WO2013035594A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2013035594A1
WO2013035594A1 PCT/JP2012/071782 JP2012071782W WO2013035594A1 WO 2013035594 A1 WO2013035594 A1 WO 2013035594A1 JP 2012071782 W JP2012071782 W JP 2012071782W WO 2013035594 A1 WO2013035594 A1 WO 2013035594A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
video data
screen
display device
period
Prior art date
Application number
PCT/JP2012/071782
Other languages
English (en)
French (fr)
Inventor
小川 康行
誠二 金子
山本 薫
耕平 田中
誠一 内田
泰 高丸
森 重恭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280003994.1A priority Critical patent/CN103238177B/zh
Priority to JP2013501952A priority patent/JP5236131B1/ja
Priority to KR1020137013276A priority patent/KR101311642B1/ko
Priority to US13/989,486 priority patent/US8704819B2/en
Publication of WO2013035594A1 publication Critical patent/WO2013035594A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3618Control of matrices with row and column drivers with automatic refresh of the display panel using sense/write circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/022Power management, e.g. power saving in absence of operation, e.g. no data being entered during a predetermined time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/18Use of a frame buffer in a display terminal, inclusive of the display panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit

Definitions

  • the present invention relates to a display device and a driving method thereof, and more particularly, to a small and medium-sized display device aiming at low power consumption and a driving method thereof.
  • the conventional display device refreshes the screen at a constant cycle (for example, 60 Hz) even when displaying an image with little change such as a still image on the screen, and thus it is difficult to reduce the power consumption. It was.
  • FIG. 14 is a diagram showing the relationship between a conventional host processor 90 (hereinafter referred to as “host 90”) and the display device 80.
  • the host 90 transmits video data and a mode switching signal to the display device 80, and the display device 80 switches the mode for refreshing the screen based on the received mode switching signal and displays an image.
  • the display device 80 selects a cycle for refreshing the screen from a plurality of preset frequencies. For example, when the mode A refreshing at 60 Hz and the mode B refreshing at 30 Hz are set as the selectable modes set in advance, the screen is switched to the mode A or mode B by the mode switching signal transmitted from the host 90. Refreshed in either mode.
  • the power consumption of the display device 80 can be reduced as compared with the case where the screen is always refreshed in mode A.
  • Japanese Patent Laid-Open No. 2002-207462 discloses a liquid crystal display device that can reduce power consumption when displaying a still image.
  • the scanning line potential and the signal line potential are maintained at fixed potentials, and a driving suspension period is provided to pause the driving circuit. Thereby, the liquid crystal display device can reduce power consumption when displaying a still image.
  • the scanning line driving circuit and the signal line driving circuit are not set in the pause mode when a still image is displayed.
  • the power reduction was insufficient.
  • an object of the present invention is to provide a display device capable of displaying an image with little change based on video data included in a transmitted command with low power consumption, and a driving method thereof.
  • a first aspect of the present invention is a display device that refreshes the screen of a display panel based on video data included in a command transmitted from the outside, A receiving circuit for receiving the command; A display timing control circuit having a function of determining whether the updated video data is included in the command every predetermined period; A frame memory for storing the updated video data when it is determined that the updated video data is included in the command; A drive circuit for generating an image signal based on the updated video data to refresh the screen and outputting the image signal to the display panel together with a control signal; When the display timing control circuit determines that the updated video data is not included in the command received within the first predetermined period immediately before the determination time, the display timing control circuit performs a second operation immediately after the first predetermined period. And a first refresh pausing unit for pausing refreshing of the screen during a predetermined period of 2.
  • the display timing control circuit determines that the updated video data is included in the command received within the first predetermined period
  • the display timing control circuit is stored in the frame memory during the second predetermined period.
  • the updated video data is read by a memory access circuit and output to the drive circuit, thereby refreshing the screen.
  • the display timing control circuit includes: The updated video data stored in the frame memory during the second predetermined period when it is determined that the updated video data is included in the command received within the first predetermined period. Is refreshed by a memory access circuit and output to the drive circuit, thereby refreshing the screen in a period shorter than the second predetermined period; And a second refresh pausing unit for pausing refreshing of the screen during the remaining period of the second predetermined period after the refreshing by the second refreshing unit.
  • a power supply circuit for supplying necessary power to the drive circuit for supplying necessary power to the drive circuit;
  • the display timing control circuit stops the operation of the digital circuit included in the memory access circuit and the drive circuit when the refresh of the screen is suspended, and from the analog circuit included in the power supply circuit and the drive circuit.
  • the output current is made smaller than when refreshing.
  • the drive circuit includes a scanning line drive circuit and a signal line drive circuit
  • the analog circuit included in the signal line driver circuit is a D / A conversion circuit and an output buffer circuit
  • the digital circuit included in the signal line driver circuit is a shift register circuit and a sampling latch circuit.
  • a pause counter that counts the number of times the screen refresh is paused continuously; Whether or not the display timing control circuit has received the updated video data when the number of times counted by the pause counter exceeds a maximum number of pauses set in advance as a maximum number of pauses that can be paused continuously. Regardless of the feature, the screen is forcibly refreshed.
  • a pulse generation circuit that generates a pulse for each maximum pause period during which the screen refresh can be paused and outputs the pulse to the display timing control circuit;
  • the display timing control circuit forcibly refreshes the screen regardless of whether or not the updated video data is received when the pulse is output from the pulse generation circuit.
  • the memory access circuit pauses reading of the updated video data stored in the frame memory.
  • the display panel includes a plurality of pixel circuits arranged in a matrix,
  • the pixel circuit includes a thin film transistor whose channel layer is formed of an oxide semiconductor.
  • the display panel further includes a backlight unit that emits light from the back surface.
  • An eleventh aspect of the present invention provides any one of the first to third aspects of the present invention,
  • the video data included in the command is updated irregularly.
  • the predetermined period is a period necessary for updating one screen or an integer multiple of a period necessary for the updating.
  • a thirteenth aspect of the present invention provides any one of the first to third aspects of the present invention,
  • the command is transmitted to the display device from an external host processor connected to the display device through a high-speed serial interface.
  • a fourteenth aspect of the present invention is the fifth aspect of the present invention.
  • the display timing control circuit is characterized in that when the refresh of the screen is suspended, the bias current of the analog circuit included in the signal line driver circuit is made smaller than when the screen is refreshed.
  • a fifteenth aspect of the present invention is the fourth aspect of the present invention.
  • the display timing control circuit is characterized in that when the refresh of the screen is suspended, the clock frequency of the power supply circuit is made lower than when the screen is refreshed.
  • a sixteenth aspect of the present invention is a display device display method for refreshing a screen of a display panel based on video data included in a command transmitted from the outside, Determining in the first predetermined period whether or not the updated video data is included in the command received within the first predetermined period; A step of pausing refreshing the screen during a second predetermined period immediately after the first predetermined period when it is determined that the updated video data is not included.
  • a seventeenth aspect of the present invention is the sixteenth aspect of the present invention, In the step of determining whether or not the updated video data is included in the command received within the first predetermined period, when it is determined that the updated video data is included, Reading the updated video data stored in the frame memory in the first predetermined period by a memory access circuit in the second predetermined period; A step of refreshing the screen by outputting the read video data together with a control signal to a driving circuit for driving the display panel.
  • An eighteenth aspect of the present invention is the sixteenth aspect of the present invention, In the step of determining whether or not the updated video data is included in the command received within the first predetermined period, when it is determined that the updated video data is included, In the second predetermined period, the updated video data stored in the frame memory in the first predetermined period is read out by a memory access circuit and output to the drive circuit, whereby the screen is displayed in the second predetermined period. Refreshing in a shorter period than the period; A step of refreshing the screen for a period shorter than the second predetermined period, and then pausing refreshing of the screen for the remaining period of the second predetermined period.
  • the display device can display an image with little change with low power consumption.
  • the command when it is determined that the updated video data is included in the command received within the first predetermined period, the command is stored in the frame memory during the second predetermined period.
  • the screen is refreshed by reading the video data.
  • the display device can refresh the screen with the updated video data and can quickly display the image represented by the video data.
  • the display device when it is determined that the updated video data is included in the command received within the first predetermined period, the screen is refreshed at high speed. When finished, the screen refresh is suspended for the remaining period of the second predetermined period. Thereby, the display device can display an image represented by the video data with less power consumption.
  • the operation of the digital circuit included in the memory access circuit and the drive circuit among the circuits necessary for the screen refresh is stopped, and the power supply circuit The current output from the analog circuit included in the drive circuit is reduced. Thereby, the power consumption of the display device during the refresh pause can be reduced.
  • the D / A conversion circuit and the output buffer circuit which are analog circuits included in the signal line driving circuit, operate with less power during refresh pause than during refresh.
  • the shift register circuit and the sampling latch circuit of the digital circuit included in the signal line driver circuit stop operating when refresh is suspended. As a result, the power consumption of the signal line driver circuit during the refresh pause can be reduced.
  • the refresh when the refresh is paused continuously, if the number of pauses exceeds a certain value, the influence of the leakage current cannot be ignored, and the display quality of the image is significantly reduced. Therefore, the number of times that refresh is continuously paused is counted by the pause counter, and the screen is forcibly refreshed if the number exceeds the preset maximum number of pauses. Thereby, it is possible to prevent the display quality of the display device from deteriorating.
  • the display quality of the image is significantly reduced as the pause period becomes longer. Therefore, a pulse generation circuit that outputs a pulse for each maximum pause period is provided, and the screen is forcibly refreshed when a pulse is output. Thereby, it is possible to prevent the display quality of the display device from deteriorating.
  • the eighth aspect when refreshing is suspended, reading of video data stored in the frame memory by the memory access circuit is suspended. Thereby, when refreshing is suspended, the power consumption of the display device can be reduced.
  • the channel layer of the thin film transistor of the pixel circuit is made of an oxide semiconductor, so that the leakage current in the off state is reduced. This can increase the number of times that a pause can be made before forcibly refreshing or lengthen the pause period, thereby reducing the power consumption of the display device.
  • leakage current in the off state can be suppressed even when the backlight unit is irradiated with backlight light. This can increase the number of times that a pause can be made before forcibly refreshing or lengthen the pause period, thereby reducing the power consumption of the display device.
  • the eleventh aspect even when a command including updated video data is received irregularly, it can be quickly detected whether or not the received video data is included in the received command.
  • the power consumption of the display device can be reduced.
  • the display device determines whether or not updated video data is included in the received command every period necessary for refreshing one screen or an integral multiple of the period. Thereby, the screen can be refreshed at the optimum timing for the video data updated at an arbitrary timing.
  • the power consumption of the display device can be reduced.
  • the bias current of the analog circuit included in the signal line driver circuit is made smaller than when the screen is refreshed. Therefore, the power consumption of the display device can be reduced.
  • the clock frequency of the power supply circuit is set lower than when the screen is refreshed. Therefore, the power consumption of the display device can be reduced.
  • FIG. 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram showing a relationship between updated video data included in a command transmitted from a host and screen refresh in the liquid crystal display device shown in FIG. 2.
  • FIG. 3 is a diagram illustrating a relationship between a circuit operating in a refresh mode and a sleep mode in the liquid crystal display device illustrated in FIG. 2 and power consumption thereof.
  • 3 is a flowchart showing a part of a procedure of image display processing in the liquid crystal display device shown in FIG. 3 is a flowchart showing the rest of the procedure of image display processing in the liquid crystal display device shown in FIG.
  • FIG. 10 is a flowchart showing a part of the procedure of image display processing in the liquid crystal display device according to the second embodiment. It is a flowchart which shows the remainder of the procedure of the image display process in the liquid crystal display device which concerns on 2nd Embodiment. It is a block diagram which shows the structure of the liquid crystal display device which concerns on 3rd Embodiment. It is a circuit diagram which shows the structure of the pulse generation circuit contained in the liquid crystal display device shown in FIG. 11 is a flowchart showing a part of the procedure of image display processing in the liquid crystal display device shown in FIG. 10. 11 is a flowchart showing the rest of the procedure of image display processing in the liquid crystal display device shown in FIG. 10. It is a figure which shows the relationship between the conventional host and a display apparatus.
  • FIG. 1 is a diagram showing the relationship between the host 2 and the display device 1 common to the embodiments of the present invention.
  • the host 2 is connected to the display device 1 using a high-speed serial interface, and transmits it to the display device 1 as a command including a video stream in which image information is packetized.
  • the display device 1 determines whether or not the updated video data is included therein. If it is determined that the updated video data is included, the video data is stored.
  • the display device 1 determines at the beginning of each frame period whether video data updated within the immediately preceding one frame period (a period corresponding to one screen update) has been received. At this time, if the video data updated in the immediately preceding one frame period is received and stored as described above, the display device 1 refreshes the screen from the beginning of the one frame period based on the updated video data. Start. If it is determined that the video data updated in the immediately preceding one frame period has not been received, the screen refresh is paused in the determined one frame period. In this way, the power consumption of the display device 1 that displays an image with little change such as a still image is reduced.
  • DSI Display Serial Interface
  • MIPI Mobile Industry Processor Interface
  • the screen is refreshed at a cycle of 60 Hz, that is, one frame period is 16.7 msec.
  • these periods and one frame period are examples, and are not limited to these.
