferred that The type of firefly from which the N-terminal fragment is derived is not particularly limited, but is preferably Okinawa firefly.
  • the recovered firefly luciferase activity is determined by the type of fireflies from which the N-terminal fragment firefly luciferase and the C-terminal fragment firefly luciferase are derived, the number of N-terminal amino acids held by the C-terminal fragment, or a combination thereof Presents various emission colors, that is, emission having different peak wavelengths.
  • a specific example is shown in Experiment 3 of the example (FIG. 4).
  • the split recombinant protein of the present invention contains a linker peptide in addition to the N-terminal fragment and the C-terminal fragment of the present invention.
  • the linker peptide includes the N-terminal fragment and the C-terminal fragment of the present invention, or the N-terminal fragment or the C-terminal fragment of the present invention, and another protein, polypeptide or fragment thereof having any function. As long as they can be linked without impairing their functions, the number and type of amino acids constituting the linker peptide are not particularly limited.
  • the split type means that the “N-terminal side fragment” and the “C-terminal side fragment” do not exhibit firefly luciferase activity alone, but are recombined with each other to reconstitute proteins. Means you can recover.
  • the N-terminal fragment and the C-terminal fragment may each have the original arrangement in firefly luciferase, that is, the N-terminal fragment is located on the N-terminal side of the C-terminal fragment. You may do it.
  • the N-terminal fragment and the C-terminal fragment may be arranged in a circular permutation from the original arrangement in firefly luciferase, that is, the N-terminal fragment may be located on the C-terminal side of the C-terminal fragment.
  • the split recombinant protein of the present invention can also include one or more proteins, polypeptides, or fragments thereof having some function. . Such proteins are generally referred to as fusion proteins.
  • a peptide portion that is another protein, polypeptide or fragment thereof is also referred to as “region”.
  • An example of the region having such a function is not particularly limited, and examples thereof include a calcium binding region, a cyclic AMP binding region, a cyclic GMP binding region, and an interaction region for them. These regions are preferably arranged between the N-terminal fragment and the C-terminal fragment.
  • the calcium binding region means a peptide portion capable of reversibly binding and dissociating with calcium ions (Ca 2+ ) in cells.
  • An interaction region capable of interacting with a calcium binding region means a peptide moiety capable of reversibly binding and dissociating with a calcium binding region in a cell.
  • the calcium binding region include calmodulin (CaM) or a fragment thereof.
  • the interaction region can bind to a calcium binding region bound to calcium ions, and can dissociate from the calcium binding region from which calcium ions are dissociated. Examples of the interaction region that can interact with the calcium binding region include M13 peptide.
  • a split recombinant protein containing a calcium binding region and an interaction region can be analyzed for intracellular calcium ion dynamics, for example, by expressing in a cell.
  • Non-patent Document 1 a calcium binding protein calmodulin (CaM) and M13 binding to calmodulin bound to calcium ions are connected in series.
  • a calcium sensor protein having a structure in which CaM and M13 are sandwiched between two types of fluorescent proteins is prepared using a linked peptide connected in this series, and this fluorescent sensor protein is referred to as “chameleon”. It is called “protein” (hereinafter also referred to as chameleon).
  • peptides corresponding to the chameleon 230th to 406th amino acid sequences peptides corresponding to the 230th to 396th amino acids, peptides corresponding to the 230th to 401st, 230th to 411th
  • the peptide corresponding to the second or the peptide corresponding to the 230th to 416th can be used.
  • Peptides with these specific sequences may be used in the split recombinant protein of the present invention even if they contain mutations for improving sensitivity, for example, so long as they do not lose their functions. Can do.
  • the present invention also relates to a gene encoding a split recombinant protein, a gene encoding an N-terminal fragment, and a gene encoding a C-terminal fragment.
  • the “gene” encoding a protein or polypeptide or a fragment thereof may be a DNA strand or an RNA strand, and expresses the protein or polypeptide or a fragment thereof in a cell or the like. It means a DNA strand or RNA strand having a base sequence that can be made.
  • the DNA chain and RNA chain may be composed only of a base sequence encoding the amino acid sequence of the protein or polypeptide or a fragment thereof, or in addition to the base sequence, the function and expression of the protein As long as it is not impaired, it may have an additional base sequence. These base sequences may have mutations such as substitution, deletion or addition of one or more base sequences as long as the function and expression of the protein are not impaired.
  • the vector of the present invention can express a split recombinant protein, an N-terminal fragment, or a C-terminal fragment in such a manner that a gene encoding the split recombinant protein, a gene encoding the N-terminal fragment, Or an expression vector comprising a gene encoding the C-terminal fragment.
  • an expression vector is a vector that can express an expression target gene (a gene encoding a split recombinant protein, a gene encoding an N-terminal fragment, a gene encoding a C-terminal fragment, a target gene, etc.). It means that it is connected to.
  • a gene encoding a split recombinant protein, a gene encoding an N-terminal fragment, and a gene encoding a C-terminal fragment are operably linked downstream of the promoter gene region.
  • the kind of vector which can be used is not specifically limited, For example, a plasmid vector, a phage vector, a cosmid etc. are mentioned.
  • a person skilled in the art, in light of technical common sense, is appropriate based on various conditions such as cloning sites, promoter genes, expression objects (split-type recombinant protein, N-terminal fragment, C-terminal fragment), expression cells, and the like.
  • a vector can be selected and a desired expression vector can be constructed according to a conventional method.
  • the promoter gene can also be appropriately selected according to the purpose of research.
  • the promoter gene may be a constitutive promoter gene, an inducible promoter gene, or a tissue-specific promoter gene.
  • ⁇ Vector set> Another embodiment of the present invention is: A vector in which a gene encoding an N-terminal fragment of firefly luciferase that has been divided into two so that firefly luciferase activity is restored by binding to each other is operably linked to one promoter gene; A gene encoding a C-terminal fragment of firefly luciferase that retains 58 to 78 amino acids on the N-terminal side from a split position that can be divided into two so that the firefly luciferase activity can be recovered by binding to each other is another promoter gene And a vector operably linked to, Is a vector set.
  • the N-terminal fragment and the C-terminal fragment may be derived from the same type of firefly luciferase of the same type or from different types of firefly luciferases of different types.
  • the vector set may further include another vector in which another N-terminal fragment or C-terminal fragment is operably linked to another promoter gene.
  • the vector set can also be used in combination with another vector set in which at least one of an N-terminal fragment, a C-terminal fragment, or a promoter gene is different.
  • Such a vector set can be appropriately constructed according to a common method in light of technical common sense and based on research objectives and various conditions.
  • One of the promoter genes used in the vector set can be an inducible promoter gene.
  • Such a vector set can be used, for example, in a method for analyzing intracellular gene expression described below.
  • the cell of the present invention can express the vector of the present invention, that is, the promoter gene and the gene encoding the split recombinant protein, the gene encoding the N-terminal fragment, or the gene encoding the C-terminal fragment.
  • a ligated vector or a vector set as described above is included.
  • the cell of the present invention may be any cell that can express an expression target of an expression vector, and may be an animal cell or a plant cell.
  • the origin of cells that can be used is not particularly limited, and can be appropriately selected depending on the purpose of research.
  • the method for introducing the expression vector into the cell is not particularly limited, and examples thereof include transfection, in vitro packaging, freeze-thaw method, electroporation, and the like, depending on the type of vector and cell used. Can be appropriately selected.
  • ⁇ Analysis method> The phenomenon of recovery of firefly luciferase activity by reconstitution of the split recombinant protein of the present invention can be used in various analysis methods. For example, since strong luminescence intensity can be used as an indicator and various emission colors can be used, calcium ion dynamics, gene expression of target gene or promoter, protein interaction, receptor interaction, etc. in living cells Can be analyzed with high accuracy for each cell or by comparing a plurality of cells or genes. Therefore, the analysis method of the present invention can be used for imaging in cells in which foreign gene expression is weak, 1-cell imaging, high-speed imaging, multicolor imaging, and the like. Hereinafter, an example of an embodiment of the analysis method will be described.
  • ⁇ Intracellular calcium ion analysis method> Producing a cell comprising an expression vector comprising a promoter gene and a gene encoding a split recombinant protein operably linked to the promoter gene; Adding firefly luciferin from the outside of the cells to the cells; Measuring the amount of luminescence in the cells; And analyzing the intracellular calcium ion concentration based on the measured amount of luminescence.
  • the split recombinant protein includes a calcium binding region and an interaction region that interacts with the calcium binding region. In this specification, this split recombinant protein is also referred to as a luminescent calcium indicator.
  • the expression vector appropriately constructed according to the research purpose and various conditions may be introduced into the cell appropriately selected according to the research purpose and various conditions as described above. .
  • a luminescent calcium indicator is expressed in the cell thus produced.
  • the promoter gene is a constitutive promoter gene
  • the luminescent calcium indicator is expressed without stimulation such as addition of an inducer.
  • the promoter gene is an inducible promoter gene
  • the luminescent calcium indicator is expressed in the presence of a stimulus such as addition of an inducer.
  • the promoter gene is a tissue-specific promoter gene, the luminescent calcium indicator is expressed only in cells derived from the specific tissue.
  • the firefly luciferin In the step of adding firefly luciferin from the outside of the cell to the prepared cells, when firefly luciferin is added from the outside of the cell, the firefly luciferin can permeate the cell membrane and enter the cell. In the presence of firefly luciferin, the luminescent calcium indicator can restore or lose firefly luciferase activity depending on the presence of calcium ions. The configuration of the luminescent calcium indicator as a whole protein determines whether the firefly luciferase activity is restored or lost in the presence of calcium ions.
  • a luminescent calcium indicator in which a C-terminal fragment, a chameleon CaM-M13 fragment (230th to 406th), and an N-terminal fragment are arranged in this order from the N-terminal side will be described.
  • the C-terminal side fragment and the N-terminal side fragment are bound in a reasonably close manner to recover firefly luciferase activity and emit light.
  • calcium ions when calcium ions are present, calcium ions bind to the calcium binding region (CaM), and further, the interaction region (M13) binds to the structure of the luminescent calcium indicator as a whole protein. Loss of firefly luciferase activity and no light emission. Based on such a mechanism, the intracellular calcium ion concentration is reflected in the amount of light emitted by firefly luciferase.
  • the intracellular calcium ion concentration can be analyzed.
  • the variation in intracellular calcium ion concentration can be analyzed using the variation in the amount of luminescence as an index.
  • the apparatus, analysis software, and the like that perform the measurement of the light emission amount and the analysis based thereon are not particularly limited, and general ones can be used.
  • the measurement may be performed by imaging. Examples of such a device include a luminometer, a light emission microscope, a light emission imager, and a light emission detection device.
  • Another embodiment of the present invention is: Producing a cell comprising an expression vector comprising a gene of interest and a gene encoding a split recombinant protein; Adding firefly luciferin from the outside of the cells to the cells; Measuring the amount of luminescence in the cells; And analyzing the expression level of the target gene in the cell based on the amount of luminescence.
  • the expression vector appropriately constructed according to the research purpose and various conditions may be introduced into the cell appropriately selected according to the research purpose and various conditions as described above.
  • the target gene may be a promoter gene.
  • the target gene and the split recombinant protein are expressed.
  • the target gene may be contained in a gene encoding the split recombinant protein.
  • the promoter gene is a constitutive promoter gene
  • the target gene and the split recombinant protein are expressed without stimulation such as addition of an inducer.
  • the promoter gene is an inducible promoter gene
  • the target gene and the split recombinant protein are expressed in the presence of a stimulus such as addition of an inducer.
  • the promoter gene is a tissue-specific promoter gene, the target gene and the split recombinant protein are expressed only in cells derived from a specific tissue.
  • the firefly luciferin In the step of adding firefly luciferin from the outside of the cell to the prepared cells, when firefly luciferin is added from the outside of the cell, the firefly luciferin can permeate the cell membrane and enter the cell. If the target gene and the split recombinant protein are expressed in the presence of firefly luciferin, the split recombinant protein recovers the firefly luciferase activity and luminescence is measured.
  • the expression level of the target gene in the cell can be analyzed.
  • the amount of luminescence By measuring the amount of luminescence over time, it is possible to analyze the variation in the expression level of the target gene in the cell using the variation in the amount of luminescence as an index.
  • Apparatuses, analysis software, and the like for measuring the amount of luminescence and performing analysis based thereon are not particularly limited, and those that can be used for the above-described intracellular calcium ion analysis method can be used.
  • two or more expression vectors containing a gene encoding the split recombinant protein having different luminescent colors can be used.
  • the intracellular calcium ion concentration and Intracellular gene expression levels can be compared.
  • the intracellular calcium ion concentration and the intracellular gene expression level can be compared in the cell.
  • ⁇ Method of analyzing intracellular gene expression using vector set> Another embodiment of the present invention is: Producing a cell containing the vector set, wherein any one of the promoter genes is an inducible promoter gene; Adding firefly luciferin from the outside of the cells to the cells; Adding an inducer that stimulates the inducible promoter gene; Measuring the amount of luminescence in the cells over time; And analyzing the change in the activity of the promoter gene in the cell based on the change in the amount of luminescence.
  • the expression vector appropriately constructed according to the research purpose and various conditions may be introduced into the cell appropriately selected according to the research purpose and various conditions as described above.
  • the N-terminal side fragment and the C-terminal side fragment are separately expressed under the control of different promoter genes in the cell thus prepared.
  • Fragments linked to the constitutive promoter gene are expressed without stimulation such as the addition of inducers.
  • the fragment linked to the inducible promoter gene is expressed as an N-terminal fragment or a C-terminal fragment in the presence of a stimulus such as addition of an inducer.
  • the promoter gene is a tissue-specific promoter gene, the N-terminal fragment or C-terminal fragment is expressed only in cells derived from a specific tissue.
  • the firefly luciferin In the step of adding firefly luciferin from the outside of the cell to the prepared cells, when firefly luciferin is added from the outside of the cell, the firefly luciferin can permeate the cell membrane and enter the cell. If both the N-terminal fragment and the C-terminal fragment are expressed in the presence of firefly luciferin, the split recombinant protein can be reconstituted to restore firefly luciferase activity, and luminescence is measured. .
  • one promoter gene is an inducible promoter gene
  • any one of the split recombinant protein fragments controlled by the inducible promoter gene is present in the presence of an inducer that stimulates the inducible promoter gene. Only expressed in
  • the analysis method includes a step of adding an inducer that stimulates an inducible promoter gene.
  • an appropriate inducer is added, the inducible promoter gene is stimulated and expressed, and the split recombinant protein fragment under its control is expressed.
  • the split recombinant protein can be reconstituted to restore firefly luciferase activity, and luminescence is measured.
  • the inducer disappears due to intracellular metabolism or the like, the expression of the inducible promoter gene stops, and the expression of the split recombinant protein fragment under its control also stops.
  • the expression level of the inducible promoter gene in the cell can be analyzed based on the measured amount of luminescence.
  • the variation in the expression level of the inducible promoter gene in the cell can be analyzed using the variation in the amount of luminescence as an index.
  • Apparatuses, analysis software, and the like that perform measurement of luminescence and analysis based thereon are not particularly limited, and those that can be used for the above-described intracellular calcium ion analysis method and intracellular gene expression analysis method can be used.
  • the vector set may further include another vector in which another N-terminal fragment or C-terminal fragment is linked to another promoter gene so that it can be expressed. Further, the vector set may be used in combination with another vector set in which any one of the N-terminal fragment, the C-terminal fragment, and the promoter gene is different.
  • the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
  • the N-terminal fragment and the C-terminal fragment were derived from the same type of firefly firefly luciferase, and the N-terminal fragment was replaced with the split recombinant protein arranged on the C-terminal side of the C-terminal fragment. Also called type firefly luciferase.
  • a split recombinant protein in which the N-terminal fragment and the C-terminal fragment are derived from different firefly firefly luciferases, and the N-terminal fragment is arranged on the C-terminal side of the C-terminal fragment is converted into a heterologous substituted firefly luciferase. Also called.
  • an N-terminal fragment gene for the production of substituted firefly luciferase (KUME-N: including the first to 416th amino acids of the luciferase gene derived from KUME) and C having different numbers of amino acids Terminal fragment gene (KUME399: including amino acids 399 to 547 of the luciferase gene derived from KUME; KUME394: including amino acids 394 to 547 of the luciferase gene derived from KUME; KUME389: luciferase gene derived from KUME KUME 384: contains amino acids from 384 to 547 of the luciferase gene derived from KUME; KUME 379: 37 of the luciferase gene derived from KUME KUME374: Contains amino acids 374 to 547 of the luciferase gene derived from KUME; KUME369: Contains amino acids 369 to 5
  • an N-terminal fragment gene (SfRE-N: including the first to 424th amino acids of the SfRE-derived luciferase gene) for the production of substituted firefly luciferase, and C having different amino acid numbers Terminal fragment gene (SfRE407: including the 407th to 555th amino acids of the luciferase gene derived from SfRE; SfRE402: including the 402nd to 555th amino acids of the luciferase gene derived from SfRE; SfRE397: the luciferase gene derived from SfRE SfRE392: Contains the 392th to 555th amino acids of the luciferase gene derived from SfRE; SfRE387: 38 of the luciferase gene derived from SfRE SfRE382: Contains the 382th to 555th amino acids of the luciferase gene derived from SfRE;
  • Preparation part 2 Preparation of expression plasmid for Escherichia coli of substituted firefly luciferase
  • the N-terminal fragment gene amplified by PCR was inserted between the BgIII site and EcoRI site of pRSET / A (Invitrogen), which is an E. coli expression plasmid, and the C-terminal fragment gene derived from the same species of firefly was inserted into the BamHI site. And a plasmid for expression of the substituted firefly luciferase gene in E. coli.
  • the C-terminal fragment gene is located 5 ′ of the N-terminal fragment gene, and in the expressed substituted firefly luciferase, the N-terminal fragment is located on the C-terminal side of the C-terminal fragment.
  • the C-terminal fragment is arranged on the N-terminal side of the N-terminal fragment.
  • OKI 359, OKI 354, OKI 349, OKI 344, and OKI 339 which are OKI-derived substituted luciferases, show high luminescence activity, and OKI 349, OKI 344, and OKI 339 exhibit higher activity than GL4. It became clear. Luminescent activity was not observed in the luciferase derived from KUME or SfRE (not shown).
  • the C-terminal fragment gene derived from KUME or SfRE is located 5 ′ of the N-terminal fragment gene derived from OKI.
  • a substituted luciferase (GL4) derived from the luciferase GL4 of North American firefly (Photinus pyralis) was used, and the activity of GL4 is shown as 1 in FIG.
  • the vertical axis in FIG. 3 indicates the relative light emission amount. It was revealed that heterologous substituted luciferase using the CLuc gene derived from KUME and SfRE and the NLuc gene derived from OKI also showed strong luminescence activity.
  • Preparation 4 Preparation of an expression plasmid for animal cells of a substituted luciferase gene
  • the substituted luciferase gene or heterologous substituted luciferase gene incorporated into pRSET was cleaved and purified at the BamHI site and EcoRI site, and the BamHI site and EcoRI site of pcDNA3.1 (manufactured by Invitrogen), an animal cell expression plasmid, were purified. The plasmid was inserted between them to produce animal cell expression plasmids.
  • HEK293 cells obtained from ATCC (American Type Culture Collection) were cultured in Earle's MEM / medium (GIBCO) supplemented with 10% Fetal Bovine Serum and 1 ⁇ Nonesential amino acids in a 5% CO 2 incubator. did.
  • HEK293 cells heterologous substituted luciferases of KUME-C and OKI-N.
  • the emission wavelength of the OKI, KUME, and SfRE-based substituted luciferases is 9 to 44 nm shifted to the blue side in contrast to the GL4-based substituted luciferases in HEK293 cells. Furthermore, in the OKI-based and SfRE-based luminescent indicators, the emission wavelength did not change in E. coli and HEK293 cells, whereas in the KUME-based luminescent indicator, blue shift was observed in HEK293 cells, and in the GL4-based luminescent indicator, red in HEK293 cells. It was shifting.
  • Preparation 5 Preparation of expression plasmid for animal cell of luciferase fragment gene
  • the OKI N-terminal fragment gene incorporated into pRSET was purified by cutting at the BgIII site and EcoRI site, and inserted between the BamHI site and EcoRI site of pcDNA3.1 (manufactured by Invitrogen), a plasmid for animal cell expression. Then, an animal cell expression plasmid was prepared.
  • plasmid for expression of animal cells obtained by digesting and purifying the C-terminal fragment gene of OKI, the C-terminal fragment gene of KUME, and the C-terminal fragment gene of SfRE incorporated into pRSET at the BamHI site and the XhoI site. It was inserted between the BamHI site and XhoI site of pcDNA3.1 (Invitrogen) to prepare a plasmid for animal cell expression.
  • a Renilla luciferase (hRL) gene whose expression is induced by the human EF1 ⁇ promoter was used.
  • HEK293 cells into which the gene had been introduced were seeded at a rate of 1 ⁇ 10 4 cells / well in a 96-well multiplate and cultured overnight in a 5% CO 2 incubator.
  • Luciferin 1 mM (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the medium, allowed to stand at room temperature for 15 minutes, and the amount of luminescence for 10 seconds was measured using a luminometer (Luminescence-JNR II: manufactured by Atto Corporation). Next, 10 ⁇ M coelenterazine was added, and the amount of luminescence for 10 seconds was measured through a band-pass filter of 470-490 nm to correct the experimental error due to the gene transfer efficiency between wells.
  • An expression vector (pfos / OKI-N) containing the OKI-N gene operably linked to the c-fos promoter region, in which expression of OKI-N is induced by the c-fos promoter, is as follows. Built in. That is, the Luc2 gene in pGL4.10 was excised at the HindIII site and the XbaI site, and the OKI-N gene that had been previously digested at the HindIII site and the XbaI site was inserted.
  • the c-fos promoter region subcloned into the pBluescript II vector was digested at the XhoI site and the HindIII site, and inserted between the XhoI site and the HindIII site existing upstream of the OKI-N gene.
  • a c-fos promoter-inducible OKI-N gene expression vector (pfos / OKI-N) was prepared.
  • the change of the luminescence intensity showing the c-fos promoter activity of one cell accompanying the forskolin stimulation in HEK293 cell was analyzed.
  • This change in emission intensity is shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents relative light emission intensity.
  • the curve in FIG. 7 shows changes in the luminescence intensity of the cells.
  • c-fos promoter activity increased immediately after forskolin stimulation, regardless of which luciferase fragment combination was used.
  • An expression vector (pSYN / OKI359) comprising the OKI359 gene operably linked to the SYN promoter region, constructed such that expression of the OKI C-terminal fragment (OKI359) is induced by the SYN promoter, is constructed as follows. did. That is, the Luc2 gene in pGL4.10 was excised at the HindIII site and the XbaI site, and the OKI359 gene that had been digested in advance at the HindIII site and the XbaI site was inserted.
  • the SYN promoter region subcloned into the pBluescript II vector was digested with the XhoI site and the HindIII site, and inserted between the XhoI site and the HindIII site existing upstream of the OKI-N gene.
  • a SYN promoter-inducible OKI359 gene expression vector (pSYN / OKI359) was prepared.
  • a first expression vector (pSYN / OKI359) containing a C-terminal luciferase fragment gene whose expression is induced by a neuron-specific promoter (SYN promoter), and a second expression vector (pfos / OKI-N).
  • the luminescence image obtained in the introduced cultured hippocampal slice is shown in FIG.
  • the left figure shows the luminescence image before forskolin stimulation
  • the right figure shows the luminescence image 8 hours after forskolin stimulation.
  • the change of the luminescence intensity showing the c-fos promoter activity for every cell accompanying the forskolin stimulation in a neuron was analyzed.
  • FIG. 9 This change in emission intensity is shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents relative light emission intensity.
  • Each curve in FIG. 9 shows the luminescence intensity change of each cell.
  • c-fos promoter activity increases immediately after forskolin stimulation
  • c-fos promoter activity increases 6 hours after forskolin stimulation. And existed.
  • Luminescent activity measurement of luminescent calcium indicator [Procedure 1] (Introduction of Luminescent Calcium Indicator Expression Vector into HEK293 Cells)
  • the expression vector for the luminescent calcium indicator was introduced into HEK293 cells by electroporation using NEPA21 (Neppagene). Renilla luciferase (hRL) induced by the human EF1 ⁇ promoter was used as an internal control for gene transfer.
  • HEK293 cells into which the gene had been introduced were seeded in a 96-well multiplate at a rate of 1 ⁇ 10 4 cells / well and cultured overnight in a 5% CO 2 incubator.
  • Luciferin 1 mM (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the medium, allowed to stand at room temperature for 15 minutes, and the amount of luminescence for 10 seconds was measured using a luminometer (Luminescence-JNR II: manufactured by Atto Corporation). Next, 10 ⁇ M coelenterazine was added, and the amount of luminescence for 10 seconds was measured through a band-pass filter of 470 to 490 nm to correct the experimental error due to the gene transfer efficiency between wells.
  • each luminescence calcium indicator gene was introduced into HEK293 cells, and the luminescence intensity after adding luciferin (final concentration 1 mM) was measured. The result is shown in FIG. The vertical axis represents relative light emission intensity. As can be seen from FIG. 11, all luminescent calcium indicators except cpOKI344-CaM, cpKUME339-CaM, and cpSfRE357-CaM were found to have higher luminescence intensity than GL4-based calcium indicator (cpGL4-CaM) in living cells. .
  • Protein quantification was performed using Protein Assay Reagent (manufactured by Bio-Rad) and diluted to 1 ⁇ g / ⁇ L.
  • the difference in luminescence intensity between the calcium-binding type and the non-binding type is a luminescent calcium indicator comprising a luciferase fragment of GL4 or OKI.
  • Ca 2+ non-binding type Ca 2+ binding type luminescence intensity ratio was 1: 0.17 for luminescent calcium indicators including KUME-C and OKI-N, SfRE ⁇ 1) 0.16 for the luminescent calcium indicator containing C and OKI-N, 1: 0.42 for the luminescent calcium indicator containing OKI, and 1: 0.48 for the luminescent calcium indicator containing GL4. It has been shown that the luminescent calcium indicator containing KUME-C and OKI-N, or SfRE-C and OKI-N can change the luminescence intensity more greatly as the Ca 2+ concentration changes.
  • HEK293 cells (1 ⁇ 10 6 cells) were collected by centrifugation, and a luminescent calcium indicator expression vector was transfected by electroporation using NEPA21.
  • HEK293 cells into which the gene had been introduced were seeded at a rate of 1 ⁇ 10 5 cells / well in a 24-well multiplate and cultured overnight in a 5% CO 2 incubator.
  • HEK293 cells were obtained from ATCC, and cultured in Earle's MEM / medium (GIBCO) supplemented with 10% Fetal Bovine Serum and 1 ⁇ Nessential amino acids in a 5% CO 2 incubator.
  • GEBCO Earle's MEM / medium
  • HEK293 cells were obtained from ATCC, and cultured in Earle's MEM / medium (GIBCO) supplemented with 10% Fetal Bovine Serum and 1 ⁇ Nessential amino acids in a 5% CO 2 incubator.
  • GEBCO Earle's MEM / medium
  • Procedure 2 Introduction of luminescent calcium indicator expression vector
  • the cells cultured in Procedure 1 are seeded at a cell density of 2 ⁇ 10 5 / dish in a 35 mm diameter glass bottom dish, cultured overnight in a 5% CO 2 incubator, and the plasmid pcDNA / 5HT2AR for expression of human 5HT2A receptor.
  • the luminescent calcium indicator expression plasmid was electroporated with NEPA21 and cultured overnight in a 5% CO 2 incubator.
  • a plurality of ROIs (Region of Interest) are designated for each light emitting image photographed in the procedure 3, and a plurality of ROIs are designated for each light emitting image photographed in the procedure 4.
  • the emission intensity of each designated ROI was measured based on each emission image, and the change over time in the emission intensity was displayed in a graph.
  • the analysis of the luminescence image was performed using Metamorph software (manufactured by Universal Imaging).
  • the vertical axis of the graph on the right side of FIG. 15 is the relative light emission intensity when the light emission intensity before stimulation is 1, and the horizontal axis is time (minutes).
  • the luminescence images before and after stimulation were analyzed, in addition to the cells that showed a transient decrease in luminescence intensity as shown in FIG. 15, the cells that caused oscillation could be captured. This result shows that it can be applied to high-speed calcium imaging (exposure time of 1 second or less) by using a novel luminescent calcium indicator.
  • the split recombinant protein, gene, vector, cell, and vector set of the present invention can be suitably used in a method for analyzing intracellular calcium ion dynamics, gene expression, protein interaction, and receptor interaction.
  • the analysis method of the present invention can be suitably used for imaging in cells where expression of a foreign gene is weak, 1-cell imaging, high-speed imaging, multicolor imaging, and the like.

