WO2013040872A1 - 一种液压控制阀、双缸伸缩系统及高空作业工程机械 - Google Patents

一种液压控制阀、双缸伸缩系统及高空作业工程机械 Download PDF

Info

Publication number
WO2013040872A1
WO2013040872A1 PCT/CN2012/071203 CN2012071203W WO2013040872A1 WO 2013040872 A1 WO2013040872 A1 WO 2013040872A1 CN 2012071203 W CN2012071203 W CN 2012071203W WO 2013040872 A1 WO2013040872 A1 WO 2013040872A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
oil
valve
valve body
oil port
Prior art date
Application number
PCT/CN2012/071203
Other languages
English (en)
French (fr)
Inventor
史先信
徐小东
孔德美
卢良卫
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to US14/346,212 priority Critical patent/US9541100B2/en
Priority to EP12834004.9A priority patent/EP2759714A4/en
Priority to BR112014006915A priority patent/BR112014006915A2/pt
Publication of WO2013040872A1 publication Critical patent/WO2013040872A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/22Synchronisation of the movement of two or more servomotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/006Safety devices, e.g. for limiting or indicating lifting force for working platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/001Servomotor systems with fluidic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31588Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40523Flow control characterised by the type of flow control means or valve with flow dividers
    • F15B2211/4053Flow control characterised by the type of flow control means or valve with flow dividers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7057Linear output members being of the telescopic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87265Dividing into parallel flow paths with recombining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87265Dividing into parallel flow paths with recombining
    • Y10T137/87507Electrical actuator

