WO2013042528A1 - 熱間圧延用遠心鋳造複合ロール及びその製造方法 - Google Patents

熱間圧延用遠心鋳造複合ロール及びその製造方法 Download PDF

Info

Publication number
WO2013042528A1
WO2013042528A1 PCT/JP2012/072345 JP2012072345W WO2013042528A1 WO 2013042528 A1 WO2013042528 A1 WO 2013042528A1 JP 2012072345 W JP2012072345 W JP 2012072345W WO 2013042528 A1 WO2013042528 A1 WO 2013042528A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer layer
composite roll
carbides
centrifugal
carbide
Prior art date
Application number
PCT/JP2012/072345
Other languages
English (en)
French (fr)
Inventor
小田 望
泰則 野崎
本田 亮太
拓己 大畑
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US14/344,734 priority Critical patent/US9757779B2/en
Priority to BR112014006751-1A priority patent/BR112014006751B1/pt
Priority to EP12833289.7A priority patent/EP2745944B1/en
Priority to JP2013534654A priority patent/JP6036698B2/ja
Priority to CN201280045594.7A priority patent/CN103813864B/zh
Priority to KR1020147004885A priority patent/KR101956652B1/ko
Publication of WO2013042528A1 publication Critical patent/WO2013042528A1/ja
Priority to ZA2014/01931A priority patent/ZA201401931B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling

