WO2013038831A1 - 中空形材成形用押出ダイス - Google Patents

中空形材成形用押出ダイス Download PDF

Info

Publication number
WO2013038831A1
WO2013038831A1 PCT/JP2012/069723 JP2012069723W WO2013038831A1 WO 2013038831 A1 WO2013038831 A1 WO 2013038831A1 JP 2012069723 W JP2012069723 W JP 2012069723W WO 2013038831 A1 WO2013038831 A1 WO 2013038831A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
surface portion
holder
spider
shape
Prior art date
Application number
PCT/JP2012/069723
Other languages
English (en)
French (fr)
Inventor
沛征 林
雄次 望月
栄徳 斉藤
健二 油座
広明 佐田
博文 杉原
Original Assignee
日本軽金属株式会社
日軽金アクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社, 日軽金アクト株式会社 filed Critical 日本軽金属株式会社
Priority to US14/344,484 priority Critical patent/US9162267B2/en
Priority to CN201280044348.XA priority patent/CN103826768B/zh
Publication of WO2013038831A1 publication Critical patent/WO2013038831A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding

Definitions

  • the present invention relates to an extrusion die for forming a hollow member for forming a hollow member made of a high-strength alloy, in particular, a high-strength aluminum alloy such as a so-called 7000 type alloy.
  • extrusion of aluminum alloy or the like is widely used at present because it has a high degree of freedom in cross-sectional shape and is excellent in obtaining a hollow shape material to be extruded.
  • products obtained by extrusion have been widely used as strength members for structural materials, machine parts, and the like. Therefore, high-strength alloys such as 7075, 7N01, 7003 and so on, such as so-called 7000 series.
  • high-strength alloys such as 7075, 7N01, 7003 and so on, such as so-called 7000 series.
  • a hollow material extrusion die made of a so-called spider die in which a male die and a female die are mounted inside a die ring is known (for example, , See Patent Document 1).
  • the spider die 100 disclosed in Patent Document 1 is formed with a male die 101 having a core (mandrel) 110 for shaping the inner shape of the hollow shape member, and the outer shape of the hollow shape member. And a female die 102.
  • the male mold 101 includes the core 110 and a male ring 112 that holds the core 110.
  • the core 110 is formed by a molding convex portion 113 and a bridge foot 111 that holds the molding convex portion 113.
  • bridging leg 111 becomes an inclined surface which expands as it goes to the front side of an extrusion direction.
  • the tip peripheral surface 115 b is fitted with the inner peripheral surface 112 a of the male ring 112.
  • the core 110 has a portion for forming the inner shape of the hollow shape member at the lower portion thereof, and the outer periphery of the core 110 has, for example, an X shape toward the inner peripheral inclined surface 112a of the male ring 112, That is, the bridge foot 111 extending in all directions is provided.
  • a space surrounded by the four bridge legs 111 and the inner peripheral surface 112a of the male ring 112 is a billet introduction space S made of an aluminum alloy as a material.
  • the male mold 101 is held by the female mold 102 on the front side in the extrusion direction indicated by the arrow A.
  • a lower portion of the core 110 is inserted, and a forming hole portion 106 for forming the outer shape of the hollow shape member is formed.
  • a holding surface 116 that holds the bottom surface of the bridge foot 111 of the male die 101 is formed on the upper surface on the outer peripheral side of the female die 102.
  • each bridge foot 111 has an inclined surface that expands as the distal end circumferential surface 115b of the distal end 115 goes to the front side in the extrusion direction.
  • a high-strength alloy in particular, a so-called 7000-type high-strength aluminum is used as a material for forming a hollow shape material.
  • the deformation resistance is higher than other alloy types, so the extrusion force increases, and the load on the die tool system is large, so the extrusion speed is increased, It is difficult to improve the life of the die.
  • the inner peripheral inclined surface 112a of the male ring 112 and the distal end peripheral surface 115b of the bridge foot 111 are press-fitted, and the bridge foot 111 is extruded.
  • Compressive stress in a direction orthogonal to the direction is generated, and this compressive stress and the pushing force applied to the upper surface of each bridge foot 111 when the extrusion process is performed, that is, the extrusion direction leading side generated in the forming convex portion 113
  • This is intended to cancel out the tensile force that is pulled to the bottom, and thus to prevent breakage of the bridge foot 111 and consequently breakage of the core 110.
  • the distal end portion 115 of the bridge foot 111 is inclined in a direction spreading toward the front side in the extrusion direction, so that the distal end portion 115 of the bridge foot 111 is on the holding surface 116 of the female die 102.
  • the distance L between the base end portion P1 held at this point and the intersection between the bridge foot 111 and the molding convex portion 113, that is, the action point P2 that may be broken by a tensile force, is increased, and the moment is increased. For this reason, when a pushing force is applied to the core 100, a large load is applied to the action point P2, and the bridge foot 111 is broken.
  • the size of the bridge foot 111 is increased to increase the strength of the bridge foot 111, or the distance L between the base end portion P1 and the action point P2 is decreased to reduce the moment. Can be considered.
  • the billet introduction space S for guiding and accommodating the billet is reduced, and the set amount of the billet cannot be secured.
  • the bridge foot 111 and the core 110 may be broken, so that the life of the die can be extended. There is a limit to the plan.
  • Another object of the present invention is to provide an extrusion die for forming a hollow shape that can prevent the mandrel from being broken and extend its life.
  • the extrusion die for forming a hollow shape material of the present invention is a male die for extruding a billet made of an aluminum alloy sent from the upstream side to the downstream side to shape the inner shape of the hollow shape material,
  • the male mold is composed of a spider that molds the inner shape and a holder that holds the spider,
  • the spider is formed by a mandrel corresponding to the inner shape of the hollow shape member, and a plurality of bridge portions provided integrally with the mandrel and projecting outward from the periphery of the mandrel,
  • the outer peripheral surface of the tip of each bridge portion and the inner peripheral surface of the holder are joined by shrink fitting.
  • the extrusion die for forming a hollow shape material of the present invention is configured as described above, the tip outer peripheral surface of each bridge portion of the spider and the inner peripheral surface portion of the holder are joined and integrated by shrink fitting. For this reason, the stress applied to the die can be received by the spider and the holder, whereby the stress at the stress concentration portion of each bridge portion is relieved, so that breakage of the bridge portion of the spider can be prevented.
  • a billet (extrusion material) made of a high-strength alloy having a large extrusion processing force, particularly a high-strength aluminum alloy such as the so-called 7000 series is extruded, high-speed extrusion can be achieved and the life of the die can be extended. become.
  • FIG. 1 is an overall plan view showing a first embodiment of an extrusion die for forming a hollow material according to the present invention.
  • FIG. 2 is a longitudinal sectional view taken along line II-II in FIG. It is a whole cross-sectional perspective view which shows the state which combined the male type
  • FIG. 7 is a longitudinal sectional view taken along line VIII-VIII in FIG. 6.
  • FIG. 7 is a longitudinal sectional view taken along line IX-IX in FIG. 6.
  • FIG. 1 shows the hollow shape material of the cross-sectional opening shape shape shape
  • FIG. 16 is a longitudinal sectional view showing a second embodiment of an extrusion die for forming a hollow shape material according to the present invention and showing a state in which a holder and a spider are integrated by shrink fitting, and a longitudinal section along the line XIV-XIV in FIG.
  • FIG. It is a top view which shows the state of the alignment at the time of shrink-fitting the holder and spider of the said 2nd Embodiment. It is a perspective view which shows the state of the alignment at the time of shrink-fitting the holder and spider of the said 2nd Embodiment.
  • the extrusion die 10 according to the first embodiment is a spider die type, and is used to form a hollow material made of a high-strength alloy, particularly a high-strength aluminum alloy such as a so-called 7000 series.
  • the extrusion die according to the present embodiment 10 for example, a hollow shaped material 1 having a cross-sectional shape as shown in FIG. 12 is formed.
  • the extrusion die 10 has a male die 20 for extruding a billet B made of an aluminum alloy sent from the upstream side in the extrusion direction to the downstream side to form the inner shape of the hollow shape member 1, and a hollow die.
  • a female die 30 for forming the outer shape of the profile 1 and a back die 40 for holding the female die 30 are provided.
  • the billet B is accommodated in a billet extrusion device 60 composed of a chamber or the like disposed on the upstream side of the male mold 20 and is configured to be extruded by the billet extrusion device 60.
  • the male mold 20, the female mold 30, and the back die 40 are integrally connected. That is, as shown in FIGS. 1 and 2, the male mold 20 and the female mold 30 are positioned by, for example, the knock pin 47 and the two positioning pins 46, and then the male mold 20, the female mold 30 and the back die. 40 is connected and fixed by, for example, two connecting bolts 45.
  • the male mold 20 is composed of a spider 22 that molds the inner shape of the hollow shape member 1 and a holder 25 that holds the outer periphery of the spider 22.
  • the spider 22 is firmly joined and integrated by shrink fitting.
  • the upper surface portion 22A of the spider 22 is formed on a flat surface over the entire surface.
  • the mandrel 23 and the upper surface portion 22A of the bridge portion 24 constituting the spider 22 are, as shown in FIG. 2, the upper end surface (seal surface) 25A of the holder 25. Is disposed at a position retracted downstream from the predetermined dimension in the direction of extrusion.
  • the spider 22 supports the mandrel 23 corresponding to the inner shape of the hollow shape member 1 and a plurality of bridge portions 24 that support the mandrel 23 and protrude outwardly from the periphery of the mandrel 23 in a substantially X shape, that is, 1 bridge part 24a, 2nd bridge part 24b, 3rd bridge part 24c, and 4th bridge part 24d are comprised, and the space between each bridge part 24a-24d is introduction of billet B It is a space S.
  • each of the four first bridge portions 24a, the second bridge portion 24b, the third bridge portion 24c, and the fourth bridge portion 24d is an inner peripheral surface portion of the holder 25. It engages with a certain bridge holding surface 25C and is joined by shrink fitting.
  • first to fourth bridge portions 24a to 24d are formed with an inclined billet guide surface 24E, which is widened from the upper surface portion 22A to the downstream side over a predetermined height, and is pushed out from the upstream side. Billet B is pushed out smoothly.
  • the outer peripheral surfaces 24C of the first to fourth bridge portions 24a to 24d of the bridge portion 24 constituting the spider 22 and the bridge holding surface 25C of the holder 25 are formed. A part is firmly joined by shrink fitting.
  • shrink fitting is a method of obtaining a strong joint using heat, by heating and expanding a member such as a disc with a hole, and inserting a shaft made slightly larger than the diameter of the hole, It is a method of fitting that is cooled and fixed, and is used as a fastening type joint. Then, both of them (in the above example, the disk and the shaft) are fixed by shrink fitting.
  • Any method may be used for heating at the time of shrink fitting, but for example, heating by induction heating using a solid state power source is preferable. This heating method is excellent in reliability and reproducibility, and can perform non-contact and high energy efficient heating in a short time.
  • 2 and 3 show a state in which the spider 22 and the holder 25 are shrink-fitted and joined.
  • 2 and 3 show a state in which, for example, the distal end outer peripheral surface 24C of the second bridge portion 24b of the spider 22 and the bridge holding surface 25C of the holder 25 are firmly joined by shrink fitting.
  • 2 and 3 show a state in which the outer peripheral surface 24C of the tip of the second bridge portion 24b and the bridge holding surface 25C of the holder 25 are joined, the other first bridge portion 24a.
  • the joined state between the outer peripheral surface 24C of each of the third bridge portion 24c and the fourth bridge portion 24d and the bridge holding surface 25C of the holder 25 is the same as in FIGS.
  • FIG. 4 shows a state before the spider 22 and the holder 25 are shrink-fitted.
  • 4 is an enlarged view of the male die 30 of FIG. 2 showing a longitudinal sectional view taken along the line II-II in FIG. 1, and shows a state in which the spider 22 and the holder 25 are disassembled.
  • the holder 25 is formed in an overall disk shape having a predetermined thickness, and the bridge holding surface 25C has a predetermined inclination extending from the inner diameter end of the upper end surface 25A of the holder 25 toward the female die 30 side.
  • the inclined surface portion 25m is formed at an angle ⁇ °, and the straight portion 24n extends linearly to the lower surface 25B continuously from the tip of the inclined surface portion 25m.
  • the inclination angle ⁇ ° of the inclined surface portion 25m is set to 0.5 ° to 1 °, for example.
  • the inner diameter N of the tip inner diameter end of the upper end surface 25A of the inclined surface 25m constituting the bridge holding surface 25C is the inner diameter before shrink fitting, that is, before the holder 25 is heated.
  • the tip outer peripheral surface 24C of the second bridge portion 24b of the spider 22 is formed to correspond to the bridge holding surface 25C. That is, the outer peripheral surface 24C of the tip of the spider 22 has an inclined surface portion 24m formed at a predetermined inclination angle ⁇ ° extending from the outer peripheral end portion of the upper surface portion 22A toward the female mold 30 and the tip of the inclined surface portion 24m. It is formed of a straight portion 24n that continuously extends straight to the tip.
  • the inclined surface portion 24m corresponds to the inclined surface portion 25m of the bridge holding surface 25C, and the linear portion 24n is configured to correspond to the linear portion 25n of the bridge holding surface 25C. Further, the inclination angle ⁇ ° of the inclined surface portion 24m is set to 0.5 ° to 1 ° which is the same as the inclination angle ⁇ ° of the inclined surface portion 25m of the bridge holding surface 25C.
  • the bridge holding surface 25C of the holder 25 and the outer peripheral surface 24C of the tip of the spider 22 are formed with the inclined surface portion 25m and the inclined surface portion 24m, respectively, so that the spider 22 is inserted into the holder 25.