Definitions

  • the invention relates to a hydraulic control valve, a two-cylinder telescopic system and an aerial work engineering machine.
  • the application request is submitted to the Chinese Patent Office on September 23, 2011, and the application number is 201110286496.X.
  • the invention name is "a hydraulic control valve, a two-cylinder expansion and contraction".
  • the invention relates to the technical field of engineering machinery, in particular to a two-cylinder telescopic control valve for a high-altitude engineering machine using a two-cylinder telescopic system.
  • the present invention also relates to a two-cylinder expansion system and an aerial work engineering machine provided with the control valve.
  • High-altitude construction machinery such as high-rise fire trucks are products with a dedicated chassis and equipped with a lifting boom. They can be lifted to a certain height for high-altitude rescue or high-altitude operations when operated by professional operators.
  • the lifting arm can be divided into folding arm, telescopic arm, mixing arm, and self-propelled type.
  • the telescopic arm is made up of two or more box-shaped arms, which are stretched.
  • the linear reciprocating motion is realized under the force of the cylinder or under the tension of the flexible steel wire rope or the plate chain, and the work space attached to the head is used to send the high-altitude operator to a high place for work.
  • a fire hose is provided at the top of the telescopic boom of the high fire truck, and a working platform is provided at the top of the telescopic arm of the aerial work platform.
  • the operator can control the telescopic arm on the console to realize water spray, transport personnel, and implementation. Rescue and other aerial work functions.
  • the single-cylinder and multi-stage telescopic chain synchronous telescopic control system can not meet the safety and stability requirements; and two or more telescopic
  • the cylinder's telescopic system must be able to achieve simultaneous control so that the maximum operating height can be achieved in the shortest possible operating time and the rescue can be quickly implemented.
  • no synchronous control valves are provided, but the telescopic cylinders are directly controlled by the electromagnetic reversing valve group.
  • Figure 1 shows the hydraulic principle diagram of the electromagnetic reversing valve block of the existing two-cylinder telescopic system.
  • the upper telescopic cylinder 1 and the lower telescopic cylinder 2 are respectively controlled by a first electromagnetic reversing valve 3-1 and a second electromagnetic reversing valve 3-2, a first electromagnetic reversing valve 3-1 and a second electromagnetic
  • the reversing valve 3-2 constitutes the electromagnetic reversing valve group 3, and the oil ports A1 and B1 are respectively connected to the large cavity and the small cavity of the telescopic cylinder 1, and the oil ports A2 and B2 are respectively connected to the large cavity and the small cavity of the telescopic cylinder 2, respectively.
  • the upper telescopic cylinder 1 and the lower telescopic cylinder 2 can be controlled to simultaneously extend. Or retract.
  • the two cylinders may be extended and retracted in two situations. Large enough, the two cylinders can be extended at the same time, but the extension speed of the upper telescopic cylinder 1 will be faster than the extension speed of the lower telescopic cylinder 2, reaching the end of the stroke first. Conversely, if the system flow rate is small, the pressure oil will first be pushed out by the reversing valve to push the upper telescopic cylinder 1 with a small load. When the upper telescopic cylinder 1 is extended to the end point, the system pressure rises and will continue to push the lower telescopic The cylinder 2 is extended to the end.
  • a first object of the present invention is to provide a hydraulic control valve.
  • the valve can control the two cylinders of the two-cylinder telescopic system to achieve synchronous expansion and contraction, thereby shortening the operating time of the telescopic system and improving work efficiency.
  • a second object of the present invention is to provide a two-cylinder telescopic system provided with the hydraulic control valve.
  • a third object of the present invention is to provide an aerial work machine provided with the hydraulic control valve.
  • the present invention provides a hydraulic control valve, the control valve comprising a split flow manifold having a first oil port, a second oil port and a third oil port;
  • the first oil port, the second oil port and the third oil port of the split flow collecting valve are respectively connected with the first oil port, the second oil port and the third oil port of the valve body;
  • the control valve has two operating states:
  • the valve body of the control valve has a fourth oil port and has a third working state and a fourth working state:
  • the third port of the valve body is in communication with the fourth port
  • the second port of the valve body is in communication with the fourth port.
  • valve body is integrated with a reversing valve and a shut-off valve
  • the oil passage between the second port and the third port of the valve body is communicated through the reversing valve; in the third working state, the third port of the valve body is The fourth oil port is connected through the reversing valve; in the fourth working state, the second oil port of the valve body communicates with the fourth oil port through the shutoff valve.
  • the reversing valve has three oil ports, and the first oil port, the second oil port and the third oil port respectively correspond to the fourth oil port, the second oil port and the third oil port of the valve body Connected
  • the reversing valve has three working positions: in the first working position, the first port, the second port and the third port are both closed; in the second working position, the first port is cut off, the second The oil port is connected to the third oil port; in the third working position, the second oil port is closed, and the first oil port is in communication with the third oil port.
  • the reversing valve is a three-position three-way electromagnetic reversing valve.
  • the reversing valve has four oil ports, and the first oil port, the second oil port and the third oil port respectively correspond to the fourth oil port, the second oil port and the third oil port of the valve body Connected, its fourth port is closed;
  • the reversing valve has three working positions: in the first working position, the first oil port, the second oil port, the third oil port and the fourth oil port are all cut off; in the second working position, the first oil is The port is connected to the fourth port, and the second port is connected to the third port; in the third working position, the first port is The third port is connected, and the second port is connected to the fourth port.
  • the reversing valve is a three-position four-way electromagnetic reversing valve.
  • the present invention further provides a two-cylinder telescopic system, comprising an upper telescopic cylinder and a lower telescopic cylinder, further comprising the hydraulic control valve according to any one of the above, wherein the first port of the valve body is The oil port is controlled, and the second oil port and the third oil port of the valve body respectively communicate with the cavity of the upper telescopic cylinder and the lower telescopic cylinder.
  • the present invention also provides an aerial work machine comprising a chassis, a lifting boom, an upper telescopic cylinder and a lower telescopic cylinder, further comprising the hydraulic control valve according to any one of the above, the valve
  • the first port of the body is a control port
  • the second port and the third port of the valve body respectively communicate with the cavity of the upper telescopic cylinder and the lower telescopic cylinder.
  • the aerial work machine is specifically a lift fire truck or an aerial work platform.
  • the hydraulic control valve provided by the invention comprises a split flow collecting valve, the valve body has a first oil port, a second oil port and a third oil port; the first oil port and the second oil port of the split flow collecting valve The third oil port is respectively connected to the first oil port, the second oil port and the third oil port of the valve body; the control valve has two working states: in the first working state, the second oil of the valve body The oil path between the mouth and the third port is not connected;
  • the control valve has a single structure, good stability and high safety.
  • the first port of the valve body is a control port, and the second port and the third port respectively communicate with the upper telescopic cylinder of the two-cylinder telescopic system. And the rodless cavity of the lower telescopic cylinder.
  • the control valve When the upper telescopic cylinder and the lower telescopic cylinder are extended or retracted, the control valve is in a first working state, that is, the oil passage between the second oil port and the third oil port of the valve body is not connected,
  • the internal shunt collector valve keeps the flow of the input (or output) of the second port equal to the flow of the input (or output) of the third port, regardless of the error and various external disturbance factors, thereby driving the two
  • the telescopic cylinder is extended or retracted synchronously, so that the telescopic system can complete the telescopic movement in the shortest time, which greatly improves the working efficiency.
  • the control valve When the double cylinder cannot synchronously expand and contract to the end point due to various flow error factors such as load difference, split manifold error, etc., the control valve is in the second working state, and the second port and the third oil of the valve body are The oil passage between the ports enables the lagging telescopic cylinder to quickly extend to the end of the stroke or retract to the starting point, ensuring that the telescopic cylinders can be accurately moved into position.
  • the valve body of the control valve has a fourth oil port and has a third working state and a fourth working state: in the third working state, the third port and the fourth port of the valve body The oil port is connected; in the fourth working state, the second oil port of the valve body is in communication with the fourth oil port.
  • the fourth oil port of the valve body is a return oil port, and the second oil port or the third oil port of the valve body is electrically connected to the oil return oil passage, so that the upper telescopic oil cylinder or the lower telescopic oil cylinder can be separately supplied.
  • the purpose of the oil is to control the expansion and retraction of each telescopic cylinder separately, and the double cylinder synchronous extension and retraction can be realized, and the function of separately stepping the two cylinders can be performed, which can satisfy the vehicle debugging, fault diagnosis or It is necessary to use the working conditions such as single cylinder force calculation.
  • the two-cylinder telescopic system and the aerial work engineering machine provided by the present invention are provided with the above-mentioned hydraulic control valve. Since the above-mentioned hydraulic control valve has the above technical effects, the two-cylinder telescopic system and the aerial work engineering machine having the hydraulic control valve should also have corresponding Technical effect.
  • FIG. 1 is a hydraulic schematic diagram of an electromagnetic reversing valve block of a conventional two-cylinder telescopic system
  • FIG. 2 is a hydraulic principle diagram of a first embodiment of a hydraulic control valve provided by the present invention
  • Figure 3 is a hydraulic schematic diagram of a second embodiment of the hydraulic control valve provided by the present invention.
  • Figure 4 is a hydraulic principle diagram of a third embodiment of the hydraulic control valve provided by the present invention.
  • Figure 5 is a hydraulic principle diagram of a fourth embodiment of the hydraulic control valve provided by the present invention.
  • Figure 6 is a hydraulic principle diagram of a fifth embodiment of the hydraulic control valve provided by the present invention.
  • Figure 7 is a hydraulic principle diagram of a sixth embodiment of the hydraulic control valve provided by the present invention.
  • Figure 8 is a hydraulic schematic diagram of the hydraulic control valve of Figure 6 connected to the upper and lower telescopic cylinders of the two-cylinder telescopic system.
  • FIG. 1 Upper telescopic cylinder 1, lower telescopic cylinder 2, electromagnetic reversing valve group 3, first electromagnetic reversing valve 3-1, second electromagnetic reversing valve 3-2;
  • Valve body 10 first oil ⁇ ⁇ , second port Cl, third port C2, fourth port T; diverting collecting valve 10-1;
  • Three-position three-way electromagnetic reversing valve 10-3 first port 1 ⁇ second oil PP, third port B; three-position four-way electromagnetic reversing valve 10-4, first port T, second oil Mouth, third port, fourth port;
  • the upper telescopic cylinder 20-1 and the lower telescopic cylinder 20-2 are identical to each other.
  • the heart of the invention is a hydraulic control valve.
  • the valve can control the two cylinders of the two-cylinder telescopic system to achieve synchronous expansion and contraction, thereby shortening the operating time of the telescopic system and improving work efficiency.
  • Another core of the present invention is to provide a two-cylinder telescopic system provided with the hydraulic control valve, and an aerial work engineering machine provided with the hydraulic control valve.
  • FIG. 2 is a hydraulic schematic diagram of a first embodiment of a hydraulic control valve according to the present invention.
  • the hydraulic control valve provided by the present invention is a combined valve, including a diverter manifold 10-1 and a two-position two-way electromagnetic reversing valve 10-2, and the valve body 10 has a first port.
  • V, the second port C1 and the third port C2; the first port (ie, the inlet port), the second port, and the third port of the diverting collecting valve 10-1 are respectively the first of the valve body 10
  • the port V, the second port C1 and the third port C2 are in communication.