Definitions

  • the present invention relates to a centrifugal cast composite roll for hot rolling having a composite structure comprising an outer layer excellent in wear resistance and an inner layer excellent in toughness, particularly a centrifugal cast composite suitable for finish hot rolling of a hot strip mill of a thin steel plate.
  • the present invention relates to a roll and a manufacturing method thereof.
  • a hot strip mill heats a slab several hundred millimeters thick manufactured by continuous casting, etc., and then sequentially passes between the rolls of a plurality of rough rolling mills and a plurality of finishing rolling mills to a thickness of several to several tens of millimeters. It is to be rolled.
  • a finish rolling mill is usually a series of 5 to 7 quadruple rolling mill stands arranged in series, and in particular, a finishing mill composed of seven stands is widely used. In a seven-stand finishing mill, the first to third stands are called the front stands, and the fourth to seventh stands are called the rear stands.
  • a centrifugal cast composite roll with a composite structure in which an outer layer with excellent wear resistance and an inner layer with excellent toughness are welded and integrated ( Simply referred to as “composite roll”).
  • composite roll a centrifugal cast composite roll with a composite structure in which an outer layer with excellent wear resistance and an inner layer with excellent toughness are welded and integrated
  • the outer layer surface may be damaged by wear, rough skin, heat cracks, etc., so the composite roll is removed from the rolling mill after a certain period of use, and the damage is removed by grinding (machining). To do.
  • the body diameter of the composite roll gradually decreases from the initial diameter to the minimum diameter that can be used for rolling (removal diameter). From the initial diameter to the scrap diameter is called rolling effective diameter (simply called “effective diameter”).
  • a centrifugal cast composite roll in which a high-speed outer layer excellent in wear resistance and an inner layer of cast iron or cast steel excellent in toughness are metallurgically integrated has been used in a finish rolling mill.
  • High-speed carbides such as MC type V carbide, M 6 C type and M 2 C type Mo carbide and W carbide, and M 7 C 3 type and M 23 C 6 type Cr carbide precipitate.
  • Mo and W since the decrease in the base hardness at high temperature is suppressed by Mo and W, the wear resistance is excellent.
  • the rolled steel plate is thick and there is less risk of erosion of the outer layer due to the thin steel plate folded and rolled like the rear stand, so there are many composite rolls with high wear resistant high speed outer layer. It is used.
  • the outer layer melt is poured into a rotating centrifugal casting mold to solidify the outer layer on the inner surface of the mold, and then the mold is assembled in a vertical direction together with another upper mold and a lower mold.
  • This is manufactured at a low cost by a centrifugal casting method in which a stationary casting mold is formed and the inner layer molten metal is cast into the stationary casting mold.
  • Japanese Patent Application Laid-Open No. 2-25249 / C describes the weight ratio of C: 1 to 4%, Si: 3% or less, Mn: 1.5% or less, Ni: 4% or less, Cr: 2-15%, Mo: 8% or less, W : 20% or less, V: 2 to 10%, and at least one selected from the group consisting of Ti, Zr and Nb: a total of 5% or less, the balance being substantially composed of Fe and inevitable impurities, and C
  • a wear-resistant centrifugal cast composite roll comprising an outer shell layer having a composition in which a value of% + 0.4V% is 6.0 or less and an inner layer made of cast iron or cast steel is disclosed.
  • This composite roll is subjected to a quenching treatment in which it is heated to a temperature above the transformation point of the outer layer (1000 to 1100 ° C.) and then cooled at a constant cooling rate, and a tempering treatment at 550 ° C.
  • a quenching treatment By the quenching treatment, the outer layer base is transformed into a hard structure such as martensite or bainite, and the hardness is increased.
  • the cooling rate of the quenching process becomes slower from the surface toward the inside, so the hardness inside the outer layer is lower than the hardness of the outer layer surface.
  • Japanese Patent Laid-Open No. 6-145887 has weight ratios of C: 1.8 to 3.0%, Cr: 4.0 to 8.0%, Mo: 2.0 to 8.0%, W: 2.0 to 6.0%, V: 4.0 to 10.0%, and Co: 12.0 %, With the balance being substantially Fe, the outer layer consisting of high-speed steel, and by weight ratio: C: 1.0-2.0%, Si: 1.0-3.0%, Mn: 0.2-1.0%, and Ni: 0.3 Disclosed is a centrifugally cast composite sleeve roll comprising an inner layer of spheroidal graphite adamite containing ⁇ 1.5%, the balance being substantially Fe. This composite sleeve roll is quenched from a high temperature of 1000 to 1200 ° C. In this composite sleeve roll, the hardness of the outer layer is substantially constant from the surface to a depth of about 100 mm.
  • the hardness of the outer layer is lower than the surface or substantially constant up to a certain depth.
  • the hardness of the conventional centrifugally cast composite roll decreases in the outer layer.
  • Composite rolls of the same material are usually used for the front and rear stands of the 7-stand finishing mill.
  • a composite roll having an initial diameter is used in the first stand where the thick steel plate is easy to bite, and an effective diameter is reduced by cutting in the second stand.
  • a composite roll whose effective diameter is further reduced by repeating the cutting is often used. In this way, the composite roll whose effective diameter has been reduced by refurbishing can be transferred from the first stand to the second stand and from the second stand to the third stand.
  • the first stand composite roll is first contacted with a high-temperature rolled material, so that a deep heat crack occurs due to thermal shock. Since the surface quality of the rolled material deteriorates due to the rough surface of the composite roll starting from the heat crack, the amount of refurbishment for removing the heat crack is large. In addition, in order to prevent poor steel sheet biting into the finishing mill and poor surface quality, the defective part at the tip of the steel sheet that has passed through the roughing mill is sheared and removed by the crop shear, but the steel tip is crushed and oxidized by shearing. There is also the problem that scale occurs and these damage the composite roll of the first stand.
  • the composite rolls used for the second and third stands on the downstream side are not damaged by burrs and oxide scales, but are placed in front of the fourth to seventh stands, so they have a small surface roughness (smooth) N) Rolled skin is required.
  • a composite roll with a large effective diameter used in the first stand is required to have a resistance to scratches (skin roughness resistance) due to burrs and oxide scales, and a composite roll with a small effective diameter used in the third stand. Requires a smooth rolled skin.
  • the same composite roll cannot meet all these requirements depending on the effective diameter.
  • an object of the present invention is to provide a hot-rolling centrifugal cast composite roll having an outer layer that is resistant to heat cracks when the effective diameter is large (close to the initial diameter) and that is resistant to wear when the effective diameter is small (close to the scrap diameter). And a method of manufacturing the same.
  • the hardness of the deep part of the outer layer does not increase that much, and as a result, the surface part of the outer layer becomes harder than the deep part.
  • the deep part is harder than the surface part of the outer layer. Relationship While maintaining the hardness of the entire outer layer, the hardness of the austenite is significantly increased by transformation of residual austenite to bainite and martensite. It was discovered that a centrifugal cast composite roll having excellent wear resistance and a smooth rolling surface can be obtained at a portion having a small effective diameter close to the reject diameter, and the present invention has been conceived.
  • the centrifugal cast composite roll for hot rolling of the present invention is 0.8 to 3.5% C, 0.1 to 2.5% Si, 0.1 to 2.5% Mn, 1.2 to 15% Cr, 1 to 5% by mass%.
  • the Shore hardness of the outer layer at the initial diameter of the composite roll is 67 to 82, and the maximum value of the Shore hardness of the outer layer at a site deeper by 30 mm or more from the initial diameter is greater than that of the outer layer at the initial diameter. It is characterized by one or more higher than Shore hardness.
  • the slope A (Hs / mm) of the linear regression line of the depth direction distribution of the Shore hardness of the outer layer from the initial diameter to a depth of 30 mm is preferably positive.
  • the outer layer preferably further contains 2 to 15% by mass of V + Nb.
  • the outer layer preferably further contains at least one of 1 to 10% Co, 0.01 to 2% Ti, 0.01 to 2% Zr, and 0.001 to 0.15% N by mass%.
  • the inner layer is preferably made of ductile cast iron. Further, an intermediate layer is preferably formed between the outer layer and the inner layer.
  • the area ratio of the decomposition of M 2 C carbides is less than the area ratio of MC carbides and M 6 C carbides produced by decomposition of M 2 C carbides.
  • the initial diameter position is preferably 60% or more.
  • the area ratio of 6 C carbide is preferably 60% or more at the disposal diameter position.
  • the ratio of the outer layer cross-sectional area / inner layer cross-sectional area at the initial diameter is preferably 0.25 to 0.8.
  • the manufacturing method of the above-mentioned centrifugally cast composite roll for hot rolling includes casting an outer layer molten metal into a rotating centrifugal casting mold, and an iron-based alloy on the inner periphery of the outer layer during or after solidification of the obtained hollow outer layer After casting the inner layer molten metal, the inner layer is welded and integrated with the outer layer by remelting the inner peripheral portion of the outer layer, and then cooled until the surface temperature of the outer layer becomes 600 ° C. or less, and then the transformation of the outer layer A tempering process of 600 ° C. or lower is performed once or more without passing through a step of heating to a temperature higher than the point.
  • the wall thickness of the centrifugal casting mold is preferably 100 to 600 mm.
  • the Shore hardness of the outer layer is 67 to 82 at the initial diameter position, and the maximum value of the Shore hardness of the outer layer is 30 mm or more deep from the initial diameter.
  • the outer layer surface layer portion having a large effective diameter close to the initial diameter is resistant to heat cracks
  • the outer layer deep portion having a small effective diameter close to the discarded diameter is smooth and resistant to wear. Therefore, when the composite roll of the present invention has a large effective diameter, it can be used for a stand on the upstream side of the finishing mill of the hot strip mill, can use high heat crack resistance, and is resistant to scratches caused by burrs and oxide scales.
  • high wear resistance can be utilized when used for a stand on the downstream side, and a smooth rolled skin can be obtained.
  • the centrifugal cast composite roll for hot rolling of the present invention is suitable for use as a work roll of a hot strip mill having severe rolling conditions.
  • it can also be used as a hot rolling roll for wire rods, a hot rolling roll for section steel, etc. Can be used.
  • FIG. 3 is a graph showing the hardness distribution of the outer layer in the composite roll of Example 1.
  • FIG. 6 is a photomicrograph (magnification 400 times) showing the metal structure at the initial diameter position of the outer layer of the composite roll of Example 8.
  • FIG. 3 (a) is a diagram schematically showing the distribution of carbides in the metal structure shown in FIG. 10 is a micrograph (magnification 400 times) showing a metal structure at the disposal diameter position of the outer layer of the composite roll of Example 8.
  • FIG. 4 (a) is a diagram schematically showing the distribution of carbides in the metal structure shown in FIG.
  • centrifugal cast composite roll for hot rolling As shown in FIG. 1, the centrifugal cast composite roll for hot rolling of the present invention is integrated with the outer layer 1 manufactured by the centrifugal casting method and the inner surface of the outer layer 1. It consists of the welded inner layer 2.
  • the outer layer 1 suitable for application of the present invention has an outer diameter of 200 to 1300 mm and an overall length of 500 to 3000 mm.
  • the roll outer diameter before being used for rolling is called the “initial diameter”, and the depth from the initial diameter to 10 mm is called the “initial diameter portion”.
  • the outer diameter that is the smallest within the usable range due to refurbishment is called the “discard diameter”, and the area from the scrap diameter to 10 mm on the outer layer surface side is called the “discard diameter part”.
  • the outer layer of the composite roll of the present invention comprises 0.8 to 3.5% C, 0.1% by mass in order to precipitate hard carbides and ensure the wear resistance necessary for use in a finish rolling mill. Contain ⁇ 2.5% Si, 0.1 ⁇ 2.5% Mn, 1.2 ⁇ 15% Cr, 1 ⁇ 5% Ni, and 1 ⁇ 10% Mo + 0.5 ⁇ W, the balance being substantially Fe and inevitable It has a composition consisting of mechanical impurities. In the following description, “%” simply means “mass%”.
  • C 0.8-3.5% C combines with Cr, Mo, W, V, etc. to produce high-hardness carbides (MC, M 2 C, M 6 C, M 7 C 3 etc.) and has the effect of increasing the wear resistance of the outer layer . If C is less than 0.8%, the amount of carbide produced is small, so that not only sufficient wear resistance cannot be obtained, but also the primary crystal temperature rises and castability deteriorates. On the other hand, when C exceeds 3.5%, the balance with V is lost, so that a structure in which VC is uniformly distributed cannot be obtained, resulting in poor skin roughness resistance and toughness.
  • the C content is preferably 1 to 3%.
  • Si 0.1-2.5%
  • Si is an element necessary for deoxidation of molten metal and improvement of the flowability of molten metal. In addition, it replaces expensive elements such as W and Mo constituting M 6 C carbide, which contributes to lowering the cost of the outer layer. If Si is less than 0.1%, the deoxidation effect is poor and casting defects are likely to occur. On the other hand, if Si exceeds 2.5%, the toughness of the outer layer deteriorates.
  • the Si content is preferably 0.15 to 2%.
  • Mn acts as a deoxidizing agent and fixes S, which is an impurity, as MnS. When Mn is less than 0.1%, these effects are poor. On the other hand, if Mn exceeds 2.5%, retained austenite tends to be generated, and the hardness cannot be stably maintained.
  • the Mn content is preferably 0.1 to 2%.
  • Cr 1.2-15% Cr is a carbide-forming element and needs to be 1.2% or more. However, if Cr exceeds 15%, Cr carbide becomes excessive. M 23 C 6 type Cr carbide is not preferable because it has lower hardness than MC, M 4 C 3 , M 6 C and M 2 C type Cr carbides and deteriorates the wear resistance of the outer layer.
  • the Cr content is preferably 3 to 10%.
  • Ni is an element necessary for providing the outer layer with a hardness distribution in which the scrap diameter part has a higher hardness than the initial part. This hardness distribution is effectively obtained when Ni is 1% or more. However, if Ni exceeds 5%, the amount of retained austenite becomes excessive, and improvement in hardness cannot be expected.
  • the Ni content is preferably 1 to 4%.
  • the optimum Ni content depends on the initial diameter D (mm) of the composite roll, and the larger the initial diameter of the roll, the lower the cooling rate. Therefore, more Ni is required to improve the hardenability. If the Ni content is insufficient, too much truthite will be generated and the hardness will be insufficient. On the other hand, if the Ni content is too high, austenite is too stabilized and it becomes difficult to obtain hardness. Therefore, it is desirable that the Ni content satisfies the condition of [(0.00175 ⁇ D) +0.1]% to [(0.00175 ⁇ D) +1.1]%, and [(0.00175 ⁇ D) +0.3] It is more desirable to satisfy the condition of [(0.00175 ⁇ D) +0.9]%. For example, when the initial diameter of the composite roll is 600 mm, the Ni content is desirably 1.15 to 2.15%.
  • Mo + 0.5 ⁇ W 1-10% Both Mo and W combine with C to form hard M 6 C carbide and M 2 C carbide, and solid solution strengthens the base structure to improve the wear resistance of the outer layer. Since Mo has twice the influence of W, it is important that the content of (Mo + 0.5 ⁇ W) is in the range of 1-10%. Of course, you may contain Mo and W each independently. If Mo + 0.5 ⁇ W is less than 1%, the above effect cannot be obtained, and if it exceeds 10%, M 6 C carbide increases and the rough skin resistance deteriorates. Mo + 0.5 ⁇ W is preferably 3 to 10%.
  • the outer layer of the composite roll of the present invention may contain the following elements as required in addition to the above elements.
  • V + Nb 2-15% Both V and Nb produce MC carbides that contribute most to the wear resistance, and improve the wear resistance of the outer layer. Part of V and Nb also dissolves in M 2 C carbide that crystallizes during solidification, and MC carbide is formed when M 2 C carbide decomposes at around 1000 ° C after solidification, thus coarse M 2 C carbide. To make the rolled skin smoother. When the outer layer of the composite roll is formed by centrifugal casting, Nb significantly reduces the segregation of MC carbides. The amount of Nb added may be determined according to the amount of V added. V + Nb is preferably 2 to 15%, more preferably 3 to 10%.
  • Co 1-10% Co is an element effective for strengthening the base structure, and is effective at a content of 1% or more. On the other hand, when Co exceeds 10%, the toughness of the outer layer decreases.
  • the Co content is preferably 1 to 10%, more preferably 2 to 7%.