Abstract

本発明は、互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたホタルルシフェラーゼのN末端側断片と、互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の58個~78個のアミノ酸を保持するホタルルシフェラーゼのC末端側断片と、リンカーペプチドとを含み、該N末端側断片と該C末端側断片とが結合することによってホタルルシフェラーゼ活性を回復する、分割型組換えタンパク質、それをコードする遺伝子、及びそれらを用いる解析方法を提供する。

Description

分割型組換えルシフェラーゼ及びそれを用いた解析方法
 本発明は、組換えタンパク質、それをコードする遺伝子、及びそれらを用いた解析方法に関する。
 従来から、種々の生命現象を観察する目的で、レポーターアッセイ技術や細胞イメージング技術が使用されてきた。特に、細胞イメージング技術では、蛍光タンパク質や発光タンパク質をコードする遺伝子を使用して生物細胞を改変し、蛍光や発光を指標として、生物細胞における種々の生命現象を解析することが行われている。しかし、蛍光タンパク質を用いる細胞イメージング技術では、細胞が自己蛍光を発するためバックグラウンドが高くシグナル/ノイズ比が低いという問題、ダイナミックレンジが狭いため利用可能な測定対象の範囲が狭いという問題等を有している。
 そこで、近年、ルシフェラーゼ−ルシフェリン発光を用いた細胞イメージング技術が開発されている。例えば、特許文献1では、北アメリカ産ホタル(Photinus pyralis)由来のスプリットルシフェラーゼを用いた、細胞特異的な遺伝子発現イメージング法が開示されている。特許文献2では、北アメリカ産ホタル(Photinus pyralis)由来のルシフェラーゼ遺伝子、及びカルシウム依存的に相互作用するカルモジュリン遺伝子とM13遺伝子を用いた、カルシウム濃度依存的に発光強度を変化させるカルシウムインジケータ及びイメージング方法が開示されている。
 また、特許文献3では、北アメリカ産ホタル(Photinus pyralis)由来のルシフェラーゼ遺伝子、及びカルシウム依存的に構造変化するカルモジュリン遺伝子を用いた、カルシウム濃度依存的に発光強度を変化させるカルシウムインジケータが開示されている。特許文献4では、北アメリカ産ホタル(Photinus pyralis)由来のルシフェラーゼを用いた、様々な発光強度をもつスプリットルシフェラーゼが開示されている。
特開2007−155558号公報 特開2012−51824号公報 特開2012−90635号公報 米国特許第7,601,517号
Miyawaki A,Llopis J,Heim R,McCaffery JM,Adams JA,Ikura M,Tsien RY."Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin."Nature,vol.388(6645),pp.882−887,1997
 しかしながら、従来技術で用いられている北アメリカ産ホタル(Photinus pyralis)由来のホタルルシフェラーゼは、発光強度が弱く、また発光色が単色であるため、外来遺伝子の発現が弱い細胞におけるイメージング、1細胞イメージング、高速イメージング、多色イメージングなどへの使用が困難であった。
 本発明は、上記問題点に鑑みてなされたものであり、分割型組換えタンパク質、それをコードする遺伝子、及びそれらを用いた解析方法を提供することを目的とする。
 本発明者は、互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたN末端側断片と、互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の58個~78個のアミノ酸を保持するホタルルシフェラーゼC末端側断片とが結合すると、従来技術で用いられている北アメリカ産ホタル(Photinus pyralis)のホタルルシフェラーゼのものと比較して、明らかに発光強度が強いホタルルシフェラーゼ活性を回復できることを見出した。また、ホタルの種類、前記C末端側断片が保持するアミノ酸の数、それらの組み合わせにより、回復したホタルルシフェラーゼ活性が様々な発光色を呈示できることを見出した。本発明は、これら知見に基づき、鋭意研究を行うことにより、実現されたものである。
 すなわち、本発明の分割型組換えタンパク質は、
 互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたホタルルシフェラーゼのN末端側断片と、
 互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の58個~78個のアミノ酸を保持するホタルルシフェラーゼのC末端側断片と、
 リンカーペプチドとを含む分割型組換えタンパク質であって、
 該N末端側断片と該C末端側断片とが結合することによってホタルルシフェラーゼ活性を回復することを特徴とする。
 本発明の分割型組換えタンパク質は、前記N末端側断片及び前記C末端側断片が、互いに異なる種類のホタルのホタルルシフェラーゼに由来してもよい。
 本発明の分割型組換えタンパク質は、前記N末端側断片及び前記C末端側断片が、それぞれ、オキナワマドボタル(Pyrocoelia matsumurai)、クメジマミナミボタル(Drilaster Kumejimensis)及びシブイロヒゲボタル(Stenocladius flavipennis)からなる群より選択されるホタルのホタルルシフェラーゼに由来することが好ましい。
 本発明の分割型組換えタンパク質は、前記N末端側断片が、オキナワマドボタル(Pyrocoelia matsumurai)由来のホタルルシフェラーゼに由来することが好ましい。
 本発明の分割型組換えタンパク質は、前記N末端側断片がC末端側に配置されており、前記C末端側断片がN末端側に配置されていることが好ましい。
 本発明の分割型組換えタンパク質は、前記N末端側断片と前記C末端側断片との間に、カルシウム結合領域と、該カルシウム結合領域と可逆的に結合又は解離できる相互作用領域とを更に含むことが好ましい。前記カルシウム結合領域が、カルモジュリン由来であり、前記相互作用領域が、M13ペプチドであることが、より好ましい。
 本発明の遺伝子は、前記分割型組換えタンパク質をコードする。
 本発明のベクターは、プロモーター遺伝子と、該プロモーター遺伝子に発現可能に連結された前記遺伝子を含む。
 本発明の細胞は、前記ベクターを含む。
 本発明の細胞内カルシウムイオンの解析方法は、
 プロモーター遺伝子と、該プロモーター遺伝子に発現可能に連結された分割型組換えタンパク質をコードする遺伝子とを含むベクターを含む細胞を作製する工程と、
 該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
 該細胞における発光量を経時的に測定する工程と、
 該発光測定工程で検出した発光量の変動に基づき、該細胞内におけるカルシウムイオン濃度の変動を解析する工程と、
を含み、該分割型組換えタンパク質が、前記カルシウム結合領域及び前記相互作用領域を含む。前記解析方法は、互いに異なる発光色を有する前記分割型組換えタンパク質をコードする遺伝子を含む2以上のベクターを用いることもできる。前記解析方法は、1細胞内のカルシウムイオン濃度の変動を解析することもできる。
 本発明の細胞内遺伝子発現の解析方法は、
 プロモーター遺伝子と、該プロモーター遺伝子に発現可能に連結された目的遺伝子及び前記分割型組換えタンパク質をコードする遺伝子とを含むベクターを含む細胞を作製する工程と、
 該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
 該細胞における発光量を経時的に測定する工程と、
 該発光量の変動に基づき、該細胞内における該目的遺伝子の発現量の変動を解析する工程と、
を含む。前記解析方法は、互いに異なる発光色を有する前記分割型組換えタンパク質をコードする遺伝子を含む2以上のベクターを用いることもできる。
 本発明のベクターセットは、
 互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたホタルルシフェラーゼのN末端側断片をコードする遺伝子が、一方のプロモーター遺伝子と発現可能に連結されているベクターと、
 互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の58個~78個のアミノ酸を保持するC末端側断片をコードする遺伝子が、別のプロモーター遺伝子と発現可能に連結されているベクターと、
を含むことを特徴とする。
 本発明のベクターセットは、N末端側断片及びC末端側断片が別種のホタルのホタルルシフェラーゼに由来してもよい。また、いずれか一方の前記プロモーター遺伝子が、誘導性プロモーター遺伝子であってもよい。
 また、本発明の細胞内遺伝子発現の解析方法は、
 いずれか一方の前記プロモーター遺伝子が誘導性プロモーター遺伝子である前記ベクターセットを含む細胞を作製する工程と、
 該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
 該細胞に、該細胞外から前記誘導性プロモーター遺伝子を刺激する誘導物質を添加する工程と、
 該細胞における発光量を経時的に測定する工程と、
 該発光量の変動に基づき、該細胞内における該誘導性プロモーター遺伝子の活性の変動を解析する工程と、
を含む。
 本発明の細胞は、本発明のベクターセットを含む。
 本発明によれば、発光強度が強く且つ様々な発光色を有する、新規な分割型組換えタンパク質及びその遺伝子を提供することができる。また、本発明によれば、前記分割型組換えタンパク質及びその遺伝子を用いることにより、シグナル/ノイズ比が高い発光を指標とする、細胞内カルシウムイオンの解析方法及び細胞内遺伝子発現の解析方法を提供することができる。これらの解析方法は、外来遺伝子の発現が弱い細胞におけるイメージング、1細胞イメージング、高速イメージング、多色イメージングなどに用いることができる。
N末端側断片(NLuc)及びC末端側断片(CLuc)を説明する模式図である。 N末端側断片(NLuc)がC末端側断片(CLuc)のC末端側に配置された、本発明の一実施形態に係る分割型組換えタンパク質の一例を示す模式図である。 本発明の一実施形態に係る分割型組換えタンパク質のホタルルシフェラーゼ活性を示す図である。 置換型ルシフェラーゼの大腸菌内及びHEK293細胞内における活性波長の測定結果(実験3)を示す図である。 本発明の一実施形態に係る分割型組換えタンパク質のN末端側断片とC末端側断片とを、細胞内において別々のベクターで発現させて、ホタルルシフェラーゼ活性を回復させた実験の結果を示す図である。 本発明の一実施形態に係るベクターセットを用いたHEK293細胞内プロモーター遺伝子発現イメージングの結果を示す画像である。 本発明の一実施形態に係るベクターセットを用いたHEK293細胞内プロモーター遺伝子発現の解析結果を示す図である。 本発明の一実施形態に係るベクターセットを用いた神経細胞内プロモーター遺伝子発現イメージングの結果を示す画像である。 本発明の一実施形態に係るベクターセットを用いた神経細胞内プロモーター遺伝子発現の解析結果を示す図である。 本発明の一実施形態に係る分割型組換えタンパク質(発光カルシウムインジケータ)の模式図である。 本発明の一実施形態に係る分割型組換えタンパク質(発光カルシウムインジケータ)による発光量の比較結果を示す図である。 発光カルシウムインジケータのカルシウムキャリブレーション(実験8)の結果を示す図である。 HEK293細胞におけるATP刺激時の細胞内カルシウム濃度の解析(実験9)の結果を示す図である。 HEK293細胞におけるATP刺激時の発光カルシウムイメージング(実験10)の結果を示す画像及びグラフである。 HEK293細胞でのカルシウム濃度変動の高速発光イメージング(実験11)の結果を示す画像及びグラフである。
 以下、本発明を、その実施形態に基づき具体的に例示説明する。
<分割型組換えタンパク質>
 本発明の分割型組換えタンパク質は、
 互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたホタルルシフェラーゼのN末端側断片と、
 互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の58個の~78個のアミノ酸を保持するC末端側断片と、
をリンカーポリペプチドで連結して含む分割型組換えタンパク質であって、
 該N末端側断片と該C末端側断片とが結合することによってホタルルシフェラーゼ活性を回復することを特徴とする。
 ルシフェラーゼとは、一般に、発光が生じる化学反応を触媒する酵素を指す。当該酵素の基質となる物質はルシフェリンと呼ばれる。アデノシン三リン酸(ATP)の存在下、ルシフェラーゼの触媒作用により、ルシフェリンが化学変化を起こす際に発光する。現在、ルシフェラーゼは、ホタルに由来するもの及びバクテリアに由来するものが取得されているが、両者は、タンパク質構造や基質などにおいて大きく異なる。本発明は、ホタルに由来するルシフェラーゼであるホタルルシフェラーゼに関する。ホタルルシフェラーゼの基質は、ホタルルシフェリンである。好ましくは、ホタルルシフェリンは、D−ルシフェリンである。本発明において、ルシフェラーゼ活性とは、ATPの存在下、基質であるルシフェリンが起こす化学変化を触媒して発光を引き起こす能力を意味する。すなわち、本発明において、ホタルルシフェラーゼ活性とは、ATPの存在下、基質であるホタルルシフェリンが起こす化学変化を触媒して発光を引き起こす能力を意味する。
 特定の位置でN末端側断片とC末端側断片とに2分割すると失活し、それら両断片は、それぞれ単独ではルシフェラーゼ活性を示さないが、互いに結合してタンパク質を再構成するとルシフェラーゼ活性を回復することができるルシフェラーゼの存在が知られている(例えば、特許文献1及び4)。このように分割されたルシフェラーゼのN末端側断片及びC末端側断片は、総称して「スプリットルシフェラーゼ」とも呼ばれている。ここで、本発明に関して用いられる「結合」という用語は、特に限定されず、共有結合であっても、イオン結合、水素結合、ファンデルワールス力、疎水結合のような非共有結合でもあってもよい。2つ以上の「結合」対象物が、互いに「接近」、「接触」、「会合」又は「相互作用」する状態も含まれ得る。具体的には、該N末端側断片と該C末端側断片との「結合」は、特に限定されず、共有結合であっても、イオン結合、水素結合、ファンデルワールス力、疎水結合のような非共有結合でもあってもよい。該N末端側断片と該C末端側断片との「結合」の態様は、ルシフェラーゼの機能を果たし得る程度に「接近」、「接触」、「会合」又は「相互作用」する態様も含まれ得る。ただし、該N末端側断片と該C末端側断片とがリンカーペプチドを介する連結のみ有する態様は含まれない。
 本発明において、ホタルとは、節足動物門昆虫綱コウチュウ目ホタル科に属する昆虫を意味する。
 本発明に用いることができるホタルルシフェラーゼが由来するホタルの種類としては、特に限定されず、例えば、オキナワマドボタル(Pyrocoelia matsumurai)、クメジマミナミボタル(Drilaster Kumejimensis)、シブイロヒゲボタル(Stenocladius flavipennis)、北アメリカ産ホタル(Photinus pyralis)、ゲンジボタル(Luciola cruciata)、ヘイケボタル(Luciola Lateralis)、東ヨーロッパ産ホタル(Luciola mingrelica)、ツチボタル(Lampyris noctiluca)等が挙げられる。中でも、オキナワマドボタル、クメジマミナミボタル、シブロイヒゲボタルが好ましい。
 ホタルルシフェラーゼのアミノ酸配列は、一般に、由来するボタルの種類に固有であるため、由来するホタルの種類によって異なり得る。互いに結合することによりホタルルシフェラーゼ活性が回復するようにN末端側断片とC末端側断片とに2分割される「分割位置」は、互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる位置であれば、特に限定されず、また、ホタルルシフェラーゼの種類が由来するホタルの種類によっても異なり得る。当業者であれば、本技術分野における公知の方法を用いて、ホタルルシフェラーゼにおける前記分割位置を決定することができる。また、公知の分割位置の情報を利用することもできる。本発明の分割型組換えタンパク質に含まれる「N末端側断片」及び「C末端側断片」のアミノ酸配列も、ホタルルシフェラーゼが由来するホタルの種類によって異なり得る。