  • FIG. 2 is a block diagram showing a configuration of the liquid crystal display device 10 according to the first embodiment of the present invention.
  • the liquid crystal display device 10 includes a liquid crystal display panel 11 formed on a transparent substrate made of glass or the like, various control signals for driving the liquid crystal display panel 11, and a video corresponding to an image to be displayed on the liquid crystal display panel 11.
  • the control board 30 is configured to generate data and the like, and the backlight unit 19 irradiates the liquid crystal display panel 11 with light from the back side of the liquid crystal display panel 11.
  • the host 40 is composed mainly of a CPU (Central Processing Unit), and not only a command including video data but also a video timing command for generating a synchronization signal and a power control command for generating a sequence for turning on / off the power. Are transmitted from the transmission circuit 41 to the liquid crystal display device 10.
  • a CPU Central Processing Unit
  • the control board 30 is based on a receiving circuit 32 that receives a command transmitted from the host 40, a PLL (Phase Locked Loop) circuit 33 that generates an internal clock signal, and an internal clock signal that is generated by the PLL circuit 33.
  • a pause counter 37 is provided.
  • the display timing controller 31 may be referred to as a display timing control circuit
  • the scanning line driving circuit 13 and the signal line driving circuit 14 may be collectively referred to as a driving circuit.
  • the display timing controller 31 has a built-in memory access circuit 38 for reading video data stored in the frame memory 36.
  • the display timing controller 31 is connected to the receiving circuit 32, PLL circuit 33, latch circuit 35, frame memory 36, power supply circuit 34, and pause counter 37, and these circuits are controlled by the display timing controller 31.
  • the latch circuit 35 and the pause counter 37 may be built in the display timing controller 31. Further, since the driving voltage (for example, 5 to 10 V) of the signal line driving circuit 14 is lower than the driving voltage (20 V or more) of the scanning line driving circuit 13, the signal line driving circuit 14 supplies power from the power supply circuit 34. The drive voltage may be generated using the clock signal supplied from the display timing controller 31 without receiving the signal.
  • a display area 12 for displaying an image is formed by a plurality of pixel circuits 20 arranged in a matrix, and in the frame area surrounding the display area 12, scanning lines GL are sequentially activated.
  • a driving circuit 13 and a signal line driving circuit 14 that generates an image signal that is an analog signal based on the video data and supplies the image signal to the signal line SL are arranged.
  • the display area 12 includes a plurality of scanning lines GL, a plurality of signal lines SL, and a plurality of pixel circuits 20.
  • the plurality of scanning lines GL are arranged in parallel with each other, and the plurality of signal lines SL are arranged in parallel with each other so as to intersect with the plurality of scanning lines GL.
  • Pixel circuits 20 are arranged near the intersections of the scanning lines GL and the signal lines SL, respectively. As described above, the plurality of pixel circuits 20 are arranged in a matrix in the display area 12.
  • the pixel circuit 20 has a gate terminal connected to the scanning line GL passing through the intersection and a source terminal connected to the signal line SL passing through the intersection, a thin film transistor 21 functioning as a switching element, and a drain of the thin film transistor 21.
  • a pixel electrode connected to the terminal, a counter electrode provided in common to the plurality of pixel circuits 20, and a liquid crystal layer sandwiched between the counter electrode and the pixel electrode are included.
  • the pixel electrode and the common electrode constitute a pixel capacitor 22 together with the liquid crystal layer.
  • the pixel circuit 20 may be provided with not only the pixel capacitor 22 but also an auxiliary capacitor.
  • the channel layer of the thin film transistor 21 is preferably made of an oxide semiconductor having a wide forbidden band. If the forbidden band is wide, the number of carriers excited in the conduction band is reduced even when light from the backlight unit 19 is irradiated on the channel layer. As a result, leakage current generated when the thin film transistor 21 is in an off state is significantly reduced as compared with the thin film transistor 21 whose channel layer is made of amorphous silicon.
  • oxide semiconductor having a wide band gap InGaZnOx (IGZO) containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components is typically used.
  • IGZO InGaZnOx
  • the oxide semiconductor used in the present invention is not limited to IGZO, for example, indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca ), Germanium (Ge), and lead (Pb).
  • the thin film transistor 21 is turned on by activating the scanning line GL.
  • an image signal is supplied from the signal line driving circuit 14 to each signal line SL, and the image signal is held in the pixel capacitor 22 of the pixel circuit 20 connected to the activated scanning line GL.
  • the alignment state of the liquid crystal layer changes according to the magnitude of the image signal held in the pixel capacitor 22, and the transmittance changes when light from the backlight unit 19 passes through the liquid crystal display panel 11. In this way, an image based on the video data included in the command transmitted from the host 40 is displayed on the liquid crystal display panel 11.
  • the host 40 transmits a command including a video stream in which image information is packetized from the transmission circuit 41 to the liquid crystal display device 10.
  • the liquid crystal display device 10 receives a command by the receiving circuit 32 provided on the control board 30, the liquid crystal display device 10 gives the command to the display timing controller 31.
  • the display timing controller 31 decodes the video stream included in the received command, and stores the video data in the frame memory 36 if the updated video data is included.
  • the display timing controller 31 generates control signals C1 and C2 for controlling the scanning line driving circuit 13 and the signal line driving circuit 14 based on the internal clock signal generated by the PLL circuit 33.
  • the video data read from the frame memory 36 by the memory access circuit 38 for each frame period is output to the signal line driving circuit 14 and the control signals C1 and C2 are output to the scanning line driving circuit 13 and the signal line driving circuit 14, respectively.
  • the control signal C1 includes, for example, a source start pulse signal SSP, a source clock signal SCK, and a latch strobe signal LS.
  • the control signal C2 includes, for example, a gate start pulse signal GSP and a gate clock signal GCK.
  • FIG. 3 is a diagram showing a relationship between updated video data included in a command transmitted from the host 40 and screen refresh.
  • each period from time t0 to time t1 to time t8 to time t9 is one frame period, and at each time ti (i is an integer from 1 to 9) between time t1 and time t9, It is determined by the flag F of the latch circuit 35 whether or not the updated video data is included in the command received in one frame period immediately before the time ti.
  • the operation of the display timing controller 31 will be specifically described.
  • the display timing controller 31 decodes the command.
  • the flag F of the latch circuit 35 is set to “1” within the period from time t0 to time t1, and the video data is stored in the frame memory 36. To store.
  • the display timing controller 31 receives a command including video data updated within a period from time t0 to time t1, based on the flag F of the latch circuit 35. Determine. In this case, the display timing controller 31 detects that the flag F of the latch circuit 35 is “1”, and receives a command including video data updated within a period from time t0 to time t1. judge. Next, the video data is read from the frame memory 36 by the memory access circuit 38, the video data is output to the signal line drive circuit 14, and the control signals C1 and C2 are sent to the scanning line drive circuit 13 and the signal line drive circuit 14, respectively. Output. Thereby, based on the video data received within the period from time t0 to time t1, the screen refresh is started from time t1, and the image of the video data is displayed until time t2.
  • the display timing controller 31 detects that the flag F stored in the latch circuit 35 is “0”, and is updated within the period from the time t1 to the time t2. It is determined that no command including received video data has been received. Thereby, during the period from time t2 to time t3, the display timing controller 31 pauses the refresh of the screen and continuously displays the image displayed during the period from time t1 to time t2.
  • the display timing controller 31 pauses the refresh of the screen during the period from time t3 to time t4, and continuously displays the image displayed during the period from time t1 to time t2.
  • the display timing controller 31 sets the flag F of the latch circuit 35 to “1” and stores it in the frame memory 36. Updated video data to newly received video data.
  • the display timing controller 31 detects that the flag F of the latch circuit 35 is “1”
  • the memory access circuit 38 reads the video data from the frame memory 36, and the video data is read out.
  • the control signals C1 and C2 are output to the scanning line driving circuit 13 and the signal line driving circuit 14, respectively.
  • the liquid crystal display device 10 has not received a command including updated video data within each period from time t4 to time t8. Therefore, the display timing controller 31 pauses the refresh of the screen in each period from time t5 to time t8, and continuously displays the image displayed in the period from time t4 to time t5.
  • the maximum number of times that refresh can be paused (maximum number of pauses) is set to 3. For this reason, if refresh is paused even during the period from time t8 to time t9, the number of refresh pauses is four, which is greater than the maximum number of pauses. Therefore, the display timing controller 31 forcibly refreshes the screen during the period from the time t8 to the time t9 even if the command including the video data updated within the period from the time t7 to the time t8 is not received. .
  • the display timing controller 31 receives the video data received in the period from time t3 to time t4, reads the video data stored in the frame memory 36 again, and outputs the video data to the signal line driver circuit 14.
  • control signals C1 and C2 are output to the scanning line driving circuit 13 and the signal line driving circuit 14, respectively.
  • the maximum number of pauses is an example and can be changed as appropriate.
  • the screen is refreshed for the following reason even though the command including the updated video data is not received. That is, if the period during which the screen refresh is paused is lengthened, an image held in the pixel capacitor 22 due to a leakage current that flows when the thin film transistor 21 is in an off state, a leakage current due to impurities contained in the liquid crystal material, or the like. This is because the signal is lowered and the display quality is lowered. Therefore, in order to prevent deterioration in display quality, the liquid crystal display device 10 forcibly refreshes the screen even when a command including updated video data is not continuously received over three frame periods.
  • the maximum number of pauses that can pause screen refresh continuously is set in advance. Then, the number of refresh pauses at which refresh is paused continuously is counted by the pause counter 37. When the number of refresh pauses exceeds the maximum number of pauses, the frame memory 36 can be used even if the updated video data is not received. The screen is forcibly refreshed based on the video data stored in.
  • the channel layer of the thin film transistor 21 is formed using an oxide semiconductor such as IGZO, leakage current when the thin film transistor 21 is in an off state can be reduced. Therefore, the time until the display quality is lowered due to the reduction of the image signal is reduced. Can be extended. Thereby, since a larger value can be set as the maximum number of pauses, the power consumption of the liquid crystal display device 10 can be further reduced.
  • the refresh timing of the screen cannot be flexibly changed even when updated video data is received.
  • the liquid crystal display device 10 at the beginning of each frame period, based on the flag F of the latch circuit 35, is the video data stored in the frame memory 36 updated video data in the immediately preceding one frame period? Determine whether or not.
  • the screen is refreshed based on the video data from the beginning of one frame period.
  • the screen can be refreshed at the optimum timing for the video data updated at an arbitrary timing.
  • the liquid crystal display device 10 can further reduce power consumption.
  • the display timing controller 31 also includes a power supply circuit 34, a scanning line driving circuit 13, and a signal line driving circuit 14 necessary for refreshing the screen when the command supplied from the receiving circuit 32 includes updated video data. And necessary power to the memory access circuit 38 must be supplied.
  • a mode in which necessary power is supplied to refresh the screen in this way is called a refresh mode.
  • the display timing controller 31 pauses the screen refresh and operates the liquid crystal display device 10 with the minimum necessary power. Such a mode in which the screen refresh is paused is called a pause mode.
  • FIG. 4 is a diagram showing the relationship between the circuits operating in the refresh mode and the sleep mode and their power consumption.
  • the circuits related to the refresh mode or the pause mode include a scanning line driving circuit 13, a signal line driving circuit 14, a power supply circuit 34 that supplies power to them, and a memory in the display timing controller 31. This is an access circuit 38.
  • the signal line driving circuit 14 includes a shift register circuit, a sampling latch circuit, a D / A conversion circuit, and an output buffer circuit, and the circuits that operate in the refresh mode and the pause mode are different.
  • the scanning line driving circuit 13, the shift register circuit and sampling latch circuit that constitute the signal line driving circuit 14, and the memory access circuit 38 are logic circuits, and the signal line driving circuit 14 is configured.
  • the D / A conversion circuit and output buffer circuit, and the power supply circuit 34 are analog circuits.
  • the scanning line driving circuit 13, the signal line driving circuit 14, the power supply circuit 34, and the memory access circuit 38 shown in FIG. 4 are operated.
  • the sleep mode only the D / A conversion circuit, the output buffer circuit, and the power supply circuit 34 that are analog circuits are operated, and the scanning line drive circuit 13 that is a digital circuit, The operations of the access circuit 38, the shift register circuit, and the sampling latch circuit are stopped.
  • the power supplied to the D / A conversion circuit and the output buffer circuit, which are analog circuits of the signal line drive circuit 14, can be reduced compared to the refresh mode. it can. This is due to the following reason.
  • the period for refreshing the screen (refresh period)
  • the bias current can be made zero.
  • the display timing controller 31 controls the bias currents of the D / A conversion circuit and the output buffer circuit during the pause period so that they are smaller than when refreshing and larger than zero. As a result, the power consumption of the D / A conversion circuit and the output buffer circuit during the pause period can be reduced as compared with the power consumption during the refresh period.
  • the power supply circuit 34 supplies the signal line drive circuit 14 and the scanning line drive circuit 13 with a voltage obtained by boosting the clock signal by the charge pump method.
  • the signal line driver circuit 14 generates a current for charging / discharging the signal line SL from the voltage supplied from the power supply circuit 34. For this reason, during the refresh period, the power supply circuit 34 needs to supply the signal line drive circuit 14 with a voltage boosted using a high-frequency clock signal, so that the power consumption of the power supply circuit 34 increases.
  • the signal line driver circuit 14 does not need to generate a current for charging / discharging the signal line SL, and thus does not need to supply a high voltage.
  • the power supply circuit 34 in the idle period only needs to supply a voltage boosted using a low-frequency clock signal to the signal line driver circuit 14, so that the power consumption is smaller than the power consumption in the refresh period.
  • the power supply circuit 34 needs to supply a high drive voltage (20 V or more) to the scanning line drive circuit 13 during the refresh period. However, it is only necessary for the scanning line driving circuit 13 to compensate for the reduced charge amount due to the leakage current of the thin film transistor 21 or the like in order to keep the potential of the scanning line GL constant during the pause period. In this case, the power supply circuit 34 only has to supply the scanning line driving circuit 13 with the power necessary for the power supply circuit 34, so the power consumption during the pause period of the power supply circuit 34 is smaller than the power consumption during the refresh period.
  • FIGS. 5 and 6 are flowcharts showing the procedure of image display processing in the present embodiment.
  • the display timing controller 31 operates as shown in FIGS. 5 and 6 based on a predetermined program, the liquid crystal display device 10 can display an image with little change such as a still image with low power consumption.