  • the control valve has two operating states:
  • the first port V of the valve body 10 is a control port
  • the second port C1 and the third port C2 respectively communicate with the upper and lower cavities of the upper and lower telescopic cylinders of the two-cylinder telescopic system
  • the hydraulic control valve When the telescopic cylinder is extended, the hydraulic control valve is in the first working state, the hydraulic system control port supplies oil to the first port V, and is diverted through the diverter manifold 10-1 in the valve body 10, from the second oil
  • the port Cl and the third port C2 respectively enter the two telescopic cylinders, and the telescopic cylinder protrudes.
  • the diverter collecting valve 10-1 functions as a diversion, and divides the system flow into two equal parts, respectively supplying two telescopic cylinders, so that the double The cylinders are extended synchronously.
  • the hydraulic control valve will be in the second operating state.
  • the left two-way electromagnetic reversing valve 10-2 is energized to the left (ie, P and A are connected), so that the second port C1 of the diverting valve 10-1 is branched.
  • the third port C2 is connected and the pressure is equal, the second port C1 and the third port C2 are returned to the normal open state, and the flow from the diverting collecting valve 10-1 is all supplied to the lag cylinder to be quickly reached. The end of the trip.
  • the hydraulic control valve is also in the first working state, and the second port C1 and the third port C2 are the return ports, and are collected by the diverter manifold 10-1 in the valve body.
  • the diverter collecting valve 10-1 functions as a collecting current, and the flow rates of the input of the second port C1 and the third port C2 are equal. , so that the two cylinders are retracted synchronously.
  • the flow into the second port C1 and the third port C2 is not due to the unequal stress of the two telescopic cylinders, the uneven load friction and the error of the diverter manifold. They are completely equal, so that one of the telescopic cylinders will first retract to the starting point of the stroke. At this time, the outlet pressure of the telescopic cylinder will suddenly decrease to zero, and the lagging telescopic cylinder will enter the port of the diverting collecting valve 10-1 (second oil C1). The port or the third port C2) will be sharply reduced or closed, and the lagging telescopic cylinder will also stop moving and cannot be fully retracted. If it is applied to a lift fire truck, its boom will not be retracted in place and the vehicle will not be able to receive it properly. car.
  • the hydraulic control valve will be in the second operating state.
  • the left two-way electromagnetic reversing valve 10-2 is energized to the left (ie, P and A are connected), so that the second port C1 of the diverting valve 10-1 is branched.
  • the second port C1 and the third port C2 return to the normal open state, and the oil in the telescopic cylinder that is not retracted into position will simultaneously be from the second port C1 and the third port.
  • C2 is collected and collected in the first port V through the diverter manifold 10-1, so that the telescopic cylinder that has not been retracted in position is quickly retracted to the starting point of the stroke.
  • FIG. 3 is a hydraulic schematic diagram of a second embodiment of a hydraulic control valve according to the present invention.
  • the two-position two-way electromagnetic reversing valve 10-2 functions in the hydraulic control valve, the second port C1 and the third port C2 of the valve body are turned on or off (ie, the second port of the diverter collecting valve and The third port), therefore, in the second embodiment, the first shut-off valve 10-5 can be used instead of the two-position two-way electromagnetic reversing valve 10-2, and the functions of the two control oil passages are basically the same. Both can make the two cylinders retract in place.
  • FIG. 4 is a hydraulic schematic diagram of a third embodiment of the hydraulic control valve provided by the present invention.
  • control valve provided by the present invention is a combined valve, including a split manifold 10-1, a second shutoff valve 10-6, and a three-position three-way electromagnetic reversing valve 10-3, the valve thereof
  • the body 10 has a first port V, a second port C1, a third port C2, and a fourth port T.
  • the first port ie, the oil inlet
  • the second port and the third port of the diverting flow collecting valve 10-1 are respectively connected to the first port V, the second port C1, and the third port C2 of the valve body. Connected.
  • the two ports of the second shutoff valve 10-6 are in communication with the second port C1 and the fourth port of the valve body 10, respectively.
  • the first port ⁇ , the second port port ⁇ and the third port port ⁇ of the three-position three-way electromagnetic reversing valve 10-3 are respectively connected to the fourth port port ⁇ , the second port C1 and the third oil of the valve body 10 Port C2 is connected.
  • the control valve has four operating states: In the first working state, the second shutoff valve 10-6 is disconnected, the three-position three-way electromagnetic reversing valve 10-3 is at the neutral position, and the oil between the second port C1 and the third port C2 of the valve body 10 The road is not connected.
  • the second shutoff valve 10-6 is disconnected, the three-position three-way electromagnetic reversing valve 10-3 is in the left position, and the second port C1 of the valve body 10 is between the third port C1 and the third port C2.
  • the oil passage communicates with the third port P and the third port B of the three-position three-way electromagnetic reversing valve 10-3.
  • the second shut-off valve 10-6 is disconnected, the three-position three-way electromagnetic reversing valve 10-3 is in the right position, and the oil between the second port C1 and the third port C2 of the valve body 10 The road is non-connected, and the third port C2 of the valve body 10 communicates with the fourth port T of the valve body 10 through the first port T and the third port B of the three-position three-way electromagnetic reversing valve 10-3.
  • the second shut-off valve 10-6 is turned on, the three-position three-way electromagnetic reversing valve 10-3 is in the middle position, and the oil between the second port C1 and the third port C2 of the valve body 10 The road is non-connected, and the second port C1 of the valve body 10 communicates with the fourth port T of the valve body 10 through the second shutoff valve 10-6.
  • the first port V of the valve body 10 is a control port
  • the second port C1 and the third port C2 respectively communicate with the upper and lower cavities of the upper and lower telescopic cylinders of the two-cylinder telescopic system
  • the hydraulic control valve When the telescopic cylinder is extended, the hydraulic control valve is in the first working state, the hydraulic system control port supplies oil to the first port V, and is diverted through the diverter manifold 10-1 in the valve body, and the second port is C1, the third port C2 enters the two telescopic cylinders respectively, so that the two cylinders are synchronously extended.
  • the hydraulic control valve When one of the telescopic cylinders reaches the end of the stroke, the hydraulic control valve will be in the second working state.
  • the three-position three-way electromagnetic reversing valve 10-3 is energized to the left (ie, the P and B ports are connected), so that The second port and the third port of the diverting flow collecting valve 10-1 are connected to each other, and the pressure is equal, and the second port and the third port are returned to the normal opening state, so that the lagging telescopic cylinder reaches the end point of the stroke quickly.
  • C1 and the third port C2 are oil return ports, and are collected by the diverting manifold 10-1 in the valve body 10, and then flow from the first port V to the hydraulic system control port to synchronously retract the twin cylinders.
  • the hydraulic control valve When one of the telescopic cylinders returns to the starting point, the hydraulic control valve will be in the second working state. At this time, the three-position three-way electromagnetic reversing valve 10-3 is energized to the left position, so that the shunting valve 10-1 is When the pressures of the second port and the third port are equal, the second port and the third port return to the normal open state, so that the telescopic cylinder that is not retracted in position is quickly retracted to the starting point of the stroke.
  • the two cylinders need to be separately extended and contracted due to commissioning, fault diagnosis, or calculation of single cylinder force
  • the telescopic cylinder needs to be operated separately to carry out the load test or pressure test.
  • the three-position three-way electromagnetic reversing valve 10-3 in the hydraulic control valve is electrically connected to the right position, the first port T and the third port.
  • FIG. 5 is a hydraulic schematic diagram of a fourth embodiment of the hydraulic control valve according to the present invention.
  • the hydraulic control valve provided by the present invention is different from the third embodiment in that the reversing valve is a three-position four-way electromagnetic reversing valve 10-4, and the first oil
  • the port T, the second port port ⁇ and the third port port ⁇ are respectively communicated with the fourth port port ⁇ , the second port C1 and the third port C2 of the valve body 10, and the fourth port port is closed.
  • the three-position four-way electromagnetic reversing valve 10-4 has three working positions: in the first working position, the first port 1 ⁇ the second oil PP, the third port B and the fourth port A are both cut off; In the second working position, the first port T is in communication with the fourth port A, and the second port P is in communication with the third port B; in the third working position, the first port T and the third port The port B is connected, and the second port P is in communication with the fourth port A.
  • FIG. 6 is a hydraulic schematic diagram of a fifth embodiment of the hydraulic control valve according to the present invention.
  • the reversing valve in the third and fourth embodiments described above functions in the hydraulic control valve to turn on or off the second port C1 and the third port C2 of the valve body 10, and to turn on or off the third The oil port C2 and the fourth port T, therefore, the two-position two-way electromagnetic reversing valve 10-2 and the third shut-off valve 10-7 can be used instead of the three-position three-way electromagnetic reversing valve 10-3 or three-four Electromagnetic reversing valve 10-4.
  • the two ports of the two-position two-way electromagnetic reversing valve 10-2 are respectively connected with the second port C1 and the third port C2 of the valve body 10, and two of the third shut-off valves 10-7
  • the oil ports are respectively connected to the third port C2 and the fourth port port of the valve body 10, and the same purpose is achieved for the two cylinders to be telescoped in place and the twin cylinders to be individually telescoped.
  • the above-mentioned hydraulic control valve is only a preferred embodiment, and the specific structure thereof is not limited thereto. On this basis, a targeted adjustment can be made according to actual needs, thereby obtaining different embodiments.
  • the two-position two-way electromagnetic reversing valve 10-2 in the fifth embodiment described above may be replaced with a fourth shut-off valve 10-8 (see Fig. 7).
  • the reversing valve can be of various types, and the shut-off valve and the reversing valve also have various combinations on the hydraulic oil circuit. Since there are many ways to achieve this, in order to save space, this article will not give an example.
  • Figure 8 is a hydraulic schematic diagram of the hydraulic control valve shown in Figure 6 connected to the upper telescopic cylinder and the lower telescopic cylinder of the two-cylinder telescopic system.
  • the present invention also provides a two-cylinder telescopic system comprising an upper telescopic cylinder 20-1 and a lower telescopic cylinder
  • the hydraulic control valve in the fifth embodiment wherein the first oil port V of the valve body 10 is a control oil port, and the second oil C1 port and the third oil port C2 are respectively connected to the upper telescopic cylinder 20 -1 and the rodless cavity of the lower telescopic cylinder 20-2, and the fourth port ⁇ of the valve body 10 is the oil return port.
  • the first oil port V of the valve body 10 is a control oil port
  • the second oil C1 port and the third oil port C2 are respectively connected to the upper telescopic cylinder 20 -1 and the rodless cavity of the lower telescopic cylinder 20-2
  • the fourth port ⁇ of the valve body 10 is the oil return port.
  • the hydraulic control valve provided by the present invention is provided only on the oil passage of the rodless chamber thereof. If the upper telescopic cylinder 20-1 and the lower telescopic cylinder 20-2 are double-acting cylinders, the hydraulic control valve may be provided on the oil passage having the rod chamber.
  • the present invention also provides an aerial work engineering machine including a chassis, a lifting boom, an upper telescopic cylinder 20-1 and a lower telescopic cylinder 20-2, further including the above
  • the first port V of the valve body 10 is a control port
  • the second port C1 and the third port C2 of the valve body respectively communicate with the upper telescopic cylinder 20-1 and the lower
  • the rodless cavity of the telescopic cylinder 20-2, the fourth port of the valve body 10 is a return port, and the rest of the structure, please refer to the prior art.
  • the aerial work engineering machine is a lifting fire truck or an aerial work platform.
  • the hydraulic control valve, the two-cylinder telescopic system and the aerial work engineering machine provided by the present invention have been described above, and the description of the above embodiments is only for helping to understand the core idea of the present invention. It should be noted that those skilled in the art can make various modifications and changes to the present invention without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