  • the inclined surface portion 24m is guided by the inclined surface portion 25m, and the insertion work is thereby facilitated.
  • the entire surface is an inclined surface
  • the inclined surface portion 25m and the inclined surface portion 24m are inclined to each other, so that a force in the direction opposite to the insertion direction, that is, a force for the spider 22 to escape from the holder 25 is generated. Therefore, in order to prevent the spider 22 from slipping out of the holder 25, in the first embodiment, a straight line portion 25n and a straight line portion 24n are provided on the tip side of each of the inclined surface portions 25m and the inclined surface portions 24m, respectively. . Therefore, a frictional force is generated between the straight portion 25n and the straight portion 24n, thereby preventing the spider 22 from coming out of the holder 25.
  • the outer dimension of the spider 22, that is, the circumscribed circle with which the tips of the first to fourth bridge portions 24a to 24d are in contact with each other is set to the outer dimension M, and this outer dimension M is the same as that of the bridge holding surface 25C of the holder 25. It is formed larger than the inner diameter dimension N before heating by a predetermined dimension. In other words, the tip inner diameter N before heating of the bridge holding surface 25C of the holder 25 is smaller than the outer diameter M of the circumscribed circle of each tip outer peripheral surface 24C in the first to fourth bridge portions 24a to 24d of the spider 22. Is formed.
  • the holder 25 is heated to expand the bridge holding surface 25C of the holder 25, After the inner diameter dimension N of the inner diameter end of the tip end of the bridge holding surface 25C is expanded from the outer diameter dimension M of the spider 22, the spider 22 is gripped by a spider gripping means (not shown) with arrows I in FIGS.
  • the first to fourth bridge portions 24a to 24d are inserted into the bridge holding surface 25C of the holder 25 along the insertion direction of the spider 22 shown, that is, from the downstream side to the upstream side.
  • the bridge holding surface 25C of the holder 25 returns to the inner diameter dimension N before heating, so the first to fourth bridge portions 24a to 24d.
  • Each of the tip outer peripheral surfaces 24C is firmly joined to the holder 25.
  • the spider 22 and the holder 25 are integrated in a fixed state.
  • FIG. 4 the spider 22 is shown in an imaginary line (two-dot chain line) on the holder 25, but this FIG. 4 shows a state in which the holder 25 is not heated, and is larger than the spider 22 in that case.
  • the holder 25 is heated to expand, and the inner diameter dimension N of the bridge holding surface 25C is set to the outer shape of the circumscribed circle of the outer peripheral surface 24C of each end of the first to fourth bridge portions 24a to 24d.
  • the inner diameter dimension of the bridge holding surface 25C of the holder 25 after shrink fitting is equal to the outer diameter dimension M of the circumscribed circle of the first to fourth bridge portions 24a to 24d.
  • the shrink fitting operation between the spider 22 and the holder 25 can be performed, for example, by placing the holder 25 on the shrink fitting work table 90 as shown in FIG.
  • the spider 22 and the holder 25 can be positioned in the thickness direction by abutting the lower surface portion 22B of the spider 22 against the upper end surface 90A of the shrink-fitting work table 90.
  • a bridge is formed on a part of the downstream end on the side surfaces facing each other of the two bridge portions 24 so that the first to fourth bridge portions 24a to 24d are not deformed in the sag direction.
  • a configuration is provided in which a lateral shake prevention unit 24D is provided.
  • the bridge lateral shake prevention portion 24D is provided at a part of the downstream end of the second bridge portion 24b and the third bridge portion 24c facing each other. Accordingly, the bridge lateral shake prevention portions 24D are provided at two locations on the opposite sides of the mandrel 23.
  • the bridge lateral shake prevention portion 24D is formed to have a height dimension substantially the same as the height of the linear portion 24n on the outer peripheral surface 24C of the distal end of the first to fourth bridge portions 24a to 24d. Further, the bridge lateral shake prevention portion 24D is formed in a straight line shape parallel to the straight portion 24n of the tip outer peripheral surface 24C. And this bridge
  • bridging shake prevention part 24D is mounted on the collar part which forms the billet pool part 30B which mentions a detail later (refer FIG. 2).
  • the first to fourth bridge portions 24a to 24d are arranged so as to have a substantially X shape in plan view continuously with the mandrel 23 as described above. However, as shown in FIG.
  • the intersection P connecting the centers in the width direction of ⁇ 24d is at a position different from the center O of the spider 22, and the X character is a deformed X character. Therefore, the distances between the first bridge portion 24a and the fourth bridge portion 24d, and the second bridge portion 24b and the third bridge portion 24c are the same as the first bridge portion 24a, the second bridge portion 24b, and the third bridge portion 24c.
  • the predetermined dimension differs from the distance between the fourth bridge portions 24d. In the present embodiment, the distance between the first bridge portion 24a and the fourth bridge portion 24d is longer than the distance between the first bridge portion 24a and the second bridge portion 24b.
  • the bridge lateral shake prevention portion is provided between the first bridge portion 24a and the fourth bridge portion 24d, and between the second bridge portion 24b and the third bridge portion 24c, respectively, which have a long distance between adjacent bridges. 24D is provided.
  • the spider 22 and the holder 25 are configured as described above, when shrink fitting, the spider 22 is inserted into the bridge holding surface 25C of the heated holder 25, and the first to fourth bridge portions 24a to 24d are inserted.
  • the bridge lateral shake prevention portion 24D is provided between the first bridge portion 24a and the fourth bridge portion 24d and between the second bridge portion 24b and the third bridge portion 24c. Since this bridge lateral shake prevention portion 24D holds the side portions of the bridge portions 24a, 24d, etc., the first to fourth bridge portions 24a-24d are prevented from being deformed. be able to.
  • space connection holes 26 for connecting the billet introduction spaces S formed between the bridge portions 24a to 24d are formed below the bridge portions 24a to 24d. ing. Therefore, after the billet B sent from the upstream side is introduced into the billet introduction space S, the billet B is mixed with the billet B in the billet introduction space S adjacent to each other through the space connecting hole 26. become.
  • the mandrel 23 constituting the spider 22 is provided with an inner molding protrusion 23 ⁇ / b> A formed at the downstream end of the billet B flow.
  • the inner molding protrusion 23A is formed so as to protrude from the lower end of the outer peripheral surface 24C of the distal end of each bridge portion 24a to 24d to the female die 30 side.
  • molding projection part 23A forms three space 1S, 1S, 1S of the hollow-shaped material 1 of the cross-sectional character shape as shown by a virtual image (two-dot chain line) in FIG. It consists of a first inner piece part 23B, a second inner piece part 23C, and a third inner piece part 23D.
  • the hollow shape member 1 having a cross-sectional shape has a pair of long side walls 1A, 1A and end portions in the longitudinal direction of the long side walls 1A, 1A as shown by phantom lines in FIGS. It has a shape having short side walls 1B and 1B that connect each other, and two partition walls 1C and 1C that are equally disposed between the short side walls 1B and 1B.
  • the inner molding protrusion 23A protrudes from the lower end of the distal outer peripheral surface 24C of each of the bridge portions 24a to 24d toward the female die 30.
  • the inner molding protrusion 23A is formed as shown in FIG.
  • the billet reservoir 30B formed in the female die 30 and the subsequent shape forming hole 50 are inserted.
  • the billet reservoir 30B is formed to have an inner diameter dimension substantially equal to the inner diameter of the bridge lateral shake prevention section 24D and to a predetermined depth.
  • the female die 30 is provided with a holder receiving surface 30 ⁇ / b> A having a recessed central portion on the upper surface (upstream surface), and the holder receiving surface 30 ⁇ / b> A has the holder 25.
  • the lower surface 25B is in contact with the holder 25 so that the holder 25 is held.
  • the billet reservoir 30B is formed on the holder receiving surface 30A.
  • the shape forming hole 50 is formed at a substantially central portion of the billet reservoir 30B, and between the outer shape of the inner molding protrusion 23A and the outer molding opening 30C formed in the billet reservoir 30B. It is formed at intervals of a set predetermined dimension. And the external shape of the hollow shape 1 shown by a virtual line (two-dot chain line) in Drawing 8 and 9 is formed by billet B pushed out from this shape forming hole 50.
  • the shape member outer shape opening 30 ⁇ / b> C has a relief portion 30 a that expands from a linear portion having a slight size in the outer circumferential direction of the female die 30. For this reason, the billet B pushed out from the shape forming hole 50 is pushed out without contacting anywhere in the periphery.
  • the first inner piece portion 23B, the second inner piece portion 23C, and the third inner piece portion 23D constituting the inner molding protrusion 23A are each formed in a substantially quadrangular prism shape, and as described above, the mandrel 23 Is provided at the end on the downstream side in the extrusion direction.
  • a band-like protruding frame 23E protruding outward from the outer periphery is provided so as to wind around the outer periphery of each piece part 23B, 23C, 23D. It has been.
  • the projection frames 23E at the outer periphery of the first inner piece portion 23B and the third inner piece portion 23D and the projection frames 23E at the outer periphery of the second inner piece portion 23C are the openings for the outer shape of the female die 30. 30C, respectively, and the respective gaps constitute the shape forming hole 50 for forming the long side walls 1A, 1A and the short side walls 1B, 1B.
  • the long side walls 1A and 1A and the short side walls 1B and 1B of the hollow shape 1 are formed by the billet B extruded from the shape forming hole 50.
  • a gap with the projection frame 23E constitutes a shape forming hole 51 for forming the partition walls 1C and 1C.
  • the partition walls 1 ⁇ / b> C and 1 ⁇ / b> C of the hollow shape member 1 are formed by the billet B extruded from the shape forming hole portion 51.
  • the billet guide holes 24F communicate with each other.
  • the billet guide hole portion 24F extends along a line direction connecting the first bridge portion 24a and the second bridge portion 24b, and the third bridge portion 24c and the fourth bridge portion 24d, as indicated by a dotted line in FIG. As shown in FIG. 8, it is formed in a substantially rectangular tunnel shape.
  • the billet B is pressed and guided to the billet guide hole 24F from the billet introduction space S as indicated by an arrow n, and is pushed out through the shape forming hole 51. It has become. Further, the billet B is formed in the gap between the projection frame 23E of the first inner piece 23B and the third inner piece 23D and the profile outer shape opening 30C of the female die 30, that is, in the profile forming hole 50.
  • the billet introduction space S is pressed and guided as indicated by the arrow m, and is extruded through the shape forming hole 50.
  • FIG. 12 shows the hollow shape member 1 extruded by the die 10 configured as described above. That is, as shown in FIG. 12, the hollow shape member 1 connects both ends of the pair of long side portions 1A with the short side portions 1B, and two partition wall portions 1C between the short side portions 1B. Is formed between the pair of long side portions 1A and has a cross-sectional shape having three spaces 1S, 1S, 1S therein.
  • the hollow profile 1 having such a cross-sectional shape is continuously extruded from the profile forming holes 50 and 51 of the extrusion die 10 in accordance with the supply amount of the billet B. ing.
  • the billet B is extruded from the billet extrusion device 60 disposed on the upstream side in the extrusion direction of the billet B with respect to the male mold 20, the billet B is firstly inserted from the inlet of the bridge holding surface 25C of the holder 25.
  • the billet is introduced into a billet introduction space S formed by a gap between each of the bridge portions 24 a to 24 d constituting the spider 22 and the holder 25.
  • the billet B introduced into the billet introduction space S passes through the billet guide surface 24E and the side surface of the mandrel 23 from the upper surface of the first to fourth bridge portions 24a to 24d, and then enters the shape forming hole 50. It is guided and extruded from the shape forming holes 50 and 51 and molded.
  • the extruded hollow profile 1 is fed from a profile feed hole 40A formed in the back die 40, and then held by a holding mechanism (not shown) and carried into a predetermined stockyard or the like. .
  • the extrusion die 10 of the present embodiment is configured as described above, the following effects can be obtained.
  • (1) The engagement surfaces of the outer peripheral surfaces 24C of the first to fourth bridge portions 24a to 24d of the bridge portion 24 constituting the spider 22 and the bridge holding surface 25C of the holder 25 are firmly joined by shrink fitting.
  • the stress applied to the die can be received by the spider 22 and the holder 25.
  • the stress at the stress concentration portions of the bridge portions 24a to 24d is alleviated. Can be prevented from breaking.
  • Each outer peripheral surface 24C of the first to fourth bridge portions 24a to 24d is formed by the inclined surface portion 24m and the straight portion 24n
  • the bridge holding surface 25C of the holder 25 is formed by the inclined surface portion 25m and the straight portion 25n.
  • each of the first to fourth bridge portions 24a to 24d is formed by the inclined surface portion 24m and the straight portion 24n
  • the bridge holding surface 25C of the holder 25 is formed by the inclined surface portion 25m and the straight portion 25n. Since the inclined surface portion 24m is guided by the inclined surface portion 25m when the spider 22 is inserted into the holder 25, the insertion operation is facilitated, and as a result, the shrink-fitting operation is facilitated and the workability is improved. Can be improved.
  • the mandrel 23 and the first to fourth bridge portions 24a to 24d of the spider 22 have a predetermined height that gradually increases from the upper surface portion 22A of the bridge portions 24a to 24d to the downstream over a predetermined height. Since the inclined billet guide surface 24E is formed, the billet B pushed out from the upstream side is smoothly pushed into the billet introduction space S. As a result, the billet B flows evenly, so that the uniform hollow member 1 can be formed.