  • the processing shown in the timing chart below is divided into processing in the first frame period and processing in the second frame period immediately after the first frame period.
  • the display timing controller 31 sets the flag F of the latch circuit 35 to “0” indicating that the updated video data is not received, and the refresh pause stored in the pause counter 37.
  • the number of times k is reset (step S101).
  • the display timing controller 31 determines whether or not the video data included in the received command is updated video data within the first frame period (step S103). As a result, when it is determined that the received video data is updated video data, the display timing controller 31 sets the flag F of the latch circuit 35 to “1” (step S105), and stores it in the frame memory 36. The received video data is stored (step S107), and the process proceeds to step S109 described later.
  • step S109 it is determined whether one frame period has ended. As a result, when it is determined that one frame period has not ended yet, the process returns to step S103 described above, and when it is determined that one frame period has ended, the process proceeds to step S111. Thus, when video data updated within the first frame period is received, the video data is stored in the frame memory 36.
  • the processes in steps S101 to S109 are processes in the first frame period.
  • step S111 the display timing controller 31 determines whether or not the flag F of the latch circuit 35 is “1” at the beginning of the second frame period. As a result, when it is determined that the flag F is “1”, the process proceeds to step S113, and when it is determined that the flag F is not “1”, that is, “0”, the process proceeds to step S123 described later.
  • step S113 the display timing controller 31 supplies necessary power to the power supply circuit 34, the scanning line driving circuit 13, the signal line driving circuit 14, and the memory access circuit 38 necessary for refreshing the screen. Switch to refresh mode.
  • the display timing controller 31 controls the memory access circuit 38 to read video data from the frame memory 36 (step S115), and provides the read video data to the signal line drive circuit 14 (step S117). Thereby, the refresh of the screen is started from the beginning of the second frame period.
  • Step S113 to S117 may be referred to as first refresh means.
  • step S111 determines that the flag F is “0”
  • the display timing controller 31 determines that the refresh pause count k stored in the pause counter 37 is greater than the preset maximum pause count. It is determined whether there are too many (step S123). As a result, if it is determined that the number of refresh pauses k is greater than the maximum number of pauses, the process proceeds to step S113 described above, and the screen is refreshed. This screen refresh is performed based on video data received in a frame period prior to the first frame period.
  • step S125 When it is determined that the refresh pause count k is less than the maximum pause count, the display timing controller 31 is necessary only for the D / A conversion circuit, the output buffer circuit, and the power supply circuit 34 in the signal line drive circuit 14.
  • the operation mode is switched to a sleep mode in which a minimum electric power is applied (step S125). And it waits until 1 frame period (2nd frame period) passes (step S127), and progresses to step S129.
  • step S125 may be referred to as first refresh pause means.
  • step S129 the value obtained by adding 1 to the refresh pause count k is stored in the pause counter 37 as a new refresh pause count k (step S131), and the process returns to step S101 described above.
  • the processes in steps S111 to S129 are processes in the second frame period.
  • the liquid crystal display device 10 can sequentially switch between screen refresh and refresh pause with a circuit having a simple configuration.
  • the liquid crystal display device 10 can display an image with little change with low power consumption.
  • the video data stored in the frame memory 36 is read to refresh the screen.
  • the liquid crystal display device 10 can refresh the screen at an optimal timing for video data updated at an arbitrary timing.
  • the channel layer of the thin film transistor 21 included in the pixel circuit 20 of the liquid crystal display device 10 is formed using an oxide semiconductor such as IGZO with a small leakage current.
  • whether or not a command including video data updated in the immediately preceding frame period is received is determined at the beginning of each frame period. However, it may be determined whether the video data has been updated every arbitrary period that is an integral multiple of one frame period, for example, every two frame periods. In this case as well, the liquid crystal display device 10 immediately after the period in which the command including the updated video data is received is determined in the same manner as in the case where it is determined every frame period whether or not the video data included in the command is updated. By determining at the beginning of the period, the screen can be refreshed at an optimal timing for video data updated at an arbitrary timing.
  • the number of refresh pauses k at which the screen refresh is paused is counted in order to prevent the display quality of the image from being degraded.
  • a period during which screen refresh is continuously paused may be defined as a refresh pause period, and the period may be obtained.
  • a liquid crystal display device 10 according to a second embodiment of the present invention will be described.
  • the liquid crystal display device 10 according to the present embodiment refreshes the screen at a higher speed than the liquid crystal display device 10 according to the first embodiment. Since the configuration of the liquid crystal display device 10 according to the present embodiment is the same as the configuration of the liquid crystal display device 10 according to the first embodiment, a block diagram and description showing the configuration are omitted.
  • the screen refresh in the first embodiment is performed at a cycle of 60 Hz (one frame period is 16.7 msec)
  • the high-speed refresh of the present embodiment is performed in the first 10 msec period of one frame period,
  • the remaining period of 6.7 msec is set as a rest period.
  • these numerical values are examples, and this invention is not limited to this.
  • FIG. 7 is a diagram showing the relationship between the updated video data included in the command transmitted from the host 40 and the screen refresh.
  • FIG. 7 corresponds to FIG. 3 described in the first embodiment, and therefore, different points from FIG. 3 in FIG. 7 will be mainly described.
  • the screen is refreshed at high speed (high-speed refresh mode) based on the updated video data.
  • high-speed refresh mode For example, when a command transmitted from the host 40 is received within a period from time t0 to time t1, the display timing controller 31 decodes the command. As a result, when the updated video data is included in the command, the flag F of the latch circuit 35 is set to “1” within the period from time t0 to time t1, and the video data is stored in the frame memory 36. To store.
  • the display timing controller 31 controls the memory access circuit 38 to store the video data stored in the frame memory 36.
  • the video data is output to the signal line driver circuit 14 and the control signals C1 and C2 are output to the scanning line driver circuit 13 and the signal line driver circuit 14, respectively.
  • the screen refresh starts from time t1 and the image of the video data is displayed until time t11.
  • circuits necessary for refreshing the screen such as the scanning line driving circuit 13 and the signal line driving circuit 14 shown in FIG. 4 are driven in the refresh mode.
  • the high-speed refresh ends at time t11 between time t1 and time t2, and the period from time t11 to time t2 becomes a pause period.
  • the image displayed by the high-speed refresh is continuously displayed.
  • analog circuits such as the D / A converter circuit of the signal line driver circuit 14 that need to be operated during the idle period are driven in the idle mode.
  • the period from time t1 to time t11 when the screen is refreshed in the high-speed refresh mode is 10 msec
  • the period from time t11 to time t2 in the sleep mode is 6.7 msec.
  • the high-speed refresh of the screen based on the video data received during the period from time t3 to time t4 starts at time t4, ends at time t41, which is the time between time t4 and time t5, and the remaining time
  • the period from t41 to time t5 is a pause period.
  • the liquid crystal display device 10 has not received a command including video data updated within a period from time t7 to time t8.
  • the display timing controller 31 receives a command including video data updated within a period from time t7 to time t8. Even if it is not received, the screen is forcibly refreshed during the period from time t8 to time t9.
  • the display timing controller 31 receives the video data received in the period from time t3 to time t4, reads the video data stored in the frame memory 36 again, and outputs the video data to the signal line driver circuit 14.
  • control signals C1 and C2 are output to the scanning line driving circuit 13 and the signal line driving circuit 14, respectively.
  • the same image as that displayed during the period from time t7 to time t8, which is a pause period, is continuously displayed.
  • circuits necessary for refreshing the screen such as the scanning line driving circuit 13 and the signal line driving circuit 14 are driven in the refresh mode.
  • the circuit that needs to supply power in the fast refresh mode and the pause mode is the same as the circuit that needs to supply power in the refresh mode and the pause mode shown in FIG. Therefore, a diagram illustrating the relationship between each mode and a circuit that needs to supply power and description thereof are omitted.
  • FIGS. 8 and 9 are flowcharts showing the procedure of image display processing in the present embodiment.
  • the liquid crystal display device 10 displays an image with little change such as a still image with less power consumption. be able to.
  • the same steps as those shown in FIGS. 5 and 6 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified, and is different. The explanation will focus on the steps.
  • the processing shown in the timing chart below is divided into processing in the first frame period and processing in the second frame period immediately after the first frame period. Can do.
  • the process from step S101 to step S109 is a process in the first frame period
  • the process after step S111 is a process in the second frame period.
  • step S101 to step S115 and step S123 and step S125 are the same as the respective steps given the same reference numerals in FIG.
  • the process proceeds to step S205 described later.
  • step S201 the display timing controller 31 performs high-speed refresh of the screen.
  • the flag F of the latch circuit 35 is set to “0” (step S119), and the refresh pause count k of the pause counter 37 is reset (step S121).
  • steps S113, S115, and S201 may be referred to as second refresh means.
  • step S203 switches to the sleep mode (step S203) and waits until one frame period elapses (step S205).
  • the rest period is set to the pause mode, and the same image as that displayed in the high-speed refresh mode is displayed. If the image is displayed in the pause mode from the beginning of one frame period, the same image is continuously displayed until the end of the one frame period.
  • step S203 may be referred to as second refresh pause means.
  • step S205 After the elapse of one frame period in step S205, the refresh counter number k of the pause counter 37 is read and a value obtained by adding 1 to the value is stored in the pause counter 37 as a new refresh pause number k (step S131). Return to step S101.
  • the liquid crystal display device 10 determines that the updated video data is included in the received command, the liquid crystal display device 10 refreshes the screen at a high speed, and when the refresh is finished, the refresh is paused until the next frame period. Thereby, the liquid crystal display device 10 can display the image represented by the video data with less power consumption.
  • FIG. 10 is a block diagram showing a configuration of a liquid crystal display device 50 according to the third embodiment of the present invention.
  • the same components as those of the liquid crystal display device 10 shown in FIG. 2 are denoted by the same reference numerals, and different components will be mainly described.
  • the pulse generation circuit 61 is connected to the display timing controller 31.
  • FIG. 11 is a circuit diagram showing a configuration of the pulse generation circuit 61.
  • the pulse generation circuit 61 includes a comparator 62.
  • One input terminal 62a of the comparator 62 is connected to one electrode of a capacitor 63 and one end of a constant current source 65, and the other input terminal 62b. Is supplied with a reference voltage VR.
  • the other electrode of the capacitor 63 and the other end of the constant current source 65 are grounded.
  • a switch 64 is provided in parallel with the capacitor 63, one end of which is connected to one electrode of the capacitor 63 and the other end of which is connected to the other electrode.
  • the capacitor 63 is charged by the current supplied from the constant current source 65, and the voltage VC applied to the input terminal 62a of the comparator 62 also increases.
  • the comparator 62 outputs a pulse to the output terminal 62c.
  • the pulse generation circuit 61 outputs a pulse when a predetermined time elapses after the switch 64 is turned off.
  • the pulse generation circuit 61 adjusted in advance is used. Therefore, even when the updated video data is not received, it is possible to detect the time for forcibly refreshing the screen. For this reason, even when the pause period continues for a long time, it is possible to prevent the display quality from being deteriorated due to the leakage current of the thin film transistor 21 or the leakage current due to impurities in the liquid crystal material.
  • the time from when the pulse generation circuit 61 shown in FIG. 11 is reset to when a pulse is output is adjusted by changing the current value supplied from the constant current source 65 or the capacitance of the capacitor 63.
  • the pulse generation circuit 61 illustrated in FIG. 11 is an example, and any pulse generation circuit that can adjust the pulse output timing to coincide with the maximum pause period may be used.
  • the circuits that need to supply power in the refresh mode and the sleep mode are the same as the circuits that need to supply power in the refresh mode and the sleep mode shown in FIG. Therefore, a diagram illustrating the relationship between each mode and a circuit that needs to supply power and description thereof are omitted.
  • FIGS. 12 and 13 are flowcharts showing the procedure of image display processing in the present embodiment.
  • the liquid crystal display device 50 can display an image with little change such as a still image with low power consumption.
  • the same steps as those shown in FIGS. 5 and 6 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified, and is different. The explanation will focus on the steps.
  • the processing shown in the timing chart below is divided into processing in the first frame period and processing in the second frame period immediately after the first frame period. Can do.
  • the process from step S101 to step S109 is a process in the first frame period
  • the process after step S111 is a process in the second frame period.
  • step S301 the flag F of the latch circuit 35 is set to “0”, and the switch 64 of the pulse generation circuit 61 is turned on to be reset.
  • Steps S103 to S131 are the same as the steps shown in FIGS. 5 and 6 except for steps S303 and S305. Therefore, in the following, description will be focused on step S303 and step S305.
  • step S303 after refreshing the screen (step S117) and setting the flag F to “0” (step S119), in step S303, the switch 64 of the pulse generation circuit 61 is turned on. Then, the pulse generation circuit 61 is reset. As a result, the pulse generation circuit 61 outputs a pulse when the preset maximum pause period has elapsed since the reset.
  • step S305 it is determined whether or not a pulse is output from the pulse generation circuit 61 in order to determine whether or not the pause period exceeds the maximum pause period. As a result, if it is determined that a pulse has been output, it is determined that the maximum pause period has been exceeded, and the process proceeds to step S113 to refresh the screen. This screen refresh is performed based on video data received in a frame period prior to the first frame period. If it is determined that no pulse is output, it is determined that the maximum pause period has not yet been reached, and the process proceeds to step S125, where the screen refresh is paused.
  • the liquid crystal display devices 10 and 50 of the above embodiments are configured to irradiate the liquid crystal display panel 11 with backlight from the back surface.
  • the liquid crystal display panel may be a reflective type.
  • the reflective type since backlight light is not irradiated, leakage current when the thin film transistor provided in the pixel circuit is in an off state is reduced.
  • the maximum number of pauses can be increased or the maximum pause period can be increased. For this reason, the power consumption of the liquid crystal display device can be further reduced.
  • liquid crystal display devices 10 and 50 have been described as examples. However, the present invention is not limited to this. The present invention can also be applied to other display devices such as an organic EL (Electro-Luminescence) display device.
  • organic EL Electro-Luminescence
  • the display device of the present invention Since the display device of the present invention has a pause mode, it can be used as a display device that displays a still image with low power consumption.