 本発明の分割型組換えタンパク質に含まれる「N末端側断片」は、互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたホタルルシフェラーゼのN末端側の断片であり、該ホタルルシフェラーゼをコードするアミノ酸配列の1番目のアミノ酸から前記「分割位置」に隣接するN末端側のアミノ酸までのアミノ酸配列を有する。本発明の分割型組換えタンパク質に含まれる「C末端側断片」は、N末端側断片のホタルルシフェラーゼが由来するホタルと異なる種類のホタル由来のホタルルシフェラーゼに由来する。該「C末端側断片」は、互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の53個~78個のアミノ酸を保持するC末端側断片である。これら「N末端側断片」及び「C末端側断片」は、野生型のホタルルシフェラーゼに由来するものでもよく、また、互いに結合することによりホタルルシフェラーゼ活性が回復できる限りにおいて、1個以上のアミノ酸の置換、欠失又は付加といった変異を有してもよい。
 例えば、オキナワマドボタル(Pyrocoelia matsumurai)由来の野生型ホタルルシフェラーゼは、配列番号1の塩基配列でコードされた562個のアミノ酸からなり、配列番号2のアミノ酸配列を有する。一例として、互いに結合することによりホタルルシフェラーゼ活性が回復するように、1番目~416番目のアミノ酸を有するN末端側断片(配列番号3)と417番目~562番目のアミノ酸を有するC末端側断片(配列番号4)とに2分割することができる。よって、本発明の分割型組換えタンパク質に含まれるオキナワマドボタル由来の「N末端側断片」は、オキナワマドボタルの野生型ホタルルシフェラーゼの1番目から416番目までのアミノ酸配列を有し得る。本発明の分割型組換えタンパク質に含まれるオキナワマドボタル由来の「C末端側断片」は、オキナワマドボタルの野生型ホタルルシフェラーゼの339番目~359番目のアミノ酸から始まって562番目のアミノ酸で終わるアミノ酸配列を有し得る。
 クメジマミナミボタル(Drilaster Kumejimensis)由来の野生型ホタルルシフェラーゼは、配列番号5の塩基配列でコードされた547個のアミノ酸からなり、配列番号6のアミノ酸配列を有する。一例として、互いに結合することによりホタルルシフェラーゼ活性が回復するように、1番目~416番目のアミノ酸配列を有するN末端側断片(配列番号7)と417番目~547番目のアミノ酸配列を有するC末端側断片(配列番号8)とに2分割することができる。よって、本発明の分割型組換えタンパク質に含まれるクメジマミナミボタル由来の「N末端側断片」は、クメジマミナミボタルの野生型ホタルルシフェラーゼの1番目から416番目までのアミノ酸配列を有し得る。本発明の分割型組換えタンパク質に含まれるクメジマミナミボタル由来の「C末端側断片」は、クメジマミナミボタルの野生型ホタルルシフェラーゼの339番目~359番目のアミノ酸から始まって547番目のアミノ酸で終わるアミノ酸配列を有し得る。
 シブイロヒゲボタル(Stenocladius flavipennis)由来の野生型ホタルルシフェラーゼは、配列番号9の塩基配列でコードされた555個のアミノ酸からなり、配列番号10のアミノ酸配列を有する。一例として、互いに結合することによりホタルルシフェラーゼ活性が回復するように、1番目~424番目のアミノ酸(配列番号11)を有するN末端側断片と425番目~555番目のアミノ酸(配列番号12)を有するC末端側断片とに2分割することができる。よって、本発明の分割型組換えタンパク質に含まれるシブイロヒゲボタル由来の「N末端側断片」は、シブイロヒゲボタルの野生型ホタルルシフェラーゼの1番目から424番目までのアミノ酸配列を有し得る。本発明の分割型組換えタンパク質に含まれるシブイロヒゲボタル由来の「C末端側断片」は、シブイロヒゲボタルの野生型ホタルルシフェラーゼの347番目~367番目のアミノ酸から始まって555番目のアミノ酸で終わるアミノ酸配列を有し得る。
 北アメリカ産ホタル(Photinus pyralis)由来の野生型ホタルルシフェラーゼは、550個のアミノ酸からなる。一例として、互いに結合することによりホタルルシフェラーゼ活性が回復するように、1番目~416番目のアミノ酸を有するN末端側断片と417番目~550番目のアミノ酸を有するC末端側断片とに2分割することができる。よって、本発明の分割型組換えタンパク質に含まれる北アメリカ産ホタル由来の「N末端側断片」は、北アメリカ産ホタルの野生型ホタルルシフェラーゼの1番目から416番目までのアミノ酸配列を有し得る。本発明の分割型組換えタンパク質に含まれる北アメリカ産ホタル由来の「C末端側断片」は、北アメリカ産ホタルの野生型ホタルルシフェラーゼの339番目~364番目のアミノ酸から始まって550番目のアミノ酸で終わるアミノ酸配列を有し得る。
 本発明の分割型組換えタンパク質は、「N末端側断片」と「C末端側断片」とが互いに「結合」することによってタンパク質を再構成すると、北アメリカ産ホタル(Photinus pyralis)由来の野生型ホタルルシフェラーゼと比較して、数倍以上の発光強度のホタルルシフェラーゼ活性を回復することができる。N末端側断片及びC末端側断片は、同種のホタルのホタルルシフェラーゼに由来してもよく、別種のホタルのホタルルシフェラーゼに由来してもよい。N末端側断片のホタルルシフェラーゼが由来するホタルとC末端側断片のホタルルシフェラーゼが由来するホタルとの組み合わせは、特に限定されないが、オキナワマドボタル、クメジマミナミボタル及びシブロイヒゲボタルからなる群より選択されることが好ましい。また、N末端側断片が由来するホタルの種類は、特に限定されないが、オキナワマドボタルであることが好ましい。
 また、回復したホタルルシフェラーゼ活性は、N末端側断片のホタルルシフェラーゼ及びC末端側断片のホタルルシフェラーゼが由来するホタルの種類、C末端側断片が保持するN末端側のアミノ酸の数、又はそれらの組み合わせによって、様々な発光色、すなわち、異なるピーク波長を有する発光を呈示する。その具体例は、実施例の実験3で示されている(図4)。
 本発明の分割型組換えタンパク質は、本発明のN末端側断片及びC末端側断片以外に、リンカーペプチドを含む。該リンカーペプチドは、本発明のN末端側断片及びC末端側断片を、又は、本発明のN末端側断片又はC末端側断片と、何らかの機能を有する他のタンパク質、ポリペプチド又はそれらの断片とを、それらの機能を損なうことなく連結できるものであれば、リンカーペプチドを構成するアミノ酸の数及び種類において、特に限定されない。本発明において、分割型とは、「N末端側断片」及び「C末端側断片」が、それぞれ単独ではホタルルシフェラーゼ活性を示さないが、互いに結合してタンパク質を再構成することにより、ホタルルシフェラーゼ活性を回復することができることを意味する。
 本発明の分割型組換えタンパク質において、N末端側断片及びC末端側断片は、それぞれ、ホタルルシフェラーゼにおける本来の配置をとってもよい、すなわち、N末端側断片がC末端側断片のN末端側に位置していてもよい。あるいは、N末端側断片及びC末端側断片が、ホタルルシフェラーゼにおける本来の配置から円順列置換した配置、すなわち、N末端側断片がC末端側断片のC末端側に位置していてもよい。
 本発明の分割型組換えタンパク質は、本発明のN末端側断片、C末端側断片、リンカーペプチドの他に、何らかの機能を有する1つ以上のタンパク質、ポリペプチド又はそれらの断片を含むこともできる。そのようなタンパク質は、一般に、融合タンパク質とも呼ばれる。本発明において、それら他のタンパク質、ポリペプチド又はそれらの断片であるペプチド部分を「領域」とも称する。そのような機能を有する領域の一例としては、特に限定されないが、カルシウム結合領域、サイクリックAMP結合領域、サイクリックGMP結合領域、それらに対する相互作用領域などが挙げられる。それらの領域は、N末端側断片とC末端側断片との間に配置されるのが好ましい。
 一例として、カルシウム結合領域と、カルシウム結合領域と相互作用することができる相互作用領域とを含む、分割型組み換えタンパク質について説明する。ここで、カルシウム結合領域とは、細胞内にてカルシウムイオン(Ca2+)と可逆的に結合及び解離できるペプチド部分を意味する。カルシウム結合領域と相互作用することができる相互作用領域とは、細胞内においてカルシウム結合領域と可逆的に結合及び解離できるペプチド部分を意味する。カルシウム結合領域としては、例えば、カルモジュリン(CaM)又はその断片が挙げられる。前記相互作用領域は、カルシウムイオンと結合したカルシウム結合領域と結合することができ、カルシウムイオンが解離したカルシウム結合領域から解離することができる。カルシウム結合領域と相互作用することができる相互作用領域としては、例えば、M13ペプチドが挙げられる。カルシウム結合領域及び相互作用領域を含む分割型組換えタンパク質は、例えば、細胞内で発現させることによって、細胞内におけるカルシウムイオン動態を解析することができる。
 カルシウム結合領域及び相互作用領域として、それぞれ、カルシウム結合タンパク質であるカルモジュリン(CaM)及びカルシウムイオンと結合したカルモジュリンと結合するM13とが一連に繋がったペプチドを使用することができる(非特許文献1)。非特許文献1では、この一連に繋がった連結化ペプチドを用いて、CaM及びM13が2種の蛍光タンパク質に挟まれた構造を有するカルシウムセンサータンパク質を作製しており、この蛍光センサータンパク質を「カメレオンタンパク質」(以下、カメレオンとも称する)と呼んでいる。特に、カルシウム結合領域及び相互作用領域として、カメレオンの230番目から406番目のアミノ酸配列に対応するペプチド、230番目から396番目に対応するペプチド、230番目から401番目に対応するペプチド、230番目から411番目に対応するペプチド又は230番目から416番目に対応するペプチドを使用することができる。これらの具体的な配列が示されたペプチドは、それらの機能を失わない限り、例えば感度の改良のための変異を含んだものであっても、本発明の分割型組換えタンパク質に使用することができる。
<遺伝子>
 本発明は、分割型組換えタンパク質をコードする遺伝子、N末端側断片をコードする遺伝子、及びC末端側断片をコードする遺伝子にも関する。本発明において、タンパク質若しくはポリペプチド又はそれらの断片をコードする「遺伝子」は、DNA鎖であってもRNA鎖であってもよく、細胞内などにおいて、該タンパク質若しくはポリペプチド又はそれらの断片を発現することができる塩基配列を有するDNA鎖又はRNA鎖を意味する。該DNA鎖及びRNA鎖は、該タンパク質若しくはポリペプチド又はそれらの断片のアミノ酸配列をコードする塩基配列のみで構成されていてもよく、又は、前記塩基配列に加えて、該タンパク質の機能及び発現を損なわない限りにおいて、付加的な塩基配列を有していてもよい。それら塩基配列は、該タンパク質の機能及び発現を損なわない限りにおいて、1個以上の塩基配列の置換、欠失又は付加といった変異を有していてもよい。
 <ベクター>
 本発明のベクターは、分割型組換えタンパク質、N末端側断片、又はC末端側断片が発現可能な態様で、該分割型組換えタンパク質をコードする遺伝子、該N末端側断片をコードする遺伝子、又は該C末端側断片をコードする遺伝子を含む、発現ベクターである。本発明において、発現ベクターとは、発現対象遺伝子(分割型組換えタンパク質をコードする遺伝子、N末端側断片をコードする遺伝子、C末端側断片をコードする遺伝子、目的遺伝子など)が発現可能にベクターに連結されていることを意味する。例えば、発現ベクター内において、分割型組換えタンパク質をコードする遺伝子、N末端側断片をコードする遺伝子、及びC末端側断片をコードする遺伝子が、プロモーター遺伝子領域の下流に、発現可能に連結されている。使用できるベクターの種類は、特に限定されず、例えば、プラスミドベクター、ファージベクター、コスミドなどが挙げられる。当業者であれば、技術常識に照らして、クローニングサイト、プロモーター遺伝子、発現対象物(分割型組換えタンパク質、N末端側断片、C末端側断片)、発現細胞などの諸条件に基づき、適切なベクターを選択し、常法に従って、所望する発現ベクターを構築することができる。プロモーター遺伝子も、研究目的などに応じて、適宜選択することができる。プロモーター遺伝子は、構成性プロモーター遺伝子、誘導性プロモーター遺伝子、組織特異性プロモーター遺伝子であってもよい。
<ベクターセット>
 本発明の別の一実施形態は、
 互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたホタルルシフェラーゼのN末端側断片をコードする遺伝子が、一方のプロモーター遺伝子と発現可能に連結されているベクターと、
 互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の58個~78個のアミノ酸を保持するホタルルシフェラーゼのC末端側断片をコードする遺伝子が、別のプロモーター遺伝子と発現可能に連結されているベクターと、
を含むベクターセットである。
 このベクターセットにおいて、前記N末端側断片及び前記C末端側断片は、同種のホタルのホタルルシフェラーゼに由来するものでもよく、互いに異なる種類のホタルのホタルルシフェラーゼに由来するものでもよい。前記ベクターセットは、別のプロモーター遺伝子に別のN末端側断片又はC末端側断片を発現可能に連結した別のベクターを更に含んでもよい。また、前記ベクターセットを、N末端側断片、C末端側断片又はプロモーター遺伝子のうちの少なくとも一つが異なる別のベクターセットと組み合わせて使用することもできる。このようなベクターセットは、技術常識に照らし、研究目的や諸条件に基づいて、常法によって、適宜構築することができる。ベクターセットに用いられるプロモーター遺伝子の一方を、誘導性プロモーター遺伝子とすることもできる。このようなベクターセットは、例えば、下記で説明する細胞内遺伝子発現の解析方法に使用することができる。
<細胞>
 本発明の細胞は、本発明のベクター、すなわち、プロモーター遺伝子と、分割型組換えタンパク質をコードする遺伝子、N末端側断片をコードする遺伝子、又はC末端側断片をコードする遺伝子とが発現可能に連結されているベクター、又は上述のベクターセットを含む。本発明の細胞は、発現ベクターの発現対象物を発現できるものであればよく、動物細胞であっても植物細胞であってもよい。使用できる細胞の由来は、特に限定されず、研究目的などに応じて、適宜選択することができる。前記発現ベクターを細胞内に導入する方法は、特に限定されず、例えば、トランスフェクション、in vitroパッケージング、凍結融解法、エレクトロポレーションなどが挙げられるが、使用するベクター及び細胞の種類に応じて、適宜選択することができる。
<解析方法>
 本発明の分割型組換えタンパク質の再構成によるホタルルシフェラーゼ活性の回復現象は、様々な解析方法に用いることができる。例えば、強い発光強度を指標とすることができ且つ様々な発光色を利用できるため、生細胞内における、カルシウムイオン動態、目的とする遺伝子やプロモーターの遺伝子発現、タンパク質相互作用、受容体相互作用などを、高精度で、1細胞ごとに、又は複数の細胞若しくは遺伝子を比較して、解析することができる。よって、本発明の解析方法は、外来遺伝子の発現が弱い細胞におけるイメージング、1細胞イメージング、高速イメージング、多色イメージングなどに用いることができる。
 以下で、解析方法の実施形態の一例について説明する。
<細胞内カルシウムイオンの解析方法>
 本発明の一実施形態は、
 プロモーター遺伝子と、該プロモーター遺伝子に発現可能に連結された分割型組換えタンパク質をコードする遺伝子とを含む発現ベクターを含む細胞を作製する工程と、
 該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
 該細胞における発光量を測定する工程と、
 該測定した発光量に基づき、該細胞内におけるカルシウムイオン濃度を解析する工程と、を含む細胞内カルシウムイオンの解析方法である。ここで、前記分割型組換えタンパク質は、カルシウム結合領域と、カルシウム結合領域と相互作用する相互作用領域とを含む。本明細書において、この分割型組換えタンパク質を、発光カルシウムインジケータとも称する。