  • Ti 0.01-2% Ti, like V, combines with C to form MC carbide, improving the wear resistance of the outer layer. Since the Ti oxide generated in the melt acts as a crystal nucleus, the solidification structure becomes fine. If Ti is less than 0.01%, this effect is not sufficient, and if it exceeds 2%, inclusions are undesirable.
  • the Ti content is preferably 0.01 to 2%, more preferably 0.1 to 0.5%.
  • Zr 0.01-2% Zr combines with C in the same way as V to produce MC carbide, and improves the wear resistance of the outer layer. Since the Zr oxide generated in the melt acts as a crystal nucleus, the solidification structure becomes fine. If Zr is less than 0.01%, this effect is not sufficient, and if it exceeds 2%, inclusions are undesirable.
  • the Zr content is preferably 0.01 to 2%, more preferably 0.1 to 0.5%.
  • N 0.001 to 0.15% N has an action of stabilizing the carbide. If N exceeds 0.15%, defects are likely to occur at the boundary between the outer layer and the inner layer.
  • the N content is preferably 0.001 to 0.15%, more preferably 0.01 to 0.08%.
  • P and S 0.1% or less P and S contained as inevitable impurities cause deterioration of mechanical properties, so it is preferable to suppress the contents of P and S as much as possible.
  • the P and S contents are each preferably 0.1% or less.
  • the Shore hardness at the initial diameter of the outer layer is 67 to 82, and the maximum value of the Shore hardness of the outer layer at a depth of 30 mm or more from the initial diameter is greater than the Shore hardness of the outer layer at the initial diameter. 1 or higher.
  • the composite roll of the present invention has improved wear resistance as it becomes deeper, as opposed to a conventional quench-treated roll (hardness decreases as it gets deeper). Therefore, the initial diameter part of the outer layer is resistant to heat cracks, and the discarded diameter part is resistant to wear.
  • the Shore hardness at the initial diameter of the outer layer is less than 67, the wear resistance of the entire outer layer is insufficient.
  • the Shore hardness at the initial diameter of the outer layer is preferably 70 or more.
  • the Shore hardness at the initial diameter exceeds 82, the deep portion of the outer layer becomes too hard and the crack resistance deteriorates.
  • the preferred Shore hardness at the initial diameter of the outer layer is 70-80.
  • the maximum value of the outer layer Shore hardness at the depth of 30 mm or more from the initial diameter is one or more higher than the outer layer Shore hardness at the initial diameter, so the deep part (discarded diameter part side) is more resistant to wear, and as a result Since the composite roll has a small diameter due to refurbishment, an increase in the amount of wear at the same rolling amount is prevented even if the rotational speed of the composite roll increases.
  • the difference in Shore hardness is preferably 2 or more, more preferably 3 or more.
  • the primary regression line of the depth direction distribution of the Shore hardness Hs of the outer layer from the initial diameter to a depth of 30 mm preferably has a positive slope A (Hs / mm). For this reason, the Shore hardness of the outer layer tends to gradually increase from the surface toward the inside, and the part with a large effective diameter close to the initial diameter is resistant to heat cracks, and the part with a small effective diameter close to the scrap diameter is worn. Strong. As the outer diameter of the composite roll gradually decreases as a result of refurbishing, the heat-crack resistant composite roll suitable for the finishing stand on the upstream side of the hot strip mill should change to a high wear resistant composite roll suitable for the downstream finishing stand. Can do.
  • the slope A of the linear regression line of the depth direction distribution of the Shore hardness of the outer layer is more preferably 0.03 or more, and most preferably 0.05 or more.
  • the linear regression line is determined by regression analysis from the Shore hardness Hs measured at intervals of 5 mm within the range from the initial diameter to a depth of 30 mm and the depth (mm) measured for each Hs.
  • M 2 C carbides area ratio of undecomposed is smaller than the area ratio of MC carbides and M 6 C carbides produced by decomposition of M 2 C carbides. Therefore, at the initial diameter position, scratches caused by burrs, oxide scales, etc.
  • the smooth rolling skin required for the composite roll of the third stand can be obtained by the fine MC and M 6 C carbide at the scrap diameter position.
  • the area ratio of MC carbide and M 6 C carbide generated by decomposition of M 2 C carbide at the disposal diameter position / [(undecomposed M 2 C
  • the ratio of (area ratio of carbide) + (area ratio of MC carbide and M 6 C carbide generated by decomposition of M 2 C carbide)] is preferably 60% or more.
  • the area ratio of MC carbide and M 6 C carbide at the disposal diameter position with respect to the entire outer layer structure is 1% or more.
  • the outer layer metallographic structure contains 1 to 20 area% trustite in the initial diameter, less than 10 area% deeper than the initial diameter by 30 mm or more and less than the area% in the initial diameter. Is more preferable. Thereby, since the outer layer surface layer portion is soft, heat cracks hardly occur, and the effect of the present invention is ensured that the outer layer deep portion has high hardness and excellent wear resistance.
  • the inner layer of the composite roll of the present invention is preferably formed of cast iron or cast steel having excellent toughness, and particularly preferably formed of tough ductile cast iron.
  • the preferred composition of tough ductile cast iron is 2.5-4% C by mass, 1.5-3.1% Si, 0.2-1% Mn, 0.4-5% Ni, 0.01-1.5% Cr, 0.1-1 % Mo, 0.02 to 0.08% Mg, 0.1% or less P, and 0.1% or less S, with the balance being substantially composed of Fe and inevitable impurities.
  • ductile cast iron is used for the inner layer, the composite roll can be prevented from being damaged by the rolling load at the finishing stand.
  • part of the components of the outer layer may be mixed into the inner layer due to the welding of the outer layer and the inner layer.
  • an intermediate layer may be formed between the outer layer and the inner layer in order to suppress mixing of components, buffering, or the like.
  • an intermediate layer cast iron, adamite, etc. having a lower alloy than the outer layer are suitable.
  • Such an intermediate layer can prevent the graphitization inhibiting element in the outer layer from melting into the inner layer when the cast inner layer is welded to the outer layer.
  • the thickness of the intermediate layer is preferably 5 to 50 mm.
  • the intermediate layer is formed by casting the intermediate layer molten metal inside the outer layer during or after solidification of the outer layer molten metal cast into the rotating centrifugal casting mold and centrifugal casting.
  • the ratio of the outer layer cross-sectional area / inner layer cross-sectional area at the initial diameter is preferably 0.25 to 0.8. If the ratio of the outer layer cross-sectional area / inner layer cross-sectional area at the initial diameter is less than 0.25, the outer layer is too thin relative to the inner layer, so the entire outer layer is heated sufficiently by the heat of the cast inner layer and quenched at around 1000 ° C. Will be substantially the same. On the other hand, if the ratio of the outer layer cross-sectional area / inner layer cross-sectional area at the initial diameter exceeds 0.8, the inner layer is too small with respect to the outer layer, and there is a possibility that carbide precipitation of the outer layer due to casting of the inner layer becomes insufficient.
  • the ratio of the outer layer cross-sectional area / inner layer cross-sectional area at the initial diameter is more preferably 0.3 to 0.6.
  • the ratio of the outer layer cross-sectional area / inner layer cross-sectional area of the as-cast composite roll is preferably 0.35 to 0.9.
  • the manufacturing method of the centrifugal cast composite roll for hot rolling according to the present invention comprises casting a molten outer layer into a rotating centrifugal casting mold, and forming the outer layer during or after solidification of the resulting hollow outer layer.
  • the inner layer is welded and integrated with the outer layer by remelting the inner peripheral part of the outer layer, and then the surface temperature of the outer layer becomes 600 ° C. or lower.
  • a tempering process of 600 ° C. or lower is performed once or more without passing through a step of cooling and then heating to a temperature equal to or higher than the transformation point of the outer layer where reverse transformation to austenite occurs.
  • the transformation point of the outer layer where reverse transformation to austenite occurs is 700 to 850 ° C.
  • the temperature at the disposal diameter position of the outer layer is in the range of 900 ° C. to the melting point and maintained at that temperature for 30 minutes to 10 hours.
  • the Shore hardness of the outer layer surface is relatively low and cannot be used for hot rolling.
  • the tempering heat treatment at 600 ° C. or lower is performed at least once without going through the process of heating to the transformation point or higher of the outer layer, the residual Austenite is transformed into martensite and bainite, the Shore hardness of the outer layer is remarkably increased, and the toughness of the outer layer is improved by tempering of martensite and bainite generated during cooling, and heat cracks are difficult to occur.
  • the entire outer layer is kept at a uniform quenching temperature and then cooled by air cooling, mist cooling, etc., so the cooling rate is lower in the roll. Therefore, the inside of the outer layer is slowly cooled.
  • elements that can be dissolved in the surface structure of the outer layer are homogeneously dissolved in the matrix structure, and carbides are precipitated from the matrix structure, resulting in an increase in Shore hardness. Since it does not occur much, the Shore hardness will not increase that much. Therefore, the hardness of the outer layer is the highest on the surface and decreases as it becomes deeper.
  • the wall thickness of the centrifugal casting mold is preferably 100 to 600 mm, more preferably 100 to 450 mm.
  • the centrifugal casting mold may be a horizontal mold, an inclined mold, or a vertical mold.
  • the material for the centrifugal casting mold is preferably ductile cast iron, and it is desirable to apply a coating mold having a thickness of 1 to 5 mm to the inner surface of the mold.
  • the coating mold is preferably composed mainly of oxides such as silica, alumina, magnesia and zircon.
  • Examples 1 to 7 and Comparative Examples 1 to 3 Ductile iron centrifugal casting mold with an inner diameter of 848 mm, length of 2700 mm, and thickness of 276 mm (with a 3 mm thick zircon coating applied on the inner surface) at a speed at which the centrifugal force on the inner surface becomes 120 G
  • the outer layer molten metal having the composition (mass%) shown in Table 1 was cast into a mold for centrifugal casting and solidified.
  • the average cast thickness of each outer layer obtained was 96.5 mm.
  • a stationary casting mold was constructed by vertically assembling a centrifugal casting mold having each outer layer therein and another upper mold and a lower mold.
  • a molten inner layer composed of ductile cast iron containing a composition of Cr, 0.2% Mo, 0.05% Mg, 0.03% P, and 0.03% S, the balance being substantially composed of Fe and inevitable impurities. Casted at 1431 ° C. The inner peripheral part of the outer layer was redissolved, and the inner layer was welded and integrated with the outer layer. Each composite roll obtained was cooled until the surface temperature of the outer layer reached 600 ° C. or lower, and then the mold was disassembled. The average diameter of the inner layer of the obtained composite roll was 655 mm.
  • the composite rolls of Examples 1 to 7 and Comparative Example 1 were tempered twice at 530 ° C. for 10 hours without heating to a temperature above the transformation point of the outer layer (without quenching treatment).
  • the composite roll of Comparative Example 2 was tempered by heating to 1050 ° C. and then allowed to cool, and then tempered at 530 ° C. twice.
  • the composite roll of Comparative Example 3 was not subjected to post-cast quenching or tempering (assumed as cast).
  • the composite rolls of Examples 1 to 7 and Comparative Examples 1 to 3 were machined so that the initial diameter was 810 mm.
  • the scrap diameter was 710 mm (effective thickness of outer layer: 50 mm).
  • the hardness of the outer layer surface of each composite roll was measured with a Shore hardness meter, and the obtained Shore hardness was defined as surface hardness Ha.
  • the work hardened part is removed by electropolishing, and the hardness of the exposed outer layer is measured with a Shore hardness meter.
  • Hb the maximum hardness Hb.
  • Table 2 shows the surface hardness Ha, the depth hardness Hb, the difference between the surface hardness Ha and the depth hardness Hb (Hb ⁇ Ha), and the hardness gradient A.
  • the hardness slope A is the slope (Hs / mm) of the linear regression line of the Shore hardness in the depth direction from the initial diameter of the outer layer to a depth of 30 mm.
  • FIG. 1 shows the depth direction distribution of the Shore hardness of the outer layer in the composite roll of Example 1.
  • the surface hardness Ha was 77
  • the depth hardness Hb was 80
  • the difference in hardness (Ha ⁇ Hb) was 3.
  • the hardness gradient A was 0.054. When the effective diameter of 50 mm was exceeded, the Shore hardness slightly decreased, which is thought to be due to the effect of welding with the inner layer.
  • the area ratio (%) of trustite in the outer layer was measured at the initial diameter position and at a position of 5 mm mm in the range of 30 to 50 mm depth.
  • the area ratio of the truestite at the initial diameter is called the surface T
  • the maximum value of the area ratio of the truestite in the range of 30-50mm depth is called the deep part T.
  • Table 2 Note: (1) Maximum Shore hardness of the outer layer at a depth of 30-50 mm. (2) The slope (Hs / mm) of the linear regression line of the depth distribution of Shore hardness from the initial diameter of the outer layer to a depth of 30 mm.
  • the depth hardness was 1 or more higher than the surface hardness.
  • the Ni content of the outer layer of the composite roll of Comparative Example 1 is outside the range of the present invention, the depth hardness Hb is lower than the surface hardness Ha.
  • the composite roll of Comparative Example 2 was subjected to a quenching treatment in which it was allowed to cool from 1050 ° C. before the tempering treatment, so the surface hardness Ha was as high as 83, but the deep hardness Hb was the surface hardness Ha. It was lower.
  • the composite roll of Comparative Example 3 was not subjected to quenching or tempering after casting (as cast), the depth hardness Hb was lower than the surface hardness Ha.
  • the outer diameter of the composite rolls of Examples 1 to 7 is reduced by refurbishing, it is suitable for use in the first stand in the range of the outer diameter from 810 mm (initial diameter) to 780 mm, exceeding 780 mm. In the range from 750 mm to 750 mm, it is suitable for the second stand, and in the range from more than 750 mm to 710 mm, it is suitable for the third stand.
  • Example 8 and 9 Comparative Example 4 A melt for outer layer having the composition shown in Table 3 was cast into a thickness of 96.5 mm at the casting temperature shown in Table 4 in the same centrifugal casting mold as in Example 1, and after the outer layer solidified, A stationary casting mold was constructed, and a ductile cast iron melt having the same composition as in Example 1 was cast at 1431 ° C. into the cavity of the stationary casting mold. The inner peripheral part of the outer layer was redissolved, and the inner layer was welded and integrated with the outer layer. Each composite roll obtained was cooled until the surface temperature of the outer layer reached 600 ° C. or lower, and then the mold was disassembled.
  • the composite rolls of Examples 8 and 9 were tempered twice at 510 ° C. for 10 hours without heating to a temperature above the transformation point of the outer layer (without quenching treatment).
  • the composite rolls of Examples 8 and 9 and Comparative Example 4 were machined so that the initial diameter was 810 mm.
  • the scrap diameter was 710 mm (effective thickness of outer layer: 50 mm).
  • Table 4 shows the area ratio of undecomposed M 2 C at the initial diameter position and the disposal diameter position of the outer layer of each composite roll, and the area ratio of MC carbide and M 6 C carbide generated by decomposition of M 2 C carbide. . MC and M 6 C carbides generated by decomposition of undecomposed M 2 C and M 2 C are classified according to their form as shown in the metal structure of Fig. 3 and Fig. 4, and the area ratio is measured by image analysis software did.
  • FIG. 3 (a) is a photomicrograph (400 times magnification) showing the metal structure at the initial diameter position of the outer layer of the composite roll of Example 8, and FIG. 3 (b) is a carbide in the metal structure shown in FIG. 3 (a).
  • the distribution of is schematically shown.
  • FIG. 4 (a) is a photomicrograph (magnification 400 times) showing the metal structure at the disposal diameter position of the outer layer of the composite roll of Example 8, and
  • FIG. 4 (b) is the metal shown in FIG. 4 (a).
  • the distribution of carbides in the tissue is schematically shown.
  • 3 and 4 3 indicates undecomposed plate-like M 2 C carbide, 4 indicates MC carbide and M 6 C carbide generated by decomposition of M 2 C carbide, and 5 indicates a base. Table 4 Notes: (1) Undecomposed M 2 C. (2) MC carbide and M 6 C carbide produced by decomposition of M 2 C carbide.
  • Table 5 Note: (1) Maximum Shore hardness of the outer layer at a depth of 30-50 mm. (2) The slope (Hs / mm) of the linear regression line of the depth distribution of Shore hardness from the initial diameter of the outer layer to a depth of 30 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 質量%で0.8~3.5%のC、0.1~2.5%のSi、0.1~2.5%のMn、1.2~15%のCr、1~5%のNi、及び1~10%のMo+0.5×Wを含有し、残部が実質的にFe及び不可避的不純物からなる組成を有する外層に、鉄系合金からなる内層を溶着一体化してなり、複合ロールの初径での外層のショアー硬さが67~82であり、初径から30 mm以上深い部位での外層のショアー硬さの最高値が、初径での外層のショアー硬さより1以上高い熱間圧延用遠心鋳造複合ロール。