  • first to fourth bridge portions 24a to 24d the longer the distance between adjacent bridges, the easier the deformation.
  • first bridge portion 24a, the fourth bridge portion 24d, and the second bridge portion 24b Between the third bridge portions 24c, bridge lateral shake prevention portions 24D are provided, and the bridge lateral shake prevention portions 24D hold the side portions of the bridge portions 24a, 24d, etc.
  • the first to fourth bridge portions 24a to 24d can be prevented from being deformed.
  • the extrusion die 10A of the second embodiment includes first to fourth bridge portions 74a to 74d corresponding to the distal end outer peripheral surface 24C of the first to fourth bridge portions 24a to 24d in the extrusion die 10 of the first embodiment.
  • the concave-convex structure 77 and the step structure 78 are provided across the tip outer peripheral surface portion 74C and the bridge holding surface portion 75C of the holder 75.
  • the extrusion die 10 ⁇ / b> A of the second embodiment is configured to include a male die 70 corresponding to the male die 20.
  • the male mold 70 includes a spider 72 corresponding to the spider 22 and a holder 75 corresponding to the holder 25.
  • the spider 72 has a mandrel 73 corresponding to the mandrel 23, and a plurality of bridge portions that support the mandrel 73 and protrude outward from the periphery of the mandrel 73 in a substantially X shape.
  • 74 that is, the first bridge portion 74a, the second bridge portion 74b, the third bridge portion 74c, and the fourth bridge portion 74d.
  • the distal end outer peripheral surface portions 74C of the first bridge portion 74a, the second bridge portion 74b, the third bridge portion 74c, and the fourth bridge portion 74d engage with the bridge holding surface portion 75C of the holder 75.
  • the outer peripheral surface portion 74C of each of the first to fourth bridge portions 74a to 74d and the bridge holding surface portion 75C of the holder 75 are joined by shrink fitting.
  • the concavo-convex structure 77 is formed on the projecting surface portion 74e provided on the distal end outer peripheral surface portion 74C of each of the first bridge portion 74a and the fourth bridge portion 74d, and the projecting surface portion 74e formed on the bridge holding surface portion 75C of the holder 75. And corresponding concave surface portions 75a.
  • the bridge holding surface portion 75C corresponds to the bridge holding surface portion 25C of the first embodiment, and is formed of an inclined surface portion 75m and a straight portion 75n, like the bridge holding surface portion 25C.
  • the concave surface portion 75a corresponding to the protruding surface portions 74e of the two bridge portions 74a and 74d is formed in the middle of the inclined surface portion 75m.
  • the tip outer peripheral surface portion 74C corresponds to the tip outer peripheral surface 24C of the first embodiment, and is formed of an inclined surface portion 74m and a straight portion 74n similarly to the tip outer peripheral surface 24C.
  • the protruding surface portion 74e is formed in the middle.
  • the step structure 78 is formed on the step surface portion 74f provided on the outer peripheral surface portion 74C of each of the second bridge portion 74b and the third bridge portion 74c, and the bridge holding surface portion 75C of the holder 75. 74f and a corresponding step receiving surface portion 75b, the step receiving surface portion 75b is formed in a linear shape surface.
  • the concave surface portion 75C of the holder 75 constituting the concavo-convex structure 77 is formed, for example, in the lower half connecting 90 ° and 270 ° in a plan view of the male mold 70. Further, the step receiving surface portion 75b of the holder 75 constituting the step structure 78 is formed in an upper half connecting 90 ° and 270 °.
  • the first bridge portion 74a and the fourth bridge portion 74d are inserted so as to be positioned in the lower half connecting 90 ° and 270 ° in FIG.
  • the second bridge portion 74b and the third bridge portion 74c must be inserted and positioned so as to be positioned in the upper half connecting 90 ° and 270 ° in FIG.
  • a position confirmation mark 65 is marked on the spider 72 and the holder 75 in order to confirm that each of the bridge portions 74a to 74d is disposed within the above range. That is, as shown in detail in FIG. 16, the position confirmation mark 65 includes a fixed side mark 66 marked on the holder 75 and a moving side mark marked on the first bridge portion 74 a constituting the bridge portion 74 of the spider 72. 67.
  • the fixed side mark 66 extends perpendicularly to the inner peripheral surface of the holder 75 from the straight mark 66a marked on the upper surface of the holder 75 and the extension of the center line CL of the first bridge portion 74a.
  • the vertical mark 66b is formed.
  • the moving side mark 67 is marked on the center line CL of the first bridge portion 74a on the outer peripheral surface and the top surface of the first bridge portion 74a. Then, it is preferable that the fixed side mark 66 and the moving side mark 67 are marked with a stamp or the like.
  • each of the structures 77 and 78 serves as a stopper with respect to the removal direction.
  • the spider 72 can be prevented from coming off from the holder 25, whereby both the 72 and 75 can be more reliably joined, and the processing of the hollow profile with higher accuracy can be performed.
  • the first bridge portion 74a of the spider 72 and the holder 25 are provided with a position confirmation mark 65 including a fixed side mark 66 and a moving side mark 67, and the spider 22 is inserted into the heated and expanded holder 25.
  • the fixed side mark 66 and the moving side mark 67 only need to coincide with each other, so that the bridge portions 74a to 74d can be easily arranged at predetermined positions.
  • the extrusion die 10B of the third embodiment is proposed for the purpose of offsetting the pressure by bringing the surface receiving pressure close to a position where a crack may occur.
  • symbol is attached
  • FIG. 17 shows the joining of the outer peripheral surface 84 ⁇ / b> C of the second bridge portion 84 b and the holder 85.
  • the spider 82 includes a mandrel 83 and a bridge portion 84, and is held by a holder 85.
  • the outer peripheral surfaces 84C (second bridge portions 84b in FIG. 17) of the first to fourth bridge portions 84a to 84d constituting the bridge portion 84 are inclined surface portions 84m that expand from the upstream side toward the downstream side.
  • the reverse inclined surface portion 84q is formed at the downstream end portion of the inclined surface portion 84m and has a shape that narrows toward the center side of the holder 85.
  • the bridge holding surface 85C of the holder 85 is formed at the inclined surface portion 85m corresponding to the inclined surface portion 84m of each of the bridge portions 84a to 84d, and at the tip of the inclined surface portion 85m, and also corresponds to the reverse inclined surface portion 84q.
  • the reverse inclined surface portion 85q forms a bridge receiving surface portion 85A that receives the reverse inclined surface portion 84q, and also serves to prevent the spider 82 from slipping out of the holder 85.
  • the reverse inclined surface portion 84 q forming the distal end outer peripheral surface 84 C of the second bridge portion 84 b is sunk toward the center side of the holder 85 with a dimension H.
  • the reversely inclined surface portion 85q of the holder 85 is formed with a projecting amount of a dimension H and a predetermined width dimension W as shown in FIG.
  • the reverse inclined surface portion 85q has a shape corresponding to the reverse inclined surface portion 84q of each of the bridge portions 84a to 84d.
  • the reverse inclined surface portion 85q of the holder 85 is inclined toward the reverse inclined surface portion 84q of the bridge portion 84 at an angle ⁇ 1 ° with respect to the inclined surface portion 85m of the bridge holding surface 85C.
  • the angle ⁇ 1 ° is set to about 30 °, for example.
  • the first bridge portion 84a, the third bridge portion 84c, and the fourth bridge portion 84d have the same shape.
  • the distance from the base end portion P1 of the bridge portion 84 in the reverse inclined surface portion 85q of the holder 85 to the action point P2 in the direction perpendicular to the pushing direction in the mandrel 83 is the dimension L.
  • the surface subjected to pressure is approaching a position where cracks may occur. Therefore, since the moment generated at the action point P2 of the mandrel 83 can be reduced, the strength of the bridge portion 84 can be increased, thereby preventing breakage of the bridge portion 84 constituting the spider 82. .
  • the reverse inclined surface portion 85q is provided so as to correspond to the respective reverse inclined surface portions 84q of the bridge portions 84a to 84d, when the spider 82 is inserted into the holder 85, the positions of the two are changed. Must be matched. Therefore, in the third embodiment, among the four bridge portions 84a to 84d, for example, the position confirmation mark 65 is provided on the second bridge portion 84b and the holder 85. As a result, when the spider 82 is inserted into the heated and expanded holder 85, the fixed-side mark 66 and the moving-side mark 67 only need to be matched, so that the bridge portions 84a to 84d can be easily placed at predetermined positions. Can be arranged.
  • the extrusion die 10 of the third embodiment is configured as described above, the following effects can be obtained in addition to the same effects as the above (1), (4), (5), and (7). Obtainable.
  • the distance from the base end portion P1 of the bridge portion 84 in the reverse inclined surface portion 85q of the holder 85 to the action point P2 in the direction perpendicular to the pushing direction in the mandrel 83 is the dimension L.
  • the surface subjected to pressure is approaching a position where cracks may occur. Therefore, since the moment generated at the action point P2 of the mandrel 83 can be reduced, the strength of the bridge portion 84 can be increased, and the breakage of the first to fourth bridge portions 24a to 24d can be prevented. it can.
  • the present invention has been described with reference to each of the above embodiments, but the present invention is not limited to each of the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. In addition, the invention of the present application includes a combination of some or all of the configurations of the above embodiments as appropriate.
  • the hollow member 1 formed by the extrusion die 10 is a hollow member having a cross-sectional shape, but the present invention is not limited thereto. It can also be used when forming a hollow member 2 having a cross-sectional shape as shown in FIG.
  • the hollow shape member 2 having a cross-sectional mouth shape.
  • one piece having a substantially quadrangular prism shape is provided at the end of the mandrel.
  • a substantially rectangular shape outer shape opening corresponding to one piece of the substantially square pillar shape may be provided in the female shape.
  • the engagement state and the inclination angle between the bridge tip outer peripheral surface 24C of the spider 22 and the bridge holding surface 25C of the holder 25 may be the same as the configuration for the eye-shaped hollow profile 1 as described above. Since the holder 25 can be used as it is, it is possible to extrude a plurality of types of hollow shapes having different cross-sectional shapes with a small number of used members.
  • bridge lateral vibration prevention is provided between the first bridge portion 24a and the fourth bridge portion 24d constituting the spider 22 and the like, and between the second bridge portion 24b and the third bridge portion 24c and the like.
  • the shape provided with the portion 24D is provided, the shape of the bridge lateral shake prevention portion 24D is not limited to this, and may be configured as shown in FIG. 19, for example.
  • a bridge lateral shake preventing portion 24D is provided between all of the first to fourth bridge portions 24a to 24d.
  • the four bridge lateral shake prevention portions 24D connecting the four bridge portions 24a to 24d are provided, a further lateral shake prevention effect can be obtained.
  • the outer peripheral surfaces 24C of the bridge portions 24a to 24d are formed by the inclined surface portions 24m and the linear surface portions 24n
  • the bridge holding surfaces 25C are formed by the inclined surface portions 25m and the linear surface portions 25n.
  • the entire outer peripheral surface 24C and the bridge holding surface 25C may each be a straight surface portion.
  • the inner diameter of the inner peripheral surface of the bridge holding surface 25C is increased as a result of heating and expanding the holder 25 at the time of shrink fitting, so that the bridge portions 24a to 24d of the spider 22 are held by the bridge 25 of the holder 25. It can be inserted into the surface 25C. In such a modification, the processing of the outer peripheral surface 24C of the tip of each of the bridge portions 24a to 24d and the processing of the bridge holding surface 25C are facilitated.
  • the first and fourth bridge portions 74 a and 74 d and the holder 75 have an uneven structure 77
  • the second bridge portion 74 b and the third bridge portion 74 c and the holder 75 have a step structure 78.
  • each is provided, it is not restricted to this.
  • all the bridge portions 74a to 74d may be provided with a concavo-convex structure 77 having the same shape as the concavo-convex structure 77, or all the bridge portions 74a to 74d may be provided with a step structure 78 having the same shape as the step structure 78. May be provided.
  • the entire circumference of the bridge holding surface portion 75C of the holder 75 may correspond to the concavo-convex structure 77.
  • the same kind of protruding surface part 77a constituting the concavo-convex structure 77 is formed on the outer periphery of the tip of the first to fourth bridge parts 74a to 74d, and the same kind is provided on the entire circumference of the bridge holding surface part 75C of the holder 75. Since it suffices to form the concave surface portion 77b, the processing is easier than in the second embodiment.
  • the entire circumference of the bridge holding surface portion 75 ⁇ / b> C of the holder 75 may correspond to the step structure 78.
  • the step surface portion 74f may be formed on the outer periphery of the tip of the first to fourth bridge portions 74a to 74d, and the step receiving surface portion 75b may be formed on the bridge holding surface portion 75C of the holder 75. Processing is easy compared to the form.
  • the outer peripheral surface portion 74C of all the bridge portions 74a to 74d has the concavo-convex structure 77 and the step structure 78 formed in the middle of the inclined surface portion 74m, and the straight portion 74n formed at the tip thereof.
  • a concavo-convex structure 77 and a step structure 78 are formed on the outer peripheral surface portion 74C of each of the bridge portions 74a to 74d.
  • the concavo-convex structure 77 and the step structure 78 are joined to the bridge holding surface portion 75Ca of the holder 75 by shrink fitting.
  • the extrusion die of the present invention is used for forming a high-strength alloy, particularly a hollow shape made of a high-strength aluminum alloy such as a so-called 7000 series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Abstract