一种液压控制阀、双缸伸缩系统及高空作业工程机械,该控制阀包括分流集流阀,其阀体具有第一油口、第二油口和第三油口;所述分流集流阀的第一油口、第二油口和第三油口分别与所述阀体的第一油口、第二油口和第三油口连通;该控制阀具有两个工作状态:在第一工作状态,所述阀体的第二油口与第三油口之间的油路非连通;在第二工作状态,所述阀体的第二油口与第三油口之间的油路连通。该阀能够控制双缸伸缩系统的两只油缸实现同步伸缩,从而缩短伸缩系统的动作时间,提高工作效率。

Description

一种液压控制阀、 双缸伸缩系统及高空作业工程机械 本申请要求于 2011 年 09 月 23 日提交中国专利局、 申请号为 201110286496.X,发明名称为"一种液压控制阀、 双缸伸缩系统及高空作业 工程机械"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域
本发明涉及工程机械技术领域, 特别是采用双缸伸缩系统的高空作业 工程机械的双缸伸缩控制阀。 本发明还涉及设有所述控制阀的双缸伸缩系 统及高空作业工程机械。
背景技术
举高消防车等高空作业工程机械是具有专用底盘, 并安装有举升臂架 的产品, 使用时由专业操作人员进行操作能够起升到一定高度进行高空救 援或高空作业。
按照升降作业方式的不同, 可以将举升臂架分为折叠臂、 伸缩臂、 混 合臂、 自行式等几种类型, 其中伸缩臂由两节或多节箱型臂套叠而成, 在 伸缩缸的作用力下或者在柔性钢丝绳或板式链牵拉下实现直线往复运动, 主要利用安装在头部的工作斗将高空作业者送至高处进行作业。
例如, 举高消防车的伸缩臂顶端设有消防水炮, 高空作业平台的伸缩 臂顶端设有工作平台等机构, 操作人员可以在操纵台上控制伸缩臂以实现 喷水、 输送工作人员、 实施救援以及其它高空作业功能。
随着我国社会经济的快速发展, 高层、 超高层建筑增速迅猛, 高层建 筑的灭火、 抢险救援面临空前巨大挑战, 我国举高类消防车的研制已经越 来越向高米数发展, 而高空、 超高空举高类消防车对伸缩系统的安全性、 可靠性、 平顺性等性能有较高要求。
由于高米数举高类消防车伸缩臂行程长、 节数多, 单缸加多级伸缩链 式同步伸缩控制系统已无法满足其安全性和稳定性要求; 而采用两个及两 个以上伸缩缸的伸缩系统, 必须能够实现同步控制, 这样才能在最短的动 作时间达到最大作业高度, 并快速实施救援。 现有采用双缸伸缩系统的举高类消防车, 均未设置同步控制阀, 而是 直接由电磁换向阀组控制伸缩缸运动。
请参考图 1 , 图 1为现有双缸伸缩系统的电磁换向阀组的液压原理图。 如图所示, 上伸缩缸 1和下伸缩缸 2分别由第一电磁换向阀 3 - 1和第二电 磁换向阀 3-2控制, 第一电磁换向阀 3-1和第二电磁换向阀 3-2构成电磁换向 阀组 3, 其油口 Al、 B1分别接上伸缩缸 1的大腔和小腔, 油口 A2、 B2分别 接下伸缩缸 2的大腔和小腔, 从理论上来讲, 只要第一电磁换向阀 3-1和第 二电磁换向阀 3-2同时切换至左位或右位, 即可控制上伸缩缸 1和下伸缩缸 2 同时伸出或缩回。
而事实上, 由于下伸缩缸 2受到的载荷比上伸缩缸 1受到的载荷要大的 多, 因此双缸的伸出和缩回动作会出现两种情形, 以伸出动作为例, 若系 统流量足够大, 双缸可同时伸出, 但上伸缩缸 1的伸出速度会比下伸缩缸 2 的伸出速度快, 先到达行程终点。 反之, 若系统流量较小, 则压力油会先 通过换向阀推动载荷小的上伸缩缸 1伸出, 当上伸缩缸 1伸出至终点时, 系 统压力升高, 才会继续推动下伸缩缸 2伸出直至终点。
该控制系统的缺点在于不能实现双缸同步伸缩, 而是按先后顺序分别 控制两伸缩缸伸出至行程终点, 这样会导致伸缩系统的动作时间过长, 进 而影响救援、 作业效率。
因此, 如何控制双缸伸缩系统的两只油缸实现同步伸缩, 从而缩短伸 缩系统的动作时间, 提高工作效率, 是本领域技术人员目前需要解决的技 术问题。
发明内容
本发明的第一目的是提供一种液压控制阀。 该阀能够控制双缸伸缩系 统的两只油缸实现同步伸缩, 从而缩短伸缩系统的动作时间, 提高工作效 率。
本发明的第二目的是提供一种设有所述液压控制阀的双缸伸缩系统。 本发明的第三目的是提供一种设有所述液压控制阀的高空作业工程 机械。 为了实现上述第一目的, 本发明提供一种液压控制阀, 该控制阀包括 分流集流阀, 其阀体具有第一油口、 第二油口和第三油口;
所述分流集流阀的第一油口、 第二油口和第三油口分别与所述阀体的 第一油口、 第二油口和第三油口连通;
该控制阀具有两个工作状态:
在第一工作状态, 所述阀体的第二油口与第三油口之间的油路非连 通;
在第二工作状态, 所述阀体的第二油口与第三油口之间的油路连通。 优选地, 该控制阀的阀体具有第四油口, 并具有第三工作状态和第四 工作状态:
在第三工作状态, 所述阀体的第三油口与第四油口连通;
在第四工作状态, 所述阀体的第二油口与第四油口连通。
优选地, 所述阀体集成有换向阀和截止阀;
在第二工作状态, 所述阀体的第二油口与第三油口之间的油路通过所 述换向阀连通; 在第三工作状态, 所述阀体的第三油口与第四油口通过所 述换向阀连通; 在第四工作状态, 所述阀体的第二油口与第四油口通过所 述截止阀连通。
优选地, 所述换向阀具有三个油口, 其第一油口、 第二油口和第三油 口分别与所述阀体的第四油口、 第二油口和第三油口连通;
所述换向阀具有三个工作位置: 在第一工作位置, 其第一油口、 第二 油口和第三油口均截止; 在第二工作位置, 其第一油口截止, 第二油口与 第三油口连通; 在第三工作位置, 其第二油口截止, 第一油口与第三油口 连通。
优选地, 所述换向阀为三位三通电磁换向阀。
优选地, 所述换向阀具有四个油口, 其第一油口、 第二油口和第三油 口分别与所述阀体的第四油口、 第二油口和第三油口连通, 其第四油口封 闭;
所述换向阀具有三个工作位置: 在第一工作位置, 其第一油口、 第二 油口、 第三油口和第四油口均截止; 在第二工作位置, 其第一油口与第四 油口连通, 且第二油口与第三油口连通; 在第三工作位置, 其第一油口与 第三油口连通, 且第二油口与第四油口连通。
优选地, 所述换向阀为三位四通电磁换向阀。
为了实现上述第二目的, 本发明还提供一种双缸伸缩系统, 包括上伸 缩缸和下伸缩缸, 进一步包括上述任一项所述的液压控制阀, 所述阀体的 第一油口为控制油口, 所述阀体的第二油口和第三油口分别连通所述上伸 缩缸和下伸缩缸的无 ^腔。
为了实现上述第三目的, 本发明还提供一种高空作业工程机械, 包括 底盘、 举升臂架、 上伸缩缸和下伸缩缸, 进一步包括上述任一项所述的液 压控制阀, 所述阀体的第一油口为控制油口, 所述阀体的第二油口和第三 油口分别连通所述上伸缩缸和下伸缩缸的无 腔。
优选地, 所述高空作业工程机械具体为举高消防车或高空作业平台。 本发明所提供的液压控制阀包括分流集流阀, 其阀体具有第一油口、 第二油口和第三油口; 所述分流集流阀的第一油口、 第二油口和第三油口 分别与所述阀体的第一油口、 第二油口和第三油口连通; 该控制阀具有两 个工作状态: 在第一工作状态, 所述阀体的第二油口与第三油口之间的油 路非连通;
在第二工作状态, 所述阀体的第二油口与第三油口之间的油路连通。
该控制阀结构筒单、 稳定性好、 安全性高, 工作时, 其阀体的第一油 口为控制油口, 第二油口和第三油口分别连通双缸伸缩系统的上伸缩缸和 下伸缩缸的无杆腔。