Abstract

 送信されたコマンドに含まれるビデオデータに基づいて変化の少ない画像を少ない消費電力で表示することができる表示装置およびその駆動方法を提供する。 表示タイミングコントローラ(31)は、外部から送信されたコマンドに更新されたビデオデータが含まれているか否かを1フレーム期間ごとに判定する。その結果、更新されたビデオデータが含まれていないと判定した場合には、フレームメモリ(36)に格納されているビデオデータの読み出しを行なわないようにして画面のリフレッシュを休止する。また更新されたビデオデータが含まれていると判定した場合には、フレームメモリ(36)に格納されているビデオデータを読み出して画面のリフレッシュを行なう。

Description

表示装置およびその駆動方法
 本発明は、表示装置およびその駆動方法に関し、特に、低消費電力化を目的とする中小型の表示装置およびその駆動方法に関する。
 従来の表示装置は、静止画像のように変化が少ない画像を画面に表示する場合でも、一定の周期(例えば60Hz)で画面をリフレッシュしていたので、その消費電力を低減することは困難であった。
 また、図14は、従来のホストプロセッサ90(以下、「ホスト90」という)と表示装置80との関係を示す図である。図14に示すように、ホスト90は、ビデオデータとモード切替信号を表示装置80に送信し、表示装置80は受信したモード切替信号に基づき、画面をリフレッシュするモードを切り替えて画像を表示する。このモード切替信号により、表示装置80は、画面をリフレッシュする周期を、予め設定された複数の周波数の中から選択する。例えば、予め設定された選択可能なモードとして60HzでリフレッシュするモードAと、30HzでリフレッシュするモードBとが設定されている場合、画面はホスト90から送信されるモード切替信号によってモードAまたはモードBのいずれかのモードでリフレッシュされる。このように、モードAとモードBとを適宜切り替えて画面をリフレッシュすれば、画面を常にモードAでリフレッシュする場合に比べて、表示装置80の消費電力を低減することができる。
 また、日本の特開2002-207462号公報には、静止画像を表示する場合に消費電力を低減することが可能な液晶表示装置が開示されている。この液晶表示装置では、あるフレームから次のフレームに移る前に、走査線の電位および信号線の電位をそれぞれ固定電位に保つと共に、駆動回路を休止させる駆動休止期間を設ける。これにより、液晶表示装置は静止画像を表示する際の消費電力を低減することができる。
日本の特開2002-207462号公報
 しかし、図14に示す表示装置80によって静止画像を表示する場合、ホスト90側で動作モードを設定して、表示装置80にモード切替信号を送信するので、表示すべき画像の更新に対応させてモードAとモードBを柔軟に切り替えることができなかった。このため、表示装置80の消費電力の低減が不十分であった。
 また、日本の特開2002-207462号公報に開示された液晶表示装置では、静止画像を表示しているときに走査線駆動回路および信号線駆動回路を休止モードにしないので、液晶表示装置の消費電力の低減が不十分であった。
 そこで、本発明は、送信されたコマンドに含まれるビデオデータに基づいて変化の少ない画像を少ない消費電力で表示することができる表示装置およびその駆動方法を提供することを目的とする。
 本発明の第1の局面は、外部から送信されたコマンドに含まれるビデオデータに基づいて表示パネルの画面をリフレッシュする表示装置であって、
 前記コマンドを受信する受信回路と、
 前記コマンドに更新されたビデオデータが含まれているか否かを所定期間ごとに判定する機能を有する表示タイミング制御回路と、
 前記コマンドに前記更新されたビデオデータが含まれていると判定されたとき、前記更新されたビデオデータを格納するフレームメモリと、
 前記画面をリフレッシュするために、前記更新されたビデオデータに基づいて画像信号を生成し、前記画像信号を制御信号と共に前記表示パネルに出力する駆動回路とを備え、
 前記表示タイミング制御回路は、判定時刻の直前の第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれていないと判定したとき、前記第1の所定期間の直後の第2の所定期間における前記画面のリフレッシュを休止する第1のリフレッシュ休止手段を含むことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記表示タイミング制御回路は、前記第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれていると判定したとき、前記第2の所定期間に前記フレームメモリに格納されている前記更新されたビデオデータをメモリアクセス回路によって読み出し、前記駆動回路に出力することにより前記画面をリフレッシュする第1のリフレッシュ手段を含むことを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記表示タイミング制御回路は、
  前記第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれていると判定したとき、前記第2の所定期間に前記フレームメモリに格納されている前記更新されたビデオデータをメモリアクセス回路によって読み出して前記駆動回路に出力することにより、前記第2の所定期間よりも短い期間で前記画面のリフレッシュを行なう第2のリフレッシュ手段と、
  前記第2のリフレッシュ手段によるリフレッシュを行なった後に、前記第2の所定期間の残りの期間に前記画面のリフレッシュを休止する第2のリフレッシュ休止手段とをさらに含むことを特徴とする。
 本発明の第4の局面は、本発明の第2または第3の局面において、
 必要な電力を前記駆動回路に供給する電源回路をさらに含み、
 前記表示タイミング制御回路は、前記画面のリフレッシュを休止するとき、前記メモリアクセス回路、および前記駆動回路に含まれるデジタル回路の動作を停止すると共に、前記電源回路および前記駆動回路に含まれるアナログ回路から出力される電流を、リフレッシュを行なうときよりも小さくすることを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 前記駆動回路は、走査線駆動回路と信号線駆動回路とからなり、
 前記信号線駆動回路に含まれるアナログ回路は、D/A変換回路と出力バッファ回路であり、
 前記信号線駆動回路に含まれるデジタル回路は、シフトレジスタ回路とサンプリングラッチ回路であることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記画面のリフレッシュを連続して休止する回数をカウントする休止カウンタをさらに備え、
 前記表示タイミング制御回路は、前記休止カウンタによってカウントされた回数が、連続して休止可能な最大回数として予め設定された最大休止回数を超えたとき、前記更新されたビデオデータを受信したか否かに関わらず強制的に前記画面をリフレッシュすることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記画面のリフレッシュを休止可能な最大休止期間ごとにパルスを生成して前記表示タイミング制御回路に出力するパルス生成回路をさらに備え、
 前記表示タイミング制御回路は、前記パルス生成回路から前記パルスが出力されたとき、前記更新されたビデオデータを受信したか否かに関わらず強制的に前記画面をリフレッシュすることを特徴とする。
 本発明の第8の局面は、本発明の第2の局面において、
 前記画面のリフレッシュを休止するとき、前記メモリアクセス回路は、前記フレームメモリに格納されている前記更新されたビデオデータの読み出しを休止することを特徴とする。
 本発明の第9の局面は、本発明の第1から第3のいずれかの局面において、
 前記表示パネルは、マトリクス状に配列された複数の画素回路を含み、
 前記画素回路は、チャネル層が酸化物半導体からなる薄膜トランジスタを有することを特徴とする。
 本発明の第10の局面は、本発明の第9の局面において、
 前記表示パネルに裏面から光を照射するバックライトユニットをさらに備えることを特徴とする。
 本発明の第11の局面は、本発明の第1から第3のいずれかの局面において、
 前記コマンドに含まれるビデオデータは不定期に更新されることを特徴とする。
 本発明の第12の局面は、本発明の第1から第3のいずれかの局面において、
 前記所定期間は、1画面の更新に必要な期間または前記更新に必要な期間の整数倍の期間であることを特徴とする。
 本発明の第13の局面は、本発明の第1から第3のいずれかの局面において、
 前記コマンドは、前記表示装置と高速シリアルインターフェイスで接続された外部のホストプロセッサから前記表示装置に送信されることを特徴とする。
 本発明の第14の局面は、本発明の第5の局面において、
 前記表示タイミング制御回路は、前記画面のリフレッシュを休止するとき、前記信号線駆動回路に含まれる前記アナログ回路のバイアス電流を、前記画面をリフレッシュするときよりも小さくすることを特徴とする。
 本発明の第15の局面は、本発明の第4の局面において、
 前記表示タイミング制御回路は、前記画面のリフレッシュを休止するとき、前記電源回路のクロック周波数を、前記画面をリフレッシュするときよりも低くすることを特徴とする。
 本発明の第16の局面は、外部から送信されたコマンドに含まれるビデオデータに基づいて表示パネルの画面をリフレッシュする表示装置の表示方法であって、
 第1の所定期間内に受信した前記コマンドに、更新されたビデオデータが含まれているか否かを前記第1の所定期間に判定するステップと、
 前記更新されたビデオデータが含まれていないと判定されたとき、前記第1の所定期間の直後の第2の所定期間において、前記画面のリフレッシュを休止するステップとを備えることを特徴とする。
 本発明の第17の局面は、本発明の第16の局面において、
 前記第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれているか否かを判定するステップにおいて、前記更新されたビデオデータが含まれていると判定されたとき、
 前記第2の所定期間に、前記第1の所定期間にフレームメモリに格納された前記更新されたビデオデータをメモリアクセス回路によって読み出すステップと、
 前記読み出したビデオデータを、制御信号と共に前記表示パネルを駆動する駆動回路に出力することにより前記画面のリフレッシュを行なうステップとをさらに備えることを特徴とする。
 本発明の第18の局面は、本発明の第16の局面において、
 前記第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれているか否かを判定するステップにおいて、前記更新されたビデオデータが含まれていると判定されたとき、
 前記第2の所定期間に、前記第1の所定期間にフレームメモリに格納された前記更新されたビデオデータをメモリアクセス回路によって読み出して駆動回路に出力することにより、前記画面を前記第2の所定期間よりも短い期間でリフレッシュするステップと、
 前記第2の所定期間よりも短い期間で前記画面のリフレッシュを行なった後に、前記第2の所定期間の残りの期間における前記画面のリフレッシュを休止するステップとをさらに備えることを特徴とする。
 上記第1および第16の局面によれば、外部から送信されたコマンドに更新されたビデオデータが含まれているか否かを所定期間ごとに判定し、判定時刻の直前の第1の所定期間内に受信したコマンドに更新されたビデオデータが含まれていないと判定した場合には、フレームメモリに格納されているビデオデータの読み出しを行なわないようにして、第2の所定期間における画面のリフレッシュを休止する。これにより、表示装置は変化の少ない画像を少ない消費電力で表示することができる。
 上記第2および第17の局面によれば、第1の所定期間内に受信したコマンドに更新されたビデオデータが含まれていると判定した場合には、第2の所定期間にフレームメモリに格納されているビデオデータを読み出すことによって画面のリフレッシュを行なう。これにより、表示装置は、更新されたビデオデータによって画面をリフレッシュし、ビデオデータで表わされる画像を迅速に表示することができる。
 上記第3および第18の局面によれば、第1の所定期間内に受信したコマンドに更新されたビデオデータが含まれていると判定した場合には、画面のリフレッシュを高速で行ない、リフレッシュが終了すると、第2の所定期間の残りの期間には画面のリフレッシュを休止する。これにより、表示装置はビデオデータで表わされる画像をより少ない消費電力で表示することができる。
 上記第4の局面によれば、画面のリフレッシュを休止するときには、画面のリフレッシュを行なうときに必要な回路のうち、メモリアクセス回路と駆動回路に含まれるデジタル回路の動作を停止し、電源回路と駆動回路に含まれるアナログ回路から出力される電流を小さくする。これにより、リフレッシュ休止時の表示装置の消費電力を低減することができる。
 上記第5の局面によれば、信号線駆動回路に含まれるアナログ回路のD/A変換回路と出力バッファ回路とは、リフレッシュ休止時にはリフレッシュ時よりも少ない電力で動作する。また、信号線駆動回路に含まれるデジタル回路のシフトレジスタ回路とサンプリングラッチ回路とは、リフレッシュ休止時には動作を停止する。これにより、リフレッシュ休止時の信号線駆動回路の消費電力を低減することができる。
 上記第6の局面によれば、リフレッシュを連続して休止するとき、休止回数が一定値以上になると、リーク電流の影響が無視できなくなり、画像の表示品位の低下が顕著になる。そこで、リフレッシュを連続して休止した回数を休止カウンタによってカウントし、その回数が予め設定された最大休止回数よりも大きくなれば強制的に画面をリフレッシュする。これにより、表示装置の表示品位の低下を防ぐことができる。
 上記第7の局面によれば、第6の局面と同様に、リフレッシュを連続して休止するとき、休止期間が長くなると、画像の表示品位の低下が顕著になる。そこで、最大休止期間ごとにパルスを出力するパルス生成回路を設け、パルスが出力されれば強制的に画面をリフレッシュする。これにより、表示装置の表示品位の低下を防ぐことができる。
 上記第8の局面によれば、リフレッシュを休止するときに、メモリアクセス回路によりフレームメモリに格納されたビデオデータを読み出すことを休止する。これにより、リフレッシュを休止するときには、表示装置の消費電力を低減することができる。
 上記第9の局面によれば、画素回路の薄膜トランジスタのチャネル層を酸化物半導体によって構成することにより、オフ状態のときのリーク電流が小さくなる。これにより、強制的にリフレッシュするまでの休止可能な回数を多くしたり、休止期間を長くしたりすることができるので、表示装置の消費電力を低減することができる。
 上記第10の局面によれば、チャネル層が酸化物半導体からなる薄膜トランジスタでは、バックライトユニットからバックライト光の照射を受けても、オフ状態のときのリーク電流を抑制することができる。これにより、強制的にリフレッシュするまでの休止可能な回数を多くしたり、休止期間を長くしたりできるので、表示装置の消費電力を低減することができる。
 上記第11の局面によれば、更新されたビデオデータを含むコマンドを不定期に受信した場合にも、受信したコマンドに更新されたビデオデータが含まれているか否かを迅速に検知できるので、表示装置の消費電力を低減することができる。
 上記第12の局面によれば、表示装置は、受信したコマンドに更新されたビデオデータが含まれているか否かの判定を1画面のリフレッシュに必要な期間またはその整数倍の期間ごとに行なう。これにより、任意のタイミングで更新されるビデオデータに対して最適なタイミングで画面のリフレッシュを行なうことができる。
 上記第13の局面によれば、高速シリアルインターフェイスで接続されたホストプロセッサから更新されたビデオデータを含むコマンドを受信した場合にも、表示装置の消費電力を低減することができる。
 上記第14の局面によれば、画面のリフレッシュを休止するときに、信号線駆動回路に含まれるアナログ回路のバイアス電流を、画面をリフレッシュするときよりも小さくする。これにより、表示装置の消費電力を低減することができる。
 上記第15の局面によれば、画面のリフレッシュを休止するときに、電源回路のクロック周波数を、画面をリフレッシュするときよりも低くする。これにより、表示装置の消費電力を低減することができる。
本発明の各実施形態に共通するホストと表示装置との関係を示す図である。 本発明の第1の実施形態に係る液晶表示装置の構成を示すブロック図である。 図2に示す液晶表示装置においてホストから送信されるコマンドに含まれる更新されたビデオデータと画面のリフレッシュとの関係を示す図である。 図2に示す液晶表示装置においてリフレッシュモードおよび休止モードのときにそれぞれ動作している回路とその消費電力との関係を示す図である。 図2に示す液晶表示装置における画像表示処理の手順の一部を示すフローチャートである。 図2に示す液晶表示装置における画像表示処理の手順の残りを示すフローチャートである。 本発明の第2の実施形態においてホストから送信されるコマンドに含まれる更新されたビデオデータと画面のリフレッシュとの関係を示す図である。 第2の実施形態に係る液晶表示装置における画像表示処理の手順の一部を示すフローチャートである。 第2の実施形態に係る液晶表示装置における画像表示処理の手順の残りを示すフローチャートである。 第3の実施形態に係る液晶表示装置の構成を示すブロック図である。 図10に示す液晶表示装置に含まれるパルス生成回路の構成を示す回路図である。 図10に示す液晶表示装置における画像表示処理の手順の一部を示すフローチャートである。 図10に示す液晶表示装置における画像表示処理の手順の残りを示すフローチャートである。 従来のホストと表示装置との関係を示す図である。
<1.本発明の概要>
 図1は、本発明の各実施形態に共通するホスト2と表示装置1との関係を示す図である。図1に示すように、ホスト2は、高速シリアルインターフェイスを利用して表示装置1に接続され、画像情報をパケットにしたビデオストリームを含むコマンドとして表示装置1に送信する。表示装置1は、ホスト2から送信されたコマンドを受信すると、その中に更新されたビデオデータが含まれているか否かを判定する。更新されたビデオデータが含まれていると判定した場合には、ビデオデータを格納する。
 表示装置1は各フレーム期間の始めに、直前の1フレーム期間(1画面の更新に相当する期間)内に更新されたビデオデータを受信したか否かを判定する。このとき、上記のように直前の1フレーム期間に更新されたビデオデータを受信して格納していれば、表示装置1は、更新されたビデオデータに基づき1フレーム期間の始めから画面のリフレッシュを開始する。また、直前の1フレーム期間に更新されたビデオデータを受信していないと判定すれば、判定した1フレーム期間において画面のリフレッシュを休止する。このようにして、静止画のように変化の少ない画像を表示する表示装置1の消費電力を低減する。
 高速シリアルインターフェイスとしては、例えばDSI(Display Serial Interface)が注目されている。このDSIは、MIPI(Mobile Industry Processor Interface)Allianceにより提案された規格であり、本発明にも適用可能である。なお、本発明は、DSIに限定されることなく、他の高速シリアルインターフェイスを利用する場合にも適用可能である。
 次に、本発明を実現するための構成を以下の各実施形態において具体的に説明する。なお、以下の説明において、特に断らない限り画面のリフレッシュを60Hzの周期で行なう、すなわち1フレーム期間を16.7msecとして説明する。しかし、これらの周期および1フレーム期間は一例であり、これらに限定されるものではない。
<2.第1の実施形態>
<2.1 液晶表示装置の構成>