Description

熱間圧延用遠心鋳造複合ロール及びその製造方法
 本発明は、耐摩耗性に優れた外層及び靭性に優れた内層からなる複合構造を有する熱間圧延用遠心鋳造複合ロール、特に薄鋼板のホットストリップミルの仕上げ熱間圧延に好適な遠心鋳造複合ロール、及びその製造方法に関する。
 ホットストリップミルは、連続鋳造等で製造した厚さ数百ミリのスラブを加熱した後、順に複数の粗圧延機及び複数の仕上げ圧延機のロール間に通し、数~数十ミリの厚さに圧延するものである。仕上げ圧延機は、通常5~7つの四重式圧延機スタンドを直列に配置したものであり、特に7つのスタンドからなる仕上げ圧延機が広く用いられている。7スタンドの仕上げ圧延機では、第一~第三スタンドを前段スタンドと呼び、第四~第七スタンドを後段スタンドと呼ぶ。
 仕上げ圧延機に用いられるロールは圧延による熱的及び機械的負荷に耐える必要があるため、耐摩耗性に優れた外層と靭性に優れた内層とを溶着一体化した複合構造の遠心鋳造複合ロール(単に「複合ロール」という)が用いられている。しかし、圧延による熱的及び機械的負荷によっては外層表面に摩耗、肌荒れ、ヒートクラック等の損傷が発生するため、一定期間使用した後に複合ロールを圧延機から取り外し、損傷を研削除去(改削)する。改削により複合ロールの胴径は初径から圧延に使用可能な最小径(廃却径)まで徐々に小さくなる。初径から廃却径までは圧延使用有効径(単に「有効径」という)と呼ばれる。
 仕上げ圧延機には従来から、耐摩耗性に優れたハイス系外層と、強靭性に優れた鋳鉄又は鋳鋼の内層とを冶金的に一体化した遠心鋳造複合ロールが使用されている。ハイスは、MC型のV炭化物、M6C型及びM2C型のMo炭化物及びW炭化物、及びM7C3型及びM23C6型のCr炭化物等の高硬度の炭化物が析出しており、かつMo及びWにより高温での基地硬さの低下が抑制されているので、耐摩耗性に優れている。とりわけ前段スタンドでは、圧延される鋼板が厚く、後段スタンドのように薄い鋼板が折り重なって圧延されることよる外層の消耗リスクが少ないため、耐摩耗性の良好なハイスを外層とする複合ロールが多く用いられている。
 このような複合ロールは、回転する遠心鋳造用金型に外層用溶湯を注湯して金型内面に外層を凝固させた後、この金型を別の上型及び下型とともに垂直方向に組立てて静置鋳造用鋳型を構成し、静置鋳造用鋳型内に内層用溶湯を鋳込む遠心鋳造法により、低コストで製造されている。
 特開平2-258949号は、重量比でC:1~4%、Si:3%以下、Mn:1.5%以下、Ni:4%以下、Cr:2~15%、Mo:8%以下、W:20%以下、V:2~10%、及びTi、Zr及びNbからなる群から選ばれる少なくとも一種:合計5%以下を含有し、残部が実質的にFe及び不可避的不純物からなるとともに、C%+0.4V%の値が6.0以下である組成を有する外殻層と、鋳鉄又は鋳鋼製の内層とからなる耐摩耗遠心鋳造複合ロールを開示している。この複合ロールには、外層の変態点以上の温度(1000~1100℃)に加熱された後一定の冷却速度で冷却する焼入れ処理、及び550℃での焼戻し処理が施されている。焼入れ処理により、外層の基地はマルテンサイト又はベイナイトのような硬質な組織に変態し、高硬度化する。しかし、熱間圧延用複合ロールのような大型の複合ロールでは、焼入れ処理の冷却速度は表面から内側に行くにつれて遅くなるので、外層内部の硬さは外層表面の硬さより低い。
 特開平6-145887号は、重量比でC:1.8~3.0%、Cr:4.0~8.0%、Mo:2.0~8.0%、W:2.0~6.0%、V:4.0~10.0%、及びCo:12.0%以下を含有し、残部が実質的にFeである高速度鋼からなる外層と、重量比でC:1.0~2.0%、Si:1.0~3.0%、Mn:0.2~1.0%、及びNi:0.3~1.5%を含有し、残部が実質的にFeである球状黒鉛アダマイトからなる内層とからなる遠心鋳造複合スリーブロールを開示している。この複合スリーブロールは1000~1200℃の高温より焼入れされる。この複合スリーブロールでは、外層の硬さは表面から約100 mmの深さまでほぼ一定である。
 上記の通り、鋳造後に焼入れ処理が行われる従来の遠心鋳造複合ロールでは、外層の硬さは表面より内部が低いか、ある程度の深さまでのほぼ一定である。このように従来の遠心鋳造複合ロールにおいて外層内部で硬さが低下することは、当業者にとって広く認められた常識であった。
 7スタンドの仕上げ圧延機の前段スタンド及び後段スタンドの各スタンドでは、通常同一材質の複合ロールが用いられている。たとえば第一~第三スタンドからなる前段スタンドの場合、厚い鋼板が噛み込み易い最前の第一スタンドでは初径の複合ロールが使用され、第二スタンドでは改削により有効径が小さくなった複合ロールが使用され、第三スタンドでは改削を繰り返すことにより更に有効径が小さくなった複合ロールが使用されることが多い。このように、改削により有効径が小さくなった複合ロールは第一スタンドから第二スタンドに、また第二スタンドから第三スタンドにそれぞれ移しかえられる。
 第一スタンドの複合ロールは、高温の圧延材と最初に接触するために熱衝撃により深いヒートクラックが発生する。ヒートクラックを起点とする複合ロールの肌荒れにより圧延材の表面品質が劣化するので、ヒートクラックを除去するための改削量が多い。また仕上げ圧延機への鋼板の噛込み不良や表面品位不良を防止するため、粗圧延機を通過した鋼板の先端の不良部分はクロップシャーにより剪断除去されるが、鋼材先端に剪断によるカエリや酸化スケールが発生し、これらが第一スタンドの複合ロールを傷つけるという問題もある。
 下流の第二及び第三スタンドに使用される複合ロールは、カエリや酸化スケールによる傷の発生はないが、第四~第七スタンドの前段に配置されているため、表面粗さの小さな(なめらかな)圧延肌が要求される。つまり、第一スタンドで使用される有効径が大きな複合ロールには、カエリや酸化スケールによる引っ掻き傷に対する抵抗力(耐肌荒れ性)が要求され、第三スタンドで使用される有効径が小さい複合ロールには、なめらかな圧延肌が要求される。しかし、同じ複合ロールが有効径に応じてこれらの要求を全て満たすことはできない。
 従って本発明の目的は、有効径が大きな(初径に近い)ときにはヒートクラックに強く、有効径が小さい(廃却径に近い)ときには摩耗に強い外層を有する熱間圧延用遠心鋳造複合ロール、及びその製造方法を提供することである。
 外層の表面部より深部を硬くするために鋭意研究の結果、(a) 遠心鋳造法で外層を形成した複合ロールを鋳型内で冷却すると、外層表面部には軟質のトゥルースタイトが出現し、外層深部は鋳造された複合ロール自身の熱により1,000℃付近をゆっくり冷却されるため、基地中の炭化物が析出し、焼き入れ性が向上するため表面部のようなトゥルースタイトは出現せず、硬質のベイナイトやマルテンサイトが出現し、もって外層の表面部より深部が硬くなるが、外面の硬さは全体的に不十分であり、(b) 鋳造後に焼入れ処理をすると外層表面部の硬さは上がるが、外層深部の硬さはそれ程上がらず、その結果外層の表面部の方が深部より硬くなり、(c) 鋳造後に焼入れ処理をすることなく焼戻し処理をすると、外層の表面部より深部が硬い関係を維持したまま外層全体の硬さが残留オーステナイトのベイナイトやマルテンサイトへの変態によって大幅に上がり、もって初径に近い有効径の大きな部位では十分なショアー硬さを有してヒートクラックに強く、廃却径に近い有効径の小さな部位では耐摩耗性が優れ、滑らかな圧延肌を与える遠心鋳造複合ロールが得られることを発見し、本発明に想到した。
 すなわち、本発明の熱間圧延用遠心鋳造複合ロールは、質量%で0.8~3.5%のC、0.1~2.5%のSi、0.1~2.5%のMn、1.2~15%のCr、1~5%のNi、及び1~10%のMo+0.5×Wを含有し、残部が実質的にFe及び不可避的不純物からなる組成を有する外層に、鉄系合金からなる内層が溶着一体化されており、前記複合ロールの初径での外層のショアー硬さが67~82であり、前記初径から30 mm以上深い部位での前記外層のショアー硬さの最高値が、前記初径での前記外層のショアー硬さより1以上高いことを特徴とする。
 前記初径から30 mmの深さまでにおける前記外層のショアー硬さの深さ方向分布の一次回帰直線の傾きA(Hs/mm)は正であるのが好ましい。
 前記外層がさらに2~15質量%のV+Nbを含有するのが好ましい。前記外層はさらに質量%で1~10%のCo、0.01~2%のTi、0.01~2%のZr、及び0.001~0.15%のNの少なくとも一種を含有するのが好ましい。
 前記本発明の複合ロールにおいて、内層はダクタイル鋳鉄からなるのが好ましい。さらに外層と内層の間に中間層が形成されているのが好ましい。
 前記外層の前記初径位置では未分解のM2C炭化物の面積率がM2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率より多く、前記外層の廃却径位置では未分解のM2C炭化物の面積率がM2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率より少ないのが好ましい。
 (未分解のM2C炭化物の面積率)/[(未分解のM2C炭化物の面積率)+(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)]は初径位置で60%以上であるのが好ましい。(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)/[(未分解のM2C炭化物の面積率)+(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)]は廃却径位置で60%以上であるのが好ましい。
 初径での外層断面積/内層断面積の比は0.25~0.8であるのが好ましい。
 上記熱間圧延用遠心鋳造複合ロールの製造方法は、回転する遠心鋳造用金型に外層用溶湯を鋳込み、得られた中空状外層の凝固途中又は凝固後に前記外層の内周部に鉄系合金からなる内層用溶湯を鋳込み、前記外層の内周部の再溶解により前記内層を前記外層に溶着一体化させた後、前記外層の表面温度が600℃以下になるまで冷却し、次いで外層の変態点以上の温度に加熱する工程を経ることなく600℃以下の焼戻し処理を1回以上行うことを特徴とする。
 前記遠心鋳造用金型の壁厚は100~600 mmであるのが好ましい。
 本発明の熱間圧延用遠心鋳造複合ロールでは、外層のショアー硬さが初径位置で67~82であり、初径から30 mm以上深い部位での外層のショアー硬さの最高値が初径での外層のショアー硬さより1以上高いので、初径に近い大きな有効径を有する外層表層部はヒートクラックに強く、廃却径に近い小さな有効径を有する外層深部は滑らかで摩耗に強い。そのため、本発明の複合ロールを有効径が大きいときにはホットストリップミルの仕上げ圧延機の上流側のスタンドに用いると高い耐ヒートクラック性を利用でき、かつカエリや酸化スケールによる引っ掻き疵にも強く、表面改削により有効径が小さくなったときには下流側のスタンドに用いると高い耐摩耗性を利用でき、滑らかな圧延肌が得られる。
 本発明の熱間圧延用遠心鋳造複合ロールは圧延条件の厳しいホットストリップミルのワークロールとして使用するのに好適であるが、勿論線材用熱間圧延ロール、形鋼用熱間圧延ロール等としても使用できる。
本発明の熱間圧延用遠心鋳造複合ロールを示す概略断面図である。 実施例1の複合ロールにおける外層の硬さ分布を示すグラフである。 実施例8の複合ロールの外層の初径位置における金属組織を示す顕微鏡写真(倍率400倍)である。 図3(a) に示す金属組織における炭化物の分布を模式的に示す図である。 実施例8の複合ロールの外層の廃却径位置における金属組織を示す顕微鏡写真(倍率400倍)である。 図4(a) に示す金属組織における炭化物の分布を模式的に示す図である。