【課題】押出加工力が大きな高力系合金、特に、いわゆる7000系といった最高強度アルミ合金からなるビレットを押出し成形する場合でも、高速押出しができると共にスパイダーの破断を防止して長寿命化を図れるようになる中空形材成形用押出ダイスを提供する。 【解決手段】押出ダイス10を、ビレットBを上流側から下流側に押出して中空形材の内側形状を成形するオス20型とこのオス型20を保持し中空形材の外側形状を成形するメス型30を備えて構成し、オス型20を、スパイダー22とこのスパイダー22を保持するホルダー25とで構成し、スパイダー22を、マンドレル23とこのマンドレル23を支持しかつ先端外周面24Cがブリッジ保持面25Cと係合する複数のブリッジ部24とで形成し、各ブリッジ部24の先端外周面24Cとホルダー25のブリッジ保持面25Cとを焼き嵌めにより接合した構成とした。

Description

中空形材成形用押出ダイス
 本発明は、高力系合金、特に、いわゆる7000系といった高強度アルミ合金からなる中空形材を成形する中空形材成形用押出ダイスに関する。
 一般にアルミニウム合金等の押出加工は、断面形状の自由度が高く、押出成形される中空形材を得るのに優れているため、現在では広く採用されている。
 特に近年は、押出加工による製品が、構造材、機械部品等の強度部材として広く使用されるようになり、そのため、高力系合金、特に、7075、7N01、7003等の、いわゆる7000系といった高強度アルミ合金からなる押出部材の需要が増加してきている。
 中空形材を成形するための従来の押出ダイスの一例として、オス型及びメス型がダイリングの内部に装着されている、いわゆるスパイダーダイスからなる中空材の押出し用ダイスが知られている(例えば、特許文献1参照)。
 図20に示すように、この特許文献1に開示されたスパイダーダイス100は、中空形材の内側形状を成形する中子(マンドレル)110を有するオス型101と、中空形材の外側形状を成形するメス型102と、を備えて構成されている。
 オス型101は、上記中子110と、この中子110を保持する雄型リング112とを備えて構成されている。また、中子110は、成形用凸部113と、この成形凸部113を保持するブリッジ足111とで形成されている。
 そして、ブリッジ足111の先端部115の先端部周側面115bが、押出し方向の先側に行くにしたがって拡開する傾斜面となっている。この先端部周側面115bは、雄型リング112の内周面112aと嵌合されている。
 中子110はその下部に上記中空形材の内側形状を成形する部位を有しており、中子110の外周には、雄型リング112の内周傾斜面112aに向かって例えばX字形状、つまり四方に延びた前記ブリッジ足111が設けられている。そして、4本のブリッジ足111と雄型リング112の内周面112aとで囲まれた空間が、材料であるアルミ合金からなるビレットの導入空間Sとなっている。
 オス型101は、矢印Aで示す押出方向先側で前記メス型102によって保持されている。このメス型102には、前記中子110の下部が挿通されると共に中空形材の外側形状を成形する成形孔部106が形成されている。また、メス型102の外周側上面には、前記オス型101のブリッジ足111の底面を保持する保持面116が形成されている。
 以上に説明したように、特許文献1に開示されたスパイダーダイス100では、各ブリッジ足111が、先端部115の先端部周側面115bが押出し方向の先側に行くにしたがって拡開する傾斜面となっているので、ビレットの押出中、各ブリッジ足111には軸力が作用すると共に、各ブリッジ足111に作用する曲げ応力が減少される。そのため、各ブリッジ足111の撓みが抑制され、押出中における中子110の保持状態が安定する構造となっている。
特開平7-124633号公報
 ところで、中空形材成形用の材料として、高力系合金、特に、いわゆる7000系の高強度アルミが使用され、その合金で成形される例えば自動車バンパー用部材として、いわゆる断面目の字形状等といった複数の中空部を有する押出形材を形成する場合、その変形抵抗が他の合金種に比べて高いので押出加工力が大きくなり、ダイス工具系への負荷も大きいので、押出速度をアップさせ、ダイスの寿命を向上させることが困難である。
 例えば、前記特許文献1に開示された中空材の押出し用ダイス100では、雄型リング112の内周傾斜面112aとブリッジ足111の先端部周側面115bとを圧入し、ブリッジ足111に、押出方向と直交する方向の圧縮応力を発生させるようになっており、この圧縮応力と、押出加工が実行され各ブリッジ足111の上面に加わる押出力、つまり成形用凸部113に生じる押出方向先側に引っ張る引張力とを相殺させ、よって、ブリッジ足111の破損、ひいては中子110の破損を防止しようとするものである。
 ところが、上記押出し用ダイス100では、ブリッジ足111の先端部115が押出し方向の先側に向かって広がる方向に傾斜しているので、ブリッジ足111の先端部115においてメス型102の保持面116上に保持された基端部P1と、ブリッジ足111と成形用凸部113との交点、つまり引張り力により破断するおそれのある作用点P2との距離Lが大きくなり、モーメントが大きくなる。
 そのため、中子100に押出力が加えられたとき、上記作用点P2に大きな加重が掛かり、ブリッジ足111が破断するという問題が生じる。
 この問題を解決するためには、ブリッジ足111の寸法を大きくしてブリッジ足111の強度を強くすることや、基端部P1と作用点P2との距離Lを小さくしてモーメントを小さくすることが考えられる。
 しかし、ブリッジ111の寸法を大きくする場合、ビレットを案内して収容するビレットの導入空間Sが少なくなりビレットの設定量を確保できない。ビレットの設定量を確保するためには、雄型リング112の内径部を大きくする必要があり、そうすると、ダイスが大型化すると共に、距離Lが長くなり、結局モーメントを小さくすることはできない。
 また、基端部P1と作用点P2との距離Lを小さくする場合、雄型リング112と各ブリッジ足111との間の空間、つまり、ビレットの導入空間Sが少なくなり、ビレットの押出し量が少なくなる等の問題が生じ、距離Lを小さくするには自ずと限界がある。
 上記のように、圧縮応力と引張応力との間での相殺により問題を解決しようとするスパイダーダイス100では、ブリッジ足111、ひいては中子110が破断するおそれがあるため、ダイスの長寿命化を図ることも限界がある。
 上記問題点を解決するために、本発明では、押出加工力が大きな高力系合金、特に、いわゆる7000系といった高強度アルミ合金からなるビレット(押出材料)を押出し成形する場合でも、高速押出しができると共にマンドレルの破断を防止して長寿命化を図れるようになる中空形材成形用押出ダイスを提供することを目的とする。
 上記目的を達成するため、本発明の中空形材成形用押出ダイスは、上流側から送られてくるアルミ合金からなるビレットを下流側に押出して中空形材の内側形状を成形するオス型と、このオス型を保持すると共に前記中空形材の外側形状を成形するメス型とを備えた中空形材成形用押出ダイスであって、
 前記オス型を、前記内側形状を成形するスパイダーと、このスパイダーを保持するホルダーとで構成し、
 前記スパイダーを、前記中空形材の内側形状に対応するマンドレルと、このマンドレルと一体的に設けられると共に当該マンドレルの周囲から外方に向かって突出した複数のブリッジ部とで形成し、
 前記各ブリッジ部の先端外周面と前記ホルダーの内周面部とを焼き嵌めにより接合したことを特徴とする。
 本発明の中空形材成形用押出ダイスは、以上のように構成されているので、スパイダーの各ブリッジ部の先端外周面とホルダーの内周面部とが焼き嵌めにより接合されて一体化されていることから、ダイスに掛かる応力をスパイダーとホルダーとで受けることができ、これにより、各ブリッジ部の応力集中部の応力が緩和されるので、スパイダーのブリッジ部の破断を防止することができる。
 その結果、押出加工力が大きな高力系合金、特に、いわゆる7000系といった高強度アルミ合金からなるビレット(押出材料)を押出し成形する場合でも、高速押出しができると共にダイスの長寿命化を図れるようになる。
 また、ビレットを押し出す際の圧力がスパイダーのマンドレルおよび各ブリッジ部に加えられても、スパイダーの各ブリッジ部の先端外周面とホルダーの内周面部とが焼き嵌めにより接合されて一体化されているので、スパイダーの各ブリッジ部だけが微妙に動いたりすることがなく安定して保持される。その結果、中空形材を所望する高精度に加工することができる。
本願発明に係る中空形材成形用押出ダイスの第1実施形態を示す全体平面図である。 図1におけるII-II線に沿った縦断面図である。 前記実施形態のオス型とメス型とを組み合わせた状態を示す全体断面斜視図である。 前記実施形態のホルダーとスパイダーとを焼嵌めする前の状態を示す分解縦断面図である。 前記実施形態のホルダーとスパイダーとの焼嵌めに際して加熱されたホルダーにスパイダーを挿入する状態を示す縦断面図である。 前記実施形態のスパイダーの平面を示す平面図である。 前記実施形態のスパイダーを示す全体斜視図である。 図6におけるVIII-VIII 線に沿った縦断面図である。 図6におけるIX-IX線に沿った縦断面図である。 前記実施形態のメス型を示す全体平面図である。 図10のXI-XI線に沿った縦断面図である。 前記実施形態の中空形材成形用押出ダイスにより成形される断面目の字形状の中空形材を示す斜視図である。 前記実施形態の中空形材成形用押出ダイスにより成形される断面口の字形状の中空形材を示す斜視図である。 本願発明に係る中空形材成形用押出ダイスの第2実施形態を示しホルダーとスパイダーとを焼嵌めして一体化した状態を示す縦断面図であり、図15におけるXIV-XIV線に沿った縦断面図である。 前記第2実施形態のホルダーとスパイダーとを焼嵌めする際の位置合わせの状態を示す平面図である。 前記第2実施形態のホルダーとスパイダーとを焼嵌めする際の位置合わせの状態を示す斜視図である。 本願発明に係る中空形材成形用押出ダイスの第3実施形態を示しホルダーとスパイダーとを焼嵌めして一体化した状態を示す縦断面図である。 前記第3実施形態のスパイダーの1つのブリッジ部とホルダーの受け面部との関係を示す平面図である。 本願発明のスパイダーの変形形態を示す平面図である。 従来の中空材の押出し用ダイスを示す縦断面図である。
 以下に、図1~図11を参照して、本発明の中空形材成形用押出ダイス(以下、単に押出ダイスという)10の第1実施形態を説明する。
 本第1実施形態の押出ダイス10は、スパイダーダイスタイプであり、高力系合金、特に、いわゆる7000系といった高強度アルミ合金からなる中空形材を成形するものであり、本実施形態の押出ダイス10では、例えば図12に示すような、断面目の字形状の中空形材1を成形するものである。
 押出ダイス10は、図2に示すように、押出し方向の上流側から送られてくるアルミ合金からなるビレットBを下流側に押出して中空形材1の内側形状を成形するオス型20と、中空形材1の外側形状を成形するメス型30と、このメス型30を保持するバックダイ40とを備えて構成されている。
 ビレットBは、オス型20の上流側に配置されたチャンバー等からなるビレット押出し装置60内に収容され、且つそのビレット押出し装置60により押出されるように構成されている。
 オス型20とメス型30とバックダイ40とは一体的に連結されている。
 すなわち、オス型20とメス型30とが、図1、図2に示すように、例えばノックピン47および2本の位置決めピン46で位置決めされた後、これらのオス型20とメス型30とバックダイ40とが例えば2本の連結ボルト45で連結、固定されている。
 図1~図3に示すように、オス型20は、中空形材1の内側形状を成形するスパイダー22と、このスパイダー22の外周を保持するホルダー25とで構成されており、これらホルダー25とスパイダー22は、焼き嵌めにより強固に接合されて一体化されている。
 また、スパイダー22の上面部22Aは、全面にわたって平坦面に形成されている。
 スパイダー22とホルダー25とが一体的に組立てられたとき、スパイダー22を構成するマンドレル23およびブリッジ部24の上記上面部22Aは、図2に示すように、ホルダー25の上端面(シール面)25Aから所定寸法押出し方向下流側に後退した位置に配置されている。