 前記細胞を作製する工程において、研究目的や諸条件に応じて適切に構築された前記発現ベクターを、上述するように、研究目的や諸条件に応じて適切に選択された細胞に導入すればよい。このようにして作製した細胞内では、発光カルシウムインジケータが発現される。プロモーター遺伝子が構成性プロモーター遺伝子である場合には、誘導物質の添加といった刺激なしに、発光カルシウムインジケータが発現される。プロモーター遺伝子が誘導性プロモーター遺伝子である場合には、誘導物質の添加といった刺激の存在下で、発光カルシウムインジケータが発現される。プロモーター遺伝子が組織特異的プロモーター遺伝子である場合には、特定組織由来の細胞内においてのみ、発光カルシウムインジケータが発現される。
 作製した細胞に、該細胞外からホタルルシフェリンを添加する工程において、細胞外からホタルルシフェリンを添加すると、ホタルルシフェリンは、細胞膜を透過して細胞内に侵入することができる。ホタルルシフェリンの存在下、発光カルシウムインジケータは、カルシウムイオンの存在に応じて、ホタルルシフェラーゼ活性を回復又は喪失することができる。発光カルシウムインジケータがタンパク質全体としてどのような立体構造をとるかによって、カルシウムイオンが存在する場合にホタルルシフェラーゼ活性を回復するか喪失するかが決定される。
 一例として、N末端側から順に、C末端側断片、カメレオンのCaM−M13断片(230番目から406番目)、及びN末端側断片が配置された発光カルシウムインジケータについて説明する。カルシウムイオンが存在していない場合、C末端側断片とN末端側断片とは適度に接近して結合しホタルルシフェラーゼ活性を回復し、発光する。一方、カルシウムイオンが存在すると、カルシウム結合領域(CaM)にカルシウムイオンが結合し、さらにそこへ相互作用領域(M13)が結合することで、前記発光カルシウムインジケータのタンパク質全体としての構造が変化してホタルルシフェラーゼ活性を喪失し、発光しなくなる。このような機構に基づいて、細胞内のカルシウムイオン濃度は、ホタルルシフェラーゼによる発光量に反映される。
 該測定した発光量に基づき、該細胞内におけるカルシウムイオン濃度を解析することができる。発光量を経時的に測定することにより、発光量の変動を指標として、細胞内のカルシウムイオン濃度の変動を解析することができる。発光量の測定及びそれに基づく解析を行う装置類、解析ソフトなどは、特に限定されず、一般的なものを使用することができる。測定は、撮像によって行ってもよい。そのような装置としては、例えば、ルミノメーター、発光顕微鏡、発光イメージャー、発光検出装置などが挙げられる。
<細胞内遺伝子発現の解析方法>
 本発明の別の一実施形態は、
 目的遺伝子と分割型組換えタンパク質をコードする遺伝子とを含む発現ベクターを含む細胞を作製する工程と、
 該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
 該細胞における発光量を測定する工程と、
 該発光量に基づき、該細胞内における該目的遺伝子の発現量を解析する工程と、を含む細胞内遺伝子発現の解析方法である。
 前記細胞を作製する工程において、研究目的や諸条件に応じて適切に構築された前記発現ベクターを、上述するように、研究目的や諸条件に応じて適切に選択された細胞に導入すればよい。目的遺伝子は、プロモーター遺伝子であってもよい。このようにして作製した細胞内では、目的遺伝子及び分割型組換えタンパク質が発現される。目的遺伝子は、分割型組換えタンパク質をコードする遺伝子に含まれていてもよい。プロモーター遺伝子が構成性プロモーター遺伝子である場合には、誘導物質の添加といった刺激なしに、目的遺伝子及び分割型組換えタンパク質が発現される。プロモーター遺伝子が誘導性プロモーター遺伝子である場合には、誘導物質の添加といった刺激の存在下で、目的遺伝子及び分割型組換えタンパク質が発現される。プロモーター遺伝子が組織特異的プロモーター遺伝子である場合には、特定組織由来の細胞内においてのみ、目的遺伝子及び分割型組換えタンパク質が発現される。
 作製した細胞に、該細胞外からホタルルシフェリンを添加する工程において、細胞外からホタルルシフェリンを添加すると、ホタルルシフェリンは、細胞膜を透過して細胞内に侵入することができる。ホタルルシフェリンの存在下、目的遺伝子及び分割型組換えタンパク質が発現していれば、分割型組換えタンパク質がホタルルシフェラーゼ活性を回復して、発光が測定される。
 該測定した発光量に基づき、該細胞内における目的遺伝子の発現量を解析することができる。発光量を経時的に測定することにより、発光量の変動を指標として、細胞内の目的遺伝子発現量の変動を解析することができる。発光量の測定及びそれに基づく解析を行う装置類、解析ソフトなどは、特に限定されず、上述の細胞内カルシウムイオンの解析方法に使用できるものを用いることができる。
 上述する解析法において、互いに異なる発光色を有する前記分割型組換えタンパク質をコードする遺伝子を含む2以上の発現ベクターを使用することができる。それら2以上の発現ベクターをそれぞれ別々の細胞内に導入することにより、導入した発現ベクターが発現する分割型組換えタンパク質に固有の発色光を測定することによって、細胞間で細胞内カルシウムイオン濃度や細胞内遺伝子発現量を比較することができる。また、それら2以上の発現ベクターを1細胞内に導入することにより、細胞内において、細胞内カルシウムイオン濃度や細胞内遺伝子発現量を比較することができる。
<ベクターセットを用いた細胞内遺伝子発現の解析方法>
 本発明の別の実施形態は、
 いずれか一方の前記プロモーター遺伝子が誘導性プロモーター遺伝子である前記ベクターセットを含む細胞を作製する工程と、
 該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
 前記誘導性プロモーター遺伝子を刺激する誘導物質を添加する工程と、
 該細胞における発光量を経時的に測定する工程と、
 該発光量の変動に基づき、該細胞内における該プロモーター遺伝子の活性の変動を解析する工程と、を含む細胞内遺伝子発現の解析方法である。
 前記細胞を作製する工程において、研究目的や諸条件に応じて適切に構築された前記発現ベクターを、上述するように、研究目的や諸条件に応じて適切に選択された細胞に導入すればよい。このようにして作製した細胞内では、このようにして作製した細胞内では、N末端側断片とC末端側断片とが別々のプロモーター遺伝子の制御下で別々に発現される。構成性プロモーター遺伝子に連結された断片は、誘導物質の添加といった刺激なしに発現される。一方、誘導性プロモーター遺伝子に連結された断片は、誘導物質の添加といった刺激の存在下で、N末端側断片又はC末端側断片が発現される。プロモーター遺伝子が組織特異的プロモーター遺伝子である場合には、特定組織由来の細胞内においてのみ、N末端側断片又はC末端側断片が発現される。
 作製した細胞に、該細胞外からホタルルシフェリンを添加する工程において、細胞外からホタルルシフェリンを添加すると、ホタルルシフェリンは、細胞膜を透過して細胞内に侵入することができる。ホタルルシフェリンの存在下、N末端側断片及びC末端側断片の両方が発現していれば、分割型組換えタンパク質を再構成して、ホタルルシフェラーゼ活性を回復することができ、発光が測定される。前記解析方法では、一方のプロモーター遺伝子が誘導性プロモーター遺伝子であるため、誘導性プロモーター遺伝子によって制御されるいずれか一方の分割型組換えタンパク質断片は、誘導性プロモーター遺伝子を刺激する誘導物質の存在下でのみ、発現される。
 よって、前記解析方法は、誘導性プロモーター遺伝子を刺激する誘導物質を添加する工程を含む。適切な誘導物質が添加されると、誘導性プロモーター遺伝子が刺激されて発現し、その制御下の分割型組換えタンパク質断片が発現される。その結果、N末端側断片及びC末端側断片の両方が細胞内に存在することによって、分割型組換えタンパク質を再構成して、ホタルルシフェラーゼ活性を回復することができ、発光が測定される。誘導物質が、細胞内代謝などにより消失すると、誘導性プロモーター遺伝子の発現が停止し、その制御下の分割型組換えタンパク質断片の発現も停止する。
 このようにして、測定した発光量に基づき、該細胞内における誘導性プロモーター遺伝子の発現量を解析することができる。発光量を経時的に測定することにより、発光量の変動を指標として、細胞内の誘導性プロモーター遺伝子の発現量の変動を解析することができる。発光量の測定及びそれに基づく解析を行う装置類、解析ソフトなどは、特に限定されず、上述の細胞内カルシウムイオンの解析法及び細胞内遺伝子発現の解析方法に使用できるものを用いることができる。
 上述する解析法において、前記ベクターセットが、別のプロモーター遺伝子に別のN末端側断片又はC末端側断片を発現可能に連結した別のベクターを更に含んでもよい。また、前記ベクターセットを、N末端側断片、C末端側断片、プロモーター遺伝子のいずれか1つが異なる別のベクターセットと組み合わせて使用してもよい。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。また実施例において、N末端側断片及びC末端側断片が同種のホタルのホタルルシフェラーゼ由来であり、N末端側断片がC末端側断片のC末端側に配置された分割型組換えタンパク質を、置換型ホタルルシフェラーゼとも呼ぶ。また、N末端側断片及びC末端側断片が異なるホタルのホタルルシフェラーゼ由来であり、N末端側断片がC末端側断片のC末端側に配置された分割型組換えタンパク質を、異種置換型ホタルルシフェラーゼとも呼ぶ。
[前準備その1:置換型ホタルルシフェラーゼ作製用のホタルルシフェラーゼのN末側断片遺伝子とC末側断片遺伝子のクローニング]
[手順1]
 オキナワマドボタル(Pyrocoelia matsumurai;以下、OKIとも表される)、クメジマミナミボタル(Drilaster Kumejimensis;以下、KUMEとも表される)、シブイロヒゲボタル(Stenocladius flavipennis;以下、SfREとも表される)に由来する各ホタルルシフェラーゼのN末端側断片(NLuc)遺伝子及びC末端側断片(CLuc)遺伝子を作製するため、PCRに用いる合成オリゴDNAを、以下に示す配列で調製した。
<OKIルシフェラーゼ断片作製用合成オリゴDNA>
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
<KUMEルシフェラーゼ断片作製用合成オリゴDNA>
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
<SfREルシフェラーゼ断片作製用合成オリゴDNA>
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
[手順2](ホタルルシフェラーゼ断片のPCRクローニング)
 OKI遺伝子を鋳型として、置換型ホタルルシフェラーゼ作製用のN末端側断片遺伝子(OKI−N:OKI由来のルシフェラーゼ遺伝子の1番目から416番目のアミノ酸を含む。)、及び、アミノ酸数の異なるC末端側断片遺伝子(OKI399:OKI由来のルシフェラーゼ遺伝子の399番目から562番目のアミノ酸を含む。;OKI394:OKI由来のルシフェラーゼ遺伝子の394番目から562番目のアミノ酸を含む。;OKI389:OKI由来のルシフェラーゼ遺伝子の389番目から562番目のアミノ酸を含む。;OKI384:OKI由来のルシフェラーゼ遺伝子の384番目から562番目のアミノ酸を含む。;OKI379:OKI由来のルシフェラーゼ遺伝子の379番目から562番目のアミノ酸を含む。;OKI374:OKI由来のルシフェラーゼ遺伝子の374番目から562番目のアミノ酸を含む。:OKI369:OKI由来のルシフェラーゼ遺伝子の369番目から562番目のアミノ酸を含む。;OKI364:OKI由来のルシフェラーゼ遺伝子の364番目から562番目のアミノ酸を含む。;OKI359:OKI由来のルシフェラーゼ遺伝子の359番目から562番目のアミノ酸を含む。;OKI354:OKI由来のルシフェラーゼ遺伝子の354番目から562番目のアミノ酸を含む。;OKI349:OKI由来のルシフェラーゼ遺伝子の349番目から562番目のアミノ酸を含む。;OKI344:OKI由来のルシフェラーゼ遺伝子の344番目から562番目のアミノ酸を含む。;OKI339:OKI由来のルシフェラーゼ遺伝子の339番目から562番目のアミノ酸を含む。)を、上記合成オリゴDNAをプライマーとしてPCRにより増幅した。
 また、KUME遺伝子を鋳型として、置換型ホタルルシフェラーゼ作製用のN末端側断片遺伝子(KUME−N:KUME由来のルシフェラーゼ遺伝子の1番目から416番目のアミノ酸を含む。)、及び、アミノ酸数の異なるC末端側断片遺伝子(KUME399:KUME由来のルシフェラーゼ遺伝子の399番目から547番目のアミノ酸を含む。;KUME394:KUME由来のルシフェラーゼ遺伝子の394番目から547番目のアミノ酸を含む。;KUME389:KUME由来のルシフェラーゼ遺伝子の389番目から547番目のアミノ酸を含む。;KUME384:KUME由来のルシフェラーゼ遺伝子の384番目から547番目のアミノ酸を含む。;KUME379:KUME由来のルシフェラーゼ遺伝子の379番目から547番目のアミノ酸を含む。;KUME374:KUME由来のルシフェラーゼ遺伝子の374番目から547番目のアミノ酸を含む。;KUME369:KUME由来のルシフェラーゼ遺伝子の369番目から547番目のアミノ酸を含む。;KUME364:KUME由来のルシフェラーゼ遺伝子の364番目から547番目のアミノ酸を含む。;KUME359:KUME由来のルシフェラーゼ遺伝子の359番目から547番目のアミノ酸を含む。;KUME354:KUME由来のルシフェラーゼ遺伝子の354番目から547番目のアミノ酸を含む。;KUME349:KUME由来のルシフェラーゼ遺伝子の349番目から547番目のアミノ酸を含む。;KUME344:KUME由来のルシフェラーゼ遺伝子の344番目から547番目のアミノ酸を含む。;KUME339:KUME由来のルシフェラーゼ遺伝子の339番目から547番目のアミノ酸を含む。)を、上記合成オリゴDNAをプライマーとしてPCRにより増幅した。
 また、SfRE遺伝子を鋳型として、置換型ホタルルシフェラーゼ作製用のN末端側断片遺伝子(SfRE−N:SfRE由来のルシフェラーゼ遺伝子の1番目から424番目のアミノ酸を含む。)、及び、アミノ酸数の異なるC末端側断片遺伝子(SfRE407:SfRE由来のルシフェラーゼ遺伝子の407番目から555番目のアミノ酸を含む。;SfRE402:SfRE由来のルシフェラーゼ遺伝子の402番目から555番目のアミノ酸を含む。;SfRE397:SfRE由来のルシフェラーゼ遺伝子の397番目から555番目のアミノ酸を含む。;SfRE392:SfRE由来のルシフェラーゼ遺伝子の392番目から555番目のアミノ酸を含む。;SfRE387:SfRE由来のルシフェラーゼ遺伝子の387番目から555番目のアミノ酸を含む。;SfRE382:SfRE由来のルシフェラーゼ遺伝子の382番目から555番目のアミノ酸を含む。;SfRE377:SfRE由来のルシフェラーゼ遺伝子の377番目から555番目のアミノ酸を含む。;SfRE372:SfRE由来のルシフェラーゼ遺伝子の372番目から555番目のアミノ酸を含む。;SfRE367:SfRE由来のルシフェラーゼ遺伝子の367番目から555番目のアミノ酸を含む。;SfRE362:SfRE由来のルシフェラーゼ遺伝子の362番目から555番目のアミノ酸を含む。;SfRE357:SfRE由来のルシフェラーゼ遺伝子の357番目から555番目のアミノ酸を含む。;SfRE352:SfRE由来のルシフェラーゼ遺伝子の352番目から555番目のアミノ酸を含む。;SfRE347:SfRE由来のルシフェラーゼ遺伝子の347番目から555番目のアミノ酸を含む。)を、上記合成オリゴDNAをプライマーとしてPCRにより増幅した。
[前準備その2:置換型ホタルルシフェラーゼの大腸菌用発現プラスミドの作製]
[手順]
 PCRで増幅させたN末端側断片遺伝子を大腸菌発現プラスミドであるpRSET/A(インビトロジェン社製)のBgIII部位とEcoRI部位の間に挿入し、さらに同種のホタル由来のC末端側断片遺伝子をBamHI部位とXhoI部位の間に挿入して、置換型ホタルルシフェラーゼ遺伝子の大腸菌発現用プラスミドを作製した。このプラスミドにおいては、C末端側断片遺伝子がN末端側断片遺伝子の5’側に配置されており、発現した置換型ホタルルシフェラーゼにおいては、N末端側断片がC末端側断片のC末端側に配置されており、C末端側断片がN末端側断片のN末端側に配置されている。