 本発明の実施形態を以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲で適宜変更することができる。各実施形態に関する説明は、特に断りがなければ他の実施形態にも適用することができる。
[1] 熱間圧延用遠心鋳造複合ロール
 図1に示すように、本発明の熱間圧延用遠心鋳造複合ロールは、遠心鋳造法で製造された外層1と、外層1の内面に一体的に溶着した内層2とからなる。本発明を適用するのに好適な外層1の外径は200~1300 mmであり、全長は500~3000 mmである。圧延に使用する前のロール外径を「初径」と呼び、初径から10 mmの深さまでを「初径部位」と呼ぶ。使用可能な範囲内で改削により最も小さくなった外径を「廃却径」と呼び、廃却径から外層表面側に10 mmまでを「廃却径部位」と呼ぶ。
(A) 外層
(1) 組成
 本発明の複合ロールの外層は、硬質炭化物を析出させて、仕上げ圧延機に使用するのに必要な耐摩耗性を確保するために、質量%で0.8~3.5%のC、0.1~2.5%のSi、0.1~2.5%のMn、1.2~15%のCr、1~5%のNi、及び1~10%のMo+0.5×Wを含有し、残部が実質的にFe及び不可避的不純物からなる組成を有する。以下の説明で単に「%」というときは、「質量%」を意味する。
(a) C:0.8~3.5%
 Cは、Cr、Mo、W、V等と結合して高硬度の炭化物(MC、M2C、M6C、M7C3等)を生成し、外層の耐摩耗性を高める作用を有する。Cが0.8%未満では、生成する炭化物の量が少ないために十分な耐摩耗性が得られないだけでなく、初晶温度が上昇して鋳造性が低下する。一方、Cが3.5%を超えるとVとのバランスがくずれるため、VCが均一に分布した組織が得られず、耐肌荒れ性及び強靭性に劣るようになる。Cの含有量は好ましくは1~3%である。
(b) Si:0.1~2.5%
 Siは、溶湯の脱酸と湯流れ性の向上に必要な元素である。またM6C炭化物を構成するW、Mo等の高価な元素を置換するため、外層の低コスト化に寄与する。Siが0.1%未満では脱酸効果が乏しく、鋳造欠陥が生じやすい。一方、Siが2.5%を超えると外層の靭性が劣化する。Siの含有量は好ましくは0.15~2%である。
(c) Mn:0.1~2.5%
 Mnは、脱酸剤として作用するとともに、不純物であるSをMnSとして固定する。Mnが0.1%未満では、これらの効果が乏しい。一方、Mnが2.5%を超えると、残留オーステナイトが生じやすくなり、硬さを安定的に維持できない。Mnの含有量は好ましくは0.1~2%である。
(d) Cr:1.2~15%
 Crは炭化物生成元素であり、1.2%以上必要である。しかし、Crが15%を超えるとCr炭化物が過多となる。M23C6型のCr炭化物は、MC、M4C3、M6C及びM2C型のCr炭化物より低硬度であり、外層の耐摩耗性を劣化させるので好ましくない。Crの含有量は好ましくは3~10%である。
(e) Ni:1~5%
 Niは、初径部位より廃却径部位の方が高硬度になる硬度分布を外層に付与するのに必要な元素である。この硬度分布はNiが1%以上のときに効果的に得られる。しかし、Niが5%を超えると残留オーステナイトの量が過剰となり、硬さの向上が期待できない。Ni含有量は好ましくは1~4%である。
 最適なNi含有量は複合ロールの初径D(mm)に依存し、ロールの初径が大きいほど冷却速度が低いるために、焼入れ性を改善するNiを多く必要とする。Ni含有量が不足するとトゥルースタイトが過剰に発生し、硬さが不足する。逆にNi含有量が多すぎるとオーステナイトが安定化しすぎ、やはり硬さが出にくくなる。このため、Ni含有量は、[(0.00175×D)+0.1]%~[(0.00175×D)+1.1]%の条件を満足するのが望ましく、[(0.00175×D)+0.3]~[(0.00175×D)+0.9]%の条件を満足するのがより望ましい。例えば複合ロールの初径が600 mmの場合、Ni含有量は1.15~2.15%が望ましい。
(f) Mo+0.5×W:1~10%
 Mo及びWはともにCと結合して硬質のM6C炭化物及びM2C炭化物を生成するとともに、基地組織を固溶強化して外層の耐摩耗性を向上させる。MoはWの2倍の影響力を有するので、(Mo+0.5×W)の含有量が1~10%の範囲であるのが重要である。勿論、Mo及びWはそれぞれ単独で含有しても構わない。Mo+0.5×Wが1%未満では上記効果が得られず、また10%を超えるとM6C炭化物が増加して、耐肌荒れ性が劣化する。Mo+0.5×Wは3~10%であるのが好ましい。
 本発明の複合ロールの外層は、上記元素の他に、必要に応じて以下の元素を含有しても良い。
(g) V+Nb:2~15%
 V及びNbはともに耐摩耗性に最も寄与するMC炭化物を生成し、外層の耐摩耗性を向上させる。V及びNbの一部は凝固時に晶出するM2C炭化物にも固溶し、凝固後1000℃付近でM2C炭化物が分解するときにMC炭化物を形成させ、もって粗大なM2C炭化物を微細化し、圧延肌をなめらかにする。複合ロールの外層を遠心鋳造法で形成するとき、NbはMC炭化物の偏析を少なからず軽減させる。Nbの添加量はVの添加量に応じて決めれば良い。V+Nbは好ましくは2~15%であり、より好ましくは3~10%である。
(h) Co:1~10%
 Coは基地組織の強化に有効な元素であり、1%以上の含有量で効果がある。一方、Coが10%を超えると外層の靭性は低下する。Co含有量は好ましくは1~10%であり、より好ましくは2~7%である。
(i) Ti:0.01~2%
 Tiは、Vと同様にCと結合してMC炭化物を生成し、外層の耐摩耗性を向上させる。溶湯中で生成するTi酸化物は結晶核として作用するために、凝固組織が微細になる。Tiが0.01%未満ではこの効果は十分でなく、また2%を超えると介在物となって好ましくない。Ti含有量は好ましくは0.01~2%であり、より好ましくは0.1~0.5%である。
(j) Zr:0.01~2%
 Zrは、Vと同様にCと結合してMC炭化物を生成し、外層の耐摩耗性を向上させる。溶湯中で生成するZr酸化物が結晶核として作用するために、凝固組織が微細になる。Zrが0.01%未満ではこの効果は十分でなく、また2%を超えると介在物となって好ましくない。Zr含有量は好ましくは0.01~2%であり、より好ましくは0.1~0.5%である。
(k) N:0.001~0.15%
 Nは炭化物を安定化させる作用を有する。Nが0.15%を超えると、外層と内層との境界部に欠陥が発生し易くなる。Nの含有量は好ましくは0.001~0.15%であり、より好ましくは0.01~0.08%である。
(m) P及びS:0.1%以下
 不可避的不純物として含有されるP及びSは機械的性質の劣化を招くので、P及びSの含有量をできるだけ抑えるのが良い。P及びSの含有量はそれぞれ0.1%以下が好ましい。
(2) ショアー硬さ
 外層の初径でのショアー硬さは67~82であり、初径から30 mm以上深い部位での外層のショアー硬さの最高値は初径での外層のショアー硬さより1以上高い。このように、本発明の複合ロールは、従来の焼き入れ処理したロール(深くなるにつれて硬度が低下する。)と逆に、深くなるにつれて耐摩耗性が向上する。そのため、外層の初径部位はヒートクラックに強く、廃却径部位は摩耗に強いという特徴を有する。
 外層の初径でのショアー硬さが67未満であると、外層全体の耐摩耗性が不十分である。外層の初径でのショアー硬さは70以上が好ましい。一方、初径でのショアー硬さが82を超えると、外層の深部が硬くなりすぎ、耐クラック性が劣化する。外層の初径での好ましいショアー硬さは70~80である。
 初径から30 mm以上深い部位での外層のショアー硬さの最高値が初径での外層のショアー硬さより1以上高いので、深部(廃却径部位側)の方が摩耗に強く、その結果、改削により複合ロールが小径になるために複合ロールの回転数が増加しても、同じ圧延量での摩耗量の増大が防止される。ショアー硬さの差は好ましくは2以上であり、より好ましくは3以上である。
 初径から30 mmの深さまでの外層のショアー硬さHsの深さ方向分布の一次回帰直線は、正の傾きA(Hs/mm)を有するのが好ましい。このため、外層のショアー硬さは表面から内部に向かって徐々に上昇する傾向にあり、初径に近い有効径の大きな部位はヒートクラックに強く、廃却径に近い有効径が小さい部位は摩耗に強い。改削により複合ロールの外径が徐々に小さくなるにつれて、ホットストリップミルの上流側の仕上げスタンドに適する耐ヒートクラック性複合ロールから下流側の仕上げスタンドに適する高耐摩耗性複合ロールに変化することができる。外層のショアー硬さの深さ方向分布の一次回帰直線の傾きAは、より好ましくは0.03以上であり、最も好ましくは0.05以上である。なお、一次回帰直線は、初径から30 mmの深さまでの範囲内で5 mmの間隔で測定したショアー硬さHsと、各Hsを測定した深さ(mm)から、回帰分析より求められる。
(3) 組織
 外層の初径位置では未分解のM2C炭化物の面積率がM2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率より多く、外層の廃却径位置では未分解のM2C炭化物の面積率がM2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率より少ない。そのため、初径位置では未分解の板状M2C炭化物(長さ約20μm以上と比較的粗大)により第一スタンドの複合ロールに発生するようなカエリや酸化スケール等による引っ掻き傷を防止でき、廃却径位置では微細なMC及びM6C炭化物により第三スタンドの複合ロールに必要な滑らかな圧延肌が得られる。
 カエリや酸化スケール等による引っ掻き傷を防止するために、初径位置における(未分解のM2C炭化物の面積率)/[(未分解のM2C炭化物の面積率)+(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)]の比は60%以上であるのが好ましい。同様に、初径位置におけるM2C炭化物の外層組織全体に対する面積率は1%以上であるのが好ましい。
 第三スタンドで必要な滑らかな圧延肌を得るために、廃却径位置における(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)/[(未分解のM2C炭化物の面積率)+(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)]の比は60%以上であるのが好ましい。同様に、廃却径位置におけるMC炭化物及びM6C炭化物の外層組織全体に対する面積率は1%以上であるのが好ましい。
 M2C炭化物、MC炭化物及びM6C炭化物以外に、M7C3炭化物、M23C6炭化物等の別の炭化物が晶出することもあるが、それらの炭化物によりM2C炭化物、MC炭化物及びM6C炭化物の作用が影響されることはない。
 外層の金属組織は初径で1~20面積%のトゥルースタイトを含有し、初径から30 mm以上深い部位で10面積%未満で、かつ初径での面積%より少ないトゥルースタイトを含有するのがより好ましい。これにより、外層表層部は軟質であるためヒートクラックが入りにくく、外層深部では高硬度で優れた耐摩耗性を有するという本発明の効果が確実になる。
(B) 内層
 本発明の複合ロールの内層は強靭性に優れた鋳鉄又は鋳鋼により形成するのが好ましく、特に強靭なダクタイル鋳鉄により形成するのが好ましい。強靭なダクタイル鋳鉄の好ましい組成は、質量%で2.5~4%のC、1.5~3.1%のSi、0.2~1%のMn、0.4~5%のNi、0.01~1.5%のCr、0.1~1%のMo、0.02~0.08%のMg、0.1%以下のP、及び0.1%以下のSを含有し、残部が実質的にFe及び不可避的不純物からなる。内層にダクタイル鋳鉄を用いると、仕上げスタンドでの圧延荷重により複合ロールが破損するのを防止できる。勿論、外層と内層との溶着により外層の成分の一部が内層に混入することがある。
(C) 中間層