 図2は、本発明の第1の実施形態に係る液晶表示装置10の構成を示すブロック図である。液晶表示装置10は、ガラス等からなる透明基板上に形成された液晶表示パネル11と、液晶表示パネル11を駆動するための各種制御信号や、液晶表示パネル11に表示すべき画像に対応したビデオデータ等を生成するコントロール基板30と、液晶表示パネル11の背面側から液晶表示パネル11に光を照射するバックライトユニット19とから構成されている。
 ホスト40はCPU(Central Processing Unit)を中心に構成され、ビデオデータを含むコマンドだけでなく、同期信号を生成するためのビデオタイミングコマンド、電源をオン/オフさせるシーケンスを生成するための電源制御コマンド等の各種コマンドを、その送信回路41から液晶表示装置10に送信する。
 コントロール基板30には、ホスト40から送信されたコマンドを受信する受信回路32と、内部クロック信号を生成するPLL(Phase Locked Loop)回路33と、PLL回路33で生成された内部クロック信号に基づいて各種のクロック信号や同期信号を生成する表示タイミングコントローラ31と、ホスト40から送信されるコマンドに含まれるビデオデータを1画面分だけ記憶するフレームメモリ36と、走査線駆動回路13および信号線駆動回路14に電力を供給する電源回路34と、1フレーム期間内に更新されたビデオデータを受信したことを記憶するラッチ回路35と、画面のリフレッシュを連続して休止する回数(リフレッシュ休止回数)を記憶する休止カウンタ37とが設けられている。なお、表示タイミングコントローラ31を表示タイミング制御回路といい、走査線駆動回路13および信号線駆動回路14を合わせて駆動回路ということがある。
 表示タイミングコントローラ31には、フレームメモリ36に格納されたビデオデータを読み出すためのメモリアクセス回路38が内蔵されている。また、表示タイミングコントローラ31には、上述の受信回路32、PLL回路33、ラッチ回路35、フレームメモリ36、電源回路34、および休止カウンタ37が接続され、これらの回路は表示タイミングコントローラ31によって制御される。
 なお、ラッチ回路35と休止カウンタ37とは、表示タイミングコントローラ31に内蔵されていてもよい。また、信号線駆動回路14の駆動電圧(例えば5~10V)は、走査線駆動回路13の駆動電圧(20V以上)に比べて低いので、信号線駆動回路14は、電源回路34から電力の供給を受けることなく、表示タイミングコントローラ31から与えられるクロック信号を使用して駆動電圧を生成してもよい。
 液晶表示パネル11には、マトリクス状に配置された複数の画素回路20によって画像を表示する表示領域12が形成され、表示領域12を囲む額縁領域には、走査線GLを順に活性化する走査線駆動回路13と、ビデオデータに基づいてアナログ信号である画像信号を生成し、信号線SLに供給する信号線駆動回路14とが配置されている。
 表示領域12には、複数本の走査線GLと、複数本の信号線SLと、複数個の画素回路20とが含まれる。複数本の走査線GLは互いに平行に配置され、複数本の信号線SLは複数本の走査線GLと交差するように互いに平行に配置されている。走査線GLと信号線SLの交点近傍には、画素回路20がそれぞれ配置される。このように複数個の画素回路20は、表示領域12にマトリクス状に配置されている。
 画素回路20には、交差点を通過する走査線GLにゲート端子が接続されると共に当該交差点を通過する信号線SLにソース端子が接続され、スイッチング素子として機能する薄膜トランジスタ21と、当該薄膜トランジスタ21のドレイン端子に接続された画素電極と、上記複数個の画素回路20に共通的に設けられた対向電極と、対向電極と画素電極との間に挟持された液晶層とが含まれる。画素電極と共通電極は液晶層と共に画素容量22を構成する。なお、画素回路20には、画素容量22だけでなくさらに補助容量を設けてもよい。
 また、薄膜トランジスタ21のチャネル層は、禁止帯幅が広い酸化物半導体からなることが好ましい。禁止帯幅が広ければ、バックライトユニット19からの光がチャネル層に照射されても、伝導帯に励起されるキャリアの数が少なくなる。これにより、薄膜トランジスタ21がオフ状態のときに発生するリーク電流は、チャネル層が非晶質シリコンからなる薄膜トランジスタ21に比べて大幅に低減される。
 なお、禁止帯幅が広い酸化物半導体としては、典型的にはインジウム(In),ガリウム(Ga),亜鉛(Zn)および酸素(O)を主成分とするInGaZnOx(IGZO)が用いられる。しかし、本発明に用いられる酸化物半導体は、IGZOに限定されることなく、例えばインジウム,ガリウム,亜鉛,銅(Cu),シリコン(Si),錫(Sn),アルミニウム(Al),カルシウム(Ca),ゲルマニウム(Ge),および鉛(Pb)のうち少なくとも1つを含んでいればよい。
 走査線GLを活性化することによって薄膜トランジスタ21はオン状態になる。これにより、画像信号が信号線駆動回路14から各信号線SLに供給され、画像信号は活性化された走査線GLに接続された画素回路20の画素容量22に保持される。画素容量22に保持された画像信号の大きさに応じて液晶層の配向状態が変化し、バックライトユニット19からの光が液晶表示パネル11を透過する際にその透過率が変化する。このようにして、ホスト40から送信されたコマンドに含まれるビデオデータに基づいた画像が液晶表示パネル11に表示される。
 次に、液晶表示装置10の動作を説明する。ホスト40は、画像情報をパケットにしたビデオストリームを含むコマンドを送信回路41から液晶表示装置10に送信する。液晶表示装置10は、コントロール基板30に設けられた受信回路32によってコマンドを受信すると、当該コマンドを表示タイミングコントローラ31に与える。表示タイミングコントローラ31は受け取ったコマンドに含まれるビデオストリームを解読し、更新されたビデオデータが含まれていればそのビデオデータをフレームメモリ36に格納する。
 また、表示タイミングコントローラ31は、PLL回路33によって生成された内部クロック信号に基づき、走査線駆動回路13および信号線駆動回路14を制御するための制御信号C1,C2を生成する。そして、メモリアクセス回路38によってフレーム期間ごとにフレームメモリ36から読み出したビデオデータを信号線駆動回路14に出力すると共に、制御信号C1,C2を走査線駆動回路13および信号線駆動回路14にそれぞれ出力する。この制御信号C1は、例えばソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSからなる。制御信号C2は、例えばゲートスタートパルス信号GSP、およびゲートクロック信号GCKからなる。
<2.2 表示タイミングコントローラの動作>
 図3は、ホスト40から送信されるコマンドに含まれる更新されたビデオデータと画面のリフレッシュとの関係を示す図である。図3において、時刻t0~時刻t1から時刻t8~時刻t9までの各期間はいずれも1フレーム期間とし、時刻t1から時刻t9間での各時刻ti(iは1から9までの整数)において、時刻tiの直前の1フレーム期間に受信したコマンドに更新されたビデオデータが含まれていたか否かをラッチ回路35のフラグFによって判定する。以下、表示タイミングコントローラ31の動作を具体的に説明する。
 まず、時刻t0から時刻t1までの期間内に、ホスト40から送信されたコマンドを受信すると、表示タイミングコントローラ31は当該コマンドを解読する。その結果、コマンドに更新されたビデオデータが含まれている場合には、時刻t0から時刻t1までの期間内に、ラッチ回路35のフラグFを「1」にセットし、ビデオデータをフレームメモリ36に格納する。
 そして、時刻t1になったときに、表示タイミングコントローラ31は、ラッチ回路35のフラグFに基づいて、時刻t0から時刻t1までの期間内に更新されたビデオデータを含むコマンドを受信したか否かを判定する。この場合、表示タイミングコントローラ31は、ラッチ回路35のフラグFが「1」であることを検知し、時刻t0から時刻t1までの期間内に更新されたビデオデータを含むコマンドを受信していると判定する。次に、メモリアクセス回路38によってフレームメモリ36からビデオデータを読み出し、当該ビデオデータを信号線駆動回路14に出力すると共に、走査線駆動回路13および信号線駆動回路14にそれぞれ制御信号C1,C2を出力する。これにより、時刻t0から時刻t1までの期間内に受信したビデオデータに基づいて、時刻t1から画面のリフレッシュを開始し、時刻t2まで当該ビデオデータの画像を表示する。
 また、時刻t1から時刻t2までの期間内には、ホスト40から送信されたコマンドを受信していないので、ラッチ回路35のフラグFは「0」に設定される。このため、時刻t2になったときに、表示タイミングコントローラ31は、ラッチ回路35に記憶されているフラグFが「0」であることを検知し、時刻t1から時刻t2までの期間内に更新されたビデオデータを含むコマンドを受信していないと判定する。これにより、時刻t2から時刻t3までの期間には、表示タイミングコントローラ31は画面のリフレッシュを休止し、時刻t1から時刻t2までの期間に表示していた画像を継続して表示する。
 同様にして、時刻t2から時刻t3までの期間内においても、更新されたビデオデータを含むコマンドを受信していない。このため、表示タイミングコントローラ31は、時刻t3から時刻t4までの期間にも、画面のリフレッシュを休止し、時刻t1から時刻t2までの期間に表示していた画像を継続して表示する。
 また、時刻t3から時刻t4までの期間内に、更新されたビデオデータを含むコマンドを受信すると、表示タイミングコントローラ31は、ラッチ回路35のフラグFを「1」にセットし、フレームメモリ36に格納されているビデオデータを新しく受信したビデオデータに更新する。
 そして、時刻t4になったとき、表示タイミングコントローラ31は、ラッチ回路35のフラグFが「1」であることを検知すると、メモリアクセス回路38によってフレームメモリ36からビデオデータを読み出し、当該ビデオデータを信号線駆動回路14に出力すると共に、走査線駆動回路13および信号線駆動回路14にそれぞれ制御信号C1,C2を出力する。これにより、時刻t3から時刻t4までの期間内に受信したビデオデータに基づいて、時刻t4から画面のリフレッシュを開始し、時刻t5まで当該ビデオデータの画像を表示する。
 次に、液晶表示装置10は、時刻t4から時刻t8までの各期間内に、更新されたビデオデータを含むコマンドを受信していない。このため、表示タイミングコントローラ31は、時刻t5から時刻t8までの各期間における画面のリフレッシュを休止し、時刻t4から時刻t5までの期間に表示していた画像を継続して表示する。
 液晶表示装置10では、リフレッシュの休止が可能な最大回数(最大休止回数)は3回に設定されている。このため、時刻t8から時刻t9までの期間でもリフレッシュを休止すればリフレッシュ休止回数は4回になり、最大休止回数よりも多くなる。そこで、表示タイミングコントローラ31は、時刻t7から時刻t8までの期間内に更新されたビデオデータを含むコマンドを受信していなくても、時刻t8から時刻t9の期間に画面のリフレッシュを強制的に行なう。具体的には、表示タイミングコントローラ31は、時刻t3から時刻t4までの期間内に受信し、フレームメモリ36に格納されているビデオデータを再度読み出し、当該ビデオデータを信号線駆動回路14に出力すると共に、走査線駆動回路13および信号線駆動回路14にそれぞれ制御信号C1,C2を出力する。これにより、休止期間である時刻t7から時刻t8までの期間に表示していた画像と同じ画像を継続して表示する。なお、上記最大休止回数は一例であり、適宜変更することができる。
 このように、更新されたビデオデータを含むコマンドを受信していないにも関わらず、画面のリフレッシュを行なうのは以下の理由による。すなわち、画面のリフレッシュを休止する期間を長くすれば、薄膜トランジスタ21がオフ状態のときに流れるリーク電流や液晶材料内に含まれる不純物によるリーク電流等のために、画素容量22に保持されている画像信号が低下して表示品位が低下するからである。そこで、液晶表示装置10では、表示品位の低下を防ぐため、更新されたビデオデータを含むコマンドを連続して3フレーム期間にわたり受信しなかった場合にも画面のリフレッシュを強制的に行なう。
 この場合、画面のリフレッシュを連続して休止することができる最大休止回数を予め設定しておく。そして、連続してリフレッシュを休止するリフレッシュ休止回数を休止カウンタ37によってカウントし、リフレッシュ休止回数が最大休止回数よりも多くなったとき、更新されたビデオデータを受信していなくても、フレームメモリ36に格納されているビデオデータに基づいて強制的に画面のリフレッシュを行なう。
 なお、薄膜トランジスタ21のチャネル層をIGZO等の酸化物半導体によって形成すれば、薄膜トランジスタ21がオフ状態のときのリーク電流を少なくできるので、画像信号が低下することにより表示品位が低下するまでの時間を延すことができる。これにより、最大休止回数としてより大きな値を設定できるので、液晶表示装置10の消費電力をより低減することができる。
 また、従来の表示装置では、リフレッシュのタイミングをモード切替信号によって決めていたので、更新されたビデオデータを受信しても、画面をリフレッシュするタイミングを柔軟に変更することができなかった。しかし、液晶表示装置10では、各フレーム期間の始めに、ラッチ回路35のフラグFに基づいて、フレームメモリ36に格納されているビデオデータが直前の1フレーム期間に更新されたビデオデータであるか否かを判定する。その結果、更新されたビデオデータである場合には、1フレーム期間の始めから当該ビデオデータに基づいて画面のリフレッシュを行なう。これにより、任意のタイミングで更新されるビデオデータに対して、最適なタイミングで画面のリフレッシュを行なうことができる。これにより、液晶表示装置10は消費電力をより低減することができる。
 また、表示タイミングコントローラ31は、受信回路32から与えられたコマンドが更新されたビデオデータを含むときには、画面のリフレッシュを行なうのに必要な電源回路34、走査線駆動回路13、信号線駆動回路14、およびメモリアクセス回路38に必要な電力を供給する必要がある。このように、必要な電力を供給して画面をリフレッシュするモードをリフレッシュモードという。また、コマンドが更新されたビデオデータを含まないとき、表示タイミングコントローラ31は画面のリフレッシュを休止し、必要最低限の電力で液晶表示装置10を動作させる。このような画面のリフレッシュを休止するモードを休止モードという。
 図4は、リフレッシュモードおよび休止モードのときにそれぞれ動作している回路とその消費電力の関係を示す図である。図4に示すように、リフレッシュモードまたは休止モードに関係する回路は、走査線駆動回路13と、信号線駆動回路14と、それらに電力を供給する電源回路34と、表示タイミングコントローラ31内のメモリアクセス回路38である。
 図4に示すように、信号線駆動回路14はシフトレジスタ回路と、サンプリングラッチ回路と、D/A変換回路と、出力バッファ回路とからなり、リフレッシュモードと休止モードとでは動作する回路が異なる。
 図4に示す回路のうち、走査線駆動回路13と、信号線駆動回路14を構成するシフトレジスタ回路およびサンプリングラッチ回路と、メモリアクセス回路38とはロジック回路であり、信号線駆動回路14を構成するD/A変換回路および出力バッファ回路と、電源回路34とはアナログ回路である。
 リフレッシュモードでは、図4に示す走査線駆動回路13、信号線駆動回路14、電源回路34、およびメモリアクセス回路38を動作させる。しかし、休止モードでは、アナログ回路であるD/A変換回路、出力バッファ回路、および電源回路34だけを動作させ、表示タイミングコントローラ31からの制御信号により、デジタル回路である走査線駆動回路13、メモリアクセス回路38、シフトレジスタ回路、およびサンプリングラッチ回路の動作を停止させる。
 図4からもわかるように、休止モードの場合に、信号線駆動回路14のアナログ回路であるD/A変換回路と出力バッファ回路に供給する電力を、リフレッシュモードの場合に比べて削減することができる。これは以下の理由による。画面のリフレッシュを行なう期間(リフレッシュ期間)には、容量負荷の大きな信号線SLを短時間で充放電させるために、D/A変換回路と出力バッファ回路のバイアス電流を大きくする必要がある。一方、リフレシュを行なわない期間(休止期間)には、信号線SLを充放電させる必要がないので、バイアス電流をゼロにすることもできる。しかし、バイアス電流をゼロにすれば、休止期間に動作するアナログ回路の動作が不安定になる場合があり、好ましくない。そこで、表示タイミングコントローラ31は、休止期間におけるD/A変換回路と出力バッファ回路のバイアス電流を、リフレッシュを行なうときよりも小さく、かつゼロよりも大きくなるように制御する。これにより、休止期間におけるD/A変換回路と出力バッファ回路の消費電力を、リフレッシュ期間における消費電力よりも低減することができる。
 また、電源回路34は、信号線駆動回路14や走査線駆動回路13に、クロック信号をチャージポンプ方式で昇圧した電圧を供給する。信号線駆動回路14は電源回路34から供給された電圧から信号線SLを充放電するための電流を生成する。このため、リフレッシュ期間には、電源回路34は高い周波数のクロック信号を用いて昇圧した電圧を信号線駆動回路14に供給する必要があるので、電源回路34の消費電力が大きくなる。しかし、休止期間になれば、信号線駆動回路14は、信号線SLを充放電するための電流を生成する必要がなくなるので、高い電圧を供給する必要がなくなる。これにより、休止期間における電源回路34は、低い周波数のクロック信号を用いて昇圧した電圧を信号線駆動回路14に供給すればよくなるので、その消費電力はリフレッシュ期間における消費電力よりも小さくなる。
 また、電源回路34は、リフレッシュ期間には、走査線駆動回路13に高い駆動電圧(20V以上)を供給する必要がある。しかし、休止期間には、走査線駆動回路13は、走査線GLの電位を一定に保つために、薄膜トランジスタ21のリーク電流等に起因して減少した電荷量を補うことができればよい。この場合、電源回路34は、それに必要な電力を走査線駆動回路13に供給するだけでよいので、電源回路34の休止期間における消費電力はリフレッシュ期間における消費電力よりも小さくなる。
<2.3 画像表示処理の手順>
 図5および図6は、本実施形態における画像表示処理の手順を示すフローチャートである。表示タイミングコントローラ31が所定のプログラムに基づいて図5および図6に示すような動作することにより、液晶表示装置10は、静止画像のように変化が少ない画像を少ない消費電力で表示することができる。なお、以下のタイミングチャートに示す処理は、第1のフレーム期間における処理と、第1のフレーム期間の直後の第2のフレーム期間における処理とに分けられる。
 第1のフレーム期間において、表示タイミングコントローラ31は、ラッチ回路35のフラグFを、更新されたビデオデータを受信していないことを示す「0」にセットし、休止カウンタ37に記憶させたリフレッシュ休止回数kをリセットする(ステップS101)。
 表示タイミングコントローラ31は、第1のフレーム期間内に、受信したコマンドに含まれるビデオデータが更新されたビデオデータであるか否かを判定する(ステップS103)。その結果、受信したビデオデータが更新されたビデオデータであると判定した場合には、表示タイミングコントローラ31は、ラッチ回路35のフラグFを「1」にセットし(ステップS105)、フレームメモリ36に受信したビデオデータを格納して(ステップS107)、後述するステップS109に進む。
 また、ステップS103において、ビデオデータを受信していないと判定した場合には、ステップS109に進む。ステップS109では、1フレーム期間が終了したか否かを判定する。その結果、1フレーム期間がまだ終了していないと判定した場合には前述のステップS103に戻り、1フレーム期間が終了していると判定した場合にはステップS111に進む。これにより、第1のフレーム期間内に更新されたビデオデータを受信した場合には、そのビデオデータはフレームメモリ36に格納される。上記ステップS101~S109の処理は、第1のフレーム期間における処理である。