当所述上伸缩缸和下伸缩缸伸出或缩回时, 该控制阀处于第一工作状 态, 即所述阀体的第二油口与第三油口之间的油路非连通, 其内部的分流 集流阀在不计误差和外界各种干扰因素的情况下, 可保持第二油口的输入 (或输出) 的流量等于第三油口的输入(或输出) 的流量, 从而驱动两伸 缩缸同步伸出或缩回, 使伸缩系统能在最短的时间内完成伸缩动作, 极大 的提高了作业效率。
当受到负载差异、 分流集流阀误差等各种流量误差因素干扰而导致双 缸不能同步伸缩至终点时, 该控制阀处于第二工作状态, 所述阀体的第二 油口与第三油口之间的油路连通, 能够使滞后的伸缩缸快速伸出至行程终 点或回缩至起点, 确保各伸缩缸能准确动作到位。 在一种具体实施方式中, 该控制阀的阀体具有第四油口, 并具有第三 工作状态和第四工作状态: 在第三工作状态, 所述阀体的第三油口与第四 油口连通; 在第四工作状态, 所述阀体的第二油口与第四油口连通。
所述阀体的第四油口为回油油口, 通过将所述阀体的第二油口或第三 油口与回油油路导通,可达到向上伸缩油缸或下伸缩油缸单独供油的目的 , 从而控制各伸缩缸单独伸出或缩回, 在能够实现双缸同步伸出和回缩的同 时, 兼备了使双缸单独分步动作的功能, 可满足车辆调试、 故障诊断或是 进行单缸受力计算等工况的使用需要。
本发明所提供的双缸伸缩系统和高空作业工程机械设有上述液压控制 阀, 由于上述液压控制阀具有上述技术效果, 具有该液压控制阀的双缸伸 缩系统和高空作业工程机械也应具备相应的技术效果。
附图说明
图 1为现有双缸伸缩系统的电磁换向阀组的液压原理图;
图 2 为本发明所提供液压控制阀的第一种具体实施方式的液压原理 图;
图 3 为本发明所提供液压控制阀的第二种具体实施方式的液压原理 图;
图 4 为本发明所提供液压控制阀的第三种具体实施方式的液压原理 图;
图 5 为本发明所提供液压控制阀的第四种具体实施方式的液压原理 图;
图 6 为本发明所提供液压控制阀的第五种具体实施方式的液压原理 图;
图 7 为本发明所提供液压控制阀的第六种具体实施方式的液压原理 图;
图 8为图 6所示液压控制阀与双缸伸缩系统的上伸缩缸和下伸缩缸相 连接的液压原理图。
图 1中: 上伸缩缸 1、 下伸缩缸 2、 电磁换向阀组 3、 第一电磁换向阀 3-1、 第 二电磁换向阀 3-2;
图 2至图 8中:
阀体 10、 第一油 σ ν、 第二油口 Cl、 第三油口 C2、 第四油口 T; 分流集流阀 10-1;
二位二通电磁换向阀 10-2;
三位三通电磁换向阀 10-3、 第一油口 1\ 第二油 P P、 第三油口 B; 三位四通电磁换向阀 10-4、 第一油口 T、 第二油口 Ρ、 第三油口 Β、 第四油口 Α;
第一截止阀 10-5、 第二截止阀 10-6、 第三截止阀 10-7、 第四截止阀
10-8;
上伸缩缸 20-1、 下伸缩缸 20-2。
具体实施方式
本发明的核心是一种液压控制阀。 该阀能够控制双缸伸缩系统的两只 油缸实现同步伸缩, 从而缩短伸缩系统的动作时间, 提高作业效率。
本发明的另一核心是提供一种设有所述液压控制阀的双缸伸缩系统, 以及设有所述液压控制阀的高空作业工程机械。
为了使本技术领域的人员更好地理解本发明方案, 下面结合附图和具 体实施方式对本发明作进一步的详细说明。
请参考图 2, 图 2为本发明所提供液压控制阀的第一种具体实施方式 的液压原理图。
在第一种具体实施方式中, 本发明提供的液压控制阀为组合阀, 包括 分流集流阀 10-1和二位二通电磁换向阀 10-2,其阀体 10具有第一油口 V、 第二油口 C1和第三油口 C2; 分流集流阀 10-1的第一油口 (即进油口)、 第二油口和第三油口分别与阀体 10的第一油口 V、 第二油口 C1和第三油 口 C2连通。
该控制阀具有两个工作状态:
在第一工作状态, 阀体 10的第二油口 C1与第三油口 C2之间的油路 非连通;
在第二工作状态, 阀体 10的第二油口 C1与第三油口 C2之间的油路 通过二位二通电磁换向阀 10-2连通。
工作时, 阀体 10的第一油口 V为控制油口, 第二油口 C1和第三油 口 C2分别连通双缸伸缩系统的上伸缩缸和下伸缩缸的无^ ^干腔, 其工作过 程如下:
当伸缩缸伸出时, 液压控制阀处于第一工作状态, 液压系统控制油口 为第一油口 V供油, 通过阀体 10中的分流集流阀 10-1分流后, 从第二油 口 Cl、第三油口 C2分别进入两伸缩缸,伸缩缸伸出,此时分流集流阀 10-1 起分流作用, 将系统流量分成相等的两部分, 分别供给两个伸缩缸, 使双 缸同步伸出。
但是在实际过程中, 由于两伸缩缸受力不等、 负载重摩擦力的不均匀 以及分流集流阀的误差等, 其分配给两个伸缩缸的流量并不完全相等, 这 样其中一个伸缩缸将先到达行程终点。 根据分流集流阀 10-1的构造特点, 当一个伸缩缸到达行程终点时, 液压缸憋压, 压力急增, 分流集流阀分配 给滞后缸的油口 (第二油口 C1或第三油口 C2 )将急剧减小或关闭, 这样 滞后缸也会停止动作, 不能完全伸出, 如果应用于举高消防车, 其臂架将 无法到达指定作业高度。
此时, 液压控制阀将处于第二工作状态。 当其中一个伸缩缸到达行程 终点时, 二位二通电磁换向阀 10-2左位带电接通(即 P、 A 口接通), 使 得分流集流阀 10-1的第二油口 C1和第三油口 C2接通, 压力相等, 则第 二油口 C1和第三油口 C2恢复正常开启状态, 从分流集流阀 10-1 出来的 流量会全部供给滞后缸, 使其快速达到行程终点。
反之, 当伸缩缸回缩时, 液压控制阀也处于第一工作状态, 第二油口 C1和第三油口 C2为回油口, 通过阀体中的分流集流阀 10-1集流后,从第 一油口 V流回液压系统控制油口,伸缩缸回缩,此时分流集流阀 10-1起集 流作用, 保持第二油口 C1和第三油口 C2输入的流量相等, 从而使双缸同 步回缩。
同样, 在实际过程中, 由于两伸缩缸受力不等、 负载重摩擦力的不均 匀以及分流集流阀的误差等,流入第二油口 C1和第三油口 C2的流量并不 完全相等, 这样其中一个伸缩缸将先回缩至行程起点, 此时该伸缩缸的出 口压力会急减为零, 滞后的伸缩缸进入分流集流阀 10-1 的油口 (第二油 C1 口或第三油口 C2 )将急剧减小或关闭, 滞后的伸缩缸也将停止动作, 无法完全缩回, 如果应用于举高消防车, 其臂架将无法回缩到位, 车辆不 能正常收车。
此时, 液压控制阀将处于第二工作状态。 当其中一个伸缩缸回到起点 时, 二位二通电磁换向阀 10-2左位带电接通(即 P、 A口接通), 使得分 流集流阀 10-1的第二油口 C1和第三油口 C2压力相等,则第二油口 C1和 第三油口 C2恢复正常开启状态, 未回缩到位的伸缩缸中的油液将同时从 第二油口 C1和第三油口 C2通过分流集流阀 10-1汇集于第一油口 V流回, 使未回缩到位的伸缩缸快速回缩至行程起点。
请参考图 3, 图 3为本发明所提供液压控制阀的第二种具体实施方式 的液压原理图。
由于二位二通电磁换向阀 10-2在液压控制阀中的作用是导通或切断 阀体的第二油口 C1 和第三油口 C2 (即分流集流阀的第二油口和第三油 口), 因此, 在第二种具体实施方式中, 可以采用第一截止阀 10-5来代替 二位二通电磁换向阀 10-2, 两者控制油路的功能基本相同, 都能够使双缸 伸缩到位。
请参考图 4, 图 4为本发明所提供液压控制阀的第三种具体实施方式 的液压原理图。
在第三种具体实施方式中, 本发明提供的控制阀为组合阀, 包括分流 集流阀 10-1、 第二截止阀 10-6和三位三通电磁换向阀 10-3, 其阀体 10具 有第一油口 V、 第二油口 Cl、 第三油口 C2和第四油口 T。