[実験1:置換型ホタルルシフェラーゼ遺伝子の活性測定]
[手順]
 置換型ホタルルシフェラーゼ遺伝子を含むpRSETベクターをJM109(DE3)株にトランスフォームして、37℃で一晩培養した。培養液50μLに、Bright−Glo(プロメガ社製)50μLを加えて室温で5分間静置し、ルミノメーター(Luminescencer−JNR II:アトー社製)を用いて、10秒間の発光量を測定した。
[実験1の結果]
 作製した発現ベクターを大腸菌(JM109(DE3))へトランスフォームして、LB中で一晩培養した。50μLの培養液に、等量のBright−Gloを加えて室温で5分間静置した。反応液の発光量は、ルミノメーターで10秒間でのカウント値を用いた。対照には、北アメリカ産ホタル(Photinus pyralis)のルシフェラーゼ由来の置換型ルシフェラーゼ(GL4)を用いた。GL4及びOKI由来の置換型ルシフェラーゼの活性を、GL4の活性を1として、図3に示した。図3の縦軸は、相対発光量を示す。置換型ルシフェラーゼの中で、OKI由来の置換型ルシフェラーゼであるOKI359、OKI354、OKI349、OKI344、OKI339において高い発光活性を示すことが明らかになり、さらにOKI349、OKI344、OKI339がGL4よりも高活性を示すことが明らかになった。KUME又はSfRE由来の置換型ルシフェラーゼでは、発光活性が見られなかった(図示せず)。
[前準備その3:異種置換型ルシフェラーゼ遺伝子の大腸菌用発現プラスミドの作製]
[手順]
 PCRで増幅させたOKI由来のN末端側断片(OKI−N)遺伝子を大腸菌発現プラスミドであるpRSET/A(インビトロジェン社製)のBgIII部位とEcoRI部位の間に挿入し、さらにKUME又はSfRE由来のC末端側断片遺伝子をBamHI部位とXhoI部位の間に挿入して、異種置換型ルシフェラーゼ遺伝子の大腸菌発現用プラスミドを作製した。このプラスミドにおいては、KUME又はSfRE由来のC末端側断片遺伝子がOKI由来のN末端側断片遺伝子の5’側に配置されており、発現した置換型ホタルルシフェラーゼにおいては、OKI由来のN末端側断片がKUME又はSfRE由来のC末端側断片のC末端側に配置されており、KUME又はSfRE由来のC末端側断片がOKI由来のN末端側断片のN末端側に配置されている。
[実験2:異種置換型ルシフェラーゼ遺伝子の発光活性測定]
[手順]
 異種置換型ルシフェラーゼ遺伝子を含むpRSETベクターを大腸菌JM109(DE3)株にトランスフォームして、LB中で37℃にて一晩培養した。培養液50μLに、Bright−Glo(プロメガ社製)50μLを加えて室温で5分間静置し、ルミノメーター(Luminescencer−JNR II:アトー社製)を用いて、10秒間の発光量を測定した。
[実験2の結果]
 OKIのNLuc遺伝子とKUME又はSfREのCLuc遺伝子をベクター上で組み合わせて、各ルシフェラーゼ由来の異種置換型ルシフェラーゼ遺伝子の発現ベクターを作製した。作製した異種置換型ルシフェラーゼ発現ベクターを大腸菌(JM109(DE3))へトランスフォームして、LB中で一晩培養した。50μLの培養液に、等量のBright−Gloを加えて室温で5分間静置した。反応液の発光量は、ルミノメーターで10秒間でのカウント値を用いた。対照として北アメリカ産ホタル(Photinus pyralis)のルシフェラーゼGL4由来の置換型ルシフェラーゼ(GL4)を用い、GL4の活性を1として図3に示した。図3の縦軸は、相対発光量を示す。KUME及びSfRE由来のCLuc遺伝子とOKI由来のNLuc遺伝子を用いた異種置換型ルシフェラーゼにおいても強い発光活性を示すことが明らかになった。
[前準備その4:置換型ルシフェラーゼ遺伝子の動物細胞用発現プラスミドの作製]
[手順]
 pRSETに組み込まれた置換型ルシフェラーゼ遺伝子又は異種置換型ルシフェラーゼ遺伝子をBamHI部位とEcoRI部位で切断して精製し、動物細胞発現用プラスミドであるpcDNA3.1(インビトロジェン社製)のBamHI部位とEcoRI部位の間に挿入し、動物細胞発現用プラスミドを作製した。
[実験3:大腸菌内及びHEK293細胞内での置換型ルシフェラーゼの発光波長測定]
[手順1](大腸菌内の置換型ルシフェラーゼ遺伝子の発光波長測定)
 置換型ルシフェラーゼ遺伝子又は異種置換型ルシフェラーゼ遺伝子を含むpRSETベクターをJM109(DE3)株にトランスフォームして、37℃で一晩培養した。培養液100μLに、ルシフェリン1mMを加えて室温で5分間静置し、ルミフルスペクトロキャプチャー(AB−1850:アトー社製)を用いて、発光波長を測定した。
[手順2](HEK293細胞の培養)
 ATCC(American Type Culture Collection)社より入手したHEK293細胞を、5%COインキュベーター内で、10%Fetal Bovine Serum及び1×Nonessential amino acidsを添加したEarle’s MEM/培地(GIBCO社製)で培養した。
[手順3](ルシフェラーゼ断片発現プラスミドのHEK293細胞への導入)
 置換型ルシフェラーゼ遺伝子又は異種置換型ルシフェラーゼ遺伝子の動物細胞発現用プラスミドを、エレクトロポレーター(ネッパジーン社製スーパーエレクトロポレーターNEPA21)を用いてエレクトロポレーションを行い、HEK293細胞へ導入した。遺伝子導入したHEK293細胞は、直径35mmガラスボトムディッシュに2×10/dishの細胞密度で播種し、5%COインキュベーター内で一晩培養した。
[手順4](HEK293細胞内の置換型ルシフェラーゼの活性波長測定)
 培地中にルシフェリン1mMを加えて室温で5分間静置し、ルミフルスペクトロキャプチャー(AB−1850:アトー社製)を用いて、発光波長を測定した。
[実験3の結果]
 置換型ルシフェラーゼ及び異種置換型ルシフェラーゼの大腸菌内、及びHEK293細胞内での発光波長を測定して図4に示した。図4の縦軸は相対発光量であり、横軸は発光波長を示す。上側の図は、大腸菌内での発光波長を示し、下側の図は、HEK293細胞内での発光波長を示す。それぞれの発光波長の極大は、OKI−CとOKI−Nの置換型ルシフェラーゼが603nm(大腸菌)と603nm(HEK293細胞)、KUME−CとOKI−Nの異種置換型ルシフェラーゼが583nm(大腸菌)と568nm(HEK293細胞)、SfRE−CとOKI−Nの異種置換型ルシフェラーゼが568nm(大腸菌)と568nm(HEK293細胞)、GL4−CとGL4−Nの置換型ルシフェラーゼが583nm(大腸菌)と612nm(HEK293細胞)であった。これらの結果から、HEK293細胞内ではGL4ベースの置換型ルシフェラーゼに対して、OKI、KUME、SfREベースの置換型ルシフェラーゼでは、発光波長が青側に9~44nmずれていることがわかった。さらに、OKIベースとSfREベースの発光インジケータでは、発光波長が大腸菌とHEK293細胞において変わらなかったが、KUMEベースの発光インジケータではHEK293細胞においてブルーシフトしており、GL4ベースの発光インジケータではHEK293細胞においてレッドシフトしていた。
[前準備その5:ルシフェラーゼ断片遺伝子の動物細胞用発現プラスミドの作製]
[手順]
 pRSETに組み込まれたOKIのN末端側断片遺伝子をBgIII部位とEcoRI部位で切断して精製し、動物細胞発現用プラスミドであるpcDNA3.1(インビトロジェン社製)のBamHI部位とEcoRI部位の間に挿入し、動物細胞発現用プラスミドを作製した。また、pRSETに組み込まれたOKIのC末側断片遺伝子及びKUMEのC末側断片遺伝子及びSfREのC末側断片遺伝子をBamHI部位とXhoI部位で切断して精製し、動物細胞発現用プラスミドであるpcDNA3.1(インビトロジェン社製)のBamHI部位とXhoI部位の間に挿入し、動物細胞発現用プラスミドを作製した。
[実験4:HEK293細胞内でのルシフェラーゼ断片の再構成による発光の回復]
[手順1](ルシフェラーゼ断片発現プラスミドのHEK293細胞への導入)
 OKIのN末側断片発現用プラスミド及びOKIのC末側断片発現用プラスミド、又はOKIのN末側断片発現用プラスミド及びKUMEのC末側断片発現用プラスミド、又はOKIのN末側断片発現用プラスミド及びSfREのC末側断片発現用プラスミドを混合し、NEPA21(ネッパジーン社製)を用いてエレクトロポレーションを行ってHEK293細胞へ導入した。遺伝子導入の内部コントロールとして、ヒトEF1αプロモーターに発現誘導されるレニラルシフェラーゼ(hRL)遺伝子を用いた。遺伝子導入したHEK293細胞は96ウェルマルチフプレートに1×10個/ウェルの割合でまき、5%COインキュベーター内で一晩培養した。
[手順2](ルシフェラーゼ断片を発現するHEK293細胞の活性測定)
 培地中にルシフェリン1mM(和光純薬社製)を加えて室温で15分間静置し、ルミノメーター(Luminescencer−JNR II:アトー社製)を用いて、10秒間の発光量を測定した。次に、セレンテラジン10μMを加えて、470−490nmのバンドパスフィルターを通して10秒間の発光量を測定し、ウェル間の遺伝子導入効率による実験誤差を是正した。
[実験4の結果]
 ルシフェラーゼ断片を別々に発現させたときの生細胞内での発光強度を比較するため、HEK293細胞にOKI−N遺伝子発現用プラスミド及びOKI−C遺伝子発現用プラスミド、又はOKI−N遺伝子発現用プラスミド及びKUME−C遺伝子発現用プラスミド、又はOKI−N遺伝子発現用プラスミド及びSfRE−C遺伝子発現用プラスミドを導入し、ルシフェリン(終濃度1mM)を加えた後の発光強度を測定した。その結果を、図5に示す。図5の縦軸は、GL4の発光量を1として表示した相対発光量を示す。図5から分かるように、生細胞内においてOKI−NとKUME354の組合せを除く、全ての組合せにおいてGL4ベースのルシフェラーゼ断片の組合せより発光強度が高かった。
[前準備その6:c−fosプロモーターに誘導されるルシフェラーゼ断片発現ベクターの作製]
[手順1]
 c−fosプロモーター領域のクローニングのために、PCRに用いる合成オリゴDNAを調整した。合成オリゴDNAの配列を以下に示す。
(c−fosプロモーター領域作製用合成オリゴDNA配列)
Figure JPOXMLDOC01-appb-I000007
[手順2]
 HeLa細胞のゲノムDNAを鋳型とし、c−fos_pro_Fw及びc−fos_pro_Rvをプライマーとして用いて、ヒトのc−fosプロモーター領域をPCRにより増幅し、pBluescriptIIベクターにサブクローニングした。
[手順3]
 c−fosプロモーターによってOKI−Nが発現誘導されるように構成された、c−fosプロモーター領域に発現可能に連結されたOKI−N遺伝子を含む発現ベクター(pfos/OKI−N)を次のように構築した。すなわち、pGL4.10中のLuc2遺伝子をHindIII部位及びXbaI部位で切り出し、あらかじめHindIII部位とXbaI部位で消化しておいたOKI−N遺伝子を挿入した。つぎに、pBluescriptIIベクターにサブクローニングされたc−fosプロモーター領域をXhoI部位及びHindIII部位で消化し、OKI−N遺伝子の上流に存在するXhoI部位とHindIII部位の間に挿入した。これにより、c−fosプロモーター誘導型OKI−N遺伝子発現ベクター(pfos/OKI−N)を作製した。
[実験5:HEK293細胞でのフォルスコリン刺激によるc−fosプロモーター活性変化のイメージング]
[手順1]
 CMVプロモーターに発現誘導される第一のベクター(pCMV/OKI359)及びc−fosプロモーターに発現誘導される第2のベクター(pfos/OKI−N)を、NEPA21(ネッパジーン社製)を用いてエレクトロポレーションを行い、HEK293細胞へ導入した。遺伝子導入したHEK293細胞は、直径35mmガラスボトムディッシュに2×10/dishの細胞密度で播種し、5%COインキュベーター内で一晩培養した。
[手順2]
 一晩の培養後、培地を無血清のCO−independent培養液(インビトロジェン社製)に交換し、4時間インキュベートした。その後、ルシフェリンを終濃度1mMとなるように加えて、さらに1時間インキュベートした。
[手順3]
 細胞を含む培養ディッシュを発光顕微鏡(LV−200;オリンパス社製)にセットした。撮像装置として、EM−CCDカメラ(iXon;Andor社製)を用いて発光画像の取得を行った。取得した画像は、パーソナルコンピュータに取り込んだ。刺激として、cAMPの合成促進剤であるフォルスコリン(終濃度5μM)で刺激を行った。刺激直後から、LV−200によって発光画像を10分おきに連続的に取得した。発光画像の解析は、MetaMorphソフトウェア(ユニバーサルイメージング社製)を用いて行った。
[結果5]
 CMVプロモーターによって発現誘導されるC末側ルシフェラーゼ断片遺伝子を含む第1の発現ベクター(pCMV/OKI359又はpCMV/KUME359又はpCMV/SfRE352)と、第2の発現ベクター(pfos/OKI−N)とを導入したHEK293細胞において得られた発光画像を図6に示す。左図はフォルスコリン刺激前の発光画像を示し、右図はフォルスコリン刺激から6時間後の発光画像を示す。
 また、取得した発光画像に基づいて、HEK293細胞におけるフォルスコリン刺激に伴う一細胞のc−fosプロモーター活性を表す発光強度の変化を解析した。この発光強度変化を図7に示す。図7において横軸は時間であり、縦軸は、相対的な発光強度を表す。図7における曲線は、細胞の発光強度変化を示す。
 図7に示されるように、HEK293細胞では、いずれのルシフェラーゼ断片の組合せを用いても、フォルスコリン刺激後直ちにc−fosプロモーター活性が上昇していく様子が観察された。
[前準備その7:シナプシンI(SYN)プロモーターに誘導されるルシフェラーゼ断片発現ベクターの作製]
[手順1]
 SYNプロモーター領域のクローニングのために、PCRに用いる合成オリゴDNAを調整した。合成オリゴDNAの配列を以下に示す。
(SYNプロモーター領域作製用合成オリゴDNA配列)
Figure JPOXMLDOC01-appb-I000008
[手順2]
 HeLa細胞のゲノムDNAを鋳型とし、SYN_pro_Fw及びSYN_pro_Rvをプライマーとして用いて、ヒトのSYNプロモーター領域をPCRにより増幅し、pBluescriptIIベクターにサブクローニングした。
[手順3]
 SYNプロモーターによってOKIのC末端側断片(OKI359)が発現誘導されるように構成された、SYNプロモーター領域に発現可能に連結されたOKI359遺伝子を含む発現ベクター(pSYN/OKI359)を次のように構築した。すなわち、pGL4.10中のLuc2遺伝子をHindIII部位及びXbaI部位で切り出し、あらかじめHindIII部位とXbaI部位で消化しておいたOKI359遺伝子を挿入した。つぎに、pBluescriptIIベクターにサブクローニングされたSYNプロモーター領域をXhoI部位及びHindIII部位で消化し、OKI−N遺伝子の上流に存在するXhoI部位とHindIII部位の間に挿入した。これにより、SYNプロモーター誘導型OKI359遺伝子発現ベクター(pSYN/OKI359)を作製した。
[実験6:ラット脳スライス培養でのフォルスコリン刺激によるc−fosプロモーター活性変化のイメージング]
 複数種類の神経細胞が混在している試料として、ラットの海馬のスライス試料を用いた。すなわち、本測定では、in vitroに近い状態で、神経細胞のc−fosプロモーター活性測定を行った。
[手順1]
 まず、7−9日齢のSDラットから全脳を採取し、海馬を含む部位を、リニアスライサーPro7(堂坂イーエム社製)を用いて400μmの厚さにスライスした。海馬スライスはミリセルカルチャーインサート(ミリポア社製)上に置いて、25%の馬血清及び25%のHank’s液を含むEarle’s MEM培地中にて5%COインキュベーター内で培養した。培養開始から5−7日後にラット海馬切片の神経細胞に、エレクトロポレーション法により、第1の発現ベクター(pSYN/OKI359)及び第2の発現ベクター(pfos/OKI−N)を遺伝子導入した。遺伝子導入した切片サンプルを、25%の馬血清及び25%のHank’s液を含むEarle’s MEM培地中にて5%COインキュベーター内で一晩培養した。