 次に、ステップS111では、表示タイミングコントローラ31は、第2のフレーム期間の始めにラッチ回路35のフラグFが「1」であるか否かを判定する。その結果、フラグFが「1」であると判定した場合にはステップS113に進み、フラグFが「1」ではない、すなわち「0」であると判定した場合には後述のステップS123に進む。
 ステップS113では、表示タイミングコントローラ31は、画面のリフレッシュを行なうのに必要な電源回路34、走査線駆動回路13、信号線駆動回路14、およびメモリアクセス回路38にそれぞれ必要な電力を供給することによって、リフレッシュモードに切り替える。次に、表示タイミングコントローラ31は、メモリアクセス回路38を制御してフレームメモリ36からビデオデータを読み出し(ステップS115)、読み出したビデオデータを信号線駆動回路14に与える(ステップS117)。これにより、第2のフレーム期間の始めから画面のリフレッシュが開始される。
 第2のフレーム期間におけるリフレッシュが終了すると、表示タイミングコントローラ31は、ラッチ回路35のフラグFを「0」にセットし(ステップS119)、休止カウンタ37のリフレッシュ休止回数kをリセットする(ステップS121)。なお、ステップS113~ステップS117を第1のリフレッシュ手段ということがある。
 一方、ステップS111において、フラグFが「0」であると判定した場合には、表示タイミングコントローラ31は、休止カウンタ37に記憶されているリフレッシュ休止回数kが、予め設定されている最大休止回数よりも多いか否かを判定する(ステップS123)。その結果、リフレッシュ休止回数kが最大休止回数よりも多いと判定した場合には、前述のステップS113に進み、画面のリフレッシュを行なう。この画面のリフレッシュは、第1のフレーム期間よりも以前のフレーム期間に受信したビデオデータに基づいて行なわれる。
 また、リフレッシュ休止回数kが最大休止回数よりも少ないと判定した場合には、表示タイミングコントローラ31は、信号線駆動回路14内のD/A変換回路、出力バッファ回路、および電源回路34のみに必要最低限の電力を与えて動作させる休止モードに切り替える(ステップS125)。そして、1フレーム期間(第2のフレーム期間)が経過するまで待機し(ステップS127)、ステップS129に進む。なお、ステップS125を第1のリフレッシュ休止手段ということがある。
 ステップS129では、リフレッシュ休止回数kに1を加算した値を新たなリフレッシュ休止回数kとして休止カウンタ37に格納し(ステップS131)、前述のステップS101に戻る。上記ステップS111~S129の処理は、第2のフレーム期間における処理である。
<2.4 効果>
 本実施形態によれば、液晶表示装置10は、画面のリフレッシュとリフレッシュの休止との切り替えを簡易な構成の回路で逐次的に行なうことができる。
 また、受信したコマンドに更新されたビデオデータが含まれていないと判定した場合には、フレームメモリ36に格納されているビデオデータの読み出しを行なわないようにして画面のリフレッシュを休止する。これにより、液晶表示装置10は、変化の少ない画像を少ない消費電力で表示することができる。
 また、受信したコマンドに更新されたビデオデータが含まれていると判定した場合には、フレームメモリ36に格納されているビデオデータを読み出すことによって画面のリフレッシュを行なう。これにより、液晶表示装置10は、任意のタイミングで更新されるビデオデータに対して、最適なタイミングで画面のリフレッシュを行なうことができる。
 また、液晶表示装置10の画素回路20に含まれる薄膜トランジスタ21のチャネル層をリーク電流の少ないIGZO等の酸化物半導体を用いて形成する。これにより、最大休止回数をより大きな値に設定することができるので、休止期間を長くすることができ、液晶表示装置10の消費電力を低減することができる。
<2.5 変形例>
 第1の実施形態では、直前のフレーム期間に更新されたビデオデータを含むコマンドを受信したか否かを各フレーム期間の最初に判定した。しかし、1フレーム期間の整数倍となる任意の期間、例えば2フレーム期間ごとに、ビデオデータが更新されたか否かを判定してもよい。この場合も、コマンドに含まれるビデオデータが更新されたか否かを1フレーム期間ごとに判定する場合と同様に、液晶表示装置10は、更新されたビデオデータを含むコマンドを受信した期間の直後の期間の始めに判定することにより、任意のタイミングで更新されるビデオデータに対して、最適なタイミングで画面をリフレッシュすることができる。
 また、第1の実施形態では、画像の表示品位が低下することを防ぐために、画面のリフレッシュを連続して休止するリフレッシュ休止回数kをカウントした。しかし、リフレッシュ休止回数kをカウントする代わりに、画面のリフレッシュを連続して休止する期間をリフレッシュ休止期間とし、その期間を求めてもよい。
<3.第2の実施形態>
 本発明の第2の実施形態に係る液晶表示装置10について説明する。本実施形態に係る液晶表示装置10は、第1の実施形態に係る液晶表示装置10よりも高速で画面をリフレッシュする。本実施形態に係る液晶表示装置10の構成は、第1の実施形態に係る液晶表示装置10の構成と同じであるので、その構成を示すブロック図および説明を省略する。なお、第1の実施形態における画面のリフレッシュを60Hzの周期(1フレーム期間は16.7msec)で行なうことにした場合、本実施形態の高速リフレッシュを1フレーム期間の最初の10msecの期間に行ない、残りの6.7msecの期間を休止期間とする。なおこれらの数値は一例であり、本発明はこれに限定されるものではない。
<3.1 表示タイミングコントローラの動作>
 図7は、ホスト40から送信されるコマンドに含まれる更新されたビデオデータと画面のリフレッシュとの関係を示す図である。図7は、第1の実施形態において説明した図3と対応しているので、図7において図3と異なる点を中心に説明する。
 図7において、図3と異なるのは、更新されたビデオデータに基づいて画面を高速でリフレッシュ(高速リフレッシュモード)することである。例えば、時刻t0から時刻t1までの期間内に、ホスト40から送信されたコマンドを受信すると、表示タイミングコントローラ31は当該コマンドを解読する。その結果、コマンドに更新されたビデオデータが含まれている場合には、時刻t0から時刻t1までの期間内に、ラッチ回路35のフラグFを「1」にセットし、ビデオデータをフレームメモリ36に格納する。
 そして、時刻t1になったとき、表示タイミングコントローラ31は、ラッチ回路35のフラグFが「1」であることを検知すると、メモリアクセス回路38を制御してフレームメモリ36に格納されているビデオデータを読み出し、当該ビデオデータを信号線駆動回路14に出力すると共に、走査線駆動回路13および信号線駆動回路14にそれぞれ制御信号C1,C2を出力する。これにより、時刻t0から時刻t1までの期間内に受信したビデオデータに基づいて、時刻t1から画面のリフレッシュを開始し、時刻t11まで当該ビデオデータの画像を表示する。このとき、図4に示す走査線駆動回路13、信号線駆動回路14等の画面のリフレッシュに必要な回路はリフレッシュモードで駆動される。
 このように高速リフレッシュは、第1の実施形態の場合と異なり、時刻t1と時刻t2との間の時刻t11に終了し、時刻t11から時刻t2までの期間は休止期間になる。この休止期間には、高速リフレッシュにより表示した画像を継続して表示する。このとき、信号線駆動回路14のD/A変換回路等、休止期間にも動作させる必要があるアナログ回路は休止モードで駆動される。この場合、液晶表示装置10において、高速リフレッシュモードで画面をリフレッシュする時刻t1から時刻t11までの期間は10msecであり、休止モードになる時刻t11から時刻t2までの期間は6.7msecである。
 同様に、時刻t3から時刻t4までの期間内に受信したビデオデータに基づく画面の高速リフレッシュは時刻t4から始まり、時刻t4と時刻t5との間の時刻である時刻t41に終了し、残りの時刻t41から時刻t5までの期間は休止期間になる。
 液晶表示装置10は、時刻t7から時刻t8までの期間内に更新されたビデオデータを含むコマンドを受信していない。しかし、図3に示す場合と同様に、最大休止回数である3回を超えた場合には、表示タイミングコントローラ31は、時刻t7から時刻t8までの期間内に更新されたビデオデータを含むコマンドを受信していなくても、時刻t8から時刻t9の期間に画面のリフレッシュを強制的に行なう。具体的には、表示タイミングコントローラ31は、時刻t3から時刻t4までの期間内に受信し、フレームメモリ36に格納されているビデオデータを再度読み出し、当該ビデオデータを信号線駆動回路14に出力すると共に、走査線駆動回路13および信号線駆動回路14にそれぞれ制御信号C1,C2を出力する。これにより、休止期間である時刻t7から時刻t8までの期間に表示していた画像と同じ画像を継続して表示する。このとき、走査線駆動回路13、信号線駆動回路14等の画面のリフレッシュに必要な回路はリフレッシュモードで駆動される。
 なお、本実施形態において、高速リフレッシュモードおよび休止モードのときに電力を供給する必要がある回路は、図4に示すリフレッシュモードおよび休止モードのときに電力を供給する必要がある回路とそれぞれ同じであるので、各モードと電力を供給する必要がある回路との関係を示す図およびその説明を省略する。
<3.2 画像表示処理の手順>
 図8および図9は、本実施形態における画像表示処理の手順を示すフローチャートである。表示タイミングコントローラ31が所定のプログラムに基づいて図8および図9に示すような高速リフレッシュを行なうことにより、液晶表示装置10は、静止画像のように変化が少ない画像をより少ない消費電力で表示することができる。なお、図8および図9に示すステップのうち、第1の実施形態の図5および図6に示すステップと同じステップには、それぞれ同じ参照符号を付して説明を省略または簡略に行ない、異なるステップを中心に説明する。また、第1の実施形態の場合と同様に、以下のタイミングチャートに示す処理は、第1のフレーム期間における処理と、第1のフレーム期間の直後の第2のフレーム期間における処理とに分けることができる。具体的には、ステップS101からステップS109までの処理が第1のフレーム期間における処理であり、ステップS111以後の処理が第2のフレーム期間における処理である。
 図8に示すように、ステップS101からステップS115までと、ステップS123およびステップS125とは、図5において同じ参照符号を付した各ステップと同じである。また、ステップS125において休止モードに切り替えたときは、後述のステップS205に進む。
 ステップS201では、表示タイミングコントローラ31は、画面の高速リフレッシュを行なう。次に、図6に示す場合と同様に、ラッチ回路35のフラグFを「0」にセットし(ステップS119)、休止カウンタ37のリフレッシュ休止回数kをリセットする(ステップS121)。なお、ステップS113,S115,S201を第2のリフレッシュ手段ということがある。
 次に、表示タイミングコントローラ31は、休止モードに切り替え(ステップS203)、1フレーム期間が経過するまで待機する(ステップS205)。これにより、高速リフレッシュモードで画面をリフレッシュした場合には、残りの期間は休止モードになり、高速リフレッシュモード時に表示していた画像と同じ画像を表示する。また、1フレーム期間の始めから休止モードで画像を表示していた場合には、1フレーム期間の終了まで継続して同じ画像を表示する。なお、ステップS203を第2のリフレッシュ休止手段ということがある。
 ステップS205における1フレーム期間の経過後に、休止カウンタ37のリフレッシュ休止回数kを読み出してその値に1を加算した値を新たなリフレッシュ休止回数kとして休止カウンタ37に格納し(ステップS131)、前述のステップS101に戻る。
<3.3 効果>
 液晶表示装置10は、受信したコマンドに更新されたビデオデータが含まれていると判定した場合には、画面のリフレッシュを高速で行ない、リフレッシュが終了すると、次のフレーム期間までリフレッシュを休止する。これにより、液晶表示装置10は、ビデオデータで表わされる画像をより少ない消費電力で表示することができる。
<4.第3の実施形態>
 図10は、本発明の第3の実施形態に係る液晶表示装置50の構成を示すブロック図である。図10に示す液晶表示装置50の構成要素のうち、図2に示す液晶表示装置10の構成要素と同一の構成要素については同じ参照符号を付し、異なる構成要素を中心に説明する。
 図10に示すように、液晶表示装置50のコントロール基板60には、図2に示す液晶表示装置10の休止カウンタ37の代わりに、最大休止期間ごとにパルスを生成して出力するパルス生成回路61が設けられ、パルス生成回路61は表示タイミングコントローラ31に接続されている。
 図11は、パルス生成回路61の構成を示す回路図である。図11に示すように、パルス生成回路61はコンパレータ62を含み、コンパレータ62の一方の入力端子62aにはコンデンサ63の一方の電極と定電流源65の一端とが接続され、他方の入力端子62bには基準電圧VRが入力される。コンデンサ63の他方の電極および定電流源65の他端は接地されている。また、コンデンサ63と平行に、その一端がコンデンサ63の一方の電極に接続され、他端が他方の電極に接続されたスイッチ64が設けられている。
 このようなパルス生成回路61において、まずスイッチ64をオンにしてコンデンサ63を短絡させる。これにより、コンパレータ62の入力端子62aには電圧VCとして0Vが与えられる。この場合、コンパレータ62の入力端子62aに与えられる電圧VCが基準電圧VRよりも低いので、コンパレータ62の出力端子62cにはパルスは出力されない。
 次に、スイッチ64をオフにすると、コンデンサ63は定電流源65から供給される電流によって充電され、コンパレータ62の入力端子62aに与えられる電圧VCも高くなる。入力端子62aに与えられた電圧VCが基準電圧VRよりも高くなると、コンパレータ62は出力端子62cにパルスを出力する。このように、パルス生成回路61は、スイッチ64をオフしてから所定の時間が経過するとパルスを出力するようになる。
 そこで、最大休止回数を超えるようになるまでのリフレッシュ休止回数kを休止カウンタ37によってカウントする代わりに、スイッチ64をオフにしてからパルスを出力するようになるまでの期間を最大休止期間と一致するように予め調整したパルス生成回路61を使用する。これにより、更新されたビデオデータを受信していないときであっても、強制的に画面のリフレッシュを行なう時期を検知することができる。このため、休止期間が長く続くような場合であっても、薄膜トランジスタ21のリーク電流や液晶材料内の不純物によるリーク電流に起因する表示品位の低下を防ぐことができる。
 なお、図11に示すパルス生成回路61がリセットされてからパルスを出力するまでの時間は、定電流源65から供給される電流値やコンデンサ63の容量を変えることによって調整される。また、図11に示すパルス生成回路61は一例であり、パルスを出力するタイミングを最大休止期間と一致するように調整可能なパルス生成回路であればよい。
 なお、本実施形態におけるホスト40から送信されるコマンドに含まれる更新されたビデオデータと画面のリフレッシュとの関係は、第1の実施形態の図3に示すホスト40から送信されるコマンドに含まれる更新されたビデオデータと画面のリフレッシュとの関係と同じであるため、更新されたビデオデータと画面のリフレッシュとの関係を示す図およびその説明を省略する。
 また、本実施形態において、リフレッシュモードおよび休止モードのときに電力を供給する必要がある回路は、図4に示すリフレッシュモードおよび休止モードのときに電力を供給する必要がある回路とそれぞれ同じであるので、各モードと電力を供給する必要がある回路との関係を示す図およびその説明を省略する。
<4.1 画像表示処理の手順>
 図12および図13は、本実施形態における画像表示処理の手順を示すフローチャートである。表示タイミングコントローラ31が所定のプログラムに基づいて図12および図13に示すような動作することにより、液晶表示装置50は、静止画像のように変化が少ない画像を少ない消費電力で表示することができる。なお、図12および図13に示すステップのうち、第1の実施形態の図5および図6に示すステップと同じステップには、それぞれ同じ参照符号を付して説明を省略または簡略に行ない、異なるステップを中心に説明する。また、第1の実施形態の場合と同様に、以下のタイミングチャートに示す処理は、第1のフレーム期間における処理と、第1のフレーム期間の直後の第2のフレーム期間における処理とに分けることができる。具体的には、ステップS101からステップS109までの処理が第1のフレーム期間における処理であり、ステップS111以後の処理が第2のフレーム期間における処理である。
 図12および図13に示すように、ステップS301では、ラッチ回路35のフラグFを「0」にセットすると共に、パルス生成回路61のスイッチ64をオンにしてリセットする。次のステップS103からステップS131までは、ステップS303およびステップS305を除いて図5および図6に示す各ステップと同じである。そこで、以下では、ステップS303およびステップS305を中心に説明する。
 図6に示すステップS117およびステップS119と同様に、画面をリフレシュし(ステップS117)、フラグFを「0」にセット(ステップS119)した後に、ステップS303では、パルス生成回路61のスイッチ64をオンにして、パルス生成回路61をリセットする。これにより、パルス生成回路61はリセットされてから予め調整された最大休止期間が経過したときに、パルスを出力する。
 また、ステップS305では、休止期間が最大休止期間を超えているか否かを判断するために、パルス生成回路61からパルスが出力されたか否かを判定する。その結果、パルスが出力されたと判定されれば、最大休止期間を超えていると判定され、ステップS113に進み、画面のリフレッシュを行なう。この画面のリフレッシュは、第1のフレーム期間よりも以前のフレーム期間に受信したビデオデータに基づいて行なわれる。また、パルスが出力されていないと判定されれば、最大休止期間にはまだ達していないと判定され、ステップS125に進み、画面のリフレッシュが休止される。
<4.2 効果>
 最大休止期間ごとにパルスを出力するパルス生成回路61を設け、パルスが出力されれば強制的に画面をリフレッシュすることにより、表示される画像の表示品位の低下を防ぐことができる。
<5.その他>
 上記各実施形態の液晶表示装置10、50は、液晶表示パネル11に裏面からバックライト光を照射する構成であるとした。しかし、液晶表示パネルは反射型であってもよい。反射型の場合には、バックライト光が照射されないので、画素回路に設けられた薄膜トランジスタのオフ状態のときのリーク電流が少なくなる。これにより、ビデオデータが連続して更新されないときに、最大休止回数を多くしたり、最大休止期間を長くしたりすることができる。このため、液晶表示装置の消費電力をより一層低減することができる。
 また、上記各実施形態では液晶表示装置10、50を例に挙げて説明したが、本発明はこれに限定されるものではない。有機EL(Electro Luminescence)表示装置等の他の表示装置にも本発明を適用することができる。
 本発明の表示装置は、休止モードを備えているので、低消費電力で静止画像を表示する表示装置として利用することができる。
 10、50…液晶表示装置
 11…液晶表示パネル
 13…走査線駆動回路
 14…信号線駆動回路
 19…バックライトユニット
 20…画素回路
 21…薄膜トランジスタ
 30、60…コントロール基板
 31…表示タイミングコントローラ
 32…受信回路
 34…電源回路
 35…ラッチ回路
 36…フレームメモリ
 37…休止カウンタ
 40…ホスト
 41…送信回路
 61…パルス生成回路
 GL…走査線
 SL…信号線