分流集流阀 10-1的第一油口 (即进油口 )、 第二油口和第三油口分别 与阀体的第一油口 V、 第二油口 C1和第三油口 C2连通。
第二截止阀 10-6的两个油口分别与阀体 10的第二油口 C1和第四油 口 Τ连通。
三位三通电磁换向阀 10-3的第一油口 Τ、 第二油口 Ρ和第三油口 Β 分别与阀体 10的第四油口 Τ、 第二油口 C1和第三油口 C2连通。
该控制阀具有四个工作状态: 在第一工作状态, 第二截止阀 10-6断开、 三位三通电磁换向阀 10-3 处于中位, 阀体 10的第二油口 C1与第三油口 C2之间的油路非连通。
在第二工作状态, 第二截止阀 10-6断开、 三位三通电磁换向阀 10-3 处于左位, 阀体 10的第二油口 C 1与第三油口 C2之间的油路通过三位三 通电磁换向阀 10-3的第二油口 P和第三油口 B连通。
在第三工作状态, 第二截止阀 10-6断开、 三位三通电磁换向阀 10-3 处于右位, 阀体 10的第二油口 C1与第三油口 C2之间的油路非连通, 且 阀体 10的第三油口 C2通过三位三通电磁换向阀 10-3的第一油口 T和第 三油口 B与阀体 10的第四油口 T连通。
在第四工作状态, 第二截止阀 10-6导通、 三位三通电磁换向阀 10-3 处于中位, 阀体 10的第二油口 C1与第三油口 C2之间的油路非连通, 且 阀体 10的第二油口 C1通过第二截止阀 10-6与阀体 10的第四油口 T连通。
工作时, 阀体 10的第一油口 V为控制油口, 第二油口 C1和第三油 口 C2分别连通双缸伸缩系统的上伸缩缸和下伸缩缸的无^ ^干腔, 其工作过 程如下:
当伸缩缸伸出时, 液压控制阀处于第一工作状态, 液压系统控制油口 为第一油口 V供油, 通过阀体中的分流集流阀 10- 1分流后, 由第二油口 C1、 第三油口 C2分别进入两伸缩缸, 使双缸同步伸出。
当其中一个伸缩缸到达行程终点时, 液压控制阀将处于第二工作状 态, 此时, 三位三通电磁换向阀 10-3左位带电接通(即 P、 B口接通), 使 得分流集流阀 10-1的第二油口和第三油口接通, 压力相等, 则第二油口和 第三油口恢复正常开启状态, 使滞后的伸缩缸快速到达行程终点。
反之, 当伸缩缸回缩时, 液压控制阀也处于第一工作状态, 第二油口
C1和第三油口 C2为回油口, 通过阀体 10中的分流集流阀 10-1集流后, 从第一油口 V流回液压系统控制油口, 使双缸同步回缩。
当其中一个伸缩缸回到起始点时, 液压控制阀将处于第二工作状态, 此时, 三位三通电磁换向阀 10-3左位带电接通, 使得分流集流阀 10-1的 第二油口和第三油口压力相等,则第二油口和第三油口恢复正常开启状态, 使未回缩到位的伸缩缸快速回缩至行程起点。
若因调试、 故障诊断、 或是进行单缸受力计算等需要双缸单独伸缩, 例如需要单独动作下伸缩缸进行带载实验测试或压力测试, 此时液压控制 阀中的三位三通电磁换向阀 10-3右位带电接通,第一油口 T和第三油口 B 相通, 则由分流集流阀 10-1第三油口流出的压力油将直接通过第一油口 T 和第三油口 B从阀体 10的第四油口 T流回油箱, 相当于在液压油路上将 上伸缩缸短路,而分流集流阀 10-1第二油口流出的压力油仍然进入下伸缩 缸推动其伸出, 从而实现下伸缩缸单独动作。
若需要单独动作上伸缩缸, 此时只需要将该液压控制阀中的第二截止 阀 10-6开启、 三位三通电磁换向阀 10-3断电, 这样由分流集流阀 10-1第 二油口流出来的压力油将直接通过第二截止阀 10-6流回油箱,相当于在液 压油路上将下伸缩缸短路,而分流集流阀 10-1第三油口流出的压力油仍然 进入上伸缩缸中推动其伸出, 从而实现上伸缩缸单独动作。
请参考图 5 , 图 5为本发明所提供液压控制阀的第四种具体实施方式 的液压原理图。
在第四种具体实施方式中, 本发明提供的液压控制阀与第三种具体实 施方式的不同之处就在于, 换向阀为三位四通电磁换向阀 10-4, 其第一油 口 T、 第二油口 Ρ和第三油口 Β分别与阀体 10的第四油口 Τ、 第二油口 C1和第三油口 C2连通, 其第四油口 Α封闭。
该三位四通电磁换向阀 10-4具有三个工作位置:在第一工作位置,其 第一油口 1\ 第二油 P P、 第三油口 B和第四油口 A均截止; 在第二工作 位置,其第一油口 T与第四油口 A连通,且第二油口 P与第三油口 B连通; 在第三工作位置, 其第第一油口 T与第三油口 B连通, 且第二油口 P与第 四油口 A连通。
其余结构和工作原理与第三种具体实施方式大体相同, 为节约篇幅, 这里就不再重复描述。
请参考图 6, 图 6为本发明所提供液压控制阀的第五种具体实施方式 的液压原理图。
由于上述第三、 第四具体实施方式中的换向阀在液压控制阀中的作用 是导通或切断阀体 10的第二油口 C1和第三油口 C2, 以及导通或切断第 三油口 C2与第四油口 T, 因此, 可以采用二位二通电磁换向阀 10-2和第 三截止阀 10-7 来代替三位三通电磁换向阀 10-3 或三位四通电磁换向阀 10-4。
如图所示, 二位二通电磁换向阀 10-2的两个油口分别与阀体 10的第 二油口 C1和第三油口 C2连通, 第三截止阀 10-7的两个油口分别与阀体 10的第三油口 C2和第四油口 Τ连通, 同样能够达到使双缸伸缩到位以及 使双缸单独伸缩的目的。
上述液压控制阀仅是一种优选方案, 其具体结构并不局限于此, 在此 基础上可根据实际需要作出具有针对性的调整,从而得到不同的实施方式。 例如, 上述第五具体实施方式中的二位二通电磁换向阀 10-2也可以采用第 四截止阀 10-8进行代替(见图 7 )。
可见, 为了能够使液压控制阀准确地处于各工作状态, 其换向阀可以 有多种不同的类型, 截止阀和换向阀在液压油路上也具有多种组合方式。 由于可能实现的方式较多, 为节约篇幅, 本文就不再一一举例说明。
请参考图 8, 图 8为图 6所示液压控制阀与双缸伸缩系统的上伸缩缸 和下伸缩缸相连接的液压原理图。
本发明还提供了一种双缸伸缩系统, 包括上伸缩缸 20-1 和下伸缩缸
20-2, 进一步包括上述第五具体实施方式中的液压控制阀, 其阀体 10的第 一油口 V为控制油口,第二油 C1口和第三油口 C2分别连通上伸缩缸 20-1 和下伸缩缸 20-2的无杆腔, 阀体 10的第四油口 Τ为回油口, 其余结构请 参考现有技术。
这里需要说明的是,由于上述双缸伸缩系统的上伸缩缸 20-1和下伸缩 缸 20-2为单作用缸, 因此仅在其无杆腔的油路上设置了本发明提供的液压 控制阀, 若上伸缩缸 20-1和下伸缩缸 20-2为双作用缸, 则同样可以在其 有杆腔的油路上设置上述液压控制阀。
除了上述液压控制阀和双缸伸缩系统, 本发明还提供了一种高空作业 工程机械, 包括底盘、 举升臂架、 上伸缩缸 20-1和下伸缩缸 20-2, 进一步 包括上文所述的液压控制阀, 所述阀体 10的第一油口 V为控制油口, 所 述阀体的第二油口 C1和第三油口 C2分别连通所述上伸缩缸 20-1和下伸 缩缸 20-2的无杆腔, 所述阀体 10的第四油口 Τ为回油口, 其余结构请参 考现有技术。
具体地, 所述高空作业工程机械为举高消防车或高空作业平台。 以上对本发明所提供的液压控制阀、 双缸伸缩系统及高空作业工程机 行了阐述, 以上实施例的说明只是用于帮助理解本发明的核心思想。 应当 指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前提 下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰也落入本发明 权利要求的保护范围内。