[手順2]
 一晩の培養後、培地を無血清のCO−independent培養液(インビトロジェン社製)に交換し、4時間インキュベートした。その後、ルシフェリンを終濃度1mMとなるように加えて、さらに1時間インキュベートした。
[手順3]
 切片を含む培養ディッシュを発光顕微鏡(LV−200;オリンパス社製)にセットした。撮像装置として、EM−CCDカメラ(iXon;Andor社製)を用いて発光画像の取得を行った。取得した画像はパーソナルコンピュータに取り込んだ。刺激として、cAMPの合成促進剤であるフォルスコリン(終濃度5μM)で刺激を行った。刺激直後から、LV−200によって発光画像を10分おきに連続的に取得した。発光画像の解析は、MetaMorphソフトウェア(ユニバーサルイメージング社製)を用いて行った。
[実験6の結果]
 神経細胞特異的プロモーター(SYNプロモ−ター)によって発現誘導されるC末端側ルシフェラーゼ断片遺伝子を含む第1の発現ベクター(pSYN/OKI359)と、第2の発現ベクター(pfos/OKI−N)とを導入した培養海馬切片において得られた発光画像を図8に示す。左図はフォルスコリン刺激前の発光画像を示し、右図はフォルスコリン刺激から8時間後の発光画像を示す。
 また、取得した発光画像に基づいて、神経細胞におけるフォルスコリン刺激に伴う細胞毎のc−fosプロモーター活性を表す発光強度の変化を解析した。この発光強度変化を図9に示す。図9において横軸は時間であり、縦軸は、相対的な発光強度を表す。図9における各曲線は、各細胞の発光強度変化を示す。
 図9に示されるように、神経細胞では、フォルスコリン刺激後直ちにc−fosプロモーター活性が上昇していく細胞と、フォルスコリン刺激後6時間程たってからc−fosプロモーター活性が上昇していく細胞とが存在した。このように、神経細胞では、フォルスロリン刺激後のc−fosプロモーター活性の経時変化について細胞間での差が大きかった。
[前準備その8:発光カルシウムインジケータの発現ベクターの作製]
[手順1]
 カルモジュリン及びM13のクローニングのために、PCRに用いる合成オリゴDNAを以下に示す配列で調製した。
 [CaM−M13遺伝子作製用合成オリゴDNA配列]
Figure JPOXMLDOC01-appb-I000009
[手順2](CaM−M13遺伝子のPCRクローニング)
 カルシウム結合タンパク質であるカルモジュリン(CaM)及びカルモジュリンと可逆的に結合又は解離できるペプチド(M13)を含む領域を、カメレオン遺伝子(YC2.1)(非特許文献1)のcDNAを鋳型とし、上記合成オリゴDNAをプライマーとしてPCRにより、CaM−M13遺伝子(カメレオン遺伝子の230番目から406番目のアミノ酸配列に対応する領域を含む。)を増幅した。
[手順3](発光カルシウムインジケータ遺伝子の発現ベクターの作製)
 PCRで増幅させたCaM−M13遺伝子をXhoI部位及びBamHI部位で消化し、置換ルシフェラーゼ遺伝子又は異種置換ルシフェラーゼ遺伝子を含むpRSETのXhoI部位とBgIII部位の間に挿入し、発光カルシウムインジケータ遺伝子の大腸菌発現用ベクターを作製した。さらに、発光カルシウムインジケータ遺伝子をBamHI部位及びEcoRI部位で消化し、動物細胞発現用プラスミドであるpcDNA3.1(インビトロジェン社製)のBamHI部位とEcoRI部位の間に挿入し、発光カルシウムインジケータの動物細胞用発現プラスミドを作製した。
[実験7:発光カルシウムインジケータの発光活性測定]
[手順1](発光カルシウムインジケータ発現ベクターのHEK293細胞への導入)
 発光カルシウムインジケータの発現ベクターを、NEPA21(ネッパジーン社製)を用いてエレクトロポレーションを行ってHEK293細胞へ導入した。遺伝子導入の内部コントロールとして、ヒトEF1αプロモーターに誘導されるレニラルシフェラーゼ(hRL)を用いた。遺伝子導入を行ったHEK293細胞を、96ウェルマルチプレートに1×10個/ウェルの割合で播種し、5%COインキュベーター内で一晩培養した。
[手順2](発光カルシウムインジケータを発現するHEK293細胞の発光活性測定)
 培地中にルシフェリン1mM(和光純薬社製)を加えて室温で15分間静置し、ルミノメーター(Luminescencer−JNR II:アトー社製)を用いて、10秒間の発光量を測定した。次に、セレンテラジン10μMを加えて、470−490nmのバンドパスフィルターを通して10秒間の発光量を測定し、ウェル間の遺伝子導入効率による実験誤差を是正した。
[実験7の結果]
 哺乳類の生細胞内での発光強度を比較するため、HEK293細胞に各発光カルシウムインジケータ遺伝子を導入し、ルシフェリン(終濃度1mM)を加えた後の発光強度を測定した。その結果を図11に示す。縦軸は相対的な発光強度を示す。図11から分かるように、生細胞内において、cpOKI344−CaM、cpKUME339−CaM、cpSfRE357−CaMを除く全ての発光カルシウムインジケータがGL4ベースのカルシウムインジケータ(cpGL4−CaM)より発光強度が高いことを見出した。
[実験8:発光カルシウムインジケータのカルシウムキャリブレーション]
[手順1]
 発光カルシウムインジケータ遺伝子を含むpRSETベクターをJM109(DE3)株にトランスフォームして、37℃で一晩培養し、QIAexpressionist(キアゲン社製)を用いて、Hisタグ発現タンパクを精製した。
[手順2]
 Protein Assay Reagent(バイオラッド社製)を用いてタンパク質定量を行い、1μg/μLとなるように希釈した。
[手順3]
 希釈したルシフェラーゼ溶液5μL(タンパク質5μg)に、0μM、0.017μM、0.038μM、0.065μM、0.10μM、0.15μM、0.23μM、0.35μM、0.60μM、1.35μM、3.50μMのCa2+バッファー溶液(Ca2+ calibration kit;インビトロゲン社製)を35μL加えて室温で15分静置した。
[手順4]
 Bright−Glo(プロメガ社製)40μLを加えて室温で15分間静置し、ルミノメーター(Luminescencer−JNR II:アトー社製)を用いて、室温で10秒間の発光量を測定した。
[実験8の結果]
 各発光カルシウムインジケータのカルシウムに対する感受性を調べるため、Ca2+ calibration buffer kitを用いて溶液中のCa2+濃度に対する発光活性への影響を調べた。その結果を図12に示す。図12の縦軸は相対的な発光強度であり、横軸はカルシウムイオン濃度である。図12に示したようにいずれの発光カルシウムインジケータにおいても、Ca2+濃度の増加に応じて発光強度が低くなることが明らかになった。
 また、発光カルシウムインジケータのCa2+に対するKd値は、212−288nMであり、cpGL4−CaM(Kd=165nM)のそれよりも若干親和性が低かった。しかし、これらは市販のCa2+インジケータの中でも高親和性のものと同程度であり、作製した発光カルシウムインジケータは、細胞質のCa2+濃度変化を捉えることができることを示している。さらに、KUME−CとOKI−N、又はSfRE−CとOKI−Nを含む発光カルシウムインジケータではカルシウム結合型と非結合型での発光強度の差が、GL4やOKIのルシフェラーゼ断片からなる発光カルシウムインジケータと比較して大きいことが明らかになった(Ca2+非結合型:Ca2+結合型の発光強度の比が、KUME−CとOKI−Nを含む発光カルシウムインジケータでは1:0.17、SfRE−CとOKI−Nを含む発光カルシウムインジケータでは1:0.16、OKIを含む発光カルシウムインジケータでは1:0.42、GL4を含む発光カルシウムインジケータでは1:0.48)。KUME−CとOKI−N、又はSfRE−CとOKI−Nを含む発光カルシウムインジケータは、Ca2+濃度変化に伴ってより大きく発光強度を変化させうることが示された。
[実験9:HEK293細胞におけるATP刺激時の細胞内カルシウム変動の発光測定]
[手順1]
 HEK293細胞(1×10個)を遠心して集め、発光カルシウムインジケータの発現ベクターを、NEPA21を用いて、エレクトロポレーションにより遺伝子導入した。遺伝子導入を行ったHEK293細胞は24ウェルマルチフプレートに1×10個/ウェルの割合でまき、5%COインキュベーター内で一晩培養した。
[手順2]
 細胞をCO−independent培地で2回リンスした後に、終濃度1mMのD−ルシフェリンを含むCO−independent培地を200μL加えて15分間静置した。
[手順3]
 プレートをルミノメーター(Luminescencer−JNR II:アトー社製)にセットし、ATP(200μM)刺激前後の発光強度を経時的に測定した。
[実験9の結果]
 発光カルシウムインジケータをHEK293細胞へ遺伝子導入して一晩培養後、細胞をCO−independent培地でリンスし、ルシフェリンを終濃度2mMとなるようにCO−independet培地に添加して15分静置後にルミノメーターで発光強度を測定した。ATP(200μM)刺激の前後での発光強度を経時的に測定して図13に示すようにグラフにプロットした。図13の縦軸は相対的な発光強度であり、横軸は時間である。
 ATP刺激により、全ての発光インジケータの発光強度が低下しており、細胞内カルシウムの濃度変化を発光強度の変化として捉えられることが明らかになった。また、KUMEやSfRE由来のルシフェラーゼ配列を含むインジケータでは、GL4由来のインジケータよりもカルシウム濃度変化に対する発光強度変化が大きいことが明らかになった。この結果は、図12に示したカルシウムキャリブレーションのデータとよく合致している。
[実験10:HEK293細胞におけるATP刺激時の発光カルシウムイメージング]
[手順1](HEK293細胞の培養)
 HEK293細胞をATCC社より入手し、5%COインキュベーター内で、10%Fetal Bovine Serum、及び、1×Nonessential amino acidsを添加したEarle’s MEM/培地(GIBCO社製)で培養した。
[手順2](発光カルシウムインジケータ発現ベクターの導入)
 培養したHEK293細胞を直径35mmガラスボトムディッシュに、2×10/dishの細胞密度で播種し、5%COインキュベーター内で一晩培養し、発光カルシウムインジケータ発現用プラスミドを、NEPA21を用いてエレクトロポレーションを行い、5%COインキュベーター内で一晩培養した。
[手順3](発光画像の撮像)
 培地中にルシフェリン2mM(和光純薬社製)を加えて1時間静置してから、培養ディッシュを発光顕微鏡LV−200(オリンパス社製)にセットし、10秒間隔で発光画像のタイムラプス撮影を行った。発光観察条件として、対物レンズの倍率は40倍、露出時間は5秒、ビニングは1×1とした。CCDカメラとしてEM−CCDカメラiXon(アンドール社製)を用い、画像解析装置として構成したパーソナルコンピュータに発光画像を取り込んだ。
[実験10の結果]
 培地中にATPを添加した時の細胞内カルシウムの濃度変化に対する発光カルシウムインジケータの発光強度変化をイメージングした。EMゲインは1000に、露光時間は5秒間に設定することで一細胞レベルでの発光を観察することができた。発光画像は10秒ごとにPCへ取り込んだ。図14に示した画像は、左の画像が刺激前の画像、右の画像がATP刺激後の画像である。その結果、図14に示したように細胞の発光強度がATP刺激により減少する様子が観察できた。また、個々の細胞の発光強度変化を継時的にグラフへプロットすると、図14に示したようにATP刺激による発光強度変化が一過的である様子も観察できた。図14の縦軸は刺激前の発光強度を1としたときの相対的な発光強度であり、横軸は時間(分)である。これらの結果は、発光カルシウムインジケータが、細胞内のカルシウム濃度をモニターできていることを示している。
[前準備その9:5HT2A受容体遺伝子のクローニング]
[手順1]
 ヒト5HT2A受容体遺伝子の作製のために、PCRに用いる合成オリゴDNAを以下に示す配列で調製した。
[ヒト5HT2A受容体遺伝子作製用合成オリゴDNA配列]
Figure JPOXMLDOC01-appb-I000010
[手順2](ヒト5HT2A受容体遺伝子のPCRクローニング)
 ヒト脳cDNAライブラリ(タカラバイオ社製)を鋳型として、5HT2A受容体遺伝子(ヒトの5HT2A受容体遺伝子の全長に対応する領域を含む。)を、上記合成オリゴDNAをプライマーとしてPCRにより増幅した。
[手順3](ヒト5HT2A受容体遺伝子の動物細胞発現用プラスミドの作製)
 クローニングした遺伝子を哺乳類細胞の発現ベクターpcDNA3.1(+)(インビトロジェン社製)へ組み込み、ヒト5HT2A受容体発現用プラスミドpcDNA/5HT2ARを作製した。
[実験11:HEK293細胞でのカルシウム濃度変動の高速発光イメージング]
[手順1](HEK293細胞の培養)
 HEK293細胞をATCC社より入手し、5%COインキュベーター内で、10%Fetal Bovine Serum、及び、1×Nonessential amino acidsを添加したEarle’s MEM/培地(GIBCO社製)で培養した。
[手順2](発光カルシウムインジケータ発現ベクターの導入)
 手順1で培養した細胞を、直径35mmガラスボトムディッシュに、2×10/dishの細胞密度で播種し、5%COインキュベーター内で一晩培養し、ヒト5HT2A受容体発現用プラスミドpcDNA/5HT2AR、及び発光カルシウムインジケータ発現用プラスミドを、NEPA21を用いてエレクトロポレーションを行い、5%COインキュベーター内で一晩培養した。
[手順3](発光画像の撮像)
 手順2の培養物の培地中にルシフェリン2mM(プロメガ社製)を加えて1時間静置してから、発光顕微鏡LV−200(オリンパス社製)にセットし、500ミリ秒間隔で発光画像のタイムラプス撮影を行った。発光観察条件として、対物レンズの倍率は40倍、露出時間は200ミリ秒間、ビニングは2×2、EM−CCDカメラiXon(アンドール社製)を用いて発光画像をパーソナルコンピュータに取り込んだ。
[手順4](セロトニン刺激による発光画像のタイムラプス撮像)
 タイムラプス撮影開始から30秒後、5HT(最終濃度10μM)で刺激を行い、引き続き発光画像のタイムラプス撮影を行った。
[手順5]
 手順3で撮影した各々の発光画像に対して複数のROI(Region of Interest:関心領域)を指定し、また、手順4で撮影した各々の発光画像に対して複数のROIを指定した。次いで、指定した各ROIの発光強度を各々の発光画像に基づいて測定し、その発光強度の経時変化をグラフで表示した。発光画像の解析は、Metamorphソフトウェア(ユニバーサルイメージング社製)を用いて行った。
[実験11の結果]
 従来の発光カルシウムインジケータ(cpGL4−CaM)よりも発光強度が強くなったインジケータを用いて、受容体刺激時の細胞内カルシウムの速い濃度変化をとらえることができるがどうか検討を行った。cpSfRE55−CaMを、5HT2A受容体を発現するHEK293細胞に導入し、LV−200を用いて発光画像を取得したところ、EMゲインは1000に、露光時間を200ミリ秒、ビニングを2×2に設定することで1細胞レベルでの発光を観察することができた。発光画像を500ミリ秒ごとにPCへ取り込みながら、細胞を5HT(10μM)で刺激した。結果を図15に示す。図15の右側のグラフの縦軸は、刺激前の発光強度を1としたときの相対的な発光強度であり、横軸は、時間(分)である。刺激前後の発光画像を解析すると、図15に示したように一過性の発光強度減少を示す細胞のほかに、オシレーションを起こしている細胞をとらえることができた。この結果は、新規の発光カルシウムインジケータを用いることで、高速カルシウムイメージング(1秒以下の露光時間)にも適用できることを示している。
 本発明の分割型組換えタンパク質、遺伝子、ベクター、細胞及びベクターセットは、細胞内におけるカルシウムイオン動態、遺伝子発現、タンパク質相互作用、受容体相互作用の解析方法に好適に使用することができる。本発明の解析方法は、外来遺伝子の発現が弱い細胞におけるイメージング、1細胞イメージング、高速イメージング、多色イメージングなどに好適に使用することができる。