 スパイダー22は、中空形材1の内側形状に対応する上記マンドレル23と、このマンドレル23を支持すると共に当該マンドレル23の周囲から外方に略X字状に突出した複数のブリッジ部24、すなわち第1のブリッジ部24a、第2のブリッジ部24b、第3のブリッジ部24c、および第4のブリッジ部24dの4個で構成されており、各ブリッジ部24a~24d間の空間がビレットBの導入空間Sとなっている。
 そして、これらの4本の第1のブリッジ部24a、第2のブリッジ部24b、第3のブリッジ部24c、第4のブリッジ部24dのそれぞれの先端外周面24Cが、ホルダー25の内周面部であるブリッジ保持面25Cと係合し合い、かつ、焼き嵌めにより接合されるようになっている。
 これらの第1~第4ブリッジ部24a~24dには、前記上面部22Aから所定高さにわたって、前記下流側に行くに従って広くなる傾斜状のビレットガイド面24Eが形成され、上流側から押し出されたビレットBがスムーズに押し出されるようになっている。
 本第1実施形態の押出しダイス10では、前述のように、スパイダー22を構成するブリッジ部24の第1~第4ブリッジ部24a~24dの先端外周面24Cと、ホルダー25のブリッジ保持面25Cの一部とが、焼き嵌めにより強固に接合された構成となっている。
 ここで、焼き嵌めとは、熱を利用して強い接合を得る方法であり、穴のあいた円板などの部材を加熱膨張させて、穴の直径よりやや大きく作った軸を嵌め入れ、その後、冷却して固定する嵌め合いの方法を言い、締め付けタイプの接合として使われている。そして、焼き嵌めにより、両者(上記例では、円板と軸)は固着状態になる。
 焼き嵌め時に加熱するには、どのような方法でもよいが、例えば、ソリッドステート電源を使った誘導加熱による加熱が好ましい。この加熱方法では、信頼性、再現性に優れ、非接触でエネルギー効率の高い加熱を短時間に行うことができるものである。
 図2,3には、スパイダー22とホルダー25とを焼き嵌めして接合された状態が示されている。
 これらの図2,3には、スパイダー22の例えば第2ブリッジ部24bの先端外周面24Cと、ホルダー25のブリッジ保持面25Cとが焼き嵌めにより強固に接合された状態が示されている。なお、これらの図2,3では、第2ブリッジ部24bの先端外周面24Cと、ホルダー25のブリッジ保持面25Cとが接合された状態が示されているが、前記他の第1ブリッジ部24a、第3ブリッジ部24c、および第4ブリッジ部24dのそれぞれの先端外周面24Cと、ホルダー25のブリッジ保持面25Cとの接合状態も、図2、図3と同様である。
 図4には、スパイダー22とホルダー25とが焼き嵌めされる前の状態が示されている。この図4は、図1においてII-II線に沿った縦断面図を表した図2のオス型30を拡大すると共に、スパイダー22とホルダー25とを分解した状態を示す図である。
 ホルダー25は、所定厚さを有する全体円板状に形成されており、そのブリッジ保持面25Cは、ホルダー25の上端面25Aの先端内径端部から前記メス型30側に向かって広がる所定の傾斜角度α°に形成された傾斜面部25mと、この傾斜面部25mの先端に連続して下面25Bまで直線で延出した直線部24nとで形成されている。
 そして、上記傾斜面部25mの傾斜角度α°は、例えば0.5°~1°に設定されている。
 また、ブリッジ保持面25Cを構成する傾斜面部25mの上端面25Aにおける先端内径端部の内径寸法Nは、焼き嵌めする前、つまりホルダー25が加熱される前の内径寸法である。
 これに対して、スパイダー22の第2ブリッジ部24bの先端外周面24Cは、前記ブリッジ保持面25Cに対応するように形成されている。
 すなわち、スパイダー22の先端外周面24Cは、上面部22Aの外周端部から前記メス型30側に向かって広がる所定の傾斜角度α°に形成された傾斜面部24mと、この傾斜面部24mの先端に連続して先端まで直線で延出した直線部24nとで形成されている。そして、傾斜面部24mは、上記ブリッジ保持面25Cの傾斜面部25mと対応し、直線部24nは、ブリッジ保持面25Cの直線部25nと対応するように構成されている。
 また、傾斜面部24mの傾斜角度α°は、ブリッジ保持面25Cの傾斜面部25mの傾斜角度α°と同じ0.5°~1°に設定されている。
 以上のように、ホルダー25のブリッジ保持面25Cとスパイダー22の先端外周面24Cとには、それぞれ互いに対応する傾斜面部25mと傾斜面部24mとが形成されているので、スパイダー22をホルダー25に挿入する際、傾斜面部25mに傾斜面部24mがガイドされた状態となり、これにより、挿入作業が容易となる。
 しかし、全面が傾斜面だと、傾斜面部25mと傾斜面部24mとが互いに傾斜しているので、挿入方向と逆方向の力、すなわち、スパイダー22がホルダー25から抜け出る力が生じてしまう。
 そこで、スパイダー22がホルダー25から抜け出るのを防止するため、本第一実施形態では、各傾斜面部25mと傾斜面部24mとの先端側には、それぞれ直線部25nと直線部24nが設けられている。そのため、当該直線部25nと直線部24n同士間に摩擦力が生じ、これにより、スパイダー22がホルダー25から抜け出るのを防止することができる。
 スパイダー22の外形寸法、つまり第1~第4ブリッジ部24a~24dの先端が接する外接円は、外形寸法Mに設定されており、この外形寸法Mは、前記ホルダー25におけるブリッジ保持面25Cの前記加熱前の内径寸法Nより、所定寸法大きく形成されている。
 言い換えれば、ホルダー25のブリッジ保持面25Cの加熱前の先端内径寸法Nは、スパイダー22の第1~第4ブリッジ部24a~24dにおける各先端外周面24Cの外接円の外径寸法Mより小さな寸法に形成されている。
 スパイダー22とホルダー25との寸法が以上のように設定されているので、焼き嵌め時に、図5に示すように、まず、ホルダー25を加熱してホルダー25のブリッジ保持面25Cを膨張させて、ブリッジ保持面25Cの前記先端内径端部の内径寸法Nをスパイダー22の外径寸法Mより広げた後、スパイダー22を図示しないスパイダー把持手段により把持した状態で、図4、図5に矢印Iで示すスパイダー22の挿入方向に沿って、すなわち、下流側から上流側に向かって第1~第4ブリッジ部24a~24dをホルダー25のブリッジ保持面25Cに挿入する。
 そして、両者の正確な位置等での嵌り具合を確認し、その後に冷却すれば、ホルダー25のブリッジ保持面25Cが加熱前の内径寸法Nに戻るため、第1~第4ブリッジ部24a~24dの各先端外周面24Cがホルダー25に強固に接合されることになる。その結果、スパイダー22とホルダー25とが固着状態で一体化される。
 なお、図4において、スパイダー22がホルダー25に想像線(二点鎖線)で記載されているが、この図4は、ホルダー25が加熱されていない状態であり、その場合のスパイダー22との大きさを表したものである。
 実際には、図5に示すように、ホルダー25を加熱して膨張させ、ブリッジ保持面25Cの内径寸法Nを第1~第4ブリッジ部24a~24dにおける各先端外周面24Cの外接円の外形寸法より大きくした後に冷却するため、焼き嵌め後のホルダー25のブリッジ保持面25Cの内径寸法は、第1~第4ブリッジ部24a~24dの外接円の外形寸法Mと同一大きさの内径寸法となる。
 ここで、スパイダー22とホルダー25との焼き嵌め作業は、図5に示すように、例えば、焼き嵌め用作業台90にホルダー25を載置して行うことができる。
 この場合、スパイダー22の下面部22Bを焼き嵌め用作業台90の上端面90Aに突き当てることで、スパイダー22とホルダー25との厚さ方向の位置決めを行うことができる。
 焼き嵌めの際、加熱されたホルダー25の内周面にスパイダー22を挿入し、その後、冷却すると、スパイダー22を構成する第1~第4ブリッジ部24a~24dがすぼまる方向に変形しやすい。
 そこで、本第一実施形態では、第1~第4ブリッジ部24a~24dがすぼまる方向に変形しないように、2個のブリッジ部24の互いに対向する側面で下流側の先端一部にブリッジ横振れ防止部24Dを設けた構成とした。
 すなわち、図6、図7に示すように、平面形状がX字となるように配置されている第1~第4ブリッジ部24a~24dのうち、第1ブリッジ部24aと第4ブリッジ部24d、および第2ブリッジ部24bと第3ブリッジ部24cの互いに対向する側面で前記下流側の先端一部に、上記ブリッジ横振れ防止部24Dが設けられている。従って、ブリッジ横振れ防止部24Dは、前記マンドレル23を挟んで相互に反対側の2箇所に設けられていることになる。
 ブリッジ横振れ防止部24Dは、第1~第4ブリッジ部24a~24dの先端外周面24Cの前記直線部24nの高さと略同じ高さ寸法に形成されている。また、ブリッジ横振れ防止部24Dは、上記先端外周面24Cの直線部24nと平行な直線状に形成されている。
 そして、このブリッジ横振れ防止部24Dは、後で詳細を述べるビレット溜まり部30Bを形成する淵部上に載置されるようになっている(図2参照)。
 第1~第4ブリッジ部24a~24dは、前記マンドレル23に連続して前述のように平面形状が略X字となるように配置されているが、図6に示すように、各ブリッジ部24a~24dの幅方向中心を結ぶ交点Pは、スパイダー22の中心Oと異なった位置にあり、X字は変形のX字となっている。そのため、第1ブリッジ部24aと第4ブリッジ部24d、および第2ブリッジ部24bと第3ブリッジ部24c間の距離が、第1ブリッジ部24aと第2ブリッジ部24b、および第3ブリッジ部24cと第4ブリッジ部24d間との距離に対して所定寸法異なっている。
 本実施形態では、第1ブリッジ部24aと第4ブリッジ部24d間の距離が、第1ブリッジ部24aと第2ブリッジ部24bとの距離より長くなっている。
 ここで、第1~第4ブリッジ部24a~24dのうち、隣り合うブリッジ間の距離が長い方が変形しやすく、つまり、すぼまりやすい傾向がある。そのために、本実施形態では、隣り合うブリッジ間の距離が長い第1ブリッジ部24aと第4ブリッジ部24d、および第2ブリッジ部24bと第3ブリッジ部24c間に、それぞれ前記ブリッジ横振れ防止部24Dを設けたものである。
 スパイダー22とホルダー25とが、以上のように構成されているので、焼き嵌めに際して、加熱されたホルダー25のブリッジ保持面25Cにスパイダー22を挿入し、第1~第4ブリッジ部24a~24dを所定位置に固定するため、スパイダー22を回しながら押し込むとき、第1ブリッジ部24aと第4ブリッジ部24d、および第2ブリッジ部24bと第3ブリッジ部24c間に、それぞれブリッジ横振れ防止部24Dが設けられており、このブリッジ横振れ防止部24Dが、各ブリッジ部24a,24d等の側面部同士を突っ張る状態で保持しているので、第1~第4ブリッジ部24a~24dの変形を防止することができる。
 図1、図3等に示すように、各ブリッジ部24a~24dの下部には、当該各ブリッジ部24a~24d間に形成された前記ビレット導入空間S同士を連結する空間連結孔26が形成されている。したがって、上流側から送られてきたビレットBがビレット導入空間S内に導入された後、そのビレットBは上記空間連結孔26を通じて、相互に隣り合うビレット導入空間S内のビレットBと混ざり合うことになる。
 図2、図3、図8等に示すように、スパイダー22を構成する前記マンドレル23には、前記ビレットBの流れの下流側端部に形成された内側成形突起部23Aが設けられている。
 この内側成形突起部23Aは、各ブリッジ部24a~24dの先端外周面24Cの下端からメス型30側に突出して形成されている。そして、このような内側成形突起部23Aは、図8に仮想像(二点鎖線)で示すような、断面目の字形状の中空形材1の3つの空間1S,1S,1Sをそれぞれ形成する第1内側駒部23B、第2内側駒部23C、第3内側駒部23Dで構成されている。
 ここで、断面目の字形状の中空形材1は、図8,9に仮想線で示すように、一対の長辺壁1A,1Aと、これらの長辺壁1A,1Aの長手方向端部同士を連結する短辺壁1B,1Bと、これらの短辺壁1B,1B間に均等に配置された2個の仕切り壁1C,1Cとを有する形状となっている。
 内側成形突起部23Aは、前述のように、各ブリッジ部24a~24dの先端外周面24Cの下端からメス型30側に突出しているが、この内側成形突起部23Aは、図2に示すように、メス型30に形成されたビレット溜り部30Bおよびそれに続く形材成形用孔部50内に挿通されるようになっている。