Claims

1、 一种液压控制阀, 其特征在于, 该控制阀包括分流集流阀, 其阀 体具有第一油口、 第二油口和第三油口;
所述分流集流阀的第一油口、 第二油口和第三油口分别与所述阀体的 第一油口、 第二油口和第三油口连通;
该控制阀具有两个工作状态:
在第一工作状态, 所述权阀体的第二油口与第三油口之间的油路非连 通;
利 _
在第二工作状态, 所述阀体的第 1二油口与第三油口之间的油路连通。
3
2、 根据权利要求 1 所述的液压控要制阀, 其特征在于, 该控制阀的阀 体具有第四油口, 并具有第三工作状态和第求四工作状态:
在第三工作状态, 所述阀体的第三油口与第四油口连通;
在第四工作状态, 所述阀体的第二油口与第四油口连通。
3、 根据权利要求 2所述的液压控制阀, 其特征在于, 所述阀体集成 有换向阀和截止阀;
在第二工作状态, 所述阀体的第二油口与第三油口之间的油路通过所 述换向阀连通; 在第三工作状态, 所述阀体的第三油口与第四油口通过所 述换向阀连通; 在第四工作状态, 所述阀体的第二油口与第四油口通过所 述截止阀连通。
4、 根据权利要求 3所述的液压控制阀, 其特征在于, 所述换向阀具 有三个油口, 其第一油口、 第二油口和第三油口分别与所述阀体的第四油 口、 第二油口和第三油口连通;
所述换向阀具有三个工作位置: 在第一工作位置, 其第一油口、 第二 油口和第三油口均截止; 在第二工作位置, 其第一油口截止, 第二油口与 第三油口连通; 在第三工作位置, 其第二油口截止, 第一油口与第三油口 连通。
5、 根据权利要求 4所述的液压控制阀, 其特征在于, 所述换向阀为 三位三通电磁换向阀。
6、 根据权利要求 3所述的液压控制阀, 其特征在于, 所述换向阀具 有四个油口, 其第一油口、 第二油口和第三油口分别与所述阀体的第四油 口、 第二油口和第三油口连通, 其第四油口封闭;
所述换向阀具有三个工作位置: 在第一工作位置, 其第一油口、 第二 油口、 第三油口和第四油口均截止; 在第二工作位置, 其第一油口与第四 油口连通, 且第二油口与第三油口连通; 在第三工作位置, 其第一油口与 第三油口连通, 且第二油口与第四油口连通。
7、 根据权利要求 6所述的液压控制阀, 其特征在于, 所述换向阀为 三位四通电磁换向阀。
8、 一种双缸伸缩系统, 包括上伸缩缸和下伸缩缸, 其特征在于, 进 一步包括上述权利要求 1至 7任一项所述的液压控制阀, 所述阀体的第一 油口为控制油口, 所述阀体的第二油口和第三油口分别连通所述上伸缩缸 和下伸缩缸的无杆腔。
9、 一种高空作业工程机械, 包括底盘、 举升臂架、 上伸缩缸和下伸 缩缸, 其特征在于, 进一步包括上述权利要求 1至 7任一项所述的液压控 制阀, 所述阀体的第一油口为控制油口, 所述阀体的第二油口和第三油口 分别连通所述上伸缩缸和下伸缩缸的无杆腔。
10、 根据权利要求 9所述的高空作业工程机械, 其特征在于, 具体为 举高消防车或高空作业平台。
PCT/CN2012/071203 2011-09-23 2012-02-16 一种液压控制阀、双缸伸缩系统及高空作业工程机械 WO2013040872A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/346,212 US9541100B2 (en) 2011-09-23 2012-02-16 Hydraulic control valve, dual-cylinder extension system and aerial work engineering machine
EP12834004.9A EP2759714A4 (en) 2011-09-23 2012-02-16 HYDRAULIC CONTROL VALVE, TWO CYLINDER EXTRACTION SYSTEM AND LIFTING MAANPULATION MACHINE
BR112014006915A BR112014006915A2 (pt) 2011-09-23 2012-02-16 válvula de controle hidráulico, sistema de extensão de cilindro duplo e máquina de trabalho aéreo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110286496XA CN102287411A (zh) 2011-09-23 2011-09-23 一种液压控制阀、双缸伸缩系统及高空作业工程机械
CN201110286496.X 2011-09-23