Claims (20)

  1.  互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたホタルルシフェラーゼのN末端側断片と、
     互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の58個~78個のアミノ酸を保持するホタルルシフェラーゼのC末端側断片と、
     リンカーペプチドとを含む分割型組換えタンパク質であって、
     該N末端側断片と該C末端側断片とが結合することによってホタルルシフェラーゼ活性を回復する、分割型組換えタンパク質。
  2.  前記N末端側断片及び前記C末端側断片が、互いに異なる種類のホタルのホタルルシフェラーゼに由来する、請求項1に記載の分割型組換えタンパク質。
  3.  前記N末端側断片及び前記C末端側断片が、それぞれ、オキナワマドボタル(Pyrocoelia matsumurai)、クメジマミナミボタル(Drilaster Kumejimensis)及びシブイロヒゲボタル(Stenocladius flavipennis)からなる群より選択されるホタルのホタルルシフェラーゼに由来する、請求項1又は2に記載の分割型組換えタンパク質。
  4.  前記N末端側断片が、オキナワマドボタル(Pyrocoelia matsumurai)のホタルルシフェラーゼに由来する、請求項3に記載の分割型組換えタンパク質。
  5.  前記N末端側断片がC末端側に配置されており、前記C末端側断片がN末端側に配置されている、請求項1~4のいずれか1項に記載の分割型組換えタンパク質。
  6.  前記N末端側断片と前記C末端側断片との間に、カルシウム結合領域と、該カルシウム結合領域と可逆的に結合又は解離できる相互作用領域とを更に含む、請求項1~5のいずれか1項に記載の分割型組換えタンパク質。
  7.  前記カルシウム結合領域が、カルモジュリン由来であり、前記相互作用領域が、M13ペプチドである、請求項6に記載の分割型組換えタンパク質。
  8.  請求項1~7のいずれか1項に記載の分割型組換えタンパク質をコードする、遺伝子。
  9.  プロモーター遺伝子と、該プロモーター遺伝子に発現可能に連結された請求項8に記載の遺伝子を含む、ベクター。
  10.  請求項9に記載のベクターを含む、細胞。
  11.  プロモーター遺伝子と、該プロモーター遺伝子に発現可能に連結された請求項6又は7に記載の分割型組換えタンパク質をコードする遺伝子とを含むベクターを含む細胞を作製する工程と、
     該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
     該細胞における発光量を経時的に測定する工程と、
     該発光測定工程で検出した発光量の変動に基づき、該細胞内におけるカルシウムイオン濃度の変動を解析する工程と、
    を含む、細胞内カルシウムイオンの解析方法。
  12.  互いに異なる発光色を有する前記分割型組換えタンパク質をコードする遺伝子を含む2以上のベクターを用いる、請求項11に記載の細胞内カルシウムイオンの解析方法。
  13.  1細胞内のカルシウムイオン濃度の変動を解析する、請求項11又は12に記載の細胞内カルシウムイオンの解析方法。
  14.  プロモーター遺伝子と、該プロモーター遺伝子に発現可能に連結された目的遺伝子及び請求項1~5のいずれか1項に記載の分割型組換えタンパク質をコードする遺伝子とを含むベクターを含む細胞を作製する工程と、
     該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
     該細胞における発光量を測定する工程と、
     該発光量に基づき、該細胞内における該目的遺伝子の発現量を解析する工程と、
    を含む、細胞内遺伝子発現の解析方法。
  15.  互いに異なる発光色を有する前記分割型組換えタンパク質をコードする遺伝子を含む2以上のベクターを用いる、請求項14に記載の細胞内遺伝子発現の解析方法。
  16.  互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割されたホタルルシフェラーゼのN末端側断片をコードする遺伝子が、一方のプロモーター遺伝子と発現可能に連結されているベクターと、
     互いに結合することによりホタルルシフェラーゼ活性が回復するように2分割できる分割位置からN末端側の58個~78個のアミノ酸を保持するホタルルシフェラーゼのC末端側断片をコードする遺伝子が、別のプロモーター遺伝子と発現可能に連結されているベクターと、
    を含む、ベクターセット。
  17.  前記N末端側断片及び前記C末端側断片が、互いに異なる種類のホタルのホタルルシフェラーゼに由来する、請求項16に記載のベクターセット。
  18.  いずれか一方のプロモーター遺伝子が、誘導性プロモーター遺伝子である、請求項16又は17に記載のベクターセット。
  19.  請求項18に記載のベクターセットを含む細胞を作製する工程と、
     該細胞に、該細胞外からホタルルシフェリンを添加する工程と、
     前記誘導性プロモーター遺伝子を刺激する誘導物質を添加する工程と、
     該細胞における発光量を測定する工程と、
     該発光量に基づき、該細胞内における該誘導性プロモーター遺伝子の活性を解析する工程と、
    を含む、細胞内遺伝子発現の解析方法。
  20.  請求項16~18のいずれか1項に記載のベクターセットを含む、細胞。
PCT/JP2014/074606 2014-09-10 2014-09-10 分割型組換えルシフェラーゼ及びそれを用いた解析方法 WO2016038750A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/074606 WO2016038750A1 (ja) 2014-09-10 2014-09-10 分割型組換えルシフェラーゼ及びそれを用いた解析方法
JP2016547651A JPWO2016038750A1 (ja) 2014-09-10 2014-09-10 分割型組換えルシフェラーゼ及びそれを用いた解析方法
US15/451,939 US20170183637A1 (en) 2014-09-10 2017-03-07 Split recombinant luciferase, and analysis method using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074606 WO2016038750A1 (ja) 2014-09-10 2014-09-10 分割型組換えルシフェラーゼ及びそれを用いた解析方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/451,939 Continuation US20170183637A1 (en) 2014-09-10 2017-03-07 Split recombinant luciferase, and analysis method using thereof