 そして、ビレット溜り部30Bは、図2に示すように、前記ブリッジ横振れ防止部24Dの内径部の大きさと略等しい内径寸法に形成されると共に、所定の深さに形成されている。
 上記メス型30は、図10,11にも示すように、その上面(上流側の面)には、中央部が凹んだホルダー受面30Aが形成され、このホルダー受面30Aに前記ホルダー25の前記下面25Bが当接して当該ホルダー25が保持されるようになっている。
 また、このホルダー受面30Aに前記ビレット溜り部30Bが形成されている。
 前記形材成形用孔部50は、ビレット溜り部30Bの略中央部に形成されており、内側成形突起部23Aの外側形状とビレット溜り部30Bに形成された外側成形開口部30Cとの間に設定された所定寸法の間隔により形成されている。そして、この形材成形用孔部50から押し出されたビレットBにより、図8,9に仮想線(二点鎖線)で示す中空形材1の外形形状が形成されるようになっている。
 上記形材外形用開口部30Cは、図11に示すように、わずかな寸法の直線部からメス型30の外周方向に拡開する逃げ部30aを有している。
 そのため、形材成形用孔部50から押し出されるビレットBが周囲のどこにも接触することなく押し出されるようになる。
 前記内側成形突起部23Aを構成する第1内側駒部23B、第2内側駒部23C、および第3内側駒部23Dは、それぞれ略四角柱形状に形成されており、前述のように、マンドレル23の押出し方向下流側の端部に設けられている。
 上記各駒部23B,23C,23Dにおいて押出し方向上流側には、それぞれの外周から外側に突出した帯状の突起枠23Eが、各駒部23B,23C,23Dの各外周を巻くようにしてそれぞれ設けられている。
 第1内側駒部23Bおよび第3内側駒部23Dの外周3箇所の突起枠23Eと、第2内側駒部23Cの外周2箇所の突起枠23Eとは、前記メス型30の形材外形用開口30Cとそれぞれ対向しており、それぞれの隙間が、長辺壁1A,1Aおよび短辺壁1B,1Bを形成するための前記形材形成用孔部50を構成している。
 そして、この形材形成用孔部50から押出されたビレットBにより、前記中空形材1の長辺壁1A,1Aおよび短辺壁1B,1Bが形成されるようになっている。
 また、対向する第1内側駒部23Bの突起枠23Eと第2内側駒部23Cの突起枠23Eとの隙間、および対向する第2内側駒部23Cの突起枠23Eと第3内側駒部23Dの突起枠23Eとの隙間が、前記仕切り壁1C,1Cを形成するための形材形成用孔部51を構成している。
 そして、この形材形成用孔部51から押出されたビレットBにより、中空形材1の仕切り壁1C,1Cが形成されるようになっている。
 第1内側駒部23Bの突起枠23Eと第2内側駒部23Cの突起枠23Eとの隙間、第2内側駒部23Cの突起枠23Eと第3内側駒部23Dの突起枠23Eとの隙間には、それぞれビレットガイド孔部24Fが連通している。
 このビレットガイド孔部24Fは、図6に点線で示すように、第1ブリッジ部24aと第2のブリッジ部24b、および第3のブリッジ部24cと第4ブリッジ部24d同士を結ぶ線方向に沿って形成され、図8に示すように略四角形のトンネル状に形成されている。
 そして、これらのビレットガイド孔部24Fには、ビレットBが前記ビレットの導入空間Sから矢印nで示すように押圧されてガイドされ、形材形成用孔部51を経由して押出されるようになっている。
 また、第1内側駒部23Bおよび第3内側駒部23Dの突起枠23Eとメス型30の形材外形用開口部30Cとの隙間、つまり前記形材形成用孔部50には、ビレットBがビレット導入空間Sから矢印mで示すように押圧されてガイドされ、形材形成用孔部50を経由して押出されるようになっている。
 以上のように構成されたダイス10により押出し成形された中空形材1が図12に示されている。
 すなわち、上記中空形材1は、図12に示すように、一対の長辺部1Aの両端側を短辺部1Bで連結すると共に、それらの短辺部1B間に2本の仕切り壁部1Cを上記一対の長辺部1A間に連結して形成され、内部に3個の空間1S,1S,1Sを有する断面目の字形となっている。
 そして、このような断面目の字形の中空形材1がビレットBの供給量に対応して、押出しダイス10の前記形材形成用孔部50,51から連続して押出し成形されるようになっている。
 次に、以上のような構成の押出ダイス10による中空形材1の成形方法を説明する。
 オス型20に対して、ビレットBの押出し方向上流側に配設されたビレット押出し装置60からビレットBが押出されると、そのビレットBは、まず、ホルダー25のブリッジ保持面25Cの入口から、スパイダー22を構成する各ブリッジ部24a~24dとホルダー25との隙間で構成されたビレット導入空間Sに導入される。
 ビレット導入空間Sに導入されたビレットBは、第1~第4ブリッジ部24a~24dの上面からそれぞれのビレットガイド面24E、およびマンドレル23の側面を経由した後、形材成形用孔部50に導かれ、その形材成形用孔部50,51から押出され成形される。
 そして、押出し成形された中空形材1は、バックダイ40に形成されている形材送出用穴40Aから送り出された後、図示しない保持機構により保持され、且つ所定のストックヤード等に搬入される。
 本実施形態の押出しダイス10は以上のように構成されているので、次のような効果を得ることができる。
(1)スパイダー22を構成するブリッジ部24の第1~第4ブリッジ部24a~24dの先端外周面24Cと、ホルダー25のブリッジ保持面25Cとの係合面が焼き嵌めにより強固に接合されて一体化されており、ダイスに掛かる応力をスパイダー22とホルダー25とで受けることができ、これにより、各ブリッジ部24a~24dの応力集中部の応力が緩和されるので、スパイダー22のブリッジ部24の破断を防止することができる。その結果、押出加工力が大きな高力系合金、特に、いわゆる7000系といった高強度アルミ合金からなるビレットBを押出し成形する場合でも、高速押出しができると共にダイスの長寿命化を図れるようになる。
(2)ビレットBを押し出す際の圧力がスパイダー22のマンドレル23および各ブリッジ部に加えられても、スパイダー22の各ブリッジ部24a~24dの先端外周面とホルダー25のブリッジ保持面25Cとが焼き嵌めにより接合されて一体化されているので、スパイダー22の各ブリッジ部24a~24dだけが微妙に動いたりすることがなく安定して保持される。その結果、中空形材1を所望する高精度に加工することができる。
(3)第1~第4ブリッジ部24a~24dのそれぞれの先端外周面24Cが傾斜面部24mと直線部24nとで形成され、ホルダー25のブリッジ保持面25Cが傾斜面部25mと直線部25nとで形成されているので、スパイダー22をホルダー25に挿入した後、冷却時にブリッジ保持面25Cが収縮し、スパイダー22を押し出方向に押し出そうとする力が作用するが、互いの直線部25nと直線部24n同士間に摩擦力が生じ、これにより、スパイダー22がホルダー25から抜け出るのを防止することができる。
(4)第1~第4ブリッジ部24a~24dのそれぞれの先端外周面24Cが傾斜面部24mと直線部24nとで形成され、ホルダー25のブリッジ保持面25Cが傾斜面部25mと直線部25nとで形成されているので、スパイダー22をホルダー25に挿入する際、傾斜面部25mに傾斜面部24mがガイドされた状態となるので、挿入作業が容易となり、その結果、焼き嵌め作業がやりやすく、作業性の向上を図ることができる。
(5)スパイダー22のマンドレル23および第1~第4ブリッジ部24a~24dには、所定高さにわたって、各ブリッジ部24a~24dの上面部22Aから下流に向かって緩やかに広くなった所定高さの傾斜状のビレットガイド面24Eが形成されているので、上流側から押し出されたビレットBがビレット導入空間S内にスムーズに押し出される。その結果、ビレットBが均等に流れるようになるので、均一な中空形材1を形成することができる。
(6)第1~第4ブリッジ部24a~24dのうち、隣り合うブリッジ間の距離が長い方が変形しやすいが、第1ブリッジ部24aと第4ブリッジ部24d、および第2ブリッジ部24bと第3ブリッジ部24c間に、それぞれブリッジ横振れ防止部24Dが設けられており、このブリッジ横振れ防止部24Dが、各ブリッジ部24a,24d等の側面部同士を突っ張る状態で保持しているので、第1~第4ブリッジ部24a~24dの変形を防止することができる。
 次に、図14~図16に基づいて、本発明の押出しダイスの第2実施形態を説明する。
 本第2実施形態の押出しダイス10Aは、前記第1実施形態の押出しダイス10における第1~第4ブリッジ部24a~24dの先端外周面24Cに相当する第1~第4ブリッジ部74a~74dと、先端外周面部74Cとホルダー75のブリッジ保持面部75Cとにわたって、凹凸構造77および段差構造78を設けたものである。
 なお、この第2実施形態においては、上記凹凸構造77および段差構造78の部位のみが前記第1実施形態と異なり他の構成はまったく同じなので、同一構造および同一部材には同一符号を付し、異なる部分のみを説明する。
 本第2実施形態の押出しダイス10Aは、図14、図15に示すように、前記オス型20に相当するオス型70を備えて構成されている。また、このオス型70は、前記スパイダー22に相当するスパイダー72と、前記ホルダー25に相当するホルダー75とを備えて構成されている。
 スパイダー72は、図14,15に示すように、前記マンドレル23に相当するマンドレル73と、このマンドレル73を支持すると共に当該マンドレル73の周囲から外方に略X字状に突出した複数のブリッジ部74、すなわち第1のブリッジ部74a、第2のブリッジ部74b、第3のブリッジ部74c、および第4のブリッジ部74dの4個で構成されている。
 そして、これらの第1のブリッジ部74a、第2のブリッジ部74b、第3のブリッジ部74c、第4のブリッジ部74dの先端外周面部74Cが、ホルダー75のブリッジ保持面部75Cと係合し合い、かつ、第1~第4ブリッジ部74a~74dの各先端外周面部74Cとホルダー75のブリッジ保持面部75Cとが焼き嵌めにより接合されるようになっている。
 前記凹凸構造77は、第1のブリッジ部74aと第4のブリッジ部74dのそれぞれの先端外周面部74Cに設けられた突出面部74eと、ホルダー75のブリッジ保持面部75Cに形成され前記突出面部74eと対応する凹面部75aとで構成されている。
 ブリッジ保持面部75Cは、前記第1実施形態のブリッジ保持面部25Cに相当し、当該ブリッジ保持面部25Cと同様に、傾斜面部75mと直線部75nとで形成されている。そして、ホルダー75のブリッジ保持面部75Cでは、その傾斜面部75mの途中に、2個のブリッジ部74a、74dのそれぞれの突出面部74eに対応する前記凹面部75aが形成されている。
 また、先端外周面部74Cは、前記第1実施形態の先端外周面24Cに相当し、当該先端外周面24Cと同様に、傾斜面部74mと直線部74nとで形成されており、この傾斜面部74mの途中に、上記突出面部74eが形成されている。
 また、前記段差構造78は、第2のブリッジ部74bと第3のブリッジ部74cのそれぞれの先端外周面部74Cに設けられた段差面部74fと、ホルダー75のブリッジ保持面部75Cに形成され前記段差面部74fと対応する段差受け面部75bとで構成され、この段差受け面部75bは直線形状面に形成されている。
 図15に示すように、前記凹凸構造77を構成するホルダー75の凹面部75Cは、オス型70の平面視で、例えば、90°と270°とを結んだ下半分に形成されている。
 また、前記段差構造78を構成するホルダー75の段差受け面部75bは、90°と270°とを結んだ上半分に形成されている。
 したがって、スパイダー72とホルダー75とを焼き嵌めするに際し、第1ブリッジ部74aと第4ブリッジ部74dとが、上記図15において90°と270°とを結んだ下半分に位置するように挿入し、第2ブリッジ部74bと第3ブリッジ部74cとが、図15において90°と270°とを結んだ上半分に位置するように挿入して位置決めしなければならない。
 そして、本実施形態では、各ブリッジ部74a~74dがそれぞれ上記範囲内に配置されていることを確認するために、スパイダー72とホルダー75とに位置確認マーク65が記されている。