Publications (1)

Publication Number Publication Date
WO2013040872A1 true WO2013040872A1 (zh) 2013-03-28

Family

ID=45334087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071203 WO2013040872A1 (zh) 2011-09-23 2012-02-16 一种液压控制阀、双缸伸缩系统及高空作业工程机械

Country Status (5)

Country Link
US (1) US9541100B2 (zh)
EP (1) EP2759714A4 (zh)
CN (1) CN102287411A (zh)
BR (1) BR112014006915A2 (zh)
WO (1) WO2013040872A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015609A1 (zh) * 2017-07-18 2019-01-24 宁波德玛智能机械有限公司 主油缸装置及其液压机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287411A (zh) 2011-09-23 2011-12-21 徐州重型机械有限公司 一种液压控制阀、双缸伸缩系统及高空作业工程机械
CN103950854B (zh) * 2014-04-29 2016-10-05 北京市三一重机有限公司 三卷扬联动系统及工程机械
CN106314137B (zh) * 2015-06-16 2019-07-23 徐工集团工程机械股份有限公司 一种行走制动控制液压系统及剪叉式高空作业平台
ITUB20160056A1 (it) * 2016-01-22 2017-07-22 F Lli Festi Di Festi Roberto & C S N C Sistema per l'abbassamento di emergenza di una piattaforma di lavoro anche nella versione di carro per la raccolta della frutta, per il diradamento, la potatura ed altre operazioni relative al frutteto
CN105967076B (zh) * 2016-07-21 2017-12-08 三一汽车起重机械有限公司 一种双缸自由伸缩液压控制系统及其起重机
CN107061399B (zh) * 2017-02-21 2018-09-28 江苏恒立液压科技有限公司 分流集流阀
CN112196853B (zh) * 2020-11-05 2022-08-16 上海航天控制技术研究所 液压能源控制阀块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103004A (ja) * 1984-10-25 1986-05-21 Hitachi Constr Mach Co Ltd 油圧シリンダの制御回路
CN201027299Y (zh) * 2007-02-15 2008-02-27 广西柳工机械股份有限公司 铣刨机立柱同步升降装置
CN201095572Y (zh) * 2007-08-20 2008-08-06 兰州金牛轨道交通装备有限责任公司 铁路起重机活动配重液压同步顶升机构
CN201953731U (zh) * 2010-11-24 2011-08-31 中原特种车辆有限公司 一种多缸同步工作控制系统
CN102287411A (zh) * 2011-09-23 2011-12-21 徐州重型机械有限公司 一种液压控制阀、双缸伸缩系统及高空作业工程机械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1222376B (de) * 1963-03-11 1966-08-04 Westinghouse Bremsen Apparate Gleichlaufregeleinrichtung fuer zwei einfach wirkende hydraulische Arbeitszylinder
US3657969A (en) * 1970-07-10 1972-04-25 Case Co J I Hydraulic control system for extensible crane
US3760688A (en) * 1971-11-09 1973-09-25 Bucyrus Erie Co Synchronized control system for telescoping booms
JPS56109904A (en) * 1980-01-31 1981-08-31 Hitachi Constr Mach Co Ltd Hydraulic control circuit for hydraulic cylinder
CN2066843U (zh) * 1989-12-01 1990-12-05 张文华 多功能组合式液压舵机
DE9318647U1 (de) * 1993-12-06 1994-02-17 Herion-Werke KG, 70736 Fellbach Hydraulische Steuerungs-Anordnung
JP3810184B2 (ja) * 1997-06-25 2006-08-16 豊興工業株式会社 油圧回路
US6189432B1 (en) * 1999-03-12 2001-02-20 Hunter Engineering Company Automotive lift hydraulic fluid control circuit
CN101828043A (zh) * 2007-09-21 2010-09-08 加拿大斯奈邦工具有限公司 使多个液压致动部件同步的系统和装置
DE102010025616A1 (de) * 2010-06-30 2011-02-10 Daimler Ag Hydraulische Versorgungsvorrichtung
CN201729641U (zh) * 2010-07-27 2011-02-02 徐州重型机械有限公司 举高作业车及其伸缩臂架组
CN201792744U (zh) * 2010-08-31 2011-04-13 三一重工股份有限公司 单泵双马达驱动工程车辆及其液压系统和控制装置
CN202266535U (zh) * 2011-09-23 2012-06-06 徐州重型机械有限公司 一种液压控制阀、双缸伸缩系统及高空作业工程机械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103004A (ja) * 1984-10-25 1986-05-21 Hitachi Constr Mach Co Ltd 油圧シリンダの制御回路
CN201027299Y (zh) * 2007-02-15 2008-02-27 广西柳工机械股份有限公司 铣刨机立柱同步升降装置
CN201095572Y (zh) * 2007-08-20 2008-08-06 兰州金牛轨道交通装备有限责任公司 铁路起重机活动配重液压同步顶升机构
CN201953731U (zh) * 2010-11-24 2011-08-31 中原特种车辆有限公司 一种多缸同步工作控制系统
CN102287411A (zh) * 2011-09-23 2011-12-21 徐州重型机械有限公司 一种液压控制阀、双缸伸缩系统及高空作业工程机械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015609A1 (zh) * 2017-07-18 2019-01-24 宁波德玛智能机械有限公司 主油缸装置及其液压机
US10954967B2 (en) 2017-07-18 2021-03-23 Ningbo Dema Intelligent Machinery Co., Ltd. Hydraulic machine

Also Published As

Publication number Publication date
CN102287411A (zh) 2011-12-21
EP2759714A4 (en) 2015-09-02
US20150014093A1 (en) 2015-01-15
US9541100B2 (en) 2017-01-10
BR112014006915A2 (pt) 2017-04-11
EP2759714A1 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2013040872A1 (zh) 一种液压控制阀、双缸伸缩系统及高空作业工程机械
CN201661532U (zh) 一种混凝土泵的液压泵送系统
CN102807168B (zh) 起重机单缸伸缩机构的液压控制系统及起重机
WO2021093300A1 (zh) 一种挖掘机动臂节能控制系统及控制方法
JP2013249954A (ja) 油圧制御ブロック、油圧システム及び油圧制御ブロックを備えた建設機械
CN102303813B (zh) 一种支腿液压系统及起重机
CN110626948A (zh) 折叠臂式随车起重机液压控制系统
WO2012129042A1 (en) Regeneration circuit
CN205559384U (zh) 一种液压双系统控制模块
CN104444816B (zh) 一种起重机械的液压控制系统及起重机械
JP2014076865A (ja) クレーンの油圧回路
CN210655875U (zh) 一种折叠臂式随车起重机液压控制系统
CN202215520U (zh) 一种伸缩臂伸缩顺序控制系统
CN203889961U (zh) 吊臂伸缩液压系统及伸缩臂式汽车起重机
CN110848199A (zh) 一种高空作业车工作平台自动调平液压系统
CN105987036B (zh) 支腿控制组合阀、液压系统及起重机
CN105545862B (zh) 复合控制阀组、控制回路及起重机的吊装平移控制方法
CN202296849U (zh) 一种起重机支腿、支腿液压系统及起重机
CN110360172A (zh) 手动电控多路阀组件、液压系统及轮胎式铺轨起重机
CN215626372U (zh) 配重顶升液压系统及起重机
CN112855650A (zh) 支腿液压控制系统及起重机
CN218235644U (zh) 液压控制系统及作业机械
CN202266535U (zh) 一种液压控制阀、双缸伸缩系统及高空作业工程机械
CN212536287U (zh) 一种接触网作业车集成阀组
CN211231068U (zh) 一种用于控制平板车紧急下降的阀组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14346212

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006915

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006915

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140321