 本発明の複合ロールにおいては、外層と内層との間に成分混入の抑制や緩衝等のために、中間層を形成しても良い。中間層には外層より低合金の鋳鉄、アダマイト等が適している。このような中間層は、鋳込まれた内層が外層と溶着する際に外層中の黒鉛化阻害元素が内層に溶け込むのを防止できる。外層成分の内層への混入を確実に防止するため、中間層の厚さは5~50 mmが好ましい。中間層は、回転する遠心鋳造用金型に鋳込んだ外層用溶湯の凝固途中又は凝固後に外層の内側に中間層用溶湯を鋳込み、遠心鋳造することにより形成する。
(D) 構造
 初径での外層断面積/内層断面積の比は0.25~0.8が好ましい。初径での外層断面積/内層断面積の比が0.25未満では、内層に対して外層が薄すぎるので、鋳込まれた内層の熱により外層全体が十分に加熱され、1000℃付近で焼入れしたのと実質的に同じことになる。一方、初径での外層断面積/内層断面積の比が0.8を超えると、外層に対して内層が小さすぎるため、内層の鋳込による外層の炭化物析出が不十分になるおそれがある。初径での外層断面積/内層断面積の比はより好ましくは0.3~0.6である。なお、鋳造したままの複合ロールの外層断面積/内層断面積の比は0.35~0.9が好ましい。
[2] 製造方法
 本発明の熱間圧延用遠心鋳造複合ロールの製造方法は、回転する遠心鋳造用金型に外層用溶湯を鋳込み、得られた中空状外層の凝固途中又は凝固後に前記外層の内周部に鉄系合金からなる内層用溶湯を鋳込み、前記外層の内周部の再溶解により前記内層を前記外層に溶着一体化させた後、前記外層の表面温度が600℃以下になるまで冷却し、次いでオーステナイトへの逆変態が起こる外層の変態点以上の温度に加熱する工程を経ることなく600℃以下の焼戻し処理を1回以上行うことを特徴とする。本発明の外層組成では、オーステナイトへの逆変態が起こる外層の変態点は700~850℃である。
 鋳造後遠心鋳造用金型内で冷却するため、比較的速い冷却により外層表面には軟質なパーライト及びトゥルースタイトの組織が出現しやすく、外層内部は鋳造された複合ロールの熱により1,000℃付近をゆっくり冷却されるため、基地中の過飽和な炭化物が析出し、基地の変態特性(焼入れ性)が変化し、パーライト及びトゥルースタイトの発生が抑制されて、硬質のマルテンサイト及びベイナイト組織となる。このため、初径に近い有効径の大きな部位はヒートクラックに強くなり、廃却径に近い有効径が小さい部位は摩耗に強くなる。鋳造凝固時に炭化物の析出を確実に起こさせるためには、外層の廃却径位置の温度を900℃~融点の範囲内とし、その温度に30分~10時間保持するのが好ましい。
 鋳造したままの複合ロールでは、外層表面のショアー硬さは比較的低く、熱間圧延に用いることができない。しかし、鋳造された複合ロールの外層の表面温度が600℃以下になるまで冷却した後、外層の変態点以上に加熱する工程を経ずに600℃以下の焼戻し熱処理を1回以上行うと、残留オーステナイトがマルテンサイト及びベイナイトに変態し、外層のショアー硬さが著しく増加するとともに、冷却時に生成したマルテンサイト及びベイナイトの焼き戻しにより外層の靭性が向上し、ヒートクラックが入りにくくなる。
 しかし、鋳造後に焼入れ処理を行うと、外層全体を均一に焼き入れ温度に保持した後、空冷、ミスト冷却等により冷却するので、ロール内部ほど冷却速度は低い。そのため、外層の内部ほどゆっくり冷却される。その結果、外層の表面側では固溶しうる元素が基地組織に均質に固溶するとともに、炭化物が基地組織から析出し、もってショアー硬さが上昇するが、外層の内部ではこのような焼入れが余り起こらないので、ショアー硬さはそれ程上がらない。そのため、外層の硬度は表面が最も高くて、深くなるにつれて低下するようになる。以上に鑑み、本発明では鋳造後に焼入れ処理を行わずに直接焼戻し処理を行うことが重要である。
 複合ロール表面を速く冷却し、内部を1,000℃付近で徐冷するために、遠心鋳造用金型の壁厚を100~600 mmにするのが好ましく、100~450 mmにするのがより好ましい。遠心鋳造用金型は水平型、傾斜型又は垂直型のいずれでも良い。遠心鋳造用金型の材料はダクタイル鋳鉄が好ましく、金型の内面に厚さ1~5 mmの塗型を塗布するのが望ましい。塗型はシリカ、アルミナ、マグネシア、ジルコン等の酸化物を主体とするものが望ましい。
 本発明を以下の実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1~7、及び比較例1~3
 内径848 mm、長さ2700 mm及び厚さ276 mmのダクタイル鋳鉄製遠心鋳造用金型(内面に厚さ3 mmのジルコン系塗型を塗布)を内面での遠心力が120 Gとなる速度で回転させ、遠心鋳造用金型内に表1に示す組成(質量%)を有する各外層用溶湯を鋳込み、凝固させた。得られた各外層の平均鋳込み厚さは96.5 mmであった。各外層を内部に有する遠心鋳造用金型と、別の上型及び下型とを垂直に組立てて静置鋳造用鋳型を構成した。静置鋳造用鋳型のキャビティ(外層の内部及び上型及び下型内の空間からなる)に、質量%で3.0%のC、2.6%のSi、0.3%のMn、1.4%のNi、0.1%のCr、0.2%のMo、0.05%のMg、0.03%のP、及び0.03%のSを含有し、残部が実質的にFe及び不可避的不純物からなる組成を有するダクタイル鋳鉄からなる内層用溶湯を1431℃で鋳込んだ。外層の内周部は再溶解され、内層は外層と溶着一体化した。得られた各複合ロールを外層の表面温度が600℃以下になるまで冷却した後、鋳型を解体した。得られた複合ロールの内層の平均径は655 mmであった。
表1
Figure JPOXMLDOC01-appb-I000001
表1(続き)
Figure JPOXMLDOC01-appb-I000002
 実施例1~7及び比較例1の複合ロールに対しては、外層の変態点以上の温度に加熱せずに(焼入れ処理なしに)、530℃で10時間の焼戻し処理を2回行った。比較例2の複合ロールに対しては、1050℃まで加熱した後放冷する焼き入れ処理を行い、その後530℃の焼き戻し処理を2回行った。比較例3の複合ロールに対しては、鋳造後焼入れ処理も焼戻し処理も行わなかった(鋳放し状態とした)。実施例1~7及び比較例1~3の各複合ロールを、初径が810 mmとなるように機械加工した。廃却径を710 mm(外層の有効厚さ:50 mm)とした。
 各複合ロールの外層表面の硬さをショアー硬度計により測定し、得られたショアー硬度を表面硬さHaとした。次いで、30~50 mmの深さに5 mm間隔で順次機械加工した後、加工硬化部を電解研磨により除去し、露出した外層の硬さをショアー硬度計により測定し、得られたショアー硬さの最大値を深部硬さHbとした。表面硬さHa、深部硬さHb、表面硬さHaと深部硬さHbの差(Hb-Ha)、及び硬さの傾きAを表2に示す。硬さの傾きAは、外層の初径から30 mmの深さまでにおけるショアー硬さの深さ方向分布の一次回帰直線の傾き(Hs/mm)である。
 図1は、実施例1の複合ロールにおける外層のショアー硬さの深さ方向分布を示す。表面硬さHaは77であり、深部硬さHbは80であり、硬さの差(Ha-Hb)は3であった。また、硬さの傾きA(Hs/mm)は0.054であった。50 mmの有効径を超えるとショアー硬さは若干低下したが、これは内層との溶着の影響が出たためであると考えられる。
 各複合ロールの外層から切り出した試料について、外層中のトゥルースタイトの面積率(%)を初径位置、及び深さ30~50 mmの範囲内の5 mm間隔の位置でそれぞれ測定した。初径でのトゥルースタイトの面積率を表面Tと呼び、深さ30~50 mmの範囲内のトゥルースタイトの面積率の最大値を深部Tと呼ぶ。結果を表2に示す。
表2
Figure JPOXMLDOC01-appb-I000003
注:(1) 30~50 mmの深さにおける外層のショアー硬さの最大値。
  (2) 外層の初径から30 mmの深さまでにおけるショアー硬さの深さ方向分布の一次回帰直線の傾き(Hs/mm)である。 
 表2から明らかなように、実施例1~7の複合ロールでは表面硬さより深部硬さの方が1以上高かった。これに対して、比較例1の複合ロールは外層のNi含有量が本発明の範囲外であるので、表面硬さHaより深部硬さHbの方が低かった。また、比較例2の複合ロールは、焼き戻し処理の前に1050℃から放冷する焼き入れ処理を行ったので、表面硬さHaが83と高かったが、深部硬さHbは表面硬さHaより低かった。さらに、比較例3の複合ロールは、鋳造後焼入れ処理も焼戻し処理も行わなかった(鋳放し状態とした)ので、深部硬さHbが表面硬さHaより低かった。
 実施例1~7の複合ロールは、改削により外径が小さくなるが、外径が810 mm(初径)から780 mmまでの範囲では第一スタンドに用いるのに好適であり、780 mm超から750 mmまでの範囲では第二スタンドに用いるのに好適であり、750 mm超から710 mmまでの範囲では第三スタンドに用いるのに好適である。
実施例8及び9、比較例4
 実施例1と同じ遠心鋳造用金型に表3に示す組成を有する外層用溶湯を表4に示す鋳込み温度で96.5 mmの厚さに鋳込み、外層が凝固した後で実施例1と同様に静置鋳造用鋳型を構成し、静置鋳造用鋳型のキャビティに実施例1と同じ組成を有するダクタイル鋳鉄溶湯を1431℃で鋳込んだ。外層の内周部は再溶解され、内層は外層と溶着一体化した。得られた各複合ロールを外層の表面温度が600℃以下になるまで冷却した後、鋳型を解体した。
表3
Figure JPOXMLDOC01-appb-I000004
表3(続き)
Figure JPOXMLDOC01-appb-I000005
 実施例8及び9の複合ロールに対しては、外層の変態点以上の温度に加熱せずに(焼入れ処理なしに)、510℃で10時間の焼戻し処理を2回行った。比較例4の複合ロールに対しては、冷却後880℃で焼きなまし処理を行った後、1000℃に加熱し、放冷する焼き入れ処理を行い、さらに510℃で10時間の焼戻し処理を3回行った。実施例8及び9、及び比較例4の各複合ロールを、初径が810 mmとなるように機械加工した。廃却径を710 mm(外層の有効厚さ:50 mm)とした。
 表4に各複合ロールの外層の初径位置及び廃却径位置での未分解のM2Cの面積率、M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率を示す。未分解のM2C及びM2Cが分解して生成したMC及びM6C炭化物は、図3及び図4の金属組織に示すようにその形態によって分類し、画像解析ソフトにより面積率を測定した。
 図3(a) は実施例8の複合ロールの外層の初径位置における金属組織を示す顕微鏡写真(倍率400倍)であり、図3(b) は図3(a) に示す金属組織における炭化物の分布を模式的に示す。また、図4(a) は実施例8の複合ロールの外層の廃却径位置における金属組織を示す顕微鏡写真(倍率400倍)であり、図4(b) は図4(a) に示す金属組織における炭化物の分布を模式的に示す。図3及び図4において、3は未分解の板状M2C炭化物を示し、4はM2C炭化物の分解により生成したMC炭化物及びM6C炭化物を示し、5は基地を示す。
表4
Figure JPOXMLDOC01-appb-I000006
注:(1) 未分解のM2C。
  (2) M2C炭化物の分解により生成したMC炭化物及びM6C炭化物。 
 実施例1と同様に外層の表面硬さHa及び深部硬さHb、これらの差(Hb-Ha)、深部への硬さ変化の傾きA、及び表面部及び深部のトゥルースタイトの面積率を測定した。結果を表5に示す。実施例8及び9では表面硬さHaより深部硬さHbが高ったが、比較例4では表面硬さHaの方が深部硬さHbより高かった。
表5
Figure JPOXMLDOC01-appb-I000007
注:(1) 30~50 mmの深さにおける外層のショアー硬さの最大値。
  (2) 外層の初径から30 mmの深さまでにおけるショアー硬さの深さ方向分布の一次回帰直線の傾き(Hs/mm)である。