 すなわち、位置確認マーク65は、図16に詳細を示すように、ホルダー75に記された固定側マーク66と、スパイダー72のブリッジ部74を構成する第1ブリッジ部74aに記された移動側マーク67とで構成されている。
 固定側マーク66は、ホルダー75の上面かつ第1ブリッジ部74aの中心線CLの延長上に記された直線マーク66aと、この直線マーク66aの先端からホルダー75の内周面に垂直に延びた垂直マーク66bとで形成されている。
 上記移動側マーク67は、第1ブリッジ部74aの先端外周面かつ上面に、当該第1ブリッジ部74aの中心線CL上に記されている。
 そして、これらの固定側マーク66および移動側マーク67は、刻印等で記されていると好適である。
 本第2実施形態の押出しダイス10は以上のように構成されているので、前記(1)、(4)、(5)と同様の効果の他、次のような効果を得ることができる。
(6)スパイダー72における各ブリッジ部74a~74dのそれぞれの先端外周面部74Cと、ホルダー75のブリッジ保持面部75Cとにわたって、凹凸構造77および段差構造78が設けられているので、スパイダー72とホルダー75との焼き嵌め時に、ホルダー75が冷却されて収縮する際、各構造77,78が抜け方向に対してストッパの役割を果たす。その結果、スパイダー72のホルダー25からの抜けを防止でき、これにより、両者72,75をより確実に接合することができ、更なる高精度の中空形材の加工が可能となる。
(7)スパイダー72の第1ブリッジ部74aとホルダー25とに、固定側マーク66と移動側マーク67からなる位置確認マーク65が形成されており、スパイダー22を加熱、膨張されたホルダー25に挿入する際、固定側マーク66と移動側マーク67とを一致させればよいので、各ブリッジ部74a~74dを容易に所定の位置に配置することができる。
 次に、図17、図18に基づいて、本発明の押出しダイスの第3実施形態を説明する。
 本第3実施形態の押出しダイス10Bは、亀裂が発生する可能性のある位置に圧力を受ける面を近づけることで、圧力の相殺を図る目的で提案されたものである。
 なお、この第3実施形態において、前記第1実施形態の押出しダイス10と同一構造および同一部材には同一符号を付し、異なる部分のみを説明する。
 図17は、第2ブリッジ部84bの先端外周面84Cとホルダー85との接合を示すものである。
 この図17に示すように、スパイダー82は、マンドレル83とブリッジ部84とを備えて構成されると共に、ホルダー85に保持されている。
 そして、ブリッジ部84を構成する第1~第4ブリッジ部84a~84dのそれぞれの先端外周面84C(図17では第2ブリッジ部84b)が、上流側から下流側に向かって拡がる傾斜面部84mと、この傾斜面部84mの下流側の端部に形成されホルダー85の中心側に向かってすぼまる形状の逆傾斜面部84qとで形成されている。
 これに対して、ホルダー85のブリッジ保持面85Cは、各ブリッジ部84a~84dの傾斜面部84mに対応する傾斜面部85mと、この傾斜面部85mの先端に形成されると共に前記逆傾斜面部84qに対応する逆傾斜面部85qとで形成されている。
 そして、この逆傾斜面部85qで形成された部位が、上記逆傾斜面部84qを受けるブリッジ受面部85Aを形成すると共に、スパイダー82がホルダー85から抜け出すのを防止する役割を果たしている。
 この図17、図18に示すように、第2ブリッジ部84bの先端外周面84Cを形成する逆傾斜面部84qは、寸法Hでホルダー85の中心側に向かってすぼまっており、これに対して、ホルダー85の前記逆傾斜面部85qは、寸法Hの突出量で、かつ図18に示すように所定幅寸法Wに形成されている。この逆傾斜面部85qは、上述のように、各ブリッジ部84a~84dの逆傾斜面部84qに対応する形状となっている。
 ホルダー85の逆傾斜面部85qは、ブリッジ保持面85Cの傾斜面部85mに対して角度α1°でブリッジ部84の逆傾斜面部84q側に傾斜している。そして、この角度α1°は、例えば30°程度に設定されている。
 なお、第1ブリッジ部84a、第3ブリッジ部84c、第4ブリッジ部84dも同様の形状となっている。
 ここで、ホルダー85の逆傾斜面部85qにおけるブリッジ部84の基端部P1と、この基端部P1からマンドレル83において押出し方向と直交する方向の作用点P2までの距離は寸法Lとなっており、亀裂が発生する可能性のある位置に圧力を受ける面が近づいている。
 そのため、マンドレル83の作用点P2に生じるモーメントを小さくすることができるので、ブリッジ部84の強度を大きくすることができ、これにより、スパイダー82を構成するブリッジ部84の破断を防止することができる。その結果、押出加工力が大きな高力系合金、特に、いわゆる7000系といった最強度アルミ合金からなるビレットを押出し成形する場合でも、高速押出しができると共にダイスの長寿命化を図れるようになる。
 前述したように、逆傾斜面部85qが各ブリッジ部84a~84dのそれぞれの逆傾斜面部84qに対応するように設けられているので、スパイダー82をホルダー85に挿入する際には、両者の位置を合わせなければならない。
 そのため、本第3実施形態では、4箇所のブリッジ部84a~84dのうち、例えば、前記第2ブリッジ部84bとホルダー85とに前記位置確認マーク65が設けられている。
 その結果、スパイダー82を、加熱、膨張されたホルダー85に挿入する際、固定側マーク66と移動側マーク67とを一致させればよいので、各ブリッジ部84a~84dを容易に所定の位置に配置することができる。
 本第3実施形態の押出しダイス10は以上のように構成されているので、前記前記(1)、(4)、(5)、(7)と同様の効果の他、次のような効果を得ることができる。
(8)ホルダー85の逆傾斜面部85qにおけるブリッジ部84の基端部P1と、この基端部P1からマンドレル83において押出し方向と直交する方向の作用点P2までの距離は寸法Lとなっており、亀裂が発生する可能性のある位置に圧力を受ける面が近づいている。
 そのため、マンドレル83の作用点P2に生じるモーメントを小さくすることができるので、ブリッジ部84の強度を大きくすることができ、それらの第1~第4ブリッジ部24a~24dの破断を防止することができる。その結果、押出加工力が大きな高力系合金、特に、いわゆる7000系といった高強度アルミ合金からなるビレットBを押出し成形する場合でも、高速押出しができると共にダイスの長寿命化を図れるようになる。
 以上、前記各実施形態を参照して本願発明を説明したが、本願発明は前記各実施形態に限定されるものではない。本願発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。また、本願発明には、上記各実施形態の構成の一部又は全部を相互に適宜組み合わせたものも含まれる。
 例えば、前記実施形態では、押出しダイス10により成形される中空形材1を断面目の字状の中空形材としたが、これに限らない。図13に示すような断面口の字状の中空形材2を成形する際にも利用できる。
 この場合、まず、前記実施形態のスパイダー22におけるマンドレル23の第1内側駒部23B、第2内側駒部23C、および第3内側駒部23Dに換えて、断面口の字状の中空形材2の内部空間2Sを形成するように、略四角柱状の1つの駒部をマンドレルの端部に設ける。
 そして、メス型30の外側形材開口部30Cに換えて、上記略四角柱状の1つの駒部に対応する略四角形の形材外形用開口をメス型に設ければよい。
 この際、スパイダー22のブリッジ先端外周面24Cとホルダー25のブリッジ保持面25Cとの係合状態および傾斜角度は、前述のような目の字形の中空形材1用の構成と同じとすればよく、ホルダー25はそのまま使用できるので、少ない使用部材で断面形状が異なる複数種類の中空形材の押出し成形が可能である。
 また、前記第1実施形態では、スパイダー22等を構成する第1ブリッジ部24aと第4ブリッジ部24d、および第2ブリッジ部24bと第3ブリッジ部24c等との間に、それぞれブリッジ横振れ防止部24Dを設けた形状としたが、ブリッジ横振れ防止部24Dの形状は、これに限らず、例えば、図19に示すような構成でもよい。
 この図19に示す変形形態では、第1~第4ブリッジ部24a~24d間のすべてにブリッジ横振れ防止部24Dを設けた形状としたものである。そして、このような変形形態では、4個のブリッジ部24a~24dを結ぶ4個のブリッジ横振れ防止部24Dが設けられているので、より一層の横振れ防止効果を得ることができる。
 さらに、前記第1実施形態では、各ブリッジ部24a~24dの先端外周面24Cを、傾斜面部24mと直線面部24nとで形成し、ブリッジ保持面25Cを、傾斜面部25mと直線面部25nとで形成したが、これに限らない。例えば、先端外周面24Cおよびブリッジ保持面25Cの全面をそれぞれ直線面部としてもよい。そして、このようにしても、焼き嵌め時にホルダー25を加熱、膨張させる結果、ブリッジ保持面25C内周面内径が大きくなっているので、スパイダー22の各ブリッジ部24a~24dをホルダー25のブリッジ保持面25C内に挿入させることができる。
 このような変形形態では、各ブリッジ部24a~24dの先端外周面24Cの加工およびブリッジ保持面25Cの加工が容易となる。
 また、前記第2実施形態では、第1ブリッジ部74aおよび第4ブリッジ部74dとホルダー75とに凹凸構造77が、第2ブリッジ部74bおよび第3ブリッジ部74cとホルダー75とに段差構造78がそれぞれ設けられているが、これに限らない。
 例えば、全部のブリッジ部74a~74dに上記凹凸構造77と同様の形状の凹凸構造77を設けてもよく、あるいは、全部のブリッジ部74a~74dに上記段差構造78と同様の形状の段差構造78を設けてもよい。
 そして、全部のブリッジ部74a~74dに凹凸構造77と同様の凹凸構造77を設けた場合は、ホルダー75のブリッジ保持面部75Cの全周をその凹凸構造77に対応させればよい。
 このような構造では、第1~第4ブリッジ部74a~74dの先端外周に凹凸構造77を構成する同一種類の突出面部77aを形成し、ホルダー75のブリッジ保持面部75Cの全周に同一種類の凹面部77bを形成すればよいので、前記第2実施形態に比べて加工が容易である。
 また、段差構造78と同様の形状の段差構造78を設けた場合は、ホルダー75のブリッジ保持面部75Cの全周をその段差構造78に対応させればよい。
 このような構造では、第1~第4ブリッジ部74a~74dの先端外周に段差面部74fを形成し、ホルダー75のブリッジ保持面部75Cに段差受け面部75bを形成すればよいので、前記第2実施形態に比べて加工が容易である。
 また、前記第2実施形態では、全部のブリッジ部74a~74dの先端外周面部74Cは、傾斜面部74mの途中に凹凸構造77、段差構造78が形成され、その先端に直線部74nが形成されているが、これに限らない。
 各ブリッジ部74a~74dの先端外周面部74Cに、凹凸構造77、段差構造78が形成されており、これらの凹凸構造77、段差構造78がホルダー75のブリッジ保持面部75Caと焼き嵌めにより接合されるので、ビレットBを押し出す際にスパイダー72がホルダー75のブリッジ保持面部75Cから抜け出るおそれはない。そのため、第2実施形態のように、ブリッジ部74a~74dの先端外周面部74Cの先端に直線部74nを形成しなくてもよい。
 本願発明の押出しダイスは、高力系合金、特に、いわゆる7000系といった高強度アルミ合金からなる中空形材を成形する際に利用される。
  1 断面目の字状の中空形材
 10 中空形材成形用押出しダイス(第1実施形態)
10A 中空形材成形用押出しダイス(第2実施形態)
10B 中空形材成形用押出しダイス(第3実施形態)
 20 オス型
 22 スパイダー
 23 マンドレル
23B 内側成形突起部
 24 ブリッジ部
24a~24d 第1~第4のブリッジ
24m 傾斜面部
24n 直線部
24C ブリッジ先端外周面
 25 ホルダー
25C ブリッジ保持面
25m 傾斜面部
25n 直線部
 30 メス型
30B 形材外形用開口
 50 形材形成用孔部
 51 形材形成用孔部
 70 中空形材成形用押出しダイス(第2実施形態)
 80 中空形材成形用押出しダイス(第3実施形態)
  A ビレットの押出方向
  B ビレット
  S ビレットの導入空間