Publications (1)

Publication Number Publication Date
WO2016038750A1 true WO2016038750A1 (ja) 2016-03-17

Family

ID=55458533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074606 WO2016038750A1 (ja) 2014-09-10 2014-09-10 分割型組換えルシフェラーゼ及びそれを用いた解析方法

Country Status (3)

Country Link
US (1) US20170183637A1 (ja)
JP (1) JPWO2016038750A1 (ja)
WO (1) WO2016038750A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020043812A1 (en) 2018-08-30 2020-03-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for detecting a modulator compound for chemical targeting of protein-protein interactions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296973A (ja) * 2008-06-16 2009-12-24 Olympus Corp タンパク質相互作用解析方法、ポリヌクレオチド、および、組成物
JP2011004734A (ja) * 2009-05-29 2011-01-13 Univ Of Tokyo タンパク質間相互作用の高感度検出方法
JP2011167079A (ja) * 2010-02-16 2011-09-01 Olympus Corp ホタル由来ルシフェラーゼ
JP2011195547A (ja) * 2010-03-23 2011-10-06 Olympus Corp サイクリックgmp解析方法
JP2012051824A (ja) * 2010-08-31 2012-03-15 Olympus Corp カルシウム解析方法
JP2013074961A (ja) * 2011-09-30 2013-04-25 Daio Paper Corp パンツ型吸収性物品
JP2013081459A (ja) * 2011-09-30 2013-05-09 Olympus Corp ホタル由来ルシフェラーゼ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296973A (ja) * 2008-06-16 2009-12-24 Olympus Corp タンパク質相互作用解析方法、ポリヌクレオチド、および、組成物
JP2011004734A (ja) * 2009-05-29 2011-01-13 Univ Of Tokyo タンパク質間相互作用の高感度検出方法
JP2011167079A (ja) * 2010-02-16 2011-09-01 Olympus Corp ホタル由来ルシフェラーゼ
JP2011195547A (ja) * 2010-03-23 2011-10-06 Olympus Corp サイクリックgmp解析方法
JP2012051824A (ja) * 2010-08-31 2012-03-15 Olympus Corp カルシウム解析方法
JP2013074961A (ja) * 2011-09-30 2013-04-25 Daio Paper Corp パンツ型吸収性物品
JP2013081459A (ja) * 2011-09-30 2013-05-09 Olympus Corp ホタル由来ルシフェラーゼ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUKER,K.E. ET AL.: "Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals", PROC.NATL.ACAD.SCI. U.S.A., vol. 101, no. 33, 17 August 2004 (2004-08-17), pages 12288 - 93, XP002351606, DOI: doi:10.1073/pnas.0404041101 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020043812A1 (en) 2018-08-30 2020-03-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for detecting a modulator compound for chemical targeting of protein-protein interactions

Also Published As

Publication number Publication date
US20170183637A1 (en) 2017-06-29
JPWO2016038750A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
Sara et al. Selective capability of SynCAM and neuroligin for functional synapse assembly
US9945860B2 (en) Nicotinamide adenine dinucleotide indicators, methods of preparation and application thereof
Bedbrook et al. Genetically encoded spy peptide fusion system to detect plasma membrane-localized proteins in vivo
US10828378B2 (en) Nucleic acid construct for expression of oxidative stress indicator and use thereof
WO2010119721A1 (ja) 超高輝度で安定な人工生物発光酵素
CN113501881A (zh) 融合蛋白
Kost et al. Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor
JP2009153399A (ja) 一分子型リアルタイム生物発光イメージングプローブ
JP6808842B2 (ja) Fgf21応答性レポーター遺伝子細胞株
WO2013151511A1 (en) Modified Dual-Colour Protein
WO2016038750A1 (ja) 分割型組換えルシフェラーゼ及びそれを用いた解析方法
WO2008094316A2 (en) Novel branchiostoma derived fluorescent proteins
EP3037534B1 (en) Polypeptide exhibiting fluorescent properties, and utilization of same
US20200400567A1 (en) Fusion polypeptide
CA3145920A1 (en) Biosensors for detecting arrestin signaling
JP2021514603A (ja) 細胞内atpの生細胞分析のための方法と組成物
JP2014161321A (ja) 発光量を補正する方法
EP1716177B1 (en) Cytochrome c protein and assay
JP2011505813A (ja) ρ0細胞を生成させる方法
Prins Can two wrongs make a right? Investigating F508del-CFTR rescue with second-site mutations using a new fluorescence assay for high content CFTR screening
WO2006066959A1 (en) Fusion proteins and methods for determining protein-protein-interactions in living cells and cell lysates, nucleic acids encoding these fusion proteins, as well as vectors and kits containing these
JP2023109567A (ja) 匂い物質検出用脂質膜構造体、匂い物質検出用脂質膜センサ、匂い物質検出方法、および脂質膜構造体の製造方法
JP2014018191A (ja) オキナワマドボタルに由来するルシフェラーゼ
WO2014016455A1 (es) VARIANTES DE LA PROTEÍNA DE FUSIÓN SENSIBLE AL CALCIO tdTOMATO-AEQUORINA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901497

Country of ref document: EP

Kind code of ref document: A1