Claims (13)

  1. 質量%で0.8~3.5%のC、0.1~2.5%のSi、0.1~2.5%のMn、1.2~15%のCr、1~5%のNi、及び1~10%のMo+0.5×Wを含有し、残部が実質的にFe及び不可避的不純物からなる組成を有する外層に、鉄系合金からなる内層が溶着一体化した熱間圧延用遠心鋳造複合ロールにおいて、前記複合ロールの初径での外層のショアー硬さが67~82であり、前記初径から30 mm以上深い部位での前記外層のショアー硬さの最高値が、前記初径での前記外層のショアー硬さより1以上高いことを特徴とする熱間圧延用遠心鋳造複合ロール。
  2. 請求項1に記載の熱間圧延用遠心鋳造複合ロールにおいて、前記初径から30 mmの深さまでにおける前記外層のショアー硬さの深さ方向分布の一次回帰直線の傾きA(Hs/mm)が正であることを特徴とする熱間圧延用遠心鋳造複合ロール。
  3. 請求項1又は2に記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層がさらに2~15質量%のV+Nbを含有することを特徴とする熱間圧延用遠心鋳造複合ロール。
  4. 請求項1~3のいずれかに記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層がさらに質量%で1~10%のCo、0.01~2%のTi、0.01~2%のZr、及び0.001~0.15%のNの少なくとも一種を含有することを特徴とする熱間圧延用遠心鋳造複合ロール。
  5. 請求項1~4のいずれかに記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層におけるWの含有量が0.1~20質量%であることを特徴とする熱間圧延用遠心鋳造複合ロール。
  6. 請求項1~5のいずれかに記載の熱間圧延用遠心鋳造複合ロールにおいて、前記内層がダクタイル鋳鉄からなることを特徴とする熱間圧延用遠心鋳造複合ロール。
  7. 請求項1~6のいずれかに記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層と前記内層との間に中間層が形成されていることを特徴とする熱間圧延用遠心鋳造複合ロール。
  8. 請求項3に記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層の前記初径位置では未分解のM2C炭化物の面積率がM2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率より多く、前記外層の廃却径位置では未分解のM2C炭化物の面積率がM2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率より少ないことを特徴とする熱間圧延用遠心鋳造複合ロール。
  9. 請求項8に記載の熱間圧延用遠心鋳造複合ロールにおいて、(未分解のM2C炭化物の面積率)/[(未分解のM2C炭化物の面積率)+(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)]が初径位置で60%以上であることを特徴とする熱間圧延用遠心鋳造複合ロール。
  10. 請求項8又は9に記載の熱間圧延用遠心鋳造複合ロールにおいて、(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)/[(未分解のM2C炭化物の面積率)+(M2C炭化物の分解により生成したMC炭化物及びM6C炭化物の面積率)]が廃却径位置で60%以上であることを特徴とする熱間圧延用遠心鋳造複合ロール。
  11. 請求項1~10のいずれかに記載の熱間圧延用遠心鋳造複合ロールにおいて、初径での外層断面積/内層断面積の比が0.25~0.8であることを特徴とする熱間圧延用遠心鋳造複合ロール。
  12. 請求項1~11のいずれかに記載の熱間圧延用遠心鋳造複合ロールを製造する方法において、回転する遠心鋳造用金型に外層用溶湯を鋳込み、得られた中空状外層の凝固途中又は凝固後に前記外層の内周部に鉄系合金からなる内層用溶湯を鋳込み、前記外層の内周部の再溶解により前記内層を前記外層に溶着一体化させた後、前記外層の表面温度が600℃以下になるまで冷却し、次いで外層の変態点以上の温度に加熱する工程を経ることなく600℃以下の焼戻し処理を1回以上行うことを特徴とする方法。
  13. 請求項12に記載の熱間圧延用遠心鋳造複合ロールの製造方法において、前記遠心鋳造用金型の壁厚が100~600 mmであることを特徴とする方法。
PCT/JP2012/072345 2011-09-21 2012-09-03 熱間圧延用遠心鋳造複合ロール及びその製造方法 WO2013042528A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/344,734 US9757779B2 (en) 2011-09-21 2012-09-03 Centrifugally cast composite roll for hot rolling and its production method
BR112014006751-1A BR112014006751B1 (pt) 2011-09-21 2012-09-03 Rolo compósito fundido centrifugamente para laminação a quente e método de produção do mesmo
EP12833289.7A EP2745944B1 (en) 2011-09-21 2012-09-03 Centrifugal casted composite roller for hot rolling and method for producing same
JP2013534654A JP6036698B2 (ja) 2011-09-21 2012-09-03 熱間圧延用遠心鋳造複合ロール及びその製造方法
CN201280045594.7A CN103813864B (zh) 2011-09-21 2012-09-03 热轧用离心铸造复合辊及其制造方法
KR1020147004885A KR101956652B1 (ko) 2011-09-21 2012-09-03 열간 압연용 원심 주조 복합 롤 및 그 제조 방법
ZA2014/01931A ZA201401931B (en) 2011-09-21 2014-03-17 Centrifugally cast composite roll for hot rolling and its production method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011205645 2011-09-21
JP2011-205644 2011-09-21
JP2011205644 2011-09-21
JP2011-205645 2011-09-21
JP2012155402 2012-07-11
JP2012155403 2012-07-11
JP2012155404 2012-07-11
JP2012-155404 2012-07-11
JP2012-155402 2012-07-11
JP2012-155403 2012-07-11

Publications (1)

Publication Number Publication Date
WO2013042528A1 true WO2013042528A1 (ja) 2013-03-28

Family

ID=47914305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072345 WO2013042528A1 (ja) 2011-09-21 2012-09-03 熱間圧延用遠心鋳造複合ロール及びその製造方法

Country Status (8)