Claims (5)

  1.  上流側から送られてくるアルミ合金からなるビレットを下流側に押出して中空形材の内側形状を成形するオス型と、このオス型を保持すると共に前記中空形材の外側形状を成形するメス型とを備えた中空形材成形用押出ダイスであって、
     前記オス型を、前記内側形状を成形するスパイダーと、このスパイダーを保持するホルダーとで構成し、
     前記スパイダーを、前記中空形材の内側形状に対応するマンドレルと、このマンドレルと一体的に設けられると共に当該マンドレルの周囲から外方に向かって突出した複数のブリッジ部とで形成し、
     前記各ブリッジ部の先端外周面と前記ホルダーの内周面部とを焼き嵌めにより接合したことを特徴とする中空形材成形用押出ダイス。
  2.  請求項1に記載の中空形材成形用押出ダイスにおいて、
     前記各ブリッジ部の先端外周面を、前記上流側から下流側に向かって拡がる傾斜面部と、この傾斜面部の下流側端部に形成され前記ビレットの押出し方向に沿ってなる直線面部とで形成し、
     前記ホルダーの内周面部を、前記ブリッジ部の先端外周面の傾斜面部と直線面部とにそれぞれ対応する傾斜面部と直線面部で形成したことを特徴とする中空形材成形用押出ダイス。
  3.  請求項1または請求項2に記載の中空形材成形用押出ダイスにおいて、
     前記各ブリッジ部を、それぞれ4個で構成すると共にそれらを平面形状がX字状となるように配置し、
     前記各4個のブリッジ部のうち隣り合う2個のブリッジ部相互間で前記下流側の端部に、前記ホルダーの内周面部に沿って横振れ防止用のブリッジ横振れ防止部を設け、
     このブリッジ横振れ防止部を、前記マンドレルを挟んで少なくとも2箇所に設けたことを特徴とする中空形材成形用押出ダイス。
  4.  請求項1または請求項2に記載の中空形材成形用押出ダイスにおいて、
     前記各4個のブリッジ部のうち2個のブリッジ部の前記先端外周面の前記傾斜面部の途中位置に前記ホルダーの内周面部側に突出した突出面部を設け、
     前記各4個のブリッジ部のうち残り2個のブリッジ部の前記先端外周面の前記傾斜面部の途中位置に前記ホルダーの内周面部側に突出した段差面部を設け、
     前記ホルダーの内周面部全体を、前記ブリッジ部の先端外周面の傾斜面部と直線面部とにそれぞれ対応する傾斜面部と直線面部で形成すると共にその傾斜面部の途中に、前記2個のブリッジ部の突出面部に対応する凹面部と、前記残り2個のブリッジ部の段差面部に対応する段差受け面部とを形成したことを特徴とする中空形材成形用押出ダイス。
  5.  請求項1に記載の中空形材成形用押出ダイスにおいて、
     前記各ブリッジ部の先端外周面を、前記上流側から下流側に向かって拡がる傾斜面部と、この傾斜面部の前記下流側の端部に形成され前記ホルダーの中心側に向かってすぼまる形状の逆傾斜面部とで形成し、
     前記ホルダーの内周面部を、前記ブリッジ部の先端外周面の傾斜面部に対応する傾斜面部と、前記逆傾斜面部と対応し当該逆傾斜面部を保持するブリッジ保持面部とで形成したことを特徴とする中空形材成形用押出ダイス。
PCT/JP2012/069723 2011-09-13 2012-08-02 中空形材成形用押出ダイス WO2013038831A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/344,484 US9162267B2 (en) 2011-09-13 2012-08-02 Extrusion die for forming hollow material
CN201280044348.XA CN103826768B (zh) 2011-09-13 2012-08-02 中空型材成形用挤压模具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011199793A JP5839455B2 (ja) 2011-09-13 2011-09-13 中空形材成形用押出ダイス
JP2011-199793 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013038831A1 true WO2013038831A1 (ja) 2013-03-21

Family

ID=47883070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069723 WO2013038831A1 (ja) 2011-09-13 2012-08-02 中空形材成形用押出ダイス

Country Status (4)

Country Link
US (1) US9162267B2 (ja)
JP (1) JP5839455B2 (ja)
CN (1) CN103826768B (ja)
WO (1) WO2013038831A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624100A (zh) * 2013-12-17 2014-03-12 西南铝业(集团)有限责任公司 一种用于生产扁宽铝合金型材的模具的安装方式

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016147278A (ja) * 2015-02-10 2016-08-18 日本軽金属株式会社 中空形材成形用押出ダイス
CN106734314B (zh) * 2017-03-16 2019-06-28 慈溪市宜美佳铝业有限公司 一种伪分流工业铝型材挤压模具
CN108941230B (zh) * 2018-09-21 2024-06-07 广东兴发铝业(河南)有限公司 一种智能型铝型材挤压机
CN112692095A (zh) * 2020-12-07 2021-04-23 重庆友利森汽车科技有限公司 一种电池边框底板挤压模具
CN113600634B (zh) * 2021-08-04 2023-07-07 中北大学 一种外形带凸台筒形件的挤压成形方法
KR102689074B1 (ko) * 2021-11-02 2024-07-26 알루스 주식회사 알루미늄 판재 압출장치
CN115026151B (zh) * 2022-06-27 2023-09-29 江苏科力西铝业有限公司 一种带矩形开口槽和u型孔的铝型材挤压模具
US11998965B2 (en) 2022-07-12 2024-06-04 Exco Technologies Limited Shrink ring for extrusion die, and extrusion die comprising same
CN115283474B (zh) * 2022-10-08 2023-01-24 中北大学 一种高性能板坯均匀正挤压控制成形模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017129A (ja) * 2002-06-19 2004-01-22 Aisin Keikinzoku Co Ltd 中空形材用押出ダイス
JP2005059022A (ja) * 2003-08-19 2005-03-10 Aisin Keikinzoku Co Ltd 中空形材用押出ダイス
JP2010125475A (ja) * 2008-11-26 2010-06-10 Nippon Light Metal Co Ltd 中空形材成形用押出ダイス

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918288A (en) * 1970-08-10 1975-11-11 Lasalle Steel Co Die
US3834209A (en) * 1973-03-30 1974-09-10 H Robertson Extrusion die
US4270380A (en) * 1979-05-25 1981-06-02 Corning Glass Works Metal shaping die assembly
JPH0220614A (ja) 1988-07-05 1990-01-24 Showa Alum Corp ブリッジ型押出加工用ダイス
JPH03207520A (ja) * 1990-01-10 1991-09-10 Showa Alum Corp 押出用ダイス
AT395687B (de) * 1990-10-12 1993-02-25 Boehler Gmbh Flachrezipient fuer strangpressen und verfahren zu dessen herstellung
JPH06134518A (ja) 1992-10-27 1994-05-17 Showa Alum Corp 押出用ダイス
JPH07124633A (ja) 1993-10-29 1995-05-16 Showa Alum Corp 中空材の押出用ダイス
JPH10258309A (ja) * 1996-10-02 1998-09-29 Furukawa Electric Co Ltd:The 押出機のプレッシャーリングとそれを用いた押出機
CN2304481Y (zh) * 1997-01-22 1999-01-20 北京科技大学 扁挤压筒
JPH11129024A (ja) * 1997-10-30 1999-05-18 Showa Alum Corp 中空材押出用の分割型の押出ダイス
JP4274820B2 (ja) 2003-03-07 2009-06-10 三洋電機株式会社 自動利得制御回路
US7237418B2 (en) * 2003-05-23 2007-07-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of extruding hollow light metal member, die for extruding hollow light metal, and member for extruding hollow light metal
US7469569B2 (en) * 2003-12-10 2008-12-30 Diamond Innovations, Inc. Wire drawing die and method of making
JP2009178770A (ja) * 2009-05-08 2009-08-13 Showa Denko Kk 金型部材の加工方法、金型部材の製造方法、押出ダイス、押出材の製造方法及び押出材
CN101648229A (zh) 2009-07-09 2010-02-17 西南铝业(集团)有限责任公司 一种平面分流挤压模

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017129A (ja) * 2002-06-19 2004-01-22 Aisin Keikinzoku Co Ltd 中空形材用押出ダイス
JP2005059022A (ja) * 2003-08-19 2005-03-10 Aisin Keikinzoku Co Ltd 中空形材用押出ダイス
JP2010125475A (ja) * 2008-11-26 2010-06-10 Nippon Light Metal Co Ltd 中空形材成形用押出ダイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624100A (zh) * 2013-12-17 2014-03-12 西南铝业(集团)有限责任公司 一种用于生产扁宽铝合金型材的模具的安装方式

Also Published As

Publication number Publication date
CN103826768B (zh) 2016-02-24
JP5839455B2 (ja) 2016-01-06
US20140283577A1 (en) 2014-09-25
US9162267B2 (en) 2015-10-20
JP2013059792A (ja) 2013-04-04
CN103826768A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2013038831A1 (ja) 中空形材成形用押出ダイス
TWI572421B (zh) 具段差方管之製造方法
JP2010125475A (ja) 中空形材成形用押出ダイス
JP2015066555A (ja) 中空形材成形用押出ダイス
JP2009504409A5 (ja)
US9227353B2 (en) Molding apparatus and method for operating same
JP2012236199A (ja) 被プレス加工物の位置決め構造及びプレス加工装置
JP5496012B2 (ja) 中空形材成形用押出ダイス
JP2007010199A (ja) 多孔管及び多孔管の製造方法
KR100819713B1 (ko) 덕트용 엘보우 커버 및 그 제조방법
JP5872312B2 (ja) 中空形材成形用押出ダイスおよび中空形材成形用押出ダイスの形成方法
JP6233987B2 (ja) 管状部材の製造装置
KR20090083050A (ko) 압축 및 확관 공정을 이용한 롱넥 플랜지 성형방법
JP6063646B2 (ja) 管状部材の製造方法
JP2016147278A (ja) 中空形材成形用押出ダイス
JP6875632B2 (ja) 構造体及び構造体の製造方法
JP2010046675A (ja) パイプ曲げ加工装置及びパイプ曲げ加工方法
WO2004101187A3 (en) Process for press forming metal tubes
JP2006026672A (ja) ポートホールダイスおよび該ポートホールダイスを用いる押出加工方法
JP2012000653A (ja) 筒型成形品の成形方法および装置
JP2009190043A (ja) 構造部材
JP6802950B2 (ja) 成形用芯材及び成形品の製造方法
KR101530588B1 (ko) 락볼트 제조방법
JP4503092B1 (ja) 中空押出形材
JP2011167758A (ja) コラム用裏当金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280044348.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344484

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831516

Country of ref document: EP

Kind code of ref document: A1