Claims (18)

  1.  外部から送信されたコマンドに含まれるビデオデータに基づいて表示パネルの画面をリフレッシュする表示装置であって、
     前記コマンドを受信する受信回路と、
     前記コマンドに更新されたビデオデータが含まれているか否かを所定期間ごとに判定する機能を有する表示タイミング制御回路と、
     前記コマンドに前記更新されたビデオデータが含まれていると判定されたとき、前記更新されたビデオデータを格納するフレームメモリと、
     前記画面をリフレッシュするために、前記更新されたビデオデータに基づいて画像信号を生成し、前記画像信号を制御信号と共に前記表示パネルに出力する駆動回路とを備え、
     前記表示タイミング制御回路は、判定時刻の直前の第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれていないと判定したとき、前記第1の所定期間の直後の第2の所定期間における前記画面のリフレッシュを休止する第1のリフレッシュ休止手段を含むことを特徴とする、表示装置。
  2.  前記表示タイミング制御回路は、前記第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれていると判定したとき、前記第2の所定期間に前記フレームメモリに格納されている前記更新されたビデオデータをメモリアクセス回路によって読み出し、前記駆動回路に出力することにより前記画面をリフレッシュする第1のリフレッシュ手段を含むことを特徴とする、請求項1に記載の表示装置。
  3.  前記表示タイミング制御回路は、
      前記第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれていると判定したとき、前記第2の所定期間に前記フレームメモリに格納されている前記更新されたビデオデータをメモリアクセス回路によって読み出して前記駆動回路に出力することにより、前記第2の所定期間よりも短い期間で前記画面のリフレッシュを行なう第2のリフレッシュ手段と、
      前記第2のリフレッシュ手段によるリフレッシュを行なった後に、前記第2の所定期間の残りの期間に前記画面のリフレッシュを休止する第2のリフレッシュ休止手段とをさらに含むことを特徴とする、請求項1に記載の表示装置。
  4.  必要な電力を前記駆動回路に供給する電源回路をさらに含み、
     前記表示タイミング制御回路は、前記画面のリフレッシュを休止するとき、前記メモリアクセス回路、および前記駆動回路に含まれるデジタル回路の動作を停止すると共に、前記電源回路および前記駆動回路に含まれるアナログ回路から出力される電流を、リフレッシュを行なうときよりも小さくすることを特徴とする、請求項2または3に記載の表示装置。
  5.  前記駆動回路は、走査線駆動回路と信号線駆動回路とからなり、
     前記信号線駆動回路に含まれるアナログ回路は、D/A変換回路と出力バッファ回路であり、
     前記信号線駆動回路に含まれるデジタル回路は、シフトレジスタ回路とサンプリングラッチ回路であることを特徴とする、請求項4に記載の表示装置。
  6.  前記画面のリフレッシュを連続して休止する回数をカウントする休止カウンタをさらに備え、
     前記表示タイミング制御回路は、前記休止カウンタによってカウントされた回数が、連続して休止可能な最大回数として予め設定された最大休止回数を超えたとき、前記更新されたビデオデータを受信したか否かに関わらず強制的に前記画面をリフレッシュすることを特徴とする、請求項1に記載の表示装置。
  7.  前記画面のリフレッシュを休止可能な最大休止期間ごとにパルスを生成して前記表示タイミング制御回路に出力するパルス生成回路をさらに備え、
     前記表示タイミング制御回路は、前記パルス生成回路から前記パルスが出力されたとき、前記更新されたビデオデータを受信したか否かに関わらず強制的に前記画面をリフレッシュすることを特徴とする、請求項1に記載の表示装置。
  8.  前記画面のリフレッシュを休止するとき、前記メモリアクセス回路は、前記フレームメモリに格納されている前記更新されたビデオデータの読み出しを休止することを特徴とする、請求項2に記載の表示装置。
  9.  前記表示パネルは、マトリクス状に配列された複数の画素回路を含み、
     前記画素回路は、チャネル層が酸化物半導体からなる薄膜トランジスタを有することを特徴とする、請求項1から3のいずれか1項に記載の表示装置。
  10.  前記表示パネルに裏面から光を照射するバックライトユニットをさらに備えることを特徴とする、請求項9に記載の表示装置。
  11.  前記コマンドに含まれるビデオデータは不定期に更新されることを特徴とする、請求項1から3のいずれか1項に記載の表示装置。
  12.  前記所定期間は、1画面の更新に必要な期間または前記更新に必要な期間の整数倍の期間であることを特徴とする、請求項1から3のいずれか1項に記載の表示装置。
  13.  前記コマンドは、前記表示装置と高速シリアルインターフェイスで接続された外部のホストプロセッサから前記表示装置に送信されることを特徴とする、請求項1から3のいずれか1項に記載の表示装置。
  14.  前記表示タイミング制御回路は、前記画面のリフレッシュを休止するとき、前記信号線駆動回路に含まれる前記アナログ回路のバイアス電流を、前記画面をリフレッシュするときよりも小さくすることを特徴とする、請求項5に記載の表示装置。
  15.  前記表示タイミング制御回路は、前記画面のリフレッシュを休止するとき、前記電源回路のクロック周波数を、前記画面をリフレッシュするときよりも低くすることを特徴とする、請求項4に記載の表示装置。
  16.  外部から送信されたコマンドに含まれるビデオデータに基づいて表示パネルの画面をリフレッシュする表示装置の表示方法であって、
     第1の所定期間内に受信した前記コマンドに、更新されたビデオデータが含まれているか否かを前記第1の所定期間に判定するステップと、
     前記更新されたビデオデータが含まれていないと判定されたとき、前記第1の所定期間の直後の第2の所定期間において、前記画面のリフレッシュを休止するステップとを備えることを特徴とする、表示装置の駆動方法。
  17.  前記第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれているか否かを判定するステップにおいて、前記更新されたビデオデータが含まれていると判定されたとき、
     前記第2の所定期間に、前記第1の所定期間にフレームメモリに格納された前記更新されたビデオデータをメモリアクセス回路によって読み出すステップと、
     前記読み出したビデオデータを、制御信号と共に前記表示パネルを駆動する駆動回路に出力することにより前記画面のリフレッシュを行なうステップとをさらに備えることを特徴とする、請求項16に記載の表示装置の駆動方法。
  18.  前記第1の所定期間内に受信した前記コマンドに前記更新されたビデオデータが含まれているか否かを判定するステップにおいて、前記更新されたビデオデータが含まれていると判定されたとき、
     前記第2の所定期間に、前記第1の所定期間にフレームメモリに格納された前記更新されたビデオデータをメモリアクセス回路によって読み出して駆動回路に出力することにより、前記画面を前記第2の所定期間よりも短い期間でリフレッシュするステップと、
     前記第2の所定期間よりも短い期間で前記画面のリフレッシュを行なった後に、前記第2の所定期間の残りの期間における前記画面のリフレッシュを休止するステップとをさらに備えることを特徴とする、請求項16に記載の表示装置の駆動方法。
PCT/JP2012/071782 2011-09-06 2012-08-29 表示装置およびその駆動方法 WO2013035594A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280003994.1A CN103238177B (zh) 2011-09-06 2012-08-29 显示装置及其驱动方法
JP2013501952A JP5236131B1 (ja) 2011-09-06 2012-08-29 表示装置およびその駆動方法
KR1020137013276A KR101311642B1 (ko) 2011-09-06 2012-08-29 표시 장치 및 그 구동 방법
US13/989,486 US8704819B2 (en) 2011-09-06 2012-08-29 Display device and method for driving same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011194397 2011-09-06
JP2011-194397 2011-09-06