Country Link
US (1) US9757779B2 (ja)
EP (1) EP2745944B1 (ja)
JP (1) JP6036698B2 (ja)
KR (1) KR101956652B1 (ja)
CN (1) CN103813864B (ja)
BR (1) BR112014006751B1 (ja)
WO (1) WO2013042528A1 (ja)
ZA (1) ZA201401931B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789678A (zh) * 2014-01-25 2014-05-14 安徽省临泉县智创精机有限公司 一种钻头用合金钢材料及其制备方法
CN104212960A (zh) * 2014-08-08 2014-12-17 安徽昱工耐磨材料科技有限公司 镍硬铸铁热处理方法
CN104946965A (zh) * 2015-06-17 2015-09-30 铜陵市大成轧辊有限责任公司 球状石墨铸钢轧辊及其制备方法
JP2015203138A (ja) * 2014-04-14 2015-11-16 虹技株式会社 鋳鉄鋳物とその製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016016893A (es) * 2014-06-27 2017-03-27 Jfe Steel Corp Rodillo de calibre de colada centrifuga para tren de laminacion en caliente.
CN104174832A (zh) * 2014-07-07 2014-12-03 宜昌船舶柴油机有限公司 耐磨磨辊铸造方法
US9387534B2 (en) * 2014-08-29 2016-07-12 Zf Friedrichshafen Ag Control arm and a method for forming the same
JP6621650B2 (ja) * 2015-11-17 2019-12-18 株式会社フジコー 熱延プロセス用ロールおよびその製造方法
CN105543641B (zh) * 2016-01-29 2017-03-15 山东省四方技术开发有限公司 粒子强化热轧无缝钢管连轧机复合轧辊及其制备方法
CN106282767A (zh) * 2016-08-23 2017-01-04 合肥东方节能科技股份有限公司 轧机导辊用耐磨稀土合金材料及轧机导辊的热处理方法
CN106367664A (zh) * 2016-08-29 2017-02-01 中钢集团邢台机械轧辊有限公司 一种用于热带轧机的铸铁材质夹送辊及其制造方法
CN109641250B (zh) * 2016-09-07 2020-11-03 杰富意钢铁株式会社 热轧用辊外层材料及热轧用复合辊
CN106319334B (zh) * 2016-09-29 2018-06-29 湖南长高新材料股份有限公司 高铬铸铁合金材料及其制造方法和应用
CN107475641B (zh) * 2017-08-14 2019-05-14 湖南长高新材料股份有限公司 高速钢轧辊及其制备方法
KR102553279B1 (ko) * 2018-01-31 2023-07-06 가부시키가이샤 프로테리아루 초경합금제 복합 롤
BR112020026751A2 (pt) * 2018-08-08 2021-03-30 Hitachi Metals, Ltd. Rolo compósito centrifugamente fundido para laminação e seu método de produção
CN113661019B (zh) * 2019-04-03 2022-09-13 日铁轧辊株式会社 通过离心铸造法制造的轧制用复合辊及其制造方法
WO2020203571A1 (ja) * 2019-04-03 2020-10-08 日鉄ロールズ株式会社 遠心鋳造製圧延用複合ロール及びその製造方法
CN110157988B (zh) * 2019-06-27 2020-10-27 锦州金科高新技术发展有限责任公司 一种高纯、均质稀土冷轧辊用钢合金材料及制备方法
US11712723B2 (en) * 2019-10-16 2023-08-01 Proterial, Ltd. Centrifugally cast composite roll for hot rolling
CN111485164B (zh) * 2020-06-08 2021-05-14 马鞍山常裕机械设备有限公司 一种强化低铬合金铸件耐磨性能的铸造方法
US20230373032A1 (en) * 2020-10-13 2023-11-23 Centre De Recherches Métallurgiques ASBL Method for manufacturing a work roll by laser cladding
CN115679186B (zh) * 2022-11-10 2024-05-14 中钢集团邢台机械轧辊有限公司 一种热带宽幅铝轧机用工具钢轧辊的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136523A (ja) * 1985-12-07 1987-06-19 Kobe Steel Ltd 冷間圧延用ワ−クロ−ルの製造法
JPH02258949A (ja) 1988-12-02 1990-10-19 Hitachi Metals Ltd 耐摩耗複合ロール
JPH06100946A (ja) * 1992-09-24 1994-04-12 Japan Steel Works Ltd:The 圧延用補強ロールの製造方法
JPH06145887A (ja) 1992-11-04 1994-05-27 Kougi Kk 複合ハイススリーブロール及びその製造方法
JPH0775808A (ja) * 1993-09-07 1995-03-20 Hitachi Metals Ltd 形鋼圧延用耐摩耗複合ロール
JPH0860289A (ja) * 1994-08-24 1996-03-05 Nippon Steel Corp 遠心鋳造複合ロール
JP2004250764A (ja) * 2003-02-21 2004-09-09 Hitachi Metals Ltd 圧延用複合ロールの製造方法及びそのロール
WO2007077637A1 (ja) * 2005-12-28 2007-07-12 Hitachi Metals, Ltd. 遠心鋳造複合ロール

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948934A (en) * 1951-02-23 1960-08-16 American Cast Iron Pipe Co Apparatus for the manufacture of centrifugally cast tubular metal articles
JPS50158518A (ja) 1974-06-12 1975-12-22
JPS5830382B2 (ja) * 1979-10-26 1983-06-29 株式会社クボタ 高クロムワ−クロ−ル
JPS5855551A (ja) 1981-09-29 1983-04-01 Kubota Ltd H型鋼圧延用複合スリ−プロ−ル及びその製造法
US4726417A (en) * 1986-09-12 1988-02-23 Hitachi Metals, Ltd. Adamite compound roll
DE69024762T2 (de) 1989-11-30 1996-05-15 Hitachi Metals Ltd Verschleissfeste Verbundwalze
JP2715205B2 (ja) * 1990-11-21 1998-02-18 川崎製鉄株式会社 圧延用ロール外層材
DE69213608T2 (de) * 1991-07-09 1997-02-06 Hitachi Metals Ltd Verbundwalze und Verfahren zur Herstellung derselben
EP0562114B1 (en) * 1991-09-12 1998-11-04 Kawasaki Steel Corporation Material of outer layer of roll for rolling and compound roll manufactured by centrifugal casting
US5355932A (en) * 1992-03-06 1994-10-18 Hitachi Metals, Ltd. Method of producing a compound roll
JP2715217B2 (ja) 1992-04-21 1998-02-18 川崎製鉄株式会社 遠心鋳造製複合ロール
JPH05311335A (ja) 1992-05-12 1993-11-22 Kawasaki Steel Corp スリーブロール
JPH0737656B2 (ja) 1992-06-23 1995-04-26 株式会社淀川製鋼所 耐摩耗性複合ロール
JP2852018B2 (ja) 1995-03-07 1999-01-27 川崎製鉄株式会社 遠心鋳造ロール用外層材
DE19528291C2 (de) * 1995-08-02 1998-06-04 Ald Vacuum Techn Gmbh Verfahren und Vorrichtung zum Herstellen von Partikeln aus gerichtet erstarrten Gußkörpern
JPH09209073A (ja) * 1996-01-31 1997-08-12 Kubota Corp H型鋼圧延ロール用複合スリーブ
AT408666B (de) 1999-04-22 2002-02-25 Weinberger Eisenwerk Gusswerkstoff und verfahren zu dessen herstellung
JP4372364B2 (ja) 2001-01-23 2009-11-25 日鉄住金ロールズ株式会社 遠心鋳造製熱間圧延用単層スリーブロール
US8156651B2 (en) * 2004-09-13 2012-04-17 Hitachi Metals, Ltd. Centrifugally cast external layer for rolling roll and method for manufacture thereof
JP4428214B2 (ja) * 2004-11-30 2010-03-10 Jfeスチール株式会社 熱間圧延用高Cr系ロール外層材および熱間圧延用高Cr系複合ロール
CN100485075C (zh) * 2007-04-03 2009-05-06 西安交通大学 一种高碳高钒高速钢复合轧辊及其热处理方法
CN101386027A (zh) * 2007-09-14 2009-03-18 日立金属株式会社 离心铸造制轧辊

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136523A (ja) * 1985-12-07 1987-06-19 Kobe Steel Ltd 冷間圧延用ワ−クロ−ルの製造法
JPH02258949A (ja) 1988-12-02 1990-10-19 Hitachi Metals Ltd 耐摩耗複合ロール
JPH06100946A (ja) * 1992-09-24 1994-04-12 Japan Steel Works Ltd:The 圧延用補強ロールの製造方法
JPH06145887A (ja) 1992-11-04 1994-05-27 Kougi Kk 複合ハイススリーブロール及びその製造方法
JPH0775808A (ja) * 1993-09-07 1995-03-20 Hitachi Metals Ltd 形鋼圧延用耐摩耗複合ロール
JPH0860289A (ja) * 1994-08-24 1996-03-05 Nippon Steel Corp 遠心鋳造複合ロール
JP2004250764A (ja) * 2003-02-21 2004-09-09 Hitachi Metals Ltd 圧延用複合ロールの製造方法及びそのロール
WO2007077637A1 (ja) * 2005-12-28 2007-07-12 Hitachi Metals, Ltd. 遠心鋳造複合ロール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2745944A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789678A (zh) * 2014-01-25 2014-05-14 安徽省临泉县智创精机有限公司 一种钻头用合金钢材料及其制备方法
JP2015203138A (ja) * 2014-04-14 2015-11-16 虹技株式会社 鋳鉄鋳物とその製造方法
CN104212960A (zh) * 2014-08-08 2014-12-17 安徽昱工耐磨材料科技有限公司 镍硬铸铁热处理方法
CN104946965A (zh) * 2015-06-17 2015-09-30 铜陵市大成轧辊有限责任公司 球状石墨铸钢轧辊及其制备方法

Also Published As

Publication number Publication date
EP2745944A4 (en) 2015-04-22
CN103813864B (zh) 2016-04-13
ZA201401931B (en) 2015-12-23
EP2745944A1 (en) 2014-06-25
KR20140063633A (ko) 2014-05-27
BR112014006751A2 (pt) 2017-03-28
KR101956652B1 (ko) 2019-03-11
BR112014006751B1 (pt) 2021-12-28
US9757779B2 (en) 2017-09-12
JP6036698B2 (ja) 2016-11-30
EP2745944B1 (en) 2018-12-19
CN103813864A (zh) 2014-05-21
JPWO2013042528A1 (ja) 2015-03-26
US20140345353A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP6036698B2 (ja) 熱間圧延用遠心鋳造複合ロール及びその製造方法
JP5768947B2 (ja) 遠心鋳造製熱間圧延用複合ロール
TWI712697B (zh) 軋輥用外層及輥軋用複合輥
EP3050636B1 (en) Centrifugally cast, hot-rolling composite roll
JP5950047B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP5862526B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP7400718B2 (ja) 圧延用遠心鋳造複合ロール及びその製造方法
JP6606977B2 (ja) 熱間圧延用複合ロールの製造方法
JP2019183276A (ja) 熱間圧延用遠心鋳造複合ロール及びその製造方法
JP6515957B2 (ja) 耐摩耗性に優れた圧延用ロール外層材および圧延用複合ロール
JP2003073767A (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP4123903B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP6518314B2 (ja) 圧延用複合ロール
JP6277040B2 (ja) 圧延用複合ロール
JP7136037B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2002285277A (ja) 遠心鋳造製圧延用複合ロール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147004885

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013534654

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14344734

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012833289

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006751

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006751

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140320