Publications (1)

Publication Number Publication Date
WO2013035594A1 true WO2013035594A1 (ja) 2013-03-14

Family

ID=47832043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071782 WO2013035594A1 (ja) 2011-09-06 2012-08-29 表示装置およびその駆動方法

Country Status (5)

Country Link
US (1) US8704819B2 (ja)
JP (1) JP5236131B1 (ja)
KR (1) KR101311642B1 (ja)
CN (1) CN103238177B (ja)
WO (1) WO2013035594A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050291A1 (ja) * 2012-09-26 2014-04-03 シャープ株式会社 表示装置およびその駆動方法
WO2014175064A1 (ja) * 2013-04-26 2014-10-30 シャープ株式会社 表示装置、利用者端末、表示装置の調整方法、および表示装置の制御方法
WO2014174888A1 (ja) * 2013-04-23 2014-10-30 シャープ株式会社 液晶表示装置
JP2016085348A (ja) * 2014-10-27 2016-05-19 シナプティクス・ディスプレイ・デバイス合同会社 表示駆動回路
WO2016093125A1 (ja) * 2014-12-08 2016-06-16 シャープ株式会社 表示制御装置、表示制御方法及び表示制御プログラム
JP2017502325A (ja) * 2013-12-28 2017-01-19 インテル・コーポレーション 動的バックライト制御能力を利用した適応性部分画面更新
EP3096231A4 (en) * 2014-01-17 2017-01-25 Fujitsu Limited Image processing program, image processing method, and image processing device
WO2017130860A1 (ja) * 2016-01-28 2017-08-03 シャープ株式会社 表示装置
WO2018042286A1 (ja) * 2016-08-30 2018-03-08 株式会社半導体エネルギー研究所 表示装置およびその動作方法、ならびに電子機器
JP2018056815A (ja) * 2016-09-29 2018-04-05 株式会社半導体エネルギー研究所 電子機器、又は電子機器システム
JP2019191520A (ja) * 2018-04-27 2019-10-31 シャープ株式会社 表示制御装置、表示装置及び表示制御方法
JP2021135309A (ja) * 2020-02-21 2021-09-13 シャープ株式会社 表示制御装置、表示制御方法及び表示制御プログラム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133978B1 (ko) 2013-11-13 2020-07-14 삼성전자주식회사 압축 데이터를 이용하여 패널 셀프 리프레쉬를 수행할 수 있는 타이밍 컨트롤러, 이의 동작 방법, 및 상기 타이밍 컨트롤러를 포함하는 데이터 처리 시스템
KR102035986B1 (ko) * 2013-11-13 2019-10-24 삼성전자 주식회사 타이밍 컨트롤러와 상기 타이밍 컨트롤러를 포함하는 디스플레이 시스템
JP6462208B2 (ja) * 2013-11-21 2019-01-30 ラピスセミコンダクタ株式会社 表示デバイスの駆動装置
KR101544438B1 (ko) * 2014-01-23 2015-08-13 (주)미디어에버 전자종이 디스플레이 장치를 위한 전력 제어 방법 및 이를 이용한 전자종이 디스플레이 장치
EP3138092A4 (en) * 2014-04-17 2018-02-14 Pricer AB Scanning method for a display device
WO2015183567A1 (en) * 2014-05-28 2015-12-03 Polyera Corporation Low power display updates
KR102225254B1 (ko) 2014-08-27 2021-03-09 삼성전자주식회사 표시 패널 컨트롤러 및 이를 포함하는 표시 장치
KR102277937B1 (ko) * 2014-11-20 2021-07-14 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
KR102280939B1 (ko) * 2015-01-29 2021-07-27 삼성디스플레이 주식회사 표시 장치 및 그것의 휘도 제어 방법
CN108140352A (zh) * 2015-10-19 2018-06-08 夏普株式会社 显示装置所连接的数据处理装置和显示装置的控制方法
US10497330B2 (en) * 2015-12-02 2019-12-03 Sharp Kabushiki Kaisha Display device that performs pause driving
CN105679273A (zh) * 2016-04-20 2016-06-15 京东方科技集团股份有限公司 显示面板的驱动方法、驱动电路以及显示装置
CN106875915B (zh) * 2017-04-21 2019-10-18 合肥京东方光电科技有限公司 自刷新显示驱动装置、驱动方法及显示装置
CN107479278A (zh) * 2017-07-06 2017-12-15 惠科股份有限公司 一种显示面板及显示装置
KR102489372B1 (ko) * 2017-09-25 2023-01-18 삼성전자주식회사 디스플레이 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323691A (ja) * 1991-04-23 1992-11-12 Ricoh Co Ltd 表示制御装置
JP2001282164A (ja) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd 表示装置用駆動装置
JP2002278523A (ja) * 2001-01-12 2002-09-27 Sharp Corp 表示装置の駆動方法および表示装置
JP2003044011A (ja) * 2001-07-27 2003-02-14 Sharp Corp 表示装置
JP2005140959A (ja) * 2003-11-06 2005-06-02 Rohm Co Ltd 表示装置及びこれを用いた携帯機器
JP2007240913A (ja) * 2006-03-09 2007-09-20 Epson Imaging Devices Corp 電気光学装置及び電子機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207462A (ja) 2001-01-11 2002-07-26 Toshiba Corp 液晶表示素子の駆動方法
JP4638117B2 (ja) * 2002-08-22 2011-02-23 シャープ株式会社 表示装置およびその駆動方法
JP4237109B2 (ja) * 2004-06-18 2009-03-11 エルピーダメモリ株式会社 半導体記憶装置及びリフレッシュ周期制御方法
WO2012009608A1 (en) * 2010-07-16 2012-01-19 Marvell World Trade Ltd. Controller for updating pixels in an electronic paper display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323691A (ja) * 1991-04-23 1992-11-12 Ricoh Co Ltd 表示制御装置
JP2001282164A (ja) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd 表示装置用駆動装置
JP2002278523A (ja) * 2001-01-12 2002-09-27 Sharp Corp 表示装置の駆動方法および表示装置
JP2003044011A (ja) * 2001-07-27 2003-02-14 Sharp Corp 表示装置
JP2005140959A (ja) * 2003-11-06 2005-06-02 Rohm Co Ltd 表示装置及びこれを用いた携帯機器
JP2007240913A (ja) * 2006-03-09 2007-09-20 Epson Imaging Devices Corp 電気光学装置及び電子機器

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050291A1 (ja) * 2012-09-26 2014-04-03 シャープ株式会社 表示装置およびその駆動方法
WO2014174888A1 (ja) * 2013-04-23 2014-10-30 シャープ株式会社 液晶表示装置
JPWO2014174888A1 (ja) * 2013-04-23 2017-02-23 シャープ株式会社 液晶表示装置
WO2014175064A1 (ja) * 2013-04-26 2014-10-30 シャープ株式会社 表示装置、利用者端末、表示装置の調整方法、および表示装置の制御方法
JP2014215559A (ja) * 2013-04-26 2014-11-17 シャープ株式会社 表示装置、利用者端末、表示装置の調整方法、および表示装置の制御方法
US9947276B2 (en) 2013-04-26 2018-04-17 Sharp Kabushiki Kaisha Display device, user terminal, and method for adjusting display device
JP2017502325A (ja) * 2013-12-28 2017-01-19 インテル・コーポレーション 動的バックライト制御能力を利用した適応性部分画面更新
EP3096231A4 (en) * 2014-01-17 2017-01-25 Fujitsu Limited Image processing program, image processing method, and image processing device
JP2016085348A (ja) * 2014-10-27 2016-05-19 シナプティクス・ディスプレイ・デバイス合同会社 表示駆動回路
US10872555B2 (en) 2014-10-27 2020-12-22 Synaptics Japan Gk Display drive circuit
JPWO2016093125A1 (ja) * 2014-12-08 2017-09-14 シャープ株式会社 表示制御装置、表示制御方法及び表示制御プログラム
JP2019095815A (ja) * 2014-12-08 2019-06-20 シャープ株式会社 表示制御装置
US10847103B2 (en) 2014-12-08 2020-11-24 Sharp Kabushiki Kaisha Display control device, display control method, and computer-readable recording medium
WO2016093125A1 (ja) * 2014-12-08 2016-06-16 シャープ株式会社 表示制御装置、表示制御方法及び表示制御プログラム
WO2017130860A1 (ja) * 2016-01-28 2017-08-03 シャープ株式会社 表示装置
CN108604437A (zh) * 2016-01-28 2018-09-28 夏普株式会社 显示装置
WO2018042286A1 (ja) * 2016-08-30 2018-03-08 株式会社半導体エネルギー研究所 表示装置およびその動作方法、ならびに電子機器
JP2018056815A (ja) * 2016-09-29 2018-04-05 株式会社半導体エネルギー研究所 電子機器、又は電子機器システム
JP2019191520A (ja) * 2018-04-27 2019-10-31 シャープ株式会社 表示制御装置、表示装置及び表示制御方法
JP7101532B2 (ja) 2018-04-27 2022-07-15 シャープ株式会社 表示制御装置、表示装置及び表示制御方法
JP2021135309A (ja) * 2020-02-21 2021-09-13 シャープ株式会社 表示制御装置、表示制御方法及び表示制御プログラム

Also Published As

Publication number Publication date
KR101311642B1 (ko) 2013-09-25
CN103238177B (zh) 2015-01-21
CN103238177A (zh) 2013-08-07
US20140022234A1 (en) 2014-01-23
KR20130076898A (ko) 2013-07-08
US8704819B2 (en) 2014-04-22
JP5236131B1 (ja) 2013-07-17
JPWO2013035594A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5236131B1 (ja) 表示装置およびその駆動方法
US9607541B2 (en) Liquid crystal display device and method for driving same
TWI536339B (zh) 顯示裝置及其驅動方法
US9898969B2 (en) Drive control device, display device including the same, and drive control method
US20170025068A1 (en) Display device
JP5336021B2 (ja) ドライバ装置、駆動方法、及び、表示装置
JPWO2013115088A1 (ja) 表示装置およびその駆動方法
JP5378613B1 (ja) 表示装置および表示方法
US9953594B2 (en) Liquid crystal display device and method for driving same
JP6169189B2 (ja) 液晶表示装置およびその駆動方法
US9419603B2 (en) Gate driver, driving method thereof, and control circuit of flat panel display device
TWI537926B (zh) 顯示裝置及其驅動方法
US9412317B2 (en) Display device and method of driving the same
KR101897002B1 (ko) 액정표시장치 및 그 구동 방법
WO2013121957A1 (ja) 表示パネルの駆動装置、それを備える表示装置、および表示パネルの駆動方法
WO2013024776A1 (ja) 表示装置およびその駆動方法
TWI440002B (zh) 液晶面板驅動電路及液晶顯示裝置
WO2017183125A1 (ja) 表示装置およびその制御方法
CN112489602B (zh) 显示面板的驱动电路、显示面板的驱动方法与显示模块
KR101217158B1 (ko) 액정표시장치
US20150302809A1 (en) Liquid crystal display device and method for driving same
JP2016133519A (ja) 表示装置およびその制御方法
KR20170140624A (ko) 전원공급부를 포함하는 표시장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013501952

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137013276

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13989486

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830533

Country of ref document: EP

Kind code of ref document: A1